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SUMMARY

Understanding and synthesizing locomotion of humans and animals will have far-

reaching impacts in computer animation, robotic and biomechanics. However, due to the

complexity of the neuromuscular control and physical interactions with the environment,

computationally modeling these seemingly effortless locomotion imposes a grand challenge

for scientists, engineers and artists. The focus of this thesis is to present a set of computa-

tional tools, which can simulate the physical environment and optimize the control strategy,

to automatically synthesize locomotion for humans and animals.

We first present computational tools to study swimming motions for a wide variety of

aquatic animals. This method first builds a simulation of two-way interaction between fluid

and an articulated rigid body system. It then searches for the most energy efficient way to

swim for a given body shape in the simulated hydrodynamic environment.

Next, we present an algorithm that can synthesize locomotion of soft body animals that

do not have skeleton support. We combine a finite element simulation with a muscle model

that is inspired by muscular hydrostat in nature. We then formulate a quadratic program

with complementarity condition (QPCC) to optimize the muscle contraction and contact

forces that can lead to meaningful locomotion. We develop an efficient QPCC solver that

solves a challenging optimization problem at the presence of discontinuous contact events.

We also present algorithms to model human locomotion with a passive mechanical de-

vice: riding a bicycle in this case. We apply a powerful reinforcement learning algorithm,

which can search for both the parametrization and the parameters of a control policy, to

enable a virtual human character to perform bicycle stunts in a physically simulated envi-

ronment.

Finally, we explore the possibility to use the computational tools that are developed for

computer animation to control a real robot. We develop a simulation calibration technique

which reduces the discrepancy between the simulated results and the performance of the

xi



robot in the real environments. For certain motion planning tasks, this method can transfer

the controllers optimized for a virtual character in a simulation to a robot that operates in

a real environment.
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CHAPTER I

INTRODUCTION

Mother Nature has created a diverse set of awe-inspiring motions in the animal kingdom:

Birds can fly in the sky, fishes can swim in the water, geccos can crawl on vertical surfaces,

and cats can reorient themselves in mid-air. These motions are elegant, agile, efficient,

and more importantly, inspiring. Some of the best human innovations can be attributed

to the inspiration from locomotion of animals. For example, airplane, submarine and more

recently, MIT cheetah and StickyBot, all can find deep roots from nature’s design. Studying

the motions designed by nature is not only a scientific quest that quenches our curiosity, but

also an important step towards synthesizing them in a way that can fundamentally change

our life.

The research of motion synthesis will have broad and impactful applications. For ex-

ample, in movies and games, we need to faithfully reproduce the motions of animals and

humans on the screen. Moreover, we often need to create animations for fantasy creatures

that may not exist on our planet. The synthesized motions of these characters need to

appear realistic to give the audience an immersive experience. The applications of motion

synthesis go far beyond just the entertainment industry. In health-care, it can enable us to

build powerful robotic exoskeletons that help gait habilitation, assist paralyzed to walk and

boost human power. In robotics, motion synthesis can help us develop robotic systems with

extensive flexibility, agility and maneuverability. These next-generation robots are expected

to free human from dangerous missions in military, exploration and rescuing.

Although we often take our locomotion ability for granted since we can perform them so

effortlessly, motion synthesis is a notoriously difficult problem because locomotion involves

sophisticated neuromuscular control, sensory information processing, motion planning, co-

ordinated muscle activation, and complicated interactions between the body and its physical

1



environment. It poses a grand challenge for scientists, engineers and artists. Despite ex-

tensive studies for centuries, we are still nowhere near fully understanding the underlying

physics and control mechanisms that govern these motions. The focus of this disserta-

tion is to present a set of powerful computational tools that facilitate the motion synthesis

for locomotion of humans and animals, with the applications in character animation and

robotics.

In the last few decades, we have seen tremendous advance in motion synthesis. Some

of the most breathtaking movies, such as Harry Potter, Avatar and Life of Pi, rely heavily

on computer generated character animations. Nowadays, it is almost impossible for the

audience to tell apart the computer-synthesized motions from the real footage. In robotics,

motion synthesis is also widely used to design agile and robust locomotion controllers. The

MIT Cheetah can run up to 10 miles per hour and jump over obstacles. The Big Dog

from Boston Dynamics can walk robustly in adversary environments, including icy or rocky

terrains. The soft body robots can take advantage of their flexible bodies to navigate

narrow and unstructured spaces. The humanoid robots, such as Petman and Asimo, was

able to demonstrate a repertoire of locomotion skills, including walking, running, dancing

and climbing stairs.

Behind these realistic animations and sophisticated robots lies countless hours of tedious

manual work of highly-specialized experts. For example, to produce a 100-minute feature

film at Pixar can take dozens of artists and engineers more than five years of development.

In today’s animation pipeline, the most popular techniques to synthesize motions are key

frames or motion capture, both of which require artistic expertise and laborious manual

work. Even worse, the knowledge and efforts that are put into one animation sequence are

not necessarily generalizable to other motions. In my point of view, these are not efficient

or principled ways of motion synthesis.

A principled way to synthesize locomotion is to develop computational tools,

including physical simulations and optimization methods, to study the funda-

mental factors that have shaped our motions. Our motions are shaped through
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millions of years of optimization (evolution) in a world that obey physical laws. This in-

sight has motivated a new paradigm of simulation-driven controller optimization in both

character animation and robotics. The two key components of this paradigm are physical

simulation and controller optimization. We first build a physical simulation to model the

physical world and then perform optimization to control the motions of characters so that

they can move more efficiently and robustly in the simulated environment. With these

computational tools, natural movements, including walking, running, flying and swimming

emerge automatically. In addition to these basic locomotion tasks, the research in this

field has developed algorithms that allow virtual characters to recover balance from unex-

pected perturbations, to move in different styles, to navigate through rough terrains and to

demonstrate highly skillful stunts.

Despite the impressive achievements of this paradigm, the gracious, agile and diverse

motions of the real creatures still remain unmatched, especially when the creatures are mov-

ing in complex environments. Performing controller optimization in a complex physically

simulated environment presents unique challenges. First of all, complex physical environ-

ments are time-consuming to simulate. Second, the characters that we wish to control may

have a large number of muscles (actuators), which results in a high dimensional noncon-

vex optimization problem. Finding the global optima is usually computationally infeasible.

In addition, the forceful interactions between the character and its environment introduce

further complications in simulation and optimization. Generally speaking, controlling high-

dimensional dynamic systems, governed by highly nonlinear differential equations and cou-

pled through complex mechanisms, is considered a nearly unsolvable problem. As a result,

most of the prior research make simplifications on simulation models and optimization al-

gorithms to make the computation tractable. However, many of these simplifications were

made without considering the optimality of the control problems, which severely limits the

power of this simulation-driven optimization approach. In this dissertation, we will investi-

gate some of these simplifications and develop novel algorithms for those components that

should not be simplified.

3



1.1 Thesis Overview

This dissertation presents a set of computational tools to synthesize locomotion in complex

physical environments. In contrast to prior works that use simplified models, we develop

new algorithms to improve and to combine the state-of-the-art simulation and optimization

techniques to tackle the challenges of motion synthesis. We start with a survey of related

work in the fields of character animation and robotics (Chapter 2). We then investigate

motor control for various locomotion tasks in a hydrodynamic environment (Chapter 3),

for soft body characters (Chapter 4) and with a passive mechanical device (Chapter 5). In

Chapter 6, we explore the techniques to transfer the controllers developed in the simula-

tion to robots operating in the real world. We conclude the thesis with conclusions and

suggestions for future work (Chapter 7).

1.1.1 Locomotion in Hydrodynamic Environment

Figure 1: Aquatic creatures swim in a physically simulated hydrodynamic environment.

The oceans cover over seventy percent of the area on our planet. They contain a wide

variety of creatures that use swimming as their primary form of locomotion. Scientific stud-

ies show that the swimming gaits of the aquatic creatures are highly efficient compared to

the man-made underwater vehicles. Studying their swimming motions could help us dis-

cover better propulsion mechanisms and design more efficient undersea vehicles to explore

the largest uncharted territory on our planet. In Chapter 3, we apply numerical optimiza-

tion to automatically discover the most energy efficient swimming gaits for given aquatic

creatures in a physically-simulated hydrodynamic environment.

A main challenge in physical simulation is to model the complex interaction between

two different types of dynamic systems, such as the two-way coupling between the fluid
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and a swimmer represented as an articulated rigid body system. We present an accurate

physical simulator [149] that simultaneously solves the Navier-Stokes equations for fluids,

the Lagrangian dynamics for an articulated rigid body and matches their accelerations at

fluid-solid boundaries. The simulation results of swimming fish and eels show vortex trails

that are in agreement with laboratory measurements.

Simulating fluid itself is hard; optimizing locomotion in a hydrodynamic environment is

even more challenging. Previous methods have resorted to simplified fluid models. However,

studies have shown that fish takes advantage of surrounding vortices, which are omitted

in the simplified models, to provide energy boosts. Incorporating an accurate Navier-

Stokes fluid model in the simulation presents new challenges in controller optimization: The

optimization space is full of local minima due to the chaotic fluid behavior. Evaluating the

gradient of the objective function is time-consuming. We demonstrate that sampling-based

optimization algorithms are effective tools to overcome these challenges. This approach

found efficient swimming motions that are comparable to those of real-world animals (Figure

1).

1.1.2 Locomotion for Soft Body Characters

Figure 2: Soft body characters perform different forms of locomotion.

While most research in character animation and robotics focus on characters that are

made exclusively from rigid parts, we have seen an increasingly amount of efforts in the last

few years to develop soft body robots. While these research demonstrates a huge potential

of soft body robots and their broad applications, it demands a new set of computational

tools to study and to synthesize motions for soft body characters.
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To model soft body characters, we not only need to simulate the passive dynamics of de-

formation, but also the actuation of muscles. In Chapter 4, we present a new mathematical

model for artificial muscles [151] that are motivated by the muscle structures of soft body

animals in nature. Similar to real muscles, these artificial ones are arranged in groups and

only allowed to contract. Complex movements need to be accomplished by the coordinated

contraction of multiple muscle groups. We develop a finite element method with this muscle

model to simulate soft body animals.

Optimizing controllers in the presence of discontinuous contact forces is a long-standing

problem. Controlling locomotion for soft body characters (Figure 2) exacerbates the diffi-

culty. The deformation of the body constantly changes the contact configuration between

the character and the ground. A common practice is to separate contact planning and

controller optimization. We identify that this simplification eliminates effective control

strategies, and this causes the soft body character to lose balance. We derive an elegant

solution to this problem that combines contact planning with controller optimization. We

formulate a quadratic program with complementarity conditions (QPCC) and develop an

efficient solver for QPCC problems derived from locomotion control with contacts. As a

result, effective control strategies emerge automatically from the QPCC solution.

1.1.3 Locomotion with Mechanical Devices

Figure 3: A human character performs stunts on a road bike, a BMX bike and a unicycle.

Human has invented numerous mechanical tools to ease our life. Robots in the future

can work much more efficiently if they can take advantage of these existing tools. Instead of

manually programming the robots to master each tool, we hope that they can learn how to

use them autonomously. Learning to ride a bicycle is an excellent case study. The bicycle,

which has greatly boosted the efficiency of locomotion, was voted as the best invention since
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the 19th century. Even though the dynamics of bicycles is relatively well-understood, riding

a bicycle is challenging due to the inherently unstable dynamics. In Chapter 5, we present

a machine learning algorithm [148] that allows a virtual character to learn to ride a bicycle

in a physically simulated environment.

In addition to the basic maneuvers, we hope that the character can learn more chal-

lenging but visually spectacular stunts (Figure 3). Performing stunts requires fast reaction,

precise control and years of practice. This challenges the best human riders, let alone a

machine learning algorithm. When we design the policy search algorithm, we find that the

widely-used assumption of a predetermined controller parametrization severely limits the

search space. It leaves the hard work to the user to design a good parametrization. We de-

cide that optimizing the parametrization automatically is equally important as optimizing

the parameters. Our algorithm evolves both the policy parametrization and the parameters

simultaneously. This significantly improves the quality of the resulting controllers. Eventu-

ally, our simulated characters learn to perform a wide variety of bicycle stunts within hours,

which is even faster than the best human stunt bikers.

1.1.4 Locomotion Controller Transfer from Virtual to Real World

Above three works demonstrate that with the powerful computational tools for character an-

imation, natural, agile and robust motions can be synthesized efficiently and autonomously.

However, creating lifelike robots is still an extremely challenging, trial-and-error process

that is restricted to experts. The fast evolution of 3D printing technology will soon trigger

a shift in the robotics industry from mass production to personalized design and fabrica-

tion, which will result in an immediate need for a faster, cheaper and more intuitive way to

design robotic controllers. The computational tools we developed can potentially automate

and streamline the process if we can transfer the controllers from the virtual simulation to

the real world.

Transferring controllers optimized in a simulation onto a real robot is a non-trivial task.

An optimal controller that works in a state-of-the-art simulation often fails in a real envi-

ronment. This is known as the Reality Gap. This gap is caused by various simplifications

7



in the simulation, including inaccurate physical model, unmodeled actuator dynamics, as-

sumptions of perfect sensing and zero latency. In Chapter 6, we investigate some of these

simplifications and present a general framework of simulation calibration. Simulation cal-

ibration optimizes simulation parameters to minimize the discrepancy between the data

collected from real experiments on the robot and that generated in the simulation. After

calibration, the simulation becomes more faithful to the real-world dynamics. Controllers

that are designed with the improved simulator can work in both the virtual and the real

world.

1.2 Contributions

The computational tools presented in this dissertation provide several contributions to the

communities of character animation and robotics. These contributions are as follows.

A stable simulation of two-way coupling between fluids and articulated rigid

bodies. We present a novel swimming simulator that can simultaneously solve the dy-

namics of fluids, articulated rigid bodies and their two-way interactions. Compared to the

traditional two-way coupling solver that alternates the fluid update and the rigid body up-

date, our method is more numerically stable. We are able to use time steps of 33ms for all

our experiments without any stability problem. Using larger time steps makes our simu-

lation orders of magnitude faster than the alternating solver. As a result, we can discover

a swimming gait within days of computation while using the traditional two-way coupling

technique may take weeks.

A finite element simulation with a muscle model for soft body animals. Based

on the muscle structure of muscular hydrostat in real soft body animals, we develop a

muscle model for the simulated characters. Combined with the finite element method for

the passive deformation of the body, it provides intuitive ways to control the character in a

coordinated manner. The use of this muscle model reduces the dimensionality of the control

problem and results in more natural-looking motions.
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An QPCC solver for controller optimization with changing contacts. Controlling

locomotion with contacts is a long-standing problem in continuous optimization because

changes of contact situation (static, sliding or breaking) can introduce discontinuities to

the dynamics. A commonly-used technique is to separate contact planning and controller

optimization. However, this could eliminate effective locomotion strategies. We solve this

problem by formulating a quadratic program with complementarity conditions (QPCC).

We also develop an efficient solver for QPCC problems with contacts. This method can

optimize both the contact situation and forces simultaneously. As a result, interesting and

effective locomotion strategies emerge automatically from the QPCC solution.

A reinforcement learning algorithm that searches both the parametrization and

the parameters of a policy. We present the first reinforcement learning algorithm which

demonstrate that extremely challenging locomotion tasks, such as bicycle stunts, can be

learned efficiently in simulation. Most of the stunt actions are learned within one hour,

which is even faster than the performance of best human stunt bikers. These results present

a new benchmark for future research in reinforcement learning. The key to such an efficient

learning algorithm is an evolutionary optimization that can search for the parametrization

and the parameters of a control policy simultaneously. We believe that this reinforcement

learning algorithm can be generalized to master other challenging locomotion tasks.
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CHAPTER II

RELATED WORK

This chapter presents a summary of previous work that is most relevant to our methods.

The two key components of our computational tools are physical simulation and controller

optimization. We will begin with a brief review of related work in these two fields. Since

the ultimate goal of our research is an end-to-end computational framework that can au-

tonomously design robotic controllers from high-level task specifications, we need to transfer

the controllers found in the simulation to the real robots. We will conclude this chapter

with an overview of related works in controller transfer from virtual to real environments

in robotics.

2.1 Physical Simulation

In order to simulate the physical environment, researchers often borrow numerical tools

from the applied mathematics literature. The most widely used methods include Eulerian

methods [43, 140], Lagrangian methods [125, 113], Hybrid methods [40] and position-based

dynamics [115, 100]. These methods have produced realistic simulations for a wide variety

of dynamical systems, such as rigid bodies, deformable bodies, fluids and clothes. In the

next few sections, we will focus on simulation of fluids, soft bodies, contacts and bicycle

dynamics, which are used in our work.

2.1.1 Fluids

Simulating fluids involves numerically solving the governing equations of motions, Navier-

Stokes equations. Two popular methods in computer animation are Lagrangian method

and Eulerian method. The Lagrangian approach treats the fluid as a particle system [106,

125, 113, 128]. In contrast, the Eulerian approach treats the fluid as a continuous velocity

field discretized on a computational grid. Foster and Metaxas’s work [43] was the first

that solved the full 3D Navier-Stokes equations to animate fluids. Stam [140] improved it,
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achieving unconditionally numerical stability by introducing the semi-Lagrangian method

for the convection term and implicit solver for the viscosity and pressure terms. Although

the Eulerian method is more computationally expensive, it has produced stunning visual

results when simulating a wide range of physical phenomena, including fire and smoke[119,

42], explosion [182], surface tension [62, 169], non-Newtonian fluid [47, 14] and multi-phase

flow [98, 5]. We choose to use the Eulerian method in Chapter 3 because it is easier

to enforce the incompressibility condition of fluids, which turns out to be important in

swimming motions.

When studying swimming motions, simulating fluids alone is not enough. Swimming

involves two-way interactions between the character and the fluid. Accurately modeling

this two-way interaction is essential to simulate swimming motions. Many researchers have

proposed various ways to simulate the two-way coupling between fluids and solids. Taka-

hashi et al. [147] presented a simple alternating two-way coupling method. The velocities of

the solid objects served as the boundary conditions for the fluid motion while the pressure

field solved from the Navier-Stokes equations was integrated at the solid surface to provide

a net force and a net torque exerted on the solid objects. Arash et al. [8] represented

the solids by mass-spring models and fluids by marker particles. The interactions were

calculated through the mutual forces between the marker particles and mass nodes at the

interface. Carlson et al. [26] proposed the rigid fluid method that treated solids as fluids

at first and then projected the velocity field in the solid region onto a subspace satisfying

the rigid constraints. Guendelman et al. [51] made use of an alternating approach that was

generalized to include octree and thin shells. They solved the pressure field for a second

time by adding solid masses to the fluid grid density, which improves the pressure field.

Klingner et al. [80] used a tetrahedral mesh for accurate boundary discretization and ex-

tended the mass conservation (projection) step to include the dynamics of rigid body. This

was extended to model the interaction between fluids and deformable bodies [29]. Batty et

al. [17] derived a fast variationl approach that allowed sub-grid accuray using regular grids.

Robinson et al. [129] developed a generic and momentum conserving technique to couple

fluids to rigid/deformable solids and thin shells. The coupled system is symmetric indefinite
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and solved using MINRES. Our two-way coupling technique resembles that of Klingner et

al. [80]. The main difference is that we simulate the interaction between fluids and artic-

ulated rigid bodies instead of rigid bodies. Furthermore, our represent of the articulated

rigid body in the generalized coordinates further complicates the swimming simulation.

2.1.2 Soft Bodies

In Chapter 4, we study the locomotion on land for soft body characters. To simulate the

squishy characters, we need a physical model for deformable objects. Since the seminal work

introduced by Terzpoulos [155], researchers in computer graphics have simulated a wide

variety of deformable phenomena including cloth [10, 24], elasticity [114], and plasticity [121,

14]. Although mass-spring systems [64, 96] are widely-used due to its simplicity, it is difficult

to specify the spring stiffness to capture the desired material property. A more accurate

technique is the Finite Element Method (FEM) [16], which typically uses a tetrahedral mesh

to find weak solutions of the dynamic equations. The robustness of FEM simulation can

be improved by handling inverted tetrahedra [65], remeshing ill-conditioned elements [14],

or preserving volume without locking artifacts [66]. To improve the performance of FEM

simulation, linear strain model and precomputed stiff matrix are often used. However, these

models are only valid for small deformations. To simulate large deformations, Müller et al.

[114] proposed a corotational method to fix the volume inflation artifacts. Nesme et al.

[116] suggested that linearization around the current deformed configuration reduces ghost

torques. Precomputed deformation modes have also been used to interactively deform large

structures [69, 12, 78]. In our work, we choose to use the corotational linear FEM [114, 116]

to simulate the soft body dynamics. We also use implicit integration to further increase the

simulation stability and speed.

2.1.3 Contact Modeling

Locomotion on land is achieved by a character actively and purposefully pushing the ground.

As a result, an equal and opposite ground reaction force is exerted on the character through

the contacts and changes its center of mass. Modelling contacts between two dynamic sys-

tems is an active research area in physical simulation. Early simulations use penalty forces
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[155], whose magnitude is proportional to the depth of penetration. Despite its simplic-

ity, this method requires stringent simulation time steps and careful parameter tunning.

More recently, constraint-based methods, such as linear complementarity problem (LCP),

are used to handle contacts. Stewart and Trinkle proposed an LCP formulation using an

implicit time-stepping method to guarantee non-penetration, directional friction, and ap-

proximated Coulomb’s friction cone conditions [144]. Based on the LCP framework, many

improved contact models were introduced recently in computer graphics, including using

an efficient iterative method [39], a simple staggered sequence of projections [71], or a pro-

gressive constrained manifold refinement [122]. Our implementation of contact handling in

Chapter 4 is based on the LCP condition [151], which is solved using Lemke’s algorithm.

2.1.4 Bicycle Dynamics

In Chapter 5, we study human riding a bicycle. Accurately modeling the bicycle dynamics

is important in this research. Early studies of bicycle dynamics date back to more than

a century ago. As described in Meijaard et al. [102], Whipple [173] and Carvallo [27]

independently derived the first governing equations of bicycle dynamics. These equations

were revised to account for the drag forces [30], tire slip [138] and the presence of a rider

[165]. Rankine [127] discussed the balance strategy of “steering towards the direction of

falling”, which forms the foundation of many studies on bicycle balance control, including

ours. Despite this long history of research and the seemingly simple mechanics of bicycles,

some physical phenomena exhibited by the bicycle movement still remain mysterious. One

example is the self-stable characteristic of bicycles: A moving bicycle within a narrow range

of forward speed can automatically correct its falling motion without any human interven-

tion. In addition to the early belief that this phenomenon was attributed to gyroscopic

effects of the rotating wheels [79] or the trail1 [70], Kooijman et al. [83] showed that the

mass distribution over the whole bicycle also contributes to the self-stability. Even though

the dynamic equations provide us with some intuition, we do not solve them directly in our

work because they are tailored specifically to normal riding situations where both tires touch

1The trail is the distance between the front wheel ground contact point and the steering axis.
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the ground. This will be a major restriction in bicycle stunts. Instead, we modify a generic

physical simulator, Open Dynamic Engine (ODE) [139], to model the bicycle dynamics.

2.2 Controller Optimization

Controlling character locomotion has been extensively studied in both computer animation

and robotics. Starting from the seminal work of Hodgins et al. [61] which demonstrated

sophisticated biped controllers, such as gymnastic vaulting or tumbling, researchers have

investigated different forms of locomotion, including walking [181, 172], running [61, 86],

flying [175] and swimming [49]. We refer the readers to an update-to-date review [44] on

physically-based character animation.

Two main categories of methods for controller optimization are trajectory optimization

and reinforcement learning. Trajectory optimization was introduced more than two decades

ago to generate physically plausible character animations [174]. The user provides the start

and the end configurations of the character and an objective function, this method gener-

ates trajectories of joint angles by minimize the objective function subject to the physical

constraints. Trajectory optimization has been applied to control the iconic jumping Luxo Jr

lamp [174], humanoid characters [94, 67, 179], and characters with arbitrary morphologies

[167]. The resulting motions are physically plausible and follow the animation principles

such as anticipation and follow-through [156]. However, trajectory optimization often leads

to large optimization problems, which is time-consuming to solve and the solutions could

often stuck at local minima.

Reinforcement learning algorithms optimize controllers by formulating and solving a

Markov Decision Process (MDP). It finds optimal actions at different states. If the transition

model is known, value iteration is a popular method. Researchers have successfully applied

(fitted) value iteration to generalize motion capture data [158, 92], to carry out locomotion

tasks [31], and to manipulate objects with hands [6]. Applying value iteration to continuous

state and action spaces is nontrivial because discretizing the space does not scale well to

high dimensions [146] and using function approximation often converges to a poor local

minimum or might not converge at all [157, 22]. Policy search [117] is another reinforcement

14



learning algorithm, which can be easily generalized to high-dimensional continuous space.

It directly searches for a mapping between the state space and the action space, without

the need to construct a value function. Many studies on locomotion control [180, 170,

33, 172, 45] performed policy search on parameterized controllers. However, the policy

parametrization need to be carefully designed because policy search can only search the

control space defined by the parametrization. A poorly designed parametrization could

eliminate effective controllers or introduce too many local minima to the control space. In

Chapter 5, we will discuss how to automatically design controller parametrizations. Given a

parametrization, one popular optimizer for policy search is Covariance Matrix Adaptation

(CMA) [53]. It is a stochastic optimization algorithm, which has been proven effective even

when the problem domain is highly discontinuous [176, 171, 107]. While most of the related

work mentioned above is in the field of character animation, interested readers can find

surveys of reinforcement learning in robotics [81]. Next, we will review the related works

that are specific to the locomotion tasks in the dissertation.

2.2.1 Locomotion in Hydrodynamic Environments

Tu and Terzopoulos pioneered the animation of swimming fish using a a mass-spring system

for the fish body and a simplified fluid model [162, 154, 50]. They used simulated annealing

and the simplex method to discover swimming gaits. Their simulation also incorporated

vision sensors, motor controllers, and behavioral modeling of eating, escape, schooling and

mating. The major difference between their paper and ours lies in the fluid model and the

optimization technique. This early paper used a simplified fluid model while ours adopts

a full Navier-Stokes solver and introduces a two-way coupling method between fluids and

articulated figures in generalized coordinate.

Sims [137] investigated the simulated evolution of creature locomotion. Sims’ creatures

were composed of blocks that are connected by articulated joints. He used genetic pro-

gramming to evolve both the creature bodies and their controllers. In addition to walking

and jumping behaviors, some of his creatures also learned to swim in a simplified fluid

environment.
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Wu and Popović [175] used an articulated skeleton and deformable elements for feathers

in order to animate the flight of birds. They used an optimization process to find the best

wing beats in order to accurately follow a given path. Yang et al. [178] used an articulated

body representation, a simplified fluid model, and several layers of control to model human

swimmers. Si et al. [135] applied a biologically motivated Central Pattern Generator

(CPG) to control human swimming motions. Although they simulated the fluid by solving

Navier-Stokes equations, their two-way coupling method was based on the simplified model.

Kwatra et al. [85] used an articulated body representation and two-way coupling between

the body and a fluid simulation to model human swimming. They used motion capture

data of swimming motions as input to the swimmer control. Lentine et al. [90] used an

articulated skeleton with a deformable skin layer and two-way coupling to a fluid simulator

to model figures that are moving in fluids. They optimized for certain styles of motion using

objective functions designed for effort minimization and drag minimization/maximization.

Their results also clearly demonstrated that using a full fluid simulator gives more realistic

results than using a simplified fluid model.

In the field of computational fluid dynamics (CFD), there is a small but growing liter-

ature on the simulation of swimming creatures. These studies are typically focused on a

single swimming style of one particular creature, and they usually make use of sophisticated

fluid dynamics code, at a large cost in computational complexity, to generate more accurate

and detailed fluid simulation. Often these studies are informed by laboratory studies of

the creature in question, including flow data that has been gathered using methods such

as particle image velocimetry [48]. A good representative of such work is the investigation

of Shiragaonkar et al. of the knifefish, which is a fish that propels itself using waves that

travel along its elongated lower fin (gymnotiform swimming) [133]. The simulator for this

work used an immersed boundary method, and the simulations were performed on a 262

compute node Linux cluster. Another example of such a study is the work of Kern and

Koumoutakos [73] on the simulation of eels (anguilliform swimming). In this work, the

fluid grid is matched to the eel body by using a cylindrical grid in most of the domain and

a hemisphere-based grid for the head of the eel. They used the CMA technique [53] to
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optimize a five parameter motion model.

2.2.2 Locomotion for Soft Body Characters

Controlling physically simulated soft bodies is a practical problem in computer anima-

tion. Previous work offers a rich repertoire of techniques that enable the artists to control

the shape of soft bodies. Many methods proposed to track a given input animation or

keyframes using interpolated resting shapes [82], a constrained Lagrangian solver [19], a

linear quadratic regulator [13], or reduced spacetime optimization [11]. Martin et al. [101]

introduced an example-based approach for simulating soft bodies with desired behaviors.

The user supplies the system with a few poses to guide the simulation results toward pre-

ferred shapes. Shape control for soft bodies has also been applied to physics-based facial

animation. Sifakis [136] formulated an optimization to automatically determine muscle

activation that tracks a sparse set of motion capture markers.

In contrast to shape control, locomotion control for soft bodies is relatively less explored

in computer animation. Previous work has shown that mass-spring systems can be used to

simulate motion of worms, snakes, and fish [105, 161, 49]. Miller [105] utilized anisotropic

frictional forces such that a worm can slide forward by contracting elastic body segments.

Tu and Terzopoulos [161] applied a simple fluid dynamic model to provide forward thrust

when a fish deforms its body. Kim and Pollard [76, 77] demonstrated that much more

complex locomotion can be achieved by effective soft body control. They combined an

efficient skeleton-driven FEM simulator and an optimization-based controller to create many

interesting behaviors, such as a star fish crawling out of a box and a fish flipping back and

forth. More recently, Schulz et al. [131] animated the soft body locomotion using spacetime

optimization.

Although there are a large amount of related work in locomotion control for characters

that are represented as articulated rigid bodies, there is one important difference in con-

trolling soft body locomotion: we cannot apply the commonly-used joint torques to soft

body characters. We need different actuation signals. For example, Coros et al. [34] used
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dynamically changing rest shapes as actuation signals to control locomotion. Another ac-

tuation signal is muscle contraction. One important contribution of our work in Chapter

4 is a muscle model. Previous work has modeled dynamics of muscles and demonstrated

that complex interplay among bones, muscles, ligaments and other soft tissues can be mod-

eled for individual body parts, including the neck [89], the upper body [185, 37, 88], and

hands [160, 145]. Using the volumetric data from the visible human data set, Teran et al.

integrated a B-spline representation for muscles, a tetrahedra mesh for soft tissues, and

a triangulated surface for each bone to simulate musculoskeletal behaviors [152, 153]. A

striking difference of our work is that we focus on controlling deformation behaviors without

skeletal support. This type of control mechanism resembles biomechanical movements using

muscular-hydrostats, such as the tentacles of cephalopod mollusks or the trunks of elephants

[74]. By using muscle contraction alone, we can generate functional motor skills, including

elongating, shortening, bending, and twisting. We show that visually appealing behaviors

that cannot be produced by skeleton-based systems emerge with appropriate control.

The main difficulty in locomotion is to control an under-actuated system by exploiting

external contact forces. Velocity-based LCPs for contact modeling can have infinitely many

solutions, but general LCP solvers, such as Lemke’s algorithm, are incapable of ascertaining

the quality of the solutions for a given criterion. This drawback is particularly undesirable

when solving an optimal control problem that exploits the contact and dynamic state of

the system. One approach to this problem is contact-invariant optimization [109, 110]. Due

to the lack of robust schemes to formulate optimization with arbitrary objective function

and linear complementarity constraints, many previous methods explicitly assumed that

the contacts remain static [2, 67, 76] while optimizing control forces subject to equations

of motion. This assumption significantly restricts the effectiveness of the controller for

locomotion and balance because the controller is not allowed to actively exploit contact

breakage, slipping contacts, or rolling contacts to achieve control goals. A few previous

studies in mathematics addressed the problems of linear and convex quadratic programs

with complementarity constraints (LPCCs and QPCCs) [63, 9]. They showed that global

resolution of nonconvex problems in these two subclasses, including those infeasible and
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unbounded, can be accomplish in finite time. In Chapter 4, we introduce an efficient QPCC

solver for controller optimization problems with contacts.

2.2.3 Locomotion with a Passive Mechanical Device

Compared to walking and running, fewer studies focus on locomotion that involves a char-

acter controlling another device with complex dynamics. Van de Panne and Lee [164] built

a 2D ski simulator and that relies on user inputs to control the character. This work was

later extended to 3D by Zhao and Van de Panne [184]. Planar motions, including pump-

ing a swing, riding a seesaw and even pedaling a unicycle, were studied [60]. Hodgins et

al. [61] demonstrated that normal cycling activities, including balance and steering, can

be achieved using simple proportional-derivative (PD) controllers for the handlebar angle.

These linear feedback controllers are sufficient for normal cycling, but they cannot generate

the bicycle stunts demonstrated in Chapter 5.

One central problem of riding a bicycle is to keep balance. The balance problem has been

studied extensively in previous work on locomotion synthesis. Balance can be maintained by

exerting virtual forces [124, 32], applying linear feedback [87, 181, 35, 32], using nonlinear

control policies [112], planning the contact forces [112, 151], employing reduced models

[159, 86, 107, 32, 179] and training in stochastic environments [171].

The bicycle control problem has been investigated in the reinforcement learning liter-

ature. Randløv and Alstrøm [126] used SARSA(λ), a model free reinforcement learning

algorithm, to learn to balance a bicycle and ride to a goal. This algorithm requires a large

number of simulation trials and the converged result is still not ideal. Ng and Jordan [117]

applied policy search to the same bicycle learning problem. They parameterized the policy

with neural networks and used the policy gradient to find the optimal network weights.

The resulting controller significantly outperformed the results in the previous study. Our

method is inspired by the policy search algorithm. However, to adopt this algorithm to

learn more challenging tasks, we need to overcome two difficulties: First, we do not have

reliable policy gradient information because of the frequent contact events. Second, we do

not know a good policy parametrization, which is difficult to design manually by trial and
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error for each bicycle stunt. We use NEAT [142] to address both difficulties. NEAT was

first introduced to graphics by Allen and Faloutsos [4]. They used it to evolve locomotion

controllers but were not able to achieve stable and sustained walking.

2.3 Controller Transfer from Virtual Characters to Real Robots

Research in computer animation has demonstrated robust locomotion control for challenging

tasks in physically simulated environments. However, we have not seen any robots that can

demonstrate similar capabilities. This gap is known as Reality Gap: A controller that can

work effectively in physical simulation may not work in the real environment. This gap

is caused by sensor noise, latency, hardware limitations, unmodeled dynamics, inaccurate

physical model and other unknown factors. Nolfi and Floreano [120] outlined the problems

that are related to crossing the Reality Gap and identified the key difficulties. A large

amount of approaches were proposed in robotics to cross this Reality Gap. We refer the

readers to Eaton [38] for a comprehensive review of this topic.

One way to cross the Reality Gap is to increase the robustness of the controller so that

it is more likely to work in a different environment. A more robust controller can be found

by injecting noise to the simulation [104, 68, 103], leveraging multiple simulators [20], and

optimizing the controller through ensembles of perturbed models [108]. Although these

methods do not explicitly involve experiments on the robot during controller optimization,

they have been shown effective to increase the probability of a successful controller transfer.

Another direction to close the Reality Gap is to improve the simulation model so that

it better reflects the real world dynamics. The simulation is improved by measuring and

minimizing the discrepancy between the simulation results and the data collected in robot

experiments. Ha and Yamane [52] modeled this discrepancy using Gaussian process. Abbeel

et al. [1] used an inaccurate physical model but successively grounded the policy evalua-

tions using real-life trials. Mouret et al. [111, 84] derived a measure of transferability by

comparing fitness scores between the simulation and the real experiments. Grounded simu-

lated learning approach [41] iteratively optimized the controller, measured the discrepancy

and modified the simulator using supervised learning algorithms. Bongard and Lipson [21]
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coevolved the controller and the simulator using an iterative estimation-exploration process.

Similarly, Zagal et al. [183] introduced the “back-to-reality” approach, which also involved

the coevolution but used a different measure of discrepancy. In Chapter 6, we present a

simulation calibration process to transfer controllers from virtual to real environments.
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CHAPTER III

LOCOMOTION IN HYDRODYNAMIC ENVIRONMENTS

3.1 Motivation

We live on a planet that is covered mostly by water, in which a wide variety of creatures

use swimming as their primary form of locomotion. There are an astonishing variety of

body shapes and patterns of motion that are used by swimmers across the animal kingdom.

Some of the many creature swimming patterns from nature include using thrust from a tail,

moving an elongated body sinusoidally, using paddle-like motions of flippers, kicking with

legs, and gentle bird-like flapping of fins. Our research goal is to develop a general platform

for finding efficient swimming motion for a given creature body shape. There are a number

of application areas that can benefit from realistic swimming simulation, including feature

film animation [143], biological investigation of swimming mechanics [73, 133], locomotion

of user-created creatures in video games [56], and the invention of new modes of propulsion

for underwater vehicles [15].

Today, most scientific models for swimming motion are customized to specific species

with predefined locomotion patterns [133]. These models are highly accurate but are difficult

to generalize to a variety of creatures. The existing 3D swimming animations, on the

other hand, demonstrate a lifelike underwater ecosystem with rich variety of creatures.

However, their motions are typically animated manually or based on simplified physical

models. Having a generic set of tools that can produce physically realistic aquatic motion

for a wide array of creatures is challenging and has not been shown in previous work.

At the heart of synthesizing realistic aquatic locomotion lies the problems of simulation

and control. Solving these two problems simultaneously under hydrodynamics presents

some unique challenges. First, the relation between the movement of the aquatic animal

and the forces exerted by surrounding fluid is extremely complex. Thus it is difficult to

solve using an optimization approach. Any small changes in undulation or flapping gait can
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result in drastically different control strategies. In addition, the morphology of aquatic ani-

mals is astonishingly diverse and results in fundamentally different locomotion mechanisms.

Designing control strategies based on ad-hoc observation or careful tuning of parameters

would be extraordinarily difficult to generalize to the vast biodiversity found in nature.

This chapter describes a complete system for controlling a wide variety of aquatic animals

in a simulated fluid environment. Our goal is a system that balances between physical real-

ism and generality. Given an aquatic animal that is represented by an articulated rigid body

system, our system can automatically find the optimal locomotion in a hydrodynamically-

coupled environment. Our system does not require any prior knowledge of the animal’s

behavior and minimizes the effort of manually tuning the physical and control parameters.

The system consists of two main components: simulating motion and optimizing control

strategies. We simulate articulated rigid bodies submerged in invisid, incompressible fluid

governed by the Navier-Stokes equations. The animal can exert torques to exercise each ac-

tuated joint. Through accurate two-way coupling of the rigid bodies and the fluid, the joint

motion will lead to some locomotion in the fluid, but purposeful and balanced locomotion

requires careful coordination and synchronization among those actuated joints. The sec-

ond component provides an automatic way to discover joint motion that achieves a desired

goal in locomotion (i.e. a joint motion that yields the fastest or the most energy efficient

locomotion). We employ an optimization technique called Covariance Matrix Adaptation

(CMA) to explore the domain of possible joint trajectories.

We evaluate our system by demonstrating optimized swimming gaits for a wider variety

of aquatic animals and swimming strategies, including clownfish, eels, sea turtles, frogs,

manta rays and some imaginary creatures. In addition, we compare the swimming motion

in a Navier-Stokes fluid with motion in a simplified fluid. Our results show that these

motions can differ dramatically depending on which fluid model is used.

3.2 Swimming Simulation

We simulate fluids by solving the Navier-Stokes equations on a MAC grid and we simulate

the articulated rigid body using generalized coordinates. We modify the projection step of
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the fluid solver to take into consideration the dynamics of the articulated figure.

3.2.1 Fluid Simulation

We simulate fluid using the inviscid, incompressible fluid equations (sometimes called the

Euler equations):

∇ · u = 0

ut = −(u · ∇u)− 1

ρ
∇p+ f

where u = (u, v, w) is the velocity of fluids, p is the pressure, ρ is the density and f

accounts for the external body forces. We do not include a viscous term because such

effects are negligable for the motion of the large animals in our examples. If we were

studying swimming of millimeter sized creatures, however, incorporating viscous effects

would be mandatory.

The standard way to solve the above equations on a MAC grid can be described in

following two steps. First, we calculate an intermediate velocity field u∗ by only considering

the convection u · ∇u and the body force f :

u∗ = SL(un,∆t) + ∆tf (1)

where un is the velocity at nth time step. We use the Semi-Lagrangian method [140] to

integrate the convection term and apply BFECC [75] to reduce the numerical dissipation.

Next, we solve the following Poisson equation with Neumann boundary conditions u·n =

usolid ·n at the solid boundary and Dirichlet boundary conditions p = 0 at the free surface.

Then we project the intermediate velocity field to ensure the incompressibility condition.

∇2p =
ρ

∆t
∇ · u∗ (2)

un+1 = u∗ − ∆t

ρ
∇p (3)

In this work, we modify the second step ((2) and (3)) to take into account the interaction

between the fluid and the articulated rigid bodies.
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3.2.2 Articulated Rigid Body Simulation

In this section, we will describe the numerical techniques that we use to move the body parts

of an articulated figure. Later, in Chapter 3.3, we will describe the optimization technique

that we use to discover efficient swimming gaits.

The dynamic equations of an articulated rigid body in generalized coordinates can be

expressed as follows.

M(q)q̈ + C(q, q̇) = τint + τext (4)

where q, q̇ and q̈ are vectors of positions, velocities and accelerations of joint degrees of

freedom respectively. M(q) is the mass matrix and C(q, q̇) accounts for the Coriolis and

Centrifugal force. τint and τext are internal and external generalized forces.

Given the current state qn and q̇n, we can evaluate M and C of (4). For the external

forces τext, we consider the fluid pressure force. We make use of the modified PD controller

of Tan et al. [150] in order to calculate the internal force τint that closely tracks a reference

trajectory. Although the details of this method can be found in [150], we include an overview

of this method below. The reference swimming trajectory is computed by an optimization

process described in Chapter 3.3. Once we know both the external and internal forces,

we can solve the acceleration q̈n and advance to the next time step via explicit Euler

integration.

Modified Proportional-Derivative Controller In computer animation, a PD servo

(5) provides a simple framework to compute control forces for tracking a kinematic state of

a joint trajectory:

τn = −kp(qn − q̄n)− kdq̇n (5)

where kp and kd are the gain and damping coefficient. In general, high gain PD servos

result in small simulation time steps in order to maintain stability.

The aquatic creatures in this work require high gain PD servos to track the desired

swimming gait closely against strong fluid pressure. However, we cannot reduce the time

step to accommodate stability due to the time-consuming fluid simulation. To achieve
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these two conflicting goals, large time steps and high gains, we modify the PD controller

as follows. Instead of using the current state qn and q̇n to compute the control force, we

compute the control forces using the state at next time step qn+1 and q̇n+1:

τn = −kp(qn+1 − q̄n+1)− kdq̇n+1 (6)

eq. (6) can be linearized at qn and q̇n as:

τn = −kp(qn + ∆tq̇n − q̄n+1)− kd(q̇n + ∆tq̈n)

Applying the modified PD controller to the articulated rigid body simulation with mul-

tiple degrees of freedom, we solve the acceleration as

q̈n = (M + Kd∆t)
−1(−C−Kp(q

n + q̇n∆t− q̄n+1)−Kdq̇
n + τext)

where both Kp and Kd are diagonal matrices that indicate the gains and damping coeffi-

cients.

3.2.3 Two-way Coupling Between Fluids and Articulated Rigid Bodies

The two-way coupling between the incompressible fluid and the articulated figures should

satisfy following three conditions.

1. The normal velocity at the interface between the fluids and the articulated rigid bodies

should agree with each other.

2. The motion of the articulated rigid body resulting from the fluid pressure force must

be consistent with the Lagrangian equations of motion.

3. The fluid should be incompressible.

Two-way coupling is ensured by having the fluid exerting pressure forces on the rigid

bodies, while at the same time the motion of the rigid bodies affects the pressure distribution

of the fluid.

Our simultaneous two-way coupling technique is inspired by Klingner et al. [80] since

we both start from the acceleration at cell faces. Their method uses a tetrahedral mesh
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Figure 4: The computational steps for simultaneous coupling between fluids and articulated
rigid bodies.

to represent the fluid, and their rigid bodies are in Cartesian space. Our simulator uses a

regular MAC grid and we couple this fluid with articulated figures that are described in

generalized coordinates. Similar to Klingner et al. [80], we split the coupling into two steps

(Figure 4). In the first step, the two systems are solved independently ignoring the pressure.

The fluid solver calculates the intermediate velocity field u∗ using (1). The articulated rigid

body solver determines the acceleration q̈ without external pressure forces and calculates

the intermediate velocity q̇∗.

In the second step, we consider the motion of the two systems together so that they will

satisfy all above three conditions. We first voxelize the body segments of the articulated

figure (represented by water-tight polygon meshes) onto the MAC grid and we mark those

cells inside the body segments as SOLID. For two-way coupling, we are particularly inter-

ested in the faces between a SOLID cell and a FLUID cell (defined as coupled faces). The

velocity at a coupled face can be expressed in generalized coordinates by the Jacobian of

the articulated rigid body and the joint velocity:

u∗solid = Jq̇∗
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where J is the 3×m (m is the number of degrees of freedom) Jacobian matrix

J =


∂x
∂q1

∂x
∂q2

. . . ∂x
∂qm

∂y
∂q1

∂y
∂q2

. . . ∂y
∂qm

∂z
∂q1

∂z
∂q2

. . . ∂z
∂qm


Now consider the effect of the pressure field, which exerts forces and applies accelerations

along the face normals n. If a face is shared by two FLUID cells, the acceleration is 1
ρ∇p ·n.

If a face is shared by a FLUID cell and a SOLID cell (a coupled face), we need to take into

account all the pressure values surrounding the articulated rigid body. We first construct

a k × n selection matrix S to pick out of p the pressures at the coupled faces, where k is

the number of the coupled faces and n is the number of FLUID cells. Thus the vector Sp

constains all the pressure values surrounding the articulated rigid body. Each element pi of

Sp contributes a pressure force (∆x)2pini to the articulated rigid body, which we transform

to the generalized coordinate:

τpi = JTi (∆x)2pini

The total generalized force exerted by the fluid pressure on the articulated rigid body is

τp = (∆x)2ĴSp

where Ĵ = [JT0 n0 . . . JTk nk]. The pressure force results in the acceleration in

generalized coordinates

q̈p = M−1τp

We transform the acceleration back to Cartesian space, and the magnitude of the accelera-

tion at the coupled face is

a = nT (Jq̈p + J̇q̇
∗
)

The second term J̇q̇
∗

comes from the fact that the Jacobian matrix changes over time.

Stacking the accelerations at the coupled faces into a vector, we have

a = (∆x)2ĴTM−1ĴSp +
˙̂
JT q̇∗ (7)

where
˙̂
J = [J̇T0 n0 . . . J̇Tk nk].
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Since the velocity field should be divergence free at the beginning of the next time step,

∇ · un+1 = ∇ · (u∗ + ∆ta) = 0 (8)

the accelerations due to the pressure must satisfy the following equation.

∇ · a = − 1

∆t
∇ · u∗

Putting everything together, we reach the final linear system:

DAp = D(−u∗

∆t
+ b) (9)

A =


1
ρG faces shared by two FLUID cells

(∆x)2ĴTM−1ĴS coupled faces

b =

 0 faces shared by two FLUID cells

− ˙̂
JT q̇∗ coupled faces

where D and G are the discretization of the divergence and gradient operators on a MAC

grid.

We construct a system of linear equations (9) for the pressure field, which considers

all of the three conditions to be satisfied by the coupled system. The fluid and solid

velocity agrees at the interface (condition 1) because the velocity defined at the coupled

faces are shared by the fluid and the articulated body. The movement of the articulated

rigid body under the fluid pressure satisfies the equation of motion (condition 2) because

(7) is derived from the dynamics (4). The fluid is incompressible (condition 3) because we

enforce the divergence free condition by (8). The linear system is of the same size as the

discretized Poisson equation (2) in a typical fluid simulation. The main difference is that

the rows correpsonding to the cells adjacent to the SOLID cells have more non-zero entries.

Furthermore, it is also symmetric positive definite, which allows the use of fast solvers such

as the Preconditioned Conjugate Gradient method. After solving the pressure field, we

project the velocity field to make it divergence free using (3) and update the articulated

rigid body by considering the pressure forces.
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3.3 Swimming Gait Optimization

We have described the two-way interaction between fluids and an articulated rigid body

system. In particular, Chapter 3.2.2 describes how we move the body parts using torques

and how we compute the torques for a given reference gait. In this section, we describe an

algorithm to automatically design optimal controllers for an active articulated rigid body

systems that is moving in a hydrodynamic environment. Our method generates physically

realistic strokes based on the swimming efficiency of the stroke.

3.3.1 Swimming Gait Representation

Given the geometric and physical properties of an articulated rigid body system, we formu-

late an optimization to solve for the reference trajectory of PD controller at each actuated

joint, qi. We want to use a compact representation for the reference trajectory because

incorporating a fluid simulation into the optimization is computational intensive. Because

aquatic locomotion is typically cyclic, we parameterize the reference trajectory as periodic

cycles in generalized coordinates.

qi(t) = Ai sin(
2πt

Ti
+ φi) + Ci

where Ai, Ti, φi and Ci are the amplitude, period, phase and offset of a sine function. Using

this parameterization, each reference trajectory qi(t) is parameterized by four values. In

most cases we just optimize over two parameters, amplitude and phase, and leave the period

and offset fixed.

3.3.2 Objective Function

The objective function in our optimization tries to balance between efficiency and energy

expenditure of the swimming gait; the creature should move as fast as possible in the desired

direction without using too much energy. Furthermore, the creature should try to avoid

self-collisions and remain within the joint limits. In practice, the choice of objective function

can vary by creatures, fluid conditions, or the user’s application. Here we choose a simple

objective function to find natural swimming motion:

E = −Edistance + w1Edeviation + w2Eenergy + w3Ecollision (10)
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where Edistance measures the change of the creature’s root position ∆p along a specified

direction d from time 0 to time tf :

Edistance = dT (∆p)

Edeviation measures the deviation from the specified direction and the initial orientation.

Edeviation = ||∆p− dT (∆p)d||+ ||∆α||

where ∆α stands for the change of root orientation in tf , expressed using the exponential

map. Since we’re optimizing the gait of straight swimming, we penalize any orientation

changes. We choose the weight w1 = 0.2 for all the examples.

Eenergy penalizes the energy expenditure of the swimming gait. We calculate the work

done by the actuated joints over the duration of the swimming gait:

Eenergy =

∫ tf

0

∑
i

τiq̇idt

Instead of penalizing energy expenditure linearly, we modulate Eenergy with a discontin-

uous function represented as the objective weight w2. Instead of constantly trying to avoid

using any energy, this modulation allows the creature to freely consume a certain amount

of energy, while avoiding excessive use of torques.

w2 =

 0 if Eenergy < EenergyBound

1 otherwise

where EenergyBound is a user specified parameter.

Ecollision penalizes self-intersection. We detect self-intersection and calculate the over-

lapping volumes using a fast approximate method. We first voxelize the articulated rigid

body using a fine grid (the typical grid resolution is about 1003). If a cell is inside a body

link, we increment the counter for that cell. At each time step, we sum up all the cells

with counter number larger than one and multiply by the cell volume to approximate the

overlapping volume.

Ecollision =

∫ tf

0
Voverlapdt

where w3 is chosen to be 500 for all the examples.
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3.3.3 Optimization

Solving the above optimization presents unique challenges. First, we do not have good

initial guesses for different swimming patterns of a wide variety of animals with distinctive

morphologies. Second, evaluating gradient is expensive because each evaluation needs to

simulate the fluid. Last but not least, our objective function is discontinuous and prone to

local minima due to sub-optimal swimming gaits, collision penalties, and the modulation of

the energy penalty term. For the above reasons, it is difficult to apply traditional continuous

optimization algorithms that perform gradient-guided “local” search near the initial guesses.

To solve these problems, we perform gait optimization using Covariance Matrix Adaptation

(CMA). CMA is a stochastic sample-based optimization algorithm. It does not rely on

good initializations and it does not need to compute gradient. More importantly, CMA

is a “global” search algorithm that can explore multiple local minima. Although there is

no guarantee that CMA will converge at the global minimum, in practice, we observe that

it often finds good local minima in moderately high dimensional control spaces (e.g. 20-30

dimensions). I believe that other sample-based optimization algorithms, such as Particle

Swarm Optimization [72], may also work well for this problem, although they are not tested

in our implementation.

CMA is based on evaluating the objective function for a given population of samples

over the parameter space (in our case the joint trajectories). Some fraction of the best

samples are then used to update the mean and a covariance matrix that determines the

distribution of samples that are evaluated in the next generation. More details of the CMA

method can be found in [53].

For each CMA sample, if it violates the user specified joint limits we simply discard

it and select another sample. Because the joint limit test takes very little computation

time, discarding infeasible samples at this stage is more “economical” than investing major

computation effort on them but assigning them a near-zero weight at the end. Once a sample

is accepted, we simulate the motion by applying the sampled swimming gait and evaluate

the resulting motion using the objective function. To speed up CMA for solving such high-

dimensional problems, we include two heuristics in our implementation for some examples.
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First, we utilize symmetry for some of our articulated figures: When a creature’s body

shape is symmetric, often its gait is also symmetric. In such cases, half of the optimization

variables are enough to characterize the gait of the whole body because we mirror them to

the other half of the body. This assumption is applied to reduce the required computational

time, but it is not necessary. Second, for creatures that have more independent appendages,

we separate the degrees of freedom in groups and progressively improve the solution by

optimizing each group. For example, we assign the forelimbs and hindlimbs of a frog into

two separate groups. During the optimization, we first search for the swimming gait for the

hindlimbs while freezing the motions of the forelimbs. We then search for the swimming

gait of the forelimbs with the optimal hindlimb motions that we already found.

3.4 Path Following

In addition to forward thrust, aquatic creatures also employ very efficient turning maneu-

vers, such as pitching up and down or turning left and right. The optimization technique

described in Chapter 3.3 can be modified to learn various maneuvers. Once the aquatic

creature builds a repertoire of swimming maneuvers, we can combine different maneuvers

to achieve a high-level task such as path following.

First, we add another term to Edistance in (10) to maximize the turning angle towards

the desired direction:

Edistance = dT (∆p) + rT (∆α)

where r is the desired axis of rotation. We set the desired swimming direction d half way

from the current facing direction towards the turning direction. We also change Edeviation

Figure 5: Three different situations that determine if the creature chooses a “swim straight”,
“pitch up” or “pitch down” maneuver.
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Figure 6: The joint configurations of the frog, the manta ray and the alien.

to penalize the undesired orientation changes.

Edeviation = ||∆p− dT (∆p)d||+ ||∆α− rT (∆α)r||

We solve the above optimization using the CMA method in the same way as described in

Chapter 3.3.3.

Once different maneuvers have been learned, we apply a simple heuristic to decide which

maneuver to choose to follow the path. At the beginning of each cycle of the motion, we find

the nearest point p on the path to the root of the articulated figure and transform p and its

tangential direction d to the root coordinate system. We denote the transformed position

and direction as p̂ and d̂. Without loss of generality, let’s consider a one dimensional

example. p̂z is the z-component of p̂, which means the point is above or beneath the root

of the articulated figure. Similarly, d̂z indicates the path is going upwards or downwards

relative to the root orientation. We choose the different maneuvers based on the following

rules.

Maneuver =



Go Straight if (p̂z ≥ ε and d̂z ≤ −ε)

or (p̂z ≤ −ε and d̂z ≥ ε)

Pitch Up if p̂z > ε and d̂z > ε

Pitch Down if p̂z < −ε and d̂z < −ε

where ε is a small positive value to prevent the articulated figure from repeatedly choos-

ing alternating turning maneuvers due to small deviations from the path. The first case

indicates that the nearest point on the path is above/below the articulated figure while the
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Figure 7: The voxelized representations of the turtle and the frog. The input shapes of
the articulated creatures are represented by water-tight polygon meshes. We voxelize these
body shapes onto the simulation grid each time step to simulate the two-way coupling
between the fluid and the creature.

direction of the path is going downwards/upwards. In other words, the articulated figure

is swimming towards the path (Figure 5a). We choose the action “swim straight” in this

situation. On the other hand, the second and third cases indicate the articulated figure

is swimming away from the path (Figure 5b and 5c) and we choose “pitch up” or “pitch

down” accordingly.

3.5 Results

We implemented our method using C++ and ran CMA on a cluster with a maximum of

100 iterations and with a population size of 16 for 2D and 31 for 3D examples. Each CMA

sample evaluates the objective function by simulating two cycles of swimming motions.

The optimization took from several hours to two days, depending on the model and the

grid resolution. After we found the swimming gait, we ran the swimming simulation on a

2.26GHz CPU with a single core. All of the data for our swimming examples are summa-

rized in Table 1. In most of the cases, we use two optimization variables, amplitude and

phase, for each degree of freedom. We set the period to one second and the offset to zero.

When training the turning gaits, we included the offset in the optimization variables. For

the accordian example, the degrees of freedom are interdependent and there is no phase

shift among the different degrees of freedom. Thus one optimization variable is enough

to characterize its motion. We also exploited the strong symmetry in geometry for some
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Table 1: Parameters and performance of examples. Num DOFs is the number of degrees of
freedom for the articulated rigid body. Opt Dims is the number of optimization variables.
Sim Res is the grid resolution for the simulation and Sim Time is the average simulation
time per frame.

Examples Num Opt Sim Sim
DOFs Dims Res Time

accordian 10 1 120× 80 1.37s
eel(2D) 4 8 128× 64 0.64s

turtle(2D) 4 4 64× 64 0.34s
fish 3 6 64× 32× 32 1.45s

eel(3D) 6 12 64× 32× 32 1.31s
manta-ray 14 21 64× 32× 32 10.92s
turtle(3D) 10 10 64× 32× 32 11.29s

frog 18 18 96× 64× 48 12.79s
alien 16 24 96× 36× 24 10.75s

creatures, such as turtles and frogs, to halve the optimization dimensions. We illustrate

the joint configurations for some creatures in Figure 6 and the voxelized representations of

creatures in Figure 7.

In our implementation, we made three simplifications to reduce the simulation cost. 1)

Instead of using a large computational domain to cover the whole space that the creature

might swim to, we use a smaller domain that is about two to four times larger in each

dimension than the creature’s bounding box. This domain moves with the creature when

the creature approaches a boundary. 2) At the boundary of the computional domain, we

impose the Dirichlet boundary condition p = 0 so that the fluid outside the domain is free

to flow in and vice versa. 3) Since the density of most aquatic creatures is similar to that

of the fluid, we ignore the force of gravity in our simulator.

We describe the results of our swimming optimization method. Please see the video1

to observe the swimming animations. To visualize the fluid flow, we draw particles traces,

which show the trajectory of massless particles inside the fluid in a short period of time (15

frames). We modulate the transparency of the particle traces in 3D examples according to

the magnitude of the vorticity in order to focus attention on the visually interesting regions

of the flow. In 2D examples, we colored the traces to indicate the directions of the vortices.

1https://dl.dropboxusercontent.com/u/36899427/articulatedswimmingcreatures.mp4
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Figure 8: A four-link clown fish swims. Carangiform swimmers like this flex the front of
their body a little, with the majority of the motion near the tail. Note that this fish sheds
two separate trails of vortices.

Figure 9: A swimming seven-link eel. Anguiliform swimmers undulate their whole body as
if a wave is travelling from head to tail, and shed two separate trails of vortices from the
tail.

There are many body shapes and styles of locomotion for fish, and our first set of results

investigates several of these. Figure 8 shows a four-segment model of a fish, modelled after

the body shape of the clownfish. We used CMA to optimize for efficient forward motion,

and snapshots of the resulting motion are given in the figure. Note that the forward body

flexes just a little, with the majority of the motion near the tail, which is in good agreement

for the style of motion known as the carangiform mode [93]. Using the same objective

function, we optimized a seven-segment figure that was designed to mimic an eel body.

Figure 9 shows that the resulting motion is that of a travelling wave along the body of the

creature, as is typical of real eel swimming (anguiliform mode). Note that the wake of our

eel has two separate trails of vortices that are shed from the tip of the tail, as has been

observed in lab studies of eels [163]. We show in Figure 10 that a different wake structure

appears when an eel swims in a 2D fluid environment, that of a single vortex street. The

difference of the wake structure between the 2D and 3D simulations agrees with Kern and

Koumoutsakos’s study of eels [73].

Our final example of fish motion is that of a manta ray. The manta has a body that is

thin in the vertical direction and that has large pectoral fins that extend in the horizontal

direction. It swims by slow flapping strokes of these wing-like pectoral fins (the rajiform

37



swimming mode), somewhat like a slow-motion version of a bird flapping its wings. Al-

though the manta ray does not seem to be a good candidate to be modelled as an articulated

figure, we wanted to see how far the articulated models could be pushed. We modelled the

ray’s pectoral fins as four rows of thin plates that are connected to one another near the

leading edge of the fin. The resulting swimming motion from the optimization procedure

exceeded our expectations, producing the same graceful flapping that these creatures use

to swim (see Figure 11).

We tested our path following approach using the manta ray model. We used our op-

timization method to find efficient swimming for forward motion, an upward turn and a

downward turn. We then gave the manta ray a vertical S-shaped path to follow using our

path following controller. The simulated ray was able to follow the path quite closely, as

the composite image in Figure 13 shows. Note that this path following motion was created

with a single simulation, based on gait switching between the three learned basic motions.

We also tested the path following algorithm using a simple 2D turtle model. We show

that the turtle cannot swim straight without using the path following technique due to

the accumulation of numerical errors. When the path following technique is applied, the

turtle actively adjusts its swimming motions according to its position and orientation and

successfully swims straight.

Figure 12 shows the motion of a sea turtle that was created using optimization. Adult

sea turtles are underwater fliers, moving themselves forward with a flapping motion of their

Figure 10: A five-link eel swims in a 2D fluid environment. In contrast to the simulation
in 3D, an eel swimming in 2D fluid sheds only one single vortex street. Red traces show
the counter-clockwise vortices while blue traces show the clockwise vortices.
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Figure 11: A manta ray swimming forward. Rajiform swimmers swim by slow flapping
strokes like a slow-motion version of a bird flapping its wings.

Figure 12: A turtle swims in water with a flapping motion of its two front flippers.

two front flippers that is called a powerstroke [177]. Note that our turtle results show the

characteristic rotating of the front flippers during the upward stroke. Figure 14 shows the

results of our swimmer optimization for a model frog. As with real frogs, the large rear legs

provide the forward thrust using a classic frog kick. Note that the frog uses its forelimbs

with a small range of motion. We think this is because the contribution from the arms is

small relative to the contribution from the legs. Based on our observation, some real frogs

do not use their forelimbs much when swimming.

In the accompanying video, we also demonstrates that articulated figures can differ

dramatically in their swimming motion depending on whether the simulated fluid is a simple

Figure 13: A manta ray follows an S-shaped path by choosing maneuvers from “swimming
straight”, “pitch up” and “pitch down”. The red curve is the path specified by the user.
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Figure 14: A frog mainly relies on its large rear legs to provide forward thrust in the water.

Figure 15: An alien aquatic creature that swims in water by undulating its tails and flapping
its wings. Note the two pairs of wings are slightly out of phase to mimic flapping motion
of larger wings.

model or a full Navier-Stokes (NS) solver. Our simple fluid simulator calculates the force

as the square of the normal component of the velocity of a moving surface element. This

simplified fluid model is identical to that in [175, 90]. We show that swimming in different

fluid models leads to different locomotions. Figure 16 shows a 2D swimmer that compresses

and relaxes its body in an accordian-like manner moves through the water in the NS fluid but

stay in one place in the simple fluid. We demonstrate that the gaits trained in different fluid

models differ considerably. The swimming gait for a fish trained in NS fluid smoothly flaps

its tail to propel itself forward. When this same fish model is optimized using the simple

fluid, the resulting motion is considerably different, gaining thrust mainly from bending at

a sharp angle at the middle joint of the body. These differences in motion between a simple

fluid and the NS fluid are in agreement with the findings of Lentine et al. [90].

In order to test the generality of our method, we applied our swimming optimization to

an articulated figure that has no counterpart in the real world (see Figure 15). This is the

swimming version of the task of finding plausible walking motions for a user-created land

creature [56, 168]. Our alien creature has two pairs of limbs on the trunk of its body, and

in addition has a long and powerful tail. The motion that was found by our optimization

combines a whip-like motion of the tail together with coordinated rowing from the pairs of

limbs. Although there is no point of comparison in the real world for this creature’s motion,

the resulting swimming pattern looks entirely plausible.
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Although our method requires little prior knowledge about the swimming gait of the

creature, there are some parameters that users can change, including the energy bound,

the period of the motion for each degree of freedom, and joint limits. This provides users

the freedom to achieve different motion, agile or slow, by changing these parameters. In

particular, we tuned the period of the swimming gait and the energy bound in our examples.

We used a period of one second for all of the examples. We made this choice deliberately

because choosing a longer period means longer optimization time (each CMA sample need

to simulate two cycles of swimming motions). However, we believe that including the period

into the optimization will probably give more interesting results because different periods

could make a big difference in the final swimming gait. We leave this as future work. To

set the energy bounds, we began by trying out several energy bounds for an initial animal,

the fish shown in the leftmost of Figure 1. Once we were satisfied with the results, we then

used this as our standard energy bound. For a new creature, we scaled this standard energy

bound according to the mass of the new creature relative to the mass of the fish. Users

can also change the weights in the objective function. In our examples, we set all these

parameters by intuition without much tuning. The weights are reported at the end of each

paragraph that introduces the different objectives in Chapter 3.3.2.

Figure 16: An imaginary creature swims forward by compressing and relaxing its body in
an accordion-like manner in a Navier-Stokes fluid model. The images are two snapshots in
the animation sequence. This demonstrates that including the Navier-Stokes fluid model is
necessary to capture certain swimming patterns, such as jet propulsion, because a simplified
fluid model does not allow forward motion for such modes of locomotion.
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3.6 Discussion

We have demonstrated that our approach creates natural swimming behavior for a wide

variety of animal bodies. For short-bodied fish and eels, our results show vortex trails that

are in agreement with laboratory measurements and other published simulation results.

For the other creatures, our optimized motions have the same overall appearance of the

real-world animals, although lab data is not available. Our articulated body representation

of creature anatomy is quite general, even allowing us to animate forms such as the manta

ray that are not usually thought of as articulated figures.

Although we have successfully applied our method to various aquatic creatures with

disparate body shapes and joint configurations, our approach does have limitations. Our

two-way coupling method needs to voxelize the articulated rigid body, and the accuracy for

representing the articulated figure depends on the grid resolution. Thin features cannot be

captured by the fluid simulator (Figure 7). We believe that incorporating adaptive grids

[97] or unstructured meshes [25, 80] can dramatically increase the accuracy of the two-

way coupling. Furthermore, the two-way coupling method is tailored for the interaction

between fluids and articulated figures. Even though many aquatic creatures have a skeleton

and can be represented well by articulated figures, there are exceptions such as jellyfish.

Our framework for discovering the optimal swimming gaits and path following is still valid

for soft-body creatures, but we would need an efficient two-way coupling mechanism to

simulate these swimming motions. We leave this as future work.

We use the sine function to parameterize the joint space. There are quite a few motions

that cannot be depicted by a single sine function, such as gliding. One possible way to

improve this is to to use a weighted sum of multiple sine functions with different amplitudes,

phases and periods [50]. However, this would require more optimization variables and more

computational resources to discover a swimming gait. In addition, other simplifications to

ease optimization, including enforcing symmetry and hardcoding the swimming frequency

to be one hertz, further restrict the motion space to a smaller subset of possible swimming

motions employed in nature.

Our simulated swimmers seem to use more energy than the real creatures do because
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the simulated water is more viscous than real water. Even though we use the inviscous

Navier-Stokes equation (Euler equation) to simulate the fluid, there is numerical viscosity.

We chose to use relatively coarse grid, and thus incur large numerical viscosity, to keep

the computational time tractable because CMA optimization need to simulate the two-way

coupling thousands of times. In addition, while the real aquatic creatures take advantage of

their streamline shaped body to reduce the fluid drag, the simulated creatures are voxelized

and the resultant stair-step shaped body is not particularly efficient inside the fluid.

There are a number of interesting avenues for future work. There are many ways this

approach could be expanded to give more control to animators, including different path

following strategies and higher-level behavior control. Our work has concentrated on con-

tinuous motion, but many animals have distinctly different movements for situations such

as escaping a predator. It would be interesting to investigate these faster, intermittent mo-

tions. Swimming at the surface of the water could be studied, including motions such as a

human swimmer doing the crawl or a whale jumping out of the water (breaching). Finally,

taking a cue from the work of Karl Sims, it would be fascinating to simultaneously optimize

for both swimming motion and body shape.
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CHAPTER IV

LOCOMOTION FOR SOFT BODY CHARACTERS

4.1 Motivation

A large variety of soft body animals live on our planet. Some examples of such creatures are

slugs, starfish, earthworms, octopus, and jellyfish. These animals move in interesting ways

due to their flexible body shapes and lack of skeleton support. In this chapter we present a

method of animating soft body characters, that is, characters that do not have a skeleton.

In particular, our emphasis is on creating animations of soft body creature locomotion,

including crawling, walking, rolling and jumping. Many hand-drawn animated characters

move in such a flexible manner that they seem to be boneless. The animation principle of

squash-and-stretch can be seen in its purest form with soft body characters. In addition, as

exemplified by our own tongues, even animals with skeletons can have body parts that move

without the help of bones. Our research is driven by the intellectual challenge of simulating

the locomotion of such soft body creatures, without resorting to any form of rigid elements

in our models.

There are two key aspects of anatomy that allow real soft-bodied creatures to move:

volume preservation and muscle contractions. Our animation system makes use of these

same principles. Soft body tissue is volume preserving, due primarily to the incompressible

nature of water. This volume preservation puts constraints on the degree of deformation

that a soft body may undergo. We use volume-preserving finite elements to match this

aspect of soft body tissue. The second important aspect of soft body creatures is that they

control the shape of their body by the contraction of muscles. If such a creature shortens

only the muscles that run down the right side of its body, this will cause the creature to

bend towards the right. Note that volume preservation and muscle contractions often work

in concert to produce motion. If a cylindrical creature uses radial muscle contraction to

make itself thinner, then the constraint of volume preservation means that at the same time
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the creature will stretch lengthwise.

Each of our soft body characters is represented as a tetrahedral mesh and simulated

using the finite element method. Our models typically contain hundreds of tetrahedral

elements, and controlling such a high degree of freedom model poses a challenge. The

aforementioned muscles from real animals provide a way of reducing the degrees of freedom

in our characters. In addition to the tet mesh, each of our characters is augmented with a

collection of polyline paths, each of which represents a muscle fiber. A character changes

its body shape by contracting these muscle fibers, and this induces a shape change in the

collection of tetrahedra near the fibers. In theory, such a character could be controlled by

specifying the timing of various muscle contractions. However, unlike controlling articulated

figures using joint torques, the complex interplay between muscles and soft body shapes

makes the control problem exceedingly challenging; even bending a limb of a soft body

creature is much more difficult than bending a joint of an articulated figure. For these

reasons, we decided that controlling a soft body creature by specifying the changes to each

muscle fiber would be a tedious method of control.

Our system provides a collection of intuitive controls for soft body creature motion, such

as moving a point of the character to a given position, or regulating the character’s linear

or angular momentum. With this collection of intuitive controls, we are able to animate

a variety of soft body characters, and in particular, we can demonstrate a wide array of

locomotion methods. To move a character, we specify a set of high-level goals (possibly

time-varying), and these goals are turned into an objective function that is passed to our

solver. For each time step, we formulate and solve a constrained optimization problem, and

this gives us new muscle lengths. These muscle lengths induce changes in stress that are

applied to the tetrahedral elements, and we then use our physics simulator to advance the

system forward in time.

An important part of our constraint solver is contact planning, and this proves to be a

challenge for soft bodies. At each time step, our solver must be able to predict how a change

to the muscle contractions will influence the points of contact between the character and

the ground. For articulated figures, most optimization-based controllers assume that each
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point of contact is static, which makes contact resolution relatively straightforward to solve.

In our system, we cannot assume static contact because sliding and breaking contact turn

out to be quite important strategies to control soft characters. For instance, a soft creature

may need to widen its base in order to balance, and this means that the points of contact

must slide. Depending on the motion goals that are given for a character, the best way

to minimize the resulting objective function might be to maintain static contact, to break

contact, or to allow sliding contact along the ground. The behavior needs to be decided for

each point of contact, and this results in a high dimensional and discontinuous optimization

problem. We formulate this as a linear complementarity problem with a quadratic objective

function. Although similar problems have been recently proposed in other fields [23, 9], we

believe that our solution method is new to graphics.

A natural alternative to our approach would be to represent a character as a rigid,

articulated skeleton, and to surround the skeleton with soft tissue that deforms. Such a

character representation could even demonstrate elongation and contraction with the use of

translational joints. This approach would have several advantages, including the availability

of numerous tools that can be used to control an articulated figure. We made a deliberate

choice to avoid using rigid elements entirely. We think that using only soft elements will be

more likely to result in motions that are more faithful to actual soft body creatures. Our

approach avoids the possibility that the character motion shows hints of a hidden skeleton.

In addition, using only muscle contractions keeps our character motions “honest” in terms

of the magnitude of forces that such characters can apply without a skeleton. Perhaps the

most important reason that we avoid the use of rigid elements is our desire to expand the

creature body forms that we can simulate using computers. Many animals in nature move

without the use of skeletons, so is it possible to create a computer simulation that mirrors

this fascinating phenomenon?

4.2 System Overview

We design a wide variety of locomotion controllers for soft bodies, including balance, walk-

ing, crawling, jumping, sliding and rolling. Given the geometry of a soft-body creature and
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Figure 17: Overview of our system.

the arrangement of its muscle fibers, our controller computes required muscle contraction

to propel the creature to achieve desired locomotion while maintaining balance. At each

time step, the controller formulates a quadratic program with complementarity constraints

(QPCC) to solve for the optimal muscle contraction under discretized dynamic equations

of motion and frictional contact constraints. The objective function, assuming a convex

quadratic form, can be designed arbitrarily to address control goals of the desired locomo-

tion. The optimal muscle contraction is passed to a FEM simulator to calculate the next

state. Figure 26 illustrates the main components of our system.

4.3 Soft Body Simulation and Modeling

Before we introduce the control algorithms for locomotion, we first describe the methods

for simulating soft bodies and computing muscle forces.

4.3.1 Finite Element Simulation

A soft body creature is represented as a tetrahedral mesh and is simulated using a modified

corotational linear FEM [114]. We chose FEM instead of a mass-spring model because it is

difficult to enforce volume preservation for the material with mass-spring systems. At each

time step, the state of the creature, p, is computed through numerical integration of the

dynamic equations of motion:

Mp̈ = fx + fe + fd + fm (11)

where M is the mass matrix of the discretized soft body and p is the nodal position of the

deformed shape. The forces on the right hand side, fx, fe, fd, and fm, indicate external,
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elastic, damping, and muscle forces respectively. The external force fx includes gravity,

contact force, and user perturbation force.

As notation, when we are specifying a quantity q for a single element, we will write this

as q̂. To compute the elastic force for each element, we adapted the method suggested by

Nesme et al. [116]:

f̂e = −B̂T D̂B̂(p̂− R̂x̂) (12)

where x̂ indicates the nodal position in the rest shape and R̂ transforms the element from

the reference coordinates to the deformed coordinates. B̂ is the strain-displacement matrix

in the deformed coordinates and D̂ is the stress-strain matrix. We use the Poisson ratio

0.45 in D̂ to make the soft body nearly incompressible while avoiding locking artifacts

[66]. Although volume preservation is not enforced strictly, our experiments show that the

volume change is below 15% and is not visually noticeable. This formulation linearizes

the elastic force around the current deformed shape, rather than around the rest shape,

as used in most FEM implementations. We chose this formulation because it eliminates

“ghost torques” caused by the error of linearization around the rest shape [116]. When the

material is soft or when the deformation is small, ghost torques do not cause visible artifacts.

However, this formulation is necessary for our case, because soft body locomotion requires

large deformation with relatively stiff materials to support the weight of the creature.

We assemble the individual stiffness matrices B̂T D̂B̂ for each element into a large stiff-

ness matrix K for the whole system. The elastic force for all the FEM nodes can be

expressed by fe = −K(p−Rx). For damping force, we use simple Rayleigh damping model

to compute its effect: fd = −Cṗ = −(µM + λK)ṗ. We set µ = 0 and λ = 0.2.

4.3.2 Muscle Modeling

We model muscle fibers as polygonal curves with a small number of segments. Each muscle

segment can contract along its current direction, but it cannot extend or bend. Based on

the arrangement of muscle fibers, we can bundle them into muscle groups. There are three

types of muscles which lead to different control tasks. The longitudinal muscles are linear

muscles that extend from one end of the body to the other end. Their main function is
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to shorten or bend the body. The radial muscles are a set of short muscles that span a

cross-section of the body. When radial muscles contract, the volume-preserving nature of

the tissue causes the body to elongate. Helical muscles wrap around the body in a helical

shape. When a helical muscle contracts, the body twists.

Muscle contraction induces muscle force on nearby FEM elements. Each muscle segment

is modeled as a spring with a changeable desired length. The spring force caused by each

segment is computed as: f = k(ld − l), where k is the stiffness of the muscle fiber, ld

is the current desired length, and l is the current length of the segment. We treat f as a

virtual force, which is realized by muscle stress imposed on nearby elements. When a muscle

segment contracts with the virtual force f in the direction of d in the reference coordinates,

the effect of contraction is as muscle stress F:

F = U


f 0 0

0 0 0

0 0 0

UT (13)

where U is the matrix that rotates vector (1, 0, 0)T in the reference coordinates to be aligned

with d.

Each FEM element may be affected by multiple muscles. The accumulated muscle

stress experienced by an element i is a weighted sum of all the muscle stresses that have an

influence on the element i, denoted in the deformed coordinates of element i as:

σ̂im =
∑
j

wijR̂FjR̂
T (14)

where wij weighs the influence of muscle fiber j on the element i. The value of wij is based on

the shortest distance dij , from the muscle fiber to the center of the element in the reference

coordinates. We use a Gaussian kernel as the attenuation function, h(d) = exp( d
2

σ2 ), where

σ is the variance of the Gaussian function. The influence weight wij is defined as

wij =
h(dij)∑

k∈group(j) h(dik)
(15)

The denominator in eq. (15) normalizes the influence of muscle fibers within the same group.

This normalization allows different muscle groups, typically with different functionalities,

to exert their influence on the soft body simultaneously.
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Once we compute the muscle stress for each element σ̂m, we calculate the force at each

face of the element by multiplying σ̂m with the area-weighted face normal in the deformed

coordinates. Finally, we evenly distribute the force at each face to the vertices to obtain fm

at each node. As a shorthand, we define a muscle force matrix A to express the relation

between the muscle force on each node and the effect of muscle contraction.

fm = A(ld − l) (16)

Note that A ∈ R3n×m where n is the number of nodes in the FEM mesh and m is the

number of muscle segments, which is also the dimension of our control variables.

4.3.3 Numerical Integration

To ensure the stability of our system with large time steps, we use an implicit integrator to

solve the dynamic equations. After substituting each force terms into eq. (11), we arrive

at the following dynamic equation:

Mp̈ = fx −K(p−Rx)−Cṗ + A(ld − l) (17)

Applying the implicit integrator, we can rewrite the equation as,

M̃ṗn+1 = Mṗn + ∆t(fnx −K(pn −Rxn) + A(ld − ln))

= f̃n + fc + Ãld (18)

pn+1 = pn + ∆tṗn+1 (19)

where superscript n indicates the discretized time index and ∆t is the time step. We define

M̃ = M + ∆tC + ∆t2K and Ã = ∆tA, and single out the contact force as fc, which is part

of fx and will be discussed in the next section. f̃n accounts for the remaining terms on the

right hand side of eq. (18).

4.4 Locomotion Control

To create functional locomotion using the simulation framework described in previous sec-

tion, we need a control algorithm to compute the appropriate muscle contractions. Our

control algorithm formulates an optimization at each time step to solve for the desired

muscle contraction ld that achieves the control goals subject to physical constraints.
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4.4.1 Optimization

We express the objective function in the optimization as a convex quadratic function of the

next state of the soft body: G(pn+1). This general function form is sufficient to encode a

wide variety of control goals while retaining convexity of the optimization. Using eq. (18)

and (19), the optimization minimizes a reparameterized objective function which implicitly

enforces the equations of motion:

min
ld

G(pn + ∆tM̃−1(f̃n + fc + Ãld)) (20)

In addition to the objective function, the optimization must satisfy two constraints. The

first constraint enforces the range of muscle contractions: 0.5l0 ≤ ld ≤ l0, where l0 denotes

the muscle length at the rest pose. The second constraint enforces valid contact under

Coulomb’s friction model. We adapt an implicit time-stepping LCP method to regulate

contact velocity and contact force, fc = Nf⊥ + Df‖, where N is the unit normal vector, D

is a set of tangential directions at the contact point, and f⊥ and f‖ are the magnitudes of

normal and tangent forces. The optimization with constraints can be written as

min
ld,f⊥,f‖,λ

G(ld, f⊥, f‖) (21)

subject to

0.5l0 ≤ ld ≤ l0

0 ≤


f⊥

f‖

λ

 ⊥


NT ṗn+1

DT ṗn+1 + Eλ

µf⊥ −ET f‖

 ≥ 0

where µ is the friction coefficient and E is a block-diagonal matrix of e, which is a vector of

ones. The complementarity constraints also introduce auxiliary variables λ. The physical

meaning of λ is related to the tangent velocity of a sliding contact. Please see Anitescu and

Portra [7] for a complete review of LCP formulation.

A quadratic program with linear complementarity constraints (QPCC) is well known

for its nonconvexity and disjunctive features, which cannot be solved efficiently by standard

nonconvex solvers. Previous work simplified this problem by assuming that the current
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contacts will remain static (the velocities of contact points remain zero) at the next time

step. If this assumption is not consistent with the simulated result, the controller will

try to correct it at the next time step. In soft body control, assuming static contacts is

too restrictive and significantly reduces the effectiveness of the controller. As a result, we

cannot drop the complementarity constraints in the optimization. We will introduce a new

iterative solver to QPCC for contact modeling in Chapter 4.5.

4.4.2 Low-level Controllers

We develop three types of low-level control mechanisms by formulating different objective

functions G(ld, f⊥, f‖) in eq. (21). In Chapter 4.6, we demonstrate that these three basic

mechanisms can be combined to design fundamentally different locomotion controllers.

Momentum control. Regulating momentum is of paramount importance for biped bal-

ance and locomotion. Previous work [99] has demonstrated that controlling the linear

momentum relative to the contact support is a simple but very effective balance strategy.

We use the following objective function to regulate the linear momentum, L.

G(ld, f⊥, f‖) = ‖L̇(ṗn+1, ṗn)− ¯̇L‖2 (22)

The desired change of linear momentum ¯̇L is defined as

¯̇L = mKp(c̄− cn)−KdL
n (23)

where m is the mass of the creature and c is the center of mass (COM) position. Kp and

Kd are the stiffness and damping coefficients for the feedback control. For balance control,

the desired COM position c̄ is computed based on the center of the contact support area.

Angular momentum also plays an important role in balance. For soft body creatures,

controlling angular momentum is also essential to rolling motion.

G(ld, f⊥, f‖) = ‖Ḣ(ṗn+1, ṗn,pn)− ¯̇H‖2 (24)

where ¯̇H denotes the target value for the change of angular momentum and Ḣ computes

the change of angular momentum at the next state.
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Base control. In addition to controlling the momentum, we can increase the contact

area to provide a wider range of support to the COM. This balance strategy is particularly

interesting for soft bodies. By squashing and stretching its entire body, a soft body creature

can adjust its base area at will to maintain balance. We define an objective function that

controls the projected base area A by matching its change rate to a desired rate ¯̇A:

G(ld, f⊥, f‖) = ‖Ȧ(ṗn+1,pn)− ¯̇A‖2 (25)

We compute A by projecting a defined base area to the ground surface with normal vector

n:

A =
1

2

∑
i

((bi − ai)× (ci − ai))T n (26)

where index i loops over all triangles in the base area, and ai, bi, and ci are the vertices

of the ith triangle. When computing Ȧ, we evaluate the velocity terms at ṗn+1 and the

position terms at pn. This approximation has negligible effect on accuracy, but keeps our

objective function convex.

Position and velocity tracking. Direct control of a Cartesian position or velocity is

also an effective way to regulate locomotion. For example, tracking the trajectory of a foot

is essential for producing a walking gait. The following objective function minimizes the

distance between a particular body point at the next time step and a target Cartesian point

p̄

G(ld, f⊥, f‖) = ‖f(pn+1)− p̄‖2 (27)

where f is a function that selects a node from pn+1. If we redefine f as a function that

computes the COM, eq. (27) can be used to track the COM. Likewise, we can track the

relative position of two body points by replacing f(pn+1) with f1(pn+1)− f2(pn+1), where

f1 selects the first node and f2 selects the second node from pn+1. We can also use a similar

objective function to track velocity.

G(ld, f⊥, f‖) = ‖f(ṗn+1)− ¯̇p‖2 (28)
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4.5 QPCC for contact modeling

The control framework described in Chapter 4.4 requires an efficient QPCC solver that

can handle 50 to 100 complementarity variables. Solving QPCC in general is difficult due

to the presence of the linear complementarity constraints. A näıve way to solve QPCC is

to evaluate all the valid combinations of the complementarity constraints and output the

minimizer. This exhaustive method is guaranteed to find the global minimum. However,

the computational time grows exponentially with the number of variables involved in the

complementarity constraint. In our control problem, we have 10 variables for each contact

point (one for f⊥, eight for f‖ and one for λ). Thus, a few contact points alone will render

the exhaustive method computational impractical.

We propose a more efficient way to solve a QPCC for contact problems, such as eq.

(21). Our iterative QPCC solver starts with an initial guess, which is a set of linear con-

straints that are compatible with the complementarity conditions. For the initial guess,

we manually set some elements of f⊥, f‖, and λ to be zero and their complementary pairs

to be nonnegative, in a way that the state of those variables has a physical meaning. For

example, if we assume all contact points are static, we arrive at the following convex QP:

min
ld,f⊥,f‖,λ

G(ld, f⊥, f‖) (29)

subject to

0.5l0 ≤ ld ≤ l0

0 ≤ f⊥, NT ṗn+1 = 0 (30)

0 ≤ f‖, DT ṗn+1 + Eλ = 0 (31)

0 = λ, µf⊥ −ET f‖ ≥ 0 (32)

After solving the above QP, we examine the complementarity conditions at the mini-

mizer. We identify those inequality constraints that reach their boundary at the minimizer

as candidates for pivoting. Our algorithm pivots one of those candidates at a time. That

is, we set the candidate to equality constraint and flip its complementary counterpart from
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equality to inequality. By pivoting the complementarity constraints, we formulate a new

QP with a set of different linear constraints and we solve for the minimizer for this new

QP. We repeat this process until all the candidates reach the local minimum of the QPCC,

i.e. until we encounter a minimizer that lies in the interior of the feasible region. The can-

didate that yields the best local minimum is returned as the solution of the QPCC. Our

QPCC solver explores the nonconvex feasible region based on the following heuristics: Each

pair of the complementarity constraints defines a feasible region formed by two intersecting

half-hyperplanes. If a minimizer hits the boundary of the half-hyperplane, exploring the

other half-hyperplane might give a better minimizer. Figure 18 shows a two dimensional

example.

Our algorithm further exploits the structure of a contact problem to improve the perfor-

mance. Instead of arbitrarily selecting a candidate to pivot, we can group the complementar-

ity constraints according to their physical meaning and pivot a whole group together. There

are three different situations for each contact point: static, sliding and contact breakage.

Pivoting constraints in eq. (30) indicates a switch between a static (or a sliding) contact

and contact breakage. Pivoting constraints in eq. (31) and (32) indicates a switch be-

tween static and sliding contact. For example, if f⊥(i) = 0 is the result of solving the QP

Figure 18: A simple 2D QPCC example. The complementarity constraints are 0 ≤ x ⊥
x−y−2 ≥ 0. (a) The feasible region lies in two intersecting half-hyperplanes, shown as two
black line segments. (b) With the initial guess of x = 0 and x− y − 2 ≥ 0, the minimizer,
shown as an orange dot, is located at the boundary of the inequality constraint. (c) After
pivoting the constraint, setting x ≥ 0 and x− y− 2 = 0, we find a better minimizer (global
minimizer in this simple case).
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(eq. (29)), it implies that breaking ith contact point might lead to a better minimizer for

the QPCC. The solver will pivot the corresponding constraints: f⊥(i) ≥ 0 → f⊥(i) = 0

and (NT ṗn+1)(i) = 0 → (NT ṗn+1)(i) ≥ 0. The new QP will be solved subsequently.

Conversely, when a free point restores a static contact, we apply the opposite pivoting.

If a friction cone condition (eq. (32)) for the ith contact point needs to be pivoted,

this implies that the ith contact point is about to slide and switching it from static to

sliding might lead to a better minimizer. The solver then changes the inequality constraint

(µf⊥−ET f‖)(i) ≥ 0 to equality and changes the corresponding equality constraint λ(i) = 0

to inequality. In addition, we need to pivot some constraints in eq. (31) to specify the

direction of the sliding contact, which can be estimated using the static friction from the

current minimizer. We project this static friction force to each of the tangential direction of

the ith contact point D(i) and find the two directions (the mth and nth direction in D(i))

that have the largest magnitude. The sliding force direction is estimated to be along the

convex combination of mth and nth directions. We pivot the constraints in the following

way,

f‖(i,m) ≥ 0, (DT ṗn+1 + Eλ)(i,m) = 0

f‖(i, n) ≥ 0, (DT ṗn+1 + Eλ)(i, n) = 0

f‖(i, j) = 0, (DT ṗn+1 + Eλ)(i, j) ≥ 0, ∀j 6= m,n

where f‖(i, j) is the magnitude of the friction force along the jth direction for the ith

contact point1. For the special case, where the friction force is exactly along the mth

(or nth) direction, we only pivot the complementarity constraints involving the mth (or

nth) direction. For a switch between sliding to static contact, we use the same pivoting

mechanism but pivot the constraints the opposite way.

Instead of searching exhaustively in the feasible region of the QPCC, our solver system-

atically explores the feasible region based on the above mentioned heuristics. Although the

objective value is not guaranteed to decrease monotonically, our experiments show that the

1f‖(i, j) is actually the (i ·N + j)th element of f‖ assuming that N tangential directions are used for the
linearized friction cone for each contact point.
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objective value decreases drastically within a small number of iterations. The minimizer

found by our solver is, in all the experiments, significantly closer to optimal than the one

solved under the static contact assumption. We report the results of the experiments in

Chapter 4.7.

Implementation. Our solver requires a feasible initial guess. We can use the trivial

solution under static contact assumption (eq. (29)) as an initial guess, or the solution from

the previous QPCC when it is available (warm start). Occasionally, they might result in an

infeasible QP. For those cases, we assume the same muscle activation as in last time step,

remove the objective function and muscle length constraints from eq. (21) and solve a pure

LCP. The contact situation from the LCP solution is then used as the initial guess for the

QPCC.

We implement the QPCC solver using a graph expansion algorithm (See Appendix A

for details). Each QP with linear constraints is a node in the graph. We visit each node

twice, starting from the initial guess as the root. In the first visit, we solve the QP, assign

the objective value to the node, and store the set of candidates to be pivoted. After first

visit, we push the node into a priority queue based on its objective function value. A node

is visited the second time when it is at the top of the queue. In the second visit, we pivot

the constraints from its candidate set. Each pivot generates a child node. We discard the

child node if it already exists in the current graph. If the child node is new, we visit the

node for the first time and push it into the queue. The second visit is completed when all

the constraints in the candidate set are pivoted. We then pop the next node in the queue

and repeat this process. The algorithm terminates when the priority queue is empty or the

number of visited nodes exceeds a threshold. The final solution is the best minimizer found

so far by the QPCC solver.
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Figure 19: An H-shaped soft body character does its morning exercises by swinging its
body from one side to the other.

Figure 20: An I-shaped soft body character tries to maintain balance under perturbation
by regulating its momenta, widening its base and lowering its center of mass.

4.6 Results

In this section we describe the results of our soft body locomotion controllers. Please

see the video2 to watch the locomotion animations. Our system is implemented in C++,

and we generated the tetrahedral mesh for FEM simulation using TETGEN [134]. We

used the GPU to create layered depth figures for collision detection, and we used contact

patches (multi-resolution volume contact) [3] instead of points as the contact primitives. For

each contact patch, we use eight tangential directions to linearize the friction cone, which

provides sufficient accuracy while keeping the QPCC tractable. The examples were run on

a workstation with a 2.26GHz CPU and 4GB of memory. All the data of our locomotion

examples are summarized in Table 2.

We design many different shapes of the soft body characters, all of which are chosen

from the English alphabet. Figure 19 shows an H-shaped character doing morning exercises.

The character is designed with four longitudinal muscles and one radial muscle for each leg

(Figure 25a). It is animated by specifying the trajectory of the desired center of mass

(COM), which is moved left/right by a sine function. We use the position and velocity

tracking controller from Chapter 4.4.2 to track the desired COM. Note that when the “H”

swings left, its right side elongates and gets thinner while the left side shortens and becomes

2http://dl.dropbox.com/u/36899427/softbodylocomotion.mp4
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fatter due to the volume preservation. This animation clearly exemplifies the principle of

squash and stretch.

Balance. We design an I-shaped character (Figure 20) to demonstrate static balance. We

gave the character four longitudinal muscles that allow it to bend in any direction. This

character is perturbed by a large force exerting at its head, and it attempts to recover its

balance. Static balance of the “I” turns out to be one of the most difficult task among all our

examples. The geometry of the letter “I” does not have limbs or other appendages to help it

regulate the linear and angular momentum. The squishy body and lack of skeletal support

make the task even more challenging. In addition to momentum control for balance, which

is not enough to prevent the “I” from falling, we exploit the advantage of its flexible body

shape. We include a term in the objective function that encourages it to widen its support

base. With this wider base, the contact area is increased and the COM is lowered, which

helps with the balance task. Without our QPCC solver, base widening would be difficult to

achieve, because it requires frequent switching from static to sliding contacts. In addition,

we observe that right after the perturbation, half of the base is lifted from the ground and

the contact area concentrates on the rim of the base to provide the maximum amount of

angular momentum to combat the perturbation. It is similar to a human lifting his or

her heels and using only toes to balance when pushed from behind. This natural contact

Table 2: Parameters and performance of examples. # tets: the number of elements in the
FEM simulation. # dofs: the number of muscle degrees of freedom for the soft body. Sim
time, opt time and total time are the average simulation, optimization and total time (in
second) per frame.

examples # tets # dofs # contact sim opt total
patches time time time

exercise(H) 1901 52 4 0.54 0.05 0.59
balance(I) 1066 48 4 0.31 0.28 0.59
slide(F) 705 48 4 0.25 0.23 0.48
jump(I) 1066 104 4 0.33 0.48 0.81
jump(T) 1219 51 4 0.63 0.30 0.93
roll(O) 911 40 6 0.26 0.18 0.44
crawl(I) 620 26 8 0.18 0.24 0.42
walk(X) 1128 112 4 0.54 0.70 1.24
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Figure 21: An F-shaped soft body character maintains balance under a persistent and
continuously increasing pulling force on a slippery surface. It actively leans backward to
avoid tipping over.

Figure 22: An I-shaped soft body character squashes and stretches its whole body to jump
forward.

strategy emerges automatically from our QPCC solution. To compare our QPCC solver

and a more commonly used QP solver with linear constraints, we produced two animation

sequences of the “I” balancing, one with each solver. QPCC produced natural and effective

balance motions, including changing contact situation, lowering the COM, widening the

base and regulating momentum. In contrast, the QP solver (which only allows for static

contact constraints) resulted in a falling motion.

Sliding. In the example of Figure 21, instead of applying a pertur-

bation force that lasts for a short time, we exert an continuously in-

creasing pulling force on the “F” standing on a slippery surface. We

design a sliding balance controller for this special balance task. The

controller estimates the optimal relative position between the center of

base (COB) and the COM such that the total angular momentum is

zero. We use the position and tracking controller to track the optimal COB. The sliding

balance controller also benefits from our QPCC solution since planning the movement of

the COB involves planing the change of contact situation (from static to sliding). We in-

strument the vertical stroke of the “F” with four longitudinal muscles. Even though no

muscle resides in the horizontal parts of this character, the two horizontal strokes are still
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Figure 23: A T-shaped soft body character twists using helical muscles when jumping.

Figure 24: An X-shaped soft body quadraped walks by slowly lifting and moving one foot
at a time.

influenced by the muscles in the main body. The first sequence of sliding balance in the

video shows that the “F” leans left while it is dragged towards the right. As the drag force

increases, the “F” leans more and more to prevent from tipping over. The second sequence

shows the sliding motion when it is dragged to the left. The sliding motion is different from

the first one due to the asymmetry of the body shape. The elongation and oscillation of the

top stroke of the “F” demonstrates the animation principle of follow through. In the third

sequence, we applied the sliding balance controller 0.3 second after the start of dragging to

delay the character’s response time. The slow response of the “F” makes it difficult to main-

tain the optimal COB-COM relative position. It struggles to keep balance by constantly

switching between sliding and breaking contact (small jumps), and eventually it manages

to balance. These changes of contact, due to the QPCC solver, makes the controller more

robust and the soft body character more lifelike.

Jumping. Jumping is an visually interesting form of locomotion for soft body characters

as it is often seen in cartoons and animations. Our jumping controller consists of three

separate controllers for takeoff phase, airborne phase, and landing phase. During the takeoff

phase, we use the position and velocity tracking controller to follow a desired trajectory of

the COM. We also set ¯̇H = 0 to the angular momentum controller, which prevents large

rotation at takeoff. During the airborne phase, we control the relative position between the

COB and COM. Extending the COB towards the direction of jumping helps the character
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balance after landing. Upon landing, we switch to the static balance controller. Figure 22

shows a forward jumping motion of the same character “I” with a slightly different fiber

arrangement. We add four more longitudinal muscles and one radial muscle to help it with

this highly dynamic motion. Another sequence in the video shows successive jumps in place.

Figure 23 demonstrates a twist jump and the use of helical muscles (Figure 25b). Before

the “T” takes off, we set ¯̇H = (0, 600, 0)T to make it twist its body.

Rolling. In the video, we also demonstrate locomotion by rolling. We designed an O-

shaped character with two loops of muscle fibers arranged as two concentric circles (Fig-

ure 25c). Each fiber consists of 20 independent segments, which allow the “O” to control

its shape locally. The rolling motion is initiated by moving the COM in front of the contact

patches. We use the angular momentum control to make it roll. In the first animation, we

set the desired change of angular momentum ¯̇H to be (0, 0,−200)T in the first 90 frames.

We observe that the character actively changes its shape by shifting its weight to the right

in order to roll. After the character starts rolling, we disable the controller and simulate

the passive rolling. The character recovers to its original symmetric rounded shape and the

rolling stops after a while due to friction. In the second animation, we compare our result

Figure 25: Examples of the muscle fiber designs for various soft body characters. Each curve
inside the character represents a muscle fiber, which consists of a number of independently
contracting degrees of freedom.
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with the motion solved by a QP using the static contact assumption. When we only allow

static contact, the “O” never begins rolling because this motion requires the character to

break contact, which is prohibited by the static contact assumption (eq. (30)). The third

sequence shows that the “O” starts to roll right, deaccelerates, stops and rolls to the left

by applying a time varying ¯̇H to the controller.

Crawling. Crawling is often used by soft body creatures in nature, such as earthworms.

To demonstrate crawling motion, we flatten the “I” and lay it down on the ground. In

addition to the four longitudinal muscles run along four sides of the body, we add another

radial muscle in the middle of its body to facilitate the elongation of the body. We specify the

trajectory of its four corners for the crawling motion; the back of the character moves while

it is contracting, and the front moves when it elongates. We use the position and velocity

tracking controllers to match the trajectory. As Miller noted, such creatures have oriented

scales that result in anisotropic friction [105]. We incorporate just such an anisotropic

friction into our contact model by modifying the contact force to fc = Nf⊥ + DSf‖, where

S is a diagonal scaling matrix that modulates the frictional force according to the direction

of motion. We set the friction coefficient in the backward direction to be 10 times larger

than all other directions. In the video, we demonstrate the earthworm style of crawling.

The whole body of the character lies flat on the ground at all times and it moves forward

by repeatedly shortening and elongating its body. The contact strategy of this form of

crawling is complex. During shortening, the front end of the body is in static contact while

the rear end is sliding forward. During elongating, the front end switches to sliding contact

while the rear end switches to static contact. It is challenge to capture this complex contact

strategy using the traditional control mechanism, but it emerges automatically by solving

QPCC.

We also demonstrates an inchworm style of crawling, using the same body geometry and

muscles as the earthworm. For this style of motion, the body bends upward periodically at

the middle and the contacts mostly concentrate at the two ends of the body. We achieve

this effect using the same controller as in the earthworm style crawling with an additional
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constraint that the upper longitudinal muscle cannot contract. While other muscles contract

to tracking the trajectory, the asymmetric muscle contractions bend the body upwards

naturally.

Walking. Figure 24 demonstrates the walking motion of an X-shaped quadruped. We

instrument four longitudinal muscles and two radial muscles for each limb of the “X” (Fig-

ure 25d) and specify the trajectories for all of its four feet. We apply the position and

velocity tracking controller, to track this the walking motion. The first sequence in the

video shows a careful and slow gait that moves only one foot at a time. The second walking

sequence shows a faster walking gait by simultaneously lifting and moving two feet at a

time. The breaking of contact when a foot lifts from the ground is handled automatically

by the QPCC solver.

4.7 Discussion

We have presented a system for animating soft body characters, with a particular emphasis

on locomotion. Key aspects of our approach include the coordinated deformation of groups

of finite elements using virtual muscle fibers, the specification of high-level goals by the

animator, and the use of a new solver that handles static, sliding and breaking contact cases.

Our system allows us to create soft body characters that demonstrate a variety of locomotion

behaviors, including crawling, hopping, walking, sliding and rolling. Our characters move

in an organic manner, and they follow the animation principles of anticipation, squash-and-

stretch, and follow through.

One important contribution of this chapter is the formulation of QPCC and its solver.

QPCC is an NP-hard problem [23] and our method provides an effective heuristic. To

evaluate our QPCC solver, we tested it on 10 QPCC problems with 98 variables and 40

pairs of linear complementarity constraints. We compared our solutions (QPCC in Table 3)

with the ground truth, as well as with the solutions based on the static contact assumption

(QP in Table 3). The ground truth is computed by an exhaustive search, i.e. , solving

a QP for every combination of complementarity variables and selecting the one with the

lowest objective value. We evaluated our results using a “gap ratio”, defined as the ratio of
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Table 3: The results of the numerical experiments of the QPCC solver.
QPCC QP Ground Truth

Avg Best Worst Avg Best Worst Avg Best Worst

Obj Value 1483.2 21.8 697.9 5222.8 2072.0 1246.9 772.9 0.0 0.0

#Iterations 17 3 31 1 1 1 10000 10000 10000

difference in the optimal value between our solver and the ground truth, to the difference in

the optimal value between the static contact assumption and the ground truth. On average

of 10 problems, the gap ratio is 6.29, indicating that our solver yields solutions 6.29 times

closer to the ground truth than the solutions based static contact assumption. We also

selected the best case and the worst case according to the gap ratio and reported them in

Table 3. Although the empirical results showed that our QPCC solver can effectively solve

contact resolution problem and balance between the quality of solution and computational

time, the QPCC solver does not guarantee finding the minimizer in polynomial time. In

the worst case, it takes the same amount of time as the exhaustive search to find the global

minimizer.

Our system has a few limitations. The optimization scheme described in Chapter 4.4

only optimizes the control variables for the next time step. This type of greedy algorithm

sometimes leads to unnaturally large muscle contraction or discontinuities in motion. For

example, the rolling “O” demo in the video exhibits some unnatural vibration. Further-

more, the greedy algorithm prevents us from simulating anticipatory behaviors in motion.

For example, we were not able to develop a “cartwheel” controller for the I-shaped char-

acter because a natural and stable cartwheel motion requires optimizing a long-window of

trajectory. This issue can potentially be solved by implementing long-horizon optimization

or model predictive control methods.

One of the issues that we hope to explore in the future is to expand our solution tech-

niques to handle longer-term goals that cannot be reached using our current optimization

method. In this work, all muscles are manually designed. We would like to develop an au-

tomatic muscle design algorithm to incorporate more sophisticated muscle structures. We

would also like to investigate muscle design for chunkier creatures. For example, it is not
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immediately obvious how muscle fibers should be arranged for the Stanford Bunny. An-

other possibility is to note that in our current system, we only use contracting muscle fibers

in order to change the shape of our characters. It would be interesting to explore other

forms of shape control, such as elongating muscles or sheets of virtual muscles. Another

possible direction would be to explore the animation of soft body characters in water, since

many real soft-body creatures live in an aquatic environment. Finally, our current animator

controls are provided as program modules, and an easier way to use them would be to plug

them together using a graphical user interface.
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CHAPTER V

LOCOMOTION WITH A PASSIVE MECHANICAL DEVICE

5.1 Motivation

The invention of tools has greatly increased the efficiency of our work and the quality of our

lives. The bicycle is such an invention that has drastically improved the efficiency of human

locomotion. In fact, it was voted as the best invention since the 19th century [18] because

it is an inexpensive, fast, healthy and environmentally friendly mode of transportation.

However, riding a bicycle is nontrivial due to its inherently unstable dynamics: The bike

will fall without forward momentum and the appropriate human control. Getting onto

the bike, balancing, steering and riding on bumpy roads all impose different challenges to

the rider. As one important child development milestone, learning to ride a bicycle often

requires weeks of practice. We are interested to find whether it is possible to use a computer

to mirror this learning process. In addition to the basic maneuvers, the most skillful riders

can jump over obstacles, lift one wheel and balance on the other, and perform a large

variety of risky but spectacular bicycle stunts. Performing stunts requires fast reaction,

precise control, years of experience and most importantly, courage, which challenges most

people. Can we design an algorithm that allows computers to automatically learn these

challenging but visually exciting bicycle stunts?

Designing an algorithm to learn to ride a bicycle presents unique challenges. Riding a

bicycle involves complex interactions between a human rider and a bicycle. While the rider

can actively control each joint, the bicycle is a passive system that can only be controlled

by the human rider. To control a single degree of freedom (DOF) of a bicycle, coordi-

nated motions of multiple DOFs of the rider are required. Moreover, the main difficulty

in locomotion is to control an under-actuated system by exploiting external contact forces.

Manipulating contact forces on a bicycle is indirect. All of the rider’s control forces need

to first go through the bicycle dynamics to affect the ground reaction forces and vice versa.
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This extra layer of bicycle dynamics between the human control and the contact forces adds

another layer of complexity to the locomotion control. Balance on a bicycle is challenging

and it is different from balance when standing or walking. While a human can stand stably

due to the large contact area of the feet, a static bicycle cannot stay upright due to its

narrow tires. Humans can balance during walking by planning and changing their foot

placement. In contrast, the bike rider cannot abruptly change the contact position, which

can only be changed gradually through steering. The limited range of human motion on

a bicycle makes balance even harder. When the character’s hands are constrained to hold

the handlebar and their feet are on the pedals, the character loses much of the freedom to

move various body parts. He or she cannot employ ankle or hip postural strategies or wave

their arms to effectively regulate the linear and the angular momenta.

Balance during bicycle stunts is far more challenging than normal riding. As a stunt

example that illustrates the balance issues we plan to tackle, consider a bicycle endo (the

third image of Figure 3), in which the rider lifts the rear wheel of the bicycle and keeps bal-

ance on the front wheel. In this pose, the rider encounters both the longitudinal and lateral

instabilities. The small contact region of one wheel and the lifted center of mass (COM)

due to the forward leaning configuration exacerbate the balance problem. Furthermore,

the off-the-ground driving wheel makes any balance strategies that involve acceleration im-

possible. The unstable configurations and the restricted actions significantly increase the

difficulty of balance during a stunt.

This chapter describes a complete system for controlling a human character that is

riding a bicycle in a physically simulated environment. The system consists of two main

components: simulating the motion and optimizing the control policy. We simulate the

bicycle and the rider as an articulated rigid body system, which is augmented with special-

ized constraints for bicycle dynamics. The second component provides an automatic way

to learn control policies for a wide range of bicycle maneuvers. In contrast to many optimal

control algorithms that leverage the dynamics equations to compute the control signals, we

made a deliberate choice not to exploit the dynamics equations in our design of the control

algorithm. We believe that learning to ride a bicycle involves little reasoning about physics
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for most people. A four-year-old can ride a bicycle without understanding any physical

equations. Physiological studies show that learning to ride a bicycle is a typical example of

implicit motor learning [28], in which procedural memory guides our performance without

the need for conscious attention. Procedural memory is formed and consolidated through

repetitive practice and continuous evolution of neural processes. Inspired by the human

learning process, we formulate a partially observable Markov decision process (POMDP)

and use policy search to learn a direct mapping from perception to reaction (procedural

memory).

Both prior knowledge of bicycle stunts and an effective searching algorithm are essential

to the success of policy search. After studying a variety of stunts, we classify them into two

types. We apply feed-forward controllers for the momentum-driven motions and feedback

controllers for the balance-driven ones. We study videos of stunt experts to understand their

reactions under different situations and used this information to design the states and the

actions of our controllers. We employ a neural network evolution method to simultaneously

optimize both the parametrization and the parameters of the feedback controllers. The way

we incorporate the prior knowledge into our system and the effective evolutionary method

are both essential to the success of policy search.

We evaluate our system by demonstrating a human character riding different types of

bicycles and performing a wide variety of stunts (Figure 3). We also evaluate the importance

of optimizing the parametrization of a policy. We share our experiences with different

reinforcement learning algorithms that we have tried throughout this research project.

5.2 Overview

We have designed a system that allows a virtual human character to learn to ride a bicycle

and perform a wide variety of stunts. The goal of our system is to learn a control policy that

initiates a particular action at any state. Given the state space, the action space and the

reward function for each bicycle task, the offline learning subsystem starts with an initial set

of candidate policies, iteratively evaluates (using simulation) and evolves them (using CMA

or NEAT) until the optimal policy is found. This optimal policy allows the user to interact
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Figure 26: Overview of our algorithm.

with the bicycle simulation in real time by giving commands such as steering to the left.

The online simulation subsystem first extracts the observable states, such as the tilt angle,

the falling speed, and the actual and the user-specified handlebar angle. It then queries the

policy to determine appropriate actions, such as turning the handlebar at a certain speed to

fulfill the user’s command while still maintain the balance of the bicycle. Executing actions,

such as turning the handlebar, requires a coordinated full-body motion of the rider. An

Inverse Kinematics (IK) solver maps the compact set of actions to the rider’s full-body

pose. The simulator tracks this desired pose and at the same time simulates the dynamics

of both the human rider and the bicycle. Figure 26 illustrates the main components of our

system.

5.3 Bicycle and Rider Simulation

Our simulator is based on Open Dynamic Engine (ODE) [139], but we augmented it with

additional constraints to simulate both the bicycle and the human rider. We treat the bicycle

and the rider as a system of articulated rigid bodies. Since the dynamics is represented in

the maximal coordinates, each rigid body has six DOFs and its dynamic equation is M 0

0 I


 v̇

ω̇

 =

 mg

−İω

 + JT

 f

τ

 (33)
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where M is the mass matrix, I is the inertia tensor, v and ω are the linear and angular

velocities, f and τ are the constraint forces and torques, which come from the bicycle chains,

the joints, the actuators and the contacts. JT is the transposed Jacobian matrix that maps

the constraint forces and torques to the body.

Chains transfer power from the pedals to the rear wheel on a bicycle. We use a linear

equality constraint to realize the effect of a bicycle chain.

nT (αωA − ωB) = 0 (34)

where bodies A and B are the pedals and the rear wheel. n is the common direction of

their rotational axes and α represents the gear ratio, which is the ratio between the number

of teeth on the chain-ring and the number on the rear sprocket. Note that eq. (34) models

a fixed-gear bicycle. In some tasks, we disabled this constraint to mimic the effect of the

free wheel, allowing the rider to glide without pedaling.

The other constraints are standard from the implementation of ODE. For completeness

of presentation, we include a brief description of such constraints in Appendix B. Note that

we use the actuator constraints instead of the traditional PD servos to track a desired pose.

We have found that using the actuator constraints enables us to simulate at large time steps

(0.01s), which significantly speeds up the computation.

We made several simplifications in the simulation. We used ball joints to attach the

rider’s feet to the pedals. This treatment is similar to wearing toe clips in the real world.

We also used ball joints to connect the rider’s hands with the handlebar. For some tasks

in which the rider is seated, we further constrained the relative position and orientation

between the rider’s pelvis and the bicycle seat.

5.4 Learning to Ride a Bicycle

5.4.1 Markov Decision Process

We formulate the bicycle control problem as a POMDP. A Markov decision process (MDP)

is a tuple (S,A,R,D, Psas′ , γ), where S is the state space; A is the action space; R is

the reward function; D is the distribution of the initial state s0; Psas′ is the transition

probability; and γ ∈ [0, 1] is the discount factor. For example, in the bicycle balance task,
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we choose the state space S to include the tilt angle of the bike, the tilting speed and the

handlebar angle. We choose the action A to be turning the handlebar at a certain speed.

We choose the reward function R at the state s to be

R(s) =

 1 if the bicycle remains upright,

0 otherwise.
(35)

The initial state s0 is drawn from a random perturbation near the upright orientation of

the bicycle. The state transition is calculated using simulation, and we do not discount the

rewards (γ = 1).

A policy is a mapping from states to actions: π : S 7→ A. The return of a policy is the

accumulated rewards along the state trajectory starting at s0 by following the policy π for

N steps.

V π(s0) =
N∑
i=0

R(si)

The value of a policy is the expected return with respect to the random initial state s0

drawn from D.

V (π) = Es0∼D[V π(s0)] (36)

The optimal solution of an MDP is the policy that has the maximum value π∗ = arg maxπ V (π).

The optimal policy in the bicycle balance example decides how to turn the handlebar under

different situations so that the bicycle can stay upright for the longest time.

Our MDP is partially observable because we choose to observe only a selected subset of

all the simulation states. We have found that focusing on a small number of relevant states

for each task results in a more efficient learning process. The actions are also selected based

on our prior knowledge of the task. Table 4 and 5 summarize all the states and actions used

across our different examples. The 25 states in Table 4 may seem exhaustive, but we only

use a subset of them (typically not more than eight states) for each task.

5.4.2 Policy Search

We apply policy search to optimize the control policies. Unlike value iteration, policy search

can be easily applied to MDPs in high dimension and with continuous state and action

spaces. This algorithm searches for the optimal policy within a parameterized functional
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Table 4: States and their descriptions. The rider’s pelvis position, torso orientation and
angular velocity are calculated in the bicycle frame’s coordinates.

state description

t time (used in the feed-forward controllers)
θ handlebar angle
α roll angle of the bike (tilt left/right)
α̇ roll speed
β pitch angle of the bike

β̇ pitch speed
γ yaw angle of the bike
γ̇ yaw speed
vr rear wheel linear speed
vf front wheel linear speed
hr rear tire height above the ground
hf front tire height above the ground
x pelvis position along x-axis
y pelvis position along y-axis
z pelvis position along z-axis
φ torso orientation in the Sagittal plane
ψ torso orientation in the Coronal plane
χ torso orientation in the Transverse plane

φ̇ torso angular speed in the Sagittal plane

ψ̇ torso angular speed in the Coronal plane
χ̇ torso angular speed in the Transverse plane
∆θ difference between actual and desired handlebar angle
∆β difference between actual and desired pitch angle
∆vr difference between actual and desired rear wheel speed
∆vf difference between actual and desired front wheel speed

space π∗ ∈ Π. During policy search, one or more random policies are generated as an initial

guess. These candidates are evaluated and improved iteratively. Policy improvement can

be guided using the policy gradient [117], trajectory optimization [91] or other optimization

techniques [57]. Policy search ends when the iteration converges or the maximum number

of iterations is reached.

5.4.2.1 Policy Parametrization

We use two types of parametrizations for the bicycle control problem: splines for feed-

forward control and neural networks for feedback control. We found that most of the stunts

can be categorized into momentum-driven, balance-driven or a combination of the two. The

momentum-driven stunts involve vigorous full body motions to manipulate the bicycle to a
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Table 5: Actions and their descriptions. The rider’s pelvis and torso movements are relative
to the bicycle frame’s coordinates.

action description

θ̇ steering
v̇r accelerating or braking
v̇f accelerating or braking on a front-wheel-driven bicycle
τf front braking
ẋ pelvis motion along x-axis
ẏ pelvis motion along y-axis
ż pelvis motion along z-axis

φ̇ torso motion in the Sagittal plane

ψ̇ torso motion in the Coronal plane
χ̇ torso motion in the Transverse plane
x̃ desired pelvis position along x-axis
ỹ desired pelvis position along y-axis
z̃ desired pelvis position along z-axis

φ̃ desired torso orientation in the Sagittal plane

Figure 27: Left: A simple neural network with input and output layers that are directly
connected. Right: A neural network learned using our algorithm for balancing on the front
wheel. Blue arrows mean negative weights while red mean positive weights. The width of
the arrows encodes the magnitude of the weights.

desired orientation. Coordinated full body motions with large magnitude are essential, but

the short duration of this type of stunts makes balance easy to maintain. For this reason, we

use feed-forward controllers and represent the action trajectories as cubic Hermite splines.

Assuming that the number of control points is given, the parameters to optimize are the

time and the value of the control points1.

Balance-driven stunts require that the rider carefully adjusts his or her COM and main-

tains a stunt pose for a longer period of time. Feedback balance control is vital to the

duration of the performance, which determines the success or failure of the stunt. We use

1We do not optimize the tangents at the control points and we set them to be zero.
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neural networks for their ability to approximate a wide range of functions. The inputs to a

network are the observed states, and the outputs are the actions. Figure 27 Left illustrates

a simple neural network that directly connects the input and the output layers. The output

of neuron i is

vi = σ(
∑
j

wijvj)

where wij is the connection weight between neuron i and j, and σ is the sigmoid function

σ(x) = 1/(1 + e−x).

Parametrization determines the potential quality of the optimal policy. The network

shown in Figure 27 Left is too simple for representing a complex policy required by bicycle

stunts. However, it is not clear how to manually design the network structure, given the

control policies of unsuccessful stunts. For this reason, we use NEAT to search for both

the structure of the neural network and its weights simultaneously, which finds far better

policies than searching over a fixed network. Figure 27 Right demonstrates the learned

network for the balance task of a bicycle endo using NEAT. See Chapter 5.4.2.3 for more

details.

5.4.2.2 Policy Evaluation

To evaluate a policy, we formulate a reward function in the following form:

R(s) = Rt(s) + wRr(s) (37)

where Rt and Rr are task-specific and regularization terms respectively. w is the weight.

We use eq.(35) as the task-specific reward for balance-driven tasks. As the reward

is accumulated over time, the return counts the number of frames that the bicycle stays

upright. The task-specific reward varies for each momentum-driven stunt. For example, the

reward for initiating an endo (lifting the rear wheel) is to maximize the negative pitch angle

of the bike Rt = −β. We refer the readers to Chapter 5.5 and for more detailed descriptions

of task-specific rewards.

Given the task-specific reward term alone, multiple optimal policies could exist. Taking

the balance task as an example, a policy that rides in a straight line and another that
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oscillates in a sinusoidal path by periodically swinging the handlebar can both balance well

and thus yield the same value. The regularization term is mainly used to eliminate this

ambiguity. We use the regularization term Rr = 1
|θ|+ε to express our preference of riding

straight. In our examples, all the regularizers are in the form of

Rr =
1

|X|+ ε

where X can be substituted by α for the upright bicycle position, ∆θ for the desired steering

angle, ∆β for the desired pitch angle, ∆v for the desired speed, (x, y, z) and (φ, ψ, χ) for

small changes of rider’s pelvis position and torso orientation. A small number ε in the

denominator is used to bound the reward.

We do not explicitly minimize the rider’s effort in the reward function because it is

difficult to balance the effort minimization objective and the task-specific objective for

difficult stunt actions. However, we limit the maximum actuated joint torques of the rider

in the simulation to ensure that the rider does not possess super-human strength.

We run multiple simulations with different initial configurations s0, which are sampled

from random perturbations of the default bicycle velocity and orientation, to evaluate the

value of a policy. At each simulation step, our algorithm calculates the reward for the

current state, and accumulates this until the bicycle falls or after 1000 time steps. The

average return of all the simulations is the value of the policy.

5.4.2.3 Policy Improvement

Many policy improvement methods utilize the policy gradient [123] to perform iterative

ascending operations. However, our simulation of bicycle stunts involves frequent discrete

events such as establishing and breaking contact, which invalidates the gradient information.

For this reason, we use sample-based stochastic optimization techniques. We apply CMA

to search for the feed-forward controllers since the parametrization of splines is fixed. We

use NEAT to search for feedback controllers, including the structure and the weights of the

neural network. NEAT has many similarities to genetic algorithms, but it is tailored to the

creation of neural networks. We will describe NEAT briefly below. For further details we

refer readers to the original paper [142].
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NEAT iteratively performs evaluation, selection, crossover and mutation. To maximize

the value of a policy, NEAT starts with a simple network structure, in which the input

and the output layers are directly connected. A population of such networks with random

weights is drawn as an initial guess. These candidate policies are evaluated and the top

20% are selected to survive. Pairs of randomly-selected surviving policies are crossed over

to produce a new generation (more on this below). Mutations (with low probability) can

perturb connection weights, add a neuron or add a connection. Note that the addition

of a neuron or a connection complexifies the network structure and enriches the class of

functions that it can represent.

Crossover is nontrivial in NEAT because the parent neural networks can have different

topologies. To overcome this difficulty, the newly-added neuron or connection is assigned

a unique innovation number, which tells the history of the mutation and how to match

up neurons or connections between parents during crossover. The neurons or connections

that share the same innovation number across parents are from the same ancestor, which

will be inherited randomly by the child sample. The neurons or connections that have no

counterparts in the other parent are from different mutations. They will be inherited from

the parent with the higher value.

The evolution ends when the policy values do not increase over a certain number of

iterations or the maximum number of iterations is reached.

5.5 Results

In this section we describe the results of our system. Please watch the video2 for the bicycle

riding and stunt animations. Our system was implemented in C++, and we used ODE

with additional chain constraints to simulate both the bicycle and the human rider. The

simulator runs in real time on a desktop workstation with a 2.26GHz CPU and 4GB of

memory. We generated 90 samples per iteration and 50 iterations for offline policy search.

The computations were distributed across 16 CPU cores on a cluster. The learning time

ranges from a few minutes to half an hour depending on the number of simulations used to

2https://dl.dropboxusercontent.com/u/36899427/siggraph2014.mp4
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Figure 28: A character steers the road bike towards the green arrow.

Figure 29: A character rides down a set of stairs without falling over.

estimate the expected return (eq. 36). Table 6 summarizes the choices of states and actions

for each bicycle task.

We designed three different bicycles and a unicycle to test our controllers on a variety

of tasks. Road bikes (Figure 28) are designed to travel at speed on paved roads. They

have very narrow tires to reduce the rolling resistance. The seats are mounted high so

that the riders can bend their upper bodies down for less air resistance. We use a BMX

bike (Figure 31) for stunts. BMX bikes are usually considerably smaller for nimble and

agile handling. They have fat tires to facilitate balance and to increase traction. BMX

bicycle parts can often be customized to meet the needs of different stunts. High wheelers

(Figure 34) are an old style of bicycle appearing in the late 19th century. They have a

large front wheel and a much smaller rear wheel. This peculiar design makes high wheelers

difficult to ride due to the center of mass being high and not far behind the front wheel.

Any sudden stop could send the rider over the handlebars. A unicycle (Figure 35) has only

one wheel and no handlebar. The rider needs to be concerned about the balance in both the

longitudinal and the lateral directions. Different cycle designs greatly affect the handling

characteristics and change the behavior of the riders. This variety puts the generality of

our algorithm to the test. We modeled all the cycles and calculated their mass properties

in SolidWorks.
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Balance and steering. Riding a bicycle requires balance and steering. Balance can be

maintained by steering toward the falling direction, which generates centrifugal force to push

the bike upright. Figure 28 shows that our learned controller enables the rider to balance

and steer the bike towards a user-specified direction. The bike follows the green arrow closely

even when the user changes the desired direction abruptly. This agile steering behavior is

achieved through “counter-steering”: a momentarily steering in the opposition direction

to initiate a sharp turn [127], which emerged automatically from the policy search. We

also tested the robustness of our balance and steering controller on a bumpy terrain, which

is represented as a noisy height field sampled from a uniform distribution h ∼ U(0, 0.05)

(unit: meter). Even though the bicycle jumps and the handlebar is perturbed constantly,

the rider still manages to balance and closely follows the desired direction. In addition,

the accompanying video shows an initial starting motion, in which the rider’s left foot is

scripted to push the ground and move towards the pedal. Based on this single trajectory

of foot and the learned balance policy, we used IK to generate the full-body motion of the

starting phase.

Going down stairs. Figure 29 shows the character riding down a series of stairs. Each

step is 0.15m high and 0.8m wide. We used the same balance controller as in the previous

Table 6: Choices of states and actions for each bicycle task. Note that in the momentum-
driven tasks, the actions only depend on time t while the remaining states are used to
compute the reward.

task states actions

momentum-driven

going over curbs t, β v̇r, φ̃
endo (lifting) t, β τf , ỹ, z̃

front wheel pivot t, γ̇ θ̇, τf , ỹ, z̃
bunny hop t, hf , hr ỹ, z̃

balance-driven

balance and steering θ,∆θ, α, α̇ θ̇

wheelie α, α̇, β, β̇,∆β, vr, ψ, ψ̇ v̇r, ψ̇

endo (balance) θ, α, α̇, β, β̇,∆β θ̇, τf
back hop α, α̇, β, β̇,∆β, x, y, z ẋ, ẏ, ż

high wheeler (stunt) β, β̇,∆β,∆vf v̇f
unicycle α, α̇, β, β̇, vr,∆vr, χ v̇r, χ̇
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Figure 30: A character lifts the front wheel to ride over a curb.

Figure 31: A character performs an endo and balance on the front wheel.

example. This balance task is more challenging because the frequent loss of contact and

the sudden collisions between the front tire and the ground narrow the window of effective

control and introduce large perturbations. Initially, the rider needs to make large corrections

with the handlebar to keep balance when the forward speed is low. As the bicycle travels

faster, the corrections become smaller and steadier.

Going over curbs. Riding over curbs (Figure 30) can be performed by lifting the front

wheel using feed-forward control only. We therefore parameterized the actions with two

splines (Table 6) and trained the controller using CMA. We used a task-specific reward

function to maximize the pitch of the bicycle Rt = β during lifting. In the animation, as

the bicycle approaches a curb (0.12m high), the rider first leans forward and then pushes

her upper body backwards. When the arms are stretched out to the maximum length, the

sudden deceleration of the upper body pitches the whole bike upwards. The pitch angle

is further increased by pedaling faster. This sequence of highly coordinated movements is

discovered automatically by the policy search algorithm. Once the front wheel goes over

the curb, the balance controller takes over and keeps the bike upright when the rear wheel

hits the curb.

Real time user interaction. A user can interact with our bike simulation in real time.

We video captured a sequence that shows a person using a joystick that is equipped with

motion sensors to control the rider and the bicycle. The rider goes over a curb, survives
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a crosswind, goes down a set of stairs, and follows a curvy path to the goal. Note that

the user only gives high level commands such as the desired steering angle and the timing

of lifting the front wheel. The balance, the actual steering and the rider’s motions are all

controlled by the policy learned from the offline training process.

Wheelie. A wheelie is a stunt maneuver in which the rider first lifts the front wheel

and maintains balance on only the rear wheel. Lifting the front wheel on a BMX bike is

considerably easier than on a road bike due to the shorter distance between the wheels.

It can be achieved by increasing the speed of pedaling without any noticeable upper body

movements. For this reason, we used only a feedback controller (Table 6) to perform a

wheelie, including both the initial lift and the later balance. Once the front wheel leaves

the ground, the rider adjusts the forward speed to keep the desired pitch angle. He leans

his upper body to the left or to the right to correct any lateral instability.

Endo. Figure 31 shows an endo. In contrast to a wheelie, an endo lifts the rear wheel

and balances on the front wheel. In spite of its symmetry to a wheelie, an endo requires an

entirely different set of skills and environments. Endos are usually performed on a gentle

downward slope, which provides the needed forward momentum when the driving wheel

is off the ground. We used a slope of 2.5 degrees in our example. We first search for a

feed-forward controller that maximizes the negative pitch angle Rt = −β to initiate the

stunt. The resulting controller slowly moves the rider’s pelvis to the back, and then quickly

throws it to the front to lift the rear wheel.

The feed-forward controller is succeeded by a feedback balance controller. To maintain

an endo, the rider continuously applies or releases the front brake for longitudinal balance

and steers the handlebar towards the direction of leaning for lateral balance. This stunt is

especially challenging. If the pitch angle is too large, when the COM is above or in front

of the front tire contact, such a gentle slope cannot provide enough acceleration to prevent

overturning. If the pitch angle is too shallow, to prevent the rear wheel from dropping to

the ground, braking hard will quickly halt the bicycle and make the balance strategy of

“steering toward falling” ineffective. This complicated coupling between the pitch angle,
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Figure 32: A character completes a quick 180-degree turn by pivoting the bicycle on the
front wheel.

Figure 33: A character performs the American bunny hop over a clown lying on the ground.

the speed and the lateral balance makes heavy demands on the policy search algorithm.

NEAT successfully finds a policy that can maintain balance for an extensively long period

of time. Figure 27 Right illustrates the complex neural network required for this task.

In the accompanying video, we also demonstrate the learning process of an endo. The

animation shows the resulting balance controller after one, five and ten iterations. As more

iterations are finished, the rider gradually masters an endo and maintains balance for a

longer period of time.

Front wheel pivot. A front wheel pivot (Figure 32) is a fast way to turn the bicycle 180

degrees by pivoting on the front wheel. We used a feed-forward controller and applied two

separate task-specific rewards during two phases of this motion. The first reward function

maximizes the angle of turning during the pivoting phase.

Rt1 =

 γ̇∆t if hr > 0.01,

0 otherwise.

After the rear wheel touches the ground, we switch to a learned balance controller and

measure how long the bicycle can stay balanced: Rt2 = 1 if the bicycle remains upright.

Without the second reward function, the “optimal” policy can produce a large roll during

the pivoting phase, after which the rider cannot recover balance. In the animation, the rider

performs an endo after turning the handlebar sharply to the left. As a result, the rider and

the bike pivot around the front wheel and the 180-degree turn finishes within three seconds.
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Figure 34: A character rides a high wheeler and performs a stunt in which he rides backward
on a single wheel.

Figure 35: A clown rides a unicycle.

Back hop. The back hop is another way to balance on the rear wheel. This feedback

balance strategy uses small hops to change the relative position between the contact and

the COM. In the animation, the rider and the bike start at an initial pose in which the

COM is behind the contact point between the rear wheel and the ground. The bike will

fall backwards if the rider does not correct for this. He bends his knees and then extends

them to bring the rear wheel off the ground. He quickly pulls the handlebar towards himself

in mid-air to adjust the pitch of the bicycle. When the rear wheel lands, the COM comes

closer to the ground contact position. As a result, the rider can continue to hop and balance

for a long time.

Bunny hop. Figure 33 shows the rider performing a bunny hop on a BMX bike. A

bunny hop is a stunt where the rider jumps with the bike over an obstacle or a trench.

The task-specific reward function for the feed-forward controller is evaluated based on the

height of both tires above the ground Rt = hfhr. Right before the hop, the rider first leans

forward and then moves his pelvis rapidly towards the back of the bicycle. This vigorous

motion tilts the bicycle upward. The rider then jumps with the bicycle over a clown lying

on the ground. We were pleased to see that the optimal policy for the bunny hop motion

includes a phase that tilts the bicycle up, which is essential to jumping for a greater height

and distance. This style is known as the “American bunny hop”.
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Riding a high wheeler. The peculiar design of a high wheeler makes “headers” a signif-

icant hazard, in which the rider gets pitch forward off the bicycle. We took on the challenge

and designed a stunt that we had never seen performed on a high wheeler (Figure 34).

During the stunt, the rider intentionally stops the bike to initiate a forward rotation. He

then carefully changes pedaling speed to avoid taking a header and successfully rides back-

ward on a single wheel. The rider can balance for a few seconds even without a lateral

balance controller, probably due to the prominent gyroscopic effect from the large rotating

front wheel. When the rider starts to lose balance, he accelerates to return to the normal

riding mode, in which we used the same balance and steering controller as in the road bike

examples.

Riding a unicycle. The unicycle and the bicycle have many similarities. We have found

that our algorithm is general enough to handle balance on a unicycle. Similar to some

bicycle stunts, the longitudinal balance on a unicycle can be maintained via speeding-up or

slowing-down, while the lateral balance can be maintained through steering toward falling.

Unfortunately, unicycles do not have handlebars to steer. To steer the unicycle to the left,

the rider needs to twist his upper body to the right. The unicycle will counter-rotate to

the left due to the conservation of angular momentum. Figure 35 shows a clown riding a

unicycle. To start riding, the clown first pedals backward, which leans the unicycle to the

front. He then accelerates until the actual speed matches the user-specified desired speed.

During riding, the clown repeatedly twists his waist to keep the lateral balance, which causes

the unicycle to travel in a slightly sinusoidal path.

5.6 Discussion

We have presented an algorithm for animating bicycle stunts. Key aspects of our approach

include a fast and stable physical simulation, policy search for POMDP, and the use of

a sample-based optimization solver that searches for both the structure and the weights

of a neural network. Our system allows us to control a human character that performs a

variety of bicycle stunts, including wheelie, endo, bunny hop, front wheel pivot and back

hop. Our characters can learn to master the most demanding balance tasks in minutes,
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which challenges most people and takes months of practice to learn.

Although the learning algorithms presented in this chapter are general, the qualities of

simulated motions vary with different tasks. We notice that some of the stunt motions do

not look as compliant as those performed by real human riders due to three possible reasons.

First, we chose large torque limits to allow robust control for various challenging maneuvers

(Table 7). We used the same torque limits both in offline learning and online simulation

to generate the results shown in the accompanying videos. To investigate whether we can

achieve more compliant motions, we reduce the joint torque limits for simulation until the

rider can no longer maintain balance (shown as the values in the parenthesis in Table 7).

Although our controllers are robust when executed with smaller amount of torques, the

resulting human motion appear very similar. The second possible reason is that we did not

minimize rider’s effort during offline learning. We found that it is difficult to weigh the

effort minimization term because it competes with the task-specific objective. One possible

solution is to implement prioritized optimization [36] to incorporate the effort minimization

objectives. The last reason is probably due to the use of actuator constraints in ODE.

The actuator constraints usually result in more stable simulation. However, since the joint

torques are solved together with all other constraint forces, this allows the character to react

instantaneously. We believe that the lack of reaction latency contributes to the stiffness

of the motion. Using traditional PD servos could mitigate this problem but could also

significantly increase the time of learning and simulation.

We further examine the torque trajectories (Figure 36), and observe that the controllers

learned different strategies to achieve different tasks. In the endo example, the torques

switch abruptly between the two extreme values. It is similar to the “bang-bang control”

that frequently arises in time-critical tasks, indicating that the task of endo might also

be time-critical. In contrast, the torque trajectory of riding a bicycle on a flat terrain

shows more smooth transitions, which implies that normal biking does not require instant

reactions and is thus an easier task.

Policy search is a powerful method for learning optimal controllers. However, manually

designing parametrization of the policies could be challenging for difficult tasks. Combining
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Figure 36: Torque trajectories over time of performing an endo and riding a bicycle on a
flat ground.

policy search with NEAT makes it easy to use and unleashes its full power. We have

demonstrated that searching for both the parametrization and the parameters of a policy

creates robust controllers for a wide variety of bicycle balance tasks. Since many previous

studies focused on optimizing the parameters alone, we evaluated the necessity of optimizing

the parametrization. Figure 37 Left and Right compares two policy search results with a

fixed and with an evolving parametrization for the balance task of an endo. Both searches

started with the same parametrization: a neural network with direct connections between

the input and the output layers. We used CMA to search for only the weights while we used

NEAT to evolve both the weights and the network structure. Both algorithms were run for

50 iterations with 90 samples per iteration. We ran each search ten times with different

random seeds to reduce the stochastic bias. Figure 37 Left plots the curves of the policy

value versus the number of iterations in the CMA search. Note that none of the searches

reached a value of 3000. In comparison, eight out of ten NEAT searches found policies scored
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higher than 3000 (Figure 37 Right). Three of them reached almost 7000. The average final

policy value of NEAT was almost twice its CMA counterpart. A similar comparison was

conducted between neuroevolution with and without augmenting topology, and this told

the same story (Figure 37 Middle vs. Right). Even though we only reported the detailed

comparison for this particular example, we observed the same trend for other bicycle stunts:

policy search with an evolving parametrization significantly outperforms search with a fixed

parametrization. The neural network structure for all the balance-driven tasks are shown

in Appendix C.

Figure 37: A comparison between policy searches with a fixed and an evolving parametriza-
tion. Left: The policy value vs. the number of iterations for ten policy searches on
a fixed parametrization using CMA. Middle: Results of ten policy searches on a fixed
parametrization using neuroevolution without augmenting topology. Right: Results of ten
policy searches on an evolving parametrization using NEAT.

As illustrated in Chapter 5.5, many bicycle stunts need balance in both the longitudinal

and lateral directions. In our implementation, we decoupled the balance task in these two

directions and learned the task in two steps. In the first step, we focused on longitudinal

balance and chose only the relevant states and actions. We artificially increased the width of

the tire to 20cm so that the controller did not need to be concerned about the loss of balance

in the lateral direction. This is analogous to using training wheels in real life. Once the

longitudinal controller had been learned, we fixed that part of the neural network, reduced

the width of the tire back to normal3 and then performed the second step of training for

lateral balance. Although in theory, optimizing a controller for the longitudinal and the

lateral balance simultaneously would have a better global optimum, in practice, searching

for a policy in a higher dimensional space is subject to local minima and thus could produce

3The tire width of the road bike and the high wheeler is 1.5cm while the tire width of the BMX bike and
the unicycle is 3cm.
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inferior results. In all our examples, this two-step training found better policies than training

both longitudinal and lateral balance simultaneously.

Although we chose to use neural network and NEAT to tackle this problem, there could

be other alternatives. One possibility is to use optimal control algorithms, such as Linear

Quadratic Regulator (LQR) or Dynamic Differential Programming (DDP). These methods

start with a nominal trajectory and linearize the dynamics around it. However, it is not

clear to us how to design good nominal trajectories for a wide variety of challenging bicycle

stunts. Moreover, bicycle stunts involve frequent contact changes. This makes the dynam-

ics nonlinear and discontinuous. Thus, using linearized dynamics is unlikely to succeed.

We have also tried a couple of other reinforcement learning techniques. They ended up

unsuccessful, but these valuable experience has led us to our current solution. Our first

attempt was to use standard value iteration method with a discretized state space. The

high dimensional state space made the tabular representation infeasible. We encountered

the convergence issue when the state space was parameterized by polynomial and Gaussian

kernel bases. We also experimented with a few model-free learning algorithms. For example,

SARSA(λ) demonstrated some potential (i.e. the normal cycling was successful), but the

computation time was too long even for the simplest task. Although our final decision was

to use policy search, the initial experiments were unsuccessful due to an overly simplified

policy parametrization: a neural network without hidden layers. Using quadratic features

to enrich the inputs of the network, we had some limited success with the optimal solutions

solved by CMA. However, without a systematic way to perform feature selection, the like-

lihood of finding a successful local minimum is low due to the large number of quadratic

features. Finally, we chose NEAT, a bottom-up approach that complexifies the parametriza-

tion from the simple network. This method consistently found policies that worked for all

our examples.

NEAT provides an effective way to search for both the parametrization and the parame-

ters, which frees us from laborious and unintuitive manual tuning of the network structure.

However, to formulate an MDP, we still need to design the state space, the action space
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and the reward function. Selecting the right features to represent the states and the ac-

tions is vital to the success of the entire algorithm. The rule of thumb is to choose only a

small number of features that are most relevant to the task. If too many states and actions

are used (e.g. all the simulation states as the state space and all the joint torques as the

action space), it is not likely that NEAT will find a successful controller due to the high

dimensional search space. Selecting the states and actions for a specific task often requires

domain knowledge. For example, knowing how to steer a unicycle (twisting the upper body)

is essential for the unicycle balance task. Likewise, designing a good reward function re-

quires some trial-and-error experiments. Our reward functions initially contained only the

task-specific terms. We found that the algorithm often discovered a policy that had a high

value but resulted in undesired motions: The rider performed redundant movements as

long as this did not affect the balance. We eliminated these undesired motions by adding

regularization terms to the reward function. However, selecting states, actions and reward

functions is unavoidable when formulating and solving MDPs. Inverse reinforcement learn-

ing [118] might be a promising approach, but this requires data generated from the optimal

policy, such as motion capture data from real stunt bikers. Another promising future re-

search is to automatically extract features for different bicycle stunts using deep learning.

Please refer to Chapter 7.2 for more discussion on this topic.

Our system has a few limitations. We used ball joints to attach the feet to the pedals.

These bilateral joint constraints simplify the simulation but render some motions less realis-

tic: The brief moment in our bunny hop animation when the rear wheel pops off the ground

just before the hop typically is not seen in the real stunt. Faithfully modeling the contact

between the feet and the pedals could solve this problem. However, this will make the sim-

ulation more expensive and the learning more difficult. In the learning, we separated the

feed-forward and feedback controllers. This treatment works well if the feed-forward con-

troller is applied for a short period and then we switch to the feedback controller. However,

in a real-life performance, stunt bikers exhibit both feed-forward and feedback controls at

the same time, which allows them to perform longer and more difficult stunts. This might be

one of the reasons that our algorithm cannot generate a 360-degree front wheel pivot. Our
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interactive simulation does not allow the user to arbitrarily concatenate the stunts. Suc-

cessful stunts demand a stable initial pose, appropriate speed and sometimes a favorable

terrain. All these requirements together prevents us from concatenating stunt controllers

arbitrarily. Learning additional intermediate controllers between stunts might be a possible

solution.

There are a number of interesting avenues for future work. We believe that our algorithm

will not be limited to the bicycle control tasks. It has the potential to solve other challenging

control problems, such as gymnastics, skateboarding, surfing and dancing. Deep learning

[58] and deeper neural networks could be explored for even more difficult stunts. Our work

has concentrated on controllers for individual stunts. It would be interesting to investigate

a sequence of stunts that traverse a bicycle course with obstacles. Finally, it would be

fascinating to manufacture a mini bicycle and a robotic rider and apply our controllers to

make them perform stunts in the real world.
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CHAPTER VI

CONTROLLER TRANSFER FROM THE VIRTUAL TO THE REAL

WORLD

6.1 Motivation

In character animation, we are able to reproduce many of the diverse and agile locomotion

in nature. However, we have not yet seen the same level of motor capabilities in robotics.

There is a large gap between what a character can do in the virtual environment and

what a robot can do in the real world. This gap is due to the tremendous challenges when

designing controllers with the real hardware since the majority of the robot controllers today

are designed directly on the hardware. Robot hardware is expensive, has severe limitations

(accuracy, repeatability, noise, torque limits, etc.), and requires frequent maintenance. For

these reasons, designing robotic controllers is a time-consuming, labor intensive and trial-

and-error process that is limited only to highly-specialized engineers. We have demonstrated

in the previous chapters that with the powerful computational tools, controllers can be

designed autonomously in a virtual environment. Can we extend the computational tools

developed for character animations to design motion controllers for robots?

The major challenge to directly apply the methods in character animation to robotics is

the Reality Gap: Controllers that work effectively for a virtual character in the simulation

may perform poorly on a robot in the real environment. The cause of the Reality Gap is

the various simplifications in simulation algorithms, such as simplifying dynamics models,

using inaccurate physical parameters, ignoring hardware limitations, noise and latency. For

example, we do not model the internal mechanism of a servo in character animation. We

often use rough estimations of the physical parameters, such as mass, COM and moment

of inertia of a character in the simulation. Even though we can acquire some of these

parameters from the Computer-Aided Design (CAD) specification files of a robot, they are

also inaccurate given the manufacturing and assembling errors. Furthermore, we usually do
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not model the noise in the environment and the latency in the hardware communication in

character animation.

Although crossing the Reality Gap entirely is an extremely challenging problem, we

can still tap into the power of the computational tools if we can sufficiently narrow down

the differences between the simulation results and the real robot performance. In this

work, we develop a system with three components. In addition to physical simulation

and controller optimization that we use extensively in character animation, we introduce

simulation calibration to narrow down the Reality Gap. During simulation calibration, we

collect real performance data on the robot, and use it to improve our physical simulator. We

optimize a set of simulation parameters to minimize the discrepancy between the simulation

results and the collected real data. Through calibration, the simulator can capture the

real world dynamics more faithfully. This calibrated simulator is used again in controller

optimization to improve the quality of the controller. Depending on the task, a controller

optimized in the simulation could be successfully transferred to a robot within a small

number of iterations of simulation calibration and controller optimization. As a result, our

system drastically reduces the number of time-consuming robot experiments and replaces

the tedious manual tuning with an automatic optimization process.

We evaluate our system using four motion planning tasks: rising from a leaning, sitting,

or kneeling position to an erect stance, and flipping from a standing to a handstanding

pose. These tasks play an important role in our daily life. They are so common that we

perform them many times everyday. Although most of us can achieve these tasks without

difficulties, they present big challenges for some elderly persons and patients with hamstring

injuries. We choose to study these motions and synthesize them on a robot, given its

important health-care applications. One simple solution to achieve these tasks is to utilize

static balance. The robot can increase the area of the support polygon by establishing new

contact points, and then raise its body slowly while maintaining the COM within the support

polygon. We choose not to use this strategy because in real life, we humans can perform

these motions in a more agile fashion, and we hope that our controller can demonstrate

comparable agility. For this reason, our controllers will utilize impulsive actions and take
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Figure 38: Overview of our algorithm.

advantage of the accumulated momentum to rise. In addition, since the main contribution of

our method is simulation calibration, to best test its effectiveness, we only use feedforward

controllers in our evaluations. Otherwise, if feedback controllers are used, the stability

region of the tasks could be drastically increased, which makes the simulation accuracy less

critical. Our results show that simulation calibration is effective to transfer the controllers

from the virtual to the real environments for certain motion planning tasks. In all the test

cases, at most two iterations of calibration is needed before the controllers work on the real

robot.

6.2 Overview

We have developed a system that can automatically design motion controllers for robots

(Figure 38). Given the specification of the robot, including its body shape, the physical

properties of each body, and the types of joints, we build a physical simulation using Dy-

namic Animation and Robotics Toolkit (DART) [95]. In addition, we also incorporate into

the simulation the torque limits, servo models and communication latency, which are often

omitted in character animation. The controller optimization subsystem runs thousands of

simulations to search for the optimal controller that maximizes the task-related fitness func-

tion. We then test this optimal controller on the robot. If the robot successfully completes

the task, a working robotic controller is found and our algorithm terminates. Otherwise, we

record the robot performance data and feed it into the simulation calibration subsystem.

Simulation calibration runs another optimization, which searches for the optimal simulation
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parameters to minimize the discrepancy between the performance of the robot in the simu-

lation and in the real world. The loop of controller optimization and simulation calibration

is performed iteratively until the controller works successfully on the real robot. In the next

three sections, we will present the algorithmic details of these components.

6.3 Physical Simulation

6.3.1 Dynamics Equations

We model the robot as an articulated rigid body system in our simulator. We represent the

states of the system (x, ẋ) in generalized coordinates, where x includes the global position p,

the orientation r of the root link, and the joint angles q. We solve the governing equations

of motion in generalized coordinates:

M(x)ẍ + C(x, ẋ) = τ + JT f (38)

where M(x) is the mass matrix and C(x, ẋ) is the Coriolis and Centrifugal force. τ are joint

torques exerted by the actuators. J is the Jacobian matrix and f is the external contact force,

which is computed based on linear complementarity conditions. In our implementation, we

use DART to compute the contact force and numerically integrate the system state (x, ẋ)

over time.

6.3.2 Actuator Model

In character animation, the joint torque τ is often chosen as the control signal since the

torques can be directly integrated in eq.(38). However, the control signal for the robot that

we use in the experiments is the desired joint angles q̄. Given the difference between the

desired and the current angle q − q̄ of each joint, the servo first maps it to a corresponding

power level U that is equivalent to changing the voltage across the motor and the voltage

is eventually converted to the joint torque τ according to the internal actuator dynamics.

We choose BIOLOID GP as our robot platform. BIOLOID GP is a humanoid robot

that consists of 18 degrees of freedom powered by Dynamixel AX-12/AX-18 servos. All the

actuators on the lower body of the robot are Dynamixel AX-18, which use the following

mapping (Figure 39) between the joint angle difference q − q̄ and the power level U . The
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Figure 39: The mapping between q − q̄ and U for an AX-18 actuator. This figure is from
the user manual of Dynamixel AX-18 Actuator [130]. The x-axis is q − q̄ while the y-axis
is U .

intervals A and D determine the slope of the actuator response for counter-clockwise and

clockwise motions respectively. Smaller values mean steeper response slopes, in which case

the actuator follows the desired angle more closely. However, too small a value can lead

to overshooting problems. B and C are the compliance margins. If the error of angle is

within a small margin specified by B and C, the servo does not output any torque. E, the

punch, is the minimum power level before the servo shuts down. In practice, we set A and

D to be the same so that the simulated servo will behave the same no matter it rotates

clockwise or counter-clockwise. In addition, since B, C and E are very small compared to A

and D, we ignore their effects and approximate the mapping as linear within the intervals

q − q̄ ∈ A
⋃
B
⋃
C
⋃
D with the slope ke:

U = ke(q − q̄) (39)

To derive the relation between the power level U and the output torque τ , we adopt

a model for the ideal DC motor [132]. It is valid to assume an ideal model because the

AX-18 servos use high-quality DC motors. The derivation follows by considering the power

balance in the motor at a constant voltage U:

Pelectric = Pmechanic + Pheat (40)

where Pelectric is the electrical power, Pmechanic is the mechanical power, and Pheat is the
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power dissipated as heat. From eq.(40), we can get the following relation:

UI = q̇τmotor +RI2 (41)

where I is the current and R is the motor winding resistance. In an ideal DC motor, the

torque is linearly proportional to the current τmotor = kτI. Plugging it into the above

equation, we arrive at the relation between the voltage U and the total torque generated

by the motor τmotor:

U = kτ q̇ +
R

kτ
τmotor (42)

where kτ is the torque constant, which is determined by the hardware design of the motor.

The total torque generated by the motor is not yet the output torque that drives the motor

shaft due to the friction inside the motor. The total torque can be decomposed into the

output torque τ and the friction torque τf .

τmotor = τ + τf (43)

The friction torque can be further divided into viscous friction and Coulomb friction [132]:

τf = kv q̇ + kc sgn(q̇) (44)

where kv and kc are friction coefficients for the viscous and Coulomb friction respectively.

sgn(x) is the sign function that equals 1 if x is positive, -1 if x is negative and 0 otherwise.

Combining eq.(42), (43) and (44), we get the relation between the error of the joint

angle q − q̄ and the output torque τ .

τ =
kτke
R

(q − q̄) + (−kv −
k2
τ

R
)q̇ − kc sgn(q̇)

= −kp(q − q̄)− kdq̇ − kc sgn(q̇)

(45)

where kp = −kτke
R and kd = kv + k2τ

R . We call these values kp, kd and kc the actuator

gains. It is possible to compute these actuator gains if the related parameters are given in

the specification sheet of the motor. Plugging eq.(45) into (38), and taking torque limits
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Figure 40: Actuator Identification. Left: the time series of input desired joint angle and
the measured joint angle for an AX-18 servo. Right: the time series of actual error of joint
angle and the predicted error using the identified actuator gains.

[τmin, τmax] into consideration, we get the dynamics equation that use the desired joint

angles as the control signal.

M(x)ẍ + C(x, ẋ) = τ + JT f

where

τ =


τmin if τ < τmin,

τmax if τ > τmax,

−kp(q− q̄)− kdq̇− kc sgn(q̇) otherwise.

Actuator Gain Identification. We design robot experiments to identify the actuator

gains kp, kd and kc, since the specification of the servos does not provide the necessary

information to compute them. In the experiment, we clamp the entire robot on a table

except for the left foot. We then send a periodic control signal q̄(t) to the servo at the left

ankle (blue curve in Figure 40 Left). The desired joint angle stays at the maximum value

for 0.67 second, then changes to the minimum value and stays for another 0.67 second and

repeats. We record the trajectory of the actual joint angle q(t) through the experiment

(green curve in Figure 40 Left). We manually segment out portions of these two curves

where the power level is approximately linear to the error ∆q = q− q̄ (the union of intervals

A, B, C and D in Figure 39). The black “+” in Figure 40 Right shows this error over time

∆q(t) in a typical segment.

Given q(t) and q̄(t), we can apply regression to estimate the actuator gains. From eq.
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(45), we have

q̈ = I−1(−kp∆q − kdq̇ − kc sgn(q̇)) (46)

where I is the moment of inertia of the foot with respect to the rotating axis. The above

equation is derived by plugging into τ = Iq̈ + İ q̇ and the fact that İ q̇ = 0 because the foot

is a rigid body that rotates along a fixed axis. Ideally, q̈ and q̇ can be computed using finite

difference. However, the measurement of q(t) is too noisy and finite difference would greatly

magnify the noise. To solve this problem, we first smooth q(t) by performing a 4th-order

polynomial regression:

min
a,b,c,d,e

∫
||q(t)− (at4 + bt3 + ct2 + dt+ e)||2dt (47)

where a, b, c, d, e are the polynomial coefficients. This regression gives us a smooth analytical

expression of q(t). We then compute q̈ and q̇ by differentiate this polynomial analytically:

q̇(t) = 4at3 + 3bt2 + 2ct+ d (48)

q̈(t) = 12at2 + 6bt+ 2c (49)

Combining eq. (47), (48) and (49), we can perform another regression to compute the

actuator gains.

min
kp,kd,kc

∫
||q̈(t)− I−1(−kp(q(t)− q̄(t))− kdq̇(t)− kc sgn(q̇(t)))||2dt (50)

Our experiments and computation show that the actuator gains are kp = 9.272(N ·

m/rad), kd = 0.3069(N ·m ·s/rad), and kc = 0.03(N ·m). To verify the correctness of these

values, we plug them into the simulator and repeat the same experiment in the simulation.

The red curve in Figure 40 Right is the error over time predicted in our simulation, which

agrees well with the data that was collected from the robot experiment.

Latency. To guarantee the stability of the simulation, we use 1ms as the simulation time

step. Many animation systems use the same simulation and control frequency, which means

that a control signal q̄ is updated every simulation time step. However, the average latency

of the whole control loop on our robot is 16ms. It is measured by a timer in our program
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between the time that the program starts sending the actuator commands to the robot and

the time that it finishes reading the sensor measurements from the robot. To better match

our simulation with the actual latency, we choose to only update the control signal every

16 time steps.

6.4 Controller Optimization

Given the physical simulation, we can design controllers to enable the robot to achieve

various motion planning tasks in the simulated environment. The four tasks that we use

to test our system are rising from a leaning, sitting or kneeling position to an erect stance,

and flipping from a standing to a handstanding pose. For each task, the joint configuration

of the initial pose and the final pose are provided by the user. The goal of controller

optimization is to find a sequence of control signals q̄(t) so that the robot can move from

the initial to the final pose without losing balance. We purposefully choose to use only

feedforward controllers1 in this work, which means that the control signal q̄(t) is a only

function of time t and does not depend on the states of the robot. With the feedforward

control alone, the controller transfer can only succeed if the simulation is close enough to

the real-world environment. This will put the simulation calibration subsystem into more

thorough tests.

1There is still an internal feedback loop in the actuators to track the desired joint angle (See Chap-
ter 6.3.2). However, this feedback loop is not fully programmable.
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We first formulate a trajectory optimization problem for each task.

max
q̄(t),T

Vctrl(x(t)) (51)

subject to

M(x)ẍ + C(x, ẋ) = τ + JT f (52)

τ =


τmin if τ < τmin,

τmax if τ > τmax,

−kp(q− q̄)− kdq̇− kc sgn(q̇) otherwise.

(53)

x̄(0) = x0 (54)

q̄(t) = qT , if t ≥ T (55)

This optimization searches for the duration T of the rising motion and the trajectory

of the desired joint configuration q̄(t) to maximize a task-related fitness function Vctrl, and

subject to physical constraints (eq.(52) and (53)) and boundary conditions (eq.(54) and

(55)). x0 is the initial condition, and qT is the final pose, both of which are provided by

the user. Note that although we can specify the global translation p0, rotation r0 and joint

angles q0 in the initial condition, we can only specify the desired joint angles for the final

pose because the global translation and rotation are determined by the physical simulation.

Assuming no interbody collision happens when the robot executes q̄(t), in our tasks,

the robot can always reach the final pose qT within a small error due to the weight of the

bodies that each actuator supports. The criterion of success for all the tasks is whether the

robot remains upright at the end of its motion. We use the following fitness function to

reward controllers that keep balance throughout the entire motion.

Vctrl(x(t)) =

∫ T+1

0

1

α(t) + ε
dt (56)

where α(t) is the angle between the up direction in the local frame of the robot’s torso and

the up direction in the global frame (0, 0, 1). It measures how far the robot is from losing

its balance. ε is a small positive number to prevent the denominator from being zero. We

choose ε = 0.1 in all our tasks. Note that the upper limit of the integration is T + 1. The
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extra one second is to wait for the robot to settle down. We use the time horizon T + 1

because it is still possible that the robot can fall during the settling down phase and our

fitness function will penalize this situation.

Two difficulties remain to solve the above optimization. First, the size of the optimiza-

tion is large, which makes it computationally expensive to solve. Since our robot has 18

degrees of freedom and a rising motion can take a few seconds, the above space-time op-

timization problem can easily have hundreds to thousands of variables. Instead of directly

searching this high dimensional space, we parameterize the controllers to make the com-

putation tractable. Although there are many ways that we can parameterize the control

space, designing the most effective control parametrization is not the focus of this work.

In fact, we intentionally choose to use a simple parametrization to highlight the effect of

our simulation calibration. We use a sparse set of keyframes q̄1, q̄2, ..., q̄n to parameterize

the trajectory of the desired poses q̄(t). In between the keyframes, we linearly interpolate

the poses from two adjacent keyframes. With this simplification, the control parameters

that we need to optimize reduce to only a few keyframes and the time interval between

adjacent keyframes. We further halve the size of the problem by exploiting the symmetry

of the motion. We find that all four tasks can be achieved with symmetric motions. Thus

we constrain that the joint motions on the left bodies mirror those on the right bodies. In

addition, since we do not want the robot to use its hands to help standing up, we freeze

the joints at the shoulders and the elbows. This focus the controller to the motions of the

lower body, which further reduces the size of the optimization problem.

The second difficulty is that during the motion, discrete contact events can happen

frequently. They invalidate the gradient information, which imposes additional challenges

for continuous optimization algorithms. We choose to use Covariance Matrix Adaptation

(CMA) [55] to optimize the control parameters. Starting from an initial Gaussian distribu-

tion, CMA samples this distribution for a set of control parameters, evaluates them using

physical simulations, discards the inferior samples and updates the distribution according

to the remaining good samples. With a number of iterations, the distribution moves and

shrinks, and eventually converges to a good controller parameter that can successfully fulfill

102



the task in the simulation.

6.5 Simulation Calibration

Although the optimal controllers q̄(t) can work effectively in the simulation, they may fail to

achieve the tasks when used on the robot due to the Reality Gap. We develop a simulation

calibration subsystem, whose goal is to reduce the discrepancy between the simulated results

and the real robot performance. This significantly increases the chance that the controller

optimized in the simulation can be transferred to the real robot. In this subsystem, we

formulate an optimization (eq. (57)) that searches for the simulation parameters θ so that

the discrepancy Ecali is minimized between the simulated results and the robot performance

in the real environment.

min
θ
Ecali (57)

Many parameters need to be set before a physical simulation starts, for example, the

mass, the moment of inertia, the COM of each body segment, the coefficient of restitution

and friction, and the gains of the actuators. The accuracy of a physical simulation heavily

relies on the correctness of these parameter settings because changing simulation parameters

can drastically alter the simulation results. Usually, simulation parameters can be set

according to the specification sheet of the robot. However, we find that many of these

parameters are incorrect. For example, from the CAD file, we calculate the total mass

of the robot to be less than 1.1kg, but our own measurement using a scale reads 1.5kg.

Furthermore, the height of the COM differs more than 1cm between CAD file and our

measurement. This difference in parameters could be due to the manufacturing errors

and the weight of cables, glues, nuts and bolts that were used in assembling the robot.

Instead of trusting these simulation parameters, we decide to adjust them during simulation

calibration.

We improve the simulation accuracy by minimizing the discrepancy Ecali, which is de-

fined as the difference between the state trajectories in the simulation and those collected

in the real robot experiment when the same controller is used in both scenarios. Recall that
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our entire algorithm is an iterative process. At the nth iteration, the optimal controller

q̄n(t) produces the state trajectory xn(t) in the simulation and x̃n(t) on the real robot2.

Together with the n − 1 pairs of optimal controllers {q̄i(t)}i=1,...,n−1 and their associated

state trajectories {x̄i(t)}i=1,...,n−1 from previous iterations, we compute the discrepancy

using the following expression.

Ecali =
1

n

n∑
i=1

∫ T+1

0
||x̃i(t)− xi(t)||2Wdt (58)

where W is a diagonal weight matrix, which encapsulates the relative importance of each

joint. Due to the complex interplay between the simulation results and the simulation

parameters, the optimization (57) is nonlinear and nonconvex. Similar to controller opti-

mization, we choose to use CMA as the optimization solver. In this case, each CMA sample

is a candidate set of simulation parameters θ. To evaluate each CMA sample, we set the

parameters θ in the physical simulator, execute the controllers {q̄i(t)}i=1,...,n to simulate

the robot motions {xi(t)}i=1,...,n, and then compute the objective function eq. (58).

In our work, we initialize the simulation parameters as follows. We set the physical

properties of each body segment, including the mass, the moment of inertia and the COM

according to the CAD files. We set the actuator gains based on the measurement from

experiments (Chapter 6.3.2). We leave all other parameters as default values in DART.

Although these parameters are not accurate, they serve as a good initial guess. During

simulation calibration, we search the parameter space within a bounded range centered at

the initial guess. In addition, we also employ two simplifications to speed up the optimiza-

tion. First, we manually select the most relevant simulation parameters that need to be

optimized. All our tasks are to achieve a specific final pose while keeping balance. Since

accurate actuator gains determine whether the robot can reach and hold the final pose, and

correct COM’s play an important role in balance control, we decide that the actuator gains

of servos and the COM of each body are the most important simulation parameters in our

2we use the average of the multiple trajectories as x̃n(t) in the robot experiment because even with the
same controller, we can get slightly different trajectories due to the varied initial conditions, the noise from
the sensor, from the actuator and from the environment.
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case. This manual selection drastically reduce the search space of the optimization. Second,

we zero out most of the diagonal entries of W in eq. (58) except for the rows corresponding

to the global orientation. More specifically, we measure the discrepancy based solely on

α, the angle between the up direction in the local frame of the robot’s torso and the up

direction in the global frame (0, 0, 1).

Ecali =
1

n

n∑
i=1

∫ T+1

0
(α̃i(t)− αi(t))2dt (59)

The objective function eq. (59) captures the most important features that characterize

the success or failure of our tasks (see eq.(56)), and eliminates the tedious manual tuning

of the weight matrix W.

6.6 Results

In this section we present the results of our system. We use four motion planning tasks

to test our system: The robot rises from a leaning, sitting or kneeling position to an erect

stance and flipping from a standing to a handstanding pose. Please watch the accompany-

ing video3 for the robot performance in the simulation and in the real world. Our system

was implemented in C++, and we used DART with our actuator model to simulate the

physics of the robot and its surrounding environments. The entire system runs on a laptop

with 2.6GHz quad-core CPU and 16GB of memory. In controller optimization and simu-

lation calibration, the CMA uses 32 samples per iteration and at most 50 iterations. We

implemented a parallel version of CMA that can distribute the computation across all four

cores on the CPU. It takes less than 15 minutes to find an optimal solution in controller

optimization or simulation calibration.

We used the BIOLOID GP, a humanoid robot that consists of 18 degrees of freedom,

in our experiments. The communication between the PC and the robot is through a serial

port. To control the robot, a host program on the PC writes the desired pose q̄ to the serial

port that is connected to the robot. A separate program that runs on the robot’s onboard

microprocessor listens to this port and sends the desired joint angle to each actuator. At the

3https://dl.dropboxusercontent.com/u/36899427/controllerTransfer.mp4
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Figure 41: The results of the sit-to-stand task in the simulation and on the real robot.

same time, the robot performance data x̃ is measured and sent back to the computer. We

use onboard rotary encoders to measure joint angles and a VICON motion capture system

to measure the global position and orientation of the robot’s torso.

6.6.1 Rising from a Sitting Position

The first task that we have tested is to rise from a sitting pose to a standing pose (Figure

41). The initial and final poses q0 and qT are shown in the leftmost and rightmost images in

Figure 41. We parameterize the controller with three keyframes q0, q1 and qT . In addition

to q0 and qT specified by the user, the controller optimization subsystem needs to search for

the keyframe q1, and the two time intervals t1 and t2 between the three keyframes. Note

that we only change the joint angles of the hips and the knees and keep all other joints

motionless throughout the entire motion.

We purposefully choose the initial pose that the legs of the robot extend forward and the

projection of the robot’s COM in the vertical direction falls far behind the contact points

of the feet. If the robot simply extends the hips and the knees to stand up, it will fall

backwards. Despite this challenging setup, our system successfully finds a controller that

enables the robot to stand up in the simulation. Figure 41 shows that the robot first builds

up a forward momentum by quickly leaning its upper body to the front. It then starts to

extend the hips and the knees at the moment when the COM is approaching the boundary

of the support polygon spanned by the feet. This effective standing-up strategy is found
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Figure 42: The results of the lean-to-stand task in the simulation and on the real robot.

automatically by the controller optimization subsystem.

When applying this controller to the real robot, we are surprised to find that it works

directly, without the need of simulation calibration. The robot stands up from a chair in

the same way as its simulated counterpart does in the virtual world. This shows that the

Reality Gap is not always a problem. In some tasks, the stability region of a controller is so

large that it can make the discrepancy between the virtual and the real world less critical.

6.6.2 Rising from a Leaning Position

In this task, the robot needs to rise from leaning on the wall (the leftmost image in Figure

42) to a standing position (the rightmost image in Figure 42). In the initial configuration,

the hip joints are bent and they are straightened out in the final configuration while all

other joints do not move. The initial and the final poses are the only two keyframes for this

task.

The goal of controller optimization is to find an appropriate time interval T between

these two keyframes. If the time inteval is too long, the robot moves slowly, and cannot

accumulate enough momentum to rise up. If this time inteval is too short, the robot move

abruptly, which will cause the upper body to bounce off the wall too quickly and fall

forward. Without simulation calibration, the optimization cannot find a working controller

for this task. The robot cannot rise up when T ≤ 0.10s and overshoots when T > 0.10s.
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Figure 43: Comparisons of the robot’s global orientation over time in the simulation (be-
fore/after calibration) and in the real environment.

According to the objective function value, the optimal controller, which still fails the task,

uses T = 0.11s to move from the initial to the final pose. Using this controller, the robot

rises up too quickly and falls forward in the simulation. When we apply this controller to

the real robot, we find that its performance in the real world differs drastically from that in

the simulation. Rather than falling forward, the robot in the real world cannot rise up. The

red and blue curves in Figure 43 show the the trajectories of the robot’s global orientation

in the simulation and in the real world. After one iteration of simulation calibration, the

discrepancy is greatly reduced (Figure 43 green curve). We optimize the controller again

in the calibrated simulator. This time, the optimal controller works both in the simulated

and in the real environment.

We are able to transfer the controllers from the simulation to the real environment

with only one iteration of simulation calibration. To better understand how simulation

calibration works over multiple iterations, we perform an additional evaluation. Figure 44

shows the fitness functions after different number of iterations of simulation calibration.

The blue curve is the fitness function on the real robot by varying the control parameter

T in the range of [0, 0.11]. It serves as the ground truth. The fitness function stays at a

high value when T ∈ [0, 0.1], which means that the real robot can successfully rise if the

controller uses less than 0.1s to change the pose from the initial to the final configuration.
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Figure 44: Comparisons of the fitness functions as more and more iterations of simulation
calibration are performed.

In contrast, without simulation calibration, the fitness function (lowest black curve) stays at

a low value for the entire control space. In other words, no controller exists that can make

the robot stand up in the simulation. The gap between the blue and the black curves shows

the difference of controller performance between in the simulation and in the real world.

One iteration of system calibration brings the fitness function in the simulation towards

the ground truth. As more iterations are performed, the fitness function in the simulation

(brown and red curves) gradually approaches the ground truth, and the difference of the

controller performance shrinks in this process. Note that a large discrepancy still exists in

the region of the parameter space where T < 0.02s. This is probably caused by two reasons.

First, in the region of T < 0.02s, the torque output of the servo is at its limit but the torque

limit is not considered in simulation calibration. Second, the controllers and the data (the

red circles in Figure 44) that we use in simulation calibration concentrate on the right half

of the parameter space, which makes it difficult to generalize to a region where the data

is scarce (T < 0.02). However, this could be beneficial in many applications because the

computational resource is focused at the important regions near the successful controllers.

109



Figure 45: The results of the kneel-to-stand task in the simulation and on the real robot.

6.6.3 Rising from a Kneeling Position

Figure 45 shows that the robot stands up from a kneeling pose. Between the user-specified

initial and final poses, the controller consists of two additional keyframes. The optimization

needs to search for these keyframes and the time intervals between adjacent keyframes.

Similar to other examples, we only allow the joints on the lower body of the robot to move.

The controller optimized in the simulation demonstrates an agile getting-up motion: The

robot first leans its upper-body backwards. As its COM is moving to the back, it quickly

bends the hip, flexes its ankles and stands up. This entire motion resembles one of the

most agile ways that we human get up from a kneeling position when we do not use our

hands for additional support. Although this controller works perfectly in the simulation,

the robot falls backward in the real world. After simulation calibration, the performance of

the simulated robot comes closer to the real world scenario: The robot also falls backward

in the simulation. Using the calibrated simulator, we optimize a new controller, with which

the robot can successfully stand up from the kneeling position in the real world (Figure 45).

6.6.4 Flipping to a Handstand Position

We test our system with a challenging gymnastic action: flipping to a handstand position

from a standing pose (Figure 46). There are two unique challenges in this task. First, the

speed and the curvature of the initial arching motion is crucial and only a narrow range of

such speed and curvature can lead to a balanced handstand. Second, the USB cable that
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Figure 46: The results of the stand-to-handstand task in the simulation and on the real
robot.

connects the robot to the computer will inevitably hit the ground during the backflip, which

injects a strong perturbation that is not modeled in our simulation.

With two iterations of simulation calibration and controller optimization, our system

finds a successful controller that works both in the simulation and in the real world: The

robot arches back rapidly and lifts its feet after the arms touch the ground. It shows that

our system can automatically design controllers for challenging motion planning tasks, even

with strong unmodeled perturbations.

6.7 Discussion

This chapter has presented an end-to-end solution to automatically design motion con-

trollers for robots. This solution consists of a set of computational tools: a simulation tool

that simulates the dynamics of the robot and its environment, an optimization tool that

automatically searches for a controller in the virtual environment and a calibration tool

that improves the simulation accuracy to ease controller transfer from the virtual to the

real world. This powerful system allows us to efficiently design controllers of a humanoid

robot to achieve four different tasks, rising from leaning, sitting and kneeling poses to an

erect stance, and flipping from a standing to a handstanding pose.

Since the main goal of this work is to demonstrate that the computational tools de-

veloped for character animation, including physical simulation and controller optimization,

can be applied to robotics, the biggest challenge is to transfer the controllers developed
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in the simulation to the real environments. In all the examples, at most two iterations of

calibration is needed before we can successfully transfer the controller to the real robot.

However, we want to emphasize that the goal of simulation calibration is not to find the

true simulation parameters. Instead, it finds a set of parameters that reduce the discrep-

ancy between the simulation and the real experiment for a specific motion planning task.

We observe that the simulation parameters optimized for the task of lean-to-stand can be

different from those of kneel-to-stand. In other words, the calibrated simulator is only valid

for the current task and should not be used in a different task. It would be more interesting

if simulation calibration can discover the true parameter value so that the calibrated sim-

ulator can be used for different tasks. We believe that this is possible if we use controllers

and their corresponding robot performance data from multiple different tasks as the input

of simulation calibration.

Crossing the Reality Gap is important for robotics because it can truly unleash the

power of the computational tools and fundamentally change how robot controllers will be

designed. Due to the variety and complexity of the causes of the Reality Gap, crossing it

is an extremely challenging research problem. Our work only scratches the surface of this

problem. A lot of future research need to be conducted in this area. For example, our

motion planning tasks are relatively short, simple and do not require feedback controllers.

We plan to extend our algorithm to more difficult tasks, such as walking and running. In our

examples, we have shown that adjusting the COM and the actuator gains are enough, but

other simulation parameters might also be important for a wider range of tasks. Including

more simulation parameters and performing feature selection would be a promising direction

for future work. In addition, some discrepancies between the simulation and the real world

may not be explained by inaccurate simulation parameters alone. Unmodeled dynamics

could also contribute to the discrepancy. Combining parametric and non-parametric models

in simulation calibration for unmodeled dynamics is also an interesting avenue for future

work.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we have presented a principled way to synthesize locomotion of hu-

mans and animals. Our algorithms can control characters of different morphologies to move

efficiently and robustly in complex physically-simulated environments and to achieve chal-

lenging tasks. The key components of our algorithms are a set of powerful computational

tools, including physical simulation and controller optimization. Although combining simu-

lation and optimization is not a novel idea in motion synthesis, in contrast to prior work, we

examine and identify those commonly-used simplifications that can affect the quality of the

motions. We eliminate these simplifications by designing new simulation and optimization

techniques. Our simulators are faster, more stable and more accurate. Our optimizator

can search a higher-dimensional space with both continuous and discrete variables, which

may lead to better optimal solutions. These computational tools make it possible to study a

more diverse set of motions in nature than were previous possible in the character animation

literature.

Chapter 3 described computational tools to study the diversity of swimming motions for

aquatic creatures with different body shapes. This is made possible by an accurate swim-

ming simulation and a powerful evolutionary optimization. Compared to the simplified

fluid model, our swimming simulation solves the Navier-Stokes equations. It can capture

important features of water, including incompressibility and vortices, that affect swimming

strategies. In contrast to the traditional alternating two-way coupling technique, our sim-

ulation solves the dynamic equations of fluids and articulated rigid bodies simultaneously.

This increases the numerical stability and drastically speed up the computation. Simulat-

ing the hydrodynamic environment with Navier-Stokes equations introduce new challenges

to the classical optimization algorithms. We demonstrated that CMA works well in this
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scenario. As a result, our algorithms can discover the most efficient swimming gait for a

given creature automatically, without any human intervention. Our results showed that the

synthesized swimming motions agree well with those employed by real aquatic animals.

Chapter 4 presented computational tools to study locomotion of soft body characters

without skeleton support. We developed a muscle model that worked seamlessly with the

state-of-the-art FEM simulation for soft materials. This muscle model is inspired by muscle

structures found in real soft body animals. It lowers the dimensionality of the control space

and ensures that the overall motion is coordinated. We demonstrated how to use finite-

horizon trajectory optimization to control the locomotion. The key to our success is to

identify that the widely-used simplification that separates contact planning with controller

optimization is not good enough to achieve a stable locomotion. To solve this problem,

we formulated a QPCC and developed an efficient solver. Consequently, effective control

strategies and natural locomotion emerge automatically from the optimization solution.

Chapter 5 demonstrated computational tools to study agile human motions on a bicy-

cle. We developed the first reinforcement learning algorithm that allows a virtual human

character to learn bicycle stunts in a physically simulated environment. The algorithm is so

efficient that most of stunt actions are learned in hours, which is even faster than the best

human stunt bikers. An important lesson we have learned in this work is that it is difficult

to design a good controller parametrization manually, especially for challenging locomotion

tasks. The common practice of using a fixed policy parametrization tuned by users can

severely limit the power of policy search algorithms. We eliminated this restriction by us-

ing NEAT, an algorithm that can simultaneously optimize both the parametrization and

the parameters of a neural network. Eventually, the virtual character learned to perform

a wide variety of stunts automatically, without the tedious manual tuning of controller

parametrizations.

Chapter 6 explored an efficient method to develop humanoid robot controllers for the

tasks of rising from a leaning/sitting/kneeling position to an erect stance. We built an

accurate physical simulation, optimized controllers in the simulation and transferred the

controller to a real robot. We investigated several factors that lead to the Reality Gap
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and demonstrated in several cases that this gap may be crossed with an improved physical

simulation. We perform iterative simulation calibration using data collected from robot

experiments. After a small number of iterations, the controller designed in a simulation can

be successfully transferred to the robot. This work shows that it is possible to apply the

computational tools that were developed for character animations to design robotic con-

trollers. This is an important milestone towards a fully automatic computational framework

that can design the next-generation robots with extensive agility and manoeuvrability.

7.2 Future Work

The work presented in this dissertation opens the door to many promising directions for

future work. Some of these future directions might be accomplished in the short term by

combining existing algorithms to study locomotion that is not investigated in this disser-

tation. For example, one interesting direction is to study swimming motions of soft body

animals. Studying soft body locomotion in water may have more fundamental impacts than

articulated swimming creatures (Chapter 3) or soft body locomotion on land (Chapter 4).

Most of the soft body animals on our planet, such as squid, octopus, sea slug and jellyfish,

reside in oceans and they present more diversity in terms of swimming gaits. Their flexible

body shapes could enable more efficient propulsion mechanisms than those of animals with

rigid skeletons. For example, a jellyfish was found as ocean’s most efficient swimmer [46].

In addition, the surface of aquatic animals with skeletons is still highly deformable due to

the presence of skins, ligament and muscles. It is more appropriate to model them as soft

bodies rather than as articulated rigid bodies, as we did in Chapter 3. I believe that it

would be promising to combine the approaches in Chapter 3 and 4 to synthesize swimming

motions for soft body characters.

A medium term future project is to use deep neural networks in reinforcement learning.

Although NEAT frees us from laborious manual tuning of neural network structure in

Chapter 5, we still need to specify the state and the action space for each task. For example,

to keep balance on a bicycle, states should include the center of mass or the bicycle leaning

angle. However, they may not carry over to a different task. Manually designing states and
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actions would not scale to more sophisticated characters, more complicated environments,

or more challenging tasks. The way that we use these hand-engineered states and actions in

reinforcement learning today is analogue to using HoG or SIFT features in computer vision

a few years ago. Recent advance in computer vision has shown promising results, which

use deep neural networks, such as autoencoder [166] or Restricted Boltzmann machine [59],

to learn features automatically. I believe that an important next step for reinforcement

learning in character animation is to employ similar techniques to automatically discover

important features for different locomotion tasks.

In the long run, the fast development of numerical algorithms and computational power

will enable radical increase in efficiency and accuracy of physical simulations. The improved

simulations will shrink the the Reality Gap rapidly, which will make it much easier to trans-

fer controllers from the simulation to the real world. As a result, we envision that the two

separate research fields of character animation and robotics will eventually merge and the

computational tools will be shared in both fields. This will inevitably trigger a fundamental

revolution in robotics in the near future, which will rely heavily on the computational tools

in controller design. Chapter 6 is an important step towards realizing this vision. Although

it has shown promising results, we have not yet put it into a comprehensive test with more

challenging tasks. One possible stress test is to use this method to transfer bicycle stunt

controllers developed in Chapter 5 to a real robot. This test will provide us insights about

the causes of the Reality Gap and help us to eventually cross it.
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APPENDIX A

QPCC SOLVER

A.1 QPCC for Contact

The QPCC problem for contact modeling is:

min
ṗn+1,u,f⊥,f‖,λ

G(ṗn+1,u) (60)

subject to

ulb ≤ u ≤ uub

M̃ṗn+1 = fc + Au + f̃n (61)

0 ≤


f⊥

f‖

λ

 ⊥


NT ṗn+1

DT ṗn+1 + Eλ

µf⊥ −ET f‖

 ≥ 0 (62)

whereG(ṗn+1,u) is a convex quadratic objective function of next velocities ṗn+1 and control

variables u, which are bounded by ulb and uub.

Equation 61 is the discretized dynamic equation (Equation 8 in the paper), where M̃ is

the mass matrix with terms from implicit integrator, fc and Au are the contact force and

control force (scaled by the time step) respectively, and f̃n accounts for all other terms in

the dynamic equation.

Equation 62 is the LCP formulation to regulate contact velocity and contact force,

fc = Nf⊥ + Df‖, where N is the unit normal vector, D is a set of tangential directions at

the contact point, and f⊥ and f‖ are the magnitudes of normal and tangent forces. µ is the

friction coefficient and λ is an auxiliary variable whose physical meaning is related to the

tangent velocity of a sliding contact. This form is slightly more general than the QPCC

formulation (Equation 11) in the paper.
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A.2 Implementation of QPCC Solver for Contact

Algorithm 1: Pseudo-code of the QPCC solver.

1 (x∗, f∗) = Solve(QPCC)
2 begin
3 ithIter = 0;
4 f∗ ←∞;
5 x∗ ← null;
6 priority queue ← [];
7 visitedQP set ← {};
8 CCSpec ← GenerateInitialGuess();
9 QP ← GenerateQP(QPCC, CCSpec);

10 (QP.minimizer, QP.fval) ← QP.Solve();
11 priority queue.Enqueue(QP);
12 while visitedQP set.Size() < maxNumVisitedQP and priority queue.Empty() =

False do
13 QP ← priority queue.Dequeue();
14 visitedQP set.Add(QP);
15 if QP.fval < f∗ then
16 f∗ ← QP.fval;
17 x∗ ← QP.minimizer;

18 childQP list ← GenerateChildQP(QPCC, QP, CCSpec);
19 foreach childQP in childQP list do
20 if visitedQP set.Find(childQP) then
21 continue;

22 (childQP.minimizer, childQP.fval) ← childQP.Solve();
23 priority queue.Enqueue(childQP);

24 ithIter ← ithIter + 1;

25 return (x∗, f∗);

Algorithm 1 summarizes the implementation of our QPCC solver. The solver takes the

QPCC (Equation 60-62) as input and outputs the minimizer x∗ and minimum objective

function value f∗. Our iterative QPCC solver starts with an initial guess of the contact

situation, which is a set of linear constraints that are compatible with the complementarity

conditions. Function GenerateInitialGuess in Line 8 generates such an initial guess. We
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usually choose static contact situation as the initial guess:

0 ≤ f⊥, NT ṗn+1 = 0

0 ≤ f‖, DT ṗn+1 + Eλ = 0

0 = λ, µf⊥ −ET f‖ ≥ 0

Occasionally, this initial guess is inconsistent with the dynamic constraints (Equation 61),

resulting in an infeasible problem. In such a case, we solve the Mixed LCP problem (Equa-

tion 61 and 62), assuming u = 0, to obtain a feasible initial guess. The output of Gen-

erateInitialGuess is a boolean array CCSpec that specifies a set of linear constraints from

the complementarity conditions. If the ith entry of CCSpec is True, we choose the lin-

ear constraints Cond1 = 0 and Cond2 ≥ 0 for the ith pair of complementarity conditions

0 ≤ Cond1 ⊥ Cond2 ≥ 0. If it is False, we choose Cond1 ≥ 0 and Cond2 = 0.

Function GenerateQP in Line 9 generates a QP by replacing the complementarity con-

ditions of QPCC with the linear constraints specified in CCSpec. In Line 10, we solve the

initial QP and record its minimizer and minimal function value. We add this QP to an

priority queue, which sorts the QP’s by their function values in an increasing order. Line 12

starts the iteration, which terminates until the number of explored QP’s exceeds a threshold

or the priority queue is empty.

In each iteration, we retrieve the QP at the head of the queue (Line 13), add it to the set

of explored QP’s and update f∗ and x∗ if necessary (Line 14-17). Function GenerateChildQP

generates a list of new QP’s by pivoting complementarity conditions (Line 18), which we

will discuss in the next paragraph. For each new QP in the list, if it has been already

explored, we discard it (Line 20-21). Otherwise, we solve the new QP and add it to the

queue (Line 22-23). When the algorithm terminates, we output the best minimizer and

function value that we found during the iterations (Line 25).

We summarize the detail of GenerateChildQP in Algorithm 2. The input of Generate-

ChildQP includes QPCC, current QP and its constraint specification for complementarity

conditions: CCSpec. In Line 4, we extract the solution for each contact from the minimizer
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of the QP. Function ExtractFromMinimizer selects the correct components associated with

a specific contact point from the minimizer. In Line 6, we identify the index of the normal

force-velocity condition pair for the ith contact, where IdInCC returns the index of a specific

pair among all complementarity conditions. Line 7 identifies the case of contact establish-

ment and performs the corresponding pivoting (Line 8). Line 11 checks whether the contact

Algorithm 2: Generate a list of new QP’s based on the minimizer of the current QP

1 QP list = GenerateChildQP(QPCC, QP, CCSpec)
2 begin
3 foreach i in Contacts.Size() do
4 (ṗ, f i⊥, f i‖, λ

i) ← ExtractFromMinimizer(QP.minimizer);

5 newCCSpec ← CCSpec;
6 id ← IdInCC(0 ≤ f i⊥ ⊥ (Ni)T ṗ ≥ 0);
7 if CCSpec[id] = True and (Ni)T ṗ=0 then
8 newCCSpec[id] ← False;
9 newQP ← GenerateQP(QPCC, newCCSpec);

10 QP list.Add(newQP);

11 else if CCSpec[id] = False and f i⊥=0 then
12 newCCSpec[id] ← True;
13 newQP ← GenerateQP(QPCC, newCCSpec);
14 QP list.Add(newQP);

15 id ← IdInCC(0 ≤ λi⊥ ⊥ µf i⊥ − (Ei)T f i‖ ≥ 0);

16 id list ← IdInCC(0 ≤ f i‖ ⊥ (Di)T ṗ + Eiλi ≥ 0);

17 if CCSpec[id] = True and µf i⊥ − (Ei)T f i‖ = 0 then

18 newCCSpec[id] = False;
19 foreach id1 in id list do
20 newCCSpec[id1] ← True;

21 f ← Dif i‖;

22 j ← argmaxk fT (Di.Col(k));
23 newCCSpec[j] ← False;
24 newQP ← GenerateQP(QPCC, newCCSpec);
25 QP list.Add(newQP);

26 else if CCSpec[id] = False and λi = 0 then
27 newCCSpec[id] ← True;
28 foreach id1 in id list do
29 newCCSpec[id1] ← False;

30 newQP ← GenerateQP(QPCC, newCCSpec);
31 QP list.Add(newQP);

32 return QP list ;
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is about to break and pivots the constraint accordingly, which enables the contact breakage

(Line 12). Line 15-16 identify the indices of friction cone and friction direction conditions

associated with the ith contact. If the static friction force has reached the boundary of

friction cone, we switch the contact situation from static to sliding (Line 17-18) and esti-

mate the sliding friction direction using the static friction direction (Line 19-23). We apply

the opposite pivoting (from sliding to static) when the sliding velocity reaches zero (Line

26-29). A new QP is generated under the new contact situation and added into the list of

new QP’s (Line 9-10, 13-14, 24-25 and 30-31) whenever pivoting happens. After processing

through all the contact points, the function returns the new QP list.

A.3 Test Case

It is nontrivial to test and debug an implementation of a QPCC solver. We propose the

following test case problem: A particle with mass m lies on the ground and it wants to

jump up. The particle can only control a jumping force fN, where N = (0, 1, 0) is the up

direction. The magnitude of the jumping force is bounded by 0 ≤ f ≤ fub. What is the

optimal jumping force if the goal is to jump as high as possible? The answer is trivially using

maximal force possible. However, the solution is not necessarily fub under some contact

configuration. Our hope is that the QPCC solver can find the optimal contact configuration

such that the optimal solution reaches fub.

One formulation of the above problem is:

min
ṗ,f,f⊥,f‖,λ

− f2

subject to

0 ≤ f ≤ fub

mṗ = ∆t(mg + Nf⊥ + Df‖ + Nf)

0 ≤


f⊥

f‖

λ

 ⊥


NT ṗ

DT ṗ + Eλ

µf⊥ −ET f‖

 ≥ 0

where ∆t is the time step used in the simulation and g is gravity.
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It is easy to verify that the minimizer is

(ṗ, f, f⊥, f‖, λ) = (
∆t

m
(mg + Nfub), fub, 0,0, 0)

and the optimal function value is −f2
ub. A correctly implemented QPCC solver based on

Algorithm 1 and 2 should converge to this optimal solution in two iterations. In the first

iteration, an initial QP using static contact situation is generated and solved. The solution

should be

(ṗ, f, f⊥, f‖, λ) = (0, |mg|, 0,0, 0)

The function GenerateChildQP will pivot the constraint to switch from static contact to

contact breakage and generate a new QP. In the second iteration, the solution of this new

QP is exactly the optimal solution of the QPCC problem.

Once the implementation passes this simple test case, more challenging cases should be

tested. For example, control a single rigid body, an articulated rigid-body system, or a soft

body with the presence of contact.
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APPENDIX B

CONSTRAINTS IN ODE

We are going to describe how various constraints are formulated in ODE for completeness

of presentation.

Joint constraints Joints that connect two rigid bodies constrain their relative motions.

The hinge, universal and ball joints impose five, four and three constraints respectively,

each of which is a linear equality constraint.

JA

 vA

ωA

− JB

 vB

ωB

 = 0 (63)

where JA is a row in the Jacobian matrix that maps the velocities of body A to one

component of the linear velocity at the joint position or the angular velocity perpendicular

to the joint axes.

Actuator constraints An actuator is attached to each joint of the human character to

enable it to actively control its joint motion. The actuators generate internal torques to

track the desired pose given by the IK solver (See Figure 2 in the paper). The following

linear equality constraint should be satisfied for each actuated degree of freedom (DOF).

nT (ωA − ωB)− ˜̇q = 0 (64)

where n is the axis of the actuated DOF. ˜̇q is the desired actuator angular speed, which is

the difference between the desired and current DOF value, divided by the time step.

Contact constraints ODE uses the standard friction pyramid to model the contact forces

between the bicycle and the ground. Let f⊥, f1
‖ and f2

‖ be the normal and two tangential

components of the contact force fc.

fc = f⊥n + f1
‖ t1 + f2

‖ t2
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where n is the ground normal, t1 and t2 are the two orthogonal tangential bases of the

ground.

Along the normal direction, the contact velocity and contact force satisfy the following

linear complementarity constraints.

v⊥ ≥ 0, f⊥ ≥ 0, v⊥f⊥ = 0 (65)

The normal contact velocity v⊥ can be calculated by multiplying the Jacobian at the contact

location with the body velocities and then projected along the normal direction.

v⊥ = nTJ

 v

ω

 (66)

Along the tangential direction, one of the following friction cone conditions must be satisfied.

vi‖ > 0, f i‖ = −µf⊥

vi‖ < 0, f i‖ = µf⊥

vi‖ = 0, −µf⊥ ≤ f i‖ ≤ µf⊥

(67)

where i ∈ {1, 2} and µ is the friction coefficient. The tangential velocities vi‖ can be

calculated similar to eq. (66).

The dynamics equation, together with all the constraints (63), (64), (65) and (67), form

a mixed linear complementarity program, which can be efficiently solved using a variant of

Dantzig’s algorithm [139].
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APPENDIX C

IMPLEMENTATION DETAILS OF LEARNING BICYCLE STUNTS

C.1 Neural Network Structures

We used NEAT to search for both the topologies and the weights of neural networks for

balance-driven tasks. In addition to the endo balance controller, which is shown in the paper,

we demonstrate other learned neural networks in Figure 47. Note that NEAT performs

feature selection (removing connections) for the controllers of balance and steering and

back hop. It also performs structural complexification (adding nodes and connections)

in the examples of the wheelie and riding a unicycle. We found that it is unintuitive to

interpret these network structures, and this is a common problem of using neural networks.

C.2 Reward Functions

We summarize the reward functions that are used to learn different bicycle tasks in Table 8.

We accumulate the rewards for 1000 time steps or until the bicycle loses its balance |α| > 0.5

or when the stunt fails |∆β| > 0.5.

Table 8: Reward functions for different tasks.
task reward function

momentum-driven

going over curbs β
endo (lifting) −β

front wheel pivot


γ̇∆t if the pivoting phase has started,
1 if the pivoting phase has ended,
0 otherwise.

bunny hop hfhr
balance-driven

balance and steering 1 + 1
∆θ+1

wheelie 1 + 1
∆β+1 + 1

ψ+0.1 + 2
α+0.1

endo (balance) 1 + 1
∆β+1 + 1

∆vf+0.1 + 1
α+1 + 1

θ+1

back hop 1 + 1
y+0.1 + 1

z+0.1 + 1
x+0.1

high wheeler (stunt) 1 + 1
∆β+1 + 1

∆vf+1

unicycle 1 + 1
∆vr+1 + 2

α+0.1 + 1
χ+1
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Figure 47: Balance-driven tasks and the neural network structures of their corresponding
controllers: (a) balance and steering, (b) wheelie, (c) back hop, (d) riding a high wheeler
(stunt) and (e) riding a unicycle. Red edges have positive weights and blue edges have
negative weights. The thickness of the edges shows the relative magnitudes of the weights.

C.3 Bicycle Specifications

We describe the physical specifications of the three bicycles and the unicycle in Table 9.

C.4 Simulation and Optimization Parameters

We used Open Dynamic Engine as our physical simulator. Table 10 summarizes the simu-

lation parameters used in our examples.

We applied CMA to search for the splines for the momentum-driven tasks. We used 90

samples per iteration, maximum of 50 iterations and the default values for other parameters

[54].

We applied NEAT to search for the neural networks for the balance-driven tasks. The

implementation can be found at Stanley [141]. Table 11 summarizes the parameters used

Table 9: Specifications of different bicycles and the unicycle. The mass unit is kg and the
length unit is m. The distance between wheels only accounts for the horizontal distance.

specification road BMX high uni-
bike bike wheeler cycle

mass of the frame 7.0 5.6 8.0 2.0
mass of the handlebar 3.5 3.5 4.0 NA
mass of the front wheel 1.7 0.71 5.0 NA
mass of the rear wheel 1.7 0.71 0.5 2.3
radius of the front wheel 0.32 0.25 0.45 NA
radius of the rear wheel 0.32 0.25 0.11 0.32
width of the tires 0.015 0.03 0.015 0.03
distance between wheels 1.03 0.85 0.58 NA
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Table 10: Simulation parameters.
parameter value

time step 0.01s
constraint force mixing (CFM) 10−10

error reduction parameter (ERP) 0.99
friction coefficient (BMX bike examples) 2.0
friction coefficient (other examples) 1.0

in our NEAT optimization.

Table 11: NEAT parameters.
parameter value

max number of iterations 50
population size 90
survival rate 0.2
crossover rate 0.7
mutation rate 0.2
chance of adding a link 0.05
chance of adding a node 0.05
chance of replacing a weight 0.1
max weight perturbation 0.5
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[176] Wu, J.-c. and Popović, Z., “Terrain-adaptive bipedal locomotion control,” in ACM
SIGGRAPH 2010 papers, SIGGRAPH ’10, (New York, NY, USA), pp. 72:1–72:10,
ACM, 2010.

[177] Wyneken, J., “Sea Turtle Locomotion: Mechanisms, Behavior, and Energetics,”
The biology of sea turtles, p. 165, 1997.

[178] Yang, P.-F., Laszlo, J., and Singh, K., “Layered dynamic control for interactive
character swimming,” in Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’04, (Aire-la-Ville, Switzerland, Switzer-
land), pp. 39–47, Eurographics Association, 2004.

[179] Ye, Y. and Liu, C. K., “Optimal feedback control for character animation using
an abstract model,” in SIGGRAPH ’10: ACM SIGGRAPH 2010 papers, (New York,
NY, USA), pp. 1–9, ACM, 2010.

[180] Yin, K., Coros, S., Beaudoin, P., and van de Panne, M., “Continuation methods
for adapting simulated skills,” ACM Trans. Graph., vol. 27, no. 3, 2008.

[181] Yin, K., Loken, K., and van de Panne, M., “SIMBICON: simple biped locomotion
control,” in ACM SIGGRAPH 2007 papers, SIGGRAPH ’07, 2007.

140



[182] Yngve, G. D., O’Brien, J. F., and Hodgins, J. K., “Animating explosions,”
in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, (New York, NY, USA), pp. 29–36, ACM Press/Addison-
Wesley Publishing Co., 2000.

[183] Zagal, J. C., Ruiz-del-Solar, J., and Vallejos, P., “Back-to-Reality: Crossing
the reality gap in evolutionary robotics,” in IAV 2004: Proceedings 5th IFAC Sympo-
sium on Intelligent Autonomous Vehicles, Elsevier Science Publishers B.V., 2004.

[184] Zhao, P. and van de Panne, M., “User interfaces for interactive control of physics-
based 3D characters,” in Proceedings of the 2005 Symposium on Interactive 3D Graph-
ics and Games, I3D ’05, (New York, NY, USA), pp. 87–94, ACM, 2005.

[185] Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C., “Breathe easy:
model and control of human respiration for computer animation,” Graph. Models,
vol. 68, pp. 113–132, March 2006.

141


