
Approaches To Solving The

Graph Isomorphism

Problem

Jordy Eikenberry
College of Computing

Georgia Institute of Technology
Atlanta, GA 30318

September 6, 2004

Abstract

In this paper I propose a polynomial time algorithm for the Graph Isomorphism problem, which
always returns a correct answer in the case that the input graphs are non-cospectral or isomorphic.
Although I have no correctness proof in the general case, I suspect that most if not all inputs return
a correct answer after the execution of my algorithm. This paper assumes no previous knowledge
of the problem itself, however a basic understanding of Theoretical Computer Science is assumed.
Explained in this paper are the techniques and approaches to breaking down this problem into
something that is more manageable. Finally, I discuss problems relating to Graph Isomorphism
that remain open at the time of writing this paper.

Contents

1 Introduction 2

2 Known Results 4

3 Harder Problems 6

4 My Algorithm (First Attempt) 7

5 Cospectral Graphs 9

6 My Algorithm (Second Attempt) 10

7 Open Problems 12

8 Acknowledgments 13

1

1 Introduction

The Graph Isomorphism problem (GI) is an intensively studied problem that has many important
applications (i.e. determining whether two chemical compounds are the same). Despite efforts
made by researchers in classifying GI, there still remains a number of open problems within the
realm of GI. Of these open problems, the big question is where does GI lie? Is GI NP -complete,
or is there a polynomial time algorithm? See Definition 1 for a more formal definition of GI.
Analogous to GI is the Graph Automorphism (GA) problem (see Definition 2). This problem is
also not known to be in P or NP -complete, although it is believed to be easier than GI. For
instance, GA is known to be reducible to GI. Currently, however, there is no known reduction
from GI to GA.

Definition 1 Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with respective adjacency matrices A1

and A2. We say that G1
∼= G2 (G1 is isomorphic to G2) if and only if one of the three equivalent

conditions hold:

1. There exists a permutation π : V1 → V2 such that for all pairs u, v of vertices (u, v) ∈ E1 if
and only if (π(u), π(v)) ∈ E2.

2. There exists a permutation π that defines a function f on n × n matrices, such that for
1 ≤ i, j ≤ n,

A1 = [xi,j],
A2 = [yi,j], and

f(A2) = [yπ(i),π(j)] = [xi,j] = A1

3. There exists a permutation matrix P such that A1 = PA2P
−1.

We define the Graph Isomorphism problem as follows

Problem: GI
Instance: Two graphs G1, G2.
Question: Is G1 isomorphic to G2?

Definition 2 Let G = (V,E) be a graph and A be the adjacency matrix for G. We say that G has
a non-trivial automorphism if and only if one of the three equivalent conditions hold:

1. There exists a permutation, other than the identity permutation, π : V → V such that for all
pairs u, v of vertices (u, v) ∈ E if and only if (π(u), π(v)) ∈ E.

2

2. There exists a permutation π, other than the identity permutation, that defines a function f
on n× n matrices, such that for 1 ≤ i, j ≤ n,

A = [xi,j] and
f(A) = [xπ(i),π(j)] = [xi,j] = A

3. There exists a permutation matrix P , where P is not the identity matrix, such that A =
PAP−1.

We define the Graph Automorphism problem as follows

Problem: GA
Instance: Graph G.
Question: Does G contain a non-trivial automorphism?

Although we don’t know whether GI ∈ P for the general case, there are polynomial time algo-
rithms for more specific graphs (such as planar graphs, trees, and graphs of bounded degree, genus,
and eigenvalue–see Figure 1). Also, there is evidence to support that GI is not NP -complete. If it
were, the polynomial hierarchy would collapse to the second level (see for instance [8]). It could be
the case that GI is neither in P nor NP -complete. It has been shown that unless P = NP , such
problems do exist [9, 10]. GI is also not known to be hard for P . In fact, the best known hardness
results are still relatively weak [11].

For this paper, we will assume that all graphs are undirected. We may safely assume this since
the GI problem for directed graphs is complete for GI [8]. So, we will only be interested in 0-1
matrices that are symmetric. Furthermore, we shall consider the following definitions (needed for
my proposed GI algorithm)

Definition 3 Let A be the adjacency matrix of a graph. We denote diag[A] to be the vector
representation of all elements in the diagonal of A. Similarly, denote upper[A] to be the vector rep-
resentation of all elements in the upper triangular part of A (not including the diagonal elements).

In Section 2 we shall discuss some of the known properties of GI that make GI both a unique
and interesting problem. Section 3 will mostly be concerned with the following question: what
happens if we relax the constraints of GI with respect to the permutation associated with the
isomorphism? In Section 4 we will discuss my attempt at showing that GI ∈ P . We will see,
however, that this algorithm does not hold for a very rare and specific type of graph, which we will
later discuss in Section 5. Section 6 will revisit my initial algorithm, modifying it ever so slightly
in the attempt to fix my algorithm for these specific cases. Finally, in Section 7 we will discuss any
conclusions that can be made, as well as any problems that remain open.

3

2 Known Results

First we shall define the class hierarchy structure in terms of the Graph Isomorphism problem, and
show where different related problems lie with respect to these classes (See Figure 1). Given the
problem GI, we can define the complexity class GI as the set of languages logspace reducible to GI
(defined similarly for GA). Now, we can see that GI (GA resp.) also has complete problems, which
can defined as the problems equivalent to GI (GA resp.). We notice some interesting properties
with this structure, and we will also see in the next section that if we relax the constraints of GI
in a particular way, the problem becomes NP -complete (defined as MaxGI).

It has been shown that the counting version of GI is just as hard as the decision version of
GI [8]. However, the counting version of NP problems appear to be harder than their decision
counterpart. In this respect, GI seems to be very different. In fact, there are even problems in
P which are conjectured to be intractable. For example, #BPM is equivalent to solving the per-
manent problem, which is known to be NP -hard. So, this gives us more evidence towards the
conjecture that GI is not NP -complete.

It has also been shown that determining whether two graphs have a unique isomorphism is
actually equivalent to GA [8]. Since it is believed that GA is easier than GI, it is believed that
UniqueGI is easier than GI. This, again, shows another difference between GI and NP -complete
problems. For instance, co-SAT (complement of SAT) can be many-one reduced to UniqueSAT .

This problem appears to have a very intricate structure, which is what inevitably makes this
problem hard. It is known that GI and GA have self-computable functions [8]. So, if one can show
that GI (GA resp.) is in BPP , then GI (GA resp.) is in RP , since any self-computable problem
in the intersection of BPP and NP is in RP .

We can also think of GI (GA resp.) in terms of it’s complement, GNI (GNA resp.). What
is the exact complexity of GNI? This is currently not known; in fact, the best known result is
relatively weak (GNI ∈ AM [8]). However, I believe that GI can be done in polynomial time. So,
we should be able to show that GNI ∈ NP . But this is also difficult to show, since it is hard to
think of a polynomial size proof for Graph Non-Isomorphism. In fact, the best known proof size is
exponential. Of course, the next best thing would be to come up with an MA protocol for GNI.
It has been shown that if GI (GA resp.) has polynomial size circuits, then GNI (GNA resp.) is
in MA [8]. So, this would be one direction in showing that GNI has an MA protocol.

This concludes my section on known results. Note that I have only included known results
that I found to be important and/or pertinent towards the discussion of this paper. For more
information see [8].

4

��
�� SubGI

MaxGI

UniqueGI
UniqueGA

������
������

NP

GA

P

		

LineGI

�� PerfectGI

� LabeledGI

��
��

��

BipartiteGI
RegularGI

ChordalGI

�������
�

����
����
���� #GI

#GA

ColoredGI
DirectedGI

���� ConnectedGI

GI

� IntervalGI!" DistinctEigenvaluesGI

##$
$

%&

'(
)*

TreeGI
PlanarGI

BoundedDegreeGI
BoundedGenusGI

NP−complete

GA−complete

GI−complete

Figure 1: Hypothetical hierarchy of classes and problems relating to Graph Isomorphism [1]. In
Section 3, we will define a more general problem of GI (MaxGI) and show that it is NP -complete.

5

3 Harder Problems

Consider the following definitions

Definition 4 Let G1 = (V1, E1) and G2 = (V2, E2). Also, let S1 ⊆ V1 and S2 ⊆ V2, where
|S1| = |S2|. A partial permutation is a permutation π : S1 → S2 such that (u, v) ∈ E1 if and
only if (π(u), π(v)) ∈ E2, for any S1, S2. We say that π is a maximum permutation if the
cardinality of both sets are maximized such that π still holds.

Now, one can generalize the Graph Isomorphism problem in the following way

Problem: MaxGI
Instance: Graphs G1 and G2. Some integer k > 0
Question: Is there a partial permutation π covering some l

vertices in G1, G2 (for l ≥ k) such that their adjacent
edges are preserved over those l vertices in G1, G2?

Although it is not known where GI lies exactly, we will see that the more general question
(MaxGI) is NP -complete. To do this, we must first define the following well known NP -complete
problem (see [7])

Problem: SubGI
Instance: Graphs G1 and G2.
Question: Does there exist a subgraph of G1, call it SG1 ,

such that SG1
∼= G2?

Theorem 1 MaxGI is NP -complete.

Proof.

(MaxGI ∈ NP): On input (G1, G2, k):

1. Non-deterministically select k vertices in G1 and k vertices in G2 and construct induced
subgraphs G′

1 and G′
2, respectively.

2. Non-deterministically guess an isomorphism π between G′
1 and G′

2.

3. Check that (u, v) ∈ G′
1 ⇐⇒ (π(u), π(v)) ∈ G′

2.

4. If yes, then accept. Otherwise, reject.

Steps 1 and 2 are done non-deterministically. Step 3 requires at most O(n2) time to check
whether the isomorphism is valid (i.e. pass over every edge incident on every vertex in the
subgraphs). Hence, MaxGI ∈ NP .

6

(SubGI≤p
mMaxGI): The reduction is the following. Consider the graphs G1 and G2. We argue

that (G1, G2) ∈ SubGI ⇐⇒ (G1, G2, |G2|) ∈MaxGI.

Suppose there exists a subgraph of G1 (call it SG1) such that G2
∼= SG1 . Clearly, |G2| = |SG1 |.

So, by Definition 1, there must be some permutation π : V1 → V2 that covers |G2| vertices in
both graphs.

Now, let S1 ⊆ G1 and S2 ⊆ G2, where |S1| = |S2| = |G2|. Suppose there is a partial
permutation mapping vertices in S1 to vertices in S2 such that their adjacent edges are
preserved. So, S1

∼= S2 =⇒ S1
∼= G2.

4 My Algorithm (First Attempt)

When I initially encountered this problem, I was hoping that there was some way of deconstruct-
ing both graphs to get at a polynomial time algorithm. My initial attempts at solving the graph
isomorphism problem was provoked by my intuition of the problem and experimental data I had
gathered (i.e. my algorithm was at least correct for graphs with vertices < 10). My algorithm
works by taking successive powers of the two adjacency matrices in question A1, A2 (up to the
number of vertices in both graphs, call it n). For each 1 ≤ k ≤ n, let P v

A1
be the number of closed

paths of length k on some vertex v ∈ A1 (define this similarly for P v
A2

). For each k, check whether

there exists a bijection φk : V (A1)→ V (A2) such that P vi
A1

= P
φ(vi)
A2

for all vi ∈ V1. More formally,

GRAPH-ISOMORPHISM(G1, G2)

1. if |G1| 6= |G2| or ‖G1‖ 6= ‖G2‖
then return false

2. A′
1 ← A1 ← adjacency[G1]

3. A′
2 ← A2 ← adjacency[G2]

4. n← rows[A2]

5. Repeat the following steps n times

(a) d1 ← QUICKSORT (diag[A′
1], 1, n)

(b) d2 ← QUICKSORT (diag[A′
2], 1, n)

(c) if d1 6= d2 then return false

(d) A′
1 ← A′

1 ∗A1

7

(e) A′
2 ← A′

2 ∗A2

6. return true

First let’s analyze this algorithm to verify that it runs in polynomial time. Step 1 is a simple
check that can be done in constant time. Let n = |G1| = |G2|. In steps 2 and 3 we construct
adjacency matrices from G1 and G2, which can take place in O(n2) time since there are at most
O(n2) edges in both graphs. Step 4 is also a simple check that can be done in constant time. In
step 5, we sort the diagonals of A1 and A2 (O(n log n)), check equality of the sorted vectors (O(n)),
and compute the next power of both matrices (O(n2.376)) [4]. Since this is repeated n times, step
5 will take at most O(n3.376) time. Hence, the running time of GRAPH-ISOMORPHISM is
0(n3.376), which is polynomial in the number of vertices in both graphs.

This completes the time analysis of the algorithm. Now with regards to the proof of correctness
we start to run into problems. Clearly, we maintain correctness up until the beginning of the loop,
since two graphs with an unequal number of vertices or edges cannot be isomorphic. But, what can
we say about the remaining part of the algorithm? Ideally we would like to show that A1

∼= A2 if
and only if there exists a permutation φk for all 1 ≤ k ≤ n, such that diag(Ak

1) = φk(diag(Ak
2)). In

Section 4, however, we will see that this is not exactly the case. The forward direction is necessarily
true, which will be proved in Theorem 2. However, it turns out the reverse direction is in fact false
for seemingly rare cases (cospectral regular graphs). Despite this roadblock, we will prove that
the reverse direction is true under the assumption that the graphs are non-cospectral. In fact, my
algorithm seems to work for most cospectral graphs as well, although I am unable to prove this; the
only counterexamples I have managed to find was in the case when G1 and G2 were non-isomorphic
k-regular cospectral graphs.

Lemma 1 Let A1, A2 be any two matrices and P be some permutation matrix. Then A1 =
PA2P

−1 ⇒ Ak
1 = PAk

2P
−1 for all k ≥ 1.

Proof. (By induction on k)

k = 1: This follows from the assumption.

k ≥ 1: Suppose the statement is true for k − 1.

A1 = PA2P
−1 ⇒ Ak−1

1 = PAk−1
2 P−1 (1)

≡ A1 = PA2P
−1 ⇒ Ak−1

1 A1 = PAk−1
2 P−1PA2P

−1 (2)

≡ A1 = PA2P
−1 ⇒ Ak

1 = PAk−1
2 A2P

−1 (3)

≡ A1 = PA2P
−1 ⇒ Ak

1 = PAk
2P

−1 (4)

8

Figure 2: Two k-regular cospectral graphs [6].

Lemma 2 A1
∼= A2 ⇒ ∃φ s.t. diag(A1) = φ(diag(A2))

Proof. Consider order n graphs A1, A2. Suppose A1
∼= A2, which means A1 = f(A2) for

some permutation π. So, diag(A1) = [x1,1, . . . , xn,n] = [yπ(1),π(1), . . . , yπ(n),π(n)] = diag(f(A2)), by
Definition 1. But, diag(A2) = [y1,1, . . . , yn,n]. Now, since π is a bijection, there must also be a
bijection φ : diag(A2)→ diag(A1).

Theorem 2 A1
∼= A2 ⇒ ∀1 ≤ k ≤ n,∃φ s.t. diag(Ak

1) = φ(diag(Ak
2))

Proof. Suppose that A1
∼= A2. Then there exists some permutation matrix P such that A1 =

PA2P
−1. By Lemma 1, this means that for all k, Ak

1 = PAk
2P

−1 (1)⇒ Ak
1
∼= Ak

2

(2)⇒ ∃φ s.t. diag(Ak
1) =

φ(diag(Ak
1)). (1) follows directly from Definition 1. (2) follows from Lemma 2.

5 Cospectral Graphs

In this section we will explore cospectral graphs and see what about cospectral graphs make finding
an isomorphism hard. In general we don’t know of any method of generating cospectral graphs
efficiently; nor do we know how often cospectral graphs can appear. For more information regarding
this, refer to [6] and [3]; both papers discuss this issue in great detail.

The following theorem is what breaks my algorithm defined in Section 4.

Theorem 3 Let G1 and G2 be k-regular graphs. G1 and G2 are cospectral if and only if, for any
l, the number of closed paths of of length l are the same for G1 and G2.

9

Proof. See [3]

Theorem 4 If A1 and A2 are non-cospectral graphs, then A1 6∼= A2.

Proof. Let’s suppose that A1 and A2 are non-cospectral graphs. This is equivalent to saying that
tr(Ak

1) 6= tr(Ak
2), for some 1 ≤ k ≤ n.

⇒∃1 ≤ k ≤ n,∀φ s.t. diag(Ak
1) 6= φ(diag(Ak

2))
⇒A1 6∼= A2 (follows from Theorem 2)

Theorem 5 Let A1 and A2 be non-cospectral graphs. Then A1 6∼= A2 ⇒ ∃1 ≤ k ≤ n,∀φ s.t. diag(Ak
1) 6=

φ(diag(Ak
2)).

Proof. Suppose that A1 6∼= A2 with A1 and A2 being non-cospectral. Then this is equivalent to
saying

tr(Ak
1) 6= tr(Ak

2), for some 1 ≤ k ≤ n.

⇒∃1 ≤ k ≤ n,∀φ s.t. diag(Ak
1) 6= φ(diag(Ak

2))

Theorem 5 completes the other direction of Theorem 2. Hence, my algorithm clearly works
correctly on all non-cospectral graphs. It also appears to work for most cospectral graphs, although
this seems much more difficult to prove.

6 My Algorithm (Second Attempt)

In this section we attempt to improve the original algorithm by adding steps (c) and (d) and mod-
ifying (e); this will (hopefully) fix the problems we encountered with cospectral k-regular graphs
from the previous section. You can easily see that if we input (to the modified algorithm shown
below) the two graphs shown in Figure 2, we now return the correct output for these two specific
cospectral k-regular graphs. But, does this fix our problems for all cases? Although we can’t answer
this question for sure, we can at least show that this algorithm returns at least as many “correct”
answers as the previous algorithm.

GRAPH-ISOMORPHISM(G1, G2)

10

1. if |G1| 6= |G2| or ||G1|| 6= ||G2||
then return false

2. A′
1 ← A1 ← adjacency[G1]

3. A′
2 ← A2 ← adjacency[G2]

4. n← rows[A2]

5. Repeat the following steps n times

(a) d1 ← QUICKSORT (diag[A′
1], 1, n)

(b) d2 ← QUICKSORT (diag[A′
2], 1, n)

(c) u1 ← QUICKSORT (upper[A′
1], 1, n)

(d) u2 ← QUICKSORT (upper[A′
2], 1, n)

(e) if d1 6= d2 ∨ u1 6= u2 then return false

(f) A′
1 ← A′

1 ∗A1

(g) A′
2 ← A′

2 ∗A2

6. return true

Clearly the correctness up until the beginning of the loop shall not change, since we did not
make any modifications to that part of the algorithm. As for the analysis, the runtime of the
algorithm will also not change, since the changes we made take at most O(n2 log n2) = O(n2 log n)
time, which is dominated by steps (f) and (g) (known to take O(n2.376) time).

Now, we will show that my modified algorithm is still correct (in one direction).

Lemma 3 A1
∼= A2 ⇒ ∃φ s.t. upper(A1) = φ(upper(A2))

Proof. Consider order n graphs A1, A2. Suppose A1
∼= A2, which means A1 = f(A2) for some

permutation π. So, upper(A1) = upper(f(A2)). Consider some yπ(i),π(j) ∈ upper(f(A2)) for some
i, j. Now it is possible that π(i) > π(j) (but π(i) 6= π(j) by Definition 3). Hence some elements in
upper(f(A2)) may map to elements that are actually in the lower triangular part of A2. But, since
A1 and A2 are undirected graphs, yπ(i),π(j) = yπ(j),π(i). And so every lower triangular element is
equal to an upper triangular element such that the one-to-one mapping is still preserved. Hence,
there must be some bijection φ that maps elements of upper(A2) to elements of upper(A1).

Theorem 6 A1
∼= A2 ⇒ ∀1 ≤ k ≤ n,∃φ, π s.t. upper(Ak

1) = π(upper(Ak
2))

11

Proof. Suppose that A1
∼= A2. Then there exists some permutation matrix P such that

A1 = PA2P
−1. By Lemma 1, this means that for all k, Ak

1 = PAk
2P

−1 (1)⇒ Ak
1
∼= Ak

2

(2)⇒
∃φ s.t. upper(Ak

1) = φ(upper(Ak
1)). (1) follows directly from Definition 1. (2) follows from Lemma 3.

Theorem 7 A1
∼= A2 ⇒ ∀1 ≤ k ≤ n,∃φ, π s.t. diag(Ak

1) = φ(diag(Ak
2)) ∧ upper(Ak

1) =
π(upper(Ak

2))

Proof. This follows immediately from Theorem 2 and Theorem 6.

Open Problem 1 Is the following statement true?

∀1 ≤ k ≤ n,∃φ, π s.t. diag(Ak
1) = φ(diag(Ak

2))︸ ︷︷ ︸
(1)

∧ upper(Ak
1) = π(upper(Ak

2))︸ ︷︷ ︸
(2)

⇒ A1
∼= A2

I had attempted to prove the above claim, but unfortunately I didn’t get very far. The proof
attempt was this. Assume A1 and A2 are regular graphs. Clearly, if we prove this statement holds
for regular graphs, then we have shown that GI ∈ P , since the Graph Isomorphism problem is GI-
complete for regular graphs [2, 5]. So, the proof is by contradiction. Suppose A1 6∼= A2. Also, let’s
suppose A1 and A2 are not cospectral. Now, condition (1) must have been violated by Theorem 3,
giving us our contradiction. But, suppose A1 and A2 are cospectral. Now, condition (1) will always
hold true (by Theorem 3), which means we will need to show that condition (2) must be violated
to reach a contradiction. But, how do we do this?

7 Open Problems

With respect to the Graph Isomorphism problem, the biggest question that remains open today
asks whether GI ∈ P . I have tried to resolve this issue, but I am currently at an impasse. The
question is whether my algorithm precisely determines whether two graphs are isomorphic. Clearly,
I have proved that if my algorithm returns false, then the two graphs in question are indeed not
isomorphic. However, what if my algorithm returns true? Can we arrive at the conclusion that the
two graphs in question are indeed isomorphic? The answer to this question remains open. Despite
this, we can still ask questions regarding the complexity of GI. Bipartite perfect matching (BPM)
seems to share similar properties with GI. The hardness results for both problems are currently
weak [11]. It is known that BPM is randomly reducible to GI [11]. But, is BPM ≤p

m GI (or
BPM ≤p

m GA)? Also, is the complexity class GI closed under complementation?

GNI is another interesting and important point of discussion. Clearly, GNI ∈ co-NP , but is
GI ∈ NP? It has been shown that GI ∈ AM [8], but it seems like we should be able to do better

12

than this. Can we at least show that GI ∈MA? Clearly, if we showed that GNI ∈ NP , this would
be a monumental step towards showing that GI ∈ P ; this would imply that GI ∈ NP

⋂
co-NP ,

which would give us further evidence showing that GI is probably not NP -complete. If it were,
NP = co-NP .

Also, going back to cospectral graphs, how often do cospectral graphs occur? If we can prove
that cospectral graphs only occur with probability ≤ 1/2, then my algorithm would at least be
an RP algorithm. Now, I suspect that the only case in which my original algorithm failed was
when the two graphs in question were non-isomorphic k-regular cospectral graphs. If we could
somehow prove this, then to get an RP algorithm, we would only have to show that the probability
of randomly producing two k-regular cospectral graphs is ≤ 1/2. Moreover, if we could prove that
the second proposed algorithm fixes the case for all cospectral k-regular graphs, then the entire
problem is solved and GI ∈ P .

8 Acknowledgments

I wish to acknowledge H. Venkateswaran for his helpful insight and guidance throughout my research
on this problem.

References

[1] B. Jenner, J. Köbler, P. M. J. T. Completeness results for graph isomorphism. Journal
of Computer and System Sciences 66 (2003), 549–566.

[2] Booth, K. Problems polynomially equivalent to graph isomorphism. Tech. Rep. CS-77-04,
University of Waterloo, Ontario, Canada, 1979.

[3] Brooks, R. Isospectral graphs and isospectral surfaces.

[4] D. Coppersmith, S. W. Matrix multiplication via arithmetic progressions. J. Symbolic
Computation 9 (1990), 251–280.

[5] D. Corneil, D. K. A theoretical analysis of various heuristics for the graph isomorphism
problem. SIAM Journal of Computing 9 (1980), 281–297.

[6] E. R. van Dam, W. H. H. Which graphs are determined by their spectrum? Linear Algebra
Appl. (in press).

[7] Garey, M. S., and Johnson, D. S. Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman and Company, New York, 1979.

13

[8] J. Köbler, U. Schöning, J. T. The Graph Isomorphism Problem: Its Structural
Complexity. Birkháuser, Boston, 1993.

[9] Ladner, R. E. On the struture of polynomial-time reducibilities. Journal of the ACM 22
(1975), 155–171.

[10] Schöning, U. A uniform approach to obtain diagonal sets in complexity classes. Theoretical
Computer Science 18 (1982), 95–103.

[11] Torán, J. On the hardness of graph isomorphism. FOCS (2000), 180–186.

14

