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SUMMARY

We consider the optimal pricing problem in a service facility in order to maximize its

long-run average profit per unit time. We model the facility as a queueing process that may

have finite or infinite capacity. Customers are admitted into the system if it is not full and

if they are willing to pay the price posted by the service provider.

Moreover, the congestion level in the facility incurs penalties that greatly influence profit.

We model congestion penalties in three different manners: holding costs, balking customers

and impatient customers. First, we assume that congestion-dependent holding costs are

incurred per unit of time. Second, we consider that each customer might be deterred by

the system congestion level and might balk upon arrival. Third, customers are impatient

and can leave the system with a full refund before being serviced.

We are interested in both static and dynamic pricing for all three types of congestion

penalties. In the static case, we demonstrate that there is a unique optimal price that

maximizes the long-run average profit per unit time. We also investigate how optimal

prices vary as system parameters change. In the dynamic case, we show the existence of

an optimal stationary policy in a continuous and unbounded action space that maximizes

the long-run average profit per unit time. We provide explicit expressions for this policy

under certain conditions. We also analyze the structure of this policy and investigate its

relationship with our optimal static price.

xi



CHAPTER I

INTRODUCTION

Determining the optimal price to be charged for a service facility is a critical decision for a

manager. There is a trade-off between high prices and high demand that greatly influences

revenue. Not all customers react the same way to advertised prices and the maximum

amount that each customer is willing to pay is often random.

Moreover, the congestion level in the system affects the operating efficiency of the facility

and incur penalties that reduce profit. In a congested service facility with scarce resources,

entering customers might wait for service and might even be turned down by the service

provider who can not accommodate them. There is a loss of service quality and customer

goodwill associated with long waiting times. In addition, potential customers are often

deterred by high congestion levels when this information is available to them through quoted

lead times. Congestion plays a key role and affects the operating performance as well

customers’ behavior. A service provider who ignores congestion not only overestimates

profit but also fails to realize that pricing can be used to control congestion costs. Setting

high prices can be helpful to reduce congestion by dissuading customers from entering an

overcrowded facility.

Although it has applications in other service industries, the work in this dissertation

was originally motivated by the pricing problem of outsourced computer services. These

services offer processing power, server time or bandwidth resources and are provided to

businesses that do not have sufficient in-house capabilities. These solutions present an
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inexpensive and flexible way to handle spikes in computing needs for businesses with

limited resources. Sam Palmisano, IBM’s CEO, forsees a near future in which “busi-

nesses [would] buy computing power on demand, similar to the way electricity is pur-

chased” (see http://news.com.com/IBM+talks+up+computing+on+demand/2100-1001 3-

963807.html). As businesses computing needs grow larger, these products give smaller

companies access to supercomputing power that only very large corporations could af-

ford (see http://www-03.ibm.com/press/us/en/pressrelease/7949.wss). The most promi-

nent providers of such services include IBM, Hewlett-Packard, Cisco Systems, AT&T and

Schlumberger. In the same fashion as utilities, the prices of these services should increase

with congestion and usage. Our objective is to develop a better understanding of how

congestion affects the optimal pricing decisions of the provider of such services.

We model the service facility as a queueing system with finite or infinite capacity (size).

The queueing framework enables us to capture the variability of service times, customers’

arrival times and customers’ price sensitivity, as well as analytically tractable congestion

penalties. We suppose that customers have independent identically distributed valuations

of service and enter the system when it is not full and when their valuation is greater

than the current advertised price. We will refer to the distribution of service valuation as

willingness-to-pay distribution and we assume that the associated process is independent of

arrival and service times and that prices are paid upon arrival.

We are interested in both static and dynamic pricing. The service provider is said to use

static pricing, when prices are set at time zero and cannot be changed during the lifetime of

the system. The service provider is said to use dynamic pricing, when prices can be adjusted

in time. Note that this usually translates into having congestion-dependent prices; that is,

prices that depend on the current congestion level of the system. When dynamic pricing
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is in use, we refine our model by segmenting customers into a finite number of classes.

Each class forms a homogeneous group where customers have the same willingness-to-pay

distribution. However, the willingness-to-pay distribution might be different from one class

to another. The service provider may advertise different prices to each customer class. This

ability to have class-specific congestion-dependent prices is referred to as dynamic precision

pricing . Moreover, when congestion penalties are incurred, dynamic pricing allows price

adjustments to the current congestion level. Therefore, pricing can be dynamically adapted

to the cost of congestion in each state.

The objective our work is to determine the optimal static and dynamic pricing policies

that maximize the long-run average profit per unit time for a service facility subject to

congestion penalties. Then, we seek to analyze structural properties of our results as well as

their sensitivity to system parameters. This includes understanding the congestion control

features of optimal prices and studying how optimal prices change as system parameters

vary.

We develop our model by capturing congestion penalties in three different ways: holding

costs, balking customers and impatient customers. In the holding cost model, we assume

that state-dependent holding costs are incurred per unit of time. This is the case when

each customer incurs a fixed cost per unit time spent in the system. One can think of

this congestion penalty as a loss of customer goodwill that is proportional to the customer

sojourn time. The longer the customer waits, the less likely the customer is to return.

Although the system congestion is experienced by customers, the service provider indirectly

bears its cost as she experiences its effects as a future loss of revenue.

In the model with balking customers, customers directly react to the current congestion

level. In this case, we consider that each customer has a random congestion valuation
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to make her decision whether to enter the system or not. Hence, only customers who

are willing to pay the current price and who tolerate the current congestion level enter the

system, otherwise they balk and do not pay. Note that this random congestion valuation can

be considered as willingness-to-wait with a willingness-to-wait distribution. Such a behavior

is experienced in service facilities where potential customers are quoted a service lead time

and make their decision to purchase products based both on price and quoted waiting time.

Internet commerce companies encounter this issue in periods of heavy demand, as they

provide customers with expected shipping and delivery times.

In the model with impatient customers, customers who are willing to pay the current

advertised price enter the system if it is not full and pay upon arrival. However, each cus-

tomer waiting for service is impatient and reneges if he is not serviced prior to his maximum

waiting time. We assume that customers’ maximum waiting times are independent, identi-

cally distributed exponential random variables and that reneging customers are given a full

refund. Note that in stable systems, this is equivalent to a model where customers pay upon

service completion. This type of customer behavior is experienced in call centers, where

customers have to wait for an operator to purchase a product. Impatient customers might

renege and hang up and only customers who complete the phone transaction contribute to

the bottom line.

The outline of this dissertation is as follows. In Chapter 2, we review the literature

on the issue of pricing in queueing systems related to our work. Then, we decompose our

analysis into two parts: static pricing in Chapter 3 and dynamic precision pricing in Chapter

4. In each of these two chapters, we describe our results for each congestion model: holding

costs, balking customers and impatient customers. Chapter 5 contains the conclusion to

our work as well directions for future research. In Appendices A and B, we show technical
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results that support our work in Chapters 3 and 4, respectively.
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CHAPTER II

LITERATURE REVIEW

The use of nontraditional pricing strategies in order to maximize profit in service facilities

has generated much interest in the recent years. Although our work directly considers

pricing in order to maximize profit, it is inspired by a series of papers on the more general

topic of congestion control in queueing systems. We can group them in two categories,

depending on whether the control is static or dynamic.

The paper by Naor [16] is the first one that combines the issues of pricing and congestion

control in queues. Naor’s work and many papers extending it (such as Knudsen [9] and

Yechiali [21]) analyze systems where customers make a decision to enter a service facility

based on its current queue length. Entering customers obtain a fixed reward and are charged

a holding cost function of their time spent in the system. In order to maximize their utility,

they decide to join or balk (join-balk rule). The service provider then imposes an entrance

fee to induce an optimal customer admission rate. Larsen [10] and Hassin [6] evaluate

the effect of releasing the expected queue length to potential customers as opposed to the

current queue length.

Mendelson and Whang [15] consider customers who make their decision to enter the

system based both on price and delay. Mendelson and Whang [15] also include different

customer classes that have different demand functions and delay costs. Prices are then

used by the decision maker as an incentive to induce optimal customer arrival rates and

execution priorities.
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Ittig [7] develops a model in which congestion is treated as a form of price. His objective

is not optimal pricing but he determines the optimal number of servers for the service facility.

He introduces a general demand function relating average waiting time and demand rate as

well as a cost of service capacity. He sets up a nonlinear constrained optimization problem

where the queueing link between demand rate and average waiting time is a constraint.

Ittig [8] is also interested in estimating the optimal number of servers through transaction

data when the relationship between demand and congestion is not explicitly known.

Ziya [22, 24] focuses on optimal static pricing for systems without holding costs in

M/G/1/∞ and M/M/1/N queueing systems. Instead of using a congestion-based join-

balk rule, he links the customers’ arrival rate to the posted price through a random service

valuation for each customer. He uses a willingness-to-pay distribution to capture the pro-

portion of customers willing to pay the posted price and shows the existence of a unique

optimal price that maximizes the long-run average profit. Ziya [22, 24] also exhibits how

the optimal price changes as system parameters vary and addresses the issue of precision

static pricing, where the service provider can advertise static class-specific prices in systems

without holding costs.

In all the papers mentioned above, the system controls are static: that is, the controls

are set by the decision maker once and remain unchanged throughout the life of the system.

In the second group of papers, controls are allowed to depend on the state of the system

(dynamic control). Stidham [19] develops a dynamic admission control model to optimize

an infinite-horizon discounted reward with convex holding costs in single server queues.

Stidham’s decision variable is defined as whether to accept or reject an incoming job. Each

accepted job yields a fixed deterministic reward. He shows the existence of a monotonic

optimal stationary policy. He also extends his results to simple networks of queues.
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On the other hand, George and Harrison [4] allow the service provider to dynamically

control the service rate instead of the arrival rate. There is a penalty that depends on the

chosen service rate and the objective is to minimize the long-run average cost in systems

with holding costs.

Combining the problems of setting admission rates and service rates, Ata and Shneor-

son [2] consider a dynamic control model where the service provider sets state-dependent

admission rates and service rates in an M/M/1 queue with holding costs. There is a reward

associated with the chosen admission rates and a cost corresponding to the chosen service

rates. After explicitly solving this problem, they analyze a decentralized model, where only

service rates and prices are decision variables. The service provider must set them so that

the optimal arrival rates are induced by customers maximizing their own utility.

Low [12], [13] is interested in dynamic pricing in M/M/s queues with finite or infinite

capacity but with a finite action space. Low does not use a willingness-to-pay distribution

but each price in the action space corresponds to a given positive arrival rate. Low also

considers state-dependent holding costs incurred as a lump sum as a customer arrives. He

makes the extra assumption that holding costs are bounded and that the facility has multiple

identical servers. He shows that optimal prices are nondecreasing as the system becomes

congested and develops an algorithm to solve the Markov decision process formulation of

the problem. Aktaran and Ayhan [1], as well as Çil, Karaesmen and Örmeci [3], further

investigate the sensitivity of the optimal prices to system parameters. Paschalidis and

Tsitsiklis [17] focus on models with multiple classes of customers that have different resource

requirements without holding costs.

Differing from earlier work, we consider systems with holding costs, systems with balking

customers and systems with impatient customers as alternative ways to capture congestion
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penalties. We extend Ziya’s work on static pricing by introducing these three types of

congestion penalties and by considering capacity as a decision variable. We also extend

Low’s work on dynamic pricing with holding costs by introducing a general parameter

structure and by considering a continuous unbounded action space for multiple customer

classes in finite or infinite capacity systems. Unlike models with holding costs, the issue

of pricing in queues with balking or impatient customers with refund has received little

attention. Our objective is to analyze how congestion influences pricing in both static and

dynamic pricing settings.
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CHAPTER III

STATIC PRICING

3.1 Model Description

In this chapter, the service provider can only advertise one price at all times for all cus-

tomers. Therefore, an optimal policy is characterized by a single advertised price. After

describing the model, we determine the optimal prices for the service facility subject to each

of the three congestion penalties. First, we focus on system with holding costs. Then, we

analyze systems with balking customers, and finally, we consider systems with impatient

customers.

We model the service facility as a single server system, where N ≤ ∞ is the maximum

number of customers allowed in the system at any time. Arriving customers enter if the

system is not full and if they are willing to pay the price charged by the service provider.

Let y denote the mark-up charged for service. Note that the price to be charged is

the sum of the mark-up and the variable cost of service. Without loss of generality, we

assume that the variable cost of service is zero, so the mark-up is equal to the price. Let

N(t) be the number of arrivals in the time interval (0, t]. We assume that {N(t) : t ≥ 0}

is a Poisson process with rate Λ . We call Λ the maximum arrival rate. For y ≥ 0, let

F (y) be the proportion of customers willing to pay a price of at most y. We call F (·), the

willingness-to-pay distribution. We assume that the cumulative distribution function F (·) is

absolutely continuous with density f(·), support (α, β) and finite mean. Let r(·) denote the

hazard rate function of F (·); that is, r(y) = f(y)
1−F (y) for α < y < β and we define r(y) = 0 for

y ≤ α and r(y) = ∞ for y ≥ β. In what follows, we assume that F has IGHR (Increasing
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Generalized Hazard Rate); that is, yr(y) is strictly increasing for all y in [α, β).

Assumption IGHR is equivalent to the demand function having decreasing price elas-

ticity (see Proposition 2.1 in Ziya [23]). Many common distribution functions (such as

exponential and uniform distributions) have this property that simply states that the de-

mand becomes more elastic as prices decrease.

Let N(y, t) be the number of customers who are willing to pay a price of at most y and

arrive during (0, t]. Let λ(y) denote the arrival rate of customers who are willing to pay a

price of at most y, so that λ(y) = Λ(1 − F (y)) = limt→∞
N(y,t)

t
.

Service times are independent, identically distributed random variables with distribution

G(·), mean 1
µ

and squared coefficient of variation c2
s. The service process, the arrival process

and the process associated with the amounts successive customers are willing to pay are

assumed to be independent.

When the price is y, the number of customers in the system forms a queueing process

with Poisson arrival process {N(y, t) : t ≥ 0} and independent, identically distributed

service times with c.d.f G(·). When an arriving customer is willing to pay the posted price,

the customer enters the system if the system is not full; otherwise, the customer is lost.

Let ρ(y) = Λ
µ
(1 − F (y)) denote the traffic intensity when the price is y. Let ŷ be the

maximum price under which we have a traffic intensity of 1; that is, ŷ = sup{y : ρ(y) =

1} when Λ
µ
≥ 1. Note that when Λ

µ
< 1, ŷ = −∞. We define the state of the system X(t) as

the number of customers in the system at time t. When they exist, {πn(ρ, N)} and L(ρ, N)

denote the stationary distribution and the expected number of customers in the system for

traffic intensity ρ and capacity N .

Let R(y, N) be the long-run average profit per unit time for a posted price y and capacity
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N . The optimal static pricing problem can be formulated as:

max
y

R(y, N), subject to y ≥ 0.

When it exists and is unique, we let y∗N denote the optimal price to be charged to maximize

R(y, N) and R∗
N = R(y∗N , N) denote the optimal objective value.

In the following, we consider the optimal pricing problem for the service facility to each

of the three congestion penalties: first, we focus on system with holding costs. Then, we

analyze systems with balking customers and finally, we consider systems with impatient

customers.

3.2 Systems with Holding Costs

In this section, we capture congestion penalties through holding costs. More specifically, we

assume that each entering customer pays the posted price at the time of arrival and incurs

a cost of h per unit time while in the system as in Figure 1. To ensure that a positive

long-run profit is attainable, we will assume that h
µ

< β.

Waiting room Servers

w.p. 1-F(y)

w.p. F(y) Occupancy s
Capacity N

+$y

Customer
Arrival

-$sh per unit time

Figure 1: System with Holding Costs
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3.2.1 Optimal Pricing for M/G/1/∞ Queues

In the following, we derive expressions for R(y,∞) and y∗∞ when no further assumptions are

made on the service time distribution. Only customers who are willing to pay the posted

price y enter the system and they pay y immediately. Since they incur an additional cost

of h per unit time that they spend in the system,

R(y,∞) = lim
t→∞

yN(y, t) − h
∑N(y,t)

k=1 Dk

t
,

where {Dk : k = 1, 2, . . .∞} is the sequence of the total waiting times for successive cus-

tomers. Note that

lim
t→∞

∑N(y,t)
k=1 Dk

t
= lim

t→∞

∑N(y,t)
k=1 Dk

N(y, t)

N(y, t)

t
= L(ρ(y),∞).

Therefore, we can write the long-run average reward per unit time as

R(y,∞) = yλ(y) − hL(ρ(y),∞).

Clearly, if ρ(y) ≥ 1 and h > 0, then L(ρ(y),∞) = ∞ and R(y,∞) = −∞. From the

Pollaczek-Khinchin formula [5], if ρ(y) < 1,

L(ρ(y),∞) =
ρ(y)(2 − ρ(y)(1 − c2

s))

2(1 − ρ(y))
.

Therefore, if ρ(y) < 1,

R(y,∞) = yλ(y) − h
ρ(y)(2 − ρ(y)(1 − c2

s))

2(1 − ρ(y))
.

Note that the long-run average reward function consists of two terms : the first de-

scribing the revenue through the arrival rate regardless of the service times, whereas the

second accounts for the additional holding cost through the steady-state average number of

customers in the system.

In the following result, we show the existence and the uniqueness of an optimal price.

13



Theorem 3.2.1 There exists a unique optimal price given by :

y∗∞ = inf

{

y : r(y)

(

y −
h

µ
ϕ(ρ(y))

)

≥ 1

}

,

where

ϕ(ρ) =











































1+ρ(c2s−1)(1− ρ

2
)

(1−ρ)2
if ρ < 1, h > 0,

∞ if ρ ≥ 1, h > 0,

0 if h = 0.

Proof First, assume h > 0 and let α̂ = max(α, ŷ). Note that for all y less than or equal to

ŷ, the reward function is equal to −∞. Therefore, an optimal price, if it exists, has to be

greater than ŷ. Since F (·) is absolutely continuous, for all y in [α̂, β), R(y,∞) is continuous

and a.e. differentiable on [α̂, β). We can rewrite R(y,∞) as

R(y,∞) = ρ(y)

(

µy − h
(2 − ρ(y)(1 − c2

s))

2(1 − ρ(y))

)

.

Note that

µy − h
(2 − ρ(y)(1 − c2

s))

2(1 − ρ(y))
→ µβ − h > 0 as y tends to β .

Therefore, there exists y in [α̂, β) such that R(y,∞) > 0. Moreover, for all y in [α̂, β),

R(y,∞) < ∞ and R(y,∞) → 0 as y → β. So, there exists an optimal price in [α̂, β).

If R(y,∞) is differentiable with respect to y ∈ [α̂, β), then ∂R(y,∞)
∂y

> 0(< 0) if and

only if r(y)(y − ϕ(y)) < 1(> 1). Since there exists y in [α̂, β) such that R(y,∞) > 0 and

R(y,∞) → 0 as y → β, there exists y in [α̂, β) such that r(y)(y − h
µ
ϕ(ρ(y))) > 1. Note that

∂ϕ(ρ(y))
∂y

= − r(y)ρ(y)(c2s+1)
(1−ρ(y))3

≤ 0, for all y in [α̂, β), so ϕ(ρ(y)) ≥ ϕ(0) = 1. Under Assumption

IGHR, r(y)(y− h
µ
ϕ(ρ(y))) is strictly increasing in the interval [inf{y : r(y)(y− h

µ
ϕ(ρ(y))) ≥

1}, β), so R(y,∞) is decreasing in the interval (inf{y : r(y)(y − h
µ
ϕ(ρ(y))) ≥ 1}, β). In the
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same fashion, R(y,∞) is increasing in the interval (α̂, inf{y : r(y)(y − h
µ
ϕ(ρ(y))) ≥ 1}).

Eventually, we can conclude that y∗∞ = inf{y : r(y)(y − h
µ
ϕ(ρ(y))) ≥ 1}. 2

When h = 0, the result reduces to y∗∞ = inf{y : yr(y) ≥ 1}, which agrees with the

characterization of the optimal price in Proposition 3.3.1 of Ziya [22].

We can use Theorem 3.2.1 to derive the following result for M/M/1/∞ queueing systems.

Corollary 3.2.1 If the service times are exponentially distributed and h > 0, then there

exists a unique optimal price given by :

y∗∞ = inf

{

y : r(y)

(

y −
h

µ
ϕ(ρ(y))

)

≥ 1

}

,

where

ϕ(ρ) =











































1
(1−ρ)2

if ρ < 1, h > 0,

∞ if ρ ≥ 1, h > 0,

0 if h = 0.

Depending on the willingness-to-pay distribution, it might be difficult to compute y∗∞.

The next result provides bounds (which are obtained by replacing ϕ(ρ(y)) by ϕ(Λ
µ
) in the

expression of y∗∞) on the optimal price. These bounds will also be used in the next section

in order to compare the properties of systems with and without holding costs.

Proposition 3.2.1 The unique optimal price y∗∞ satisfies h
µ
≤ y∗∞. Moreover, if Λ < µ,

then

y∗∞ ≤ inf

{

y : y

(

r(y) −
h

µ
ϕ(

Λ

µ
)

)

≥ 1

}

.

Proof First, suppose that y∗∞ < h
µ
. If h = 0, then there is clearly a contradiction. Assume

now that h > 0. Since L(ρ(y),∞) ≥ ρ(y), we have R(y∗∞,∞) ≤ y∗∞λ(y∗∞) − h
µ
λ(y∗∞) < 0,
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which is a contradiction since we proved in Theorem 3.2.1 that there exists y in [α̂, β) such

that R(y,∞) > 0. Therefore, h
µ
≤ y∗∞.

Now suppose Λ < µ. From Theorem 3.2.1, y∗∞ = inf{y : r(y)(y − h
µ
ϕ(ρ(y))) ≥ 1}. Since

ϕ(ρ(·)) is nonincreasing,
1+Λ

µ
(c2s−1)(1− Λ

2µ
)

(1−Λ

µ
)2

= ϕ(Λ
µ
) ≥ ϕ(ρ(y)) for y ≥ 0. Therefore, for all y

in (α, β) such that r(y)(y − h
µ
ϕ(Λ

µ
)) ≥ 1, we have r(y)(y − h

µ
ϕ(ρ(y))). This completes the

proof. 2

We now compare the optimal price and the optimal reward in two M/G/1/∞ systems

(indexed by 1 and 2). These two systems differ by marginal holding cost, maximum arrival

rates, service rates and squared coefficients of variation. Moreover, we also compare systems

where the willingness-to-pay distributions are ordered in the stochastic ordering and hazard

rate ordering. Recall that distribution F1 is greater than or equal to distribution F2 in

the stochastic ordering (F1 ≥ST F2) if and only if F1(y) ≤ F2(y),∀y ≥ 0. Furthermore,

distribution F1 is greater than or equal to distribution F2 in the hazard rate ordering

(F1 ≥HR F2) if and only if r1(y) ≤ r2(y),∀y ≥ 0. Our objective is to compare the optimal

prices y∗∞,1 and y∗∞,2 for these two systems.

In systems without holding cost, Ziya [22] shows that if F1 ≥HR F2, then y∗∞,1 ≥ y∗∞,2.

We show in the next proposition that this result still holds when holding costs are incurred.

However, stochastic ordering of the willingness-to-pay distributions do not necessarily guar-

antee ordered optimal prices (see Section 3.4 in Ziya [22] for a counterexample). In the

remainder of this section, parameters relative to system i = 1, 2 are indicated by subscript

i.

Proposition 3.2.2 Consider two systems 1 and 2 that satisfy all of the following :

1. Λ1 ≥ Λ2,
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2. F1 ≥HR F2,

3. h1 ≥ h2,

4. c2
s,1 ≥ c2

s,2,

5. µ1 ≤ µ2.

Then, y∗∞,1 ≥ y∗∞,2.

Proof From Theorem 3.2.1, we have y∗∞,i = inf{y : ri(y)(y − hi

µi
ϕi(ρi(y))) ≥ 1} for system

i = 1, 2. Since hazard rate ordering implies stochastic ordering, F1 ≥ST F2. In conjunction

with conditions 1 and 5, this implies that ρ1(·) ≥ ρ2(·). Moreover, we showed in the proof

of Theorem 3.2.1 that ϕ(·) is nondecreasing. Therefore, we have ϕ1(ρ1(·)) ≥ ϕ2(ρ2(·)) from

condition 4. Suppose that y is such that r1(y)(y − h1

µ1
ϕ1(ρ1(y))) ≥ 1. Then, r2(y)(y −

h2

µ2
ϕ2(ρ2(y))) ≥ 1. Thus, y∗∞,2 ≤ y∗∞,1. 2

As shown in the proof of Proposition 3.2.2, it is intuitive that systems with higher

maximum arrival rate, smaller service rates, higher service variance and higher marginal

holding cost yield higher long-run average holding cost. Therefore, it is not surprising that

the optimal price should be higher when higher holding costs are incurred.

For systems with no holding cost, Ziya [22] shows that if Λ1

µ1
≥ Λ2

µ2
, then y∗1 ≥ y∗2.

However, this result of Ziya does not extend to facilities with holding costs. Consider two

M/M/1/∞ systems, with µ1 = 1, µ2 = .1, Λ1 = 0.5, and Λ2 = 0.0001. So, Λ2

µ2
= 0.001 ≤

Λ1

µ1
= 0.5. For both systems, assume that the willingness-to-pay distribution is exponential

with rate 1. According to Proposition 3.2.1 the optimal solution for system i = 1, 2 satisfies:

h

µi
≤ y∗∞,i ≤ 1 +

hµi

(µi − Λi)2
.
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So, y∗∞,1 ≤ 4h + 1 and 10h ≤ y∗∞,2. Consider h = 1. Therefore, y∗∞,1 < y∗∞,2, although

Λ1

µ1
≥ Λ2

µ2
.

In the next result, we analyze how the optimal reward varies as parameters change.

Proposition 3.2.3 Consider two systems 1 and 2 that satisfy all of the following :

1. Λ1 ≥ Λ2,

2. F1 ≥ST F2,

3. h1 ≤ h2,

4. c2
s,1 ≤ c2

s,2,

5. µ1 ≥ µ2.

Then, R∗
∞,1 ≥ R∗

∞,2.

Proof To prove this result, we split our proof into two parts. First, we show that the result

holds when conditions 1 and 2 are changed to equalities. Second, we show that it holds

when conditions 3,4 and 5 are changed to equalities. By composition, the result holds under

all the conditions as well.

Suppose that conditions 3,4 and 5 hold and Λ1 = Λ2 and F1(·) = F2(·). Recall that for

all y ≥ 0,

Ri(y,∞) = yλi(y) − hiLi(ρi(y),∞).

Conditions 3,4 and 5 imply that h1L1(ρ1(y),∞) ≤ h2L2(ρ2(y),∞). Therefore, R1(y,∞) ≥

R2(y,∞) and R∗
∞,1 ≥ R∗

∞,2.

Now suppose that 1 and 2 hold, whereas 3,4 and 5 are equalities. Since F1(·) is absolutely

continuous and λ1(·) ≥ λ2(·), there exists δ > 0 such that λ1(y
∗
2 + δ) = λ2(y

∗
2). Therefore,
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system 1 with price y∗2 + δ has the same arrival and service rates as system 2 with price y∗2.

Therefore, system 1 with price y∗2 + δ performs better than system 2 with optimal price.

Hence, R∗
∞,1 ≥ R∗

∞,2 and the proof is complete. 2

3.2.2 Optimal Pricing for M/M/1/N Queues

In this section, we study optimal pricing for capacitated queues. We focus on M/M/1/N

queueing systems for which we can easily quantify the long-run average queue length and

the long-run average reward function. We prove the existence of a unique optimal price

under the IGHR assumption and derive ordering properties as system parameters change.

Only customers who are willing to pay the posted price y and find fewer than N cus-

tomers in the system are allowed to enter. Therefore,

R(y, N) = lim
t→∞

yNin(y, t) − h
∑Nin(y,t)

k=1 Dk

t

where Nin(y, t) denotes the number of customers allowed in the system up to time t. From

Little’s result,

R(y, N) = yλ(y)(1 − πN (ρ(y), N)) − hL(ρ(y), N).

Recall from Gross and Harris [5] that

L(ρ(y), N) =
ρ(y)(1 − (N + 1)ρ(y)N + Nρ(y)N+1)

(1 − ρ(y))(1 − ρ(y)N+1)
and

π0(ρ, N) =























1−ρ
1−ρN+1 if ρ 6= 1,

1
N+1 if ρ = 1.

We can also express the long-run average reward per unit time as

R(y, N) = yµ(1 − π0(ρ(y), N)) − hρ(y)
(1 − (N + 1)ρ(y)N + Nρ(y)N+1)

(1 − ρ(y))(1 − ρ(y)N+1)
.

We demonstrate the existence and the uniqueness of an optimal price in Theorem 3.2.2.
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Theorem 3.2.2 There exists a unique optimal price given by :

y∗N = inf

{

y : r(y)γh
N (ρ(y))

(

y −
h

µ
ϕN (ρ(y))

)

≥ 1

}

,

where

ϕN (ρ) = −

∂L(ρ,N)
∂ρ

∂π0(ρ,N)
∂ρ

=























1−(N+1)2ρN (1+ρ2)+2N(N+2)ρN+1+ρ2N+2

(1−ρ)2(1−(N+1)ρN+NρN+1)
if ρ 6= 1,

1
6N2 + 1

2N + 1
3 if ρ = 1,

and

γh
N (ρ) =























1+NρN+1−(N+1)ρN

(1−ρN+1)(1−ρN )
if ρ 6= 1,

1
2 if ρ = 1.

Proof First, we will prove that there exists an optimal solution. Note that for all y in

[α, β), L(ρ(y), N) ≤ L(ρ(y),∞) = ρ(y)
1−ρ(y) . When y is in the neighborhood of β, ρ(y) < 1

and L(ρ(y),∞) < ∞. So, for y in the neighborhood of β,

R(y, N) ≥ yλ(y)(1 − πN (ρ(y), N)) − h
ρ(y)

1 − ρ(y)

≥
ρ(y)

1 − ρ(y)
(µy(1 − πN (ρ(y), N))(1 − ρ(y)) − h).

Under the assumption that h
µ

< β,

µy(1 − πN (ρ(y), N))(1 − ρ(y)) − h → µβ − h > 0, as y → β.

Therefore, there exists y in [α, β) such that R(y, N) > 0. Note that R(·, N) is continuous

and also bounded on [α, β) since R(y, N) → 0 as y → β. Hence, there exists an optimal

price in [α, β).

If R(y, N) is differentiable with respect to y in the interval [α, β), then ∂R(y,N)
∂y

> 0(<

0) if and only if r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) < 1(> 1). Since there exists y in [α, β)

such that R(y, N) > 0 and R(y, N) → 0 as y → β, there exists y in [α, β) such that
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r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) ≥ 1. It remains to prove that r(y)γh

N (ρ(y))(y − h
µ
ϕN (ρ(y)))

is increasing in [inf{y : r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) ≥ 1}, β).

According to Lemma A.1 in Ziya [24], γh
N (ρ(y)) is nondecreasing for y > 0. From Lemma

A.0.1 ϕN (·) is nondecreasing, ϕ(ρ(·)) is nonincreasing and nonnegative and r(y)γh
N (ρ(y))(y−

h
µ
ϕN (ρ(y))) is increasing in the interval [inf{y : r(y)γh

N (ρ(y))(y − h
µ
ϕN (ρ(y))) ≥ 1}, β).

Hence, R(y, N) is decreasing in (inf{y : r(y)γh
N (ρ(y))(y− h

µ
ϕN (ρ(y))) ≥ 1}, β). In the same

fashion, R(y, N) is increasing in (α, inf{y : r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) ≥ 1}). Therefore,

y∗N = inf

{

y : r(y)γh
N (ρ(y))

(

y −
h

µ
ϕN (ρ(y))

)

≥ 1

}

.

2

Since the optimal price is not always easy to compute, the next result provides some

bounds on y∗N .

Proposition 3.2.4 The unique optimal price y∗N satisfies h
µ
≤ y∗N . Moreover,

y∗N ≤ inf

{

y : r(y)Γh
N

(

y −
h

µ
ΦN

)

≥ 1

}

,

where

Γh
N =























1+N(Λ

µ
)N+1−(N+1)(Λ

µ
)N

(1−(Λ

µ
)N+1)(1−(Λ

µ
)N )

if Λ
µ
6= 1,

1
2 if Λ

µ
= 1,

and

ΦN =























1−(N+1)2(Λ

µ
)N (1+(Λ

µ
)2)+2N(N+2)(Λ

µ
)N+1+(Λ

µ
)2N+2

(1−Λ

µ
)2(1−(N+1)(Λ

µ
)N+N(Λ

µ
)N+1)

if Λ
µ
6= 1,

1
6N2 + 1

2N + 1
3 if Λ

µ
= 1.

Proof First, suppose that y∗N < h
µ
. Since L(ρ(y), N) ≥ ρ(y), R(y∗N , N) ≤ y∗Nλ(y∗N ) −

h
µ
λ(y∗N ) < 0. We proved in Theorem 3.2.2 that there exists y in [α, β) such that R(y, N) > 0.

Thus, y∗N can not be optimal. Therefore, h
µ
≤ y∗N .
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Recall from Theorem 3.2.2 that

y∗N = inf

{

y : r(y)γh
N (ρ(y))

(

y −
h

µ
ϕN (ρ(y))

)

≥ 1

}

.

Moreover, we proved in Theorem A.0.1 that ϕN (ρ(y)) is nonincreasing with respect to y.

Thus,

ϕN (ρ(y)) ≤ ϕN (
Λ

µ
) = ΦN .

In the same fashion, since γh
N (ρ(y)) is nondecreasing with respect to y,

Γh
N = γh

N (
Λ

µ
) ≤ γh

N (ρ(y)).

Let y be in [α, β) such that r(y)Γh
N (y − h

µ
ΦN ) ≥ 1. Using the previous orderings, we have

r(y)γh
N (ρ(y))

(

y −
h

µ
ϕN (ρ(y))

)

≥ r(y)Γh
N

(

y −
h

µ
ΦN

)

≥ 1.

Thus, y∗N ≤ inf{y : r(y)Γh
N (y − h

µ
ΦN ) ≥ 1}. 2

As in the M/G/1/∞ case, we now compare the optimal prices of two systems with

different parameters. In the remainder of this section, parameters relative to system i = 1, 2

are indexed by i.

First, we study how the optimal price y∗N changes as capacity N increases. From Propo-

sition 4.2 in Ziya [24], we know that when h = 0, the optimal price is increasing (decreasing)

with respect to the capacity when Λ
µ

> (<)ρc, where ρc is called the critical traffic intensity

(ρc = (1 − F (inf{y : yr(y) ≥ 2}))−1). However, when h > 0, this is not always the case.

Let F (y) = 1− e−βy, with β = 0.1 and Λ = 8, µ = 2 and h = 1. In this case, when capacity

is 5,6 and 7, the optimal prices y∗5, y∗6 and y∗7 are 16.4204, 16.4064, 16.4245, respectively.

Hence, the optimal price is not monotone in capacity. However, the next result shows that

optimal prices are ordered with respect to other system parameters.
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Proposition 3.2.5 Consider two systems 1 and 2 that satisfy all of the following :

1. F1 ≥HR F2 ,

2. Λ1 ≥ Λ2,

3. µ1 ≤ µ2,

4. h1 ≥ h2.

Then, y∗N,1 ≥ y∗N,2.

Proof Suppose conditions 1 through 4 hold. We have ρ1(y) ≥ ρ2(y),∀y in [α, β) and h1

µ1
≥ h2

µ2
.

Moreover, as shown in Theorem 3.2.2, ϕN (·) is nondecreasing and γh
N (·) is nonincreasing.

Therefore, ϕN (ρ1(y)) ≥ ϕN (ρ2(y)) and γh
N (ρ2(y)) ≥ γh

N (ρ1(y)) for all y in [α, β).

Let y ∈ [α, β) be such that r1(y)γh
N (ρ1(y))(y − h1

µ1
ϕN (ρ1(y))) ≥ 1. Using the properties

shown above, we have

r2(y)γh
N (ρ2(y))

(

y −
h2

µ2
ϕN (ρ2(y))

)

≥ r1(y)γh
N (ρ1(y))

(

y −
h1

µ1
ϕN (ρ1(y))

)

≥ 1.

Hence, y∗N,2 ≤ y∗N,1. 2

Similar to the infinite capacity case, Proposition 3.5.1 in Ziya [22] shows that in systems

with no holding cost, Λ1

µ1
≥ Λ2

µ2
implies that y∗N,1 ≥ y∗N,2. This result cannot be extended to

systems with holding costs. To see this, consider two M/M/1/2 systems, 1 and 2, where

µ1 = 1, µ2 = .1, Λ1 = 0.5, Λ2 = 0.0001. So, Λ2

µ2
= 0.001 ≤ Λ1

µ1
= 0.5. For both systems,

assume that the willingness-to-pay distribution is exponential with rate 1. Therefore, we

can use Proposition 3.2.4, which states that the optimal solution for system i = 1, 2 satisfies

h

µi
≤ y∗N,i ≤

1

Γh
N,i

+
h

µ
ΦN,i.

23



Note that ΦN,1 = 1.625 and (Γh
N,1)

−1 = 1.3125 . Therefore, y∗N,1 ≤ 1.3125 + 1.625h and

10h ≤ y∗N,2. When h = 1, y∗∞,1 < y∗∞,2. We can claim that the arrival rate, service rate and

hazard rate orderings that hold when h = 0 in the M/M/1/N case still hold when h > 0.

However, as in the infinite capacity case, the traffic intensity ordering without holding costs

cannot be extended when h > 0.

The following result shows that the optimal rewards are also ordered as the system

parameters change.

Proposition 3.2.6 Consider two systems 1 and 2 that satisfy all of the following :

1. Λ1 ≥ Λ2,

2. F1 ≥ST F2,

3. h1 ≤ h2,

4. µ1 ≥ µ2.

Then, R∗
N,1 ≥ R∗

N,2.

Proof To prove this result, we split our proof into two parts as we did in the M/G/1/∞

case. First, we show that the result holds when conditions 1 and 2 are replaced by equalities.

Second, we show that it holds when conditions 3 and 4 are equalities. By composition, the

result holds under all conditions as well.

Suppose that conditions 3 and 4 hold and Λ1 = Λ2 and F1(·) = F2(·). Recall that for

all y ≥ 0,

Ri(y, N) = yλi(y)(1 − πN (ρi(y), N)) − hiL(ρi(y), N).

Conditions 3 and 4 imply that h1L(ρ1(y), N) ≤ h2L(ρ2(y), N) and that πN (ρ1(y), N) ≤

πN (ρ2(y), N). Therefore, R1(y, N) ≥ R2(y, N) and R∗
N,1 ≥ R∗

N,2.
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When conditions 1 and 2 hold but conditions 3 and 4 are equalities, the proof is similar

to the proof of Proposition 3.2.3 and is omitted. 2

The following theorem shows that the infinite capacity model can be approximated by

a finite capacity model of large size provided that it is stable for all prices. We show that

both the optimal reward and optimal price of a finite capacity model converge to those of

an infinite capacity system as the system size grows to infinity.

Theorem 3.2.3 Under the stability condition Λ < µ, R∗
N → R∗

∞ and y∗N → y∗∞ as N → ∞.

We need the following lemma before proving Theorem 3.2.3.

Lemma 3.2.1 Under the stability condition Λ < µ, R(y, N) → R(y,∞) uniformly in y as

N converges to infinity.

Proof Let y ≥ 0. Consider

R(y,∞) = λ(y)y − h
∞
∑

n=0

nπn(ρ(y),∞).

Now consider a system with capacity N with posted price y and reward corresponding to

this price

R(y, N) = λ(y)y(1 − πN (ρ(y), N)) − hπ0(ρ(y), N)
N
∑

n=0

n
λ(y)n

µn
.

We observe that πN (ρ(y), N) = ρ(y)N 1−ρ(y)
1−ρ(y)N+1 → 0 uniformly in y as N tends to infinity.

In the same fashion, π0(ρ(y), N) = 1−ρ(y)
1−ρ(y)N+1 → (1 − ρ(y)) uniformly in y as N goes to ∞.

Finally,
∑∞

n=N nλ(y)n

µn ≤
∑∞

n=N nΛn

µn → 0 uniformly in y. Therefore, R(y, N) → R(y,∞)

uniformly in y as N goes to infinity, which proves the desired result. 2

Proof of Theorem 3.2.3 According to the previous lemma, R(y, N) → R(y,∞) uniformly

in y. Therefore, R∗
N converges to R∗

∞ as N goes to infinity.
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Let {y∗
N(m)} be a converging (to y) subsequence of {y∗N}. Before we proceed, we need to

show that such a subsequence exists and that y < ∞. Since y∗N ≥ 0 for all N , it suffices to

show that y∗N does not converge to infinity as N tends to infinity. Suppose that lim y∗N = ∞.

Note that R∗
N = R(y∗N , N) ≤ λ(y∗N )y∗N . Since λ(y∗N )y∗N → 0 as N tends infinity, R∗

N → 0.

But this is a contradiction since we showed that R∗
N → R∗

∞ > 0. Therefore, {y∗
N(m)} exists

and has a finite limit.

To simplify the notation in the remainder of the proof, we use N instead of N(m). Next,

we show that |R(y,∞)−R∗
N | → 0 as N goes to infinity. Since R∗

N → R∗
∞, this implies that

R(y,∞) = R∗
N . Therefore, y = y∗∞ since y∗∞ is unique as shown in Theorem 3.2.1. We have

π0(ρ(y∗N ), N)−1 − π0(ρ(y),∞)−1 =
N
∑

n=1

ρ(y∗N )n −
∞
∑

n=1

ρ(y)n.

Therefore, for an arbitrary integer M between 1 and N ,

π0(ρ(y∗N ), N)−1 − π0(ρ(y),∞)−1 =
M
∑

n=1

ρ(y∗N )n − ρ(y)n +
N
∑

n=M

ρ(y∗N )n −
∞
∑

n=M

ρ(y)n.

Thus,

|π0(ρ(y∗N ), N)−1 − π0(ρ(y),∞)−1| ≤
M
∑

n=1

|ρ(y∗N )n − ρ(y)n| + 2
∞
∑

n=M

Λn

µn
.

First, let N go to infinity and then let M go to infinity. Consequently, π0(ρ(y∗N ), N) →

π0(ρ(y),∞).

We also have

R(y,∞) − R∗
N =µy(1 − π0(ρ(y),∞)) − µy∗N (1 − π0(ρ(y∗N ), N))

− hπ0(ρ(y),∞)
∞
∑

n=1

nρ(y)n + hπ0(ρ(y∗N ), N)
N
∑

n=1

nρ(y∗N )n.
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So, for an arbitrary integer M between 1 and N ,

|R(y,∞) − R∗
N | ≤µ|y(1 − π0(ρ(y),∞)) − y∗N (1 − π0(ρ(y∗N ), N))|

+ h
M
∑

n=1

n|π0(ρ(y∗N ), N)ρ(y∗N )n − π0(ρ(y),∞)ρ(y)n|

+ hπ0(ρ(y),∞)
∞
∑

n=M

nρ(y)n + hπ0(ρ(y∗N ), N)
N
∑

n=M

nρ(y∗N )n.

Then,

|R(y,∞) − R∗
N | ≤µ|y(1 − π0(ρ(y),∞)) − y∗N (1 − π0(ρ(y∗N ), N))|

+ h
M
∑

n=1

n|π0(ρ(y∗N ), N)ρ(y∗N )n − π0(ρ(y),∞)ρ(y)n| + 2h
∞
∑

n=M

n(
Λ

µ
)n.

First, let N go to infinity and then M go to infinity. We have R∗
N → R(y,∞) for any

converging subsequence. Therefore, R(y,∞) = R∗
∞, so y = y∗∞ is optimal for the infinite

capacity system. Since the limit is unique, any converging subsequence y∗N has the limit

y∗∞. Hence, y = y∗∞ = limN→∞ y∗N . 2

3.2.3 Optimal Capacity in M/M/1/N Queues

We showed that the infinite capacity model can be approximated by a finite capacity model

of large size under the condition Λ < µ. A natural question that stems from this result

is whether there is a capacity level that maximizes the reward. Indeed, in our analysis so

far, capacity is a given parameter. Now, we relax this constraint by allowing the service

provider to set the capacity of the service facility in addition to the price. Note that

the chosen capacity could be finite or infinite. Ziya [24] shows that systems with larger

capacities always perform better when there is no holding cost. In this case, the service

provider should have an infinite capacity system in order to maximize revenue. Thus, no

customer is ever turned down due to capacity limitations. However, when h > 0, there is
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a trade-off between large capacity and high holding costs. In the following, we show the

existence of a capacity level N∗ < ∞ that maximizes revenue when Λ < µ and h > 0.

Proposition 3.2.7 If Λ < µ and h > 0, then there exists a capacity level N∗ < ∞, such

that R∗
N∗ = supN R∗

N . Consequently, there exists an optimal solution to supy,N R(y, N).

We need the following lemma in order to prove Proposition 3.2.7.

Lemma 3.2.2 If Λ < µ and h > 0 , then, ∀B ≥ 0, there exists N ∈ IN such that for all

y ≤ B, R(y, N) is nonincreasing for N ≥ N .

Proof Let B ≥ 0. Instead of N being restricted to integer values, let N attain real values.

Note that R(y, N) is differentiable with respect to N . We will show that for all y ≤ B and

N large enough, ∂R(y,N)
∂N

≤ 0. With some algebra,

∂R(y, N)

∂N
=

ρ(y)N+1

(1 − ρ(y)N+1)2
(−µy(1 − ρ(y)) ln(ρ(y)) + h(1 − ρ(y)N+1 + ln(ρ(y)N+1)))

≤
ρ(y)N+1

(1 − ρ(y)N+1)2

(

−µB ln(ρ(B)) + h

(

1 + (N + 1) ln(
Λ

µ
)

))

≤0, if N ≥ −
µB
h

ln(ρ(B)) + 1

ln(Λ
µ
)

.

Therefore, there exists N ∈ IN such that for all y ≤ B and h > 0, RN (y) is nonincreasing

in N for N ≥ N . 2

Proof of Proposition 3.2.7 We showed in Theorem 3.2.3 that y∗N converges to y∗∞. Therefore,

let y = supN{y∗N} < ∞. We use Lemma 3.2.2 to define

N = 1 + max{N : ∃y ≤ y, R(y, N + 1) > R(y, N)}.

For y ≤ y and N ≥ N , we have R(y, N + 1) ≤ R(y, N). So, for N ≥ N ,

R∗
N+1 = sup

y≤y
R(y, N + 1) ≤ sup

y≤y
R(y, N) = R∗

N .
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Therefore, R∗
N is nonincreasing for N ≥ N , which implies that R∗

N∗ = supN R∗
N exists. 2

3.3 Systems with Balking Customers

In this section, we capture congestion penalties through balking customers.

3.3.1 Optimal Pricing in M/M/1 Queues

The model for the arrival, service and willingness-to-pay processes is the same as in the

holding cost model with h = 0; that is, no holding cost is incurred. However, we suppose

that potential customers make their decision to enter the system (if it is not full) based both

on price and congestion. Therefore, we assume that each customer not only has a random

willingness-to-pay but also a random willingness-to-wait. A customer’s willingness-to-wait

is the maximum current occupancy of the system so that the customer is willing to enter

the facility. The customers’ willingness-to-wait process forms a collection of independent,

identically distributed discrete random variables. Hence, when s < N customers are in

system, an arriving customer who is willing to pay the advertised price accepts to join the

system with probability ps. We assume that {ps : s ≥ 0} is nonincreasing in s, since cus-

tomers are more likely to be deterred by high congestion levels. Without loss of generality,

we suppose that p0 = 1. To ensure the stability of the system when N = ∞, we suppose

that Λ lims ps < µ. To ease the notation in the following, we define Pn =
∏n

s=0 ps, for

s = 1, . . . , N − 1 and P−1 = 1.

As opposed to the holding cost model, we need not break down our work into the analysis

of finite capacity queues and infinite capacity queues. We generally assume that N ≤ ∞.

However, we assume that the service times are Markovian with rate µ.

Hence, the customer admission process under static price y is a conditional (doubly

stochastic) Poisson process with rate 1X(t)<NpX(t)λ(y). In the same fashion, the departure
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process is a conditional Poisson process with rate µ1X(t)>0. Under price y, the queueing

system behaves as a Markovian birth-death process with birth rates pX(t)λ(y) and death

rate µ as described in Figure 2.

Waiting room Servers

w.p. p_s(1-F(y))

w.p. 1-p_s(1-F(y)) Occupancy s
Capacity N

+$y

Customer
Arrival

Figure 2: System with Balking Customers

Using the birth-death properties of the queueing process, the stationary distribution for

price y is:

πn(ρ(y), N) =
ρ(y)nPn−1

∑N
n=0 ρ(y)nPn−1

, n = 0, . . . , N.

The long-run average reward for price y can be expressed as

R(y, N) =yλ(y)
N−1
∑

n=0

pnπn(ρ(y), N)

=yλ(y)

∑N−1
n=0 ρ(y)nPn

∑N
n=0 ρ(y)nPn−1

.

Note that the reward differs from state to state as customers now react to both congestion

and prices. Since the system is stable, all entering (paying) customers eventually get serviced

and depart the system after a finite waiting time. Hence, we can also express the average
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reward as

R(y, N) =yµ(1 − π0(ρ(y), N))

=yµ

∑N
n=1 ρ(y)nPn−1

∑N
n=0 ρ(y)nPn−1

.

In the following theorem, we show that exists a unique optimal price that maximizes

the long-run average reward. We explicitly characterize this price in a similar fashion as in

Theorems 3.2.1 and 3.2.2.

Theorem 3.3.1 There exists a unique optimal price given by :

y∗N = inf{y : yr(y)γb
N (ρ(y)) ≥ 1},

where

γb
N (ρ) =

∑N−1
n=0 (n + 1)ρnPn

∑N−1
n=0 ρnPn

∑N
n=0 ρnPn−1

, ρ ≥ 0.

Proof The proof is similar to the proof of Theorem 3.2.2. First, we prove that there

exists an optimal price. Since F (·) is absolutely continuous, R(y, N) is continuous and a.e.

differentiable on [α, β). Note that R(y, N) → 0 as y → β and that R(y, N) > 0 in [α, β).

Therefore, there exists an optimal price in [α, β).

Next, we prove the uniqueness of the optimal price. After some algebra, we show that

for almost all y in [α, β), ∂R(y,N)
∂y

satisfies:

∂R(y, N)

∂y
= λ(y)

(

1 − yr(y)γb
N (ρ(y))

)

∑N−1
n=0 ρ(y)nPn

∑N
n=0 ρ(y)nPn−1

∑N
n=0 ρ(y)nP 2

n−1

.

Note that, the above holds when N = ∞ as we interchange derivative and summation

signs for power series of ρ within the radius of convergence.

If R(y, N) is differentiable with respect to y ∈ [α, β), then ∂R(y,N)
∂y

> 0(< 0) if and only

if yr(y)γb
N (ρ(y)) < 1(> 1).
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Since there exists y in [α, β) such that R(y, N) > 0 and R(y, N) → 0 as y → β, there

exists y in [α, β) such that yr(y)γb
N (ρ(y)) > 1. Under Assumption IGHR and using Lemma

A.0.2, yr(y)γb
N (ρ(y)) is strictly increasing in [α, β), so R(y, N) is decreasing in the interval

(inf{y : yr(y)γb
N (ρ(y)) ≥ 1}, β). In the same fashion, R(y, N) is increasing in the interval

(α, inf{y : yr(y)γb
N (ρ(y)) ≥ 1}). Therefore, there exists a unique optimal price given by

y∗N = inf{y : yr(y)γb
N (ρ(y)) ≥ 1}. 2

3.3.2 Properties of Optimal Prices and Optimal Profit

In the following, we investigate the sensitivity of optimal prices and optimal profits as

parameters change. We compare two systems 1 and 2 that are identical except for some

parameter whose ordering is known. Note that subscripts 1 and 2 refer to system 1 and 2,

respectively.

Proposition 3.3.1 Consider two systems 1 and 2 that satisfy all the following :

1. Λ1

µ1
≥ Λ2

µ2
,

2. F1 ≥HR F2 .

Then, y∗N,1 ≥ y∗N,2.

Proof From Theorem 3.3.1, we have y∗N,i = inf{y : yri(y)γb
N (ρi(y)) ≥ 1} for system i = 1, 2.

Since hazard rate ordering implies stochastic ordering, F1 ≥ST F2. Using condition 1, this

implies that ρ1(·) ≥ ρ2(·). Moreover, we showed in Lemma A.0.2 that γb
N (·) is nonincreasing.

Therefore, we have γb
N (ρ1(·)) ≤ γb

N (ρ2(·)). Suppose that y is such that yr1(y)γb
N (ρ1(y)) ≥ 1.

Then, yr2(y)γb
N (ρ2(y)) ≥ 1. Thus, y∗N,2 ≤ y∗N,1. 2

When congestion penalties are captured through balking customers, we note that opti-

mal prices are ordered with the maximum traffic intensity Λ
µ
, whereas it does not hold in
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the model with holding costs. We are also interested in the parameter sensitivity of the

optimal reward. For instance, when Λ increases, more customers are admitted into the

system. This generates more revenue on the one hand but also increases congestion and

deters future potential customers on the other hand. In the next proposition, we show how

the optimal reward varies as some parameters are increased or decreased.

Proposition 3.3.2 Consider two systems 1 and 2 that satisfy all of the following :

1. Λ1 ≥ Λ2,

2. F1 ≥ST F2,

3. µ1 ≥ µ2.

Then, R∗
N,1 ≥ R∗

N,2.

Proof To prove this result, we split our proof into two parts. First, we show that the result

holds when conditions 1 and 2 are changed to equalities. Second, we show that it holds

when condition 3 is changed into an equality. By composition, the result holds under all

the conditions as well.

Suppose that condition 3 holds and Λ1 = Λ2 and F1(·) = F2(·). We will show that the

generic expression R(y, N) = yµ(1 − π0(ρ(y), N)) is nondecreasing with respect to µ. We

have

∂R(y, N)

∂µ
= y(1 − π0(ρ(y), N))

(

1 − γb
N (ρ(y))

)

.

From Lemma A.0.2, γb
N (·) is nonincreasing, so γb

N (ρ(y)) ≤ γb
N (0) = 1 for all y in [α, β).

Therefore, R(y, N) is nondecreasing in µ and R∗
N,1 ≥ R∗

N,2.

Now suppose that 1 and 2 hold, whereas 3 is an equality. Since F1(·) is absolutely

continuous and λ1(·) ≥ λ2(·), there exists δ > 0 such that λ1(y
∗
N,2+δ) = λ2(y

∗
N,2). Therefore,
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system 1 with price y∗N,2 + δ has the same arrival and service rates as system 2 with price

y∗N,2. Therefore, system 1 with price y∗N,2 + δ performs better than system 2 with optimal

price. Hence, R∗
N,1 ≥ R∗

N,2 and the proof is complete. 2

In the holding cost model, we showed that system capacity was a critical parameter that

could be adjusted to improve optimal profits. We now focus on the effect of the system

capacity in the balking customer model. First, we show that optimal prices are not ordered

in the system capacity N . We provide the following counterexample. Consider a system

with Λ = 30, µ = 3, ps = 3
3+.2s

for s = 0, . . . , N − 1. We suppose that customers have

an exponentially distributed willingness-to-pay (F (y) = 1 − e−y). In this case, we have

y∗3 = 2.1964, y∗4 = 2.1983 and y∗5 = 2.1960. Clearly, y∗N is not monotone in N . However, we

observe that R∗
N is monotone in N . We prove this claim in the next proposition.

Proposition 3.3.3 Under the stability condition Λ lims ps < µ, R∗
N ↑ R∗

∞ and y∗N → y∗∞

as N → ∞,

Proof First, we show that for all y ≥ 0, R(y, N) ↑ R(y,∞) uniformly in y as N converges

to infinity in order to show that R∗
N ↑ R∗

∞. Recall that for K = N or K = ∞,

R(y, K) =µy(1 − π0(ρ(y), K)),

π0(ρ(y), K)−1 =
K
∑

n=0

Pn−1ρ(y)n.

Hence, we only need to show that π0(ρ(y), N) ↓ π0(ρ(y),∞) uniformly in y. Clearly,

π0(ρ(y), N) is nonincreasing in N . We also have

0 ≤ π0(ρ(y),∞)−1 − π0(ρ(y), N)−1 =
∞
∑

n=N+1

Pn−1ρ
n(y) ≤

∞
∑

n=N+1

Pn−1

(

Λ

µ

)n

.

Since Λ lims ps < µ, π0(ρ(y), N) ↓ π0(ρ(y),∞) uniformly in y implying that R(y, N) ↑

R(y,∞) uniformly in y as well. Therefore, R∗
N ↑ R∗

∞.
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To prove that y∗N → y∗∞, we use the same method as in the proof of Theorem 3.2.3. We

repeat that proof, setting h = 0 and substituting {Pn−1ρ(y)n} for {ρ(y)n}, {Pn−1ρ(y∗N )n}

for {ρ(y∗N )n} and {Pn−1
Λn

µn } for {Λn

µn }. 2

Therefore, the model with balking customers performs best when N = ∞ with no

customer ever being turned down due to capacity limitations.

3.4 Systems with Impatient Customers

In this section, we model congestion penalties through impatient customers. As opposed

the balking customer model, customers do not react to congestion upon arrival but during

their waiting time. If a customer waits for too long before receiving service, the customer

departs the system and receives a full refund.

3.4.1 Optimal Pricing in M/M/1 Queues

We assume that the arrival, service and willingness-to-pay processes are the same as de-

scribed in the holding cost model with h = 0. Customers enter the system if it is not

full and if they are willing to pay the price posted by the service provider. Payments are

collected upon arrival. We suppose that each customer has a maximum waiting time in the

queue that is exponentially distributed with rate θ . We will refer to θ as the reneging rate.

We assume that the maximum waiting times for successive customers forms a collection of

independent, identically distributed random variables that are independent of the arrival

process and the service process. If a customer does not begin service prior to its maximum

waiting time, the customer leaves (reneges) the system after receiving a full refund of the

amount paid upon arrival. Note that customers in service are no longer subject to im-

patience. Congestion penalties are experienced the following way: as the system becomes

congested, waiting times increase and customers are more likely to become impatient, leave
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and claim a refund. Therefore, the service provider sustains losses when refunding impatient

customers.

The model’s features are represented in Figure 3.

Waiting room Servers

w.p. 1-F(y)

w.p. F(y) Occupancy s
Capacity N

+$y

Customer
Arrival

Reneging
Refund

Figure 3: System with Impatient Customers

As in the previous section, we consider systems of finite or infinite capacity simultane-

ously (N ≤ ∞) and exponentially distributed service times with rate µ. In the case where

N = ∞, the stability of the system is ensured by impatient customers: all customers spend

a finite expected time in the system.

Since the system is stable, only customers who depart the system after receiving service

contribute to the long-run average profit. Impatient customers do not contribute to the

long-run average profit although they make the system more congested. Note that we

would observe the same long-run average profit, if payments were collected after each service

completion instead of upon arrival.

In this chapter, we assume that the service provider can only advertise one price y at all
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times. As in the holding cost model, the admission process is a conditional Poisson Process

with rate 1X(t)<Nλ(y). However, the departure process differs significantly from the holding

cost model. Customers may leave the system through service or due to impatience. Thus,

the departure process (impatient departures and service departures) forms a conditional

Poisson Process with rate 1X(t)>0(µ + (X(t) − 1)θ). The resulting queueing process is a

Markovian birth-death process with birth rates λ(y) and death rates µ + (X(t) − 1)θ.

From Gross and Harris (p. 93) [5], the stationary distribution of the system is given by:

πn(ρ(y), N) =
ρn(y)Qn−1

∑N
n=0 ρn(y)Qn−1

, for n = 0, . . . , N

where Qn =
∏n

s=0
µ

µ+sθ
, for n = 0, . . . , N − 1 and Q−1 = 1.

When price y is advertised, we can express the long-run average reward in two equivalent

ways:

R(y, N) = λ(y)y
N−1
∑

n=0

πn(ρ(y), N) − θy
N
∑

n=1

(s − 1)πn(ρ(y), N), (1)

= µy(1 − π0(ρ(y), N)) (2)

In equation (1), we break down the long-run average profit into the revenue from cus-

tomers’ payments upon arrival and the refunds granted to impatient customers. Since the

system is stable and all customers spend a finite amount of time in the system, only cus-

tomers departing after service eventually contribute to the long-run average profit. Equation

(2) uses this property and expresses the long-run average profit through the payments of

serviced customers. Note that static pricing is key to deriving equation (2) since we need

not know the payment history of all customers to compute the long-run average profit. We

discuss this topic in further details in Section 4.2.3.

In the following theorem, we show that there exists a unique optimal price that maxi-

mizes the long-run average reward. We provide an explicit expression for the optimal price
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to be charged.

Theorem 3.4.1 There exists a unique optimal price given by :

y∗N = inf{y : yr(y)γr
N (ρ(y)) ≥ 1},

where

γr
N (ρ) =

∑N−1
n=0 (n + 1)ρnQn

∑N−1
n=0 ρnQn

∑N
n=0 ρnQn−1

, ρ ≥ 0.

To prove this theorem, we notice analytical similarities with the model with balking

customers. If the sequence {ps} is defined as ps = µ
µ+sθ

, the maximization problem with

balking customers becomes analytically equivalent to the one with impatient customers.

Therefore, both models yield identical optimal prices and profits in the particular case

when ps = µ
µ+sθ

, s = 0, . . . , N − 1. We use this feature in the proof of Lemma A.0.3.

Proof of Theorem 3.4.1 First, we show in Lemma A.0.3 that γr
N (ρ(y)) is nonincreasing.

Substituting γr(·) for γb(·), the remainder of the proof is identical to the proof of Theorem

3.3.1 and is omitted. 2

We managed to show the existence of a unique optimal price that maximizes the long-

run average reward per unit time. We noted that the optimization problem with impatient

customers can be analytically treated as a particular case of the balking customers model

with ps = µ
µ+sθ

, s = 0, . . . , N − 1. This property becomes handy as we can refer to Section

3.3.2 when proving the next results.

3.4.2 Properties of Optimal Prices and Optimal Profit

We now investigate the sensitivity of optimal prices and optimal profits to system para-

meters. As previously, our objective is to show how optimal prices changes when system

parameters increase or decrease. In the next two results, we compare two systems 1 and
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2 that are identical except for some parameters that we specify. Parameters for system

i = 1, 2 bear the additional subscript i.

Proposition 3.4.1 Consider two systems 1 and 2 that satisfy all the following :

1. Λ1 ≥ Λ2,

2. F1 ≥HR F2.

Then, y∗N,1 ≥ y∗N,2.

Proof From Lemma A.0.3, recall that γr
N (·) is nonincreasing. The rest of the proof is

identical to the proof of Proposition 3.3.1 with µ1 = µ2, after subsituting γr
N (·) for γb

N (·).

2

As opposed to the balking customers model, there is no optimal price ordering with

respect to Λ
µ
. We provide the following counterexample. Consider two systems 1 and 2 with

Λ1 = 10, Λ2 = 3, µ1 = 12, µ2 = 4 and θ1 = θ2 = 10. Clearly, Λ1

µ1
≥ Λ2

µ2
. The optimal price to

be charged when N = 4 is y∗4,1 = 1.1362 and y∗4,2 = 1.1702 for system 1 and 2, respectively.

Note that y∗4,1 < y∗4,2. We conclude that there is no price ordering in Λ
µ
.

Next, we focus on how the optimal long-run average profit varies when parameters

change. For instance, it is intuitive that the higher reneging rate or the service rate, the

more profitable the system. We formally prove this intuition in the next proposition.

Proposition 3.4.2 Consider two systems 1 and 2 that satisfy all the following :

1. Λ1 ≥ Λ2,

2. F1 ≥ST F2,

3. θ1 ≤ θ2,
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4. µ1 ≥ µ2.

Then, R∗
N,1 ≥ R∗

N,2.

Proof We proceed by composition. We will show that the result holds when conditions 1, 2

and 3 hold, while µ1 = µ2. Then, we show that the result holds when condition 4 holds and

conditions 1,2 and 3 are modified into equalities. By composition, R∗
N,1 ≥ R∗

N,2 must then

hold under all conditions.

Suppose that conditions 1, 2 and 3 hold, while µ1 = µ2 = µ. This clearly implies that

π0,1(ρ1(y), N)) ≤ π0,2(ρ2(y), N)). Recall that Ri(y, N) = µy(1 − π0,i(ρi(y), N)). Therefore,

R1(y, N) ≤ R2(y, N) and R∗
N,1 ≥ R∗

N,2. Now suppose that Λ1 = Λ2 = Λ, F1(·) = F2(·) =

F (·) and θ1 = θ2 = θ while µ1 ≥ µ2. Recall from (1) that for y ≥ 0 and i = 1, 2,

Ri(y, N) = λ(y)y
N−1
∑

n=0

πn(ρi(y), N) − θy
N
∑

n=1

(s − 1)πn(ρ(y), N),

= λ(y)y(1 − πN (ρi(y), N)) − θyLq(ρi(y), N),

where Lq(ρi(y), N) is the average queue size under traffic intensity ρi(y). To make our

notation consistent in the case when N = ∞, we suppose that π∞(·,∞) = 0. Since µ1 ≥ µ2,

we have ρ1(·) ≤ ρ2(·). Consequently, πN (ρ1(y), N) ≤ πN (ρ2(y), N) and Lq(ρ1(y), N) ≤

Lq(ρ2(y), N). Therefore, R1(y, N) ≤ R2(y, N) and R∗
N,1 ≥ R∗

N,2. By composition, the

proof is complete. 2

We now investigate how the optimal price and reward react to a change in system

capacity. Not surprisingly, the results are similar to those of the balking customer model.

First, we show that optimal prices are not ordered in the system capacity N . We provide the

following counterexample inspired by the one given in Section 3.3.2. Consider a system with

Λ = 30, µ = 3, θ = .2 and an exponentially distributed willingness-to-pay (F (y) = 1− e−y).
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In this case, we have y∗3 = 2.1964, y∗4 = 2.1983 and y∗5 = 2.1960. Clearly, y∗N is not monotone

in N . However, we note that R(y, N) is nondecreasing in N . This property is derived from

(2) as π0(ρ(y), N) is nonincreasing in N . Hence, R∗
N is nondecreasing in N . We refine this

result in the following proposition. We show that the optimal price and reward of finite

capacity system of large size converges to those of an infinite capacity system. The proof

of this proposition is identical to the proof of Proposition 3.3.3 using {Qn} in lieu of {Pn}

and is omitted.

Proposition 3.4.3 As N → ∞, R∗
N ↑ R∗

∞ and y∗N → y∗∞.

Thus, systems with infinite capacity perform better that systems with finite capacity.

Moreover, the optimal price and reward of a finite capacity system converge to those of an

infinite capacity system when N grows to ∞.

3.5 Summary

In this chapter, we studied the optimal static pricing problem in a service facility modelled

as single server queueing system subject to congestion penalties. Our objective has been to

maximize the service provider’s long-run average profit per unit time when only one price

can be advertised at all times. Depending on whether there is a limit on the number of

customers in the system, we considered systems of finite or infinite capacity. We successively

analyzed three different ways in which the system congestion affects profit: holding costs,

balking customers and impatient customers.

For each of the three congestion models, we showed the existence of unique optimal

price to be charged. We derived expressions for the optimal price in each case. We also

investigated how optimal prices and rewards vary as system parameters change. More

specifically, we studied the influence of the system capacity N on optimal prices and rewards.

41



Although we noticed that optimal prices are not monotone with respect to capacity N in any

of the three congestion models, system capacity is a critical parameter in order to improve

optimal rewards. We showed that for all three congestion models, the optimal prices and

rewards of a system with finite capacity converge to those of an unlimited capacity system.

Moreover, in the holding cost model, we showed that there exists a finite capacity level

that maximizes profit. Therefore, if the service provider has control over N , it does not

make economic sense to have unlimited room for waiting customers when holding costs are

incurred. It turns out that unlimited capacity incurs higher holding costs that could be

avoided by limiting the number of customers in the system. Nevertheless, this does not

hold for balking or impatient customers. For these two models, it is best to have unlimited

system capacity as there is no direct penalty for having customers waiting in the queue.
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CHAPTER IV

DYNAMIC PRECISION PRICING

4.1 Model Description

In this chapter, the service provider can dynamically adjust prices. Similarly to Chapter 3,

we model the service facility as queueing system with finite or infinite capacity N . However,

the queueing models we consider in this chapter have more general features than in the static

pricing case. As in Chapter 3, we consider each of the three types of congestion penalties

separately in three different models. This enables us to identify key properties and features

of our solutions that are specific to the way congestion penalties are modelled.

In this chapter, we refine our framework by segmenting customers into I classes. Cus-

tomers from class i = 1, . . . , I arrive according to a Poisson process with parameter Λi > 0.

The arrival processes from customer classes are independent of each other. Note that this

formulation is equivalent to having arriving customers randomly assigned to a specific class

independently of everything else. The service provider can identify customers’ classes upon

arrival and can advertise class-specific prices. This ability is referred to as precision pricing .

In this dissertation, we only consider dynamic precision pricing since Ziya [22] investigates

precision pricing in the static case.

The maximum amounts that successive class i = 1, . . . , I customers are willing to pay

are independent, identically distributed random variables with distribution Fi. The amount

a class i = 1, . . . , I customer is willing to pay is independent of the amount a class j =

1, . . . , I customer is willing to pay for i 6= j. For all i = 1, . . . , I, we assume that the

cumulative distribution function Fi(·) is absolutely continuous with density fi(·), support
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(αi, βi) and finite mean. Let ri(·) denote the hazard rate function of Fi(·); that is, ri(z) =

fi(z)
1−Fi(z) for αi < z < βi. In all the following, we assume that Fi has IGHR (Increasing

Generalized Hazard Rate); that is, zri(z) is strictly increasing for all z in [αi, βi]. The

service provider can advertise different prices to different classes. Without loss of generality,

only prices in [αi, βi] can be advertised to class-i customers.

We define the state of the system X(t) as the number of customers in the system at time

t. Let z ∈ [α1, β1]
N ×. . .×[αI , βI ]

N be a pricing (decision) rule, where price zi,s is advertised

to class-i customers when the system is in state s. Since there is a one-to-one relationship

between decision rules and stationary policies, in an abuse of notation, we also denote by z

the stationary pricing policy corresponding to the pricing rule z; that is, z also denotes the

policy of using pricing rule z at every decision epoch (see p. 20 of Puterman [18] for further

details). Customers enter the system if it is not full and if they are willing to pay the price

posted by the service provider upon arrival. In systems with balking customers, customers’

decision to enter the system is also subject to the customers’ willingness-to-wait as described

in Section 3.3; the willingness-to-wait distribution is assumed to be same across customer

classes. Hence, the admission process of customers under the stationary pricing policy z

is a conditional (doubly stochastic) Poisson process with rate 1X(t)<N

∑I
i=1 λi(zi,X(t)) (or

1X(t)<NpX(t)

∑I
i=1 λi(zi,X(t)) in systems with balking customers), where λi(z) = Λi(1 −

Fi(z)). In the same fashion, the service process is a conditional Poisson process with rate

µX(t)1X(t)>0. Unless otherwise stated, {µs} are positive real numbers that are nondecreasing

in s. Hence, the queueing system behaves as a Markovian birth-death process.

We let g∗N denote the optimal dynamic average profit per unit time under capacity N over

the set of all history-dependent randomized policies (see p.35-36 in Puterman [18]). Under

stationary pricing policy z, we denote the objective function by R(z) and the stationary
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probability distribution by {πs(z)} . If there exists a unique optimal stationary pricing

policy that maximizes the long-run average profit per unit time, we denote it by z∗; that

is, R(z∗) = g∗N .

We separate systems with finite capacity from systems with infinite capacity in our

work. Indeed, we make extra assumptions and we use results from finite capacity systems

in order to analyze systems of infinite capacity. In the following section, we focus on service

facilities with finite capacity.

4.2 Queueing Systems with Finite Capacity

First, we consider the case of systems with finite capacity (N < ∞).

4.2.1 Systems with Holding Costs

In this section, the service facility is subject to holding costs. The service provider must

pay a holding cost hs per unit time spent in state s, where 0 = h0 ≤ h1 ≤ . . . ≤ hN as it

becomes more expensive to accommodate a larger number of customers. We assume that

h1

µ1
< max βi so that we have an attainable positive reward. Note that this structure is more

general than having each customer incur a holding cost per unit time spent in the system

where hs = hs.

We use a Markov decision process (MDP) formulation to exhibit an optimal stationary

policy. Note that the MDP associated with our system behaves as a birth-death process,

with positive death rates, where the decision maker only controls the arrival rates. There-

fore, the MDP is unichain for all stationary policies. We set up the system of average-cost
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optimality equations (ACOE) as detailed in Theorem 5.2.2 of Lasserre and Hernández-

Lerma [11]:

l(−1) = 0,

l(s) = sup
z0,...,zI

{

∑I
i=1 λi(zi)(zi + l(s + 1)) + µsl(s − 1) − g − hs

∑I
i=1 λi(zi) + µs

}

, if 0 ≤ s ≤ N − 1,

l(N) = l(N − 1) −
g + hN

µN
,

where g is the gain and l(·) is the bias vector. Since the value of µ0 does not matter as long

as it is positive, we will consider µ0 = µ1 without loss of generality. In this system, we are

solving for g and l(·).

We can transform these equations into a simpler equivalent form by letting G(−1) = 0

and G(s) = l(s) − l(s + 1), for s = 0, . . . , N − 1. Then,

G(−1) = 0, (3)

g + hs − µsG(s − 1) =
I
∑

i=1

sup
z
{(z − G(s))λi(z)}, if s = 0, . . . , N − 1, (4)

G(N − 1) =
g + hN

µN
. (5)

If a solution (g, G(·), z) to the ACOE system exists, we call it a canonical triplet, where z

are prices that achieve the suprema in (4). Precisely, for s = 0, . . . , N − 1 and i = 1, . . . , I,

the component zi,s of z satisfies zi,s = arg sup{(z − G(s))λi(z)}.

In the following theorem, we explicitly characterize a unique optimal stationary policy.

Theorem 4.2.1 There exists a canonical triplet (g, G(·), z) for the ACOE system (3)-(5).

Moreover, the optimal long-run average reward is g∗N = g and z∗ = z is a unique optimal

stationary policy, where, for s = 0, . . . , N − 1 and i = 1, . . . , I,

z∗i,s = inf {z : ri(z)(z − G(s)) ≥ 1} .
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Before proving this theorem, we need the following two lemmas. Let G(s, g) be the

solution of (4) and (5) for g ≥ 0.

Lemma 4.2.1 For all s = −1, . . . , N − 1, G(s, ·) is nondecreasing and continuous. More-

over, there exists g ≥ 0 such that G(−1, g) = 0.

Proof Note that G(N − 1, g) = g+hN

µN
is continuous and nondecreasing in g. Suppose that

G(s, g) is nondecreasing and continuous in g for some state s between 0 and N − 1. As

sup{λi(z)(z−G(s, g))} is the supremum of a bounded continuous function of z, we can claim

that µsG(s − 1, g) = g −
∑I

i=1 sup{λi(z)(z − G(s, g))} is continuous and nondecreasing in

g. By induction, for all s = −1, . . . , N − 1, G(s, ·) is nondecreasing and continuous.

To complete the proof, we will show that G(−1, 0) ≤ 0 and that there exists gb > 0 such

that G(−1, gb) ≥ 0. Hence, by continuity, there exists g ∈ [0, gb] such that G(−1, g) = 0.

We know that −µ0G(−1, 0) =
∑I

i=1 sup{λi(z)(z − G(0, 0))} ≥ 0. Therefore, G(−1, 0) ≤ 0.

Now consider gb =
∑I

i=1 sup{λi(z)z}. Note that G(N − 1, gb) = gb+hN

µN
≥ 0. Suppose that

G(s, gb) ≥ 0 for some s = 0, . . . , N − 1, then

gb + hs − µsG(s − 1, gb) =

I
∑

i=1

sup{λi(z)(z − G(s, gb))} ≤

I
∑

i=1

sup{λi(z)z}.

Therefore, µsG(s − 1, gb) ≥ gb + hs −
∑I

i=1 sup{λi(z)z} ≥ 0. By induction, G(−1, gb) ≥ 0.

2

Lemma 4.2.2 Let (g, G(·), z) be a canonical triplet. Then, for all s = −1, . . . , N − 1,

0 ≤ G(s) ≤ g+hs+1

µs+1
.

Proof For all s = 0, . . . , N − 1, sup{(z − G(s))λi(z)} ≥ 0. Therefore, we have G(s −

1) ≤ g+hs

µs
from equation (4). Using equations (3) and (5) as well, G(s) ≤ g+hs+1

µs+1
for all

s = −1, . . . , N − 1.
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Now suppose that there exists s = 0, . . . , N − 1 such that G(s) < 0. Since G(−1) ≥ 0,

there exists s such that G(s) < 0 and G(s − 1) ≥ 0. Hence, µs+1G(s) < µsG(s − 1). But

we have

I
∑

i=1

λi(zi,s+1)G(s + 1) =
I
∑

i=1

λi(zi,s+1)zi,s+1 − g − hs+1 + µs+1G(s)

=

I
∑

i=1

λi(zi,s+1)(zi,s+1 − G(s)) + λi(zi,s+1)G(s) + µs+1G(s) − g − hs+1

<
I
∑

i=1

λi(zi,s+1)(zi,s+1 − G(s)) + λi(zi,s+1)G(s) + µsG(s − 1) − g − hs

<
I
∑

i=1

λi(zi,s+1)G(s).

If
∑I

i=1 λi(zi,s+1) = 0, then G(s) = g+hs+1

µs+1
≥ 0, which is impossible. Therefore, G(s + 1) <

G(s) < 0. Since µs+2 ≥ µs+1, we have µs+2G(s + 1) < µs+1G(s) < 0. Consequently, we

can repeat the argument above until we reach state N − 1, for which G(N − 1) < 0. But

G(N − 1) = g+hN

µN
≥ 0, which yields a contradiction. Therefore, for all s = −1, . . . , N − 1,

0 ≤ G(s) ≤ g+hs+1

µs+1
. 2

Proof of Theorem 4.2.1 The existence of a canonical triplet (g, G(·), z) to (3)-(5) is a direct

consequence of Lemma 4.2.1. Since the state space is finite, we can refer to equation (5.2.12)

in Lasserre and Hernández-Lerma [11] to prove that the canonical triplet (g, G(·), z) is an

optimal solution. Therefore, g∗N = g and z∗ = z.

It remains to show that z∗i,s = inf{z : ri(z)(z − G(s)) ≥ 1} and that it is the unique

optimal stationary policy. For s = 0, . . . , N − 1, and i = 1, . . . , I, let

vi,s(z) = λi(z)(z − G(s)),

v′i,s(z) = (1 − Fi(z)) − fi(z)(z − G(s)), a.e. on [αi, βi].

Note also that v′i,s(z) > (<)0 is equivalent to ri(z)(z−G(s)) < (>)1. The IGHR assumption

implies that ri(z)(z − G(s)) ≥ 1 almost everywhere on (inf{z : ri(z)(z − G(s)) ≥ 1}, βi).
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Therefore, v′i,s(·) > 0 almost everywhere on (αi, inf{z : ri(z)(z −G(s)) ≥ 1}) and v′i,s(·) < 0

almost everywhere on (inf{z : ri(z)(z − G(s)) ≥ 1}, βi). Thus, vi,s(·) is strictly unimodal

and z∗i,s = inf{z : ri(z)(z − G(s)) ≥ 1} is its unique maximizer on [αi, βi].

We still need to show that z∗ is the unique optimal stationary policy. Under IGHR, z∗i,s

is the unique maximizer of sup{λi(z)(z−G(s))}. So, g∗N >
∑I

i=1 λi(zi)(zi−G(s))+µsG(s−

1)− hs for all zi 6= z∗i,s. Since we have a unichain model, we can refer to Proposition 8.5.10

in Puterman [18] to prove the uniqueness of the optimal stationary policy z∗. 2

We are now able to characterize an optimal stationary policy explicitly. Note that it

might be possible that z∗i,s = βi for some state s. In this case, it is optimal for the service

provider not to accept customers of class i when in state s. However, this can only happen

if the class-i customers’ willingness-to-pay distribution has finite support. Indeed, if Fi has

infinite support, then for all s = 0, . . . , N − 1, sup{λi(z)(z −G(s))} > 0 and z∗i,s < ∞ = βi.

Moreover, note that z∗i,s = inf{z : (z − G(s))ri(z) ≥ 1} ≥ inf{z : zri(z) ≥ 1}. Since

inf{z : zri(z) ≥ 1} is the optimal price to charge when demand function is 1 − Fi(z), we

observe that holding costs and capacity limitations force the service provider to charge

higher prices than she normally would if she had no constraints.

We will now exhibit structural properties of the derived optimal stationary policy. More

specifically, we are in interested in the monotonicity of the optimal stationary policy. In the

next Proposition, we demonstrate that the optimal prices to be charged are nondecreasing

in the state index.

Proposition 4.2.1 Suppose {µs}
N
s=0 and {hs}

N
s=0 are such that there exists an integer q

between 0 and N , where µ0 ≤ µ1 ≤ . . . ≤ µq = µq+1 = . . . = µN and 0 = h0 = h1 = . . . =

hq ≤ hq+1 ≤ . . . ≤ hN . Then, z∗i,s is nondecreasing in s.
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To prove this result, we need the following lemma.

Lemma 4.2.3 Suppose {µs}
N
s=0 and {hs}

N
s=0 are such that there exists an integer q between

0 and N , where µ0 ≤ µ1 ≤ . . . ≤ µq = µq+1 = . . . = µN and 0 = h0 = h1 = . . . = hq ≤

hq+1 ≤ . . . ≤ hN . Then, G(·) is nondecreasing.

Proof We decompose our proof into two parts. We will prove first by induction that

G(s) is nondecreasing for states s = 0, . . . , q − 1. Then, we will show the same for states

s = q − 1, . . . , N − 1.

Suppose G(s − 1) ≤ G(s) for some state s = 0, . . . , q − 2, which is true when s = 0.

Then, µsG(s − 1) ≤ µs+1G(s) and

I
∑

i=1

sup{λi(z)(z − G(s + 1))} = g∗N − µs+1G(s)

≤ g∗N − µsG(s − 1)

≤
I
∑

i=1

sup{λi(z)(z − G(s))}.

Hence,
∑I

i=1 λi(z
∗
i,s)G(s + 1) ≥

∑I
i=1 λi(z

∗
i,s)G(s). Therefore, either

∑I
i=1 λi(z

∗
i,s) = 0

or G(s) ≤ G(s + 1). We show that
∑I

i=1 λi(z
∗
i,s) = 0 is impossible.

Assume that
∑I

i=1 λi(z
∗
i,s) = 0. It implies that

G(s − 1) = G(s) =
g∗N
µs

=
g∗N

µs+1
and

I
∑

i=1

sup{λi(z)(z − G(s − 1))} =
I
∑

i=1

sup{λi(z)(z − G(s))} = 0.

Therefore, G(s − 2) =
g∗N

µs−1
≥

g∗N
µs

= G(s − 1) and
∑I

i=1 sup{λi(z)(z − G(s − 2))} ≤

∑I
i=1 sup{λi(z)(z − G(s − 1))} = 0. We can repeat this argument until we reach the

contradiction G(−1) ≥
g∗N
µ1

. By induction, G(s − 1) ≤ G(s) holds for s = 0, . . . , q − 1.

If q = N , the proof is complete. Otherwise, it remains to show by induction that

G(s−1) ≤ G(s) for states s = q, . . . , N −1. Recall that G(N −1) =
g∗N+hN

µN
and G(N −2) ≤
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g∗N+hN−1

µN−1
. Therefore, G(N − 2) ≤

g∗N+hN−1

µN
= G(N − 1). Now suppose that G(s) ≥ G(s− 1)

for some state s = q + 1, . . . , N − 1. Then,

g∗N + hs − µNG(s − 1) =

I
∑

i=1

sup{λi(z)(z − G(s))}

≤
I
∑

i=1

sup{λi(z)(z − G(s − 1))}

≤ g∗N − hs−1 − µNG(s − 2).

Hence, µN (G(s − 1) − G(s − 2)) ≥ hs − hs−1 ≥ 0. By induction, G(s) ≥ G(s − 1) for

s = q, . . . , N − 1 and the proof is complete. 2

Proof of Proposition 4.2.1 Recall that z∗i,s = inf{z : ri(z)(z − G(s)) ≥ 1}. Since G(s) is

nondecreasing in s, so is z∗i,s. 2

Therefore, in queues with the holding cost and service rate structure described above

(such as multiple server systems), the service provider charges more as the system becomes

congested. As a consequence, the admission rates are nonincreasing with respect to the

number of people in the system. Hence, the optimal policy performs a congestion control

that prevents high holding costs. Moreover, we showed in the proof of Lemma 4.2.3 that

∑I
i=1 λi(z

∗
i,s) > 0 for all s < q − 1. This property is quite intuitive since states 0 through q

do not incur any holding cost, so that it is not profitable for the service provider to refuse

entrance to customers in those states.

We are now interested in how the system reacts to an increase in capacity. A larger

buffer size affects the holding costs as well as the revenue by welcoming more customers.

As capacity increases, we show that the optimal prices decrease state by state whereas

the optimal reward increases. In the following, subscripts 1 and 2 identify parameters for

systems 1 and 2, respectively.
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Proposition 4.2.2 Consider two systems 1 and 2, where system 1 has capacity N and

system 2 has capacity N + 1. Then, g∗N+1 ≥ g∗N . If for all s = 0, . . . , N − 1, there exists

i = 1, . . . , I such that z∗i,s,1 < βi , then z∗i,s,2 ≤ z∗i,s,1.

Proof It is straightforward to show that g∗N+1 ≥ g∗N since the action space for system 2

includes the action space for system 1.

Suppose that G2(s) > G1(s) for some state s = 0, . . . , N − 1. Therefore,

I
∑

i=1

sup{λi(z)(z − G2(s))} <
I
∑

i=1

sup{λi(z)(z − G1(s))} or

I
∑

i=1

sup{λi(z)(z − G2(s))} =
I
∑

i=1

sup{λi(z)(z − G1(s))} = 0.

The latter case is impossible since it implies that z∗i,s,1 = z∗i,s,2 = βi for all i. So,

µsG2(s − 1) = g∗N+1 −
I
∑

i=1

sup{λi(z)(z − G2(s))}

> g∗N −
I
∑

i=1

sup{λi(z)(z − G1(s))}

> µsG1(s − 1).

By induction, 0 = G2(−1) > G1(−1) = 0, which yields a contradiction. Therefore, for all

s = 0, . . . , N − 1, G2(s) ≤ G1(s) and consequently, z∗i,s,2 ≤ z∗i,s,1. 2

We analyze now how the optimal reward varies as other parameters change. As earlier,

subscripts 1 and 2 refer to system 1 and 2 respectively. For instance, if customers are willing

to pay more, revenue increases but so do the system congestion and holding costs. In the

next proposition, we characterize the sensitivity of the optimal reward to the willingness-

to-pay distribution as well as other system parameters.

Proposition 4.2.3 Consider two systems 1 and 2 that satisfy all of the following :
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1. Λi,1 ≥ Λi,2, for i = 1, . . . , I,

2. Fi,1 ≥ST Fi,2, for i = 1, . . . , I,

3. hs,1 ≤ hs,2, for s = 0, . . . , N ,

4. µs,1 ≥ µs,2, for s = 1, . . . , N .

Then, g∗N,1 ≥ g∗N,2.

Proof We will prove the result by contradiction. Suppose that conditions 1,2,3 and 4 hold

and g∗N,1 < g∗N,2. Therefore, G1(N − 1) =
g∗N,1+hN,1

µN,1
<

g∗N,2+hN,2

µN,2
= G2(N − 1). Suppose that

G1(s) < G2(s) for some s = 0, . . . , N − 1. Then,

g∗N,2 + hs,2 − µs,2G2(s − 1) =
I
∑

i=1

sup{λi,2(z)(z − G2(s)}

≤
I
∑

i=1

sup{λi,1(z)(z − G1(s))}

≤ g∗N,1 + hs,1 − µs,1G1(s − 1)).

So, G1(s − 1) < G2(s − 1). By induction, 0 = G1(−1) < G2(−1) = 0, exhibiting a

contradiction. Thus, g∗N,1 ≥ g∗N,2. 2

We now compare our optimal policy with the optimal static price we derived in Theorem

3.2.2. Suppose now that µs = µ, hs = hs, for all s = 0, . . . , N and that I = 1 as in Chapter

3. It is clear that dynamic pricing achieves a better optimal profit. Moreover, there is an

ordering relationship between our optimal static price and our optimal stationary policy. As

in Chapter 3, recall that πn(ρ, N) denote the stationary probability of n customers in the

system under static pricing when traffic intensity is ρ. Recall also that L(ρ, N) is the long-

run expected number of customers in the system under static pricing and traffic intensity

ρ.
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Proposition 4.2.4 Let I = 1 and let y∗N denote the optimal static price for a system of

capacity N . Then, for all s = 1 . . . N , z∗1,0 ≤ y∗N ≤ z∗1,N−1.

Proof Since I = 1, we will omit the class subscript in this proof. For instance, we will write

r(·), λ(y) and z∗s instead of r1(·), λ1(y) and z∗1,s. In this proof, we also use the quantity ρ(y)

that is defined as ρ(y) = λ(y)
µ

.

Recall that z∗N−1 = inf{y : r(y)(y − g∗+Nh
µ

) ≥ 1} and y∗N = inf{y : r(y)γh
N (ρ(y))(y −

h
µ
ϕN (ρ(y))) ≥ 1} from Theorem 3.2.2.

To prove that y∗N ≤ z∗N−1, we will show that for all y ≥ 0 such that r(y)(y−
g∗N+Nh

µ
) ≥ 1,

we have r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) ≥ 1. Consider y ≥ 0 such that r(y)(y −

g∗N+Nh

µ
) ≥ 1.

Since g∗N ≥ µy(1 − π0(ρ(y), N)) − hL(ρ(y), N), we can claim by Lemma A.0.4 that

y −
g∗N + Nh

µ
≤ yπ0(ρ(y), N) −

h

µ
(N − L(ρ(y), N))

≤ π0(ρ(y), N)(y −
h

µ
ϕN (ρ(y)))

≤ γh
N (ρ(y))(y −

h

µ
ϕN (ρ(y))).

Hence, we have r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) ≥ 1, proving that y∗N ≤ z∗N−1.

To prove that z∗0 ≤ y∗N , we proceed by contradiction. Recall the alternate expression

of z∗0 from Lemma B.0.6, which is z∗0 = sup{y : g∗Nr(y) ≤ λ(y)}. If z∗0 = β, then g∗N = 0,

which is impossible. Suppose that β > z∗0 > y∗N , so that there exists y in (y∗N , z∗0) such that

g∗Nr(y) ≤ λ(y) and r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) > 1. Using inequalities (2) and (4) from

Lemma A.0.1, we have

λ(y)γh
N (ρ(y))(y −

h

µ
ϕN (ρ(y))) ≤λ(y)(1 − πN (ρ(y), N))(y −

h

µ
ϕN (ρ(y)))

≤λ(y)(1 − πN (ρ(y), N))y − hL(ρ(y), N)

≤g∗N .
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Therefore, g∗Nr(y) ≥ λ(y)r(y)γh
N (ρ(y))(y − h

µ
ϕN (ρ(y))) > λ(y), exhibiting a contradiction.

Thus, we have proved that z∗0 ≤ y∗N . 2

Therefore, y∗N is convex combination of z∗0 and z∗N−1. We can interpret the optimal

static price as a “compromise” between z∗0 and z∗N−1. On the one hand, when the system

is empty, the service provider is willing to discount prices to attract customers. On the

other hand, when the system is almost full, the service provider charges a premium for

higher congestion costs. Under a static pricing scheme, the service provider does not have

the possibility to differentiate states when pricing service. Hence, it is intuitive that the

optimal price to be charged in this case lies in between the optimal dynamic prices charged

in extremal states.

4.2.2 Systems with Balking Customers

We now consider systems with balking customers to capture congestion penalties. As in

Section 3.3, customers entering the system are subject to their willingness-to-wait as well as

their willingness-to-pay. A potential customer from any class arriving when the system is in

state s decides to accept the current congestion level with probability ps independently of

everything else. We assume that 1 = p0 ≥ p1 ≥ . . . ≥ pN−1 as customers are more deterred

by congested states.

As in the holding cost model, we use a Markov decision process (MDP) method. Under

any pricing policy, the queue system is unichain as a birth-death process with positive death
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rates. We have the following ACOE system:

G(−1) = 0, (6)

g − µsG(s − 1) = ps

I
∑

i=1

sup
z
{λi(z)(z − G(s))}, if s = 0, . . . , N − 1, (7)

G(N − 1) =
g

µN
. (8)

In the following theorem, we explicitly characterize a unique optimal stationary policy

that maximize the long-run average profit. We give an explicit expression for the optimal

prices to be charges in each state for each customer class.

Theorem 4.2.2 There exists a canonical triplet (g, G(·), z) for the ACOE system (6)-(8).

Moreover, the optimal long-run average reward is g∗N = g and z∗ = z is a unique optimal

stationary policy, where, for s = 0, . . . , N − 1 and i = 1, . . . , I,

z∗i,s = inf{z : ri(z)(z − G(s)) ≥ 1}.

To show the existence of a canonical triplet, the proof is similar to the proof of Lemma

4.2.1 and is omitted. The remainder of Theorem 4.2.2 is proved similarly to Theorem 4.2.1

and we omit the proof as well. We state some useful properties of canonical triplets in the

next lemma.

Lemma 4.2.4 Let (g, G(·), z) a canonical triplet be for the ACOE system (6)-(8). Then,

1. for all s = −1, . . . , N − 1, 0 ≤ G(s) ≤ g
µs+1

.

2. for all s = 0, . . . , N − 1, there exists i = 1, . . . , I such that zi,s < βi.

Proof Let (g, G(·), z) a canonical triplet be for the ACOE system (6)-(8). First, we show that

(1) holds. From equations (7) and (8), we immediately have G(s) ≤ g
µs+1

for s = 0, . . . , N−1.
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Suppose that there exists s = 0, . . . , N − 1 such that G(s) < 0. Since G(−1) = 0, there

exists s ≥ 0 such that G(s) < 0 and G(s− 1) ≥ 0. Hence, µs+1G(s)− µsG(s− 1) < 0. But

we have

ps+1

I
∑

i=1

λi(zi,s+1)G(s + 1) =ps+1

I
∑

i=1

λi(zi,s+1)zi,s+1 − g + µs+1G(s)

=ps+1

I
∑

i=1

λ(zi,s+1)(zi,s+1 − G(s)) − g + µs+1G(s) − µsG(s − 1)

+ ps+1

I
∑

i=1

λi(zi,s+1)G(s) + µsG(s − 1)

<ps

I
∑

i=1

sup{λi(z)(z − G(s))} − g + µsG(s − 1)

+ ps+1

I
∑

i=1

λi(zi,s+1)G(s)

<ps+1

I
∑

i=1

λi(zi,s+1)G(s).

If
∑I

i=1 λi(zi,s+1) = 0, then G(s) = g
µs+1

≥ 0, which is impossible. Therefore, G(s + 1) <

G(s) < 0. Since µs+2 ≥ µs+1, µs+2G(s+1)−µs+1G(s) < 0, so we can repeat the argument

above until we reach state N − 1, for which G(N − 1) < 0. But G(N − 1) = g
µN

≥ 0, which

yields a contradiction. Therefore, for all s = −1, . . . , N − 1, 0 ≤ G(s) ≤ g
µs+1

.

We now show that (2) holds. Now suppose that there exists s = 0, . . . , N − 1 such

that zi,s = βi for all i = 1, . . . , N − 1. This implies that G(s) ≥ maxi βi. Therefore,

G(s − 1) = g
µs

≥ g
µs+1

≥ G(s) ≥ maxi βi. Hence, zi,s−1 = βi for all i = 0, . . . , I. By

induction, we have G(−1) = g
µ0

, exhibiting a contradiction. 2

As opposed the holding cost model, the second property in Lemma 4.2.4 implies that it

never optimal to set zi,s = βi for all i in some state s. In other words, it is suboptimal for

the service provider to refuse entry to all customers in some state s ≤ N − 1.
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Using our solution characterization in Theorem 4.2.2, we are now able to derive struc-

tural and ordering properties of the optimal pricing solution and reward. In the next

proposition, we demonstrate that the optimal prices to be charged are nondecreasing in the

state index, under mild assumptions on ps and µs.

Proposition 4.2.5 Suppose {µs}
N
s=0 and {ps}

N
s=0 are such that there exists an integer q

between 0 and N , where µ0 ≤ µ1 ≤ . . . ≤ µq = µq+1 = . . . = µN and 1 = p0 = p1 = . . . =

pq−1 ≥ pq ≥ . . . ≥ pN−1. Then, G(s) and z∗i,s are nondecreasing in s.

Proof We split our proof into two parts. First, we prove by induction that G(s− 1) ≤ G(s)

for s = 0, . . . , q − 1. Then, we show that G(s − 1) ≤ G(s) holds for s = q, . . . , N − 1 using

an induction as well.

Suppose G(s − 1) ≤ G(s) for some state s = 0, . . . , q − 2. It clearly holds for s = 0.

Then, µsG(s − 1) ≤ µs+1G(s) and

I
∑

i=1

sup{λi(z)(z − G(s + 1))} = g∗N − µs+1G(s)

≤ g∗N − µsG(s − 1)

≤

I
∑

i=1

sup{λi(z)(z − G(s))}.

Hence,
∑I

i=1 λi(z
∗
i,s)G(s + 1) ≥

∑I
i=1 λi(z

∗
i,s)G(s). From the second result of Lemma

4.2.4, we have
∑I

i=1 λi(z
∗
i,s) > 0. Hence, G(s + 1) ≥ G(s). By induction, G(s − 1) ≤ G(s)

holds for s = 0, . . . , q − 1.

If q = N , the proof is complete. Otherwise, it remains to show by induction that

G(s − 1) ≤ G(s) for states s = q, . . . , N − 1. Now suppose that G(s) ≥ G(s − 1) for

some state s = q + 1, . . . , N − 1. The first result of Lemma 4.2.4 shows that it holds when
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s = N − 1. We have,

g∗N − µNG(s − 1) = ps

I
∑

i=1

sup{λi(z)(z − G(s))}

≤ ps−1

I
∑

i=1

sup{λi(z)(z − G(s − 1))}

≤ g∗N − µNG(s − 2).

Hence, µN (G(s − 1) − G(s − 2)) ≥ 0. By induction, G(s) ≥ G(s − 1) for s = q, . . . , N − 1

and the proof is complete. 2

As in the holding cost model, Proposition 4.2.5 shows that the optimal prices act as an

indirect congestion control, deterring customers from entering congested states. The service

provide must charge more in congested states in order to offset to future loss of potential

customers deterred by the queue length. Let us analyze now how the optimal prices and

reward change with respect to an increase in the system capacity N . Intuitively, the optimal

reward g∗N should increase as N grows. We demonstrate this in the next proposition. The

proof of the following result is a minor change from the proof of Proposition 4.2.2 and can

be found in the Appendix. Recall that we use the additional subscripts 1 and 2 when we

compare two systems indexed by 1 and 2 respectively.

Proposition 4.2.6 Consider two systems 1 and 2, where system 1 has capacity N and

system 2 has capacity N + 1. Then, g∗N+1 ≥ g∗N . Then z∗i,s,2 ≤ z∗i,s,1 for s = 0, . . . , N − 1

and i = 1, . . . , I.

In Section 3.3, we exhibited a unique optimal static price that maximizes the long-run

average reward in the case of a unique customer class in a single server system. In the next

Proposition, we compare this optimal static price with the optimal dynamic policy derived
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in Theorem 4.2.2 in the case of a unique customer class (I = 1) in a single server system

(µs = µ for all s = 1, . . . , N).

Proposition 4.2.7 Let I = 1 and consider a single server system of capacity N . Let y∗N

denote the optimal static price to be charged. Then, for all s = 1 . . . N , z∗1,0 ≤ y∗N ≤ z∗1,N−1.

Proof Since I = 1, we omit the customer class subscript in this proof. Consider a sin-

gle server system with service rate µ. Recall from Theorem 3.3.1 that y∗N = inf{y :

yr(y)γb
N (ρ(y)) ≥ 1}, where ρ(y) = λ(y)

µ
. First, we show that y∗N ≤ z∗1,N−1. From The-

orem 4.2.2, we have z∗N−1 = inf{y : r(y)(y −
g∗N
µ

) ≥ 1}

We will show that for all y ≥ 0 such that r(y)(y −
g∗N
µ

) ≥ 1, we have r(y)γb
N (ρ(y)) ≥ 1.

Consider y ≥ 0 such that r(y)(y −
g∗N
µ

) ≥ 1. Since g∗N ≥ µy(1 − π0(ρ(y), N)), we have from

Lemma A.0.5,

y −
g∗N
µ

≤ π0(ρ(y), N)y ≤ γb
N (ρ(y))y.

Therefore, we have r(y)γb
N (ρ(y))y ≥ 1, implying that y∗N ≤ z∗N−1.

We now prove that z∗0 ≤ y∗N . From Lemma B.0.6, we can express z∗0 as z∗0 = sup{y :

g∗Nr(y) ≤ λ(y)}. Suppose that z∗0 > y∗N , so that there exists y in (y∗N , z∗0) such that

g∗Nr(y) ≤ λ(y) and r(y)γb
N (ρ(y))y > 1. From Lemma A.0.5, we have

λ(y)γb
N (ρ(y))y ≤ λ(y)yπ0(ρ(y), N)

N−1
∑

n=0

Pnρ(y)n ≤ g∗N .

Therefore, g∗Nr(y) ≥ λ(y)r(y)γb
N (ρ(y))y > λ(y) revealing a contradiction. Therefore, z∗0 ≤

y∗N . 2

As in the model with holding cost, in single server queues with a unique customer class,

the optimal static price lies in between the optimal dynamic prices to be charged in extremal

states.
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4.2.3 Systems with Impatient Customers

In this section, we model congestion penalties through impatient customers. The customer

impatient behavior is the same as described in Section 3.4. Payments are collected upon

arrival. Each customer entering the system has a random maximum waiting time distributed

as an exponential random variable with parameter θ. The maximum waiting times of

successive customers are assumed to be independent of each other, of the arrival process,

of the service time process and of the customers’ willingness-to-pay. If a customer does not

begin service prior to his maximum waiting time, the customer reneges and receives a full

refund from the service provider. We assume that the system has q identical servers with

rate µ; that is, µs = (s ∧ q)µ. Only customers who are waiting for service are impatient.

Therefore, we assume that N > q without loss of generality.

As opposed to the static pricing scheme used in Section 3.4, the refunds received by

impatient customers can now vary from one customer to another. Therefore, it seems that

we need to include the prices paid by customers currently in the system in the system state

description. In other words, defining the state of the system as the number of customers

seems to be insufficient to use a Markovian analysis. We show that it is not the case when

the queueing discipline is First-In First-Out (FIFO).

4.2.3.1 FIFO Queueing Discipline

Let ws, s = 0, . . . , N −1 denote the probability that a customer entering a system in state s

will not renege and will leave upon service completion. In the remainder of this section, we

assume that the system operates under a FIFO queueing discipline. Consequently, it is clear

that ws does not depend on the arrival process. We compute ws in the next proposition.
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Proposition 4.2.8 Consider a system with impatient customers and q servers under FIFO

queueing discipline. For s = 0, . . . , N − 1, we have ws = µq
(s−q+1)+θ+µq

.

Proof If s < q, then ws = 1. Otherwise, we can compute ws the following way: ws =

P (Xs ≥
∑s

n=q Yn) where Xs ∼ Expo(θ) and Yn ∼ Expo((n − q)θ + µq). The random

variable Xs represents the patience time of the customer of interest. The random variables

Yq, . . . , Ys represent the interdeparture times of the customers waiting in line in front of the

customer of interest. We have :

ws = P (Xs ≥
s
∑

n=q

Yn)

ws =

∫ ∞

0
· · ·

∫ ∞

0
P (Xs ≥ yq + · · · + ys)

s
∏

n=q

(µq + (n − q)θ)e−(µq+(n−q)θ)qyndyn

ws =

∫ ∞

0
· · ·

∫ ∞

0
e−θ(yq+···+ys)

s
∏

n=q

(µq + (n − q)θ)e−(µq+(n−q)θ)qyndyn

ws =

s
∏

n=q

∫ ∞

0
(µq + (n − q)θ)e−(µq+(n−q+1)θ)yndyn

ws =
s
∏

n=q

(n − q)θ + µq

(n − q + 1)θ + µq

ws =
µq

(s − q)θ + µq

2

As earlier, we use a Markov decision process formulation. However, we use the expected

reward generated by a customer admission in state s instead of the actual reward. Under

pricing policy z, the expected reward generated by a class-i customer entering the system

in state s is zi,sws. Since ws does not depend on the pricing policy and only depends on

the current state s, using expected rewards spares us from keeping track of the prices paid

by impatient customers (see p.20 in Puterman [18]).
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We have the following system of ACOE:

G(−1) = 0, (9)

g − (µs + (s − q)+θ)G(s − 1) =
I
∑

i=1

sup
z
{λi(z)(wsz − G(s))}, if s = 0, . . . , N − 1, (10)

G(N − 1) =
g

µN + (N − q)θ
. (11)

In the next theorem and lemma, we show the existence a canonical triplet (g, G(·), z) to

(9)-(11) that corresponds to an optimal dynamic pricing solution. We also characterize the

optimal prices to be charged.

Theorem 4.2.3 There exists a canonical triplet (g, G(·), z) for the ACOE system (9)-(11).

Moreover, the optimal long-run average reward is g∗N = g and z∗ = z is a unique optimal

stationary policy, where, for s = 0, . . . , N − 1 and i = 1, . . . , I,

z∗i,s = inf

{

z : ri(z)

(

z −
G(s)

ws

)

≥ 1

}

.

Since the state space is finite, the proof of Theorem 4.2.3 is similar to the proof of

Theorem 4.2.1 and is omitted. The following lemma states useful properties of canonical

triplets to (9)-(11).

Lemma 4.2.5 Let (g, G(·), z) be a canonical triplet for the ACOE system (9)-(11). Then,

1. for all s = −1, . . . , N − 1, 0 ≤ G(s) ≤ g
µs+1+(s−q+1)+θ

.

2. for all s = 0, . . . , N − 1, there exists i = 1, . . . , I such that zi,s < βi.

Proof Let (g, G(·), z) be a canonical triplet for the ACOE system (9)-(11). First, we show

that (1) holds. Equations (10) and (11), immediately imply that G(s) ≤ g
µs+1+(s−q+1)+θ

for

s = 0, . . . , N −1. Suppose that G(s) < 0 for some s = 0, . . . , N −1. Since G(−1) = 0, there
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exists s ≥ 0 such that G(s) < 0 and G(s− 1) ≥ 0. Therefore, (µs+1 + (s− q + 1)+θ)G(s)−

(µs + (s − q)+θ)G(s − 1) < 0. We have

I
∑

i=1

λi(zi,s+1)G(s + 1) =
I
∑

i=1

λi(zi,s+1)ws+1zi,s+1 − g + (µs+1 + (s − q + 1)+θ)G(s)

=
I
∑

i=1

λ(zi,s+1)(ws+1zi,s+1 − G(s)) − g + (µs+1 + (s − q + 1)+θ)G(s)

+
I
∑

i=1

λi(zi,s+1)G(s)

<

I
∑

i=1

sup{λi(z)(wsz − G(s))} − g + (µs + (s − q)+θ)G(s − 1)

+
I
∑

i=1

λi(zi,s+1)G(s)

<
I
∑

i=1

λi(zi,s+1)G(s).

If
∑I

i=1 λi(zi,s+1) = 0, then G(s) = g
µs+1

≥ 0, which is impossible. Hence, G(s + 1) <

G(s) < 0. Since (µs+2 + (s + 2 − q)+θ) ≥ (µs+1 + (s + 1 − q)+θ), (µs+2 + (s + 2 −

q)+θ)G(s + 1) − (µs+1 + (s + 1 − q)+θ)G(s) < 0, this argument can be repeated until we

reach G(N − 1) < 0. But G(N − 1) = g
µN+(N−q)+θ

≥ 0, which yields a contradiction.

Therefore, for all s = −1, . . . , N − 1, 0 ≤ G(s) ≤ g
µs+1+(s+1−q)+θ

.

We now show that (2) holds. Now suppose that there exists s = 0, . . . , N − 1 such

that zi,s = βi for all i = 1, . . . , N − 1. This implies that G(s) ≥ maxi βi. Therefore,

G(s − 1) = g
µs+(s−q)+θ

≥ g
µs+1+(s+1−q)+θ

≥ G(s) ≥ maxi βi. Hence, zi,s−1 = βi for all

i = 0, . . . , I. By induction, we have G(−1) = g
µ0

= 0, yielding a contradiction. 2

We now focus on deriving structural and ordering properties of the optimal solution and

reward. Similarly to the models with holding costs or balking customers, we show in the

next proposition that the optimal prices to be charged are nondecreasing in the state index.

Proposition 4.2.9 The sequences G(s)
ws

and z∗i,s are nondecreasing in s.
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Proof First, we show that G(s)
ws

is nondecreasing. As z∗i,s = inf
{

z : ri(z)
(

z − G(s)
ws

)

≥ 1
}

,

this implies that z∗i,s is nondecreasing in s.

We split our proof into two parts. First, we prove by induction that G(s−1) ≤ G(s) for

s = 0, . . . , q − 1 since ws = 1 for s < q. This part of the proof is identical to the beginning

of the proof of Proposition 4.2.5 and is omitted. Second, we show that G(s−1)
ws−1

≤ G(s)
ws

holds

for s = q, . . . , N − 1.

Suppose that G(s−1)
ws−1

≤ G(s)
ws

for some state s = q+1, . . . , N −1. The first part of Lemma

4.2.5 shows that it holds when s = N − 1. Then,

g∗N − (µN + (s − q)θ)G(s − 1) =
I
∑

i=1

sup{λi(z)(wsz − G(s))}

= ws

I
∑

i=1

sup

{

λi(z)

(

z −
G(s)

ws

)}

≤ ws−1

I
∑

i=1

sup

{

λi(z)

(

z −
G(s − 1)

ws−1

)}

≤
I
∑

i=1

sup{λi(z)(ws−1z − G(s − 1))}

≤ g∗N − (µN + (s − q − 1)θ)G(s − 2).

Hence, (µN +(s−q)θ)G(s−1)−(µN +(s−q−1)θ)G(s−2) ≥ 0 implying that G(s−1)
ws−1

≥ G(s−2)
ws−2

.

By induction, G(s)
ws

≥ G(s−1)
ws−1

for s = q, . . . , N − 1 and the proof is complete. 2

In the next proposition, we investigate how the optimal prices and rewards change with

an increase in capacity N . On the one hand, in systems of larger capacity, fewer customers

are turned downed due to capacity limitations. On the other hand, the customers’ waiting

time and their likelihood of reneging are higher as N gets larger. We show that the optimal

reward is nondecreasing in N and that the price to be charged to class-i customers in state

s is nonincreasing in N . The proof of the next proposition given in the Appendix.
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Proposition 4.2.10 Consider two systems 1 and 2, where system 1 has capacity N and

system 2 has capacity N + 1. Then, g∗N+1 ≥ g∗N . Then z∗i,s,2 ≤ z∗i,s,1 for s = 0, . . . , N − 1

and i = 1, . . . , I.

In Section 3.4, we characterized a unique static optimal price y∗N to be charged in the case

of a single server M/M/1 queue with a unique customer class. In the following proposition,

we investigate how the optimal dynamic prices derived in Theorem 4.2.3 compare with y∗N ,

when there is a unique customer class (I = 1) in a single server queue (µs = µ for all

s = 1, . . . , N).

Proposition 4.2.11 Let I = 1 and consider a single server system of capacity N . Let y∗N

denote the optimal static price. Then, for all s = 1 . . . N , z∗1,0 ≤ y∗N ≤ z∗1,N−1.

Proof As I = 1, we omit the class subscript in the remainder of this proof. From Theorem

3.4.1, we have y∗N = inf{y : yr(y)γr
N (ρ(y)) ≥ 1}, where ρ(y) = λ(y)

µ
. First, we show that

y∗N ≤ z∗1,N−1. From Theorem 4.2.3, recall that

z∗N−1 = inf

{

y : r(y)

(

y −
g∗N

wN−1(µ + (N − 1)θ)

)

≥ 1

}

= inf

{

y : r(y)

(

y −
g∗N
µ

)

≥ 1

}

.

We prove that for all y ≥ 0 such that r(y)(y −
g∗N
µ

) ≥ 1, we have r(y)γr
N (ρ(y)) ≥ 1.

Consider y ≥ 0 such that r(y)(y −
g∗N
µ

) ≥ 1. Since dynamic pricing performs better than

static pricing, we have g∗N ≥ µy(1 − π0(ρ(y), N)). From Lemma A.0.5,

y −
g∗N
µ

≤ π0(ρ(y), N)y ≤ γr
N (ρ(y))y.

Hence, we conclude that r(y)γr
N (ρ(y))y ≥ 1, implying that y∗N ≤ z∗N−1.

We now show that z∗0 ≤ y∗N . Recall from Lemma B.0.6 that z∗0 satisfies z∗0 = sup{y :

g∗Nr(y) ≤ λ(y)}. Suppose that z∗0 > y∗N . Consequently, there must exist y in (y∗N , z∗0) such
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that g∗Nr(y) ≤ λ(y) and r(y)γr
N (ρ(y))y > 1. From Lemma A.0.5, we have

λ(y)γr
N (ρ(y))y ≤ λ(y)yπ0(ρ(y), N)

N−1
∑

n=0

Qnρ(y)n.

Note that

λ(y)yπ0(ρ(y), N)
N−1
∑

n=0

Qnρ(y)n =µyπ0(ρ(y), N)
N−1
∑

n=0

λ(y)n+1

µ(µ + θ) . . . (µ + nθ)

=µy
N
∑

n=1

πn(ρ(y), N)

=µy(1 − π0(ρ(y), N)) ≤ g∗N .

Consequently, g∗Nr(y) ≥ λ(y)r(y)γr
N (ρ(y))y > λ(y) and we reach a contradiction. We

conclude that z∗0 ≤ y∗N . 2

4.2.3.2 FIFO vs. LIFO

Under static pricing and with a unique customer class, it is clear that the optimal prices and

reward do not depend on the queueing discipline. In this case, all customers pay the same

price and can be considered as identical once in the system. However, we assumed that the

service provider enforces a FIFO queueing discipline when analyzing the impatient customer

model under dynamic precision pricing. In this section, we investigate how changing the

queueing discipline to a preemptive Last-In First-Out (LIFO) discipline affects the optimal

reward.

In the following, we assume that we only have one customer class (I = 1). Let RLIFO(z)

denote the long-run average reward for the system under pricing policy z and preemptive

LIFO queueing discipline. In the next theorem, we demonstrate that, a system under

LIFO performs better than a system under FIFO provided that the advertised prices are

nondecreasing in the state index.
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Theorem 4.2.4 If I = 1, then for any stationary pricing policy z such that zs is nonde-

creasing in s, we have R(z) ≤ RLIFO(z).

To prove this theorem, we need the following proposition and lemma.

Proposition 4.2.12 Suppose that I = 1 and consider any queueing discipline and station-

ary pricing policy z such that z1,s is nondecreasing in s. Then, for all s = 0, . . . N −1, when

s+1 customers are in the system, the customer who was admitted into the system last paid

at least z1,s.

Proof If s + 1 is the current number of customers in the system, the last customer to enter

the system encountered at least s customers in the system upon arrival. Therefore, the

customer question paid at least z1,s. 2

Lemma 4.2.6 Consider a system with a single customer class (I = 1), under FIFO dis-

cipline and stationary pricing policy z. Then, the long-run average reward can also be

expressed as

R(z) =
N−1
∑

s=0

µsz1,sπs+1(z).

Proof Recall that

R(z) =
N−1
∑

s=0

λ1(z1,s)z1,swsπs(z),

where ws = µq
µq+(s−q+1)+θ

. Therefore,

R(z) =
N−1
∑

s=0

λ1(z1,s)z1,s
µq

µq + (s − q + 1)+θ
πs(z),

=
N−1
∑

s=0

µs+1z1,sπs+1(z).

2

68



Lemma 4.2.6 shows that, under the FIFO queueing discipline, the system performs as

if any exiting customer leaving s customers behind had paid price z1,s upon admission. We

use this property to prove Theorem 4.2.4.

Proof of Theorem 4.2.4 Consider a system under preemptive LIFO queueing discipline.

From Lemma 4.2.12, we can claim that any customer being serviced and leaving the system

with s customers behind must have paid at least z1,s upon arrival. Therefore, we use Lemma

4.2.6 and claim that

RLIFO(z) ≥
N−1
∑

s=0

µs+1z1,sπs+1(z) = R(z).

2

A direct consequence of Theorem 4.2.4 is that a service provider using the optimal policy

z∗ as defined in Theorem 4.2.3 can improve profits by enforcing a LIFO queueing discipline.

However, implementing LIFO incurs some hidden costs that are not captured in our model.

Namely, under LIFO, customers who have been in the system for a long time may witness

other customers with shorter waiting time being processed before them. There is a loss of

customer goodwill that is associated with the customers’ discontent. Therefore, the benefits

from using a LIFO queueing policy might be offset by this hidden cost.

4.3 Queueing Systems with Infinite Capacity

In this section, we impose no limitation on the system capacity. This introduces some

difficulties since the ACOE system now has infinitely many equations and solution triplets.

Moreover, unlike in the finite capacity case, a canonical triplet does not always translate

into an optimal stationary policy. Nevertheless, under certain parameter structures, we are

able to find an optimal stationary policy that maximizes the long-term average profit per

unit time.
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4.3.1 Uniform Asymptotic Parameter Structure

First, we consider a particular parameter structure in the model with holding costs and the

model with balking customers.

Definition 4.3.1 The service system is said to have Uniform Asymptotic Parameter Struc-

ture (UAPS) if its parameters satisfy

• in the model with holding costs: there exists N < ∞, such that hs = hN , µs = µN for

s ≥ N and
∑I

i=1 Λi < µN ,

• in the model with balking customers: there exists N < ∞, such that ps = pN , µs = µN

for s ≥ N and pN

∑I
i=1 Λi < µN .

Note that we do not have a UAPS in the model with impatient customers. Since each

customer in the queue is impatient, the reneging rate cannot be constant past a certain

state.

In order to show the existence of an optimal stationary policy, we use the mappings Ψh

and Ψb defined as

Ψh : R × R+ → R

(V, g) 7→
g + hN −

∑I
i=1 sup{λi(z)(z − V )}

µN

Ψb : R × R+ → R

(V, g) 7→
g − pN

∑I
i=1 sup{λi(z)(z − V )}

µN
.

We show in Lemma B.0.7 that for all g ≥ 0, Ψh(·, g) and Ψb(·, g) are nondecreasing

and each have a unique fixed point. This fixed point is denoted by FP h(g) and FP b(g) for

Ψh(·, g) and Ψb(·, g) respectively.
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Instead of having all of the infinitely many equations of the ACOE system, we only

consider a finite subset corresponding to states s = 0, . . . , N −1. We use the functions FP h

and FP b to define G(s) for states s ≥ N − 1. Thus, we analyze the following systems of

optimality equations.

• In the model with holding costs:

G(−1) = 0, (12)

g + hs − µsG(s − 1) =
I
∑

i=1

sup
z
{(z − G(s))λi(z)} if s = 0, . . . , N − 1, (13)

G(s) = FP h(g) if s = N − 1, . . . ,∞. (14)

• In the model with balking customers:

G(−1) = 0, (15)

g − µsG(s − 1) = ps

I
∑

i=1

sup
z
{(z − G(s))λi(z)} if s = 0, . . . , N − 1, (16)

G(s) = FP b(g) if s = N − 1, . . . ,∞. (17)

Note that if there exists a canonical triplet satisfying (12)-(14) or (15)-(17), it also

satisfies the full system of optimality equations from the corresponding congestion penalty

model. In the next theorem, we demonstrate that there exists canonical triplets to (12)-(14)

and (15)-(17). Moreover, we prove the existence of an optimal stationary policy that we

characterize in each UAPS model.

Theorem 4.3.1 The following statements hold:

1. There exists a canonical triplet to the ACOE (12)-(14) and (15)-(17) respectively.
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2. Let (g, G(·), z) is a canonical triplet to (12)-(14). Then, z∗ = z and g∗∞ = g in the

UAPS model with holding costs. Moreover, z∗i,s = inf{z : ri(z)(z − G(s)) ≥ 1} for all

s = 0, . . . ,∞ and i = 1, . . . , I.

3. Let (g, G(·), z) is a canonical triplet to (15)-(17). Then, z∗ = z and g∗∞ = g in the

UAPS model with balking customers. Moreover, z∗i,s = inf{z : ri(z)(z − G(s)) ≥ 1}

for all s = 0, . . . ,∞ and i = 1, . . . , I.

Proof

1. First, we show that there exists a canonical triplet to (12)-(14). We only need to show

the existence a canonical triplet to (12), (13) and G(N − 1) = FP h(g). Then, by

extending G(·) and z to G(s) = G(N − 1) = FP h(g) and zi,s = zi,N−1 for s ≥ N − 1,

(g, G(·), z) is also a solution of the full system of ACOE (12)-(14).

To prove the existence of a canonical triplet to (12), (13) and G(N − 1) = FP h(g),

note that

Ψh(0,
I
∑

i=1

sup{λi(z)z}) =
hN

µN
≥ 0,

and consequently FP h(
∑I

i=1 sup{λi(z)z}) ≥ 0. Therefore, the proof is exactly the

same as in Lemma 4.2.1 except that G(N − 1, g) = FP h(g) is now the starting point

of the induction. In same fashion, we show the existence of a canonical triplet to

(15)-(17).

2. Let (g, G(·), z) is a canonical triplet to (12)-(14). We now prove that it corresponds

to an optimal solution in the UAPS model with holding costs. According to equation

(5.2.12) of Lasserre and Hernández-Lerma [11], we only need to show that

lim
t→∞

inf
d∈ΠRH

Ed
s0

[l(X(t))]

t
= 0,
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where ΠRH is the set of all history-dependent randomized policies and s0 is the starting

state at time t = 0. If it is the case, the canonical triplet corresponds to an optimal

stationary policy. Recall that l(s) − l(s + 1) = G(s) for all s = 0, . . . ,∞. Therefore,

l(s) = l(N) − (s − N)FP h(g) for all s ≥ N . Hence,

Ed
s0

[l(X(t))] =Ed
s0

[l(X(t))|X(t) < N ]P (X(t) < N)

+
(

l(N) − (Ed
s0

[X(t)|X(t) ≥ N ] − N)FP h(g)
)

P (X(t) ≥ N).

Note that for all d ∈ ΠRH ,

∣

∣

∣
Ed

s0
[l(X(t))|X(t) < N ]P (X(t) < N)

∣

∣

∣
≤ max

s≤N−1
|l(s)|.

Therefore, we have

lim
t→∞

inf
d∈ΠRH

∣

∣

∣

∣

∣

Ed
s0

[l(X(t))|X(t) < N ]P (X(t) < N)

t

∣

∣

∣

∣

∣

= 0.

It remains to show that limt→∞ supd∈ΠRH

Ed
s0

[X(t)|X(t)≥N ]P (X(t)≥N)

t
= 0. First, note

that

sup
d∈ΠRH

Ed
s0

[X(t)|X(t) ≥ N ]P (X(t) ≥ N) ≤ sup
d∈ΠRH

Ed
s0

[X(t)]

and that the supremum supd∈ΠRH Ed
s0

[X(t)] is attained for policy ẑ, where ẑ denotes

the stationary policy of charging price 0 to all customers in all states (ẑi,s = 0 for

i = 1, . . . , I and s = 0, . . . ,∞). We have

lim
t→∞

sup
d∈ΠRH

Ed
s0

[X(t)] ≤ lim
t→∞

Eẑ

s0
[X(t)] < ∞.

Therefore,

lim
t→∞

inf
d∈ΠRH

Ed
s0

[l(X(t))]

t
= 0,

and we can apply Theorem 5.2.4 from Lasserre and Hernández-Lerma [11] and claim

that z = z∗ and g = g∗∞.
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3. In the UAPS model with balking customers, the proof is identical to part 2 using

FP b(g) in lieu of FP h(g) and is omitted.

2

This theorem enables us to explicitly characterize an optimal stationary policy in sys-

tems under UAPS. Note that the service provider charges the same price z∗i,N−1 to class-i

customers for all states s ≥ N − 1. This property is quite surprising since there is no

apparent symmetry in the transition structure to justify it.

4.3.2 General Parameters: Systems with Holding Costs

Under Uniform Asymptotic Parameter Structure, we are able to explicitly derive an optimal

stationary pricing policy. The assumption that µs = µN for s ≥ N for some N is often

encountered as servers become saturated with congestion. However, a linear holding cost

structure does not allow us to use a UAPS. Neither do systems with impatient customers.

In this section, we analyze infinite capacity systems with more general parameter structures.

We assume that the service system has q identical servers such that µs = µ(s∧q). First,

we focus on the model with holding costs with hs increasing to infinity and integrable with

respect to {
(
PI

i=1 Λi)
s

µ1...µs
}. We assume that h0 = h1 = . . . = hq = 0 and h1

µ1
< max βi in order

to have an attainable positive reward. We also suppose that
∑I

i=1 Λi < µq so that the

system is stable under any pricing policy.

First, let us consider willingness-to-pay distributions with finite support (βi < ∞ for

all i = 1, . . . , I). In this case, we demonstrate in the next proposition that we can actually

restrict our analysis to finite capacity systems; that is, it is optimal not to admit customers

in the system past a certain finite congestion level.

Proposition 4.3.1 If βi < ∞ for all i = 1, . . . , I, then g∗∞ = g∗M , where M = max{s :
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hs < µs max βi}.

Proof To prove this proposition, we show that for any stationary policy of the infinite

capacity system, one can find a stationary policy of the truncated M -capacity system that

performs as well. Let z be a stationary pricing policy for the infinite capacity system such

that R(z) > 0. This policy exists since the assumption max βi > h1

µ1
ensures the existence

of a positive reward. Now consider the M -capacity stationary pricing policy z|M, which is

defined as the truncation of z up to state M − 1 included. More precisely, z
|M
i,s = zi,s for all

s < M and i = 1, . . . , I. We have

R(z) =

∞
∑

s=0

(

I
∑

i=1

λi(zi,s)zi,s

)

πs(z) − hs+1πs+1(z)

=
∞
∑

s=0

(

I
∑

i=1

λi(zi,s)(zi,s −
hs+1

µs+1
)

)

πs(z)

=
∞
∑

s=0

asπs(z) and

R(z|M) =
M−1
∑

s=0

asπs(z
|M),

where as =
∑I

i=1 λi(zi,s)(zi,s −
hs+1

µs+1
). Clearly, the definition of M implies that as ≤ 0 for

s ≥ M . It is straightforward to show that for all s ≤ M ,

πs(z
|M) =

πs(z)
∑M

s=0 πs(z)
.

Hence R(z|M) − R(z) has the same sign as
∑M−1

s=0 asπs(z) −
∑∞

s=0 asπs(z)
∑M

s=0 πs(z) and

we have

M−1
∑

s=0

asπs(z) −
∞
∑

s=0

asπs(z)
M
∑

s=0

πs(z) ≥
M−1
∑

s=0

asπs(z) −
M−1
∑

s=0

asπs(z)
M
∑

s=0

πs(z)

≥
M−1
∑

s=0

asπs(z)

(

1 −
M
∑

s=0

πs(z)

)

.

Recall that R(z) > 0 and

M−1
∑

s=0

asπs(z) ≥
M−1
∑

s=0

asπs(z) +
∞
∑

s=M

asπs(z) ≥ R(z) > 0.
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Therefore,
M−1
∑

s=0

asπs(z) −

∞
∑

s=0

asπs(z)

M
∑

s=0

πs(z) ≥ 0

and R(z|M) ≥ R(z), proving the result. 2

Proposition 4.3.1 shows that if all the willingness-to-pay distributions F1, . . . , FI have

finite support, we can restrict our analysis to finite capacity queues and refer to Section 4.2.1.

Therefore, without loss of generality, we now assume that at least one of the willingness-

to-pay distributions F1, . . . , FI has infinite support in the rest of this section. To prove the

existence of an optimal stationary policy, we approximate the infinite capacity system by

a finite capacity model of large size. We validate this approximation through two limiting

results in Proposition 4.3.2 and Theorem 4.3.2. Note that Weber and Stidham [20] provide

a proof for the existence of an optimal stationary policy in the case of a compact action

space.

Proposition 4.3.2 If
∑I

i=1 Λi < µq, then g∗N ↑ g∗∞ as N goes to infinity.

Theorem 4.3.2 Let (g∗N , G(·), zN ) be the canonical triplet associated with the truncated

system of capacity N . Then, under the stability condition
∑I

i=1 Λi < µq, there exists z,

such that zN
i,s ↓ zi,s ∀i, s as N → ∞. Moreover, z = z∗ is optimal for the infinite capacity

model.

We need the following lemma to prove Proposition 4.3.2 and Theorem 4.3.2.

Lemma 4.3.1 Let z be a stationary pricing policy and z|N be the truncation of z up to state

N − 1. Under the stability condition
∑I

i=1 Λi < µq, R(z|N) → R(z) as N goes to infinity.
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Proof Consider

R(z) =
∞
∑

s=0

πs(z)
I
∑

i=1

λi(zi,s)zi,s − hs+1πs+1(z)

=π0(z)
∞
∑

s=0

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

µ1 . . . µs

(

I
∑

i=1

λi(zi,s)(zi,s −
hs+1

µs+1
)

)

.

Moreover,

R(z|N) =
N−1
∑

s=0

πs(z
|N)

I
∑

i=1

λi(zi,s)zi,s − hs+1πs+1(z
|N)

=π0(z
|N)

N−1
∑

s=0

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

µ1 . . . µs

(

I
∑

i=1

λi(zi,s)(zi,s −
hs+1

µs+1
)

)

.

Since π0(z
|N)−1 = 1 +

∑N−1
s=0

P
i λi(zi,0)...

P
i λi(zi,s)

µ1...µs+1
, as N goes to infinity, π0(z

|N) → π0(z).

Therefore, R(z|N) → R(z) , which proves the desired result. 2

Proof of Proposition 4.3.2 We will prove this proposition by contradiction. From Propo-

sition 4.2.2, we know that g∗N is nondecreasing in N and that limN g∗N exists and is less

than or equal to g∗∞. Now suppose that limN g∗N < g∗∞. Then, according to Lemma 4.3.1,

there exists an N -capacity stationary policy zN , such that limN g∗N < R(zN ) < g∗∞. As

R(zN ) ≤ g∗N , we have a contradiction and the proof is complete. 2

Proof of Theorem 4.3.2 We proved in Proposition 4.3.2 that g∗N converges to g∗∞. Since

we assumed that at least one of the willingness-to-pay distributions F1, . . . , FI has infinite

support, we use Proposition 4.2.2 to claim that zN
i,s is a nonincreasing sequence in N .

Therefore, limN zN
i,s = zi,s exists.

We now show that |R(z) − g∗N | → 0. Since g∗N → g∗∞, it must imply that R(z) = g∗∞

and that z is optimal.

To do so, we will prove first that for any s, πs(z
N ) → πs(z) as N goes to infinity. Since

πs(z
N ) = π0(z

N )

∑

i λi(z
N
i,0) . . .

∑

i λi(z
N
i,s−1)

µ1 . . . µs
, (18)
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we only need to prove that π0(z
N ) → π0(z). We have

π0(z
N )−1 − π0(z)

−1 =
N
∑

s=1

∑

i λi(z
N
i,0) . . .

∑

i λi(z
N
i,s−1)

µ1 . . . µs
−

∞
∑

s=1

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

µ1 . . . µs
.

(19)

Let M be an arbitrary integer smaller than N ,

π0(z
N )−1 − π0(z)

−1 =
M
∑

s=1

∑

i λi(z
N
i,0) . . .

∑

i λi(z
N
i,s−1)

µ1 . . . µs
−

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

µ1 . . . µs

+
N
∑

s=M

∑

i λi(z
N
i,0) . . .

∑

i λi(z
N
i,s−1)

µ1 . . . µs
(20)

−

∞
∑

s=M

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

µ1 . . . µs
.

Hence,

|π0(z
N )−1 − π0(z)

−1| ≤
M
∑

s=1

∣

∣

∣

∣

∣

∑

i λi(z
N
i,0) . . .

∑

i λi(z
N
i,s−1)

µ1 . . . µs
−

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

µ1 . . . µs

∣

∣

∣

∣

∣

+ 2
∞
∑

s=M

(
∑

i Λi)
s

µ1 . . . µs
. (21)

First, let N go to infinity and then let M go to infinity. We have πs(z
N ) → πs(z) for all

s ≥ 0 as N goes to infinity.

Now consider

R(z) − g∗N =
∞
∑

s=0

I
∑

i=1

zi,sλi(zi,s)πs(z) −
N−1
∑

s=0

I
∑

i=1

zN
i,sλi(z

N
i,s)πs(z

N )

−
∞
∑

s=1

hsπs(z) +
N
∑

s=1

hsπs(z
N ).

So,

|R(z) − g∗N | ≤

M
∑

s=0

I
∑

i=1

|zi,sλi(zi,s)πs(z) − zN
i,sλi(z

N
i,s)πs(z

N )| +

M
∑

s=1

hs|πs(z) − πs(z
N )|

+ 2I sup
i,z

{zλi(z)}
∞
∑

s=M

(
∑I

i=1 Λi)
s

µ1 . . . µs
+ 2

∞
∑

s=M

hs
(
∑I

i=1 Λi)
s

µ1 . . . µs
.
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Letting N go to ∞ yields

lim
N→∞

|R(z) − g∗N | ≤ 2I sup
i,z

{zλi(z)}
∞
∑

s=M

(
∑I

i=1 Λi)
s

µ1 . . . µs
+ 2

∞
∑

s=M

hs
(
∑I

i=1 Λi)
s

µ1 . . . µs
,

and letting M go to ∞ implies that limN g∗N = R(z). Therefore, z = z∗ is an optimal

stationary policy and the proof is complete. 2

The key element of this result is that the stationary probability of being in highly

congested states is negligible under any stationary policy. Thus, an infinite capacity system

can be approximated by a system of large finite capacity. The optimal stationary policy

exists and is the limit of finite-capacity optimal policies, which enables us to state the

following proposition.

Proposition 4.3.3 Under the stability condition
∑I

i=1 Λi < µq, z∗i,s is nondecreasing in s.

Proof From Theorem 4.3.2, we know that z∗i,s = limN zN
i,s, where zN

i,s is the optimal price at

state s for the truncated N -capacity system. By Proposition 4.2.1, zN
i,s is nondecreasing in

s. Hence, the same holds for z∗i,s. 2

Although we do not characterize the optimal stationary policy explicitly in this case,

we can still derive some insights. Not surprisingly, the structures of the infinite and finite

capacity optimal policies are the same. High prices are charged in congested states in order

to minimize holding costs.

4.3.3 General Parameters: Systems with Balking Customers and Systems with
Impatient Customers

In this section, we study systems with balking customers and systems with impatient cus-

tomers when N = ∞ in cases when UAPS does not necessarily apply. We still assume that

the service system has q identical servers such that µs = µ(s∧q). Similarly to the case with
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holding costs, we approximate systems of infinite capacity by systems of large finite capacity.

We show the existence of an optimal pricing policy for both congestion models under a sta-

bility condition. In systems with balking customers, we assume that lims ps

∑I
i=1 Λi < µq

so that the system is stable under any stationary pricing policy. Moreover, we suppose

that 1 = p0 = p1 = . . . = pq−1 ≥ pq ≥ . . . ≥ pN−1. In systems with impatient customers,

we assume that a FIFO queueing discipline is enforced. Stability follows directly from the

departures of impatient customers. As opposed the previous section, we need not consider

separately willingness-to-pay distributions that have finite or infinite support (see Lemmas

4.2.4 and 4.2.5). In the following theorem, we show the existence of an optimal pricing solu-

tion in systems with balking customers and in systems with impatient customers. Similarly

to Theorem 4.3.2, we use systems of large finite capacity to approximate infinite capacity

systems.

Theorem 4.3.3 The following holds for systems with balking customers if lims ps

∑I
i=1 Λi <

µq and for systems with impatient customers. Let (g∗N , G(·), zN ) be the canonical triplet as-

sociated with the truncated system of capacity N . Then, g∗N ↑ g∗∞ and there exists z, such

that zN
i,s ↓ zi,s ∀i, s as N → ∞. Moreover, z = z∗ is optimal for the infinite capacity model.

Proof In systems with balking customers, the proof follows the same path as the proofs

of Proposition 4.3.2, Lemma 4.3.1 and Theorem 4.3.2 by setting hs = 0 and substi-

tuting {psλi(zi,s)} for {λi(zi,s)}, {psλi(z
N
i,s)} for {psλi(z

N
i,s)} and {Ps−1(

∑I
i=1 Λi)

s} for

{(
∑I

i=1 Λi)
s}.

Consider now the case of impatient customers. We follow the same framework as in

Proposition 4.3.2 and Theorem 4.3.2 using the long-run optimal rewards for stationary

80



pricing policy z and its truncation (up to state N − 1 included) z|N :

R(z) =π0(z)
∞
∑

s=0

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

(µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)

I
∑

i=1

λi(zi,s)wszi,s

R(z|N) =π0(z
|N)

N−1
∑

s=0

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

(µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)

I
∑

i=1

λi(zi,s)wszi,s,

where

π0(z)
−1 =1 +

∞
∑

s=0

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

(µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)
and

π0(z
|N)−1 =1 +

N−1
∑

s=0

∑

i λi(zi,0) . . .
∑

i λi(zi,s−1)

(µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)
.

It is straightforward to show that R(z|N) → R(z) as N goes to infinity as in Lemma 4.3.1,

implying that g∗N ↑ g∗∞ as in Proposition 4.3.2.

Let (g∗N , G(·), zN ) be the canonical triplet associated with the truncated system of ca-

pacity N . From Proposition 4.2.10, zN
i,s is nonincreasing in N for all i = 1, . . . , I and s < N ,

therefore it has a limit zi,s corresponding to a stationary pricing policy z. As in Theorem

4.3.2, we now show that g∗N → R(z), which implies that R(z) = g∗∞ and that z is an optimal

pricing solution for the infinite capacity model.

We need to show first that for any s, πs(z
N ) → πs(z) as N goes to infinity. This is easily

verified using equations (18) to (21) and substituting (µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)

for µ1 . . . µs.

We have

R(z) − g∗N =
∞
∑

s=0

I
∑

i=1

wszi,sλi(zi,s)πs(z) −
N−1
∑

s=0

I
∑

i=1

wsz
N
i,sλi(z

N
i,s)πs(z

N ).

So, for an arbitrary integer M smaller than N ,

|R(z) − g∗N | ≤
M
∑

s=0

ws

I
∑

i=1

∣

∣zi,sλi(zi,s)πs(z) − zN
i,sλi(z

N
i,s)πs(z

N )
∣

∣

+ 2I sup
i,z

{zλi(z)}
∞
∑

s=M

(
∑I

i=1 Λi)
s

(µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)
.
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Letting N go to infinity yields

lim
N→∞

|R(z) − g∗N | ≤ 2I sup
i,z

{zλi(z)}
∞
∑

s=M

(
∑I

i=1 Λi)
s

(µ1 + (1 − q)+θ) . . . (µs + (s − q)+θ)
.

Letting M go to infinity implies that g∗N → R(z) and the proof is complete. 2

A direct consequence of Theorem 4.3.3 is that z∗i,s, i = 1, . . . , I is nondecreasing in s in

the model with balking customers as well as in the model with impatient customers. The

congestion control performed by optimal prices in finite capacity systems extends to models

with infinite capacity.

4.4 Summary

In this chapter, we allowed the service provider to adjust prices. We relaxed the model

described in Chapter 3 by having multiple customer classes to whom the service provider

can advertise specific prices. Our objective was to exhibit optimal dynamic pricing policies

that maximize the long-run average reward in each of the three congestion models considered

separately.

First, we focused on queues with finite capacity. For each congestion model, we char-

acterized a unique optimal stationary policy using a Markov decision process formulation.

In systems with impatient customers, we made the extra assumption of a FIFO queueing

discipline to analyze the model without keeping track of payment history. With mild as-

sumptions on the parameters’ structure, we showed that the optimal prices to be charged

are nondecreasing in the state index for each congestion model. Therefore, the service

provider indirectly controls congestion penalties by deterring customers to enter congested

states. Comparing our results with those of Chapter 3, we also demonstrated that, in each

congestion model with a unique customer class, the optimal static price lies in between

the optimal dynamic prices to be charged in extremal states. Moreover, in systems with
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impatient customers, we investigated the impact of a queueing policy change on the optimal

reward and showed that implementing a LIFO queueing policy improves the performance

of the system.

Second, we considered systems with infinite capacity. We characterized an optimal

stationary policy for systems with holding costs and systems with balking customers under

Uniform Asymptotic Parameter Structure. Recall that UAPS describes systems whose

parameters are the same for all states s ≥ N for some finite index N . In this case, we

showed that the optimal solution has the same prices being charged to class-i customers

across all states s ≥ N − 1. In instances where UAPS does not necessarily hold, we showed

the existence of an optimal dynamic solution by approximating systems of infinite capacity

by systems of large finite capacity. For each of the three congestion models, we demonstrated

that both the optimal prices and rewards of a finite capacity system converge to those of

an infinite capacity system.
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CHAPTER V

SUMMARY AND FUTURE RESEARCH

In this section, we summarize the main contributions of this dissertation and provide sug-

gestions for future research.

5.1 Main Results

We analyzed the problem of optimal pricing in queueing systems where congestion plays

a key role. We modelled congestion penalties in three different ways and analyzed both

static pricing and dynamic pricing schemes in each case. We chose to analyze the three

congestion penalties separately to isolate their respective effects on optimal rewards and

pricing policies. Most of the literature in the area of pricing in queueing system only

considers a single pricing scheme and a unique way of capturing congestion penalties (most

often through holding costs) and does not provide a comprehensive study of how congestion

affects profit. Moreover, the issue of optimal pricing in systems with balking customers and

in systems with impatient customers with refund has received little attention. The same

can be claimed about the comparison of optimal dynamic prices with static prices. We also

noticed that much of literature imposes strong restrictions on the system parameters and

the action space when analyzing dynamic pricing in infinite capacity queues.

The main result of our work is the determination of an optimal static price as well

as an optimal stationary policy in each of the three congestion models. In each case, we

compared the optimal static price with optimal dynamic prices. Although much of the lit-

erature considers the system capacity as a given parameter, we investigated its relationship
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with optimal prices and rewards. For instance, we showed that, under static pricing, the

service provider should restrict the system capacity when holding costs are incurred. In

systems with balking customers and in systems with impatient customers, capacity should

be unrestricted to maximize profit.

In systems with impatient customers under dynamic pricing, we showed that we need

not keep track of payment history to determine an optimal stationary policy when a FIFO

queueing discipline is enforced. This enabled us to keep a Markovian formulation with the

system state describing the number of customers in the facility.

Another important contribution of our work is the analysis of dynamic pricing in infinite

capacity queues. With mild assumptions on the action space, we demonstrated that the

optimal dynamic prices and rewards of finite capacity systems converge to those of an

infinite capacity system in each of the three congestion models. In cases with specific

parameter structures, we explicitly characterized an optimal stationary policy when capacity

is unlimited.

5.2 Future Research

In the following, we suggest some uninvestigated research topics related to our work.

5.2.1 Optimal Pricing in Systems with Multiple Congestion Penalties and Pri-
orities

In this dissertation, we chose to analyze the three types of congestion penalties separately to

isolate and compare the features and effects of each model. However, some service systems

can very well experience a mix of congestion penalties in practice. For instance, combin-

ing impatient and balking customers is quite natural. Indeed, balking customers can be

considered as “smart” impatient customers who are able to forecast their waiting time and

might leave before even entering the system. Under dynamic pricing, it is straightforward to
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combine any of the three models discussed in Chapter 4 of this dissertation. Nevertheless,

the determination of optimal static prices with multiple types of penalties is more intricate.

It is unclear whether the long-run average reward under static pricing is strictly unimodal

when combining congestion penalties.

The other interesting feature of combining congestion penalties is the use of priorities.

Consider a system where arriving customers can be impatient or not. A natural priority

scheme would be to serve impatient customers first in order to minimize their waiting time

and consequently curb the refunds paid to those who renege. The service provider may have

the option to advertise different prices to customers that are impatient or not. Intuitively,

impatient customers must be charged higher prices. We need a two-dimensional state space

to describe the state of such a system as

X(t) = (number of impatient customers at time t, total number of customers at time t).

The priority system and the transition structure disrupt the birth-death properties we have

in this dissertation. Therefore, the determination of optimal dynamic pricing solutions

requires the use of a policy iteration or value iteration method. One might also consider an

asymptotic regime such as a fluid or diffusion approximation to investigate such a system

where priorities significantly complicate the exact analysis.

5.2.2 Optimal Pricing with Adjustable Service Rate in Systems with Balking
Customers and Systems with Impatient Customers

In our research, we considered service rates as given unadjustable parameters. By doing

so, we assumed that service capacity was a sunk cost and that no action could be taken to

expand or reduce the service offering. However, in some telecommunication service systems,

the service rate could be dynamically adjusted. This is the case in wireless transmission

applications where the power needed to transmit data packets can be tuned. There is a

86



clear tradeoff as lower transmission power consumes less energy but degrades the quality

of service. Ata and Shneorson [2] investigate this issue and consider the dynamic pricing

problem of maximizing the long-run average reward in M/M/1 queues with adjustable

service rates. However, they only consider holding costs as a way to capture congestion

penalties.

We can extend this model to systems with balking customers and systems with impatient

customers. The model with impatient customers is particularly relevant in transmission

networks with timeouts. If a data packet is not transmitted within a specific amount of

time, the connection is dropped in the same fashion as an impatient customer would renege.

Let c(µ) denote the cost per unit time associated with offering service rate µ. We assume

that c(·) is a continuous nondecreasing function and that c(0) = 0. Then, we can express

the ACOE in M/M/1/N systems with balking customers as:

G(−1) = 0,

g = ps

I
∑

i=1

sup
z
{λi(z)(z − G(s))} + sup

µ>0
{µG(s − 1) − c(µ)}, if s = 0, . . . , N − 1,

g = sup
µ>0

{µG(N − 1) − c(µ)}.

The analysis of systems with impatient customers is more complex. In Section 4.2.3,

we assumed that a FIFO queueing discipline was enforced. This implied that ws, s =

0, . . . , N −1 did not depend on the pricing policy (recall that ws denotes the the probability

that a customer entering a system in state s will not renege and will leave upon service

completion). But ws clearly depends on the service rate, which is a decision variable now.

Therefore, the Markov decision process formulation we used in Section 4.2.3 no longer

holds as the reward obtained in state s now depends on the service rates set for other

states. Under a monotonicity assumption for the service rate policy, it may be possible to
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bound the optimal reward. Otherwise, the analysis of this problem might require the use

of an asymptotic regime approximation.

5.2.3 Optimal Pricing with Multiple Service Requirements

In this dissertation, we assumed that the customers from all classes require one unit of

service; that is, every customer occupies exactly one slot in the system. Paschalidis and

Tsitsiklis [17] investigate the case where the customers’ service requirements vary from one

class to the other and the service provider may advertise class-specific prices. They deter-

mine optimal static prices as well as an optimal stationary policy (class-specific congestion-

dependent prices) that maximize the long-run average reward. They also demonstrate that

the optimal dynamic reward can be approximately matched by suitably chosen static prices.

However, they do not consider any congestion penalty in their model. Hence, they do not

capture customers’ aversion to congestion or the loss of goodwill incurred by keeping cus-

tomers in the system.

We can extend the three congestion models discussed in this dissertation by considering

the dynamic precision pricing problem with class-specific service requirements. This would

enable us to further distinguish customer classes through their required service times. The

birth-death structure no longer holds in this case and the MDP analysis would require a

policy or value iteration method. As opposed to Paschalidis and Tsitsiklis [17], it is not

likely that static pricing would closely match the performance of dynamic pricing when

congestion penalties are incurred. Since higher penalties are incurred in congested states, it

is intuitive that an optimal congestion-dependent pricing policy significantly improves profit

compared to an optimal static pricing policy. For instance, as we demonstrated in Section

4.2.1, there are instances where holding costs make some customer classes unprofitable in

highly congested states. Unlike static pricing, the use of dynamic pricing enables the service
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provider to refuse entry to these classes, further improving profit.
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APPENDIX A

COMPLEMENTARY RESULTS FOR CHAPTER 3

Lemma A.0.1 The function ϕN (·) is nondecreasing on [0,∞).

Proof In what follows, all derivatives are with respect to ρ. For simplicity, we omit the

arguments of the functions. Since ϕN is differentiable ,

ϕ′
N = −

L′′π′
0 − L′π′′

0

π′2
0

,

L = π0F, where F (ρ) =
N
∑

n=1

nρn,

L′ = π′
0F + F ′π0,

L′′ = π0F
′′ + 2F ′π′

0 + Fπ′′
0 and

L′′π′
0 − L′π′′

0 = 2F ′π′2
0 + F ′′π0π

′
0 − F ′π0π

′′
0 .

But we also have π′
0 = −π2

0
F
ρ

and

π′′
0 = −

F ′π2
0

ρ
+

Fπ2
0

ρ2
− 2

Fπ0π
′
0

ρ
= −

F ′π2
0

ρ
+

Fπ2
0

ρ2
+ 2

π′2
0

π0
.

Since F ′π0π
′′
0 = −

F ′2π3
0

ρ
+

FF ′π3
0

ρ2 + 2F ′π′2
0 ,

L′′π′
0 − L′π′′

0 =F ′′π0π
′
0 +

F ′2π3
0

ρ
−

FF ′π3
0

ρ2
= −

FF ′′π3
0

ρ
+

F ′2π3
0

ρ
−

FF ′π3
0

ρ2
,

= −
π3

0

ρ

(

FF ′′ + F ′

(

−F ′ +
F

ρ

))

and

−F ′ +
F

ρ
=

N
∑

n=1

nρn−1 −
N
∑

n=1

n2ρn−1 = −
N
∑

n=2

n(n − 1)ρn−1.
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Therefore,

L′′π′
0 − L′π′′

0 = −
π3

0

ρ

(

N
∑

n=1

nρn−1
N
∑

n=1

n2(n − 1)ρn−1 −
N
∑

n=1

n(n − 1)ρn−1
N
∑

n=1

n2ρn−1

)

,

= −
π3

0

ρ3

(

N
∑

n=1

nρn
N
∑

n=1

n2(n − 1)ρn −
N
∑

n=1

n(n − 1)ρn
N
∑

n=1

n2ρn

)

,

= −
π3

0

ρ3





2N
∑

k=2

ρk

min(N,k)
∑

n=max(0,k−N)

n(k − n)(k − n − 1)(k − 2n)



 .

Let ak =
∑min(N,k)

n=max(0,k−N) n(k − n)(k − n − 1)(k − 2n). We will prove that ak is positive.

Using the fact that max(0, k − N) = k − min(N, k),

ak =

min(k,N)− k
2

∑

n= k
2
−min(N,k)

(

k

2
− n

)(

k

2
+ n

)(

k

2
+ n − 1

)

2n =

min(k,N)− k
2

∑

n= k
2
−min(N,k)

bn,k.

Since for all 0 ≤ n ≤ min(k, N) − k
2 ,

bn,k =

(

k

2
− n

)(

k

2
+ n

)(

k

2
+ n − 1

)

2n ≥ −b−n,k =

(

k

2
− n

)(

k

2
+ n

)(

k

2
− n − 1

)

2n,

we have ak ≥ 0. Thus, L′′π′
0 − L′π′′

0 ≤ 0 and ϕN
′ ≥ 0. 2

Lemma A.0.2 For N ≤ ∞, the function γb
N (·) is nonincreasing on [0,∞).

Proof We prove that γb
N (·) is nonincreasing for ρ ≥ 0 by showing that its derivative is

nonpositive. In what follows, all derivatives are with respect to ρ. For simplicity, we omit

the arguments of the functions. Recall that

γb
N =

∑N−1
n=0 (n + 1)ρnPn

∑N−1
n=0 ρnPn

∑N
n=0 ρnPn−1

=
L

∑N−1
n=0 ρn+1Pn

=
L

π−1
0 − 1

,

where

L =

∑N−1
n=0 (n + 1)ρnPn
∑N

n=0 ρnPn−1

.

We define the quantity F as the following polynomial of ρ: F = L
π0

=
∑N

n=1 nρnPn−1.

Now let us take the derivative of γb
N . Note that if N = ∞, we can still interchange derivative
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and summation signs, since we consider power series of ρ within the radius of convergence.

(π−1
0 − 1)2γb

N

′
= L′

(

1

π0
− 1

)

+ L
π′

0

π2
0

=
(

π′
0F + F ′π0

)

(

1

π0
− 1

)

+ F
π′

0

π0

=

(

−π2
0

F 2

ρ
+ F ′π0

)(

1

π0
− 1

)

− π0
F 2

ρ

= −2π0
F 2

ρ
+ π2

0

F 2

ρ
+ F ′(1 − π0)

=
π2

0

ρ

(

F ′ρ(π−1
0 − 1) − F 2(2π−1

0 − 1)
)

=
π2

0

ρ





N
∑

n=1

n2ρnPn−1

N
∑

n=1

ρnPn−1 −

(

N
∑

n=1

nρnPn−1

)2(

2
N
∑

n=1

ρnPn−1 + 1

)





To analyze the sign of the quantity above, we break it down into two quantities:

A =

N
∑

n=1

n2ρnPn−1

N
∑

n=1

ρnPn−1 − (

N
∑

n=1

nρnPn−1)
2 and

B = 2

(

N
∑

n=1

nρnPn−1

)2 N
∑

n=1

ρnPn−1, so that

γb
N

′
=

π2
0

ρ

A − B

(π−1
0 − 1)2

.

It remains to show that A ≤ B.

Note that

N
∑

n=1

n2ρnPn−1

N
∑

n=1

ρnPn−1 =
2N
∑

k=2

ρk

N∧(k−1)
∑

n=(k−N)∨1

n2Pn−1Pk−n−1 and

(

N
∑

n=1

nρnPn−1

)2

=
2N
∑

k=2

ρk

N∧(k−1)
∑

n=(k−N)∨1

n(k − n)Pn−1Pk−n−1.

Therefore,

A =
2N
∑

k=2

ρk

N∧(k−1)
∑

n=(k−N)∨1

n(2n − k)Pn−1Pk−n−1 (22)

≤

2N
∑

k=3

ρk

N∧(k−1)
∑

n=(k−N)∨2

n(2n − k)Pn−1Pk−n−1. (23)
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Inequality (23) holds since when k = 2, we have

N∧(k−1)
∑

n=(k−N)∨1

n(2n − k)Pn−1Pk−n−1 =

1
∑

n=1

n(2n − k)Pn−1Pk−n−1 = 0.

Furthermore, when n = 1,

n(2n − k)Pn−1Pk−n−1 = 1(2(1) − k)P0Pk−2 ≤ 0.

On the other hand, we have

B =

(

N
∑

n=1

nρnPn−1

)2

2
N
∑

n=1

ρnPn−1 (24)

=
3N
∑

k=3

ρk

2N∧(k−1)
∑

n=(k−N)∨2

N∧(n−1)
∑

j=(n−N)∨1

2j(n − j)Pj−1Pn−j−1Pk−n−1 (25)

≥
3N
∑

k=3

ρk

N∧(k−1)
∑

n=(k−N)∨2

Pn−1Pk−n−1

n−1
∑

j=1

2j(n − j) (26)

≥

2N
∑

k=3

ρk

N∧(k−1)
∑

n=(k−N)∨2

n(n + 1)(n − 1)

3
Pn−1Pk−n−1. (27)

Since {ps} is nonincreasing, Pj−1Pn−j−1 ≥ Pn−1, for all j = (n − N) ∨ 1, . . . , N ∧ (n − 1).

Hence, inequality (26) holds.

To compare (23) and (27), it remains to show that for 2 ≤ n ≤ k − 1, n(n+1)(n−1)
3 ≥

n(2n − k). Since 2 ≤ n ≤ k − 1, we have

n(2n − k) ≤ n(n − 1) ≤
n(n + 1)(n − 1)

3
.

Therefore, the right-hand side of (27) is greater than or equal to the right-hand side of (23)

implying that A ≤ B. Hence, γb
N

′
(·) ≤ 0 and γb

N (·) is nonincreasing 2

Lemma A.0.3 The function γr
N (·) is nonincreasing on [0,∞).

Proof Recall that

γr
N (ρ) =

∑N−1
n=0 (n + 1)ρnQn

∑N−1
n=0 ρnQn

∑N
n=0 ρnQn−1

,

93



where Qn =
∏n

s=0
µ

µ+sθ
for n = 0, . . . , N − 1 and Q−1 = 1. Note that γr

N (·) has the

same expression as γr
N (·), where {Qn} is substituted for {Pn}. To show that γr

N (·) is

non increasing, we use Lemma A.0.2 after verifying that {Qn} and {Pn} have the same

properties. In Lemma A.0.2, we only use the fact that {Pn} and {ps} are nonincreasing

sequences. Similarly, {Qn} and { µ
µ+sθ

} are nonincreasing sequences. Therefore, γr
N (·) is

nonincreasing on [0,∞). 2

Lemma A.0.4 Consider an M/M/1/N queue with holding costs. Then, for all ρ ≥ 0,

1. γh
N (ρ) ≥ π0(ρ, N),

2. 1 − πN (ρ, N) ≥ γh
N (ρ),

3. N − L(ρ, N) ≥ π0(ρ, N)ϕN (ρ),

4. ρϕN (ρ)(1 − πN (ρ, N)) ≥ L(ρ, N),

where

ϕN (ρ) = −

∂L(ρ,N)
∂ρ

∂π0(ρ,N)
∂y

=























1−(N+1)2ρN (1+ρ2)+2N(N+2)ρN+1+ρ2N+2

(1−ρ)2(1−(N+1)ρN+NρN+1)
if ρ 6= 1,

1
6N2 + 1

2N + 1
3 if ρ = 1,

and

γh
N (ρ) =























1+NρN+1−(N+1)ρN

(1−ρN+1)(1−ρN )
if ρ 6= 1,

1
2 if ρ(y) = 1.

Proof For clarity, we will omit the arguments of the quantities we use in this proof. For

instance, we will write π0 instead of π0(ρ, N). All derivatives in this proof are with respect

to ρ.
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1. We prove first that γh
N ≥ π0. When ρ = 1, π0 = 1

N+1 and γh
N = 1/2, which agrees

with our claim. Otherwise, recall that π0 = 1−ρ
1−ρN+1 . Therefore,

π0

γh
N

=
(1 − ρ)(1 − ρN )

1 + NρN+1 − (N + 1)ρN

=
(1 − ρ)2

∑N−1
k=0 ρk

(1 − ρ)(
∑N−1

k=0 ρk − NρN )

=
(1 − ρ)

∑N−1
k=0 ρk

−
∑N−1

k=0 (1 − ρk) + N(1 − ρN )

=

∑N−1
k=0 ρk

−
∑N−1

k=0

∑k−1
s=0 ρs + N

∑N−1
s=0 ρs

=

∑N−1
k=0 ρk

−
∑N−2

s=0 ρs(N − s − 1) + N
∑N−1

s=0 ρs

=

∑N−1
k=0 ρk

∑N−2
s=0 ρs(s + 1) + NρN−1

=

∑N−1
k=0 ρk

∑N−1
s=0 ρs +

∑N−2
s=0 sρs + (N − 1)ρN−1

≤ 1.

2. Let us prove now that 1−πN ≥ γh
N , which is easily verified when ρ = 1. Now suppose

ρ 6= 1. Since 1 − πN = 1−ρN

1−ρN+1 , we have

1 − πN

γh
N

− 1 =
(1 − ρN )2

1 + NρN+1 − (N + 1)ρN
− 1

=
1 − 2ρN + ρ2N − 1 − NρN+1 + (N + 1)ρN

1 + NρN+1 − (N + 1)ρN

=
ρN (ρN − Nρ + (N − 1))

1 + NρN+1 − (N + 1)ρN
.
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We know from Ziya [24] that

1 + NρN+1 − (N + 1)ρN ≥ 0 and

ρN − Nρ + (N − 1) = (ρN − 1) − N(ρ − 1)

= (ρ − 1)
N−1
∑

k=0

(ρk − 1)

≥ 0.

Therefore, 1 − πN ≥ γh
N .

3. We need to show that N − L ≥ π0ϕN . When ρ = 1, we have N − L = N
2 , π0 = 1

N+1

and ϕN = 1
6N2 + 1

2N + 1
3 . So, N−L

π0
= 1

2N2 + 1
2N ≥ ϕN . Now suppose ρ 6= 1. We have

L = π0
∑N

n=0 nρn = π0F , where F =
∑N

n=0 nρn. Recall from [14] that ϕN = −L′

π′

0

.

Using the fact that π′
0 = −π2

0
F
ρ
,

π0ϕN = π0
π′

0F + π0F
′

−π′
0

= −L −
π2

0

π′
0

F ′

= −L +
F ′ρ

F

= −L +

∑N
k=0 k2ρk

F

≤ N − L.

4. It remains to prove that ρϕN (1 − πN ) ≥ L. When ρ = 1, we have

ρϕN (1 − πN ) =
N

N + 1

(

1

6
N2 +

1

2
N +

1

3

)

≥
N

2
= L.

Now suppose ρ 6= 1. In the same fashion, ϕN = −F − π0

π′

0

F ′. Moreover, note that
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ρ(1 − πN ) = 1 − π0. So,

ρϕN (1 − πN ) − L = ϕN (1 − π0) − L,

=

(

−F −
π0

π′
0

F ′

)

(1 − π0) − L

= −F −
π0

π′
0

F ′(1 − π0)

= −F + ρ2 F ′

F

1 − ρN

1 − ρ

= −F + ρ2 F ′

F

N−1
∑

k=0

ρk.

Note that this quantity has the same sign as −F 2 + ρ2F ′
∑N−1

k=0 ρk and that

−F 2 + ρ2F ′
N−1
∑

k=0

ρk = −(
N
∑

k=1

kρk)2 +
N
∑

k=1

k2ρk
N
∑

k=1

ρk

=
2N
∑

k=2

ρk

min(N,k)
∑

n=max(0,k−N)

n(n − k) + n2

=
2N
∑

k=2

ρk

min(N,k)
∑

n=max(0,k−N)

n(2n − k)

=

2N
∑

k=2

ρk

min(N,k)− k
2

∑

n= k
2
−min(N,k)

(
k

2
+ n)2n.

Let bn,k = (k
2+n)2n for k

2−min(N, k) ≤ n ≤ min(N, k)− k
2 . For 0 ≤ n ≤ min(N, k)− k

2 ,

we have

bn,k = (
k

2
+ n)2n ≥ (

k

2
− n)2n = −b−n,k.

Therefore,
min(N,k)− k

2
∑

n= k
2
−min(N,k)

bn,k =

min(N,k)− k
2

∑

n= k
2
−min(N,k)

(
k

2
+ n)2n ≥ 0.

Hence, we can claim that ρϕN (1 − πN ) ≥ L and the proof is complete.

2

Lemma A.0.5 Consider an M/M/1/N queue under static price y ≥ 0 in the model with

balking customers. Then, the following holds:
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1. γb
N (ρ(y)) ≥ π0(ρ(y), N)

2. π0(ρ(y), N)
∑N−1

n=0 ρ(y)nPn ≥ γb
N (ρ(y))

Consider an M/M/1/N queue under static price y ≥ 0 in the model with impatient

customers. Then, the following holds:

1. γr
N (ρ(y)) ≥ π0(ρ(y), N)

2. π0(ρ(y), N)
∑N−1

n=0 ρ(y)nQn ≥ γr
N (ρ(y))

Proof We will only prove the result for the model with balking customers. In the model

with impatient customers, the result is proved in the exact same fashion by substituting

the sequence {Qn} for {Pn}.

Recall that

γb
N (ρ(y)) =

∑N−1
n=0 (n + 1)ρ(y)nPn

∑N−1
n=0 ρ(y)nPn

∑N
n=0 ρ(y)nPn−1

= π0(ρ(y), N)

∑N−1
n=0 (n + 1)ρ(y)nPn
∑N−1

n=0 ρ(y)nPn

.

Therefore, γr
N (ρ(y)) ≥ π0(ρ(y), N).

To prove that π0(ρ(y), N)
∑N−1

n=0 ρ(y)nPn ≥ γb
N (ρ(y)), we only need to show that

(

N−1
∑

n=0

ρ(y)nPn

)2

≥
N−1
∑

n=0

(n + 1)ρ(y)nPn.

We have

(

N−1
∑

n=0

ρ(y)nPn

)2

=
2N−2
∑

k=0

ρ(y)k

k∧(N−1)
∑

n=(k−N+1)∨0

PnPk−n

≥
N−1
∑

k=0

ρ(y)k
k
∑

n=0

PnPk−n

≥
N−1
∑

k=0

(k + 1)ρ(y)kPk.

2
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APPENDIX B

COMPLEMENTARY RESULTS FOR CHAPTER 4

Lemma B.0.6 Let I = 1. Then, for s = 0, . . . , N − 1, we have:

1. in systems with holdings costs:

z∗1,s =























sup{z : (g∗N + hs − µsG(s − 1))r1(z) ≤ λ1(z)} if g∗N + hs > µsG(s − 1)

β1 otherwise

2. in systems with balking customers:

z∗1,s = sup{z : (g∗N − µsG(s − 1))r1(z) ≤ λ1(z)},

3. in systems with impatient customers:

z∗1,s = sup{z : (g∗N − (µs + (s − q)+θ)G(s − 1))r1(z) ≤ wsλ1(z)}.

Proof First, we prove the result for systems with holding costs. Since we only have one

customer class, we omit the class subscript in the following. In Theorem 4.2.1, we proved

that z∗s = inf{z : r(z)(z − G(s)) ≥ 1}. Now suppose g∗N + hs > µsG(s − 1). Therefore,

z∗s < β. It is straightforward to show that sup{λ(z)(z−G(s))−g∗N −hs +µsG(s−1)} = 0 is

equivalent to sup{z−G(s)−
g∗N+hs−µsG(s−1)

λ(z) } = 0, where z∗s is the unique price that attains

the supremum. Let

ts(z) = z − G(s) −
g∗N + hs − µsG(s − 1)

λ(z)
,

t′s(z) = 1 − (g∗N + hs − µsG(s − 1))
r(z)

λ(z)
, a.e. on [α, β].

99



Under IGHR, Proposition 5.1 of Ziya [23] shows that t′s(·) is strictly decreasing almost

everywhere on (inf{z : zr(z) ≥ 1}, β), which includes (z∗s , β). Hence, t′s(·) < 0 almost

everywhere on (z∗s , β). Therefore,

z∗s = sup{z : t′s(z) ≥ 0} = sup{z : (g∗N + hs − µsG(s − 1))r(z) ≤ λ(z)}.

Suppose that g∗N +hs ≥ µsG(s−1). Since we always have g∗N +hs ≤ µsG(s−1), we can

claim that g∗N + hs = µsG(s − 1) and sup{(z − G(s))λ(z)} = 0. We have two possibilities:

z∗s = β or z∗s = G(s) < β. The latter is impossible since there must exist ǫ > 0 such that

G(s) + ǫ < β and ǫλ(G(s) + ǫ) > 0. Therefore, z∗s = β.

In systems with balking customers and systems with impatient customers, the proof

only requires minor modifications and is omitted. 2

Proof of Propositions 4.2.6 and 4.2.10:

We use the same method as in the proof of Proposition 4.2.2. We prove Proposition

4.2.6 first. It is clear that the optimal dynamic reward g∗N is nondecreasing in N . To show

that z∗i,s,2 ≤ z∗i,s,1, we will prove that G2(s) ≤ G1(s) for all s = 0, . . . , N − 1 in each case.

Suppose that G2(s) > G1(s) for some state s = 0, . . . , N − 1. We have

ps

I
∑

i=1

sup{λi(z)(z − G2(s))} < ps

I
∑

i=1

sup{λi(z)(z − G1(s))} or (28)

I
∑

i=1

sup{λi(z)(z − G2(s))} =
I
∑

i=1

sup{λi(z)(z − G1(s))} = 0. (29)

Equality (29) is impossible since it implies that z∗i,s,1 = z∗i,s,2 = βi for all i, which

contradicts Lemma 4.2.4. Inequality (28) implies that

µsG2(s − 1) = g∗N+1 −
I
∑

i=1

sup{λi(z)(z − G2(s))} (30)

> g∗N −

I
∑

i=1

sup{λi(z)(z − G1(s))} > µsG1(s − 1). (31)
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By induction , 0 = G2(−1) > G1(−1) = 0, which yields a contradiction. Therefore, for all

s = 0, . . . , N − 1, G2(s) ≤ G1(s) and consequently, z∗i,s,2 ≤ z∗i,s,1.

To prove Proposition 4.2.10, we repeat the proof from above substituting

I
∑

i=1

sup{λi(z)(wsz − G2(s))} <
I
∑

i=1

sup{λi(z)(wsz − G1(s))} or (32)

I
∑

i=1

sup{λi(z)(wsz − G2(s))} =
I
∑

i=1

sup{λi(z)(wsz − G1(s))} = 0 (33)

for (28) and (29) and

(µs + (s − q)+θ)G2(s − 1) = g∗N+1 −
I
∑

i=1

sup{λi(z)(wsz − G2(s))}

> g∗N −

I
∑

i=1

sup{λi(z)(wsz − G1(s))}

> (µs + (s − q)+θ)G1(s − 1).

for (30) and (31). Note that in this case, equality (33) is made impossible by Lemma 4.2.5.

2

Lemma B.0.7 For all g > 0, Ψh(·, g) is a continuous nondecreasing contraction mapping

from R to (−∞, g+hN

µN
] and has a unique fixed point denoted by FP h(g). Moreover, FP h(·)

is increasing and continuous on [0,∞).

For all g > 0, Ψb(·, g) is a continuous nondecreasing contraction mapping from R to

(−∞, g
µN

] and has a unique fixed point denoted by FP b(g). Moreover, FP b(·) is increasing

and continuous on [0,∞).

Proof We will only prove the result for Ψh. The proof for Ψb is similar and is omitted. It is

clear that Ψh(V, g) is nondecreasing in V and continuity can be proven as Ψh(V, g) depends

on V through the supremum of a bounded continuous function of z.
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We will now prove that Ψh(·, g) is a contraction. Suppose that V1 ≤ V2. Then,

µN (Ψh(V2, g) − Ψh(V1, g)) =
I
∑

i=1

sup{λi(z)(z − V1)} −
I
∑

i=1

sup{λi(z)(z − V2)}

≤
I
∑

i=1

λi(zi(V1))(zi(V1) − V1) − λi(zi(V1))(zi(V1) − V2),

≤(V2 − V1)

I
∑

i=1

Λi

where zi(V ) is the unique maximizer in [αi, βi] of λi(z)(z − V ). Therefore, Ψh(V2, g) −

Ψh(V1, g) ≤
PI

i=1 Λi

µN
(V2 − V1), which proves that Ψh(·, g) is a contraction mapping and has

a unique fixed point.

It remains to show that FP h(·) is increasing and continuous. Let 0 ≤ g1 < g2. There-

fore, Ψh(FP h(g2), g1) < Ψ(FP h(g2), g2) = FP h(g2), so FP h(g1) < FP h(g2), proving that

FP h(·) is increasing. As Ψh(·, g) ≤ g+hN

µN
, we also have FP h(g) ≤ g+hN

µN
.

To prove that FP h(·) is continuous, we show by contradiction that it is both left-

continuous and right-continuous. Let gn ↑ g such that gn ≥ 0 for all n. Therefore,

FP h(gn) has a limit limn FP h(gn) ≤ FP h(g). Suppose that limn FP h(gn) < FP h(g).

Hence, limn FP h(gn) < Ψ(limn FP h(gn), g). But limn FP h(gn) ≥ FP h(gm),∀m ≥ 0, so

limn FP h(gn) > Ψ(limn FP h(gn), gm). As m goes to infinity, we have limn FP h(gn) ≥

Ψ(limn FP h(gn), g), yielding a contradiction. Hence, FP h(·) is left-continuous.

In the same fashion, let gn ↓ g, such that gn ≥ 0 for all n. Therefore FP h(gn)

has a limit limn FP h(gn) ≥ FP h(g). Suppose that limn FP h(gn) > FP h(g). Hence,

limn FP h(gn) > Ψh(limn FP h(gn), g). However, limn FP h(gn) ≤ FP h(gm),∀m ≥ 0, which

implies that limn FP h(gn) < Ψh(limn FP h(gn), gm). Letting m go to infinity, we note

that limn FP h(gn) ≤ Ψh(limn FP h(gn), g), yielding a contradiction. Therefore, FP h(·) is

continuous on [0,∞). 2
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