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SUMMARY

Deep learning recently has been showing superior performance in complex domains

such as computer vision, audio processing and natural language processing compared to

traditional statistical methods. Naturally, deep learning techniques, combined with large

electronic health records (EHR) data generated from healthcare organizations have potential

to bring dramatic changes to the healthcare industry. However, typical deep learning models

can be seen as highly expressive blackboxes, making them difficult to be adopted in real-

world healthcare applications due to lack of interpretability. In order for deep learning

methods to be readily adopted by real-world clinical practices, they must be interpretable

without sacrificing their prediction accuracy.

In this thesis, we propose interpretable and accurate deep learning methods for modeling

EHR, specifically focusing on longitudinal EHR data. We will begin with a direct application

of a well-known deep learning algorithm, recurrent neural networks (RNN), to capture the

temporal nature of longitudinal EHR. Then, based on the initial approach we develop

interpretable deep learning models by focusing on three aspects of computational healthcare:

efficient representation learning of medical concepts, code-level interpretation for sequence

predictions, and leveraging domain knowledge into the model. Another important aspect

that we will address in this thesis is developing a framework for effectively utilizing multiple

data sources (e.g. diagnoses, medications, procedures), which can be extended in the future

to incorporate wider data modalities such as lab values and clinical notes.

xv



CHAPTER 1

INTRODUCTION

The recent resurgence of neural networks, or deep learning [1], has changed the way we

handle data in computational data analytics. Unlike traditional statistical approaches where

humans were required to study the data carefully and design useful features, deep learning

places the machine in charge of learning useful features (or representations) directly from

the data without human intervention. Deep learning typically uses high-capacity neural

network models, which is trained by a large number of training samples. Thanks to the

advances in computational resources such as graphics processing unit (GPU) and a large

volume of labeled datasets, deep learning has shown superior performance compared to

traditional approaches in various fields such as computer vision, natural language processing

and audio processing [2, 3, 4, 5].

Electronic health records (EHR) since adopted by large healthcare organizations in the

last decade, has enabled the accumulation of large electronic patient data. EHR has helped

researchers use traditional statistical approaches such as logistic regression or random forests

for computational healthcare [6, 7, 8]. However, with the growing size of patient records

and the development of powerful computing resources, it seems that now is the right time

to introduce deep learning techniques to computational healthcare. However in healthcare,

interpretation of the model outcome is vital. Therefore, although typical deep learning

models show impressive predictive performance, their blackbox nature makes it difficult

for them to be readily used in healthcare. Deep learning models need to be interpretable

without sacrificing its prediction accuracy in order to be actively adopted in healthcare.

In this thesis, we propose interpretable deep learning methods for modeling EHR,

specifically focusing on predictive modeling and representation learning of longitudinal

EHR data. Patients visit hospitals over time, which constitutes a sequence of visit records.
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Figure 1.1: Relationship between research conducted so far, and future research directions.
Each conducted research will be described in detail in the corresponding chapters.

Each visit (i.e. encounter) consists of medical events (i.e. medical codes) such as diagnosis

codes, medication codes and procedure codes. Therefore it is essential to capture both the

medical code relationships within a visit, and the medical code relationships across visits,

and be able to provide interpretation of the model to the user. Figure 1.1 depicts how we

have tackled this problem so far, and how we will continue our effort in the future.

We began with a direct application of a well-known deep learning algorithm, the recurrent

neural networks (RNN), to effectively capture the intra-visit and inter-visit medical code

relationships. This was motivated by the successful application of the RNN to predict the

onset of heart failure for patients at Sutter Health [9]. This project, named Dr.AI [10], aimed

to model the temporal progression of patient status. Given all previous visit records of a

patient, our model tried to predict the medical codes likely to occur in the next visit, and

the time duration until the next visit. Dr.AI was a meaningful first step towards introducing

deep learning to EHR in that in showed impressive performance for capturing the temporal

nature of EHR, predicting future diagnosis codes with 0.64 recall@10, showing superior

performance to traditional statistical methods. However, due to the blackbox nature of RNN,
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it was not easy to interpret the temporal representations learned by, or predictions made by

Dr.AI. Dr.AI is described in detail in Chapter 2.

During our research on Dr.AI, we discovered that using a pre-trained medical code rep-

resentations improved the predictive performance of the model. Specifically, we pre-trained

the representation vectors for each medical code using a co-occurrence based algorithm,

namely Skip-gram [11], and used the resulting vectors in the embedding layer between

the input layer and the RNN. Motivated by this success, for the next project, we aimed to

learn interpretable representations of medical codes by taking into account the hierarchical

structure of EHR. Our model, Med2Vec [12], improved the predictive performance for

various tasks while providing interpretation for the learned medical code representation.

Specifically, each dimension of the vector representations learned by Med2Vec represented

a coherent clinical concept such as injury from playing sports or symptoms and medications

related to sickle cell disease. Med2Vec was an important work in that it showed deep

learning methods can be both accurate and interpretable. Med2Vec is described in detail in

Chapter 3.

Although Med2Vec demonstrated strength in both prediction accuracy and interpretation

of the learned representation, its interpretability was only applicable to non-sequence predic-

tion tasks. In order to overcome this limit and provide interpretation for sequence prediction

tasks, we decided to use the attention mechanism from neural machine translation [3].

By encoding the visit information via linear transformation, and generating the attention

weights using the RNN, our model, RETAIN [13], demonstrated the same level of temporal

prediction accuracy as the regular RNN while providing exact interpretation as to how much

each medical code in each visit contributed to the prediction outcome. RETAIN is described

in more detail in Chapter 4.

Up to RETAIN, our projects have been developed in a pure data-driven fashion. Health-

care field, however, is rich with domain knowledge curated by medical experts such as the
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International Classification of Diseases (ICD) diagnosis hierarchy1 or SNOMED-CT2. Such

domain knowledge can be very helpful when we do not have sufficient training data to train

high-capacity models such as neural networks. Our next project, GRAM [14], aimed to

incorporate such domain knowledge into predictive neural network models. Specifically

we focused on domain knowledge which could be represented as a directed acyclic graph

(DAG). By developing an attention mechanism that operates on DAGs, we were able to learn

medical code representations that closely align with the given domain knowledge. Thanks

to the highly informative code representations, RNN’s predictive performance improved

when modeling rare diseases or when we used smaller amount of training data. GRAM is

described in more detail in Chapter 5.

EHR data consist of heterogeneous data sources such as structured codes (e.g. diagnosis,

medication, procedure codes), lab measures, clinical notes, and demographics. From Dr.AI

to GRAM, we exclusively dealt with structured codes. But detailed or complementary

patient information can be collected by incorporating more data sources, which is a natural

future work of this thesis. However, while closely studying longitudinal EHR to design an

optimal way to incorporate more data sources, we discovered that a patient encounter is more

than just a set of medical codes, which is how we modeled each visit up to GRAM. In fact, a

patient encounter is associated with one or more diagnosis codes and medication/procedure

orders. Each medication/procedure order in turn is associated with a single diagnosis code,

meaning that doctors order medications or procedures because of a specific diagnosis. This

relationship between the diagnosis code and medication/procedure codes is information

we neglected so far. We therefore decided to design a framework where we can effectively

capture this relationship before trying to incorporate more data sources, some of which

(e.g. lab measures) are associated each procedure order. The new framework, MiME, adds

to the previous patient visit representation, one more level of embedding to capture the

interaction between a diagnosis and its associated medication/procedure orders. MiME

1https://www.cdc.gov/nchs/icd/icd9.htm
2https://www.snomed.org/snomed-ct
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outperformed various baseline models on heart failure prediction and sequential diagnoses

prediction, and showed similar predictive performance to baseline models on medication

prediction. Studying the experiment results, we could conclude that MiME indeed showed

better performance than baseline models because of its ability to capture the interaction

between diagnosis and medications/procedures, making it a strong foundation on which we

can incorporate more data sources and add interpretability in the future.

In an effort to develop interpretable, accurate deep learning models for EHR, we began

our research by modeling the temporal structure of EHR by directly applying RNN. Then

we addressed three aspects of computational healthcare, namely representation learning,

temporal interpretability, and domain knowledge incorporation, by developing Med2Ve,

RETAIN, and GRAM. Additionally, we described the new framework, MiME that can act

as the foundation for incorporating more data sources in the future. There are a number

of interesting future works, but extending MiME to handle heterogeneous data types (e.g.

lab measures, clinical notes) and provide interpretable predictions is the most natural next

step. Another direction is training the RETAIN framework with policy gradient methods to

delegate certain decision making problems to the machine while retaining the interpretability.

For example, when we want to predict the onset of a certain disease as soon as possible,

it is difficult for humans to determine the optimal time to make the diagnosis. Using the

reinforcement learning technique, this task could be delegated to the machine, without having

to have data labeled with the ground truth optimal time. Extending GRAM to incorporate

additional domain knowledge besides the disease hierarchy is another straightforward future

direction. Specifically, we are interested in leveraging the drug relation network and the

procedure code hierarchy. Future works will be discussed in more detail in Chapter 7.

1.1 Interpretability of machine learning models

As the focus of this thesis is deep learning models’ lack of interpretability, we use this

section for discussing the notion model interpretability and introducing a few works that
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address this topic.

The precise meaning of model interpretability is somewhat debatable, as different users

may expect different types of interpretation. For example, studying the feature coefficients

of a logistic regression model is a popular way of interpreting what the model has learned.

Projecting word embeddings to a two dimensional space and studying their clustering

behavior can be another form of interpreting what the model has learned. Some might even

be interested to know how a model was trained from a given dataset (i.e. the optimization

process). But when we state that deep learning models are not as interpretable as linear

models, we generally mean that it is difficult to succinctly describe the relationship between

the input and the output. Before further unfolding this section, we should mention that

although researchers generally agree linear models are more interpretable than deep neural

networks, it is not an undisputed notion. As pointed out by [15], linear models lose their

interpretability as the number of features increases, and as features themselves become

unintelligible (e.g. preprocessed with dimensionality reduction methods). Even decision

trees, a popular choice for its interpretability and non-linearity, also cannot be intuitively

understood as the size of the tree grows [16]. However, to avoid having this section become

too philosophical, we focus on the unintelligible relationship between the input and output

of deep neural networks, and popular ways to address it.

Since deep neural networks themselves are designed to be complex and non-linear, most

approaches for interpreting them are post-hoc. Visualizing the learned representation is

a popular method to understand the relationship between the input and the output. [17]

introduced two ways to visualize the relationship between the input and the output of deep

convolutional networks, using gradient descent. First approach is to derive an input image

that maximizes a specific output class by fixing the model parameters and applying gradient

descent with respect to the input image initialized with random values. The derived image

is a local optimum since it relies on the initial value, and therefore it might not be the

most representative example of what the model recognizes as a specific class. However,
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empirically this approach provides decent insight into what kind of shapes and textures the

model deems important to classify the given image. The second approach is to compute

a class saliency map for a given image by using the Taylor expansion of the original

convolutional model. The pixel magnitude in the saliency map indicates which pixels need

to be changed the least to affect the class score the most.

Explanation by example is another way to interpret the deep neural networks. For

example, as briefly mentioned above, plotting word embedding vectors to a two dimensional

space using t-SNE [18] or PCA can tell us which words are close to one another in the

latent space [11]. This type of interpretation does not directly shed light on the relationship

between the input and the output. However, when sample A is classified as a certain class,

then we can infer that other samples that are close to sample A would be classified as the

same class, thus indirectly describing what the model has learned from the data.

An alternative way to interpret deep neural networks is to use model-agnostic ap-

proaches [19]. Partial dependence plot [20] can be used to identify what kind of relationship

(e.g. linear, monotonic, more complex) a feature (or a set of features) has with the model

outcome. Partial dependence works by marginalizing the model over the distribution of

the features except the feature of interest, so that we are left with a function that captures

the relationship between the model output and the feature of interest. Shapely values [21]

can be used to identify how much each feature affected the model outcome to deviate from

the model’s average outcome. This method provides a concrete insight for a single sample,

but it requires exponential time as we use more features. More recently, [22] proposed a

method called LIME, which provides similar insight for a single sample as Shapely values,

but requires much less time. LIME focuses on the neighborhood of a single sample; after

generating many slightly perturbed samples, it trains an interpretable model (e.g. linear

regression, decision tree) on those samples to approximately learn the relationship between

the input features and the output of a single sample.

In this thesis, we use the definition of interpretability described above; succinctly describe
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the relationship between the input and the output. But we add one more condition that is

relevant to healthcare; whether the knowledge (i.e. the parameters) learned by the model

aligns well with established medical knowledge. In the following chapters, in addition to

analyzing the computational performance of our works, we will also study if and how they

address these two aspects of interpretability.
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CHAPTER 2

DOCTOR AI: PREDICTING CLINICAL EVENTS VIA RECURRENT NEURAL

NETWORKS

Leveraging large historical data in electronic health record (EHR), we developed Doctor

AI, a generic predictive model that covers observed medical conditions and medication

uses. Doctor AI is a temporal model using recurrent neural networks (RNN) and was

developed and applied to longitudinal time stamped EHR data from 260K patients over

8 years. Encounter records (e.g. diagnosis codes, medication codes or procedure codes)

were input to RNN to predict (all) the diagnosis and medication categories for a subsequent

visit. Doctor AI assesses the history of patients to make multilabel predictions (one label for

each diagnosis or medication category). Based on separate blind test set evaluation, Doctor

AI can perform differential diagnosis with up to 79% recall@30, significantly higher than

several baselines. Moreover, we demonstrate great generalizability of Doctor AI by adapting

the resulting models from one institution to another without losing substantial accuracy.

2.1 Introduction

A common challenge in healthcare today is that physicians have access to massive amounts of

data on patients, but little time nor tools. Intelligent clinical decision support anticipates the

information at the point of care that is specific to the patient and provider needs. Electronic

health records (EHR), now commonplace in U.S. healthcare, represent the longitudinal

experience of both patients and doctors. These data are being used with increasing frequency

to predict future events. While predictive models have been developed to anticipate needs,

most existing work has focused on specialized predictive models that predict a limited set of

outcomes. However, day-to-day clinical practice involves an unscheduled and heterogeneous

mix of scenarios and needs different prediction models in the hundreds to thousands. It is
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impractical to develop and deploy specialized models one by one.

Leveraging large historical data in EHR, we developed Doctor AI, a generic predictive

model that covers observed medical conditions and medication uses. Doctor AI is a temporal

model using recurrent neural networks (RNN) and was developed and applied to longitu-

dinal time stamped EHR data. In this chapter, we are particularly interested in whether

historical EHR data may be used to predict future physician diagnoses and medication

orders. Applications that accurately forecast could have many uses such as anticipating

the patient status at the time of visit and presenting data a physician would want to see at

the moment. The primary goal of this study was to use longitudinal patient visit records to

predict the physician diagnosis and medication order of the next visit. As a secondary goal

we predicted the time to the patient’s next visit. Predicting the visit time facilitates guidance

of whether a patient may be delayed in seeking care.

The two tasks addressed in this chapter are different from sequence labeling tasks often

seen in natural language processing applications, e.g., part-of-speech tagging. Our proposed

model, Doctor AI, performs multilabel prediction (one for each disease or medication

category) over time while sequence labeling task predicts a single label at each step. The key

challenge was finding a flexible model that is capable of performing the multilabel prediction

problem. The two main classes of techniques have been proposed in dealing with temporal

sequences: 1) continuous-time Markov chain based models [23, 24, 25], and 2) intensity

based point process modeling techniques such as Hawkes processes [26, 27, 28]. However,

both classes are expensive to compute, especially for nonlinear settings. Furthermore, they

often make strong assumptions about the data generation process which might not be valid

for EHR data. Our modeling strategy was to develop a generalized approach to representing

patient temporal healthcare experience to predict all the diagnoses, medication categories

and visit time. We used recurrent neural network (RNN), considering that RNNs have been

particularly successful for representation learning in sequential data, e.g. [29, 30, 31, 32,

33]. In particular, we make the following main contributions in this chapter:
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• We demonstrate how RNNs can be used to represent the patient status and predict

diagnosis, medication order and visit time. The trained RNN is able to achieve above

64% recall@10 and 79% recall@30 for diagnosis prediction, showing potential to

serve as a differential diagnosis assistance.

• We propose an initialization scheme for RNNs using Skip-gram embeddings [11] and

show that it improves the performance of the RNN in both accuracy and speed.

• We empirically confirm that RNN models possess great potential for transfer learning

across different medical institutions. This suggests that health systems with insufficient

patient data can adopt models learned from larger datasets of other health systems to

improve prediction accuracy on their smaller population.

2.2 Related Work

In this section, we briefly review the common approaches to modeling multilabel event

sequences with special focus on the models that have been applied to medical data. There are

two main approaches to modeling multilabel event sequences: with or without discretization

(binning) of time.

Discretization. When the time axis is discretized, the point process data can be converted

to binary time series (or time series of count data if binning is coarse) and analyzed via

time series analysis techniques [34, 35, 36]. However, this approach is inefficient as it

produces long time series whose elements are mostly zero. Furthermore, discretization of

time introduces noise in the time stamps of visits. Finally, these approaches are often not

able to model the duration until next event. Thus, it is advantageous not to discretize the

data both in terms of modeling and computation.

Continuous-time models. Among the continuous-time models, there are two main tech-

niques: continuous-time Markov chain based models [37, 25, 38, 39] and their extension

using Baysian networks [23, 40] and intensity function modeling techniques such as Cox
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and Hawkes processes [26, 41, 42, 28].

Intensity function modeling techniques have been shown to have computational advan-

tages over the continuous-time Markov chain based models. Moreover, modeling multilabel

marked point processes with continuous-time Markov chains expands their state-space and

make them even more expensive. However, Hawkes processes only depend linearly on the

past observation times; while there are limited classes of non-linear Hawkes process [27],

the temporal dynamics can be more complex. Finally, Hawkes processes are known to have

a flat loss function near optimal value of the parameters which renders the gradient-based

learning algorithms inefficient [43]. In this paper we address these challenges by designing

a recurrent neural network which has been shown to be successful in learning complex

sequential patterns.

Disease progression models. There have been active research in modeling the temporal

progression of diseases [44]. Generally, most works can be divided into two groups: works

that focus on a specific disease and works that focus on a broader range of diseases.

Specific-purpose progression modeling: There have been many studies that focus on

modeling the temporal progression of a specific disease based on either intensive use of

domain-specific knowledge [45, 46, 47] or taking advantage of advanced statistical methods

[39, 48, 49, 50]. Specifically, studies have been conducted on Alzheimer’s disease [46, 50,

49], glaucoma [39], chronic kidney disease [47], diabetes mellitus [45], and abdominal

aortic aneurysm [48]

General-purpose progression modeling: Recently, [51, 28, 36] proposed more general

approaches to modeling the progression of wider range of diseases. As discussed earlier,

[28] used Hawkes process, and [36] discretized time in order to model multiple patients

and multiple diseases. [51] proposed a graphical model based on Markov Jump Process

to predict the stage progression of chronic obstructive pulmonary disease (COPD) and its

co-morbid diseases.

One of the main challenges in using these algorithms is scalability. The datasets used in
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Table 2.1: Basic statistics of the the clinical records dataset.

# of patients 263,706 Total # of codes 38,594
Avg. # of visits 54.61 Total # of 3-digit Dx codes 1,183
Avg. # of codes per visit 3.22 # of top level Rx codes 595
Max # of codes per visit 62 Avg. duration between visits 76.12 days

previous works typically contain up to a few thousands of patients and a few hundreds of

codes. Even the largest dataset used by [36] contains 13,180 patients and 8,722 codes, which

is significantly smaller than our dataset described in Table 2.1. Need for domain-specific

knowledge is also a big challenge. For example, [51] not only used a smaller dataset (3,705

patients and 264 codes) but also used co-morbidity information to improve the performance

of their algorithm. Such expert knowledge is difficult to obtain from typical EHR data.

Deep learning models for EHR. Researchers have recently begun attempting to apply

neural network based methods (or deep learning) to EHR to utilize its ability to learn

complex patterns from data. Previous studies such as phenotype learning [52, 53, 54] or

representation learning [55, 12, 56], however, have not fully addressed the sequential nature

of EHR. [57] is especially related to our work in that both studies use RNN for sequence

prediction. However, while [57] uses regular times series of real-valued variables collected

from ICU patients to predict diagnosis codes, we use discrete medical codes (e.g. diagnosis,

medication, procedure) extracted from longitudinal patient visit records. Also, in each visit

we make a prediction about predict diagnosis, medication order in the next visit and and the

time to next visit.

2.3 Cohort

Population and source of data. The source population for this study was primary care

patients from Sutter Health Palo Alto Medical Foundation. Sutter Health is a large primary

care and multispecialty group practice that has used an Epic Systems Corporation EHR for

more than a decade. The dataset was extracted from a density sampled case-control study

for heart failure. The dataset consists of de-identified encounter orders, medication orders,
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problem list records and procedure orders.

Data processing. As inputs, we use ICD-9 codes, medication codes, and procedure codes.

We extracted ICD-9 codes from encounter records, medication orders, problem list records

and procedure orders. Generic Product Identifier (GPI) medication codes and CPT procedure

codes were extracted from medication orders and procedure orders respectively. All codes

were timestamped with the patients’ visit time. If a patient received multiple codes in a

single visit, those codes were given the same timestamp. We excluded patients that made

less than two visits. The resulting dataset consists of 263,706 patients who made on average

54.61 visits per person.

Grouping medical codes. There are more about 11,000 unique ICD-9 codes and 18,000 GPI

medication codes in the dataset, many of which are very granular. For example, pulmonary

tuberculosis (ICD-9 code 011) is divided into 70 subcategories (ICD-9 code 011.01, 011.02,

..., 011.95, 011.96). Simply knowing that a patient is likely to have pulmonary tuberculosis is

enough to increase the doctor’s awareness of the severity of the clinical situation. Therefore,

to predict diagnosis and medication order, we grouped codes into higher-order categories to

reduce the feature set and information overload. For the diagnosis codes, we use the 3-digit

ICD-9 codes, yielding 1183 unique codes. For the medication codes, we use the Generic

Product Identifier Drug Class, which groups the medication codes into 595 unique groups.

The label yi we use in the following sections represents the 1,778-dimensional vector (i.e.,

1183 + 595) for the grouped diagnosis codes and medication codes.

2.4 Methods

This section describes the RNN model for multilabel point processes. We will also describe

how we predict diagnosis, medication order and visit time using the RNN model.

Problem setting. For each patient, the observations are drawn from a multilabel point

process in the form of (ti,xi) for i = 1, . . . , n. Each pair represents an event, such as an

ambulatory care visit, during which multiple medical codes such as ICD-9 diagnosis codes,
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procedure codes, or medication codes are documented in the patient record. The multi-hot

label vector xi ∈ {0, 1}p represents the medical codes assigned at time ti, where p denotes

the number of unique medical codes. At each timestamp, we may extract higher-level codes

for prediction purposes and denote it by yi, see the details in section 2.3. The number of

events for each patient may differ.

Gated Recurrent Units Preliminaries. Specifically, we implemented our RNN with Gated

Recurrent Units (GRU). Although Long Short Term Memory (LSTM) [58, 59] has drawn

much attention from many researchers, GRU has recently shown to have similar performance

as LSTM, while employing a simpler architecture [60]. In order to precisely describe the

network used in this work, we reiterate the mathematical formulation of GRU as follows:

zi = σ(Wzxi +Uzhi−1 + bz)

ri = σ(Wrxi +Urhi−1 + br)

h̃i = tanh(Whxi + ri ◦Uhhi−1 + bh)

hi = zi ◦ hi−1 + (1− zi) ◦ h̃i

where zi and ri respectively represent the update gate and the reset gate, h̃i the intermediate

memory unit, hi the hidden layer, all at timestep ti. A detailed description of GRU is

provided in Supplementary 2.7.

Description of neural network architecture. Our goal is to learn an effective vector repre-

sentation for the patient status at each timestamp ti. Using effective patient representations,

we are interested in predicting diagnosis and medication categories in the next visit yi+1

and the time duration until the next visit di+1 = ti+1 − ti. Finally, we would like to perform

all these steps jointly in a single supervised learning scheme. We use RNN to learn such

patient representations, treating the hidden layer as the representation for the patient status

and use it for the prediction tasks.

The proposed neural network architecture (Figure 2.1) receives input at each timestamp
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Figure 2.1: This diagram shows how we have applied RNNs to solve the problem of
forecasting of next visits’ time and the codes assigned during each visit. The first layer
simply embeds the high-dimensional input vectors in a lower dimensional space. The next
layers are the recurrent units (here two layers), which learn the status of the patient at each
timestamp as a real-valued vector. Given the status vector, we use two dense layers to
generate the codes observed in the next timestamp and the duration until next visit.

ti as the concatenation of the multi-hot input vector xi of the multilabel categories and the

duration di since the last event. In our datasets, the input dimension is as large as 40, 000.

Thus, the next layer projects the input to a lower dimensional space. Then, we pass the lower

dimensional vector through RNN (implemented with GRU in our study). We can also stack

multiple layers of RNN to increase the representative power of the network. Finally, we

use a Softmax layer to predict the diagnosis codes and the medication codes, and a rectified

linear unit (ReLU) to predict the time duration until next visit.

For predicting the diagnosis codes and the medication codes at each timestep ti, a

Softmax layer is stacked on top of the GRU, using the hidden layer hi as the input: ŷi+1 =

softmax(Wcode
>hi + bcode). For predicting the time duration until the next visit, a rectified

linear unit (ReLU) is placed on top of the GRU, again using the hidden layer hi as the

input: d̂i+1 = max(wtime
>hi + btime, 0). The objective of training our model is to learn the

weights W{z,r,h,code}, U{z,r,h}, b{z,r,h,code}, wtime and btime. The values of all W’s and U’s

were initialized to orthonormal matrices using singular value decomposition of matrices

generated from the normal distribution [61]. The initial value of wtime was chosen from the

uniform distribution between −0.1 and 0.1. All b’s and btime were initialized to zeros. The

joint loss function consists of the cross entropy for the code prediction and the squared loss
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for the time duration prediction, as described below for a single patient:

L(W,U,b,wtime, btime) =

n−1∑
i=1

{(
yi+1 log(ŷi+1) + (1− yi+1) log(1− ŷi+1)

)
+

1

2
‖di+1 − d̂i+1‖22

}

As mentioned above, the multi-hot vectors xi of almost 40,000 dimensions are first projected

to a lower dimensional space, then put into the GRU. We employed two different approaches

for this: (1) We put an extra layer of a certain size between the multi-hot input xi and the

GRU, and call it the embedding layer. We denote the weight matrix between the multi-hot

input vector and the embedding layer as Wemb. Then we learn the weight Wemb as we train

the entire model. (2) We initialize the weight Wemb with a matrix generated by Skip-gram

algorithm [11], then refine the weight Wemb as we train the entire model. This can be seen

as using the pre-trained Skip-gram vectors as the input to the RNN and fine-tuning them

with the joint prediction task. The brief description of learning the Skip-gram vectors from

the EHR is provided in Supplementary 2.8. The first and second approach can be formulated

as follows:

h
(1)
i = [tanh(xi

>Wemb + bemb), di] (2.1)

h
(1)
i = [xi

>Wemb, di] (2.2)

where [·, ·] is the concatenation operation used for appending the time duration to the

multi-hot vector h(1)
i to make it an input vector to the GRU.

2.5 Results

We now describe the details of our experiments in the proposed RNN approach to forecasting

the future clinical events. The source code of Doctor AI is publicly available at https:

//github.com/mp2893/doctorai.
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2.5.1 Experiment Setup

For training all models including the baselines, we used 85% of the patients as the training

set and 15% as the test set. We trained the RNN models for 20 epochs (i.e., 20 iterations

over the entire training data) and then evaluated the final performance against the test set.

To avoid overfitting, we used dropout between the GRU layer and the prediction layer (i.e.

code prediction and time duration prediction). Dropout was also used between GRU layers

if we were using a multi-layer GRU. We also applied norm-2 regularization on both Wcode

and wtime. Both regularization coefficients were set to 0.001. The size of the hidden layer

hi of the GRU was set to 2000 to guarantee a sufficient expressive power. After running

sets of preliminary experiments where we tried the size from 100 to 2000, we noticed that

the code prediction performance started to saturate around 1600∼1800. All models were

implemented with Theano [62] and trained on a machine equipped with two Nvidia Tesla

K80 GPUs.

We train total four different variation of Doctor AI as follows,

• RNN-1: RNN with a single hidden layer initialized with a random orthogonal matrix

for Wemb.

• RNN-2: RNN with two hidden layers initialized with a random orthogonal matrix for

Wemb.

• RNN-1-IR: RNN using a single hidden layer initialized embedding matrix Wemb

with the Skip-gram vectors trained on the entire dataset.

• RNN-2-IR: RNN with two hidden layers initialized embedding matrix Wemb with

the Skip-gram vectors trained on the entire dataset. dataset.
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2.5.2 Evaluation metrics

The performance of algorithms in predicting diagnoses and medication codes was evaluated

using the Top-k recall defined as:

top-k recall =
# of true positives in the top k predictions

# of true positives

Top-k recall mimics the behavior of doctors conducting differential diagnosis, where doctors

list most probable diagnoses and treat patients accordingly to identify the patient status.

Therefore, a machine with a high Top-k recall translates to a doctor with an effective

diagnostic skill. This makes Top-k recall an attractive performance metric for our problem.

We select the maximum k to be 30 to evaluate the performance of the models not only

for simple cases but also for complex cases. Near 50.7% of the patients have been assigned

with more than 10 diagnosis and medication codes at least once. Since it is those complex

cases that are of interest to predict and analyze, we choose k to be large enough (i.e., 3 times

of the mean).

Coefficient of determination (R2) was used to evaluate the predictive performance

of regression and forecasting algorithms. It compares the accuracy of the prediction with

respect to the simple prediction by mean of the target variable.

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − yi)
2

Because time to the next visit can be highly skewed, we measure the R2 performance of

the algorithms in predicting log(di) to lower the impact of anomalous long durations in the

performance metric. In the same spirit, we train all models to predict the logarithm of the

time duration between visits.
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2.5.3 Baselines

We compare our model against several baselines as described below. Some of the existing

techniques based on continuous-time Markov chain and latent space models were not

scalable enough to be trained using the entire dataset in a reasonable amount of time; thus

comparison is not feasible.

Frequency baselines. We compare our algorithms against simple baselines that are based

on experts’ intuition about the dynamics of events in clinical settings. The first baseline uses

a patient’s medical codes in the last visit as the prediction for the current visit. This baseline

is competitive when the status of a patient with a chronic condition stabilizes over time. We

enhanced this baseline using the top-k most frequent labels observed in visits prior to the

current visits. In the experiments we observe that the baseline of top-k most frequent labels

is quite competitive.

Logistic and Neural Network time series models. A common way to perform prediction

task is to use xi−1 to predict the codes in the next visit xi using logistic regression or

multilayer perceptron (MLP). To enhance the baseline further, we can use the data from

L time lags before and aggregate them xi−1 + xi−2 + . . . ,+xi−L for some duration L to

create the features for prediction of xi. Similarly, we can have a model that predicts the time

until next visit using rectified linear units (ReLU) as the output activation. We set the lag

L = 5 so that the logistic regression and MLP can use information from maximum five past

visits. The details of MLP design are described in Supplementary 2.9.

2.5.4 Prediction performance

Table 2.2 compares the results of different algorithms with RNN based Doctor AI. We report

the results in three settings: when we are interested in (1) predicting only diagnosis codes

(Dx), (2) predicting only medication codes (Rx), and (3) jointly predicting Dx codes, Rx

codes, and the time duration to next visit. The results confirm that the proposed approach is

able to outperform the baseline algorithms by a large margin. Note that the recall values for
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Table 2.2: Accuracy of algorithms in forecasting future medical activities. Embedding
matrices Wemb of both RNN-1 (using one hidden layer) and RNN-2 (using two hidden
layers) are initialized with random orthogonal vectors. Embedding matrices Wemb of both
RNN-1-IR (using one hidden layer) and RNN-2-IR (using two hidden layers) are initialized
with Skip-gram vectors trained on the entire dataset.

Dx Only Recall @k Rx Only Recall @k Dx,Rx,Time Recall @k

Algorithms k = 10 k = 20 k = 30 k = 10 k = 20 k = 30 k = 10 k = 20 k = 30 R2

Last visit 29.17 13.81 26.25 —
Most freq. 56.63 67.39 71.68 62.99 69.02 70.07 48.11 60.23 66.00 —
Logistic 43.24 54.04 60.76 45.80 60.02 68.93 36.04 46.32 52.53 0.0726
MLP 46.66 57.38 64.03 47.62 61.72 70.92 38.82 49.09 55.74 0.1221
RNN-1 63.12 73.11 78.49 67.99 79.55 85.53 53.86 65.10 71.24 0.2519
RNN-2 63.32 73.32 78.71 67.87 79.47 85.43 53.61 64.93 71.14 0.2528
RNN-1-IR 63.24 73.33 78.73 68.31 79.77 85.52 54.37 65.68 71.85 0.2492
RNN-2-IR 64.30 74.31 79.58 68.16 79.74 85.48 54.96 66.31 72.48 0.2534

the joint task are lower than those for Dx code prediction or Rx code prediction because the

hypothesis space is larger for the joint prediction task. The superior performance of RNN

based approaches can be attributed to the efficient representation that they learn for patients

at each visit [63, 64]. RNNs are able to learn succinct feature representations of patients by

accumulating the relevant information from their history and the current set of codes, which

outperformed hand-picked features of frequency baselines.

Table 2.2 confirms that learning patient representation with RNN is easier with the

input vectors that are already efficient representations of the medical codes. The RNN

trained with the Skip-gram vectors (denoted by RNN-IR) consistently outperforms the RNN

that learns the weight matrix Wemb directly from the data, with only one exception, the

medication prediction Recall@30, although the differences are insignificant. The results

also confirm that having multiple layers when using RNN improves its ability to learn

more efficient representations. The results also indicate that a single layer RNN might have

enough representative power to capture the dynamics of medications, and adding more

layers may not improve the performance.

The results also indicate that our approach significantly improves the accuracy of

predicting the time duration until the next visit compared to the baselines. However, the
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absolute value of R2 metric shows that accurate prediction of time intervals remains as a

challenge. We believe achieving significantly better time prediction without extra features

should be difficult because the timing of a clinical visit can be affected by many personal

factors such as financial status, location of residence, means of transportation, and life style,

to name a few. Thus, without such sensitive personal information, which is rarely included

in the EHR, accurate prediction of time intervals should be unlikely.

2.5.5 Understanding the behavior of the network

To study the applicability of our model in a real-world setting where patients have varying

length of medical records, we conducted an additional experiment to study the relationship

between the length of the patient medical history and the prediction performance. To this

end, we selected 5,800 patients from the test set who had more than 100 visits. We used the

best performing model to predict the diagnosis codes at visits at different times and found

the mean and standard error of recall across the selected patients. Figure 2.2a shows the

result of the experiment. We believe that the increase in performance can be due to two

reasons: (1) RNN is able to learn a better estimate of the patient status as it sees longer

patient records and (2) Visits are correlated with poor health. Those with high visit count

are more likely to be severely ill, and therefore their future is easier to predict.

Another experiment was conducted to understand the behavior of the network by giving

synthetic inputs. We chose hypertension (ICD-9 code 401.9) as an example of a frequently

observed diagnosis, and Klinefelter’s syndrome (ICD-9 code 758.7) as an example of an

infrequent diagnosis. We created two synthetic patients who respectively have 200 visits of

401.9 and 758.7. Then we used the best performing model to predict the diagnosis codes for

the next visits. Figure 2.2b shows contrasting patterns: when the input is one of the frequent

codes such as hypertension, the network quickly learns a more specific set of output codes

as next disease. When we select an infrequent code like Klinefelter’s syndrome as the input,

the network’s output is more diverse and mostly the frequently observed codes. The top 30
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Figure 2.2: Characterizing behavior of the trained network: (a) Prediction performance of
Doctor AI as it sees a longer history of the patients. (b) Change in the perplexity of response
to a frequent code (hypertension) and an infrequent code (Klinefelter’s syndrome).

codes after convergence shown in Table 2.4 in Supplementary 2.10 confirm the disparity of

the diversity of the predicted codes for the two cases.

2.5.6 Knowledge transfer across hospitals

As we observed from the previous experiments, the dynamics of clinical events are complex,

which requires models with a high representative power. However, many institutions have

not yet collected large scale datasets, and training such models could easily lead to overfitting.

To address this challenge, we resort to the recent advances in domain adaptation techniques

for deep neural networks [65, 66, 67, 68].

A different dataset, MIMIC II, which is a publicly available clinical dataset collected

from ICU patients over 7 years of observation, was chosen to conduct the experiment. This

dataset differs from the Sutter dataset in that it consists of demographically and diagnostically

different patients. The number of patients who made at least two visits is 2,695, and the

number of unique diagnosis code (3-digit ICD-9 code) is 767, which is a subset of the Sutter

dataset. From the dataset, we extracted sequences of 3-digit ICD-9 codes. We chose 2,290

patients for training, 405 for testing. We chose the 2-layer RNN with 1000 dimensional

hidden layer, and performed two experiments: 1) We trained the model only on the MIMIC

II dataset. 2) We initialized the coefficients of the model with the values learned from the
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Figure 2.3: The impact of pre-training on improving the performance on smaller datasets.
In the first experiment, we first train the model on a small dataset (red curve). In the
second experiment, we pre-train the model on our large dataset and use it for initializing the
training of the smaller dataset. This procedure results in more than 10% improvement in the
performance.

3-digit ICD-9 sequences of the Sutter data, then we refined the coefficients with the MIMIC

II dataset. Figure 2.3 shows the vast improvement of the prediction performance induced by

the knowledge transfer from the Sutter data.

2.6 Conclusion

In this chapter, we proposed Doctor AI system, which is a RNN-based model that can

learn efficient patient representation from a large amount of longitidinal patient records and

predict future events of patients. We tested Doctor AI on a large real-world EHR datasets,

which achieved 79.58% recall@30 and significantly outperformed many baselines. We have

also shown that the patient’s visit count and the rarity of medical codes highly influence

the performance. We have also demonstrated that knowledge learned from one hospital

could be adapted to another hospital. The empirical analysis by a medical expert confirmed

that Doctor AI not only mimics the predictive power of human doctors, but also provides

diagnostic results that are clinically meaningful.

One limitation of Doctor AI is that, in medical practice, incorrect predictions can

sometimes be more important than correct predictions as they can degrade patient health.
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Also, although Doctor AI has shown that it can mimic physicians’ average behavior, it would

be more useful to learn to perform better than average. We set as our future work to address

these issues so that Doctor AI can provide practical help to physicians in the future.

Supplementary

2.7 Description of Gated Recurrent Units

xi

hi-1 hihi
~

ri zi Element-wise multiplication

Element-wise AdditionWr Wz

Ur

Uz

Wh

Uh

1-zi zi

Values are directly propagated

Values are modified by weights

Figure 2.4: Architecture of GRU

We first reiterate the mathematical formulation of GRU so that the reader can see Figure 2.4

and the formulations together.

zi = σ(Wzxi +Uzhi−1 + bz)

ri = σ(Wrxi +Urhi−1 + br)

h̃i = tanh(Whxi + ri ◦Uhhi−1 + bh)

hi = zi ◦ hi−1 + (1− zi) ◦ h̃i

Figure 2.4 depicts the architecture of the GRU, where xi, zi and ri respectively represent

the input, update gate and the reset gate, h̃i the intermediate memory unit, hi the hidden

layer, all at timestep ti. Wh,Wz,Wr,Uh,Uz,Ur are the weight matrices to be learned.

Note that the bias vectors bh,bz,br are omitted in Figure 2.4.

The outstanding difference between the classical RNN (Elman Network) and GRU is

that the previous hidden layer hi−1 and the current input xi do not directly change the value

of the current hidden layer hi. Instead, they change the values of both gates zi, ri and the
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intermediate memory unit h̃i. Then the current hidden layer hi is updated by h̃i and zi. Due

to the σ function, both gates zi and ri have values between 0 and 1. Therefore if the reset

gate ri is close to zero, the intermediate memory unit h̃i will disregard the past values of

the hidden layer hi−1. If the update gate zi is close to one, the current hidden layer hi will

disregard the current input xi, and retain the value from the previous timestep hi−1.

Simply put, the reset gate allows the hidden layer to drop any information that is not

useful in making a prediction, and the updated gate controls how much information from the

previous hidden layer should be propagated to the current hidden layer. This characteristic

of GRU is especially useful as it is not easy to identify information essential to predicting

the future diagnosis, medication or the time duration until the next visit.

2.8 Learning the Skip-gram vectors from the EHR

Learning efficient representations of medical codes (e.g. diagnosis codes, medication codes,

and procedure codes) may lead to improved performance of many clinical applications. We

specifically used Skip-gram [11] to learn real-valued multidimensional vectors to capture

the latent representation of medical codes from the EHR.

We processed the private dataset so that diagnosis codes, medication codes, procedure

codes are laid out in a temporal order. If there are multiple codes at a single visit, they were

laid out in a random order. Then using the context window size of 5 to the left and 5 to the

right, and applying Skip-gram, we were able to project diagnosis codes, medication codes

and procedure codes into the same lower dimensional space, where similar or related codes

are embedded close to one another. For example, hypertension, obesity, hyperlipidemia

all share similar values compared to pneumonia or bronchitis. The trained Skip-gram

vectors are then plugged into RNN so that a multi-hot vector can be converted to vector

representations of medical codes.
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2.9 Details of the training procedure of multilayer perceptron

We use a multilayer perceptron with a hidden layer of width 2,000. We apply L2 regulariza-

tion to all of the weight matrices. The activation functions in the first and output layers are

selected to be tanh and softmax functions respectively. For prediction of time intervals, we

used rectified linear units.

2.10 Case study

The detailed results are shown in Table 2.3. To take a closer look at the performance of

Doctor AI, in Table 2.3 (in Supplementary 2.10) we list the predicted, true, and historical

diagnosis codes for five visits of different patients. The blue items represent the correct

predictions. The results are promising and show that, given the history of the patient, the

Doctor AI can predict the true diagnostic codes. The results highly mimic the way a human

doctor will interpret the disease predictions from the history. For all five of the cases shown

in Table 2.3, the set of predicted diseases contain most, if not all of the true diseases. For

example, in the first case, the top 3 predicted diseases match the true diseases. A human

doctor would likely predict similar diseases to the ones predicted with Doctor AI, since old

myocardial infarction and chronic ischemic heart disease can be associated with infections

and diabetes [69].

In the fourth case, visual disturbances can be associated with migraines and essential

hypertension [70]. Further, essential hypertension may be linked to cognitive function

[71], which plays a role in anxiety disorders and dissociative and somatoform disorders.

Regarding codes that are guessed incorrectly with the fourth case, they can still be plausible

given the history. For example, cataracts, and disorders of refraction and accommodation

could have been guessed based on a history of visual disturbances, as well as strabismus and

disorders of binocular eye movements. Allergic rhinitis could have been guessed, because

there was a history of allergic rhinitis. In summary, Doctor AI is able to very accurately
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predict the true diagnoses in the sample patients. The results are promising and should

motivate future studies involving the application of Doctor AI on different datasets exhibiting

other populations of patients.
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CHAPTER 3

MULTI-LAYER REPRESENTATION LEARNING FOR MEDICAL CONCEPTS

Learning efficient representations for concepts is an important basis for many applications
such as machine translation or document classification. Proper representations of medical
concepts such as diagnosis, medication, procedure codes and visits from Electronic Health
Records (EHR) has broad applications in healthcare analytics. Patient EHR data consists
of a sequence of visits over time, where each visit includes multiple medical concepts,
e.g., diagnosis, procedure, and medication codes. This hierarchical structure provides two
types of relational information, namely sequential order of visits and co-occurrence of the
codes within a visit. In this chapter, we propose Med2Vec, which not only learns the
representations for both medical codes and visits from large EHR datasets with over million
visits, but also allows us to interpret the learned representations confirmed positively by
clinical experts. In the experiments, Med2Vec shows significant improvement in prediction
accuracy in clinical applications compared to baselines such as Skip-gram, GloVe, and
stacked autoencoder, while providing clinically meaningful interpretation.

3.1 Introduction

Discovering efficient representations of high dimensional concepts has been a key chal-
lenge in a variety of applications recently [63]. Using various types of neural networks,
high-dimensional data can be transformed to continuous real-valued concept vectors that
efficiently capture their latent relationship from data. Such succinct representations have
been shown to improve the performance of various complex tasks across domains spanning
from image processing [72, 73, 74], language modeling [75, 76], word embedding [11,
77], music information retrieval [78], sentiment analysis [79], and multi-modal learning of
images and text [80].

Efficient representations for medical concepts is an important, if not essential, element in
healthcare applications as well. Medical concepts contain rich latent relationships that cannot
be represented by simple one-hot coding [81, Chapter 2.3.2]. For example, pneumonia
and bronchitis are clearly more related than pneumonia and obesity. In one-hot coding,
such relationship between different codes are not represented. Despite its limitation, many
healthcare applications [82, 83] still use the simple sum over one-hot vectors to derive
patient feature vectors. To overcome this limitation, it is common in healthcare applications,
to rely on carefully designed feature representations [84, 85, 6]. However, this process often
involves ad-hoc feature engineering that requires considerable expert medical knowledge
and is not scalable nor comprehensive in general.

Recently, studies have shown that it is possible to learn efficient representations of
healthcare concepts without medical expertise while significantly improving the performance
of various healthcare predictive models. [86, 55, 10, 57, 87] Despite this progress, learning
efficient representations of healthcare concepts, however, is still an open challenge. The
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difficulty stems from several aspects:

1. Electronic Health Record (EHR) data have a unique structure where the visits are
temporally ordered but the medical codes within a visit form an unordered set. A
sequence of visits possesses sequential relationship among them which cannot be
captured by simply aggregating code-level representations. Moreover, given the
demographic information for patients, the structure of EHR becomes more complex.

2. Learned representations should be interpretable. While the interpretability of the
representation in healthcare applications is essential, many of the state-of-the-art
representation learning methods such as recurrent neural networks (RNN) are difficult
to interpret.

3. The algorithm should be scalable enough to handle large EHR datasets with hundreds
of thousands of patients and millions of visits.

To address such challenges in healthcare concept representation learning, we propose
Med2Vec and make the following contributions.

• We propose Med2Vec, a simple and robust algorithm to efficiently learn succinct
code-, and visit-level representations by using real-world EHR datasets, without
depending on expert medical knowledge.

• Med2Vec learns interpretable representations and enables clinical applications to
offer more than just improved performances. We conducted a detailed user study with
clinical experts to validate the interpretability of the resulting representation.

• We conduct experiments to demonstrate the scalability of Med2Vec, and show that
our model can be readily applied to near 30K medical codes over two large datasets
with 3 million and 5.5 million visits, respectively.

• We apply the learned representations to multiple real-world healthcare prediction
problems and demonstrate the improved performance enabled by Med2Vec compared
to several baselines.

In the following section, we discuss related works, then describe our method in section 3.
In section 4, we explain experiment design and interpretation method in detail. We present
the results and discussion in section 5. Then we conclude this chapter with future work in
section 6.

3.2 Preliminaries and Related Work

In this section, we first describe the preliminary ideas used in learning representation for
words. Then, we review the algorithms developed for representing healthcare data.

32



wt+1 wt-1 

projection 

wt-2 wt+2 . . .  . . .  

wt 

v(wt) 

Figure 3.1: Skip-gram model architecture: v(wt) is a vector representation for the word wt.
The goal of Skip-gram is to learn vector representations of words that are good at predicting
neighboring words.

3.2.1 Learning representation for words

Representation learning of words using neural network based methods have been studied
since the early 2000’s [75, 88, 89, 90]. Among these techniques, Skip-gram [11] is the basis
of many concept representation learning methods, including our own. Skip-gram is able to
capture the subtle relationships between words, thus outperforming the previous works in a
word analogy task[91].

Given a sequence of words w1, w2, . . . , wT , Skip-gram learns the word representations
based on the co-occurrence information of words inside a context window of a predefined
size. The key principle of Skip-gram is that a word’s representation should be able to predict
the neighboring words. The objective of Skip-gram is to maximize the following average
log probability.

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt)

where c is the size of the context window. The conditional probability is defined by the
softmax function:

p(wO|wI) =
exp

(
v′>wO

vwI

)
∑W

w=1 exp
(
v′>w vwI

)
where vw and v′w are the input and output vector representations of word w. W is the number
of words in the vocabulary. Basically, Skip-gram tries to maximize the softmax probability
of the inner product of the center word’s vector and its context word’s vectors.1

Pennington et al. proposed GloVe, [77] which learns another word representations by
using a similar principle as Skip-gram. GloVe uses the global word co-occurrence matrix to
learn the word representations. Since the global co-occurrence matrix is often sparse, GloVe
can be computationally less demanding than Skip-gram, which is a neural network model
using the sliding context window. On the other hand, GloVe employs a weighting function
that could require a considerable amount tuning effort.

Beyond one level representation like Skip-gram and GloVe, researchers also proposed
hierarchical learning representations for the text corpus, which has some analogy to our
healthcare setting with two level concepts namely: codes and visits. Le and Mikolov [92]

1Mikolov et al. [11] also use hierarchical softmax and negative sampling to speed up the learning process.
We focus on the original simple formulation.
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proposed to learn representations for paragraphs and words simultaneously by treating
paragraphs indicators as words. However, their algorithm assigns a fixed set of vectors for
both words and paragraphs in the training data. Moreover, their approach does not capture
the sequential order among paragraphs. Skip-thought [93] proposed an encoder-decoder
structure: an encoder (Gated Recurrent Units (GRU) in their case) learns a representation for
a sentence that is able to regenerate its surrounding sentences (via GRU again). Skip-thought
cannot be applied directly to EHR data because unlike words in sentences, the codes in a
visit are unordered. Also, the interpretation of Skip-thought model is difficult, as they rely
on complex RNNs.

3.2.2 Representation learning in healthcare

Recently researchers start to explore the possibility of efficient representation learning in
the medical domain.

Medical text analysis Minarro et al. [94] learns the representations of medical terms
by applying Skip-gram to various medical text collected from PubMed, Merck Manuals,
Medscape and Wikipedia. De Vine et al. [95] learns the representations of UMLS concepts
from free-text patient records and medical journal abstracts. They first replaced the words in
documents to UMLS concepts, then applied Skip-gram to learn the distributed representa-
tions of the concepts. However, none of them studied longitudinal EHR data with a large
number of medical codes.

Structured visit records analysis Skip-gram was directly applied to structured longitudi-
nal visit records to learn the representation of medical codes (e.g. diagnosis, medication,
procedure codes) [86, 55]. In [86], the authors demonstrated that simply aggregating the
learned representation of medical codes to create a visit representation leads to improved
predictive performance. However, simply aggregating the code representations is not the
optimal method to generate a visit representation as it completely ignores the temporal
relations across adjacent visits. We believe that taking advantage of the two-level infor-
mation (the co-occurrence of codes within a visit and the sequential nature of visits) and
the demographic information of patients will give us better representation for both medical
codes and patient visits. RNNs have been applied to analysis of longitudinal patient records
[10, 57] and can generate both code and patient representations. However, despite their
outstanding predictive performance, RNNs are difficult to interpret [87] which limits their
applications in healthcare.

3.3 Method

In this section, we describe the proposed algorithm Med2Vec. We start by mathematically
formulating the EHR data structure and our goal. Then we describe our approach in a top-
down fashion. We also explain how to interpret the learned representations. We conclude
this section with complexity analysis.
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+ 

. . . 0 1 0 0 0 0 1 0 

vt 

xt+1 

ut dt 

xt-1 

xt 

Softmax 

xt-2 xt+2 . . .  . . .  

ReLU(Wv [ut , dt] + bv)  

ReLU(Wc xt + bc)  

{0, 1}|C| 

Figure 3.2: Structure of Med2Vec: A visit comprised of several medical codes is converted
to a binary vector xt ∈ {0, 1}|C|. The binary vector is then converted to an intermediate
visit representation ut. ut is concatenated with a vector of demographic information dt, and
converted to the final visit representation vt, which is trained to predict its neighboring visits
. . . ,xt−2,xt−1,xt+1,xt+2, . . .

EHR structure and our notation We denote the set of all medical codes c1, c2, . . . , c|C|
in our EHR dataset by C with size |C|. EHR data for each patient is in the form of a sequence
of visits V1, . . . , VT where each visit contains a subset of medical codes Vt ⊆ C. Without
loss of generality, all algorithms will be presented for a single patient to avoid cluttered
notations. The goal of Med2Vec is to learn two types of representations:

Code representations We aim to learn an embedding function fC : C 7→ Rm
+ that maps

every code in the set of all medical codes C to non-negative real-valued vectors of
dimension m. The non-negativity constraint is introduced to improve interpretability,
as discussed in details in Section 3.3.5.

Visit representations Our second task is to learn another embedding function fV : V 7→ Rn

that maps every visit (a set of medical codes) to a real-valued vector of dimension n.
The set V is the power set of the set of codes C.

3.3.1 Med2Vec architecture

Figure 3.2 depicts the architecture of Med2Vec. Given a visit Vt, we use a multi-layer
perceptron (MLP) to generate the corresponding visit representation vt. First, visit Vt is
represented by a binary vector xt ∈ {0, 1}|C| where the i-th entry is 1 only if ci ∈ Vt. Then
xt is converted to an intermediate visit representation ut ∈ Rm as follows,

ut = ReLU(Wcxt + bc) (3.1)

using the code weight matrix Wc ∈ Rm×|C| and the bias vector bc ∈ Rm. The rectified
linear unit is defined as ReLU(v) = max(v,0). Note that max() applies element-wise
to vectors. We use the rectified linear unit (ReLU) as the activation function to enable
interpretability, which will be discussed in section 3.3.3.
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We concatenate the demographic information dt ∈ Rd, where d is the size of the
demographic information vector, to the intermediate visit representation ut and create the
final visit representation vt ∈ Rn as follows,

vt = ReLU(Wv[ut,dt] + bv)

using the visit weight matrix Wv ∈ Rn×(m+d) and the bias vector bv ∈ Rn, where n is
the predefined size of the visit representation. We use ReLU once again as the activation
function. We discuss our efficient training procedure of the parameters Wc,bc,Wv and bv
in the next subsection.

3.3.2 Learning from the visit-level information

As mentioned in the introduction, the sequential information of visits can be exploited for

learning efficient representations of visits and potentially codes. We train the MLP using a

very straightforward intuition as follows: a visit describes a state in a continuous process that

is a patient’s clinical experience. Therefore, given a visit representation, we should be able

to predict what has happened in the past, and what will happen in the future. Specifically,

given a visit representation vt, we train a softmax classifier that predicts the medical codes

of the visits within a context window2. We minimize the cross entropy error as follows,

min
Ws,bs

1

T

T∑
t=1

∑
−w≤i≤w,i6=0

−xt+i> log ŷt − (1− xt+i)
> log(1− ŷt), (3.2)

where ŷt =
exp(Wsvt + bs)∑|C|

j=1 exp(Ws[j, :]vt + bs[j])

where Ws ∈ R|C|×n and bs ∈ R|C| are the weight matrix and bias vector for the softmax

classifier, w the predefined context window size, exp the element-wise exponential function,

and 1 denotes an all one vector. We have used MATLAB’s notation for selecting a row in

Ws and a coordinate of bs.
2We also tried predicting the visit representations . . . ,vt−1,vt+1, . . . instead of the medical codes, but

obtained poor results.
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3.3.3 Learning from the code-level information

As we described in the introduction, healthcare datasets contain two-level information:

visit-level sequence information and code-level co-occurrence information. Since the loss

function in Eq. (3.2) can efficiently capture the sequence level information, now we need to

find a way to use the second source of information, i.e., the intra-visit co-occurrence of the

codes.

A natural choice to capture the code co-occurrence information is to use Skip-gram.

The main idea would be that the representations for the codes that occur in the same visit

should predict each other. To embed Skip-gram in Med2Vec, we can train Wc ∈ Rm×|C|

(which also produces intermediate visit level representations) so that the i-th column of Wc

will be the representation for the i-th medical code among total |C| codes. Note that given

the unordered nature of the codes inside a visit, unlike the original Skip-gram, we do not

distinguish between the “input” medical code and the “output” medical code. In text, it is

sensible to assume that a word can serve a different role as a center word and a context word,

whereas in EHR datasets, we cannot classify codes as center or context codes. It is also

desirable to learn the representations of different types of codes (e.g. diagnosis, medication,

procedure code) in the same latent space so that we can capture the hidden relationships

between them.

However, coordinate-wise interpretation of Skip-gram codes is not straightforward be-

cause the positive and negative values of Wc make it hard for each coordinate to focus

on a single coherent medical concept. For intuitive interpretation, we should learn code

representations with non-negative values. Note that in Eq.(3.1), if the binary vector xt

is a one-hot vector, then the intermediate visit representation ut becomes a code repre-

sentation. Therefore, using the Skip-gram algorithm, we train the non-negative weight

ReLU(Wc) instead of Wc. This will not only use the intra-visit co-occurrence information,

but also guarantee non-negative code representations. Moreover, ReLU produces sparse

code representations, which further facilitates easier interpretation of the codes.
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The code representations to be learned is denoted as a matrix W′
c = ReLU(Wc) ∈

Rm×|C|. From a sequence of visits V1, V2, . . . , VT , the code-level representations can be

learned by maximizing the following objective function,

max
W′

c

1

T

T∑
t=1

∑
i:ci∈Vt

∑
j:cj∈Vt,j 6=i

log p(cj|ci), (3.3)

where p(cj|ci) =
exp

(
W′

c[:, j]
>W′

c[:, i]
)

∑|C|
k=1 exp

(
W′

c[:, k]
>W′

c[:, i]
) . (3.4)

3.3.4 Unified training

The single unified framework can be obtained by adding the two objective functions (3.3)

and (3.2) as follows,

argmin
Wc,v,s,bc,v,s

1

T

T∑
t=1

{
−
∑
i:ci∈Vt

∑
j:cj∈Vt,j 6=i

log p(cj|ci)

+
∑

−w≤k≤w,k 6=0

−x>t+k log ŷt − (1− xt+k)
> log(1− ŷt)

}

By combining the two objective functions we learn both code representations and visit

representations from the same source of patient visit records, exploiting both intra-visit

co-occurrence information as well as inter-visit sequential information at the same time.

3.3.5 Interpretation of learned representations

While the original Skip-gram learns code representations that have interesting properties

such as additivity, in healthcare we need stronger interpretability. We need to be able

to associate clinical meaning to each dimension of both code and visit representations.

Interpreting the learned representations is based on analyzing each coordinate in both code

and visit embedding spaces.
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Interpreting code representations If information is properly embedded into a lower

dimensional non-negative space, each coordinate of the lower dimension can be readily

interpreted. Non-negative matrix factorization (NMF) is a good example. Since we trained

ReLU(Wc) ∈ Rm×|C|, a non-negative matrix, to represent the medical codes, we can

employ a simple method to interpret the meaning of each coordinate of the m-dimensional

code embedding space. We can find the top k codes that have the largest values for the i-th

coordinate of the code embedding space as follows,

argsort(Wc[i, :])[1 : k]

where argsort returns the indices of a vector that index its values in a descending order.

By studying the returned medical codes, we can view each coordinate as a disease group.

Detailed examples are given in section 3.5.1

Interpreting visit representations To interpret the learned visit vectors, we can use the

same principle we used for interpreting the code representation. For the i-th coordinate of

the n-dimensional visit embedding space, we can find the top k coordinates of the code

embedding space that have the strongest values as follows,

argsort(Wv[i, :])[1 : k]

where we use the same argsort as before. Once we obtain a set of code coordinates, we can

use the knowledge learned from interpreting the code representations to understand how

each visit coordinate is associated with a group of diseases. This simple interpretation is

possible because the intermediate visit representation ut is a non-negative vector, due to the

ReLU activation function.

In the experiments, we also tried to find the input vector xt that most activates the target

visit coordinate [96, 97]. However, the results were very sensitive to the initial value of xt,
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and even averaging over multiple samples were producing unreliable results.

3.3.6 Complexity analysis

We first analyze the computational complexity of the code-level objective function Eq. (3.3).

Without loss of generality, we assume the visit records of all patients are concatenated into a

single sequence of visits. Then the complexity for Eq. (3.3) is as follows,

O(TM2|C|m)

where T is the number of visits, M
2

is the average of squared number of medical codes

within a visit, |C| the number of unique medical codes, m the size of the code representation.

The M2 factor comes from iterating over all possible pairs of codes within a visit. The

complexity of the visit-level objective function Eq.(3.2) is as follows,

O(Tw(|C|(m+ n) +mn))

where w is the size of the context window, n the size of the visit representation. The added

terms come from generating a visit representation via MLP. Since size of code representation

m and size of visit representation n generally have the same order of magnitude, we can

replace n with m. Furthermore, m is generally smaller than |C| by at least two orders of

magnitude. Therefore the overall complexity of Med2Vec can be simplified as follows.

O(T |C|m(M
2
+ w))

Here we notice that M
2

is generally larger than w. In our work, the average number of codes

M per visit for two datasets are 7.88 and 3.19 according to Tables 3.1, respectively, whereas

we select the window size w to be at most 5 in our experiments. Therefore the complexity of

Med2Vec is dominated by the code representation learning process, for which we use the
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Skip-gram algorithm. This means that exploiting visit-level information to learn efficient

representations for both visits and codes does not incur much additional cost.

3.4 Experiments

In this section, we evaluate the performance of Med2Vec in both public and proprietary

datasets. First we describe the datasets. Then we describe evaluation strategies for code and

visit representations, along with implementation details. Then we present the experiment

results of code and visit representations with discussion. We conclude with convergence

and scalability study. We make the source code of Med2Vec publicly available at https:

//github.com/mp2893/med2vec.

3.4.1 Dataset description

We evaluate performance of Med2Vec on a dataset provided by Children’s Healthcare of

Atlanta (CHOA)3. We extract visit records from the dataset, where each visit contains several

medical codes (e.g. diagnosis, medication, procedure codes). The diagnosis codes follow

ICD-9 codes, the medication codes are denoted by National Drug Codes (NDC), and the

procedure codes follow Category I of Current Procedural Terminology (CPT). We exclude

patients who had less that two visits to showcase Med2Vec’s ability to use sequential

information of visits. The basic statistics of the dataset are summarized in Table 3.1. The

data are fully de-identified and do not include any personal health information (PHI).

We divide the dataset into two groups in a 4:1 ratio. The former is used to train Med2Vec.

The latter is held out for evaluating the visit-level representations, where we train models to

predict visit-related labels.

We also use CMS dataset, a publicly available 4 synthetic medical claims dataset. The

basic information of CMS is also given in Table 3.1. Compared to CHOA dataset, the CMS

3http://www.choa.org/
4https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/

OASIS/DataSet.html
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Table 3.1: Basic statistics of CHOA and CMS dataset.

Dataset CHOA CMS
# of patients 550,339 831,210
# of visits 3,359,240 5,464,950
Avg. # of visits per patient 6.1 6.57
# of unique medical codes 28,840 21,033
- # of unique diagnosis codes 10,414 14,111
- # of unique medication codes 12,892 N/A
- # of unique procedure codes 5,534 6,922
Avg. # of codes per visit 7.88 3.19
Max # of codes per visit 440 44
(95%, 99%) percentile
# of codes per visit (22, 53) (9, 13)

dataset has more patients but fewer unique medical codes. The average number of codes per

visit is also smaller than that of CHOA dataset. Since CMS dataset is synthetic, we use it

only for testing the scalability in section 3.4.7.

3.4.2 Evaluation Strategy of code representations

Qualitative evaluation by medical experts For a comprehensive qualitative evaluation,

we perform a relatedness test by selecting 100 most frequent diagnosis codes and their 5

closest diagnoses, medications and procedures in terms of cosine similarity. This will allow

us to know if the learned representations effectively capture the latent relationships among

them. Two medical experts from CHOA check each item and assign related, possible and

unrelated labels.

Quantitative evaluation with baselines We use medical code groupers to quantitatively

evaluate the code representations. Code groupers are used to collapse individual medical

codes into clinically meaningful categories. For example, Clinical Classifications Software

(CCS) groups ICD9 diagnosis codes into 283 categories such as tuberculosis, bacterial

infection, and viral infection.

We apply K-means clustering to the learned code representations and calculate the

normalized mutual information (NMI) based on the group label of each code. We use the
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CCS as the ground truth for evaluating the code representation for diagnosis. For medication

code evaluation, we use American Hospital Formulary Service (AHFS) pharmacologic-

therapeutic classification, which groups NDC codes into 165 categories. For procedure code

evaluation, we use the second-level grouping of CPT category I, which groups CPT codes

into 115 categories.Thus, we set the number of clusters k to 283, 165, 115 respectively for

the diagnosis, medication, procedure code evaluation, which matches the numbers of groups

from individual groupers.

For baselines, we use popular methods that efficiently exploit co-occurrence information.

Skip-gram (which is used in learning representations of medical concepts by [55, 86]) is

trained using Eq. (3.3). GloVe will be trained on the co-occurrence matrix of medical codes,

for which we counted the codes co-occurring within a visit. Additionally, we also report

well-known baselines such as singular value decomposition on the co-occurrence matrix.

3.4.3 Evaluation strategy of visit representation

We evaluate the quality of the visit representations by performing two visit-level prediction

tasks: predicting the future visit and predicting the present status. The former will evaluate

a visit representation’s potential effectiveness in predictive healthcare while the latter will

evaluate the how well it captures the information in the given visit. The details of the two

tasks are given below.

Predicting future medical codes: We predict the medical codes that will occur in the next

visit using the visit representations. Specifically, given two consecutive visits Vi and Vj ,

the medical codes c ∈ Vj will be the target y, the medical codes c ∈ Vi will be the input

x, and we use softmax to predict y given x. The predictive performance will be measured

by Recall@k due to its similarity to the differential diagnosis. Doctors iteratively perform

differential diagnosis by generating a list of most likely diseases for an undiagnosed patient

based on the available information. We set k = 30 to cover the complex cases of CHOA

dataset, as over 167,000 visits are assigned with more than 20 medical codes according to
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Table 3.1. We predict the grouped medical codes, obtained by the medical groupers used in

Section 3.4.2.

Predicting Clinical Risk Groups (CRG) level: A patient’s CRG level indicates his severity

level. It ranges from 1 to 9, including 5a and 5b. The CRG levels can be divided into two

groups: non-severe (CRG 1-5a) and severe (CRG 5b-9). Given a visit, we use logistic

regression to predict the binary CRG class associated with the visit. We use Area Under The

Curve (AUC) to measure the classification accuracy, as it is more robust to class imbalance

in data.

Baselines For baselines, we use the following methods.

Binary vector model (One-hot+): In order to compare with the raw input data, we use the

binary vector xt as the visit representation.

Stacked autoencoder (SA): Stacked autoencoder is one of the most popular unsupervised

representation learning algorithms [98]. Using the binary vector xt concatenated with patient

demographic information as the input, we train a 3-layer stacked autoencoder (SA) [99]

to minimize the reconstruction error.The trained SA will then be used to generate visit

representations.

Sum of Skip-gram vectors (Skip-gram+): We first learn the code-level representations

with Skip-gram only (Eq. (3.3)). Then for the visit-level representation, we simply add the

representations of the codes within the visit. This approach was proven very effective for

heart failure prediction in [86]. We append patient demographic information at the end.

Sum of GloVe vectors (GloVe+): We perform the same process as Skip-gram+, but use

GloVe vectors instead of Skip-gram vectors. We use the recommended hyperparameter

setting from [77].

Evaluation details We use the held-off dataset, which was not used to learn the code and

visit representations, to perform the two prediction tasks. The held-off dataset contains

672,110 visits assigned with CRG levels. In order to train the predictors, we divide the held-
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out data to training and testing folds with ration 4:1. Both softmax and logistic regression

are trained for 10 epochs on the training fold. We perform 5-fold cross validation for each

task and report the average performance. For all baseline models and Med2Vec, we use

age, sex and ethnicity as the demographic information in the input data.

3.4.4 Implementation and training details

For learning code and visit representations using Med2Vec and all baselines, we use

Adadelta [100] in a mini-batch fashion. For Skip-gram, SA and Med2Vec, we use 1,000

visits5 per batch. For GloVe, we use 1,000 non-zero entries of the co-occurrence matrix

per batch. The optimization terminates after a fixed number of epochs. In section 3.4.6,

we show the relationship between training epochs and the performance. We also show the

convergence behavior of Med2Vec and the baselines in section 3.4.7.

Med2Vec, Skip-gram, GloVe and SA are implemented with Theano 0.7.0 [101]. K-

means clustering for the code-level evaluation and SVD are performed using Scikit-learn

0.14.1. Softmax and logistic regression models for the visit-level evaluation are implemented

with Keras 0.3.1, and trained for 10 epochs. All tasks are executed on a machine equipped

with Intel Xeon E5-2697v3, 256GB memory and two Nvidia K80 Tesla cards.

We train multiple models using various hyperparameter settings. For all models we

vary the size of the code representations m (or the size of the hidden layer for SA), and

the number of training epochs. Additionally for Med2Vec, we vary the size of the visit

representations n, and the size of the visit context window w.

To alleviate the curse of dimensionality when training the softmax classifier (Eq.(3.2))

of Med2Vec, we always use the medical code groupers of section 3.4.2 so that the softmax

classifier is trained to predict the grouped medical codes instead of the exact medical codes.

To confirm the impact of this strategy, we train an additional Med2Vec without using the

medical code groupers.

5for efficient computation, we preprocessed the EHR dataset so that the visit records of all patients are
concatenated into a single sequence of visits.
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Table 3.2: Average score of the medical codes from the relatedness test. 2 was assigned for
related, 1 for possible and 0 for unrelated

Average Diagnosis Medication Procedure
1.34 1.59 0.95 1.47

Table 3.3: Clustering NMI of the diagnosis, medication and procedure code representations
of various models. All models learned 200 dimensional code vectors. All models except
SVD were trained for 10 epochs.

Model Diagnosis Medication Procedure
SVD (σV>) 0.1824 0.0843 0.1781
Skip-gram 0.2251 0.1216 0.2432
GloVe 0.4205 0.2163 0.3499
Med2Vec 0.2328 0.1089 0.21

3.4.5 Results of the code-level evaluation

Table 3.2 shows the average score of the medical codes from the qualitative code evaluation.

On average, Med2Vec successfully captures the relationship between medical codes. How-

ever, Med2Vec seems to have a hard time capturing proper representation of medications.

This is due to the precise nature the medication prescription. For example, Med2Vec

calculated that Ofloxacin, an antibiotic sometimes used to treat middle-ear infection, was

related to sensorineural hearling loss (SNHL), an inner-ear problem. On the surface level,

this is a wrong relationship. But Med2Vec can be seen as capturing the deeper relationship

between medical concepts that is not always clear on the surface level.

Table 3.3 shows the clustering NMI of diagnosis, medication and procedure codes,

measured for various models. Med2Vec shows more or less similar conformity to the

existing groupers as Skip-gram. SVD shows the weakest conformity among all models.

GloVe exhibits significantly stronger conformity than any other models. Exploiting the

global co-occurrence matrix seems to help learn code representations where similar codes

are closer to each other in terms of Euclidean distance.

However, the degree of conformity of the code representations to the groupers does not

necessarily indicate how well the code representations capture the hidden relationships. For
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example, CCS categorizes ICD9 224.4 Benign neoplasm of cornea as CCS 47 Other and

unspecified benign neoplasm, and ICD9 370.00 Unspecified corneal ulcer as CCS 91 Other

eye disorders. But the two diagnosis codes are both eye related problems, and they could be

considered related in that sense. Therefore we recommend the readers use the evaluation

results for comparing the performance between Med2Vec and other baselines, rather than

for measuring the absolute performance.

In the following visit-level evaluation, we show the dominant predictive performance of

Med2Vec indicates that code representations’ strong conformity to the groupers does not

necessarily imply good visit representations.

3.4.6 Results of the visit-level evaluation

The first row of Figure 3.3 shows the Recall@30 for predicting the future medical codes.

First, in all of the experiments, Med2Vec achieves the highest performance, despite the

fact that it is constrained to be positive and interpretable. The second observation is that

Med2Vec’s performance is robust to choice of the hyperparameters in a wide range of

values. Comparing to a more volatile performance of Skip-gram, we can see that including

the visit information in training not only improves the performance, but also stabilizes it too.

Another fascinating aspect of the results is the overfitting pattern in different algorithms.

Increasing the code representation size degrades the performance of all of the algorithms,

as it leads to overfitting. Similar behavior can be seen as we train GloVe+ for more epochs

which suggests early stopping technique should be used in representation learning [102]. For

Med2Vec, increasing the visit representation size n seems to have the strongest influence

to its predictive performance.

The bottom row of figures in Figure 3.3 shows the AUC for predicting the CRG class of

the given visit. The overfitting patterns are not as prominent as the previous task. This is due

to the different nature of the two prediction tasks. While the goal of CRG prediction is to

predict a value related to the current visit, predicting the future codes is taking a step away
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Table 3.4: Performance comparison of two Med2Vec models. The top row was trained with
the grouped code as mentioned in section 3.4.4. The bottom row was trained without using
the groupers. Both models were trained for 10 epochs with m,n = 200, w = 1.

Model Future code prediction CRG prediction
Grouped codes 0.7605 0.9150
Exact codes 0.7574 0.9155

from the current visit. This different nature of the two tasks also contributes to the better

performance of One-hot+ on the CRG prediction. One-hot+ contains the entire information

of the given visit, although in a very high-dimensional space. Therefore predicting the CRG

level, which has a tight relationship with the medical codes within a visit, is an easier task

for One-hot+ than predicting the future codes.

Table 3.4 shows the performance comparison between two different Med2Vec models.

The top model is trained with the grouped codes as explained in section 3.4.4, while the

bottom models is trained with the exact codes. Considering the marginal difference of the

CRG prediction AUC, it is evident that our strategy to alleviate the curse of dimensionality

was beneficial. Moreover, using the grouped codes will improve the training speed as the

softmax function will require less computation.

3.4.7 Convergence behavior and scalability

We compare the convergence behavior of Med2Vec with Skip-gram (Eq. (3.3)), GloVe and

SA. For SA, we measure the convergence behavior of a single-layer. We train the models for

50 epochs and plot the normalized difference of the loss value Lt−Lt−1

Lt , where Lt denotes

the loss value at time t. We also study the scalability of all models except One-hot+, as there

is no representation learning in it. We vary the size of the training data and plot the time

taken for each model to run one epoch.

The left figure of Fig 3.4 shows the convergence behavior of all models when trained

on the CHOA dataset. SA shows the most stable convergence behavior, which is natural

given that we used a single-layer SA, a much less complex model compared to GloVe,
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Skip-gram and Med2Vec. All models except SA seem to reach convergence after 10 epochs

of training. Note that Med2Vec shows similar, if not better convergence behavior compared

to Skip-gram even with added complexity.

The center figure of Fig 3.4 shows the minutes taken to train all models for one epoch

using the CHOA dataset. As we have analzyed in section ssec:complexity, Med2Vec takes

essentially the same time to train for one epoch. Both Skip-gram and Med2Vec, however,

takes longer than SA and GloVe. This is mainly due to having the softmax function for

training the code representations. GloVe, which is trained on the very sparse co-occurrence

matrix naturally takes the least time to train.

The right figure of Fig 3.4 shows the training time when using the CMS dataset. Note

that Med2Vec and Skip-gram takes similar time to train as SA. This is due to the smaller

number of codes per visit, which is the computationally dominating factor of both Med2Vec

and Skip-gram. GloVe takes less time as the number of unique codes are smaller in the CMS

dataset. SA, on the other hand, takes more time because the number of visits have doubled

while the the number of unique codes is about 73% of that of the CHOA dataset.

3.5 Interpretation

Given the importance of interpretability in healthcare, we demonstrate three stages of

interpretability for our model in collaboration with the medical experts from CHOA. First,

to analyze the learned code representations we show top five medical codes for each of six

coordinates of the code embedding space and explain the characteristic of each coordinate.

This way, we show how we can annotate each dimension of the code embedding space with

clinical concepts. The six coordinates are specifically chosen so that they can be used in the

later stages. Second, we demonstrate the interpretability of Med2Vec’s visit representations

by analyzing the meaning of two coordinates in the visit embedding space.

Finally, we extend the interpretability of Med2Vec to a real-world task, the CRG

prediction, and analyze the medical codes that have strong influence on the CRG level.
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Table 3.5: Medical codes with the strongest value in six different coordinates of the 200
dimensional code embedding space. We choose ten medical codes per coordinate. Shortened
descriptions of diagnosis codes are compensated by their ICD9 codes. Medications and
procedures are appended with (R) and (P) respectively.

Coordinate 112 Coordinate 152 Coordinate 141
Kidney replaced by transplant (V42.0)
Hb-SS disease without crisis (282.61)
Heart replaced by transplant (V42.1)
RBC antibody screening (P)
Complications of transplanted
bone marrow (996.85)
Sickle-cell disease (282.60)
Liver replaced by transplant (V42.7)
Hb-SS disease with crisis (282.62)
Prograf PO (R)
Complications of transplanted heart (996.83)

X-ray, knee (P)
X-ray, thoracolumbar (P)
Accidents in public building (E849.6)
Activities involving gymnastics (E005.2)
Struck by objects/persons in sports (E917.0)
Encounter for removal of sutures (V58.32)
Struck by object in sports (E917.5)
Unspecified fracture of ankle (824.8)
Accidents occurring in place for
recreation and sport (E849.4)
Activities involving basketball (E007.6)

Cystic fibrosis (277.02)
Intracranial injury (854.00)
Persistent mental disorders (294.9)
Subdural hemorrhage (432.1)
Neurofibromatosis (237.71)
Other conditions of brain (348.89)
Conductive hearing loss (389.05)
Unspecified causes of encephalitis,
myelitis, encephalomyelitis (323.9)
Sensorineural hearing loss (389.15)
Intracerebral hemorrhage (431)

Coordinate 184 Coordinate 190 Coordinate 199

Pain in joint, shoulder region (719.41)
Pain in joint, lower leg (719.46)
Pain in joint, ankle and foot (719.47)
Pain in joint, multiple sites (719.49)
Generalized convulsive epilepsy (345.10)
Pain in joint, upper arm (719.42)
Cerebral artery occlusion (434.91)
MRI, brain (780.59)
Other joint derangement (718.81)
Fecal occult blood (790.6)

Down’s syndrome (758.0)
Congenital anomalies (759.89)
Tuberous sclerosis (759.5)
Anomalies of larynx, trachea,
and bronchus (748.3)
Autosomal deletions (758.39)
Conditions due to anomaly of unspecified
chromosome (758.9)
Acquired hypothyroidism (244.9)
Conditions due to chromosome anomalies (758.89)
Anomalies of spleen (759.0)
Conditions due to autosomal anomalies (758.5)

Infantile cerebral palsy (343.9)
Congenital quadriplegia (343.2)
Congenital diplegia (343.0)
Quadriplegia (344.00)
Congenital hemiplegia (343.1)
Baclofen 10mg tablet (R)
Wheelchair management (P)
Tracheostomy status (V44.0)
Paraplegia (344.1)
Baclofen 5mg/ml liquid (R)

Once we learn the logistic regression weight wLR for the CRG prediction, we can extract

knowledge from the learned weights by analyzing the visit coordinates to which the weights

are strongly connected.

Instead of analyzing the visit coordinates, however, we propose an approximate way of

directly finding out which code coordinate plays an important role in predicting the CRG

class. Our goal is to find ut such that maximizes the output activation as follows6

u?t = argmax
ut,‖ut‖2=1,ut�0

[ReLU(Wvut + bv)]
>wLR (3.5)

Given the fact that ReLU(·) is an increasing function (not-strictly though), we make an

approximation and find the solution without the ReLU(·) term. The approximate solution

can be found in closed form u?t ∝ (W>
v wLR)+. Finally, we calculate the element-wise

product of u?t and max(Wc + bc). This is to take into account the fact that each code

6As we are interested in influential codes, we assume the demographic information vector is zero vector
and omit it for ease of notation.
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coordinate has different maximum value. Therefore, instead of simply selecting the code

coordinate with the strongest connection to the CRG level, we consider each coordinate’s

maximum ability to activate the positive CRG prediction.

The resulting vector will show the maximum influence each code coordinate can have

on the CRG prediction.

3.5.1 Results

Table 3.5 shows top ten codes with the largest value in each of the six coordinates of the

code embedding space. The coordinate 112 is clearly related to sickle-cell disease and

organ transplant. The two are closely related in that sickle cell disease can be treated

with bone-marrow transplant. Prograf is a medication used for preventing organ rejection.

Coordinate 152 groups medical codes related to sports-related injuries, specifically broken

bones. Coordinate 141 is related to brain injuries and hearing loss due to the brain injuries.

Neurofibromatosis(NF) is also related to this coordinate because it can cause tumors along

the nerves in the brain. Cystic fibrosis(CF) seems to be a weak link in this group as it is

only related to NF in the sense that both NF and CF are genetically inherited. Coordinate

184 clearly represents medical codes related to epilepsy. Epilepsy is often accompanied

by convulsions, which can cause joint pain. Cerebral artery occlusion is related epilepsy

in the sense that epileptic seizures can be a manifestation of cerebral arterial occlusive

diseases[103]. Also, both blood in feces and the joint pain can be attributed to Henoch–

Schönlein purpura, a disease primarily found in children. Coordinate 190 groups diseases

that are caused by congenital chromosome anomalies, especially the autosome. Acquired

hypothyroidism seems to be an outlier of this coordinate. Coordinate 199 is strongly related

to congenital paralysis. Baclofen is a medication used as a muscle relaxer. Quadraplegia

patients can have weakened respiratory function due to impaired abdominal muscles[104],

in which case tracheostomy could be required.

We now analyze two visit coordinates: coordinate 50 and 41. Both visit coordinates
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have the strongest connection to the logistic regression learned for the CRG prediction. For

visit coordinate 50, the two strongest code coordinates connected to it are code coordinates

112 and 152. Then naturally, from our analysis above, we can easily see that visit coordinate

50 is strongly activated by sickle-cell disease and sports-related injuries. For visit coordinate

41, code coordinates 141 and 184 have the strongest connection. Again from the analysis

above, we can directly infer that visit coordinate 41 can be seen as a patient group consisting

of brain damage & hearing loss patients and epilepsy patients. By repeating this process, we

can find the code coordinates that are likely to strongly influence the CRG level.

However, finding the influential code coordinates for CRG level can be achieved without

analyzing the visit representation if we use Eq.(3.5). Applying Eq.(3.5) to the logistic

regression weight of the CRG prediction, we learned that code coordinates 190 and 199

are the two strongest influencer of the CRG level. Using the analysis from above, we

can naturally conclude that patients suffering from congenital chromosome anomalies or

congenital paralysis are most likely to be considered to be in severe states, which is obviously

true in any clinical setting.

The results indicate that interpretable visit representations learned by Med2Vec not

only improve the prediction accuracy, but also identify the influential clinical concepts.

3.6 Conclusion

In this chapter, we proposed Med2Vec, a scalable two layer neural network for learning

lower dimensional representations for medical concepts. Med2Vec incorporates both code

co-occurence information and visit sequence information of the EHR data which improves

the accuracy of both code and visit representations. Throughout several experiments, we

successfully demonstrated the superior performance of Med2Vec in two predictive tasks

and provided clinical interpretation of the learned representations.
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Figure 3.3: The top row and the bottom row respectively show the Recall@30 for predicting
the future medical codes and the AUC for predicting the CRG class when changing different
hyperparameters. The basic configuration for Med2Vec is m,n = 200, w = 1, and the
training epoch set to 10. The basic configuration for all baseline models is 200 for code
representation size (or hidden layer size) and training epoch also set to 10. In each column,
we change one hyperparameter while fixing others to the basic configuration.

Figure 3.4: The first figure shows the convergence behavior of all models on the CHOA
dataset. The second and third figures show the relationship between the training time and
the dataset size for all models respectively using the CHOA dataset and the CMS dataset.
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CHAPTER 4

RETAIN: AN INTERPRETABLE PREDICTIVE MODEL FOR HEALTHCARE

USING REVERSE TIME ATTENTION MECHANISM

4.1 Introduction

The broad adoption of Electronic Health Record (EHR) systems has opened the possibility of

applying clinical predictive models to improve the quality of clinical care. Several systematic

reviews have underlined the care quality improvement using predictive analysis [105, 106,

107, 108]. EHR data can be represented as temporal sequences of high-dimensional clinical

variables (e.g., diagnoses, medications and procedures), where the sequence ensemble

represents the documented content of medical visits from a single patient. Traditional

machine learning tools summarize this ensemble into aggregate features, ignoring the

temporal and sequence relationships among the feature elements. The opportunity to

improve both predictive accuracy and interpretability is likely to derive from effectively

modeling temporality and high-dimensionality of these event sequences.

Accuracy and interpretability are two dominant features of successful predictive models.

There is a common belief that one has to trade accuracy for interpretability using one of three

types of traditional models [109]: 1) identifying a set of rules (e.g. via decision trees [110]),

2) case-based reasoning by finding similar patients (e.g. via k-nearest neighbors [111] and

distance metric learning [84]), and 3) identifying a list of risk factors (e.g. via LASSO

coefficients [112]). While interpretable, all of these models rely on aggregated features,

ignoring the temporal relation among features inherent to EHR data. As a consequence,

model accuracy is sub-optimal. Latent-variable time-series models, such as [113, 114],

account for temporality, but often have limited interpretation due to abstract state variables.

Recently, recurrent neural networks (RNN) have been successfully applied in modeling
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(b) RETAIN model

Figure 4.1: Common attention models vs. RETAIN, using folded diagrams of RNNs.
(a) Standard attention mechanism: the recurrence on the hidden state vector vi hinders
interpretation of the model. (b) Attention mechanism in RETAIN: The recurrence is on
the attention generation components (hi or gi) while the hidden state vi is generated by a
simpler more interpretable output.

sequential EHR data to predict diagnoses [57] and model encounter sequences [10, 115].

But, the gain in accuracy from use of RNNs is at the cost of model output that is notoriously

difficult to interpret. While there have been several attempts at directly interpreting RNNs

[116, 117, 87], these methods are not sufficiently developed for application in clinical care.

We have addressed this limitation using a modeling strategy known as RETAIN, a

two-level neural attention model for sequential data that provides detailed interpretation

of the prediction results while retaining the prediction accuracy comparable to RNN. To

this end, RETAIN relies on an attention mechanism modeled to represent the behavior of

physicians during an encounter. A distinguishing feature of RETAIN (see Figure 4.1) is to

leverage sequence information using an attention generation mechanism, while learning

an interpretable representation. And emulating physician behaviors, RETAIN examines a

patient’s past visits in reverse time order, facilitating a more stable attention generation. As

a result, RETAIN identifies the most meaningful visits and quantifies visit specific features

that contribute to the prediction.

RETAIN was tested on a large health system EHR dataset with 14 million visits com-

pleted by 263K patients over an 8 year period. We compared predictive accuracy of RETAIN
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to traditional machine learning methods and to RNN variants using a case-control dataset

to predict a future diagnosis of heart failure. The comparative analysis demonstrates that

RETAIN achieves comparable performance to RNN in both accuracy and speed and sig-

nificantly outperforms traditional models. Moreover, using a concrete case study and

visualization method, we demonstrate how RETAIN offers an intuitive interpretation.

4.2 Methodology

We first describe the structure of sequential EHR data and our notation, then follow with a

general framework for predictive analysis in healthcare using EHR, followed by details of

the RETAIN method.

EHR Structure and our Notation. The EHR data of each patient can be represented

as a time-labeled sequence of multivariate observations. Assuming we use r different

variables, the n-th patient of N total patients can be represented by a sequence of T (n) tuples

(t
(n)
i ,x

(n)
i ) ∈ R× Rr, i = 1, . . . , T (n). The timestamps t(n)i denotes the time of the i-th visit

of the n-th patient and T (n) the number of visits of the n-th patient. To minimize clutter, we

describe the algorithms for a single patient and have dropped the superscript (n) whenever

it is unambiguous. The goal of predictive modeling is to predict the label at each time step

yi ∈ {0, 1}s or at the end of the sequence y ∈ {0, 1}s. The number of labels s can be more

than one.

For example, in encounter sequence modeling (ESM) [10], each visit (e.g. encounter)

of a patient’s visit sequence is represented by a set of varying number of medical codes

{c1, c2, . . . , cn}. cj is the j-th code from the vocabulary C. Therefore, in ESM, the number

of variables r = |C| and input xi ∈ {0, 1}|C| is a binary vector where the value one in the

j-th coordinate indicates that cj was documented in i-th visit. Given a sequence of visits

x1, . . . ,xT , the goal of ESM is, for each time step i, to predict the codes occurring at the

next visit x2, . . . ,xT+1, with the number of labels s = |C|.

In case of learning to diagnose (L2D) [57], the input vector xi consists of continuous
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clinical measures. If there are r different measurements, then xi ∈ Rr. The goal of L2D is,

given an input sequence x1, . . . ,xT , to predict the occurrence of a specific disease (s = 1)

or multiple diseases (s > 1). Without loss of generality, we will describe the algorithm for

ESM, as L2D can be seen as a special case of ESM where we make a single prediction at

the end of the visit sequence.

In the rest of this section, we will use the abstract symbol RNN to denote any recurrent

neural network variants that can cope with the vanishing gradient problem [118], such as

LSTM [58], GRU [119], and IRNN [120], with any depth (number of hidden layers).

4.2.1 Preliminaries on Neural Attention Models

Attention based neural network models are being successfully applied to image processing

[121, 122, 123, 124], natural language processing [3, 125, 126] and speech recognition

[127]. The utility of the attention mechanism can be seen in the language translation task

[3] where it is inefficient to represent an entire sentence with one fixed-size vector because

neural translation machines finds it difficult to translate the given sentence represented by a

single vector.

Intuitively, the attention mechanism for language translation works as follows: given

a sentence of length S in the original language, we generate h1, . . . ,hS , to represent the

words in the sentence. To find the j-th word in the target language, we generate attentions

αji for i = 1, . . . , S for each word in the original sentence. Then, we compute the context

vector cj =
∑

i α
j
ihi and use it to predict the j-th word in the target language. In general,

the attention mechanism allows the model to focus on a specific word (or words) in the

given sentence when generating each word in the target language.

We rely on a conceptually similar temporal attention mechanism to generate interpretable

prediction models using EHR data. Our model framework is motivated by and mimics how

doctors attend to a patient’s needs and explore the patient record, where there is a focus on

specific clinical information (e.g., key risk factors) working from the present to the past.
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4.2.2 Reverse Time Attention Model RETAIN

Figure 4.2 shows the high-level overview of our model, where a central feature is to delegate

a considerable portion of the prediction responsibility to the process for generating attention

weights. This is intended to address, in part, the difficulty with interpreting RNNs where

the recurrent weights feed past information to the hidden layer. Therefore, to consider both

the visit-level and the variable-level (individual coordinates of xi) influence, we use a linear

embedding of the input vector xi. That is, we define

vi = Wembxi, (Step 1)

where vi ∈ Rm denotes the embedding of the input vector xi ∈ Rr, m the size of the

embedding dimension, Wemb ∈ Rm×r the embedding matrix to learn. We can alternatively

use more sophisticated yet interpretable representations such as those derived from multilayer

perceptron (MLP) [96, 97]. MLP has been used for representation learning in EHR data

[12].

We use two sets of weights, one for the visit-level attention and the other for variable-

level attention, respectively. The scalars α1, . . . , αi are the visit-level attention weights

that govern the influence of each visit embedding v1, . . . ,vi. The vectors β1, . . . ,βi are

the variable-level attention weights that focus on each coordinate of the visit embedding

v1,1, v1,2, . . . , v1,m, . . . , vi,1, vi,2, . . . , vi,m.
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Figure 4.2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we
predict the label yi. Step 1: Embedding, Step 2: generating α values using RNNα, Step 3:
generating β values using RNNβ, Step 4: Generating the context vector using attention and
representation vectors, and Step 5: Making prediction. Note that in Steps 2 and 3 we use
RNN in the reversed time.

We use two RNNs, RNNα and RNNβ, to separately generate α’s and β’s as follows,

gi,gi−1, . . . ,g1 = RNNα(vi,vi−1, . . . ,v1),

ej = w>αgj + bα, for j = 1, . . . , i

α1, α2, . . . , αi = Softmax(e1, e2, . . . , ei) (Step 2)

hi,hi−1, . . . ,h1 = RNNβ(vi,vi−1, . . . ,v1)

βj = tanh
(
Wβhj + bβ

)
for j = 1, . . . , i, (Step 3)

where gi ∈ Rp is the hidden layer of RNNα at time step i, hi ∈ Rq the hidden layer of

RNNβ at time step i and wα ∈ Rp, bα ∈ R,Wβ ∈ Rm×q and bβ ∈ Rm are the parameters

to learn. The hyperparameters p and q determine the hidden layer size of RNNα and RNNβ,

respectively. Note that for prediction at each timestamp, we generate a new set of attention

vectors α and β. For simplicity of notation, we do not include the index for predicting at

different time steps. In Step 2, we can use Sparsemax [128] instead of Softmax for sparser

attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in

time; i.e., RNNα and RNNβ both take the visit embeddings in a reverse order vi,vi−1, . . . ,v1.
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Running the RNN in reversed time order also offers computational advantages since the

reverse time order allows us to generate e’s and β’s that dynamically change their values

when making predictions at different time steps i = 1, 2, . . . , T . This ensures that the

attention vectors are modified at each time step, increasing the computational stability of the

attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the

i-th visit as follows,

ci =
i∑

j=1

αjβj � vj, (Step 4)

where � denotes element-wise multiplication. We use the context vector ci ∈ Rm to predict

the true label yi ∈ {0, 1}s as follows,

ŷi = Softmax(Wci + b), (Step 5)

where W ∈ Rs×m and b ∈ Rs are parameters to learn. We use the cross-entropy to calculate

the classification loss as follows,

L(x1, . . . ,xT ) = −
1

N

N∑
n=1

1

T (n)

T (n)∑
i=1

(
y>i log(ŷi) + (1− yi)

> log(1− ŷi)
)

(4.1)

where we sum the cross entropy errors from all dimensions of ŷi. In case of real-valued

output yi ∈ Rs, we can change the cross-entropy in Eq. (4.1) to, for example, mean squared

error.

Overall, our attention mechanism can be viewed as the inverted architecture of the

standard attention mechanism for NLP [3] where the words are encoded by RNN and

the attention weights are generated by MLP. In contrast, our method uses MLP to embed

the visit information to preserve interpretability and uses RNN to generate two sets of

1For example, feeding visit embeddings in the original order to RNNα and RNNβ will generate the same
e1 and β1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.
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attention weights, recovering the sequential information as well as mimicking the behavior

of physicians. Note that we did not use the timestamp of each visit in our formulation. Using

timestamps, however, provides a small improvement in the prediction performance. We

propose a method to use timestamps in Supplementary 4.6.

4.3 Interpreting RETAIN

Finding the visits that contribute to prediction are derived using the largest αi, which

is straightforward. However, finding influential variables is slightly more involved as a

visit is represented by an ensemble of medical variables, each of which can vary in its

predictive contribution. The contribution of each variable is determined by v, β and α, and

interpretation of α alone informs which visit is influential in prediction but not why.

We propose a method to interpret the end-to-end behavior of RETAIN. By keeping α and

β values fixed as the attention of doctors, we analyze changes in the probability of each label

yi,1, . . . , yi,s in relation to changes in the original input x1,1, . . . , x1,r, . . . , xi,1, . . . , xi,r. The

xj,k that yields the largest change in yi,d will be the input variable with highest contribution.

More formally, given the sequence x1, . . . ,xi, we are trying to predict the probability of the

output vector yi ∈ {0, 1}s, which can be expressed as follows

p(yi|x1, . . . ,xi) = p(yi|ci) = Softmax (Wci + b) (4.2)

where ci ∈ Rm denotes the context vector. According to Step 4, ci is the sum of the visit

embeddings v1, . . . ,vi weighted by the attentions α’s and β’s. Therefore Eq (4.2) can be

rewritten as follows,

p(yi|x1, . . . ,xi) = p(yi|ci) = Softmax

(
W
( i∑
j=1

αjβj � vj

)
+ b

)
(4.3)

Using the fact that the visit embedding vi is the sum of the columns of Wemb weighted by
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each element of xi, Eq (4.3) can be rewritten as follows,

p(yi|x1, . . . ,xi) = Softmax

(
W
( i∑
j=1

αjβj �
r∑

k=1

xj,kWemb[:, k]
)
+ b

)

= Softmax

( i∑
j=1

r∑
k=1

xj,k αjW
(
βj �Wemb[:, k]

)
+ b

)
(4.4)

where xj,k is the k-th element of the input vector xj . Eq (4.4) can be completely de-

constructed to the variables at each input x1, . . . ,xi, which allows for calculating the

contribution ω of the k-th variable of the input xj at time step j ≤ i, for predicting yi as

follows,

ω(yi, xj,k) = αjW(βj �Wemb[:, k])︸ ︷︷ ︸
Contribution coefficient

xj,k︸︷︷︸
Input value

, (4.5)

where the index i of yi is omitted in the αj and βj . As we have described in Section 4.2.2,

we are generating α’s and β’s at time step i in the visit sequence x1, . . . ,xT . Therefore the

index i is always assumed for α’s and β’s. Additionally, Eq (4.5) shows that when we are

using a binary input value, the coefficient itself is the contribution. However, when we are

using a non-binary input value, we need to multiply the coefficient and the input value xj,k

to correctly calculate the contribution.

4.4 Experiments

We compared performance of RETAIN to RNNs and traditional machine learning methods.

Given space constraints, we only report the results on the learning to diagnose (L2D) task and

summarize the encounter sequence modeling (ESM) in Supplementary 4.8. The RETAIN

source code is publicly available at https://github.com/mp2893/retain.

4.4.1 Experimental setting

Source of data: The dataset consists of electronic health records from Sutter Health. The

patients are 50 to 80 years old adults chosen for a heart failure prediction model study.
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Table 4.1: Statistics of EHR dataset. (D:Diagnosis, R:Medication, P:Procedure)

# of patients 263,683 Avg. # of codes in a visit 3.03
# of visits 14,366,030 Max # of codes in a visit 62
Avg. # of visits per patient 54.48 Avg. # of Dx codes in a visit 1.83
# of medical code groups 615 (D:283, R:94, P:238) Max # of Dx in a visit 42

From the encounter records, medication orders, procedure orders and problem lists, we

extracted visit records consisting of diagnosis, medication and procedure codes. To reduce

the dimensionality while preserving the clinical information, we used existing medical

groupers to aggregate the codes into input variables. The details of the medical groupers are

given in the Supplementary 4.7. A profile of the dataset is summarized in Table 4.1.

Implementation details: We implemented RETAIN with Theano 0.8 [101]. For train-

ing the model, we used Adadelta [100] with the mini-batch of 100 patients. The training

was done in a machine equipped with Intel Xeon E5-2630, 256GB RAM, two Nvidia Tesla

K80’s and CUDA 7.5.

Baselines: For comparison, we completed the following models.

• Logistic regression (LR): We compute the counts of medical codes for each patient

based on all her visits as input variables and normalize the vector to zero mean and unit

variance. We use the resulting vector to train the logistic regression.

• MLP: We use the same feature construction as LR, but put a hidden layer of size 256

between the input and output.

• RNN: RNN with two hidden layers of size 256 implemented by the GRU. Input sequences

x1, . . . ,xi are used. Logistic regression is applied to the top hidden layer. We use two

layers of RNN of to match the model complexity of RETAIN.

• RNN+αM : One layer single directional RNN (hidden layer size 256) along time to

generate the input embeddings v1, . . . ,vi. We use the MLP with a single hidden layer of

size 256 to generate the visit-level attentions α1, . . . , αi. We use the input embeddings

v1, . . . ,vi as the input to the MLP. This baseline corresponds to Figure 4.1a.
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• RNN+αR: This is similar to RNN+αM but uses the reverse-order RNN (hidden layer

size 256) to generate the visit-level attentions α1, . . . , αi. We use this baseline to confirm

the effectiveness of generating the attentions using reverse time order.

The comparative visualization of the baselines are provided in Supplementary 4.9. We use

the same implementation and training method for the baselines as described above. The

details on the hyper-parameters, regularization and drop-out strategies for the baselines are

described in Supplementary 4.7.

Evaluation measures: Model accuracy was measured by:

• Negative log-likelihood that measures the model loss on the test set. The loss can be

calculated by Eq (4.1).

• Area Under the ROC Curve (AUC) of comparing ŷi with the true label yi. AUC is

more robust to imbalanced positive/negative prediction labels, making it appropriate for

evaluation of classification accuracy in the heart failure prediction task.

We also report the bootstrap (10,000 runs) estimate of the standard deviation of the evaluation

measures.

4.4.2 Heart Failure Prediction

Objective: Given a visit sequence x1, . . . ,xT , we predicted if a primary care patient will

be diagnosed with heart failure (HF). This is a special case of ESM with a single disease

outcome at the end of the sequence. Since this is a binary prediction task, we use the logistic

sigmoid function instead of the Softmax in Step 5.

Cohort construction: From the source dataset, 3,884 cases are selected and approxi-

mately 10 controls are selected for each case (28,903 controls). The case/control selection

criteria are fully described in the supplementary section. Cases have index dates to denote

the date they are diagnosed with HF. Controls have the same index dates as their corre-
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Table 4.2: Heart failure prediction performance of RETAIN and the baselines

Model Test Neg Log Likelihood AUC Train Time / epoch Test Time
LR 0.3269± 0.0105 0.7900± 0.0111 0.15s 0.11s
MLP 0.2959± 0.0083 0.8256± 0.0096 0.25s 0.11s
RNN 0.2577± 0.0082 0.8706± 0.0080 10.3s 0.57s
RNN+αM 0.2691± 0.0082 0.8624± 0.0079 6.7s 0.48s
RNN+αR 0.2605± 0.0088 0.8717± 0.0080 10.4s 0.62s
RETAIN 0.2562± 0.0083 0.8705± 0.0081 10.8s 0.63s

sponding cases. We extract diagnosis codes, medication codes and procedure codes in the

18-months window before the index date.

Training details: The patient cohort was divided into the training, validation and test

sets in a 0.75:0.1:0.15 ratio. The validation set was used to determine the values of the

hyper-parameters. See Appendix 4.7 for details of hyper-parameter tuning.

Results: Logistic regression and MLP underperformed compared to the four temporal

learning algorithms (Table 4.2). RETAIN is comparable to the other RNN variants in terms

of prediction performance while offering the interpretation benefit.

Note that RNN+αR model are a degenerated version of RETAIN with only scalar

attention, which is still a competitive model as shown in table 4.2. This confirms the

efficiency of generating attention weights using the RNN. However, RNN+αR model only

provides scalar visit-level attention, which is not sufficient for healthcare applications.

Patients often receives several medical codes at a single visit, and it will be important to

distinguish their relative importance to the target. We show such a case study in section

4.4.3.

Table 4.2 also shows the scalability of RETAIN, as its training time (the number of

seconds to train the model over the entire training set once) is comparable to RNN. The

test time is the number of seconds to generate the prediction output for the entire test set.

We use the mini-batch of 100 patients when assessing both training and test times. RNN

takes longer than RNN+αM because of its two-layer structure, whereas RNN+αM uses a
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single layer RNN. The models that use two RNNs (RNN, RNN+αR, RETAIN)2 take similar

time to train for one epoch. However, each model required a different number of epochs

to converge. RNN typically takes approximately 10 epochs, RNN+αM and RNN+αR 15

epochs and RETAIN 30 epochs. Lastly, training the attention models (RNN+αM , RNN+αR

and RETAIN) for ESM would take considerably longer than L2D, because ESM modeling

generates context vectors at each time step. RNN, on the other hand, does not require

additional computation other than embedding the visit to its hidden layer to predict target

labels at each time step. Therefore, in ESM, the training time of the attention models will

increase linearly in relation to the length of the input sequence.

4.4.3 Model Interpretation for Heart Failure Prediction

We evaluated the interpretability of RETAIN in the HF prediction task by choosing a HF

patient from the test set and calculating the contribution of the variables (medical codes in

this case) to diagnostic prediction. The patient suffered from skin problems, skin disorder

(SD), benign neoplasm (BN), excision of skin lesion (ESL), for some time before showing

symptoms of HF, cardiac dysrhythmia (CD), heart valve disease (HVD) and coronary

atherosclerosis (CA), and then a diagnosis of HF (Figure 4.3). We can see that skin-related

codes from the earlier visits made little contribution to HF prediction as expected. RETAIN

properly puts much attention to the HF-related codes that occurred in recent visits.

To confirm RETAIN’s ability to exploit the sequence information of the EHR data, we

reverse the visit sequence of Figure 4.3a and feed it to RETAIN. Figure 4.3b shows the

contribution of the medical codes of the reversed visit record. HF-related codes in the past

are still making positive contributions, but not as much as they did in Figure 4.3a. Figure

4.3b also emphasizes RETAIN’s superiority to interpretable, but stationary models such

as logistic regression. Stationary models often aggregate past information and remove the

temporality from the input data, which can mistakenly lead to the same risk prediction for

2The RNN baseline uses two layers of RNN, RNN+αR uses one for visit embedding and one for generating
α, RETAIN uses each for generating α and β
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Figure 4.3: (a) Temporal visualization of a patient’s visit records where the contribution of
variables for diagnosis of heart failure (HF) is summarized along the x-axis (i.e. time) with
the y-axis indicating the magnitude of visit and code specific contributions to HF diagnosis.
(b) We reverse the order of the visit sequence to see if RETAIN can properly take into
account the modified sequence information. (c) Medication codes are added to the visit
record to see how it changes the behavior of RETAIN.

Figure 4.3a and 4.3b. RETAIN, however, can correctly digest the sequence information and

calculates the HF risk score of 9.0%, which is significantly lower than that of Figure 4.3a.

Figure 4.3c shows how the contributions of codes change when selected medication data

are used in the model. We added two medications from day 219: antiarrhythmics (AA)

and anticoagulants (AC), both of which are used to treat cardiac dysrhythmia (CD). The

two medications make a negative contributions, especially towards the end of the record.

The medications decreased the positive contributions of heart valve disease and cardiac

dysrhythmia in the last visit. Indeed, the HF risk prediction (0.2165) of Figure 4.3c is lower

than that of Figure 4.3a (0.2474). This suggests that taking proper medications can help the

patient in reducing their HF risk.
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4.5 Conclusion

Our approach to modeling event sequences as predictors of HF diagnosis suggest that

complex models can offer both superior predictive accuracy and more precise interpretability.

Given the power of RNNs for analyzing sequential data, we proposed RETAIN, which

preserves RNN’s predictive power while allowing a higher degree of interpretation. The

key idea of RETAIN is to improve the prediction accuracy through a sophisticated attention

generation process, while keeping the representation learning part simple for interpretation,

making the entire algorithm accurate and interpretable. RETAIN trains two RNN in a

reverse time order to efficiently generate the appropriate attention variables. For future work,

we plan to develop an interactive visualization system for RETAIN and evaluating RETAIN

in other healthcare applications.

Supplementary

4.6 A method to use the timestamps

As before, we use t(n)i to represent the timestamp of the i-th visit of the n-th patient. In

the following, we suppress the superscript (n) to avoid cluttered notation. Note that the

timestamp ti can be anything that provides the temporal information of the i-th visit: the

number of days from the first visit, the number of days between two consecutive visits, or

the number of days until the index date of some event such as heart failure diagnosis.
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In order to use the timestamps, we modify Step 2 and Step 3 in Section 4.2.2 as follows:

gi,gi−1, . . . ,g1 = RNNα(v
′

i,v
′

i−1, . . . ,v
′

1),

ej = w>αgj + bα, for j = 1, . . . , i

α1, α2, . . . , αi = Softmax(e1, e2, . . . , ei)

hi,hi−1, . . . ,h1 = RNNβ(v
′

i,v
′

i−1, . . . ,v
′

1)

βj = tanh
(
Wβhj + bβ

)
for j = 1, . . . , i,

where v
′

i = [vi, ti]

where we use v
′
i, the concatenation of the visit embedding vi and the timestamp ti, to

generate the attentions α and β. However, when obtaining the context vector ci as per Step

4, we use vi, not v′i to match the dimensionality. The entire process could be understood

such that we use the temporal information not to embed each visit, but to calculate the

attentions for the entire visit sequence. This is consistent with our modeling approach

where we lose the sequential information in embedding the visit with MLP, then recover the

sequential information by generating the attentions using the RNN. By using the temporal

information, specifically the log of the number of days from the first visit, we were able to

improve the heart failure prediction AUC by 0.003 without any hyper-parameter tuning.

4.7 Details of the experiment settings

4.7.1 Hyper-parameter Tuning

We used the validation set to tune the hyper-parameters: visit embedding size m, RNNα’s

hidden layer size p, RNNβ’s hidden layer size q, L2 regularization coefficient, and drop-out

rates.

L2 regularization was applied to all weights except the ones in RNNα and RNNβ. Two

separate drop-outs were used on the visit embedding vi and the context vector ci. We
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performed the random search with predefined ranges m, p, q ∈ {32, 64, 128, 200, 256},

L2 ∈ {0.1, 0.01, 0.001, 0.0001}, dropoutvi
, dropoutci ∈ {0.0, 0.2, 0.4, 0.6, 0.8}. We also

performed the random search with m, p and q fixed to 256.

The final value we used to train RETAIN for heart failure prediction is m, p, q = 128,

dropoutvi
= 0.6, dropoutci = 0.6 and 0.0001 for the L2 regularization coefficient.

4.7.2 Code Grouper

Diagnosis codes, medication codes and procedure codes in the dataset are respectively

using International Classification of Diseases (ICD-9), Generic Product Identifier (GPI) and

Current Procedural Terminology (CPT).

Diagnosis codes are grouped by Clinical Classifications Software for ICD-93 which

reduces the number of diagnosis code from approximately 14,000 to 283. Medication codes

are grouped by Generic Product Identifier Drug Group4 which reduces the dimension to

from approximately 151,000 to 96. Procedure codes are grouped by Clinical Classifications

Software for CPT5, which reduces the number of CPT codes from approximately 9,000 to

238.

4.7.3 Training Specifics of the Basline Models

• LR: We use 0.01 L2 regularization coefficient for the logistic regression weight.

• MLP: We use drop-out rate 0.6 on the output of the hidden layer. We use 0.0001 L2

regularization coefficient for the hidden layer weight and the logistic regression weight.

• RNN: We use drop-out rate 0.6 on the outputs of both hidden layers. We use 0.0001 L2

regularization coefficient for the logistic regression weight. The dimension size of both

hidden layers is 256.

3https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
4http://www.wolterskluwercdi.com/drug-data/medi-span-electronic-drug-file/
5https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp
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Table 4.3: Qualifying ICD-9 codes for heart failure

• RNN+αM : We use drop-out rate 0.4 on the output of the hidden layer and 0.6 on the

output of the context vector
∑

i αivi. We use 0.0001 L2 regularization coefficient for

the hidden layer weight of the MLP that generates α’s and the logistic regression weight.

The dimension size of the hidden layers in both RNN and MLP is 256.

• RNN+αR: We use drop-out rate 0.4 on the output of the hidden layer and 0.6 on the

output of the context vector
∑

i αivi. We use 0.0001 L2 regularization coefficient for the

hidden layer weight of the RNN that generates α’s and the logistic regression weight.

The dimension size of the hidden layers in both RNNs is 256.
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4.7.4 Heart Failure Case/Control Selection Criteria

Case patients were 40 to 85 years of age at the time of HF diagnosis. HF diagnosis (HFDx)

is defined as: 1) Qualifying ICD-9 codes for HF appeared in the encounter records or

medication orders. Qualifying ICD-9 codes are displayed in Table 4.3. 2) a minimum of

three clinical encounters with qualifying ICD-9 codes had to occur within 12 months of

each other, where the date of diagnosis was assigned to the earliest of the three dates. If the

time span between the first and second appearances of the HF diagnostic code was greater

than 12 months, the date of the second encounter was used as the first qualifying encounter.

The date at which HF diagnosis was given to the case is denoted as HFDx. Up to ten eligible

controls (in terms of sex, age, location) were selected for each case, yielding an overall ratio

of 9 controls per case. Each control was also assigned an index date, which is the HFDx of

the matched case. Controls are selected such that they did not meet the operational criteria

for HF diagnosis prior to the HFDx plus 182 days of their corresponding case. Control

subjects were required to have their first office encounter within one year of the matching

HF case patient’s first office visit, and have at least one office encounter 30 days before or

any time after the case’s HF diagnosis date to ensure similar duration of observations among

cases and controls.

4.8 Results on encounter sequence modeling

Objective: Given a sequence of visits x1, . . . ,xT , the goal of encounter sequence modeling

is, for each time step i, to predict the codes occurring at the next visit x2, . . . ,xT+1. In this

experiment, we focus on predicting the diagnosis codes in the encounter sequence, so we

create a separate set of labels y1, . . . ,yT that do not contain non-diagnosis codes such as

medication codes or procedure codes. Therefore yi will contain diagnosis codes from the

next visit xi+1.

Dataset: We divide the entire dataset described in Table 4.1 into 0.75:0.10:0.15 ratio,
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respectively for training set, validation set, and test set.

Baseline: We use the same baseline models we used for HF prediction. However, since

we are predicting 283 binary labels now, we replace the logistic regression function with the

Softmax function. The drop-out and L2 regularization policies remain the same.

For LR and MLP, at each step i, we aggregate maximum ten past input vectors6

xi−9, . . . ,xi to create a pseudo-context vector ĉi. LR applies the Softmax function on

top of ĉi. MLP places a hidden layer on top of ĉi then applies the Softmax function.

Evaluation metric: We use the negative log likelihood Eq (4.1) on the test set to

evaluate the model performance. We also use Recall@k as an additional metric to measure

the prediction accuracy.

• Recall@k: Given a sequence of visits x1, . . . ,xT , we evaluate the model performance

based on how accurately it can predict the diagnosis codes y1, . . . ,yT . We use the

average Recall@k, which is expressed as below,

1

N

N∑
n=1

1

T (n)

T (n)∑
i=1

Recall@k(ŷi), where Recall@k(ŷi) =
|argsort(ŷi)[: k] ∩ nonzero(yi)|

|nonzero(yi)|

where argsort returns a list of indices that will decrementally sort a given vector and

nonzero returns a list of indices of the coordinates with non-zero values. We use

Recall@k because of its similar nature to the way a human physician performs the

differential diagnostic procedure, which is to generate a list of most likely diseases for

an undiagnosed patient, then perform medical practice until the true disease, or diseases

are determined.

Prediction accuracy: Table 4.4 displays the prediction performance of RETAIN and

the baselines. We use k = 5, 10 for Recall@k to allow a reasonable number of prediction

trials, as well as cover complex patients who often receive multiple diagnosis codes at a

single visit.
6We also tried aggregating all past input vectors x1, . . . ,xi, but the performance was slightly worse than

using just ten.

73



Table 4.4: Encounter diagnosis prediction performance of RETAIN and the baselines

Model
Negative

Likelihood
Recall@5 Recall@10

LR 0.0288 43.15 55.84
MLP 0.0267 50.72 65.02
RNN 0.0258 55.18 69.09
RNN+αM 0.0262 52.15 65.81
RNN+αR 0.0259 53.89 67.45
RETAIN 0.0259 54.25 67.74

RNN shows the best prediction accuracy for encounter diagnosis prediction. However,

considering the purpose of encounter diagnosis prediction, which is to assist doctors to

provide quality care for the patient, black-box behavior of RNN makes it unattractive as a

clinical tool. On the other hand, RETAIN performs as well as other attention models, only

slightly inferior to RNN, provides full interpretation of its prediction behavior, making it a

feasible solution for clinical applications.

The interesting finding in Table 4.4 is that MLP is able to perform as accurately as

RNN+αM in terms of Recall@10. Considering the fact that MLP uses aggregated informa-

tion of past ten visits, we can assume that encounter diagnosis prediction depends more on

the frequency of disease occurrences rather than the order in which they occurred. This is

quite different from the HF prediction task, where stationary models (LF, MLP) performed

significantly worse than sequential models.

4.9 Illustration and comparison of the baselines

Figure 4.4 illustrates the baselines used in the experiments and shows the relationship among

them.
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Figure 4.4: Graphical illustration of the baselines: (a) Logistic regression (LR), (b) Mul-
tilayer Perceptron (MLP), (c) Recurrent neural network (RNN), (d) RNN with attention
vectors generated via an MLP (RNN+αM ), (e) RNN with attention vectors generated via
an RNN (RNN+αR). RETAIN is given in Figure 4.1b.
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CHAPTER 5

GRAM: GRAPH-BASED ATTENTION MODEL FOR HEALTHCARE

REPRESENTATION LEARNING

Deep learning methods exhibit promising performance for predictive modeling in healthcare,

but two important challenges remain:

• Data insufficiency: Often in healthcare predictive modeling, the sample size is insufficient

for deep learning methods to achieve satisfactory results.

• Interpretation: The representations learned by deep learning methods should align with

medical knowledge.

To address these challenges, we propose GRaph-based Attention Model (GRAM) that supple-

ments electronic health records (EHR) with hierarchical information inherent to medical

ontologies. Based on the data volume and the ontology structure, GRAM represents a medical

concept as a combination of its ancestors in the ontology via an attention mechanism.

We compared predictive performance (i.e. accuracy, data needs, interpretability) of

GRAM to various methods including the recurrent neural network (RNN) in two sequential

diagnoses prediction tasks and one heart failure prediction task. Compared to the basic RNN,

GRAM achieved 10% higher accuracy for predicting diseases rarely observed in the training

data and 3% improved area under the ROC curve for predicting heart failure using an order

of magnitude less training data. Additionally, unlike other methods, the medical concept

representations learned by GRAM are well aligned with the medical ontology. Finally, GRAM

exhibits intuitive attention behaviors by adaptively generalizing to higher level concepts

when facing data insufficiency at the lower level concepts.
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5.1 Introduction

The rapid growth in volume and diversity of healthcare data from electronic health records

(EHR) and other sources is motivating the use of predictive modeling to improve care for

individual patients. In particular, novel applications are emerging that use deep learning

methods such as word embedding [12, 55], recurrent neural networks (RNN) [129, 10,

13, 130], convolutional neural networks (CNN) [131] or stacked denoising autoencoders

(SDA) [53, 56], demonstrating significant performance enhancement for diverse prediction

tasks. Deep learning models appear to perform significantly better than logistic regression

or multilayer perceptron (MLP) models that depend, to some degree, on expert feature

construction [57, 132].

Training deep learning models typically requires large amounts of data that often cannot

be met by a single health system or provider organization. Sub-optimal model performance

can be particularly challenging when the focus of interest is predicting onset of a rare

disease. For example, using Doctor AI [10], we discovered that RNN alone was ineffective

at predicting the onset of diseases such as cerebral degenerations (e.g. Leukodystrophy,

Cerebral lipidoses) or developmental disorders (e.g. autistic disorder, Heller’s syndrome).

In part, the low incidence of these diseases in the training data provided little learning

opportunity to the flexible models like RNN.

Deep learning models require high volumes of data because of the exponential number

of feature combinations that must be assessed for the model to learn. The demand for

high volume can be reduced by exploiting medical ontologies to encode hierarchical clini-

cal constructs and relationships among medical concepts, effectively reducing the search

space without loss of information. Fortunately, there are many well-organized ontologies

in healthcare such as the International Classification of Diseases (ICD), Clinical Classifi-

cations Software (CCS) [133] or Systematized Nomenclature of Medicine-Clinical Terms

(SNOMED-CT) [134]. Nodes (i.e. medical concepts) close to one another in medical
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Figure 5.1: The illustration of GRAM. Leaf nodes (solid circles) represents a medical concept
in the EHR, while the non-leaf nodes (dotted circles) represent more general concepts. The
final representation gi of the leaf concept ci is computed by combining the basic embeddings
ei of ci and eg, ec and ea of its ancestors cg, cc and ca via an attention mechanism. The final
representations form the embedding matrix G for all leaf concepts. After that, we use G
to embed patient visit vector xt to a visit representation vt, which is then fed to a neural
network model to make the final prediction ŷt.
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ontologies are likely to be associated with similar patients, allowing us to transfer knowl-

edge among them. Use of medical ontologies are likely to be helpful when data volume is

insufficient to train deep learning models, and possibly even when data volume is sufficient

as a means to improve model parsimony without loss of information and by learning more

interpretable representations that are consistent with the ontology structure.

In this chapter, we propose GRAM, a method that infuses information from medical

ontologies into deep learning models via neural attention. Considering the frequency of

a medical concept in the EHR data and its ancestors in the ontology, GRAM optimizes

the medical concept by adaptively combining its ancestors via attention mechanism (i.e.

weighted sum of the representations of ancestors). The attention mechanism is trained in an

end-to-end fashion with the neural network model that predicts the onset of disease(s). We

also propose an effective initialization technique to better guide the representation learning

process.

We compare predictive performance (i.e. accuracy, data needs, interpretability) of GRAM

to various models including the recurrent neural network (RNN) in two sequential diagnoses

prediction tasks and one heart failure (HF) prediction task. We demonstrate that GRAM is up
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to 10% more accurate than the basic RNN for predicting diseases less observed in the training

data. After discussing GRAM’s scalability, we visualize the representations learned from

various models, where GRAM provides more intuitive representations by grouping similar

medical concepts close to one another. Finally, we show GRAM’s attention mechanism can

be interpreted to understand how it assigns the right amount of attention to the ancestors of

each medical concept by considering the data availability and the ontology structure.

5.2 Methodology

We first define the notations describing EHR data and medical ontologies, followed by a

description of GRAM (Section 5.2.2), the end-to-end training of the attention generation and

predictive modeling (Section 5.2.3), and the efficient initialization scheme (Section 5.2.4).

5.2.1 Basic Notation

We denote the set of entire medical codes from the EHR as c1, c2, . . . , c|C| ∈ C with the

vocabulary size |C|. The clinical record of each patient can be viewed as a sequence of

visits V1, . . . , VT where each visit contains a subset of medical codes Vt ⊆ C. Vt can be

represented as a binary vector xt ∈ {0, 1}|C| where the i-th element is 1 only if Vt contains

the code ci. To avoid clutter, all algorithms will be presented for a single patient.

We assume that a given medical ontology G typically expresses the hierarchy of various

medical concepts in the form of a parent-child relationship, where the medical codes C form

the leaf nodes. Ontology G is represented as a directed acyclic graph (DAG) whose nodes

form a set D = C + C ′. The set C ′ = {c|C|+1, c|C|+2, . . . ,

c|C|+|C′|} consists of all non-leaf nodes (i.e. ancestors of the leaf nodes), where |C ′| represents

the number of all non-leaf nodes. We use knowledge DAG to refer to G. A parent in

the knowledge DAG G represents a related but more general concept over its children.

Therefore, G provides a multi-resolution view of medical concepts with different degrees

of specificity. While some ontologies are exclusively expressed as parent-child hierarchies
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(e.g. ICD-9, CCS), others are not. For example, in some instances SNOMED-CT also links

medical concepts to causal or treatment relationships, but a majority of the relationships in

SNOMED-CT are still parent-child. Therefore, we focus on the parent-child relationships in

this chapter.

5.2.2 Knowledge DAG and the Attention Mechanism

GRAM leverages the parent-child relationship of G to learn robust representations when

data volume is constrained. GRAM balances the use of ontology information in relation to

data volume in determining the level of specificity for a medical concept. When a medical

concept is less frequent in the data, more weight is given to its ancestors as they can be

learned more accurately and offer general (coarse-grained) information about their children.

The process of resorting to the parent concepts can be automated via the attention mechanism

and the end-to-end training as described in Figure 5.1.

In the knowledge DAG, each node ci is assigned a basic embedding vector ei ∈ Rm,

where m represents the dimensionality. Then e1, . . . , e|C| are the basic embeddings of the

codes c1, . . . , c|C| while e|C|+1, . . . , e|C|+|C′| represent the basic embeddings of the internal

nodes c|C|+1, . . . , c|C|+|C′|. The initialization of these basic embeddings is described in

Section 5.2.4. We formulate a leaf node’s final representation as a convex combination of

the basic embeddings of itself and its ancestors:

gi =
∑
j∈A(i)

αijej,
∑
j∈A(i)

αij = 1, αij ≥ 0 for j ∈ A(i), (5.1)

where gi ∈ Rm denotes the final representation of the code ci, A(i) the indices of the code

ci and ci’s ancestors, ej the basic embedding of the code cj and αij ∈ R+ the attention

weight on the embedding ej when calculating gi. The attention weight αij in Eq. (5.1) is
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calculated by the following Softmax function,

αij =
exp(f(ei, ej))∑

k∈A(i) exp(f(ei, ek))
(5.2)

f(ei, ej) is a scalar value representing the compatibility between the basic embeddings of ei

and ek. We compute f(ei, ej) via the following feed-forward network with a single hidden

layer (MLP),

f(ei, ej) = u>a tanh(Wa

 ei

ej

+ ba) (5.3)

where Wa ∈ Rl×2m is the weight matrix for the concatenation of ei and ej , b ∈ Rl the

bias vector, and ua ∈ Rl the weight vector for generating the scalar value. The constant

l represents the dimension size of the hidden layer of f(·, ·). We concatenate ei and ej in

the child-ancestor order. Note that the compatibility function f is an MLP, because MLP

is well known to be a sufficient approximator for an arbitrary function, and we empirically

found that our formulation performed better in our use cases than alternatives such as inner

product and Bahdanau et al.’s [3].

Remarks: The example in Figure 5.1 is derived based on a single path from ci to ca.

However, the same mechanism can be applicable to multiple paths as well. For example,

code ck has two paths to the root ca, containing five ancestors in total. Another scenario is

where the EHR data contain both leaf codes and some ancestor codes. We can move those

ancestors present in EHR data from the set C ′ to C and apply the same process as Eq. (5.1)

to obtain the final representations for them.

5.2.3 End-to-End Training with a Predictive Model

We train the attention mechanism together with a predictive model such that the attention

mechanism improves the predictive performance. By concatenating final representation

g1,g2, . . . ,g|C| of all medical codes, we have the embedding matrix G ∈ Rm×|C| where gi
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is the i-th column of G. As shown in the right side of Figure 5.1, we can convert a visit Vt

to a visit representation vt by multiplying the embedding matrix G with a multi-hot (i.e.

multi-label binary) vector xt indicating the clinical events in the visit Vt, followed by a

nonlinear activation via tanh. Finally the visit representation vt will be used as an input to

the neural network model for predicting the target label yt. In this chapter, we use RNN as

the choice of the NN model to perform sequential diagnoses prediction [10, 13]. That is, we

are interested in predicting the disease codes of the next visit Vt+1 given the visit records up

to the current timestep V1, V2, . . . , Vt, which can be expressed as follows,

v1,v2, . . . ,vt = tanh(G[x1,x2, . . . ,xt]),

h1,h2, . . . ,ht = RNN(v1,v2, . . . ,vt, θr), (5.4)

ŷt = x̂t+1 = Softmax(Wht + b),

where xt ∈ R|C| denotes the multi-hot vector for the t-th visit; vt ∈ Rm the t-th visit

representation; ht ∈ Rr the RNN’s hidden layer at the t-th time step (i.e. t-th visit); θr

RNN’s parameters; W ∈ R|C|×r and b ∈ R|C| the weight matrices and the bias vector of the

final Softmax function (r denotes the dimension size of the hidden layer). Note that we use

Softmax instead of dimension-wise sigmoid for predicting multiple disease codes in the

next visit Vt+1 because it showed better performance. Here we use “RNN” to denote any

recurrent neural network variants that can cope with the vanishing gradient problem [118],

such as LSTM [58], GRU [119], and IRNN [120]. The prediction loss for all time steps is

calculated using the binary cross entropy as follows,

L(x1,x2 . . . ,xT ) = −
1

T − 1

T−1∑
t=1

(
yt
> log(ŷt) + (1− yt)

> log(1− ŷt)
)

(5.5)

where we sum the cross entropy errors from all timestamps of ŷt, T denotes the number of

timestamps of the visit sequence. Note that the above loss is defined for a single patient. In

actual implementation, we will take the average of the individual loss for multiple patients.
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Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention parameters ua,Wa,ba, RNN
parameter θr, softmax parameters W,b.
repeat

Update E with GloVe objective function (see Section 5.2.4)
until convergence
repeat
X← random patient from dataset
for visit Vt in X do

for code ci in Vt do
Refer G to find ci’s ancestors C ′

for code cj in C ′ do
Calculate attention weight αij using Eq. (5.2).

end for
Obtain final representation gi using Eq. (5.1).

end for
vt ← tanh(

∑
i:ci∈Vt gi)

Make prediction ŷt using Eq. (5.4)
end for
Calculate prediction loss L using Eq .(5.5)
Update parameters according to the gradient of L

until convergence

Algorithm 1 describes the overall GRAM training procedure assuming that we are performing

the sequential diagnoses prediction task using an RNN. Note that Algorithm 1 describes

stochastic gradient update to avoid clutter, but it can be easily extended to other gradient

based optimization such as mini-batch gradient update.

5.2.4 Initializing Basic Embeddings

The attention generation mechanism in Section 5.2.2 requires basic embeddings ei of each

node in the knowledge DAG. The basic embeddings of ancestors, however, are not usually

observed in the data. To properly initialize them, we use co-occurrence information to learn

the basic embeddings of medical codes and their ancestors. Co-occurrence has proven to

be an important source of information when learning representations of words or medical

concepts [11, 12, 55]. To train the basic embeddings, we employ GloVe [77], which uses

the global co-occurrence matrix of words to learn their representations. In our case, the co-
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Leaf medical codes

Figure 5.2: Creating the co-occurrence matrix together with the ancestors. The n-th ancestors
are the group of nodes that are n hops away from any leaf node in G. Here we exclude the
root node, which will be just a single row (column).

occurrence matrix of the codes and the ancestors was generated by counting co-occurrences

within each visit Vt, where we then augment each visit with the ancestors of the codes in the

visit. We describe the initialization algorithm with an example knowledge DAG of Figure

5.1. Given a visit Vt,

Vt = {cd, ci, ck}

we augment the leaf codes with their ancestors to obtain the augmented visit V ′t ,

V ′t = {cd, cb, ca, ci, cg, cc, ca, ck, cj, cf , cc, cb, ca}

where the augmented ancestors are underlined. Note that a single ancestor can appear

multiple times in V ′t . In fact, the higher the ancestor is in the knowledge DAG, the more

times it is likely to appear in V ′t . Co-occurrence of two codes in V ′t are counted as follows,

co-occurrence(ci, cj, V ′t ) = count(ci, V
′
t )× count(cj, V ′t )

where count(ci, V ′t ) is the number of times the code ci appears in the augmented visit V ′t .

For example, the co-occurrence between the leaf code ci and the root ca is 3. However, the
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co-occurrence between the ancestor cc and the root ca is 6. Therefore our algorithm will

make the higher ancestor codes more likely to be involved in all medical events (i.e. visits),

which is natural in healthcare applications as those general concepts are often reliable. We

repeat this calculation for all pairs of codes in all augmented visits of all patients to obtain

the co-occurrence matrix M ∈ R|D|×|D| depicted by Figure 5.2. For training the embedding

vectors ei’s using M, we minimize the following loss function as described in [77].

J =

|D|∑
i,j=1

f(Mij)(e
>
i ej + bi + bj − logMij)

2

where f(x) =


(x < xmax)

α if x < xmax

1 otherwise

and the hyperparameters xmax and α are respectively set to 100 and 0.75 as the original

paper [77]. Note that, after the initialization, the basic embeddings ei’s of both leaf nodes

(i.e. medical codes) and non-leaf nodes (i.e. ancestors) are fine-tuned during model training

via backpropagation.

5.3 Experiments

We conducted three experiments to determine if GRAM offered superior prediction per-

formance when facing data insufficiency. We first describe the experimental setup fol-

lowed by results comparing predictive performance of GRAM with various baseline mod-

els. Then we present GRAM’s scalability results. Finally, we qualitatively show the intu-

itive interpretation of GRAM. The source code of GRAM is publicly available at https:

//github.com/mp2893/gram.

5.3.1 Experiment Setup

Prediction tasks and source of data: We conducted two sequential diagnoses prediction

(SDP) tasks using two different datasets. The overall aim of the experiments was to use
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Table 5.1: Basic statistics of Sutter PAMF, MIMIC-III and Sutter heart failure (HF) cohort.
Dataset Sutter PAMF MIMIC-III Sutter HF cohort

# of patients 258,555† 7,499† 30,727† (3,408 cases)
# of visits 13,920,759 19,911 572,551
Avg. # of visits per patient 53.8 2.66 38.38
# of unique ICD9 codes 10,437 4,893 5,689
Avg. # of codes per visit 1.98 13.1 2.06
Max # of codes per visit 54 39 29

† For all datasets, we chose patients who made at least two visits.

all information prior to a next visit to predict all diagnosis codes that would be in that

next visit. The first dataset was from the Sutter Palo Alto Medical Foundation (PAMF),

which consisted of 10-years longitudinal medical records of 258K primary care patients

between 50 to 89 years of age. This will determine GRAM’s performance for general adult

population with many hospital visits. The second dataset was MIMIC-III [135, 136], which

is a publicly available dataset consisting of medical records of 7.5K intensive care unit

(ICU) patients over 11 years. This will determine GRAM’s performance for high-risk patients

with very few hospital visits. We utilized all the patients with at least 2 visits. We prepared

the true labels yt by grouping the ICD9 codes into 283 groups using CCS single-level

diagnosis grouper1. This is to improve the training speed and predictive performance for

easier analysis, while preserving sufficient granularity for each diagnosis. Each diagnosis

code’s varying frequency in the training data can be viewed as different degrees of data

insufficiency. Model performance was assessed by Accuracy@k for each of CCS single-level

diagnosis codes such that, given a visit Vt, we get 1 if the target diagnosis is in the top k

guesses and 0 otherwise.

We also conducted a heart failure (HF) prediction task, which is a binary prediction task

for predicting a future HF onset where the prediction is made only once at the last visit xT .

The key difference between sequential diagnoses prediction and HF prediction is that the

prediction target for the former can already occur in patient’s prior visits while the prediction

target for the latter is a new diagnosis of HF that has not appeared before. HF prediction

was conducted on Sutter heart failure (HF) cohort, which is a subset of Sutter PAMF data
1https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt
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for a heart failure onset prediction study with 3.4K HF cases chosen by a set of criteria

described in [137, 138] and 27K matching controls chosen by a set of criteria described

in [9]. This will determine GRAM’s performance for a different prediction task where we

predict the onset of one specific condition. We randomly downsampled the training data to

create different degrees of data insufficiency. We used area under the ROC curve (AUC) to

measure the performance.

A summary of the datasets are provided in Table 5.1.We used CCS multi-level diagnoses

hierarchy2 as our knowledge DAG G. We also tested the ICD9 code hierarchy3, but the

performance was similar to using CCS multi-level hierarchy. For all three tasks, we randomly

divide the dataset into the training, validation and test set by .75:.10:.15 ratio, and use the

validation set to tune the hyper-parameters. Further details regarding the hyper-parameter

tuning are provided below. The test set performance is reported in the paper.

Implementation details: We implemented GRAM with Theano 0.8.2 [139]. For training

models, we used Adadelta [100] with a mini-batch of 100 patients, on a machine equipped

with Intel Xeon E5-2640, 256GB RAM, four Nvidia Titan X’s and CUDA 7.5.

Models for comparison are the following. The first two GRAM+ and GRAM are the proposed

methods and the rest are baselines. Hyper-parameter tuning is configured so that the number

of parameters for the baselines would be comparable to GRAM’s. Further details are provided

below.

• GRAM: Input sequence x1, . . . ,xT is first transformed by the embedding matrix G, then

fed to the GRU with a single hidden layer, which in turn makes the prediction, as

described by Eq. (5.4). The basic embeddings ei’s are randomly initialized.

• GRAM+: We use the same setup as GRAM, but the basic embeddings ei’s are initialized

according to Section 5.2.4.

• RandomDAG: We use the same setup as GRAM, but each leaf concept has five randomly

2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixCMultiDX.txt
3http://www.icd9data.com/2015/Volume1/default.htm
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assigned ancestors from the CCS multi-level hierarchy to test the effect of correct domain

knowledge.

• RNN: Input xt is transformed by an embedding matrix Wemb ∈ Rk×|C|, then fed to the

GRU with a single hidden layer. The embedding size k is a hyper-parameter. Wemb is

randomly initialized and trained together with the GRU.

• RNN+: We use the RNN model with the same setup as before, but we initialize the

embedding matrix Wemb with GloVe vectors trained only with the co-occurrence of leaf

concepts. This is to compare GRAM with a similar weight initialization technique.

• SimpleRollUp: We use the RNN model with the same setup as before. But for input

xt, we replace all diagnosis codes with their direct parent codes in the CCS multi-level

hierarchy, giving us 578, 526 and 517 input codes respectively for Sutter data, MIMIC-III

and Sutter HF cohort. This is to compare the performance of GRAM with a common

grouping technique.

• RollUpRare: We use the RNN model with the same setup as before, but we replace any

diagnosis code whose frequency is less than a certain threshold in the dataset with its

direct parent. We set the threshold to 100 for Sutter data and Sutter HF cohort, and 10

for MIMIC-III, giving us 4,408, 935 and 1,538 input codes respectively for Sutter data,

MIMIC-III and Sutter HF cohort. This is an intuitive way of dealing with infrequent

medical codes.

Hyper-parameter Tuning: We define five hyper-parameters for GRAM:

• dimensionality m of the basic embedding ei: [100, 200, 300, 400, 500]

• dimensionality r of the RNN hidden layer ht from Eq. (5.4): [100, 200, 300, 400, 500]

• dimensionality l of Wa and ba from Eq. (5.3): [100, 200, 300, 400, 500]
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• L2 regularization coefficient for all weights except RNN weights: [0.1, 0.01, 0.001,

0.0001]

• dropout rate for the dropout on the RNN hidden layer: [0.0, 0.2, 0.4, 0.6, 0.8]

We performed 100 iterations of the random search by using the above ranges for each

of the three prediction experiments. In order to fairly compare the model performances,

we matched the number of model parameters to be similar for all baseline methods. To

facilitate reproducibility, final hyper-parameter settings we used for all models for each

prediction experiments are described at the source code repository, https://github.

com/mp2893/gram, along with the detailed steps we used to tune the hyper-parameters.

5.3.2 Prediction performance

Tables 5.2a and 5.2b show the sequential diagnoses prediction performance on Sutter data

and MIMIC-III. Both tables show that GRAM+ outperforms other models when predicting

labels with significant data insufficiency (i.e. less observed in the training data).The perfor-

mance gain is greater for MIMIC-III, where GRAM+ outperforms the basic RNN by 10% in

the 20th-40th percentile range. This seems to come from the fact that MIMIC patients on

average have significantly shorter visit history than Sutter patients, with much more codes

received per visit. Such short sequences make it difficult for the RNN to learn and predict

diagnoses sequence. The performance difference between GRAM+ and GRAM suggests that

our proposed initialization scheme of the basic embeddings ei is important for sequential

diagnosis prediction.

Table 5.2c shows the HF prediction performance on Sutter HF cohort. GRAM and GRAM+

consistently outperforms other baselines (except RNN+) by 3∼4% AUC, and RNN+ by

maximum 1.8% AUC. These differences are quite significant given that the AUC is already

in the mid-80s, a high value for HF prediction, cf. [9]. Note that, for GRAM+ and RNN+,

we used the downsampled training data to initialize the basic embeddings ei’s and the

embedding matrix Wemb with GloVe, respectively. The result shows that the initialization
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scheme of the basic embeddings in GRAM+ gives limited improvement over GRAM. This

stems from the different natures of the two prediction tasks. While the goal of HF prediction

is to predict a binary label for the entire visit sequence, the goal of sequential diagnosis

prediction is to predict the co-occurring diagnosis codes at every visit. Therefore the co-

occurrence information infused by the initialized embedding scheme is more beneficial to

sequential diagnosis prediction. Additionally, this benefit is associated with the natures

of the two prediction tasks than the datasets used for the prediction tasks. Because the

initialized embedding shows different degrees of improvement as shown by Tables 5.2a and

5.2c, when Sutter HF cohort is a subset of Sutter PAMF, thus having similar characteristics.

Overall, GRAM showed superior predictive performance under data insufficiency in

three different experiments, demonstrating its general applicability in clinical predictive

modeling.

5.3.3 Scalability

We briefly discuss the scalability of GRAM by comparing its training time to RNN’s. Table

5.3 shows the number of seconds taken for the two models to train for a single epoch for

each predictive modeling task. GRAM+ and RNN+ showed the similar behavior as GRAM

and RNN. GRAM takes approximately 50% more time to train for a single epoch for all

prediction tasks. This stems from calculating attention weights and the final representations

gi for all medical codes. GRAM also generally takes about 50% more epochs to reach to

the model with the lowest validation loss. This is due to optimizing an extra MLP model

that generates the attention weights. Overall, use of GRAM adds a manageable amount of

overhead in training time to the plain RNN.

5.3.4 Qualitative evaluation of interpretable representations

To qualitatively assess the interpretability, we generates the t-SNE plots [18] using the final

representations gi of 2,000 randomly chosen diseases learned by GRAM+ for sequential
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diagnoses prediction on Sutter data4 (Figure 5.3a). The color of the dots represents the

highest disease categories and the text annotations represent the detailed disease categories

in CCS multi-level hierarchy. For comparison, we also show the t-SNE plots on the strongest

results from GRAM (Figure 5.3b), RNN+ (Figure 5.3c), RNN (Figure 5.3d) and RandomDAG

(Figure 5.3e). GloVe (Figure 5.3f) and Skip-gram (Figure 5.3g) were trained on the Sutter

data, where a single visit Vt was used as the context window to calculate the co-occurrence

of codes.

Figures 5.3c and 5.3f confirm that interpretable representations cannot simply be learned

only by co-occurrence or supervised prediction without medical knowledge. GRAM+ and

GRAM learn interpretable disease representations that are significantly more consistent with

the given knowledge DAG G. Based on the prediction performance shown by Table 5.2,

and the fact that the representations gi’s are the final product of GRAM, we can infer that

such medically meaningful representations are necessary for predictive models to cope

with data insufficiency and make more accurate predictions. Figure 5.3b shows that the

quality of the final representations gi of GRAM is quite similar to GRAM+. Compared

to other baselines, GRAM demonstrates significantly more structured representations that

align well with the given knowledge DAG. It is interesting that Skip-gram shows the

most structured representation among all baselines. We used GloVe to initialize the basic

embeddings ei in this chapter because it uses global co-occurrence information and its

training time is fast as it only depends on the total number of unique concepts |C|. Skip-

gram’s training time, on the other hand, depends on both the number of patients and

the number of visits each patient made, which makes the algorithm generally slower than

GloVe. An interactive visualization tool can be accessed at http://www.sunlab.org/

research/gram-graph-based-attention-model/.
4The scatterplots of models trained for sequential diagnoses prediction on MIMIC-III and HF prediction

for Sutter HF cohort were similar but less structured due to smaller data size.
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5.3.5 Analysis of the attention behavior

Next we show that GRAM’s attention can be explained intuitively based on the data availability

and knowledge DAG’s structure when performing a prediction task. Using Eq. (5.1), we

can calculate the attention weights of individual disease. Figure 5.4 shows the attention

behaviors of four representative diseases when performing HF prediction on Sutter HF

cohort.

Other pneumothorax (ICD9 512.89) in Figure 5.4a is rarely observed in the data and

has only five siblings. In this case, most information is derived from the highest ancestor.

Temporomandibular joint disorders & articular disc disorder (ICD9 524.63) in Figure 5.4b

is rarely observed but has 139 siblings. In this case, its parent receives a stronger attention

because it aggregates sufficient samples from all of its children to learn a more accurate

representation. Note that the disease itself also receives a stronger attention to facilitate

easier distinction from its large number of siblings.

Unspecified essential hypertension (ICD9 401.9) in Figure 5.4c is very frequently

observed but has only two siblings. In this case, GRAM assigns a very strong attention

to the leaf, which is logical because the more you observe a disease, the stronger your

confidence becomes. Need for prophylactic vaccination and inoculation against influenza

(ICD9 V04.81) in Figure 5.4d is quite frequently observed and also has 103 siblings. The

attention behavior in this case is quite similar to the case with fewer siblings (Figure 5.4b)

with a slight attention shift towards the leaf concept as more observations lead to higher

confidence.

5.4 Related Work

The attention mechanism is a general framework for neural network learning [3], and has

been since used in many areas such as speech recognition [140], computer vision [121, 124]

and healthcare [13]. However, no one has designed attention model based on knowledge
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ontology, which is the focus of this chapter.

There are related works in learning the representations of graphs. Several studies

focused on learning the representations of graph vertices by using the neighbor information.

DeepWalk [141] and node2vec [142] use random walk while LINE [143] uses breadth-first

search to find the neighbors of a vertex and learn its representation based on the neighbor

information. Graph convolutional approaches [144, 145] also focus on learning the vertex

representations to mainly perform vertex classification. All those works focus on solving

the graph data problems whereas GRAM focuses on solving clinical predictive modeling

problems using the knowledge DAG as supplementary information.

Several researchers tried to model the knowledge DAG such as WordNet [146] or

Freebase [147] where two entities are connected with various types of relation, forming a set

of triples. They aim to project entities and relations [148, 149, 150, 151] to the latent space

based on the triples or additional information such as hierarchy of entities [152]. These

works demonstrated tasks such as link prediction, triple classification or entity classification

using the learned representations. More recently, [153] learned the representations of words

and Wikipedia categories by utilizing the hierarchy of Wikipedia categories. GRAM is

fundamentally different from the above studies in that it aims to design intuitive attention

mechanism on the knowledge DAG as a knowledge prior to cope with data insufficiency

and learn medically interpretable representations to make accurate predictions.

A classical approach for incorporating side information in the predictive models is

to use graph Laplacian regularization [154, 53]. However, using this approach is not

straightforward as it relies on the appropriate definition of distance on graphs which is often

unavailable.

5.5 Conclusion

Data insufficiency, either due to less common diseases or small datasets, is one of the key

hurdles in healthcare analytics, especially when we apply deep neural networks models.
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To overcome this challenge, we leveraged the knowledge DAG, which provides a multi-

resolution view of medical concepts. We proposed GRAM, a graph-based attention model

using both a knowledge DAG and EHR to learn an accurate and interpretable representations

for medical concepts. GRAM chooses a weighted average of ancestors of a medical concept

and train the entire process with a predictive model in an end-to-end fashion. We conducted

three predictive modeling experiments on real EHR datasets and showed significant improve-

ment in the prediction performance, especially on low-frequency diseases and small datasets.

Analysis of the attention behavior provided intuitive insight of GRAM. Although GRAM

showed good performance, there is room for improving the way we incorporate knowledge

DAG into neural networks. For future work, we plan to devise a method to systematically

leverage knowledge DAG in addition to using attention-weighted embeddings.
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Model 0-20 20-40 40-60 60-80 80-100

GRAM+ 0.0150 0.3242 0.4325 0.4238 0.4903
GRAM 0.0042 0.2987 0.4224 0.4193 0.4895
RandomDAG 0.0050 0.2700 0.4010 0.4059 0.4853
RNN+ 0.0069 0.2742 0.4140 0.4212 0.4959
RNN 0.0080 0.2691 0.4134 0.4227 0.4951
SimpleRollUp 0.0085 0.3078 0.4369 0.4330 0.4924
RollUpRare 0.0062 0.2768 0.4176 0.4226 0.4956

(a) Accuracy@5 of sequential diagnoses
prediction on Sutter data

Model 0-20 20-40 40-60 60-80 80-100

GRAM+ 0.0672 0.1787 0.2644 0.2490 0.6267
GRAM 0.0556 0.1016 0.1935 0.2296 0.6363
RandomDAG 0.0329 0.0708 0.1346 0.1512 0.4494
RNN+ 0.0454 0.0843 0.2080 0.2494 0.6239
RNN 0.0454 0.0731 0.1804 0.2371 0.6243
SimpleRollUp 0.0578 0.1328 0.2455 0.2667 0.6387
RollUpRare 0.0454 0.0653 0.1843 0.2364 0.6277

(b) Accuracy@20 of sequential diag-
noses
prediction on MIMIC-III

Model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GRAM+ 0.7970 0.8223 0.8307 0.8332 0.8389 0.8404 0.8452 0.8456 0.8447 0.8448
GRAM 0.7981 0.8217 0.8340 0.8332 0.8372 0.8377 0.8440 0.8431 0.8430 0.8447
RandomDAG 0.7644 0.7882 0.7986 0.8070 0.8143 0.8185 0.8274 0.8312 0.8254 0.8226
RNN+ 0.7930 0.8117 0.8162 0.8215 0.8261 0.8333 0.8343 0.8353 0.8345 0.8335
RNN 0.7811 0.7942 0.8066 0.8111 0.8156 0.8207 0.8258 0.8278 0.8297 0.8314
SimpleRollUp 0.7799 0.8022 0.8108 0.8133 0.8177 0.8207 0.8223 0.8272 0.8269 0.8258
RollUpRare 0.7830 0.8067 0.8064 0.8119 0.8211 0.8202 0.8262 0.8296 0.8307 0.8291

(c) AUC of HF onset prediction on Sutter HF cohort

Table 5.2: Performance of three prediction tasks. The x-axis of (a) and (b) represents the
labels grouped by the percentile of their frequencies in the training data in non-decreasing
order. 0-20 are the most rare diagnosese while 80-100 are the most common ones. (b) uses
Accuracy@20 because MIMIC-III has a large average number of codes per visit (see Table
5.1). For (c), we vary the size of the training data to train the models.

Table 5.3: Scalability result in per epoch training time in second (the number of epochs
needed). SDP stands for Sequential Diagnoses Prediction

Model SDP
(Sutter data)

SDP
(MIMIC-III)

HF prediction
(Sutter HF cohort)

GRAM 525s (39 epochs) 2s (11 epochs) 12s (7 epochs)
RNN 352s (24 epochs) 1s (6 epochs) 8s (5 epochs)
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Fracture of lower limb

Other fractures (ribs, pelvis)

Fracture of humerus,
Fracture of radius & ulna

Other fracture of upper limb

Complication of device; implant or graft

Complications of surgical 
procedures or medical care

Other unspecified benign neoplasm

Retinal detachments; defects; 
vascular occlusion; retinopathy

Other hereditary, degenerative 
nervous system conditions

Osteoarthritis

Pneumonia

Hypertension with 
complications and 
secondary 
hypertension

Other complications 
of pregnancy

Genitourinary symptoms 
and ill-defined 
conditions

Other female 
genital disorders

Other circulatory disease

Deficiency and other anemia
Peri-; endo-; myocarditis; 
cardiomyopathy

Other viral infections

Otitis media  
and related conditions

Other upper 
respiratory infections

Gastroduodenal ulcer

(a) Scatterplot of the final representations gi’s of GRAM+

(b) Scatterplot of the final representations gi’s
of GRAM

(c) Scatterplot of the trained embedding ma-
trix Wemb of RNN+

(d) Scatterplot of the trained embedding ma-
trix Wemb of RNN

(e) Scatterplot of the final representations gi’s
of RandomDAG

(f) Scatterplot of the disease representations
trained by GloVe

(g) Scatterplot of the basic embeddings ei’s
trained by Skip-gram

Figure 5.3: t-SNE scatterplots of medical concepts trained by GRAM+, GRAM, RNN+, RNN,
RandomDAG, GloVe and Skip-gram. The color of the dots represents the highest disease
categories and the text annotations represent the detailed disease categories in CCS multi-
level hierarchy. It is clear that GRAM+ and GRAM exhibit interpretable embedding that are
well aligned with the medical ontology.
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139 Sib

#Sibling    Frequency

(a) Other pneumothorax (1) (b) Joint/disc disorders (2) (c) Essential hypertension (40K)

#Sibling    Frequency #Sibling    Frequency

2 Sib

#Sibling    Frequency

103 Sib

(d) Need vaccine for flu (9K)

5 Sib

0 0.5 10.0 0.5 1.0 0 0.5 10.0 0.5 1.0 0 0.5 10.0 0.5 1.0 0 0.5 10.0 0.5 1.0

Figure 5.4: GRAM’s attention behavior during HF prediction for four representative diseases
(each column). In each figure, the leaf node represents the disease and upper nodes are its
ancestors. The size of the node shows the amount of attention it receives, which is also
shown by the bar charts. The number in the parenthesis next to the disease is its frequency
in the training data. We exclude the root of the knowledge DAG G from all figures as it did
not play a significant role.
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CHAPTER 6

MIME: MULTILEVEL MEDICAL EMBEDDING OF ELECTRONIC HEALTH

RECORDS FOR PREDICTIVE HEALTHCARE

Medical concept embedding of electronic health record (EHR) data facilitates downstream

analytical tasks such as predictive modeling and computational phenotyping, among other

applications. Current approaches to embedding do not fully capture the multilevel structure

and heterogeneous relations among EHR medical codes that collectively represent the pa-

tient’s reasons for visits and provider decisions. As a consequence, machine learning models

may derive solutions that fail to capture clinically meaningful and actionable qualities. We

propose MiME, a general framework to transform the hierarchically structured EHR data

into a multilevel embedded format. MiME also jointly trains with multiple auxiliary tasks to

inject general purpose prior knowledge into the learning process to achieve robust perfor-

mance, especially when data volume, density, or diversity are usually deemed insufficient.

We evaluated MiME’s impact on model performance using three clinical prediction tasks:

heart failure prediction, sequential diagnosis prediction, and medication prediction. MiME

outperformed the strongest baseline by an absolute increase of 1.9% PR-AUC in heart

failure prediction. We also conducted a detailed analysis of the experiment results together

with visualization to confirm that capturing the multilevel structure of EHR data indeed

improves a model’s predictive performance. Lastly, using a much smaller dataset with short

visit sequences, we demonstrated that MiME can significantly outperform baselines via joint

training with auxiliary tasks, showing 2.5% higher PR-AUC than the best baseline.

6.1 Introduction

Machine learning is increasingly applied to high-dimensional and heterogeneous Electronic

health record (EHR) data to devise improved means of prevention (e.g. early detection
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of disease), population health management, and segmentation (e.g. identify treatment

phenotypes), among other applications. EHR data volume are doubling approximately

every two years with increasing diversity. Patient encounter records are time-stamped and

populated by diverse codes (e.g., diagnoses, procedures, medications), which are naturally

organized in a multilevel structure. For example, we can imagine a patient receiving

multiple diagnoses in an encounter where one of them is fever. Then fever can give rise to a

medication order for acetaminophen and a procedure order for IV fluid. Such events can

happen in all diagnoses, which build up a single encounter. Then a sequence of encounters

over time builds up a comprehensive summary of the patient health status and clinical

services performed by the provider. Effective medical concept embedding can be a key

enabler to decipher these important information for facilitating downstream analytical tasks,

such as diagnostic classification [57, 13, 14, 155], disease detection [9, 10, 115], risk

prediction [156, 157], and patient subtyping [158, 159].

To that extent, research efforts are often focused on properly deriving medical concept

embeddings with advanced modeling techniques. Recently, deep learning models have

shown state-of-the-art performance in deriving effective embeddings from high-dimensional

raw data for various types of tasks such as image classification [2, 160, 161, 162], machine

translation [119, 3], audio processing [5, 163], image captioning [4, 164] and visual question

answering [165, 166]. Therefore deep learning approaches have become the preferred

technique for processing high-dimensional EHR data to effectively learn medical concept

embeddings. Attempts have been made either by summarizing high-dimensional medical

codes into compressed vectors or using latent layers of deep models to represent medical

concepts [Tran2015ec, 167, 12, 14, 9, 10, 13, 155, 168].

Although these approaches have successfully demonstrated the modeling capacity of

deep learning for medical concept embedding, there are still gaps between existing ap-

proaches and the real-world settings. 1) Most of these approaches do not leverage the

explicit multilevel structure in the EHR data, but they rather flatten EHR data as a set of
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codes, which destroys the heterogeneous relations between codes in different levels of EHR

data hierarchy. Borrowing from the above example, the diagnosis fever has a direct relation-

ship with the medication acetaminophen and the procedure IV fluid. But acetaminophen and

IV fluid are also correlated since they both occur due to the same diagnosis. As these relations

encode patient’s reasons for the visit and provider decisions, flattening the data structure

would miss fine-grained details and reduce the effectiveness of the learned embeddings. 2)

Second, in real clinical practice, all medical events (e.g. encounter, diagnosis, prescription)

are either strongly or implicitly related to diverse prediction tasks researchers and clinicians

are interested in. And effectively leveraging this rich information can lead to better model

performance in unfavorable situations such as when there are insufficient data. However,

many existing approaches either learn embeddings in a purely unsupervised fashion or learn

from a single prediction task, both of which have their limitations such as producing too

generic embeddings, or not being able to robustly handle insufficient data. 3) Due to the

aforementioned gaps, the learned embeddings cannot often robustly handle records with

complex multilevel relations, or small EHR data with short longitudinal records often seen

in new EHR systems or critical care settings, both of which can be seen in sections 6.3.6

and 6.3.7.

To address these challenges, we propose MiME:Multilevel Medical Embedding, to

hierarchically transform the multilevel structure and heterogeneous relations (e.g., parent-

child, siblings) among medical codes of EHR data into multilevel embeddings. Augmenting

MiME with multiple auxiliary tasks allows us to inject prior knowledge shared across

multiple prediction tasks into the embedding learning process to achieve robust performance

under insufficient data settings. The contribution of this work is summarized as follows.

• We propose MiME, a general framework for accurately learning the multilevel (e.g., patient-

level, visit-level, and diagnosis-level) structure of EHR data. Modeling the hierarchical

relations among medical codes enables us to accurately capture the distinguishing patterns

of different patient states.
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• Against three benchmark tasks (heart failure (HF) prediction, sequential disease prediction,

medication prediction) and a diverse set of baseline models, MiME shows good performance

across all tasks in all metrics, especially demonstrating the best PR-AUC for HF prediction,

outperforming the strongest baseline by 1.9%.

• We conduct detailed analysis to study the benefit coming from MiME’s effort to properly

capture the multilevel structure of EHR. Specifically, we compare model performance

in terms of true positive rates and false positive rates for HF prediction together with

visualization. We provide insight as to why MiME succeeds in cases where baselines fail.

• We test model performance on a smaller dataset that imitates the real-world setting where

enough data has not been collected. MiME, jointly trained with auxiliary tasks demonstrated

a significant generalization power compared to other models, outperforming the strongest

baseline by 2.5% PR-AUC for HF prediction.

The rest of the paper is structured as follows: In section ?? we first describe EHR data

structure, followed by the mathematical notations, the description of MiME, and the joint

training strategy. In section ??, we demonstrate the advantage of MiME through extensive

empirical evaluations and detailed analysis. After we discuss related works in section ??,

we summarize our work and conclude this paper with future work discussion in section ??.

6.2 Methodology

In this section, we first describe the structure of EHR data, then introduce the notations we

will use in the MiME embedding. Next we describe the MiME framework and its multi-task

extension MiMEaux.

6.2.1 EHR Data Modeling

In most EHR systems, data are stored in relational databases, where tables containing

information about patient demographics, encounters, medication orders and procedure
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Figure 6.1: In EHR data, medical codes are structured hierarchically with heterogeneous
relations, e.g., medication Acetaminophen and procedure IV fluid are correlated, while both
of them occur due to the diagnosis Fever.

orders are linked using keys such as patient ID, encounter ID or medication order ID.

Although there is more than one way to view EHR data, when performing computational

tasks such as disease prediction, we typically group all information by individual patients as

depicted by Figure 6.1.

Therefore EHR data can be seen as a collection of individual patient records, where

each patient has a sequence of encounters over time. Within an encounter, there are multiple

clinical event types and each type includes multiple possible events. Different types of

events are structured along the clinical decision making process. For example, given a set of

diagnosis codes, each are associated with a set of medication orders and procedure orders.

Each medication order contains information such as the medication code, start date, end

date and instructions. Procedure orders contain the procedure code and possible lab results.

As shown by Figure 6.1, procedures such as Cardiac EKG come with several results (QRS

duration, Q-T interval, notes), but IV Fluid does not. Note that some diagnosis might not be

associated with any medication or procedure orders, as Fatigue in Figure 6.1.
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In order to leverage deep learning’s ability to learn complex features from input data,

the EHR data must be transformed into a vector. A patient can be seen as a sequence

of visits (i.e. encounters), and the visit sequence can be transformed into a vector using

recurrent neural networks (RNN) [169] or convolutional neural networks (CNN) [170,

2]. However, transforming a visit to a vector leaves some room for imagination as it

has a multilevel structure with inter-code relationships. A typical approach adopted by a

number of previous works [9, 10, 13, 14, 155, 168] flattens all events within a visit and

represents it as a vector of individual features, losing the structural information embedded

in the visit. In this work, MiME especially focuses on the three types of clinical events,

namely diagnosis, medication and procedures, and explicitly captures the heterogeneous

relationships between the diagnosis codes and the medication/procedure codes, However,

the proposed methodology of MiME can be applied to model other relations in EHR data as

well.

6.2.2 Notations of MiME

Consider patient P makes a sequence of visits V0,V1, . . . ,Vt over time. Each visit Vt

contains a varying number of diagnosis codes dt,0, dt,1, . . . , dt,|dt| ∈ D, where D denotes

the set of unique diagnosis codes in the data, and |dt| the total number of diagnosis codes

in Vt. Each diagnosis code dt,i can be associated with one or more medication codes

mt,i,0,mt,i,1 . . . ,mt,i,|mt,i| ∈M and one or more procedure codes pt,i,0, pt,i,1 . . . , pt,i,|pt,i| ∈

P whereM and P respectively denote the set of unique medication codes and the set of

unique procedure codes in the data. |mt,i| and |pt,i| respectively denote the total number of

medication codes and procedure codes associated with dt,i. As shown by Figure 6.1, some

medication codes (e.g. Acetaminophen) can be shared by two or more diagnosis codes (e.g.

Cough, Fever), if the doctor ordered a single medication for more than one diagnosis. In

that case, each diagnosis code will have its own copy of the medication code attached to it.

To reduce clutter, we omit the index t indicating t-th visit in all diagnosis, medication and
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procedure codes, and express them di,mi,j and pi,k when we are discussing a single visit.

6.2.3 Description of MiME

Figure 6.2: Model architecture of MiME, where medical concepts are embedded into multiple
levels: diagnosis-level, encounter-level, and patient-level.

As discussed in section 6.2.1, previous approaches often flatten the EHR structure such

that diagnosis codes, medication codes and the procedure codes are packed in the same

vector. Then a single visit Vt can be expressed as a binary vector xt ∈ {0, 1}|D|+|M|+|P|

where each dimension corresponds to a specific diagnosis, medication, and procedure code.

Therefore encoding a sequence of visits made by a patient was achieved as follows:

vt = σ(Wxxt)

h = f(v0,v1, . . . ,vt)

where Wx is the embedding matrix that converts the binary vector x to a lower-dimensional

visit representation1, σ a non-linear activation function such as sigmoid or rectified linear

1We omit bias variables throughout the paper to reduce clutter.
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unit (ReLU), f(·) a function that maps a sequence of visit representations v0,v1, . . . ,vt to

a patient representation h. f(·) can be simply an RNN or a complex combination of RNNs

and CNN and attention mechanisms [3].

MiME treats the diagnosis codes D, medication codesM and the procedure codes P

separately, in order to capture the relationship between D andM, and D and P depicted by

Figure 6.1. Then a single visit V (omitting the index t of the visit) consists of two levels: the

diagnosis level, and the medication/procedure level. Figure 6.2 illustrates how the proposed

model MiME builds the representation of V in a bottom-up fashion and how we capture

both co-occurrence and parent-child relationship among medical codes in Figure 6.1 via

multilevel embedding. A single diagnosis code di, with its associated medication codes

mi,0,mi,1, . . . and procedure codes pi,0, pi,1, . . ., forms a single diagnosis embedding di

2. Then multiple diagnosis embeddings d0, . . . ,d|d| in a single encounter forms a visit

embedding v, which in turn forms a patient embedding h with other visit embeddings. As

shown in Figure 6.2, we also aim to capture the interactions between a diagnosis code and

its associated medication codes and procedure codes, in order to obtain a more accurate

diagnosis embedding. The skeletal form of MiME is as follows,

v =

|d|∑
i

fd

(
di,

|mi|∑
j

fd,m(di,mi,j),

|pi|∑
k

fd,p(di, pi,k)
)

︸ ︷︷ ︸
Diagnosis embedding di

(6.1)

fd,m(·, ·) : Function that captures the relationship between a diagnosis

and a medication order.

fd,p(·, ·) : Function that captures the relationship between a diagnosis

and a procedure order.

fd(·, ·, ·) : Function that generates a single diagnosis embedding di.

2Diagnosis embedding di, which is vector representation of a diagnosis code and its associated medica-
tion/procedure codes, is not to be confused with a diagnosis code embedding which is vector representation of
a single diagnosis code di
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In this work we propose two versions of MiME and conduct experiments with both models.

The first version, MiMEsum implements the functions fd, fd,m and fd,p as follows:

fd,m(di,mi,j) = frx(mi,j)

fd,p(di, pi,k) = fpr(pi,k)

fd(·, ·, ·) = di = σ

(
Wd

(
fdx(di) +

|mi|∑
j

fd,m(di,mj) +

|pi|∑
k

fd,p(di, pj)
))

where fdx(·), frx(·) and fpr(·) respectively denote the embedding functions that map given

diagnosis, medication, and procedure codes to their corresponding vector representations.

In MiME sum, the size of all code embeddings are the same as they are summed to obtain

the diagnosis embedding di. Wd is the weight matrix used to obtain the representation of a

single diagnosis object, which is applied to the sum of diagnosis code embedding fdx(di) and

its associated medication/procedure code embeddings frx(mi,j) and fpr(pi,k). σ is the non-

linear activation function, for which we used ReLU in this work. In MiMEsum, the functions

fd,m(·, ·) and fd,m(·, ·), which aim to capture the interactions between a diagnosis code

and medication/procedure codes are simply implemented as a medication code embedding

frx(mi,j) and a procedure code embedding fpr(pi,k). In MiMEsum, it is assumed that the

code interactions are implicitly captured by the summation inside the diagnosis embedding

generator fd(·, ·, ·). Although this is a rather straightforward implementation of Eq. 6.1, it

shows robust performance in various prediction tasks as we will demonstrate in the next

section.

The second implementation of Eq. 6.1, which we name MiMEbp, captures the relationship

between the diagnosis code and medication/procedure orders more explicitly as follows:

fd,m(di,mi,j) = σ(Wdmfdx(di)� frx(mi,j))

fd,p(di, pi,k) = σ(Wdpfdx(di)� fpr(pi,k))

fd(·, ·, ·) = di = σ

(
Wd

(
fdx(di) +

|mi|∑
j

fd,m(di,mj) +

|pi|∑
k

fd,p(di, pj)
))
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Both fd,m and fd,p use a form of bilinear pooling to explicitly capture the interactions

between the diagnosis code and medication/procedure codes. Bilinear pooling [171] derives

a scalar feature fi between two embeddings x,y such that fi = xTWiy where Wi is a

trainable weight matrix. Since we typically extract many features f0, . . . , fi, to capture the

interaction between two embeddings, bilinear pooling requires us to train a number of weight

matrices (i.e. weight tensor). Due to the large number of parameters required, researchers

developed more efficient methods such as compact bilinear pooling [172, 173] and low-rank

bilinear pooling [174]. In this work, we used a simplified version of low-rank bilinear

pooling with Hadamard product [174], which showed impressive performance in Visual

Question Answering (VQA), where it is important to effectively capture the interaction

between two different domains:text-based question and image. Weight matrices Wdm and

Wdp are used to send the diagnosis code embedding fdx(di) into another latent space, where

the interaction between diagnosis di and the corresponding mi,j (or procedure pi,k) can

be captured effectively. In MiMEbp the interactions captured by fd,m and fd,p are added to

the diagnosis code embedding fdx(di), which can be interpreted as adjusting the diagnosis

representation according to its associated medication and procedure orders 3.

6.2.4 Joint Training with Auxiliary Tasks

Since the expressive power of deep learning models comes from their large number of

parameters in multiple layers, they typically require a large amount of training data. This

poses a challenge in deep embedding tasks on smaller datasets, which are often the case in

new EHR systems, with a small number of patients each with a relatively fewer number

of visits. In such cases, to prevent the deep models from over-fitting, we adopt a multi-

task learning (MTL) approach that can inductively transfer the knowledge contained in

multiple auxiliary prediction tasks to improve the model’s generalization performance on

the original prediction task. MTL was shown to improve model robustness in medical

3For both MiMEsum and MiMEbp, we also implemented fd as a concatenation of fdx(di),
∑
fd,m and∑

fd,p instead of a summation, but it showed slightly weaker performance.
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Figure 6.3: Diagnosis embedding and its associated auxiliary prediction tasks, where Dx
prediction, Rx prediction, and Procedure prediction serve as auxiliary tasks for improving
the performance of some specific target task.

concept embedding. For example, in [175], multiple severity status of a disease were seen

as multiple tasks for improving accuracy in disease prediction.

For deep learning models which are typically composed of layers of neurons, an MTL

strategy can require certain neurons to be shared among all tasks, and certain neurons

to be specialized for specific tasks [176]. Specifically, in longitudinal EHR data based

health analytics, the patient embedding h is typically used for specific prediction tasks,

such as heart failure prediction or mortality prediction. And the representation power of

h comes from properly capturing each visit Vt, and modeling the longitudinal aspect with

the function f(v0, . . . ,vt). Since the focus of this work is on modeling a single visit Vt,

our MTL strategy performs auxiliary tasks while obtaining the t-th visit embedding vt as
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follows.

vt =

|dt|∑
i

dt,i

d̂t,i = p(dt,i|dt,i) = softmax(Waddt,i)

m̂t,i = p(mt,i|dt,i) = σ(Wamdt,i)

p̂t,i = p(pt,i|dt,i) = σ(Wapdt,i)

Laux = −λaux
T∑
t

(
CE(dt,i, d̂t,i) + CE(mt,i, m̂t,i) + CE(pt,i, p̂t,i)

)

Given diagnosis embeddings dt,0, . . . ,dt,|dt|, before aggregating them to obtain vt, the

model predicts the diagnosis code dt,i, and the associated medication codes mt,i = mt,i,0, . . .,

mt,i,|mt,i| and procedure codes pt,i = pt,i,0, . . . , pt,i,|pt,i|, involved with dt,i. Wad,Wam and

Wap are weight matrices used for predicting the diagnosis, medication and procedure code,

respectively. CE(·, ·) denotes the cross-entropy function, and λaux is the coefficient for

the auxiliary loss term. We used the softmax function for predicting dt,i since in a single

diagnosis embedding, there is only one diagnosis code involved. However, there could be no

medication/procedure codes associated with dt,i, and therefore we used the sigmoid function

for predicting medication and procedure codes.

These auxiliary tasks guide the model to learn diagnosis embeddings dt,i that are

representative of the specific codes involved with it. Correctly capturing the events within

an encounter is a foundation of all downstream prediction tasks, and these general-purpose

auxiliary tasks, combined with the specific target task, encourage the model to learn visit

embeddings vt that are not only tuned for the target prediction task, but also grounded in

general-purpose foundational knowledge.

6.3 Experiments

In this section, we first talk about the dataset used for the experiments, followed by the

description of the baseline models. Then we introduce three prediction tasks: heart failure
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Table 6.1: Statistics of the Sutter PAMF dataset
# of patients 30,764
# of visits 616,073
Avg. # of visits per patient 20.0
# of unique codes 2,311 (Dx:388, Rx:99, Proc:1,824)
Avg. # of Dx per visit 1.93 (Max: 29)
Avg. # of Rx per diagnosis 0.31 (Max: 17)
Avg. # of Proc. per diagnosis 0.36 (Max: 10)

prediction, sequential disease prediction and medication prediction. After describing the

training details, we analyze the experiment results in detail. We make the source code of

MiME publicly available at https://github.com/mp2893/mime.

6.3.1 Source of Data

We conducted all our experiments with the EHR data provided by Sutter Palo Alto Medical

Foundation (PAMF). The dataset was constructed for a heart failure study, which consisted

of 30,764 senior patients (age 40-85), observed for a 18 months period. We extracted

the diagnosis codes, medication codes and the procedure codes from encounter records,

medication orders and procedure orders in the data. We used Clinical Classification Software

for ICD9-CM4 to group the ICD9 diagnosis codes into 388 categories. Generic Product

Identifier Drug Group5 was used to group the medication codes into 99 categories. Clinical

Classifications Software for Services and Procedures6 was used to group the CPT procedure

codes into 1,824 categories. When grouping the codes, any code that did not fit into the

grouper formed its own category. The summary statistics of our dataset is described in

Table 6.1.

6.3.2 Baseline Models

Since our prediction tasks, which will be described in the following section, are based

on processing sequences of visits (i.e. encounters), we use various approaches to model

4https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
5http://www.wolterskluwercdi.com/drug-data/medi-span-electronic-drug-file/
6https://www.hcup-us.ahrq.gov/toolssoftware /ccs_svcsproc/ccssvcproc.jsp
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encounters as baselines.

• raw: A single visit Vt is represented by a binary vector xt ∈ {0, 1}|D|+|M|+|P|. Only the

dimensions corresponding to the codes occurring in that visit is set to 1, and the rest are

0.

• linear: The binary vector xt is linearly transformed to a lower- dimensional vector

vt = Wxxt where Wx ∈ Rd×(|D|+|M|+|P|) is the embeding matrix. This is equivalent

to taking the vector representations of the codes (i.e. columns of the embedding matrix

Wx) occurring in the visit Vt, and summing them all to derive a single vector vt ∈ Rd.

• sigmoid: The binary vector xt is transformed to a lower- dimensional vector vt =

σ(Wxxt) where σ(·) is the sigmoid function. This is simply adding non-linearity to

linear.

• relu: This is equivalent to sigma, except that we use the rectified linear unit (ReLU)

instead of sigmoid for non-linearity.

• linearm, sigmoidm, relum: The visit representation vector vt obtained in previous

baselines is divided by the number of codes occurring in the visit.

• sigmoidmlp, relumlp: We add one more layer to sigmoid and relu to increase their

expressivity. The visit embedding is now vt = σ(Wx2σ(Wx1xt)) where σ is either the

sigmoid function or ReLU. We do not test linearmlp since two consecutive linear layers

can be collapsed to a single linear layer.

• Med2Vec: We train Med2Vec [12] on the training data for 100 epochs, then obtain visit

representation vectors for every visit of all patients. We then use these visit vectors when

training for prediction tasks. We test this model as a representative case of unsupervised

embedding approach using EHR data.
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6.3.3 Prediction Tasks

Heart failure prediction The objective is to predict the onset of heart failure (HF), given the

18-months observation records discussed in section 6.3.1. Among 30,764 patients, 3,414

were case patients who were diagnosed with HF within a 1-year window after the 18-months

observation. The remaining 27,350 patients were control patients. The case-control selection

criteria were from [137]. where various aspects were considered such as the age, diagnosis

codes, and frequency of hospital visits. While an accurate prediction of HF can save a large

amount of costs and lives [177], this task is also suitable for assessing how well a model can

learn the relationship between the external label (i.e. the label information is not inherent in

the EHR data) and the features (i.e. codes) . For HF prediction, after the sequence of visit

representation vectors v0,v1, . . . ,vT were obtained, we fed them into a function f(·) that

maps each sequence to a fixed size vector h, as described at the beginning of section 6.2.3.

Specifically in this experiment, we used Gated Recurrent Units (GRU) [119] for f(·), and

its hidden vector at the last timestep hT for h. Then we applied logistic regression to h to

obtain a value between 0 (no HF onset) and 1 (HF onset). The performance was measured

by the Area under the Receiver Operating Characteristic (ROC-AUC) and Area under the

Precision-Recall Curve (PR-AUC).

Sequential disease prediction The objective is to predict the diagnosis codes occurring in

visit Vt+1, given all past visits V0,V1, . . . ,Vt. The input features are diagnosis codes D,

medication codesM and procedure codes P , while the output space only has diagnosis

codesD. This task is useful for preemptively assessing the patient’s potential future risk [10],

but is also appropriate for assessing how well a model captures the progression of the patient

status over time. We used GRU as the mapping function f(·), and hidden vectors from all

timesteps were fed to the softmax function with |D| output classes to perform sequential

prediction. The performance was measured by sorting the predicted diagnosis codes for

Vt+1 by their prediction value, and calculating Recall@k using the true diagnosis codes of

Vt+1.
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Table 6.2: Prediction Performance on Benchmark Tasks. The two strongest performances
are marked in bold.

HF prediction Seq. Dx prediction Med. prediction
test loss test ROC-AUC test PR-AUC test loss test recall@5 test loss test recall@5

raw 0.2665 (0.0094) 0.8327 (0.0111) 0.4843 (0.0220) 7.2121 (0.0319) 0.5329 (0.0016) 3.1842 (0.0575) 0.8556 (0.0056)
linear 0.2636 (0.0098) 0.8372 (0.0108) 0.4927 (0.0147) 7.1458 (0.0311) 0.5450 (0.0008) 3.1644 (0.0504) 0.8547 (0.0054)
sigmoid 0.2649 (0.0100) 0.8351 (0.0137) 0.4794 (0.0236) 7.3494 (0.0438) 0.5110 (0.0054) 3.1551 (0.0658) 0.8506 (0.0059)
relu 0.2642 (0.0098) 0.8358 (0.0096) 0.4939 (0.0313) 7.1597 (0.0349) 0.5439 (0.0005) 3.1314 (0.0503) 0.8541 (0.0055)
linearm 0.2688 (0.0084) 0.8325 (0.0104) 0.4552 (0.0150) 7.2548 (0.0354) 0.5304 (0.0020) 3.1541 (0.0558) 0.8494 (0.0055)
sigmoidm 0.2698 (0.0079) 0.8281 (0.0117) 0.4525 (0.0259) 7.5575 (0.0420) 0.4784 (0.0053) 3.1919 (0.0393) 0.8345 (0.0043)
relum 0.2651 (0.0092) 0.8374 (0.0092) 0.4762 (0.0270) 7.2714 (0.0318) 0.5281 (0.0014) 3.1373 (0.0536) 0.8509 (0.0034)
sigmoidmlp 0.3334 (0.0065) 0.6630 (0.0176) 0.2222 (0.0146) 8.7886 (0.0257) 0.2132 (0.0037) 3.5345 (0.0518) 0.7975 (0.0066)
relumlp 0.2656 (0.0083) 0.8340 (0.0102) 0.4825 (0.0279) 7.1487 (0.0346) 0.5464 (0.0012) 3.1933 (0.0479) 0.8457 (0.0039)
med2vec 0.2677 (0.0070) 0.8358 (0.0069) 0.4668 (0.0069) 7.2429 (0.0283) 0.5317 (0.0011) 3.1976 (0.0503) 0.8455 (0.0067)
MiMEsum 0.2562 (0.0091) 0.8503 (0.0100) 0.5040 (0.0181) 7.1372 (0.0345) 0.5463 (0.0017) 3.1007 (0.0429) 0.8529 (0.0030)
MiMEbp 0.2546 (0.0103) 0.8505 (0.0118) 0.5130 (0.0196) 7.1326 (0.0314) 0.5460 (0.0012) 3.1351 (0.0437) 0.8533 (0.0047)

Medication prediction The task is to predict medication codes occurring in Vt, given all

past and current visits V0, . . . ,Vt. However, in the current visit Vt, we are only given the

diagnosis codes D and procedure codes P , while all three codes are given in the past visits.

Unlike sequential disease prediction where there are at least one diagnosis code per visit,

medication codes might not exist in many visits. Therefore, for each patient, we looked for

the last visit that had at least one medication code, and removed all visits that came after that.

Medication prediction is important for ensuring the correctness of a patient’s medication

list [168], but it also helps us assess how well a model can capture the co-occurrence pattern

between different code domains, D,M and P . GRU was used as the mapping function

f(·), and its last hidden vector was fed to the softmax function with |M| output classes.

The performance was measured by calculating Recall@k between the predicted medication

codes and the true medication codes of Vt.

6.3.4 Training Details

All models were implemented in TensorFlow 1.4 [178], and trained with a system equipped

with Intel Xeon E5-2620, 512TB memories and 8 Nvidia Pascal Titan X’s. We used

Adam [179] for optimization, with the learning rate set to 1e− 3.

In all tasks, we divided the data into a training set (70%), a validation set (10%) and a

test set (20%). In all tasks, we trained all models with the minibatch of 20 patients for 20,000

iterations, which was a sufficient number of iterations for achieving the best performance for
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all three benchmark tasks. At every 100 iterations, we evaluated the performance against the

validation set, and only if the validation performance was better than before, we evaluated

the performance against the test set. In all three tasks, we tested each model for 5 times

using different random seeds for splitting the training set and the test set. In each run, we

obtained the best validation performance and the corresponding test performance. We report

their mean values and standard deviation in the next section.

The size of the visit vector vt was 256 in all baselines except raw. We ran a number

of preliminary experiments with values 64, 128 and 512, and we concluded that 256

was sufficient for all models to obtain optimal performance. For MiMEsum and MiMEbp,

we adjusted the size of the code embeddings fdx(·), frx(·) and fpr(·) and the diagnosis

embeddings di to match the number of parameters to that of linear, sigmoid, relu, linearm,

sigmoidm and relum. Med2Vec was also trained to obtain 256 dimensional visit vectors.

Note that sigmoidmlp and relumlp used 256× 256 more parameters than other models. All

models were connected to a GRU as described in section 6.3.3, for the cell size of which we

used 256 in all prediction tasks. We used L2 regularization with the coefficient 1e− 4 for

all models. We did not use any dropout technique.

6.3.5 Experiment Results

We first evaluate the prediction performance of all models across the three prediction tasks.

As shown in Table 6.2, the proposed models consistently yielded the lowest test loss for

all benchmark tasks, with one exception of medication prediction, demonstrating MiME’s

strong generalization performance.

For HF prediction, both MiMEsum and MiMEbp demonstrated stronger prediction perfor-

mance than all baselines in all metrics, especially the PR-AUC. This is especially meaningful

in HF prediction since we want the model to make as many correct positive predictions as

possible and miss as few case patients as possible, and PR-AUC is a better metric for our

goal given that the dataset is class-imbalanced [180]. Both the proposed models, however,

showed the highest ROC-AUC as well, showing that they also are capable of correctly clas-
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sifying control patients, which is important in real-world applications where frequent false

alarms lead to alert fatigue. It is also notable that MiMEbp outperforms MiMEsum in terms of

PR-AUC, suggesting that explicitly capturing the interactions between the diagnosis codes

and the medication/procedure codes improves the model’s ability to correctly recognize case

patients.

For sequential disease prediction, both MiME models demonstrated the lowest test

loss. But in terms of Recall@5, relumlp showed the strongest performance. However, the

difference ofRecall@5 between relumlp and both MiMEmodels were marginal, showing that

MiME can properly capture the temporal progression of the patient status. It is noteworthy

that linear displayed very competitive performance compared to the best performing models.

This is due to the fact that chronic conditions such as hypertension or diabetes persist over a

long period of time, and sequentially predicting them becomes an easy task that does not

require an expressive model. This was also reported in [10] where a strategy to choose the

most frequent diagnosis code as the prediction showed competitive performance in a similar

task.

In medication prediction, both MiME models showed better performance than most

baseline models in terms of both test loss and Recall@5. Interestingly, however, the best

Recall@5 was achieved by raw which does not even learn visit representations at all. This

suggests that medication prediction is an easy enough task that a single GRU can memorize

the code co-occurrence patterns in the past visits V , . . . ,Vt−1 and accurately predict the

medication codes most likely to occur in the current visit Vt.

Overall, MiME models, especially MiMEbp demonstrated good performance in all bench-

mark tasks, and it is notable that they significantly outperformed the baseline models in

the most complex task, namely HF prediction, where the relationship between the label

and the features (i.e. codes) from the data was more than straightforward. For baseline

models, using ReLU as an activation function consistently yielded better results than us-

ing the sigmoid function, especially when we compare relumlp and sigmoidmlp. This is a
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Table 6.3: Heart failure (HF) prediction performance in terms of false positive rate (FPR)
and true positive rate (TPR). Models with significantly lower TPR values are grayed out as
they have minimal value for HF prediction.

False positive rate True positive rate
raw 0.0176 (0.0067) 0.0304 (0.0042)
linear 0.0186 (0.0066) 0.0331 (0.0055)
sigmoid 0.0123 (0.0036) 0.0246 (0.0037)
relu 0.0199 (0.0075) 0.0334 (0.0064)
linearm 0.0215 (0.0086) 0.0294 (0.0083)
sigmoidm 0.0147 (0.0033) 0.0249 (0.0035)
relum 0.0214 (0.0034) 0.0330(0.0051)
sigmoidmlp 0 (0) 0 (0)
relumlp 0.0171 (0.0042) 0.0300 (0.0047)
med2vec 0.0214 (0.0037) 0.0305 (0.0032)
MiMEsum 0.0178 (0.0041) 0.0325 (0.0063)
MiMEbp 0.0170 (0.0033) 0.0341 (0.0030)

rather natural outcome considering that, given large activation signals, the sigmoid function

produces near-zero gradient values for updating the parameters. It could be surprising that

raw demonstrated decent performance in all three benchmark tasks. However, GRU, being

a very expressive model with many non-linear operations inside, can possibly undertake

a considerable portion of the prediction task, or even the entire task if the task is simple

enough, which was the case with raw in medication prediction. Med2Vec showed better

performance than some baseline models, but it was consistently outperformed by linear,

suggesting that features learned by unsupervised approaches alone are less effective than

features learned in an end-to-end fashion when it comes to performing a specific prediction

task.

6.3.6 Performance Analysis and Visualization

In order to further evaluate the strength of MiME, we set HF prediction as a target task and

study all models’ performance in terms of true positive (TP) and false positive (FP) rates,

using 0.5 as the cut-off threshold for binary prediction. Results in Table 6.3 show MiMEbp

clearly outperforms other models including MiMEsum in terms of high TP rate, which is

expected from its high PR-AUC score. This indicates MiMEbp has the highest chance of
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correctly classifying HF cases, which is the primary objective of HF prediction.

Another important aspect of HF prediction is to reduce the FP rate to prevent alert

fatigue as mentioned in section 6.3.5. Models that use the sigmoid non-linearity showed

very low FP rates, at the cost of significantly sacrificing TP rate. sigmoidmlp even went to

the very extreme by classifying all test samples as HF controls to achieve 0.0 FP rates, as

well as 0.0 TP rate. As a contrast, MiMEbp demonstrated the lowest FP rate, while achieving

the highest TP rate. The fact that MiMEbp clearly outperformed all models including

MiMEsum suggests that explicitly capturing the relationship between the diagnosis code and

medication/procedure codes produces better visit representations.

To better understand how MiMEbp’s effort in capturing such relationships leads to a

high TP rate and a low FP rate, we conduct two analyses. For TP rate, we select 125 HF

cases from the test set that both linear and relu missed but MiMEbp caught. Then we use

t-SNE [18] to plot these cases together with HF controls from the test set on a 2D plane

to study how linear and relu mistook those cases as controls but MiMEbp did not. For FP

rate, we select 108 HF controls from the test set that linear and relu misclassified as cases

but MiMEbp did not. Then we plot them on a 2D plane with HF cases from the test set to

perform similar analysis as before. We chose linear and relu for comparison with MiMEbp

since they both showed good HF prediction performance in terms of TP rate and FP rate.

For both analyses we used the last hidden layer of the GRU as the patient representation

h. Figure 6.4 shows scatterplots for linear and relu making FN predictions (Fig. 6.4a,b)

and FP predictions (Fig. 6.4d,e), and MiME bp’s behavior in both cases (Fig. 6.4c,f). 500

controls in the top row were chosen so that their embeddings were closest to the 125 case

embeddings of both linear and relu. 500 cases in the bottom row were chosen in the same

manner. Unlike linear and relu that confuse cases and controls in Figure 6.4a,b,c,d, MiME

bp can clearly distinguish the same cases and controls.

Additionally, we wanted to check if MiME bp were able to correctly identify cases and

controls that confused linear and relu, because of its ability to capture the complex code
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(d) linear, false positive predictions (e) relu, false positive predictions (f) MiMEbp, identifying HF controls

(a) linear, false negative predictions (b) relu, false negative predictions (c) MiMEbp, identifying HF cases

Figure 6.4: Scatterplots visualize how linear and relu recognize cases (red circles) and
controls (blue crosses) in false negative and false positve predictions. Plots in the same row
use the same cases and controls. MiME bp clearly distinguishes cases and controls in both
cases.

interactions. We took cases from the top row of Figure 6.4 and controls from the bottom

row to see if they had complex diagnosis-medication/procedure interactions in their records.

We defined interaction ratio as below to calculate for a patient how many visits have at least

2 diagnosis codes and at least one medication/procedure code,

interaction ratio =
#Vt where |dt| ≥ 2,

∑|dt|
i

(
|mt,i|+ |pt,i|

)
≥ 1

T

where T denotes the total number of visits. The mean interaction ratio of the top row cases

was 32.2%, and the bottom row controls was 32.3%. The mean interaction ratio of the entire

test set was 26.1%, supporting our assumption that MiME bp’s advantage over linear and

relu comes from its ability to capture the code interactions.

For further analysis, we aimed to see if linear and relu were being confused in Figure 6.4

because of their inability to capture the code interactions. We defined partial overlap score
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that takes two patient records as follows,

condition = |D1
t ∪D2

u| ≥ 3, |M1
t ∪M2

u ∪ P 1
t ∪ P 2

u | ≥ 1, |D1
t ∩D2

u| ≥ 1

partial overlap score =
#satisfied condition for all V1t ,V2t

T 1 + T 2

where D1
t ,M

1
t and P 1

t respectively denote all diagnosis, medication and procedure codes

in the t-th visit of the first patient. T 1 denotes the total number of visits made by the first

patient. Given two visits, if one visit has at least two diagnosis codes, at least one of which

is shared with another visit, and there are associated medication/procedure codes, then there

is a high chance that linear and relu will be confused since they model a single visit as a

flattened set of codes. From the top row of Figure 6.4, we took 10 nearest controls and 10

farthest controls for each of the 125 cases, for both linear and relu. We also took from the

bottom row 10 nearest and farthest cases for each of the 108 controls. The mean partial

overlap score between the top row cases and their nearest/farthest controls were 0.58/0.50.

The score between the bottom row controls and their nearest/farthest cases were 1.10/0.67.

From both results, we could see that linear and relu were being confused by samples that

have higher partial overlap scores than ones with lower scores, confirming that flattening

the multi-level structure of EHR data is a suboptimal approach. However, the significant

score difference in false positive predictions suggests correctly recognizing controls come

in varying degrees of difficulty. And some controls share a large amount of codes with

some cases on the surface, making it extra confusing for flat models such as linear and relu.

Further analysis into these shared codes could be an interesting future work.

6.3.7 Analysis on Smaller Data with Short Records

As discussed in section 6.2.4, it is not always the case that researchers or clinicians have a

large dataset to conduct experiments on. In this section, we demonstrate the benefit of joint

training of MiME with auxiliary task when we are given a smaller dataset. Specifically, we

use HF prediction as the target task, and MiMEbp will be trained with auxiliary tasks. For
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Table 6.4: Statistics of the smaller dataset

# of patients 3,973 (272 HF cases)
# of visits 22,415
Avg. # of visits per patient 5.6
Avg. observation period 10 months
# of unique codes 957 (Dx:239, Rx:86, Proc:632)
Avg. # of Dx per visit 2.31 (Max:20)
Avg. # of Rx per diagnosis 0.37 (Max:9)
Avg. # of Proc. per diagnosis 0.43 (Max:8)

Table 6.5: HF prediction performance on a smaller datset

test loss test ROC-AUC test PR-AUC
raw 0.2225 (0.0251) 0.7572 (0.0380) 0.2920 (0.0825)
linear 0.2227 (0.0195) 0.7436 (0.0270) 0.2986 (0.0569)
relu 0.2400 (0.0261) 0.7403 (0.0254) 0.2766 (0.0550)
relumlp 0.2381 (0.0241) 0.7211 (0.0216) 0.2539 (0.0643)
MiMEbp,aux 0.2243 (0.0256) 0.7640 (0.0222) 0.3236 (0.0683)

comparison, we choose models that showed competitive performance in Table 6.2: linear,

and all models that use ReLU non-linearity.

From the original dataset, we choose patients with a short sequence (less than 10 visits)

for two reasons: 1) shorter sequences make it less likely for GRU to have too big a role

in prediction tasks, 2) we want to mimic a real-world setting where a hospital is newly

equipped with a EHR system and there aren’t much data collected yet. Among the patients

with less than 10 visits, we select ones that received many diagnosis codes and the associated

medication/procedure codes per visit to emphasize MiMEbp’s ability to capture the interaction

between them. Specifically, we chose patients whose interaction ratio was higher than 0.2.

The basic statistics of the dataset created as such are described in Table 6.4.

For training the baselines, we used the same hyperparameters as we used in previous

experiments. For training MiMEbp with auxiliary tasks, we explored various coefficient

values for λaux such as 0.001, 0.01, 0.05, 0.1, 0.5 and 1, and found 0.05 to provide the best

performance, although some of the other values also improved the prediction performance in

varying degrees. The results summarized in Table 6.5 show that MiMEbp clearly outperforms
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baselines in terms of both ROC-AUC and PR-AUC. Although the lowest test loss was

achieved by raw, its low PR-AUC tells us that it is missing many HF cases and focusing

on correctly classifying HF controls, which is secondary compared to correctly identifying

the cases. This is understandable given that the smaller dataset has even more severe class

imbalance than before, which is corroborated by other baselines also showing significantly

lower PR-AUC than MiMEbp,aux. This experiment demonstrated that MiME can robustly

handle a very small dataset when jointly trained with the general-purpose auxiliary tasks,

which grants an optimistic outlook for MiME to be actively adopted by many researchers

and clinicians who cannot easily access large EHR datasets.

6.4 Related Work

Over the years, medical concept embedding has been an active research area. Some attempts

have been made to develop medical concept embeddings through distributed embedding that

summarizes sparse and high-dimensional medical concepts into compressed vector forms.

In [55] and [167], medical concepts were taken as tokens and clinical events were organized

as temporal sequences, from which medical concept embeddings were derived. On the other

hand, some works used latent layers of deep models for representing more abstract medical

concepts [9, 10, 13, 14, 155, 168]. For example, [181] formulated a modified restricted

RBM to increase interpretability of representation. [182] directly generated patient vectors

from raw clinical codes, where raw features were vectorized via a three-layer stacked auto-

encoders network, with final hidden layer’s weights yielding the patient’s corresponding

representation. [12] used a multi-layer neural network to incorporate demographics for joint

learning of code level and visit level representations. Later, [14] developed a graph-based

predictive attention model where weights from a specific layer could be seen as the code

embeddings. Although they were all able to successfully learn embeddings for some task in

varying degrees, the aforementioned methods did not fully utilize the multi-level structure

or heterogeneous inter-code relations in EHR.
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Recently, the hierarchical structures and multiple typed codes in EHR aroused more

interests. In [183], authors viewed different code types differently, and tried to capture

complex relationships across these disparate data types using long-short term memory units,

but their model did not explicitly address the hierarchical inter-code relations. More recently

in [184], the authors tried to explicitly capture the interaction between a set of all diagnosis

codes and a set of all medication codes occurring in a visit. However, in their experiment,

simply concatenating both sets to obtain a visit vector outperformed other methods in many

tasks. This suggests that disregarding the diagnosis-specific Dx-Rx interaction and flattening

all codes as sets is a suboptimal approach to model EHR data.

6.5 Conclusion

In this work, we presented MiME, an integrated approach that simultaneously models hierar-

chical inter-code relations into medical concept embedding, and jointly learns multilevel

embeddings using multiple general-purpose prediction tasks. Through extensive empirical

evaluation, MiME demonstrated impressive performance across all benchmark tasks and

its generalization ability to smaller datasets, especially outperforming baselines in terms

of PR-AUC in heart failure prediction. We also studied in depth to understand the benefit

of MiME’s effort to explicitly model the inter-code relations, through visualization and

carefully studying the data characteristic. As we have established in this work that MiME

can be a good choice for modeling patient encounters, in the future, we plan to extend MiME

to include more fine-grained medical events such as procedure outcomes, demographic

information, and medication instructions.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we proposed to develop interpretable deep learning methods for temporal

modeling and representation learning on longitudinal electronic health records. We mo-

tivated our work by describing the importance of large data and powerful compute for

the success of deep learning, and how computational healthcare could benefit from deep

learning techniques now that there are sufficient data in healthcare domain as well. We also

emphasized the importance of the interpretability for the deep learning models to be readily

adopted by real-world clinical practice. We described the past algorithms we developed so

far, beginning from a direct application of the blackbox RNN (Dr.AI), then three follow-

up works that addressed important aspects of computational healthcare: medical concept

representation learning (Med2Vec), code-level interpretability for sequence predictions

(RETAIN), and domain knowledge incorporation (GRAM). We also described in the last

chapter, the new framework (MiME) to establish a foundation on which we can incorporate

more data sources in the future. Our research has consistently shown impressive prediction

performance while providing various forms of interpretation, and we believe deep learning

can make significant contribution to computational healthcare in general. For future works,

we specify the following three potential directions.

7.1 Utilizing heterogeneous data sources

So far our research effort has focused on capturing the hidden relationships among struc-

tured medical codes (e.g. diagnosis codes, medication codes, procedure codes). However,

EHR consists of multiple data modalities such as various lab measures, clinical notes,

spectrograms (e.g. EEG, brain waves), and demographics. Different data sources can

contribute to more accurate modeling of patient status as they can provide more detailed, or
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complementary information about the patient.

Therefore as the primary future work, we propose to extend MiME, which accurately

models the structure of longitudinal EHR, to handle multiple data modalities. Our primary

concern is to cope with varying number of data modalities due to the missing values, and

how to derive a reliable patient state from the available data modalities and make accurate

predictions. In addition, MiME in its current form does not provide detailed interpretation

of its prediction. Therefore addressing the interpretability aspect can be another natural

extension of MiME.

7.2 Making predictions with a reinforcement learning agent

There are certain prediction tasks in healthcare for which constructing labeled data is difficult.

For example, if we want to predict heart failure onset for a patient as early as possible,

typical supervised learning methods will require the training dataset to have labels for both

the prediction outcome and the optimal time point to make the prediction. However, we are

typically given a training dataset where only the former label is available. In fact, it is not an

easy task for even medical experts to determine the optimal time to make the decision.

Reinforcement learning (RL) technique could be a potential solution to this problem. RL

allows us to delegate certain decision making processes to the machine, and we only need

to define the reward coming from making the decisions properly. For example, if we want

to train a neural network agent to make an early HF onset detection, we can set the reward

such that, the earlier the correct prediction is made, the bigger the reward. Of course, for an

incorrect prediction, the reward should be negative. We propose to combine this approach

with RETAIN so that we can make early predictions as well as provide interpretation to the

user as to why the agent made such decisions.
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7.3 Incorporating additional domain knowledge into GRAM

A rather straightforward, but nonetheless promising future work is to leverage more domain

knowledge into deep learning models in the GRAM framework. Injecting a well-known

diagnosis hierarchy turned out to improve prediction performance of the deep learning

models, and we can imagine that leveraging diverse, high-quality domain knowledge will

show dramatic increase in deep learning models’ performance in various prediction tasks.

Specifically, we propose to use the code hierarchy for procedure codes such as the

Current Procedural Terminology1, clinical terminology network such as SNOMED-CT2 or

drug interaction networks such as DrugBank [185].

1https://www.ama-assn.org/practice-management/cpt-current-procedural-terminology
2https://www.snomed.org/snomed-ct

125



REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” in ICLR, 2015.

[4] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image
descriptions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3128–3137.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[6] Y. Wang, K. Ng, R. J. Byrd, J. Hu, S. Ebadollahi, Z. Daar, C. deFilippi, S. R.
Steinhubl, and W. F. Stewart, “Early detection of heart failure with varying prediction
windows by structured and unstructured data in electronic health records,” in EMBC,
2015.

[7] J. Sun, J. Hu, D. Luo, M. Markatou, F. Wang, S. Edabollahi, S. E. Steinhubl,
Z. Daar, and W. F. Stewart, “Combining knowledge and data driven insights for
identifying risk factors using electronic health records,” in AMIA Annual Symposium
Proceedings, American Medical Informatics Association, vol. 2012, 2012, p. 901.

[8] J. Wu, J. Roy, and W. F. Stewart, “Prediction modeling using ehr data: Challenges,
strategies, and a comparison of machine learning approaches,” Medical care, vol.
48, no. 6, S106–S113, 2010.

[9] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, “Using recurrent neural network
models for early detection of heart failure onset,” Journal of the American Medical
Informatics Association, vol. 24, no. 2, pp. 361–370, 2016.

[10] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, “Doctor ai: Predicting
clinical events via recurrent neural networks,” in Machine Learning for Healthcare
Conference, 2016, pp. 301–318.

126



[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in NIPS, 2013.

[12] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost, J. Tejedor-
Sojo, and J. Sun, “Multi-layer representation learning for medical concepts,” in
SIGKDD, 2016.

[13] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart, “Retain: An in-
terpretable predictive model for healthcare using reverse time attention mechanism,”
in Advances in Neural Information Processing Systems, 2016, pp. 3504–3512.

[14] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “Gram: Graph-based
attention model for healthcare representation learning,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, 2017, pp. 787–795.

[15] Z. C. Lipton, “The mythos of model interpretability,” ArXiv preprint arXiv:1606.03490,
2016.

[16] B. Kim and F. Doshi-Velez, Interpretable machine learning: The fuss, the concrete
and the questions, Tutorial at ICML 2017, 2017.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional net-
works: Visualising image classification models and saliency maps,” ArXiv preprint
arXiv:1312.6034, 2013.

[18] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” JMLR, vol. 9, no.
Nov, 2008.

[19] C. Molnar, Interpretable machine learning: A guide for making black box models
explainable, https://christophm.github.io/interpretable-ml-book, 2018.

[20] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”
Annals of statistics, pp. 1189–1232, 2001.

[21] L. S. Shapley, “A value for n-person games,” Contributions to the Theory of Games,
vol. 2, no. 28, pp. 307–317, 1953.

[22] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining
the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, ACM, 2016,
pp. 1135–1144.

[23] U. Nodelman, C. R. Shelton, and D. Koller, “Continuous time bayesian networks,”
in UAI, Morgan Kaufmann Publishers Inc., 2002, pp. 378–387.

127



[24] J. M. Lange, R. A. Hubbard, L. Y. Inoue, and V. N. Minin, “A joint model for multi-
state disease processes and random informative observation times, with applications
to electronic medical records data,” Biometrics, vol. 71, no. 1, pp. 90–101, 2015.

[25] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden semi-markov
models,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 673–701,
2013.

[26] T. J. Liniger, “Multivariate hawkes processes,” 2009.

[27] L. Zhu, “Nonlinear hawkes processes,” PhD thesis, New York University, 2013.

[28] E. Choi, N. Du, R. Chen, L. Song, and J. Sun, “Constructing disease network and
temporal progression model via context-sensitive hawkes process,” in ICDM, 2015.

[29] A. Graves, “Generating sequences with recurrent neural networks,” ArXiv preprint
arXiv:1308.0850, 2013.

[30] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent
neural networks,” in ICML, 2014, pp. 1764–1772.

[31] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in NIPS, 2014, pp. 3104–3112.

[32] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic embeddings
with multimodal neural language models,” ArXiv preprint arXiv:1411.2539, 2014.

[33] W. Zaremba and I. Sutskever, “Learning to execute,” ArXiv preprint arXiv:1410.4615,
2014.

[34] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, “A point
process framework for relating neural spiking activity to spiking history, neural
ensemble, and extrinsic covariate effects,” Journal of neurophysiology, vol. 93, no.
2, pp. 1074–1089, 2005.

[35] M. T. Bahadori, Y. Liu, and E. P. Xing, “Fast structure learning in generalized
stochastic processes with latent factors,” in KDD, 2013, pp. 284–292.

[36] R. Ranganath, A. Perotte, N. Elhadad, and D. M. Blei, “The survival filter: Joint
survival analysis with a latent time series,” in UAI, 2015.

[37] Y. Foucher, M. Giral, J.-P. Soulillou, and J.-P. Daures, “A semi-markov model for
multistate and interval-censored data with multiple terminal events. application in
renal transplantation,” Statistics in medicine, vol. 26, no. 30, pp. 5381–5393, 2007.

128



[38] J. Lange, “Latent continuous time markov chains for partially-observed multistate
disease processes,” PhD thesis, 2014.

[39] Y.-Y. Liu, H. Ishikawa, M. Chen, G. Wollstein, J. S. Schuman, and J. M. Rehg,
“Longitudinal modeling of glaucoma progression using 2-dimensional continuous-
time hidden markov model,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2013, 2013, pp. 444–451.

[40] J. Weiss, S. Natarajan, and D. Page, “Multiplicative forests for continuous-time
processes,” in Advances in neural information processing systems, 2012, pp. 458–
466.

[41] K. Zhou, H. Zha, and L. Song, “Learning social infectivity in sparse low-rank
networks using multi-dimensional hawkes processes,” in AISTATS, 2013, pp. 641–
649.

[42] S. Linderman and R. Adams, “Discovering latent network structure in point process
data,” in ICML, 2014, pp. 1413–1421.

[43] A. Veen and F. P. Schoenberg, “Estimation of space–time branching process models
in seismology using an em–type algorithm,” JASA, vol. 103, no. 482, pp. 614–624,
2008.

[44] D. Mould, “Models for disease progression: New approaches and uses,” Clinical
Pharmacology & Therapeutics, vol. 92, no. 1, pp. 125–131, 2012.

[45] W. De Winter, J. DeJongh, T. Post, B. Ploeger, R. Urquhart, I. Moules, D. Eckland,
and M. Danhof, “A mechanism-based disease progression model for comparison
of long-term effects of pioglitazone, metformin and gliclazide on disease processes
underlying type 2 diabetes mellitus,” Journal of pharmacokinetics and pharmacody-
namics, vol. 33, no. 3, pp. 313–343, 2006.

[46] K. Ito, S. Ahadieh, B. Corrigan, J. French, T. Fullerton, T. Tensfeldt, A. D. W.
Group, et al., “Disease progression meta-analysis model in alzheimer’s disease,”
Alzheimer’s & Dementia, vol. 6, no. 1, pp. 39–53, 2010.

[47] N. Tangri, L. A. Stevens, J. Griffith, H. Tighiouart, O. Djurdjev, D. Naimark, A.
Levin, and A. S. Levey, “A predictive model for progression of chronic kidney
disease to kidney failure,” Jama, vol. 305, no. 15, pp. 1553–1559, 2011.

[48] C. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy, and E. Couto, “Mul-
tistate markov models for disease progression with classification error,” JRSS-D,
2003.

129



[49] R. Sukkar, E. Katz, Y. Zhang, D. Raunig, and B. T. Wyman, “Disease progression
modeling using hidden markov models,” in Engineering in Medicine and Biology
Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 2845–
2848.

[50] J. Zhou, J. Liu, V. A. Narayan, and J. Ye, “Modeling disease progression via
fused sparse group lasso,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2012, pp. 1095–1103.

[51] X. Wang, D. Sontag, and F. Wang, “Unsupervised learning of disease progression
models,” in KDD, 2014.

[52] T. A. Lasko, J. C. Denny, and M. A. Levy, “Computational phenotype discovery
using unsupervised feature learning over noisy, sparse, and irregular clinical data,”
PloS one, vol. 8, no. 6, e66341, 2013.

[53] Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu, “Deep computational pheno-
typing,” in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2015, pp. 507–516.

[54] N. Y. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, and T. Plötz, “Pd
disease state assessment in naturalistic environments using deep learning.,” in AAAI,
2015, pp. 1742–1748.

[55] Y. Choi, C. I. Chiu, and D. Sontag, “Learning low-dimensional representations of
medical concepts,” in AMIA CRI, 2016.

[56] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep patient: An unsupervised
representation to predict the future of patients from the electronic health records,”
Scientific Reports, vol. 6, no. 26094, 2016.

[57] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell, “Learning to diagnose with lstm
recurrent neural networks,” in ICLR, 2016.

[58] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[59] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,
“A novel connectionist system for unconstrained handwriting recognition,” PAMI,
2009.

[60] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” ArXiv preprint arXiv:1412.3555,
2014.

130



[61] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks,” ArXiv preprint arXiv:1312.6120,
2013.

[62] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N.
Bouchard, and Y. Bengio, Theano: New features and speed improvements, Deep
Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[63] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” PAMI, 2013.

[64] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

[65] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. J. Goodfellow, E. Lavoie, X.
Muller, G. Desjardins, D. Warde-Farley, et al., “Unsupervised and transfer learning
challenge: A deep learning approach.,” ICML Unsupervised and Transfer Learning,
vol. 27, pp. 97–110, 2012.

[66] Y. Bengio, “Deep learning of representations for unsupervised and transfer learning,”
Unsupervised and Transfer Learning Challenges in Machine Learning, vol. 7, p. 19,
2012.

[67] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?” In Advances in Neural Information Processing Systems,
2014, pp. 3320–3328.

[68] J. Hoffman, S. Guadarrama, E. S. Tzeng, R. Hu, J. Donahue, R. Girshick, T. Darrell,
and K. Saenko, “Lsda: Large scale detection through adaptation,” in Advances in
Neural Information Processing Systems, 2014, pp. 3536–3544.

[69] V. J. Stevens, C. A. Rouzer, V. M. Monnier, and A. Cerami, “Diabetic cataract
formation: Potential role of glycosylation of lens crystallins,” PNAS, vol. 75, no. 6,
pp. 2918–2922, 1978.

[70] N. M. Keith, H. P. Wagener, and N. W. Barker, “Some different types of essential
hypertension: Their course and prognosis.,” The American Journal of the Medical
Sciences, vol. 197, no. 3, pp. 332–343, 1939.

[71] J. Kuusisto, K. Koivisto, L Mykkänen, E.-L. Helkala, M. Vanhanen, T Hänninen,
K Pyörälä, P. Riekkinen, and M. Laakso, “Essential hypertension and cognitive
function. the role of hyperinsulinemia.,” Hypertension, vol. 22, no. 5, pp. 771–779,
1993.

131



[72] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, 1998.

[73] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, 2006.

[74] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and compos-
ing robust features with denoising autoencoders,” in ICML, 2008.

[75] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language
model,” JMLR, 2003.

[76] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent
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