

CONTROL OF RECONFIGURABILITY AND
NAVIGATION OF A WHEEL-LEGGED ROBOT

BASED ON ACTIVE VISION

A Thesis
Presented to

The Academic Faculty

By

Douglas A. Brooks

In Partial Fulfillment
Of the Requirements for the Degree

Master�s of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2008

CONTROL OF RECONFIGURABILITY AND

NAVIGATION OF A WHEEL-LEGGED ROBOT
BASED ON ACTIVE VISION

Approved by:

Dr. Ayanna Howard, Advisor
School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Patricio Vela
School of Electrical and Computer Engineering

Georgia Institute of Technology

Date Approved: June 2008

iii

ACKNOWLEDMENTS

First I would like to thank God for all things possible. Next I would like to thank Dr.

Howard for not only allowing me to work in the HumAnS Laboratory, but also for being

a great advisor in guiding me through this process with knowledge, resources, and

critique. I would like express gratitude to the members of my reading committee Dr.

Magnus Egerstedt, Dr. Ayanna Howard, and Dr. Patricio Vela; I understand the rigorous

schedule of ECE Faculty members, and I both commend and applaud your efforts for

taking the time to give back to students. I wish to thank my fellow graduate students in

the HumAnS Lab for their encouragement and input during difficult times. A special

thank you to GEM for financially providing the opportunity to obtain a higher education.

I wish to attribute my success to my family: my grandparents for a solid upbringing, my

parents for always being there, and my aunts, uncles, and cousins for their support. Last,

but certainly not least, I wish to remember those who passed and were not able to see this

day but have been my inspiration for continuing my education: Aaron McLean, J.R.

Price, Harold Mills Jr., Charlie Goldston, & Lamont Neil.

iv

TABLE OF CONTENTS

ACKNOWLEDMENTS...iii

LIST OF TABLES ...vi

LIST OF FIGURES...vii

LIST OF EQUATIONS..viii

LIST OF SYMBOLS AND ABBREVIATIONS ...x

SUMMARY..xii

CHAPTER

1 INTRODUCTION..1

1.1 Motivation and Objective...1

1.2 Terrain Characterization Techniques..4

1.2.1 Probability Theory Techniques..4

1.2.2 Optical Flow Techniques ..5

1.2.3 Region-Growing Techniques...6

1.3 Past and Present Rovers used in Navigation ...7

2 RESEARCH METHODOLOGY..12

2.1 Vision-based Terrain Characterization and Traversability Assessment12

2.2 Robotic Mobility Assessment Based on Movement Criteria and Implementing the

Region-Growing Algorithm..15

3 EXPERIMENTS AND RESULTS ...18

3.1 Infrastructure ...18

3.1.1 Qwerk Controller ..18

3.1.2 Logitech Communicate STX Camera ..19

v

3.1.3 Telepresence Robot Kit (TeRK)..20

3.1.4 The Program in Detail...21

3.1.4.1 The Prototyping Playground GUI ...21

3.1.4.2 Changing the Input Data from an Array to a Matrix................................22

3.1.4.3 Video Processing..22

3.1.4.4 Motor and Leg Movement ..23

3.2 Results...23

3.2.1 Horizon Line and Object Confidence Intervals..23

3.2.2 Resolution and Timing Results..32

3.2.3 Testing the Robot in Various Terrains ...33

4 CONCLUSION & FUTURE WORK ...41

APPEDNICES

APPENDIX A: RECONFIGURABILITY AND NAVIGATION CONTROL CODE....43

APPENDIX B: HIGH-LEVEL PROGRAM FLOW CHART ..70

APPENDIX C: THE CHARMED LABS QWERK CONTROLLER71

APPENDIX D: THE LOGITECH QUICKCAM® COMMUNICATE STXTM72

APPENDIX E: HS-322HD STANDARD DELUXE SERVO..73

APPENDIX F: HS-645MG STANDARD DELUXE HIGH TORQUE SERVO74

APPENDIX G: HG16-060-AA DC MOTORS ..75

APPENDIX H: ROBOT PRICE LIST...76

APPENDIX I: UPPER CRITICAL VALUES OF t DISTRIBUTION WITH φ DEGRESS

OF FREEDOM ..77

REFERENCES..78

vi

LIST OF TABLES

Table 1. Randomly Selected Percentages for Calculating the Sample Mean for the

Horizon Line...24

Table 2. Frame Rates for Different Resolutions ...32

Table 3. Results of Variable Lighting and Terrain Experiments using the Six Leg

Mobility System ...35

Table 4. Results of Variable Lighting and Terrain Experiments using the Four Leg

Mobility System ...39

vii

LIST OF FIGURES

Figure 1. Illustration of the robotic unit used for this research..3

Figure 2. Illustration of Urbie during a stair climbing test procedure................................8

Figure 3. Illustration of a MER during testing..9

Figure 4. Illustration of Rocky 7 during a digging process. ..10

Figure 5. Illustration of a.) LEMUR IIa during its standing algorithm and b.) LEMUR IIb

during a its climbing algorithm. ..11

Figure 6. Control loop for robotic autonomous reconfiguration......................................12

Figure 7. Criteria for pixel categorization used to identify the horizon line.13

Figure 8. Illustration of segmentation and detection process. ...14

Figure 9. Illustration of segmentation and detection using a still image..........................15

Figure 10. Robotic platform during its reconfiguration process.17

Figure 11. The Qwerk Processor created by Charmed Labs ...18

Figure 12. Logitech Communicate STX Webcam..19

Figure 13. Illustration of the distances and angles in regards to the camera.20

Figure 14. Prototyping Playground GUI used to monitor and initiate robot.21

Figure 15. Illustration of converting a byte array to an integer matrix.22

Figure 16. Image for horizon line confidence interval calculation.25

Figure 17. Image for horizon line confidence interval calculation.26

Figure 18. Image for horizon line confidence interval calculation.27

Figure 19. Image for horizon line confidence interval calculation.28

Figure 20. Image for horizon line confidence interval calculation.29

 viii

Figure 21. Image used for object detection confidence interval calculation32

Figure 22. Solid/Soil test setup. ...34

Figure 23. Robotic unit maneuvering over a sand dune. ...35

Figure 24. Robotic platform traversing the sand dune using four legs instead of six.40

ix

LIST OF EQUATIONS

Equation 1...6

Equation 2...13

Equation 3...13

Equation 4...20

Equation 5...20

Equation 6...20

Equation 7...24

Equation 8...30

Equation 9...30

Equation 10 ...30

Equation 11 ...32

x

LIST OF SYMBOLS AND ABBREVIATIONS

p � probability density function

X � element of conditional density

xi � element of component density

Cj � class in the training set

fc � focal length

cc � principle point

Zc � height between projection centre
of camera and terrain surface

F � frame rate

R � camera resolution

Ii � intensity value of a small feature
window

I2 � intensity value of a small feature
window

d � changes in the x and y
coordinates of a feature window

L - central location of counterpoint
of small feature window

A � area of feature window

τ � timing for immobility recognition

µ1 � percentage of pixels for horizon
line determination

µ2 � percentage of average pixel
signature for object detection

α � amount of change in average
ground signature

β � amount of change in landmark
object

Θ1 � angle between vertical plane
and hypotenuse

Θ2 � angle between hypotenuse and
ground plane

Θg � downward camera tilted angle

Xg � horizontal distance from camera
lens to visible center point in ground
plane

H � linear distance from the camera
lens to the ground plane

Y � vertical distance from camera to
ground plane

Ag � average pixel signature of
ground plane

sg � standard deviation of average
pixel signature of ground plane

x0 � initial row of pixels

x1 � current row of pixels

y0 � initial column of pixels

y1 � current column of pixels

pi,j � pixel at location (i,j)

N � # of samples from images

∆τ � elapsed time in milliseconds

Ho � null hypothesis

 xi

 HA � alternative hypothesis
Y � sample or true mean

χo � standard or assumed mean

Ap � mean selected percentages

tυ; Ν-1 � upper υ critical value from
the t distribution table

φ � degrees of freedom for the t
distribution table

σ � known standard deviation
regarding percentage of a specific
row

Za � standard critical value from the
table of normal distributions

υ � significance level

xii

SUMMARY

The ability of robotic units to navigate various terrains is critical to the

advancement of robotic operation in real world environments. Next generation robots

will need to adapt to their environment in order to accomplish tasks that are either too

hazardous, too time consuming, or physically impossible for human-beings. Such tasks

may include accurate and rapid explorations of various planets or potentially dangerous

areas on planet Earth. This research investigates a navigation control methodology for a

wheel-legged robot based on active vision. The method presented is designed to control

the reconfigurability of the robot (i.e. control the usage of the wheels and legs),

depending upon the obstacle/terrain, based on perception. Surface estimation for robot

reconfigurability is implemented using a region growing method and a characterization

and traversability assessment generated from camera data. As a result, a mathematical

approach that directs necessary navigation behavior is implemented to control robot

mobility. The hybrid wheeled-legged rover possesses a four-legged or six-legged

walking system as well as a four-wheeled mobility system.

 1

Chapter 1

INTRODUCTION

Versatility is one of the most important aspects of mobile robots used for exploration.

As environments present difficulties in navigation, robotic platforms must be adaptable to

ensure safe passage and continued progress. One method of versatility is to design the

robot with two different types of mobility, specifically both wheels and legs. However,

there lies the issue of recognizing when to utilize one type of mobility rather than the

other. The goal of this project is to create a method for solving a navigation problem by

employing a camera based system that will decide whether or not the robotic system is

consistently changing its displacement, thus giving it the ability to decide whether to use

its wheels or legs to traverse the terrain. Ideally, the wheels will be used as frequent as

possible in order to explore the terrain at a faster pace. However, there may be instances

where the wheels are not a feasible method of mobility such as in icy terrains or loose

soil, and thus the legs will need to be utilized. Future robotic missions will need to

continue the effort to increase the efficiency of exploratory robotic vehicles.

Congruently, this research focuses on modularizing both hardware and software

components and incorporating a vision system to create an autonomous reconfigurable

robotic explorer.

1.1 Motivation and Objective

Science exploration in unknown and uncharted terrain involves operating in an

unstructured and poorly modeled environment, and there are several robotic designs that

are plausible in these types of environments [1]. The goal of this project is to design a

control algorithm that will enable a reconfigurable robotic mobility platform to

 2

autonomously traverse various terrains; specifically, the robotic platform is to

autonomously sense its immobility and act accordingly. Surface estimation for robot

reconfigurability is implemented using a region growing method and a characterization

and traversability assessment generated from camera data.

Recently, there have been notable problems regarding immobility related issues such

as wheel slippage in slippery terrain and wheels sinking in sand drifts. For example,

NASA�s Mars Exploration Rovers (MER) Opportunity and Spirit each had issues while

traversing various terrains [2]. Both rovers experienced large slippage, up to 125%, on

slopes, while Opportunity was stuck in a drift for several weeks due to sinkage before

finally freeing itself [2]. As a result, NASA researchers felt that it may be prudent to

employ a stereo vision system for detecting slippage and sinkage, ultimately determining

immobility.

In order to understand the issues involved with solving the problem of immobility, the

thought process must first be to define mobile or immobile. In order to do so, we must

answer the question �how do we as humans know that we are moving in a particular

direction?� Early psychological theories of human information processing regarded

action and perception as two separate processes [3]. However, recent investigations have

suggested the importance of action in perceiving objects [4]. Ideally, humans exploit the

surrounding area to perceive motion. For instance, if there were a tree or a bush on your

right side as you are walking, you could use that as a landmark to signify if you have

moved closer to or farther away from the object. In much of the same way, our robotic

design utilizes its surroundings to determine its change in displacement.

 3

In order to induce autonomous reconfigurability, we have incorporated an active

vision system that utilizes an inexpensive webcam. The camera system is first used to

create a vision-based terrain characterization and traversability assessment that initially

extracts those terrain characteristics that directly account for robot traversal difficulty [5];

details regarding the camera system will be discussed in Chapter 2, and the specifications

can be found in Appendix D. Then, a region-growing algorithm, which is also discussed

in Chapter 2, is used to assess robot displacement based on a timing scheme. Finally, a

decision is made regarding which form of mobility is best suited for the specific situation,

and the appropriate action is taken (i.e. the robot either continues to move with its wheels

or deploys its legs and commences a defined walking gait). The experiments and results

discussed in Chapter 3 will prove the algorithm used to control reconfigurability is

reliable. An illustration of the robotic unit can be seen in Figure 1.

Figure 1. Illustration of the robotic unit used for this research.

Vision System

Wheeled Mobility

Legged Mobility

Controller

 4

1.2 Terrain Characterization Techniques

Vision-based and perception algorithms have proven to be an effective method for

controlling navigation and object detection in robotic platforms [6-13]. An initial

approach to characterizing various terrains is to utilize obstacles and landmarks.

Talukder et al developed a 3D obstacle detector that searches for surrounding pixels in

3D space that satisfy the slope and height criteria at each valid pixel location [14].

Texture-based and color-based material classification processes are also used to

characterize traversable and non-traversable terrains based on vehicle dynamics [14].

Happold and Ollis employs probability techniques coupled with boosting and mean

classification [8], while Song et al, utilizes visual odometry to measure slip ratios of

unmanned ground vehicles (UGVs) for autonomous navigation [10]. In the following

sections, we give detail regarding techniques that have been used to create autonomous

navigation for robots.

1.2.1 Probability Theory Techniques

There are a number of algorithms that implement probability theory techniques for

the purpose of navigation and control. For example, some researchers use a naïve

Bayesian classifier [8], which makes use of the assumption that the class conditional

density p(X|Cj), where X is an element of the conditional density and Cj is a class in the

training set, is equal to the product of its component densities p(xi|Cj), where xi is an

element of the component density and of the class Cj, for autonomous learning.

Ciftcioglu et al, who implies perception is a probabilistic concept due to the integration of

photons within a certain length giving intensity of the stimulus, uses probability density

 5

functions of random variables to observe certain aspects of visual perception such as the

distance between the eye and a location on a plane [6]. Ciftcioglu et al further discuss

that perception is a matter of cognition or interpretation of information, which exists

within the visual scope, and can be expressed in terms of intensity, which is the integral

of probability density. Although algorithms for this technique can create robustness,

sheer complexity can increase the process time, thus creating a slower navigation system.

1.2.2 Optical Flow Techniques

Scientists have also utilized optical flow algorithms for a number of research projects.

Terzopoulos and Rabie use an optical flow method to stabilize the visual field of an

artificial fish as it locomotes [10]. Song et al use optical flow to implement a visual

odometry system to measure vehicle velocity [10]. The technique presented in the

research minimizes the residual error shown in Equation 1 and uses camera parameters

such as focal length fc, principal points cc, height between the projection centre of the

camera and the terrain surface Zc, frame rate F, and camera resolution R to create a

velocity estimation algorithm flow. In Equation 1, I1 and I 2 represent the intensity values

of a small feature window in two adjacent images, ()yx ∆∆= ,d represents changes in the

x and y coordinates of the feature window on the image plane, ()yx,=L is the central

location of counterpoint of the small feature window on the image plane, and A is the area

of the feature window.

 6

() L
2
dL

2
dLd dIIE

A

2

12∫∫ 













 −−






 +=

 (Eq. 1)

Although optical flow has proven to be a reliable tool, there is a major drawback to its

implementation. That drawback is the ideality of utilizing optical flow on a flat surface.

Because distance changes between the ground plane and the camera play a significant

role in calculating the optical flow parameters, surfaces that may cause the robotic

platform to sink into the ground, such as sand or snow, would create undesirable

variations in the optical flow data. As a result, many researchers suggest utilizing a high-

powered camera for estimating real-time height information [8]. It is speculated that a

stereo camera or a telecentric camera, which has a constant field of view regardless of the

distance between the lens and a target, can be utilized for implementing optical flow;

however, the overall cost of the project would greatly increase.

1.2.3 Region-Growing Techniques

The region-growing algorithm has proven to be an effective and inexpensive method

for autonomous navigation [15]. The basic principle for the algorithm is to merge similar

neighboring pixels, thus creating segmented regions that can be interpreted and utilized

for various purposes such as reconfigurability. The region-growing process can be

broken down into three steps:

1. Start by using any seed pixel and compare it with its neighboring pixels (up to

eight in a standard matrix). A seed pixel is an initial pixel that is chosen in order
to begin or continue the region-growing process.

2. Add in neighboring pixels that are similar, which will increase the size of the

region.

 7

3. When the growth of one region stops, choose another seed pixel that does not
belong to a region and perform step 2 again until the region is fully grown.

The region-growing method was chosen for this project because of its robustness and

low-cost implementation.

1.3 Past and Present Rovers used in Navigation

Some active vision rovers utilize tanked mobility for locomotion, such as Urbie [16]

found at NASA, while others only utilize wheel mobility such as NASA�s MERs [17]

and Rocky 7 [18]. Yet there are other vision-guided rovers that use a leg system for

locomotion such as the LEMUR [19] series also found at NASA.

Urbie, shown in Figure 2, was sponsored by the Defense Advanced Research Projects

Agency (DARPA) and was a joint effort of NASA�s Jet Propulsion Laboratory (JPL),

iRobot Corporation, CMU�s Robotic Institute, and the University of Southern

California�s (USC) Robotics Research Laboratory. Urbie�s initial purpose was mobile

military reconnaissance in city terrain, but its autonomy was suitable for a variety of tasks

such as investigating urban environments contaminated with radiation or search and

rescue in earthquake struck buildings. Urbie utilized the algorithm presented in [16] in

order to discriminate drivable grass from obstacles during outdoor autonomous

navigation tasks.

 8

Figure 2. Illustration of Urbie during a stair climbing test procedure.

NASA�s Mars Exploration Rovers (MER), shown in Figure 3, navigate

autonomously using stereo vision for local terrain mapping and a local, reactive planning

algorithm called Grid-based Estimation of Surface Traversability Applied to Local

Terrain (GESTALT) for obstacle avoidance. Navigation is done with three sets of

camera pairs: one pair of �hazcams� (hazard cameras) looking forward under the solar

panel in front, another pair of hazcams looking backward under the solar panel in the

back, and a pair of �navcams� (navigation cameras) on the mast. The navcams are used

to employ a visual odometry system, which only converges successfully if the terrain has

a sufficient number of features visible in each adjacent image pair [20]. Each camera has

1024x1024 pixel charge-coupled device (CCD) arrays that create 12 bit grayscale images.

Similar to our robotic system, the baseline autonomous navigation system includes only

local obstacle detection; meaning, there are no onboard global mapping, global path

planning, or global localization functions. Long distance localization is done on Earth

 9

using bundle adjustment from manually matched tie points in panoramic imagery [21].

Details of the stereo vision algorithm can be found in [22], and more details of the visual

odometry algorithm can be found in [20, 23].

Figure 3. Illustration of a MER during testing.

Rocky 7, shown in Figure 4, was specifically designed for testing robotic units that

could traverse long distances from a landing site. Rocky 7 is slightly larger and heavier

than NASA�s 1997 Sojourner [24], being 60x40x35cm3 and 15.5kg. Rocky 7 employs a

rocker-bogie six-wheel configuration [25] and uses black-and-white CCD cameras for

hazard avoidance, navigation telemetry, and science data. Rocky 7�s software

architecture is based on the framework provided by Real Time Innovation�s Control Shell

[26], which facilitates the creation of C++ software modules that are connected into

asynchronous finite-state machines and synchronous data-flow control loops.

 10

Figure 4. Illustration of Rocky 7 during a digging process.

The LEMURs, which are shown in Figure 5, are small and agile four-legged or six-

legged walking and/or climbing robots that have been built at JPL to perform dexterous

small-scale assembly, inspection, and maintenance. Each limb is reconfigurable to allow

the integration of a variety of mechanical tools. LEMURs also utilize a stereo vision

system, which consists of a set of black-and-white cameras mounted on the front of the

body. The LEMURs are autonomously operated by using the combined images taken by

the stereo cameras to create a 3D model of the world in view. LEMURs� other visual

feedback is provided by a �palm� mounted camera, which is based upon the idea of foot

sensors found in certain insects.

 11

a.) b.)
Figure 5. Illustration of a.) LEMUR IIa during its standing algorithm and b.) LEMUR IIb during a its
climbing algorithm.

These rover systems provide a brief overview of state-of-the-art robotic platforms for

space exploration. While a respectable number of robotic systems have been deployed in

NASA missions, none have been able to fully traverse all aspects of variable terrain

found on planetary surfaces. Furthermore, to date, the issue of autonomous traversable

decision making as yet to be solved. To address these issues, we have developed a

robotic platform that provides the benefits of both wheel and leg locomotion without

requiring user input for navigation.

 12

Chapter 2

RESEARCH METHODOLOGY

2.1 Vision-based Terrain Characterization and Traversability Assessment

Our robotic system is made autonomous using the control loop shown in Figure 6,

which uses a vision system for a terrain classification process. The first step in

classifying the terrain involves extracting those terrain characteristics that directly

account for robot traversal difficulty [5]. This particular algorithm determines terrain

roughness by assessing ground landmarks.

Figure 6. Control loop for robotic autonomous reconfiguration.

In order to determine the obstacles that are in the ground plane as opposed to objects

in the horizon, which is not traversable by this unmanned ground vehicle, a horizon-line

(i.e. boundary line) is first identified; this line segments the camera data into two regions:

ground and backdrop (e.g. mountains and sky) [5]. To distinguish between the ground

and the landscaped backdrop, the average pixel signature Ag and standard deviation of the

ground plane sg is first calculated [5] using the equations below:

Input control
signal

Controller
(Qwerk)

Plant
(Wheels and

Legs)

Feedback
(Vision System)

Robotic
Motion

 13

Ag = ()()0101

,

1

0

1

0

yyxx

p
y

yj

x

x
ji

−−

∑∑
= (Eq. 2)

sg = ()()
2

0101

,,

1

0

1

0

*

g

y

yj

x

xi
jiji

A
yyxx

pp
−

−−

∑∑
= =

 (Eq. 3)

In order to determine the amount of pixels in a row that was most efficient for

selecting a horizon line location, we used a confidence interval. By taking N samples

from images obtained from the camera system and recalculating the confidence interval

from each sample, we were able to determine a proportion µ1 that would contain the

desired horizon line values; details of the confidence interval process and results are

discussed in Chapter 3. The point in the pixel data at which there is greater than or equal

to µ1 in a specified row that meet the criteria shown in Figure 7, where µ2 is the

percentage of Ag used to specify objects lying in the ground plane, is considered to be the

horizon line. Concurrently, everything above the horizon line is shaded gray and is

considered untraversable.

()2,

,

1*.)2

.)1

µ−>

−<

gji

ggji

Ap

sAp

 Figure 7. Criteria for pixel categorization used to identify the horizon line.

Following the calculations of Ag and sg and identification of the horizon line, a

calculated pixel value assessment of the objects lying in the ground plane is evaluated.

Again, we utilized a confidence interval to determine that a percentage of Ag, termed µ2,

was efficient for locating objects in the ground plane. Specifically, if a pixel value at a

 14

point in the matrix is less than µ2 of Ag, then the pixel is colored black and is considered

to be an object other than the ground. These objects are termed landmarks. All other

values in the ground plane that are not signified as being landmarks are set to a uniform

value, specifically Ag. An illustration of the resulting landmark detection image along

with the original image, grayscale image, and horizon line segmented image is shown in

Figure 8.

a.) b.)

c.) d.)

Figure 8. a.) Original image as seen by the camera on the robotic system. b.) Converted Grayscale image.
c.) Horizon line segmented image. d.) Landmark detection image.

Utilizing the image in d.), our robotic system is able to use a region growing

algorithm to assess whether or not its displacement has changed in the last τ seconds. As

added proof of the functionality of this research and algorithm, still images of a terrain in

Colorado were also used to test the system; a sample still image, along with its respective

processed images is shown in Figure 9.

 15

a.) b.)

c.) d.)

Figure 9. a.) Original image. b.) Converted Grayscale image. c.) Horizon line segmented image. d.)
Landmark detection image.

It is noted that the viewable size of many of the original images area is larger than

that of the processed images. The original camera data is able to output an image with a

resolution of 640X480. However, due to an increase in the amount of frames per second

(fps) that can be processed, which is discussed in Chapter 3, we determined that it would

be more beneficial to downsample the images to a resolution of 200X150. The resulting

images are basically zoomed versions of the original image.

2.2 Robotic Mobility Assessment Based on Movement Criteria and Implementing

the Region-Growing Algorithm

Here we use the region-growing method to follow the logic regarding immobility as

described in Chapter 1. This method checks to see if there has been any movement

within the last τ seconds. The priority checking is as follows:

 16

1. Determine if Ag has changed by more than α pixel values.

2. If Ag has not changed by more than α pixel values, then check to see if the
horizon line has changed positions.

3. If the horizon line has not changed positions, then check to see if there are pixels
in a specific region size (using the region-growing algorithm) that are identical
and are not equal to Ag and those pixels have not changed by β pixel values.

Step three uses the following region growing process:

1. Start by using cell (i, j) as the initial seed pixel and compare it with its

neighboring pixels (up to eight in a standard matrix).

2. Add in neighboring pixels that are within β pixel values of the seed pixel.

3. When the growth of one region stops, choose another seed pixel that does not

belong to a region and perform step 2 again until the region is fully grown.

If all three criteria are true, then there has not been any movement in the last τ

seconds. Once the above criteria have been met, the robot will consider itself to be

immobile, cease its driving mechanism, and commence its walking gait. Figure 10 shows

our robotic platform during its reconfiguration process.

 17

Figure 10. Robotic platform during its reconfiguration process.

The logic behind the criteria for movement recognition can be explained in the

following manner. Regarding the changes of Ag, the color value of areas on the ground

in one location are not perfectly identical to those in another location due to grain

variations in regards to color and position and/or shadowing of landmarks. If our robotic

unit has become immobile, those variables will remain constant. The significance of the

horizon line positional change uses the concept that �the world is not flat�. The land

mass directly in front of the robot is perceived to change slightly due to its rounded

contour as the robot traverses the terrain. Granted, the perception is based on a certain

amount of distance traversed, which forces us to utilize a third criterion that is based on

the landmark analogy described in Section 1.1.

 18

Chapter 3

EXPERIMENTS AND RESULTS

3.1 Infrastructure

Our robotic unit, ByRobot II, was first modeled on Pro-Engineer, and then the parts

were constructed in the Georgia Tech MRDC Machine Shop [1]. It is able to drive on its

four wheels, as well as utilize its legs to stand and walk for operating on rough terrain.

ByRobot II�s core controller is the Qwerk Controller created by Charmed Labs, LLC.

The Qwerk Controller powers and controls ByRobot II�s various electronics. The camera

system consists of the Logitech Communicate STX Webcam, and is used for processing

robot displacement.

3.1.1 Qwerk Controller

Figure 11. The Qwerk Processor created by Charmed Labs [27].

The Qwerk controller is the central processing unit of ByRobot II. It powers the

motors and servos for wheel and leg movement respectively, connects ByRobot II to the

source code contained on the computer, and receives and sends the visual information

 19

from the camera to the computer monitor. The specifications of the Qwerk controller can

be found in Appendix C.

3.1.2 Logitech Communicate STX Camera

Figure 12. Logitech Communicate STX Webcam [28].

The Logitech Communicate STX Camera is the sole sensor system used to guide

ByRobot II. It has video capture capability up to 640X480 square pixels, 1.3 megapixel

still image capture capability, and a frame rate up to 30 frames per second. Details

regarding the positioning of the webcam are found below and are illustrated in Figure 13.

By taking physical measurements, the length of Y, which represents the vertical

distance from the camera to the ground plane and is shown in Figure 13, was 9.4� and H,

which represents the linear distance from the camera lens to the ground plane (i.e.

hypotenuse), was 15�. Also, because the platform of ByRobot II measured 90° from the

ground plane, by placing the camera parallel to the base of ByRobot II the camera was

effectively placed 90° from the ground plane. Using simple trigonometry, Θ1, Θ2, Θg,

and X can be calculated as shown in Equations 4, 5, and 6 respectively, where Θ1 is the

angle between the vertical plane created by the camera and the ground and H, Θ2 is the

angle between H and the ground plane, Θg is the downward camera tilted angle in

 20

reference to the normal horizontal view, and X is the horizontal distance from the camera

lens to the visible center point in the ground plane.

Y

H

X

Θ1

Θ2

Θg

Ground Plane

Camera

Camera Lens

Figure 13. Illustration of the distances and angles in regards to the camera.

°=





=Θ − 19.51

"15
"4.9cos 1

1 (Eq. 4)

°=Θ−°=Θ

Θ=°=





=Θ −

81.3890

81.38
"15
"4.9sin

1

1
2

g

gor
 (Eq. 5)

() "69.11"15sin 1 =×Θ=X (Eq. 6)

3.1.3 Telepresence Robot Kit (TeRK)

The software used to control ByRobot II is based upon the software provided by the

researchers at Carnegie Mellon University (CMU), specifically found in CMU�s TeRK

project. The vision and control software was developed in the HumAnS Laboratory at

the Georgia Institute of Technology and is described in the next section.

 21

3.1.4 The Program in Detail

3.1.4.1 The Prototyping Playground GUI

The Java based software utilizes Sun Microsystems�s Internet Communications

Engine (ICE) in order to provide connectivity through an Ethernet cable or wirelessly. It

also provides a Graphical User Interface (GUI), which is ideal for user-friendly software.

The GUI, which is shown in Figure 14, displays streaming video so that the user can

track what the robot is currently viewing. It also has multiple buttons that allow the user

to manually control the robot, if desired. In order to begin the autonomous process the

user must first begin the streaming video by clicking the �Start Video� button. After that,

the user must click the button labeled �Begin Process�; this will start the robot�s forward

movement and enable its displacement recognition algorithm, which is described in

Chapter 2.

Figure 14. Prototyping Playground GUI used to monitor and initiate ByRobot II.

Streaming Video

Current Video
Capture

Manual
Movements

Autonomous
Navigation

Start Streaming
Video

Connect to
Qwerk

Resulting
Outputs

 22

3.1.4.2 Changing the Input Data from an Array to a Matrix

In order to create a near real-time processing system and a format that can be utilized

in the region growing algorithm, the data that is read from the camera has to be parsed

into a matrix of pixels. The simplest method for converting an array into a matrix is to

segment the input data by width and height. In the process of creating the data matrix,

the image byte values of the array can be converted into grayscale integer values by

multiplying the byte values by the hexadecimal value of 0x0FF. Converting to grayscale

simplifies the immobility recognition process because there is less color data to analyze.

An illustration of the conversion process is shown in Figure 15.

Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9

Byte1*0x0FF Byte2*0x0FF Byte3*0x0FF
Byte4*0x0FF Byte5*0x0FF Byte6*0x0FF
Byte7*0x0FF Byte8*0x0FF Byte9*0x0FF

Figure 15. Illustration of converting a byte array to an integer matrix.

The newly created matrix of pixels can now be viewed as an x-y coordinate plane

enabling pixel identification and location. This matrix can then be utilized to assess robot

displacement changes.

 3.1.4.3 Video Processing

The core of the program lies within the video processing section. Here, we are able to

capture streaming video of the robot�s current location and analysis regarding immobility,

thus enabling us to monitor its progress. The section begins by applying the frames per

second calculation described in Section 3.2.2. Following this calculation, we capture the

 23

current image that the camera system is viewing and begin the vision based terrain

characterization and region-growing processes described in Chapter 2. Our video

processing also saves the current original, grayscale, horizon line segmented, and

landmark detection images while processing the information for determining the

movement criteria. Once the video processing has completed an iteration and determined

whether or not forward progress is being achieved, the wheeled-legged mobility system

will correspond based on the motion described in the following section.

 3.1.4.4 Motor and Leg Movement

Currently, our mobility system utilizes its wheels as often as possible to traverse

various terrains in the fastest manner. Because the goal of this research project is to

recognize immobility and reconfigure to employ the leg system, various methods of

exploration such as wandering and following were not implemented. Instead, we used

the wheels for a continuous forward motion, and if becoming immobile, we used the legs

to move forward in order to regain wheeled mobility. We did, however, try several

walking gaits to determine the most effective for our purpose. We found that simply

standing and pushing forward with all legs (either four or six) simultaneously generated

the best results for regaining wheeled mobility.

3.2 Results

3.2.1 Horizon Line and Object Confidence Intervals

For the purposes of determining an efficient percentage of pixel values in a row that

would determine the position of the horizon line, we utilized a confidence interval. A

confidence interval addresses the issue of how well a sample statistic estimates an

underlying population value by providing a range of values which is likely to contain the

 24

population parameter of interest. The computational process that we use can be found in

[29].

The confidence interval is one-sided, utilizing a lower-bound, because values that are

greater than the lowest critical value would be considered part of the horizon. Our null

hypothesis Ho was that 50% of the pixels in a row that met the horizon line criteria as

described in Chapter 2 would suffice for choosing the horizon line position, while our

alternative hypothesis HA was that 50% was not sufficient. We label the assumed mean

corresponding to the null hypothesis χo.

 Using the randomly chosen percentages in Table 1 representing the amount of

sufficient pixels for determining the horizon line, we calculated that the sample mean Y =

92.8 = Ap * 200 values in a row, where Ap = 46.4% is the mean in terms of percentages.

Using the standard equation for calculating the standard deviation, shown in Equation 7

where Y is the current sample, we found that σ = 27.75488.

Table 1. Randomly Selected Percentages for Calculating the Sample Mean for the Horizon Line

Image 1 Image 2 Image 3 Image 4 Image 5
30 25 10 5 0
40 35 40 11 1
50 45 60 42 39
60 55 80 61 71
70 65 100 73 92

()
()1

2

−Ν
−

= ∑ YY
σ (Eq. 7)

The images and their respective horizon lines based on the percentages from the table are

shown in Figures 16-20.

 25

a.) b.)

c) d.)

e.) f.)

g.)
Figure 16. Image for horizon line confidence interval calculation. a.) Image 1 b.) 200x150 grayscale
image c.) Horizon line at 30% d.) Horizon line at 40% e.) Horizon line at 50% f.) Horizon line at 60% g.)
Horizon line at 70%

 26

a.) b.)

c.) d.)

e.) f.)

g.)

Figure 17. Image for horizon line confidence interval calculation. a.) Image 2 b.) 200x150 grayscale
image c.) Horizon line at 25% d.) Horizon line at 35% e.) Horizon line at 45% f.) Horizon line at 55% g.)
Horizon line at 65%

 27

a.) b.)

c.) d.)

e.) f.)

g.)
Figure 18. Image for horizon line confidence interval calculation. a.) Image 3 b.) 200x150 grayscale
image c.) Horizon line at 10% d.) Horizon line at 40% e.) Horizon line at 60% f.) Horizon line at 80% g.)
Horizon line at 100%

 28

a.) b.)

c.) d.)

e.) f.)

g.)

Figure 19. Image for horizon line confidence interval calculation. a.) Image 4 b.) 200x150 grayscale
image c.) Horizon line at 5% d.) Horizon line at 11% e.) Horizon line at 42% f.) Horizon line at 61% g.)
Horizon line at 73%

 29

a.) b.)

c.) d.)

e.) f.)

g.)

Figure 20. Image for horizon line confidence interval calculation. a.) Image 5 b.) 200x150 grayscale
image c.) Horizon line at 0% d.) Horizon line at 1% e.) Horizon line at 39% f.) Horizon line at 71% g.)
Horizon line at 92%

 30

Utilizing Equation 8, where Y is the sample mean, χo is the assumed mean (in this

case χo = 100 = 50% * 200 values in a row), σ is the known standard deviation, Ν is the

number of samples, and Za is the standard critical value, we are able to accept or reject

the sample mean.

Ν
−

=
σ

χ o
a

Y
Z (Eq. 8)

Substituting the variables for their respective given and computed values yields:

297.1
2575488.27

1008.92 −=−=aZ (Eq. 9)

Using the significance level υ = 0.05, the chances of erroneously rejecting the null

hypothesis when it is true are 5% or less. In order to justify the assumption that σ is

reliable, we utilize the t-statistic. Setting Za = t, we are able to use the t distribution table

found in Appendix I along with the following criterion to prove the reliability of σ, where

tυ is the upper υ critical value from the t distribution table. Since the hypothesis would be

rejected if the criterion were true, we are able to use > 50% of the pixels in a row to

determine the horizon line.

1. H0: Y < χo 1. 711.1297.1
?

1;

?
≥−≡≥ −Ννtt (Eq. 10)

Following the same procedure above, we are able to calculate the confidence interval

for determining objects lying in the ground plane. Our null hypothesis Ho is that 80% of

the Ag will need to be used in order to recognize objects in the ground plane. Thus χo =

80%. Using the percentages, 30%, 40%, 70%, 80%, and 90%, for the image shown in

Figure 21a, we calculated that Y = 62% and σ = 25.88436 using Equation 7. Given N =

 31

5, we can compute Za = -1.5549 using Equation 8. Setting Za = t, following the same

criterion in Equation 10, using the t distribution table, and using a significance level υ =

0.05, we can prove that 80% is 95% reliable for object recognition.

a.) b.)

c.) d.)

e.) f.)

g.)

 32

Figure 21. Image used for object detection confidence interval calculation. a.) Original image b.) 200x150
grayscale image c.) Object recognition using 30% d.) Object recognition using 40% e.) Object recognition
using 70% f.) Object recognition using 80% g.) H Object recognition using 90%

3.2.2 Resolution and Timing Results

As stated in Chapter 2, processing time is a significant factor when using imaging

data. The original data from our camera system was able to utilize images with a

resolution of 640X480; however, the processing time was more lengthy that when using

smaller resolutions. In order to determine the maximum and minimum allowable

resolutions that could be processed, we calculated the frames per second (fps) for three

different camera resolutions. The fps for each resolution can be calculated using

Equation 11, where F is the frame rate, η is the number of frames between each fps

computation, Μ is the metric system computation of time (i.e. in this case M is 1000

because 1s = 1000ms), and ∆τ is the elapsed time in milliseconds.

τ
η
∆
Μ=F (Eq. 11)

Table 2 shows the results of the frame rates calculated and tested for the three

different camera resolutions. It is worth noting that at the maximum resolution of

640X480 the third criteria for a successful decision regarding immobility failed; in other

words, the reconfigurability process was never commenced even during immobility.

Table 2. Frame Rates for Different Resolutions

Resolution F (fps)
200X150 16.6
320X240 10.5
640X480 07.0

 33

In regards to the amount of time allowed to determine immobility, we chose τ = 5

seconds. Although this time can be varied simply in the program, it gives the camera

sufficient time to update its current frame as well as allow the program to process current

and past information. In comparison, the MERs communication latency time, which is

governed by the speed of light, takes approximately 10 minutes each way, at the smallest

distance between Mars and Earth, during landing [2]. Also, the MERs GESTALT

system, described in Chapter 1, takes approximately 70s to process and compute

information while their visual odometry system takes approximately 15 fps on a 1.6 GHz

embedded Pentium-M board [2]. This process time slows the rovers� speed from 5cm/s

to 0.6cm/s, which required researchers to incorporate a blind driving segment to speed up

the navigation process [2]. In comparison, our earth-bound robotic system is capable of

traversing a distance of 120cm in 5 seconds while incorporating its vision and thinking

process; the resulting velocity calculates to approximately 24 cm/s.

3.2.3 Testing the Robot in Various Terrains

ByRobot II was tested in 36 experiments: three different terrain settings at three

different light settings, four times each. Since locomotion behavior was assessed by

monitoring the robot�s forward progress [30], the first test setup was to test the

displacement recognition and forward progress of ByRobot II in a static environment on

solid terrain (i.e. on tile flooring). The second test setup was to test displacement

recognition on loose soil (i.e. sand). During this phase of testing, the purpose was not to

measure the pace that the robot could traverse the sand, rather we wanted to measure the

effectiveness of the camera system and algorithm in different lighting scenarios on loose

 34

soil. The final test setup was to test displacement recognition and forward progress on

solid and loose terrain. In this final testing environment, ByRobot II was initially placed

on a solid piece of cardboard and was allowed to initialize its forward movement

algorithm. Along its path, different size sand dunes were placed as obstacles that would

induce difficult travel via wheels; basically, the walking gait would need to commence in

order to traverse the obstacles and continue forward movement. Figure 22 shows the

solid/soil test setup, and Figure 23 shows our robot maneuvering over a sand dune using

its legs. Each test was performed in three different light settings: 5%, 50%, and 100%.

Table 3 shows the results of the experiments.

Figure 22. Solid/Soil test setup.

Solid Surface Sand Dune

x-coordinate
Measurement

y-coordinate
Measurement

 35

Figure 23. ByRobot II maneuvering over a sand dune.

Table 3. Results of Variable Lighting and Terrain Experiments using the Six Leg Mobility System

Trial
Terrain Lighting

Starting
Y

Starting
X

Ending
Y

Ending
X Time

Wheels
Stopped?

Legs
Deployed?

Continued
Progress?

1 Tiled Floor Glowstick (5%) 0" 14" 23" 10" 01:54:15 yes yes

No; Legs
deployed 9
times before
progress was
considered
discontinued;
obstacle too
high

2 Tiled Floor Glowstick (5%) 0" 11" 17" 10" 02:27:86 yes yes

No; Legs
deployed 11
times before
progress was
considered
discontinued;
obstacle too
high

3 Tiled Floor Glowstick (5%) 0" 17" 22" 22" 03:09:51 yes yes

Yes; Legs
deployed 15
times in order
to continue;
robot
eventually
moved away
from the light
and move
into darkness
where criteria
become
obsolete

 36

4 Tiled Floor Glowstick (5%) 0" 17" 25" 29" 05:15:02 yes yes

Yes; Legs
deployed 21
times in order
to continue;
robot
eventually
moved away
from the light
and move in
darkness
where criteria
become
obsolete

1 Tiled Floor
Florescent
(100%) 0" 8" 25.5" 8" 01:29:36 yes yes

No; Legs
deployed 9
times before
progress was
considered
discontinued;
obstacle too
high

2 Tiled Floor
Florescent
(100%) 0" 32" 25" 34" 01:24:51 no no

No; it is
speculated
that battery
power
created an
issue with the
process.

3 Tiled Floor
Florescent
(100%) 0" 36" 55" 60" 02:13:02 yes yes

Yes; Legs
needed to
deploy 9
times in order
to continue

4 Tiled Floor
Florescent
(100%) 0" 37" 50" 56" 01:35:82 yes yes

Yes: Ran into
the issue
where there
was no
obstacle in
the image,
but the
algorithm
considered
itself
immobile (i.e.
no
surroundings)

1 Tiled Floor Lamp (50%) 0" 12" 18" 37" 04:13:02 yes yes

Yes; Legs
needed to
deploy 14
times in order
to continue

2 Tiled Floor Lamp (50%) 0" 7" 22" 11" 05:02:18 yes yes

Half of body
traversed
obstacle; legs
deployed 21
times.

3 Tiled Floor Lamp (50%) 0" 23.7" 25" 13" 05:00:19 yes yes

Yes; Legs
needed to
deploy 21
times in order
to continue

4 Tiled Floor Lamp (50%) 0" 23.7" 20" 16" 04:02:20 yes yes

Yes; Legs
needed to
deploy 15
times in order
to continue

1 Sand Glowstick (5%) N/A N/A N/A N/A 00:10:01 yes yes N/A

 37

2 Sand Glowstick (5%) N/A N/A N/A N/A 00:15:19 yes yes

N/A

3 Sand Glowstick (5%) N/A N/A N/A N/A 00:15:13 yes yes

N/A

4 Sand Glowstick (5%) N/A N/A N/A N/A 00:15:42 yes yes

N/A

1 Sand
Florescent
(100%) N/A N/A N/A N/A 00:05:59 yes yes

N/A

2 Sand
Florescent
(100%) N/A N/A N/A N/A 00:04:65 yes yes

N/A. Low
time is
probably due
to camera
initialization
or human
error with
clock.

3 Sand
Florescent
(100%) N/A N/A N/A N/A 00:06:28 yes yes

N/A

4 Sand
Florescent
(100%) N/A N/A N/A N/A 00:06:58 yes yes

N/A

1 Sand Lamp (50%) N/A N/A N/A N/A 00:19:27 yes yes

N/A

2 Sand Lamp (50%) N/A N/A N/A N/A 00:10:46 yes yes

N/A

3 Sand Lamp (50%) N/A N/A N/A N/A 00:12:15 yes yes

N/A

4 Sand Lamp (50%) N/A N/A N/A N/A 00:12:69 yes yes

N/A

1 Solid/Sand Glowstick (5%) 6.5" 38" 18.5" 42" 03:56:00 yes yes

No; Legs
deployed 13
times before
progress was
considered
discontinued

2 Solid/Sand Glowstick (5%) 6.5" 38" 20.5" 44" 03:52:01 yes yes

No; Legs
deployed 11
times before
progress was
considered
discontinued

3 Solid/Sand Glowstick (5%) 6.5" 38" 18.5" 42" 03:46:02 yes yes

No; Legs
deployed 9
times before
progress was
considered
discontinued

4 Solid/Sand Glowstick (5%) 6.5" 38" 38" 24" 04:50:06 yes yes

Yes; Legs
needed to
deploy 15
times in order
to continue

 38

1 Solid/Sand
Florescent
(100%) 7" 23.7" 120.2" 9" 03:55:66 yes yes

Yes; Legs
needed to
deploy 15
times in order
to continue

2 Solid/Sand
Florescent
(100%) 5" 23.7" 24" 25" 03:26:13 yes yes

No; Legs
deployed 8
times before
progress was
considered
discontinued

3 Solid/Sand
Florescent
(100%) 5" 23.7" 20.5" 25" 04:30:25 yes yes

No; Legs
deployed 15
times before
progress was
considered
discontinued

4 Solid/Sand
Florescent
(100%) 5" 23.7" 17.5" 15" 06:21:16 yes yes

Yes; Legs
needed to
deploy 21
times in order
to continue

1 Solid/Sand Lamp (50%) 5" 23.7" 18.2" 33" 02:36:05 yes yes

No; Legs
deployed 12
times before
progress was
considered
discontinued

2 Solid/Sand Lamp (50%) 5" 23.7" 18.3" 30.5" 05:40:16 yes yes

No; Legs
deployed 15
times before
progress was
considered
discontinued

3 Solid/Sand Lamp (50%) 7.4" 23.7" 22.5" 26" 06:33:77 yes yes

No; Legs
deployed 24
times before
progress was
considered
discontinued

4 Solid/Sand Lamp (50%) 7.4" 36" 18.5" 18.5" 04:37:75 yes yes

Yes; Legs
needed to
deploy 18
times in order
to continue

The results show that our immobility recognition algorithm is a reliable method in

well illuminated and poorly illuminated settings. The results also indicate that there was

an issue with traversability, specifically the amount of time required to maneuver over

obstacles when employing the legged locomotion. As an added measurement of our

robot�s ability to traverse various terrains, we tested it in the same three environments

using only four legs. The results shown in Table 4 indicate that using this mobility

platform enabled ByRobot II to traverse the terrain faster and with more linear movement

 39

than our previous six legged design. Figure 24 shows our robot traversing the sand dune

in using only four legs.

Table 4. Results of Variable Lighting and Terrain Experiments using the Four Leg Mobility System

Trial
Terrain Lighting

Starting
Y

Starting
X

Ending
Y

Ending
X Time

Wheels
Stopped?

Legs
Deployed?

Continued
Progress?

1 Tiled Floor
Glowstick
(5%) 0.5" 14.5" 20.5" 25" 01:29:04 yes yes

No; Legs
deployed 4 times
before progress
was considered
discontinued;
obstacle too high

1 Tiled Floor
Florescent
(100%) 0.5" 14.5" 24.5" 11" 02:18:83 yes yes

Half of body
traversed
obstacle; legs
deployed 7
times.

1 Tiled Floor Lamp (50%) 0.5" 14.5" 24.5" 11" 01:34:46 yes yes

Half of body
traversed
obstacle; legs
deployed 4
times.

1 Sand
Glowstick
(5%) N/A N/A N/A N/A 00:09:96 yes yes

N/A

1 Sand
Florescent
(100%) N/A N/A N/A N/A 00:10:35 yes yes

N/A

1 Sand Lamp (50%) N/A N/A N/A N/A 00:11:99 yes yes

N/A

1 Solid/Sand
Glowstick
(5%) 3" 42" 31" 41" 03:17:40 yes yes

Yes; Legs
needed to deploy
8 times in order
to continue

1 Solid/Sand
Florescent
(100%) 2" 35" 20" 45" 02:28:37 yes yes

Yes; Legs
needed to deploy
6 times in order
to continue

1 Solid/Sand Lamp (50%) 2" 35" 29" 47" 01:15:92 yes yes

Yes; Legs
needed to deploy
2 times in order
to continue

 40

Figure 24. Robotic platform traversing the sand dune using four legs instead of six.

 41

Chapter 4

CONCLUSION & FUTURE WORK

In this research, an algorithm was introduced for determining the change in

displacement for a robotic platform based on active vision. After recognizing that there

had not been a change in the last few seconds, the robot acted accordingly by deploying

its legs and utilizing its walking gait in order to continue its progression across the

terrain. Several experimental results proved that this algorithm is effective.

There are two main limitations associated with this particular vision-based and

movement method. The first issue is that of illumination. Illumination can lead to

misclassification of ground texture due to shadowing. In certain situations, the terrain is

obstacle-free; however, adjacent terrain features (such as mountains and hills) cast

shadows on the terrain � creating what appear to be obstacles [5].

The second issue remains of how we as humans know that we are moving in an area

that is completely one color. For instance, if a person were placed on a treadmill that

moved consistently with the persons� speed in a completely dark room, would the person

know that he or she is or is not progressing forward? In this situation, there are no

surrounding landmarks to signify movement; this is a potential issue for ByRobot II in an

isolated area such as Antarctica.

A future work for this research includes implementing a more robust walking gait that

would incorporate a ripple gait for speed improvement and adaptable walking depending

upon obstacle assessment. The calculation of specific foot placement based on terrain

assessments would create more stability and an overall better walking system. However,

because legged locomotion is significantly slower and requires more energy, it would

 42

also be beneficial if the vision system provided information regarding the upcoming

terrain slope so that rover could plan a path avoiding those areas of steeper slope where

the wheels are more likely to be ineffective.

 43

APPENDIX A

RECONFIGURABILITY AND NAVIGATION CONTROL CODE

//package com.sun.image.code.jpeg;
import java.awt.*;
import java.awt.event.*;
import java.awt.color.*;
import java.awt.image.*;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.text.SimpleDateFormat;
import java.util.*;
import javax.swing.*;
import javax.imageio.*;
import java.io.*;
//import javax.media.jai.*; Media package won't work due to lack of a video card
import java.lang.Object;
import java.lang.Math;
import edu.cmu.ri.mrpl.TeRK.QwerkState;
import edu.cmu.ri.mrpl.TeRK.client.components.framework.BaseGUIClient;
import edu.cmu.ri.mrpl.TeRK.client.components.framework.GUIClientConstants;
import edu.cmu.ri.mrpl.TeRK.client.components.framework.GUIClientHelper;
import edu.cmu.ri.mrpl.TeRK.client.components.framework.GUIClientHelperEventHandlerAdapter;
import edu.cmu.ri.mrpl.TeRK.client.components.services.QwerkController;
import edu.cmu.ri.mrpl.TeRK.client.components.userinterface.video.VideoStreamEventListener;
import edu.cmu.ri.mrpl.swing.AbstractTimeConsumingAction;
import edu.cmu.ri.mrpl.swing.ImageFormat;
import edu.cmu.ri.mrpl.swing.SavePictureActionListener;
import edu.cmu.ri.mrpl.swing.SpringLayoutUtilities;
import edu.cmu.ri.mrpl.util.ArrayUtils;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

/**
 * @author Chris Bartley (bartley@cmu.edu)
 */
public final class PrototypingPlayground extends BaseGUIClient
 {
 private static final Log LOG = LogFactory.getLog(PrototypingPlayground.class);

 /** The application name (appears in the title bar) */
 private static final String APPLICATION_NAME = "Prototyping Playground";

 /** Properties file used to setup Ice for this application */
 private static final String ICE_DIRECT_CONNECT_PROPERTIES_FILE =

"/PrototypingPlayground.direct-connect.ice.properties";
 private static final String ICE_RELAY_PROPERTIES_FILE =

"/PrototypingPlayground.relay.ice.properties";

 /** Dimensions used for spacing out GUI elements */
 private static final Dimension SPACER_DIMENSIONS = new Dimension(5, 5);

 44

 /** Line separator, used for appending messages to the message area */
 private static final String LINE_SEPARATOR = System.getProperty("line.separator");

 /** Number of programmable buttons and text fields */
 private static final int NUM_BUTTONS_AND_TEXT_FIELDS = 24;

 /** Number of columns to display in the text fields */
 private static final int TEXT_FIELD_COLUMNS = 10;

 /** Number of frames between each fps computation */
 private static final int FPS_FRAME_COUNT = 10;
 private static final int FPS_FRAME_COUNT_TIMES_1000 = 1000 * FPS_FRAME_COUNT;

 public static void main(final String[] args)
 {
 //Schedule a job for the event-dispatching thread: creating and showing this application's GUI.
 SwingUtilities.invokeLater(
 new Runnable()
 {
 public void run()
 {
 new PrototypingPlayground();
 }
 });
 }

 /**Used for Video capture to begin autonomous movement*/
 //private final Executor executorPool = Executors.newCachedThreadPool();

 /** Programmable buttons */
 private final JButton[] buttons = new JButton[NUM_BUTTONS_AND_TEXT_FIELDS];
 private final JTextField[] textFields = new JTextField[NUM_BUTTONS_AND_TEXT_FIELDS];

 /** buttons */
 private final JButton savePictureButton = GUIClientHelper.createButton("Save Picture", true);
 private final JButton pauseResumeVideoButton = GUIClientHelper.createButton("Start Video");
 private final JButton clearMessageAreaButton = GUIClientHelper.createButton("Clear", true);

 private final JLabel framesPerSecondLabel = GUIClientHelper.createLabel("0 fps");

 private boolean isVideoStreamPaused = true;

 //Condition to contstantly move forward
 private boolean MoveForward = true;
 //Condition to signify no movement and need to move back and forth and stand to free robot
 private boolean BackandForth = false;
 private boolean Stand = false;

 private long fpsTimestamp = 0;
 private int fpsCount = 0;
 private float fps = 0;
 //running total of elapsed time up to 10 seconds
 private long SummedElapsedSec = 0;
 //keep track of the previous ground signature

 45

 private int PrevAvgGndSig = 0;
 //keep track of the previous horizon line position
 private int PrevHorLine = 0;
 private final FPSDisplayRunnable fpsDisplayRunnable = new FPSDisplayRunnable();

 /** Date formatter, used for time-stamping messages in the message area */
 private final SimpleDateFormat dateFormatter = new SimpleDateFormat("HH:mm:ss,SSS: ");

 // text area for messages
 private final JTextArea messageTextArea = new JTextArea(16, 50);

 //used for the Mask width in the Weigted Median Filter
 private int MaskNumber = 805;
 //Masked integer matrix
 private int[][] Mask;
 //width and height of the picture matrix
 private int width,height;
 // A matrix for the pixel values, one for the selected labels, one which indicates
 // whether a pixel already has a label.
 private int[][] pixels;
 private int[][] labels;
 //Weight Median Filtered Image
 private int[][] WeightedImage;
 //In order to recover grayscale image.
 private byte[] grayImage;
 // The position, i.e. number of estimated algorithm steps we've already done.
 private long position;
 // The number of regions on the (finished) task.
 private int numberOfRegions;
 // Counters for pixels in each region
 private Map<Integer,Integer> count;

 private PrototypingPlayground()
 {
 super(APPLICATION_NAME, ICE_RELAY_PROPERTIES_FILE,

ICE_DIRECT_CONNECT_PROPERTIES_FILE);
 setGUIClientHelperEventHandler(
 new GUIClientHelperEventHandlerAdapter()
 {
 public void executeAfterRelayLogin()
 {
 appendMessage("Logged in to relay.");
 }

 public void executeAfterRelayLogout()
 {
 appendMessage("Logged out from relay.");
 }

 public void executeBeforeDisconnectingFromQwerk()
 {
 MoveForward = false;
 getQwerkController().getMotorService().stopMotors(0, 1); //stop the motors while getting the

state

 46

 appendMessage("Disconnecting from qwerk...");
 super.executeBeforeDisconnectingFromQwerk();
 }

 public void executeAfterEstablishingConnectionToQwerk(final String qwerkUserId)
 {
 appendMessage("Connected to qwerk " + qwerkUserId);
 isVideoStreamPaused = true;

 //Initialize legs
 boolean[] servoMask = { true, true, true, true, true, true, true, true, true, true, true, true,
 true,

true, true, true };
 int[] positions = { 70, 70, 120, 70, 70, 70, 70, 120, 90, 100, 120, 90, 100, 90, 100, 120};
 int[] velocities = { 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20};
 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,
 positions, velocities);
 }

 public void executeAfterDisconnectingFromQwerk(final String qwerkUserId)
 {
 appendMessage("Disconnected from qwerk " + qwerkUserId);
 fps = 0;
 updateFramesPerSecondLabel();
 }

 public void toggleGUIElementState(final boolean isConnectedToQwerk)
 {
 for (int i = 0; i < NUM_BUTTONS_AND_TEXT_FIELDS; i++)
 {
 buttons[i].setEnabled(isConnectedToQwerk);
 textFields[i].setEnabled(isConnectedToQwerk);
 }
 messageTextArea.setEnabled(isConnectedToQwerk);
 pauseResumeVideoButton.setEnabled(isConnectedToQwerk);
 pauseResumeVideoButton.setText("Start Video");
 }
 });

 // CONFIGURE GUI ELEMENTS

==
============

 // create and configure the buttons and text fields
 for (int i = 0; i < NUM_BUTTONS_AND_TEXT_FIELDS; i++)
 {
 final JButton button = new JButton();
 button.setFont(GUIClientConstants.FONT_SMALL);
 button.setEnabled(false);
 button.setOpaque(false);// required for Macintosh

 buttons[i] = button;

 textFields[i] = new JTextField(TEXT_FIELD_COLUMNS);
 final Dimension fieldSize = new Dimension(textFields[i].getWidth(), textFields[i].getHeight());
 textFields[i].setMaximumSize(fieldSize);

 47

 textFields[i].setEnabled(false);
 }

 // set up the message text area
 messageTextArea.setFont(new Font("Monospaced", 0, 10));
 messageTextArea.setLineWrap(true);
 messageTextArea.setWrapStyleWord(true);
 messageTextArea.setEditable(false);
 messageTextArea.setEnabled(false);
 final JScrollPane messageTextAreaScrollPane = new JScrollPane(messageTextArea,
 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

 // add action listeners to the buttons
 buttons[0].setText("Get State");
 buttons[0].addActionListener(new GetQwerkStateAction());

 buttons[1].setText("Begin Process");
 buttons[1].addActionListener(new MoveMotorAction(1));

 buttons[2].setText("Reverse Motors");
 buttons[2].addActionListener(new MoveMotorAction(2));

 buttons[3].setText("Set Dig Out X On");
 buttons[3].addActionListener(new SingleDigitalOutAction(3, true));

 buttons[4].setText("Set Dig Out X Off");
 buttons[4].addActionListener(new SingleDigitalOutAction(4, false));

 buttons[5].setText("Speed Test");
 buttons[5].addActionListener(new SpeedTestAction());

 buttons[6].setText("Move Servo 0");
 buttons[6].addActionListener(new MoveServoAction(6, 0));

 buttons[7].setText("Move Servo 1");
 buttons[7].addActionListener(new MoveServoAction(7, 1));

 buttons[8].setText("Move Servo 2");
 buttons[8].addActionListener(new MoveServoAction(8, 2));

 buttons[9].setText("Move Servo 3");
 buttons[9].addActionListener(new MoveServoAction(9, 3));

 buttons[10].setText("Move Servo 4");
 buttons[10].addActionListener(new MoveServoAction(10, 4));

 buttons[11].setText("Move Servo 5");
 buttons[11].addActionListener(new MoveServoAction(11, 5));

 buttons[12].setText("Move Servo 6");
 buttons[12].addActionListener(new MoveServoAction(12, 6));

 buttons[13].setText("Move Servo 7");
 buttons[13].addActionListener(new MoveServoAction(13, 7));

 48

 buttons[14].setText("Move Servo 8");
 buttons[14].addActionListener(new MoveServoAction(14, 8));

 buttons[15].setText("Move Servo 9");
 buttons[15].addActionListener(new MoveServoAction(15, 9));

 buttons[16].setText("Move Servo 10");
 buttons[16].addActionListener(new MoveServoAction(16, 10));

 buttons[17].setText("Move Servo 11");
 buttons[17].addActionListener(new MoveServoAction(17, 11));

 buttons[18].setText("Move Servo 12");
 buttons[18].addActionListener(new MoveServoAction(18, 12));

 buttons[19].setText("Move Servo 13");
 buttons[19].addActionListener(new MoveServoAction(19, 13));

 buttons[20].setText("Move Servo 14");
 buttons[20].addActionListener(new MoveServoAction(20, 14));

 buttons[21].setText("Move Servo 15");
 buttons[21].addActionListener(new MoveServoAction(21, 15));

 buttons[22].setText("Turn Left");
 buttons[22].addActionListener(new MoveMotorAction(22));

 buttons[23].setText("Turn Right");
 buttons[23].addActionListener(new MoveMotorAction(23));

 savePictureButton.addActionListener(new SavePictureActionListener(this,

getVideoStreamViewport().getComponent(), ImageFormat.JPEG));
 pauseResumeVideoButton.addActionListener(new PauseResumeVideoAction());
 clearMessageAreaButton.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(final ActionEvent actionEvent)
 {
 messageTextArea.setText("");
 }
 });

 // compute and display frames per second and implement rpg calculation
 getVideoStreamPlayer().addVideoStreamEventListener(
 new VideoStreamEventListener()
 {

 public void handleFrame(final byte[] frameData)
 {

 fpsCount++;

 49

 if (fpsCount == FPS_FRAME_COUNT)
 {
 final long elapsedMilliseconds = System.currentTimeMillis() - fpsTimestamp;

 SummedElapsedSec += elapsedMilliseconds; //used to count approx. 5 seconds of

elapsed time.
 LOG.info("Time =" +SummedElapsedSec);
 fps = FPS_FRAME_COUNT_TIMES_1000 / (float)elapsedMilliseconds;

 updateFramesPerSecondLabel();

 fpsTimestamp = System.currentTimeMillis();
 fpsCount = 0;
 }//End If statement

 //create image from input data
 final Image picture = Toolkit.getDefaultToolkit().createImage(frameData);
 width = 320;
 height = 240;
 WeightedImage = new int[width][height];
 labels = new int[width][height];
 pixels = new int[width][height];
 final int[] pixels2 = new int[width * height];
 Mask = new int [MaskNumber][MaskNumber];
 //change width/2 and height/2 to 1 each for more area
 final PixelGrabber pg = new PixelGrabber(picture,
 1,
 1,
 width,
 height,
 pixels2,
 0,
 width);
 try
 {
 pg.grabPixels();

 }
 catch (InterruptedException e)
 {
 LOG.error("InterruptedException while grabbing pixels", e);
 }

 /**
 * Turn pixels2 into a matrix rather than an "array"
 * and change the byte info into 0 to 255 data
 **/
 grayImage = new byte[width * height];
 int A = 0;
 for (int i = 0; i < height; i++){
 for (int j = 0; j < width; j++){
 pixels[j][i] = (int)pixels2[A] & 0x0ff;//change data from byte to 0 to

255

 50

 labels[j][i] = -1;
 //Used for viewing the grayscale picture
 grayImage[A] = (byte) pixels[j][i];//place gray pixel data in previous

array
 A++;
 }
 }

 //create buffered image for displaying
 BufferedImage image = toImage(grayImage, width, height);

 /**************Begin Vision Based Terrain***************************/
 /**
 * This method performs a vision based terrain characterization. It processes
 * information using the following steps:
 * 1 - Calculate the average pixel signature and standard deviation of the ground plane
 * using only an initial ground region of pixels.
 * 2 - Calculate the horizontal line creating the separation between ground and
 * horizon by doing the following:
 * 3 - Calculate point at which percentage of backdrop pixels becomes larger than
 * ground pixels for a given area.
 * 4 - Identify target objects on the ground using the region growing algorithm.
 * 5 - Calculate small versus large objects.
 **/
 int AvgGndSig = 0;
 double GndStanDev = 0;
 int SumOfPixels = 0;
 int SumOfPixels2 = 0;
 double Calc = 0;
 //Figure out the average ground signature and ground standard deviation
 for(int h=height-1;h>=height-40;h--)
 for(int w=width-1;w>=0;w--){
 SumOfPixels += pixels[w][h];
 AvgGndSig = SumOfPixels / ((width)*((height-1) - (height-40)));
 SumOfPixels2 += (pixels[w][h])*(pixels[w][h]);
 Calc = Math.abs((SumOfPixels2/((width)*((height-1) - (height-40)))) -

(AvgGndSig*AvgGndSig));
 GndStanDev = Math.sqrt(Calc);
 }//end for loop

 //LOG.info("AvgGndSig = " + AvgGndSig);
 // LOG.info("GndStanDev = " + GndStanDev);

 //Calculate when there are more pixels representing the horizon than there are

representing the ground.
 int HorLine = 0; //the horizon line extraction
 for(int h=height-1;h>=0;h--){
 int NumOfHoz = 0;
 for(int w=width-1;w>=0;w--){
 if (pixels[w][h] < (AvgGndSig-GndStanDev) && pixels[w][h] >

(AvgGndSig*0.20))
 NumOfHoz++;
 if (NumOfHoz >= (width*0.60)){
 //LOG.info("Place = " + h);
 for (int h2=h;h2>=0;h2--)
 for (int w2=width-1;w2>=0;w2--)

 51

 pixels[w2][h2] = 100;
 HorLine = h;
 w = -1;
 h = -1;
 }//end if statement
 }//end second for loop
 }//end first for loop

 //Create new byte array for displaying newly create image
 byte[] HorizonImage = new byte[width*height];
 int position5=0;
 for(int h=0;h<height;h++)
 for(int w=0;w<width;w++)
 HorizonImage[position5++] = (byte)pixels[w][h];

 BufferedImage RegionImage2 = toImage(HorizonImage, width, height);
 //Identify target regions by creating averages and standard deviations of the specific

region and
 //comparing those values to the values for the ground using a given threshold.
 int AvgRegSig = 0;
 double RegStanDev = 0;
 int SumOfRegPixels = 0;
 int SumOfRegPixels2 = 0;
 double RegCalc = 0;
 double ratio = 0; //ratio of ground standard deviation to region standard deviation
 double minratio = 0; //miniumum ratio of ground standard deviation to region standard

deviation
 int keeptrack = 0; //keeps track of the number of iterations up to 3
 int AvgPixThresh = 150; //threshold value for average signature differences
 int AvgRatioThresh = 5;//threshold value for minimum ratio
 for(int h=height-1;h>HorLine;h--){
 for(int w=width-1;w>=0;w--){
 if (pixels[w][h] <= (AvgGndSig *0.80))
 pixels[w][h] = 0;
 else
 pixels[w][h] = AvgGndSig;
 }//end second for loop
 }//end first for loop

 //Create new byte array for displaying newly create image
 byte[] VisionBasedImage = new byte[width*height];
 int position=0;
 for(int h=0;h<height;h++)
 for(int w=0;w<width;w++)
 VisionBasedImage[position++] = (byte)pixels[w][h];

 BufferedImage VisionImage = toImage(VisionBasedImage, width, height);

 /********Begin Movement Criteria and Region Growing************************/

 /**
 * This method checks to see if there has been any movement within approx the last ten

seconds. The priority
 * checking is as follows:
 * 1 - See if the Average Ground Pixel Signature has changed by > +/-2 pixel values.
 * 2 - If not, then check to see if horizon line (place) has changed positions.

 52

 Note: if the horizon line is zero (i.e. the ground is the only thing in view), then
skip this step.

 * 3 - If not, then check to see if there are pixels in a user-defined region size that are
identical

 and are not equal to the average ground pixel signature and those pixels have
not changed by +/-5

 (or some other user-defined) pixel values, then there has not been any
movement in the last

 ten seconds.
 **/
 int counter = 0;
 if (SummedElapsedSec >= 2000 && SummedElapsedSec <= 3000)
 PrevAvgGndSig = AvgGndSig;
 PrevHorLine = HorLine;
 if (SummedElapsedSec >= 5000){
 SummedElapsedSec = 0; //reinitialize elapsed time
 if (Math.abs(PrevAvgGndSig - AvgGndSig) <= 2){
 LOG.info("First criteria true; proceed to next.");
 if (Math.abs(PrevHorLine - HorLine) <= 2){
 LOG.info("Second criteria true; procceed to next");
 position = 0;
 count = new TreeMap<Integer, Integer>();
 numberOfRegions = 0;
 Stack<Point> mustDo = new Stack<Point>();

 for(int h=height-1;h>HorLine;h--)
 for(int w=height-1;w>HorLine;w--){

 // Is this pixel unlabeled?
 if (labels[w][h] < 0){
 position++;
 numberOfRegions++;
 mustDo.add(new Point(w,h));
 labels[w][h] = numberOfRegions;

// label it as one on a new region
 count.put(numberOfRegions,1);
 counter=0; //reinitialize counter for

new label
 }//end if statement
 // Check all the pixels on the stack. There

may be more than one!
 while(mustDo.size() > 0){
 Point thisPoint = mustDo.get(0);

mustDo.remove(0);
 // Check 8-neighborhood
 for(int th=-1;th<=1;th++)
 for(int tw=-1;tw<=1;tw++){
 int rx =

thisPoint.x+tw;
 int ry = thisPoint.y+th;
 // Skip pixels

outside of the image.
 if ((rx < 0) || (ry < 0) ||

(ry>=height) || (rx>=width)) continue;
 if (labels[rx][ry] < 0)

 53

 if
(((pixels[thisPoint.x][thisPoint.y])-5<=pixels[rx][ry]) &&

 (pixels[rx][ry]<=(pixels[thisPoint.x][thisPoint.y])+5)

 &&
pixels[rx][ry] != AvgGndSig){

 mustDo.add(new Point(rx,ry));

 labels[rx][ry] = numberOfRegions;

 count.put(numberOfRegions, count.get(numberOfRegions)+1);

 //if
(pixels[rx][ry] != AvgGndSig){

 counter++;

 //}//end
if statement

 }//end data comparison for
region growing

 } // ended neighbors checking
 } // ended stack scan

 if (counter >= 8){
 //LOG.info("counter =" +counter);
 LOG.info("Third criteria true; you

are stuck");
 //MoveForward = false;
 BackandForth = true;
 Stand = true;
 counter = 0;
 }//end if statement

 } // ended image scan
 position = width*height;
 }//end if statement checking criteria three
 }// end if statement checking criteria two
 } //end if statement checking criteria one

 /**
 * This part of the code gives the output image.
 **/
 // Create a new image based on the labels array.
 byte[] imageDataSingleArray = new byte[width*height];
 int count=0;
 for(int h=0;h<height;h++)
 for(int w=0;w<width;w++)
 imageDataSingleArray[count++] = (byte)labels[w][h];

 /********End Movement Criteria and Region Growing Algorithm***********/

 /****************End Vision Based Terrrain Characterization************/

 // Create a Data Buffer from the values on the single image array.
 DataBuffer dbuffer = new DataBufferByte(imageDataSingleArray, width*height);

 54

 WritableRaster raster = Raster.createBandedRaster(dbuffer, width, height, 1, new
int[]{0},

 new int[]{0}, new
Point(0,0));

 ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
 ColorModel cm = new ComponentColorModel(cs, false, false,
 Transparency.OPAQUE,

DataBuffer.TYPE_BYTE);
 BufferedImage RegionImage = new BufferedImage(cm, raster, false, null);
 //BufferedImage RegionImage3 = toImage(imageDataSingleArray2, width, height);
 //display(RegionImage);
 try {
 ImageIO.write(image, "jpeg", new File("grayimage.jpeg"));
 ImageIO.write(VisionImage, "jpeg", new File("VisionImage.jpeg"));
 ImageIO.write(RegionImage2, "jpeg", new File("RegionImage.jpeg"));
 //ImageIO.write(WeightedMedianImage, "jpeg", new

File("WeightedMedianImage.jpeg"));
 }
 catch (IOException e){
 LOG.error("InterruptedException while grabbing pixels", e);
 }

 }//End handleFrame

 /**
 * This method returns a grayscale BufferedImage.
 */
 public BufferedImage toImage(byte[] pixels, int w, int h) {

 DataBuffer db = new DataBufferByte(pixels, w*h);
 WritableRaster raster = Raster.createInterleavedRaster(db, w, h, w, 1, new

int[]{0}, null);
 ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
 ColorModel cm = new ComponentColorModel(cs, false, false,
 Transparency.OPAQUE,

DataBuffer.TYPE_BYTE);
 return new BufferedImage(cm, raster, false, null);

 }

 /**
 * This method displays the newly created BufferedImage in a jframe
 */
 public void display(BufferedImage image) {

 final JFrame f = new JFrame("");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.getContentPane().add(new JLabel(new ImageIcon(image)));
 f.pack();
 SwingUtilities.invokeLater(new Runnable(){
 public void run() {
 f.setLocationRelativeTo(null);
 f.setVisible(true);
 }
 });
 }

 55

 /**
 * This method returns the number of regions on the segmetation task. This
 * number may be partial if the task has not finished yet.
 */
 public int getNumberOfRegions()
 {
 return numberOfRegions;
 }

 /**
 * This method returns the pixel count for a particular region or -1 if the
 * region index is outside of the range.
 */
 public int getPixelCount(int region)
 {
 Integer c = count.get(region);
 if (c == null) return -1; else return c;
 }

 /**
 * This method returns the estimated size (steps) for this task. We estimate it as
 * being the size of the image.
 */
 public long getSize()
 {
 return width*height;
 }

 /**
 * This method returns the position on the image processing task.
 */
 public long getPosition()
 {
 return position;
 }

 /**
 * This method returns true if the image processing task has finished.
 */
 public boolean isFinished()
 {
 return (position == width*height);
 }

 });//End getvideo function
 updateFramesPerSecondLabel();

 // LAYOUT GUI ELEMENTS

==
===============

 // create a JPanel to hold the buttons and text fields
 final JPanel buttonsAndTextFieldsPanel = new JPanel(new SpringLayout());
 for (int i = 0; i < NUM_BUTTONS_AND_TEXT_FIELDS; i++)
 {

 56

 buttonsAndTextFieldsPanel.add(buttons[i]);
 buttonsAndTextFieldsPanel.add(Box.createRigidArea(SPACER_DIMENSIONS));
 buttonsAndTextFieldsPanel.add(textFields[i]);
 }
 SpringLayoutUtilities.makeCompactGrid(buttonsAndTextFieldsPanel,
 NUM_BUTTONS_AND_TEXT_FIELDS, 3, // rows, cols
 0, 0, // initX, initY
 0, 5);// xPad, yPad

 // create a JPanel to hold the buttons, text fields, and color panel
 final JPanel videoButtonsPanel = new JPanel(new SpringLayout());
 videoButtonsPanel.add(savePictureButton);
 videoButtonsPanel.add(Box.createRigidArea(new Dimension(10, 10)));
 videoButtonsPanel.add(pauseResumeVideoButton);
 videoButtonsPanel.add(Box.createGlue());
 videoButtonsPanel.add(framesPerSecondLabel);
 SpringLayoutUtilities.makeCompactGrid(videoButtonsPanel,
 1, 5, // rows, cols
 0, 0, // initX, initY
 0, 0);// xPad, yPad

 // create a JPanel to hold the buttons, text fields, and color panel
 final JPanel videoPanel = new JPanel(new SpringLayout());
 videoPanel.add(getVideoStreamViewportComponent());
 videoPanel.add(Box.createRigidArea(SPACER_DIMENSIONS));
 videoPanel.add(videoButtonsPanel);
 SpringLayoutUtilities.makeCompactGrid(videoPanel,
 3, 1, // rows, cols
 0, 0, // initX, initY
 0, 0);// xPad, yPad

 // create a JPanel to hold video port and the buttons
 final JPanel controlsPanel = new JPanel(new SpringLayout());
 controlsPanel.add(getConnectDisconnectButton());
 controlsPanel.add(getConnectionStatePanel());
 controlsPanel.add(videoPanel);
 controlsPanel.add(buttonsAndTextFieldsPanel);
 SpringLayoutUtilities.makeCompactGrid(controlsPanel,
 2, 2, // rows, cols
 0, 0, // initX, initY
 10, 10);// xPad, yPad

 // create a JPanel to hold video port and the buttons
 final JPanel messageAreaButtonsPanel = new JPanel(new SpringLayout());
 messageAreaButtonsPanel.add(Box.createGlue());
 messageAreaButtonsPanel.add(clearMessageAreaButton);
 SpringLayoutUtilities.makeCompactGrid(messageAreaButtonsPanel,
 1, 2, // rows, cols
 0, 0, // initX, initY
 0, 0);// xPad, yPad

 // create a JPanel to hold video port and the buttons
 final JPanel messageArea = new JPanel(new SpringLayout());
 messageArea.add(messageTextAreaScrollPane);
 messageArea.add(messageAreaButtonsPanel);
 SpringLayoutUtilities.makeCompactGrid(messageArea,

 57

 2, 1, // rows, cols
 0, 0, // initX, initY
 0, 5);// xPad, yPad

 // Layout the main content pane using SpringLayout
 getMainContentPane().setLayout(new SpringLayout());
 getMainContentPane().add(controlsPanel);
 getMainContentPane().add(messageArea);
 SpringLayoutUtilities.makeCompactGrid(getMainContentPane(),
 2, 1, // rows, cols
 10, 10, // initX, initY
 10, 10);// xPad, yPad

 // ADDITIONAL GUI ELEMENT CONFIGURATION

==

 // pack the window so the GUI elements are properly sized
 pack();

 // limit the text area's size (must do this AFTER the call to pack())
 final Dimension messageTextAreaScrollPaneDimensions = new

Dimension(messageTextArea.getWidth(), messageTextArea.getHeight());
 messageTextAreaScrollPane.setPreferredSize(messageTextAreaScrollPaneDimensions);
 messageTextAreaScrollPane.setMinimumSize(messageTextAreaScrollPaneDimensions);
 messageTextAreaScrollPane.setMaximumSize(new Dimension(10000,

messageTextArea.getHeight()));

 pack();

 setLocationRelativeTo(null);// center the window on the screen

 setVisible(true);
 }

 private void updateFramesPerSecondLabel()
 {
 SwingUtilities.invokeLater(fpsDisplayRunnable);
 }

 /** Appends the given <code>message</code> to the message text area */
 private void appendMessage(final String message)
 {
 SwingUtilities.invokeLater(
 new Runnable()
 {
 public void run()
 {
 messageTextArea.append(dateFormatter.format(new Date()) + message +

LINE_SEPARATOR);
 messageTextArea.setCaretPosition(messageTextArea.getDocument().getLength());
 }
 });
 }

 /** Retrieves the value from the specified text field as an <code>int</code>. */
 @SuppressWarnings({"UnusedCatchParameter"})

 58

 private int getTextFieldValueAsInt(final int textFieldIndex)
 {
 final int i;
 final String str = getTextFieldValueAsString(textFieldIndex);
 try
 {
 i = Integer.parseInt(str);
 }
 catch (NumberFormatException e)
 {
 appendMessage("NumberFormatException while trying to convert [" + str + "] into an int.

Returning 0 instead.");
 return 0;
 }
 return i;
 }

 /** Retrieves the value from the specified text field as a {@link String}. */
 @SuppressWarnings({"UnusedCatchParameter"})
 private String getTextFieldValueAsString(final int textFieldIndex)
 {
 if (SwingUtilities.isEventDispatchThread())
 {
 final String textFieldValue;
 try
 {
 final String text1 = textFields[textFieldIndex].getText();
 textFieldValue = (text1 != null) ? text1.trim() : null;
 }
 catch (Exception e)
 {
 appendMessage("Exception while getting the value from text field " + textFieldIndex + ".

Returning null instead.");
 return null;
 }
 return textFieldValue;
 }
 else
 {
 final String[] textFieldValue = new String[1];
 try
 {
 SwingUtilities.invokeAndWait(
 new Runnable()
 {
 public void run()
 {
 textFieldValue[0] = textFields[textFieldIndex].getText();
 }
 });
 }
 catch (Exception e)
 {
 LOG.error("Exception while getting the value from text field " + textFieldIndex, e);
 appendMessage("Exception while getting the value from text field " + textFieldIndex + ".

Returning null instead.");

 59

 return null;
 }

 return textFieldValue[0];
 }
 }

 private class PauseResumeVideoAction extends AbstractTimeConsumingAction
 {
 private PauseResumeVideoAction()
 {
 super(PrototypingPlayground.this);
 }

 protected void executeGUIActionBefore()
 {
 PrototypingPlayground.this.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 if (isVideoStreamPaused)
 {
 pauseResumeVideoButton.setText("Pause Video");
 }
 else
 {
 pauseResumeVideoButton.setText("Resume Video");
 }
 }

 protected Object executeTimeConsumingAction()
 {
 if (isVideoStreamPaused)
 {
 getVideoStreamPlayer().resumeVideoStream();
 }
 else
 {
 getVideoStreamPlayer().pauseVideoStream();
 }
 return null;
 }

 protected void executeGUIActionAfter(final Object resultOfTimeConsumingAction)
 {
 isVideoStreamPaused = !isVideoStreamPaused;

PrototypingPlayground.this.setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
 fpsTimestamp = System.currentTimeMillis();
 fpsCount = 0;
 fps = 0;
 updateFramesPerSecondLabel();
 }
 }

 private final class GetQwerkStateAction extends AbstractTimeConsumingAction
 {
 private GetQwerkStateAction()
 {

 60

 super(PrototypingPlayground.this);
 }

 protected Object executeTimeConsumingAction()
 {
 return getQwerkController().getQwerkState();
 }

 protected void executeGUIActionAfter(final Object resultOfTimeConsumingAction)
 {
 // read the values from QwerkState and format it nicely for display in the message area
 final QwerkState state = (QwerkState)resultOfTimeConsumingAction;
 if (state != null)
 {
 final StringBuffer s = new StringBuffer("Qwerk State:" + LINE_SEPARATOR);
 if (state.analogIn != null)
 {
 s.append(" Analog Inputs:

").append(ArrayUtils.arrayToString(state.analogIn.analogInValues)).append(LINE_SEPARATOR);
 }
 if (state.button != null)
 {
 s.append(" Button State:

").append(state.button.buttonStates[0]).append(LINE_SEPARATOR);
 }
 if (state.digitalIn != null)
 {
 s.append(" Digital Inputs:

").append(ArrayUtils.arrayToString(state.digitalIn.digitalInStates)).append(LINE_SEPARATOR);
 }
 if (state.motor != null)
 {
 s.append(" Motor Currents:

").append(ArrayUtils.arrayToString(state.motor.motorCurrents)).append(LINE_SEPARATOR);
 s.append(" Motor Positions:

").append(ArrayUtils.arrayToString(state.motor.motorPositions)).append(LINE_SEPARATOR);
 s.append(" Motor Velocities:

").append(ArrayUtils.arrayToString(state.motor.motorVelocities)).append(LINE_SEPARATOR);
 s.append(" Motor Done:

").append(ArrayUtils.arrayToString(state.motor.motorDone)).append(LINE_SEPARATOR);
 }
 if (state.servo != null)
 {
 s.append(" Servo Positions:

").append(ArrayUtils.arrayToString(state.servo.servoPositions)).append(LINE_SEPARATOR);
 }
 if (state.battery != null)
 {
 s.append(" Battery Voltage:

").append(state.battery.batteryVoltage).append(LINE_SEPARATOR);
 }

 // display the state in the message area
 appendMessage(s.toString());
 }
 else

 61

 {
 appendMessage("QwerkState is null!");
 }
 }
 }

 private final class MoveMotorAction extends AbstractTimeConsumingAction
 {
 private final int buttonIndex;

 private MoveMotorAction(final int buttonIndex)
 {
 super(PrototypingPlayground.this);
 this.buttonIndex = buttonIndex;
 }

 protected Object executeTimeConsumingAction()
 {
 // get the motor index
 final int motorIndex = getTextFieldValueAsInt(buttonIndex);

 if (buttonIndex == 1) //move forward
 {

 while (MoveForward == true){
 while(BackandForth == false){
 getQwerkController().getMotorService().setMotorVelocitiesByIds(0, 5000, 1, -

5000);
 }//end while for forward movement
 if(BackandForth == true){
 for(int a = 0; a<3; a++){
 // stop the motor
 getQwerkController().getMotorService().stopMotors(0, 1);
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }
 //for (int i = 0; i<2; i++){

 /*********Begin Walking Gait***********************/
 //Move legs to position for standing
 boolean[] servoMask = { true, true, true, true, true, true, true, true, true,

true, true, true,

 true, true, true, true };
 int[] positions = { 70, 140, 128, 70, 0, 70, 0, 128, 90, 200, 128, 90, 200,

90, 40, 128 };
 int[] velocities = { 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,

40, 40};

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 62

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }
 //Stand
 positions = new int[] { 0, 140, 128, 0, 0, 0, 0, 128, 255, 200, 128, 255,

200, 255, 40, 128 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 /*****Begin Left Side Movement********************/
 //Pull front left leg up and move forward
 positions = new int[] { 75, 200, 120, 0, 0, 0, 0, 128, 255, 200, 128, 255,

200, 255, 40, 128 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Put front left leg down in forward position
 positions = new int[] { 0, 200, 120, 0, 0, 0, 0, 128, 255, 200, 128, 255,

200, 255, 40, 128 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)

 63

 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Pull middle left leg up and move forward
 positions = new int[] { 0, 200, 10, 70, 100, 0, 0, 120, 255, 200, 120,

255, 200, 255, 30, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Put middle left leg down in forward postion
 positions = new int[] { 0, 200, 120, 0, 100, 0, 0, 120, 255, 200, 120,

255, 200, 255, 30, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Pull back left leg up and move forward
 positions = new int[] { 0, 200, 120, 0, 100, 70, 100, 120, 255, 200, 120,

255, 200, 255, 30, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Put back left leg down in forward postion

 64

 positions = new int[] { 0, 200, 120, 0, 100, 0, 100, 120, 255, 200, 120,
255, 200, 255, 30, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }
 /***************End Left Side Movement**************/

 /**************Begin Right Side Movement************/
 //Pull front right leg up and move forward
 positions = new int[] { 0, 200, 120, 0, 0, 0, 0, 128, 255, 200, 128, 255,

200, 90, 0, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Put front right leg down in forward position
 positions = new int[] { 0, 200, 120, 0, 0, 0, 0, 128, 255, 200, 128, 255,

200, 255, 0, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Pull middle right leg up and move forward
 positions = new int[] { 0, 200, 120, 0, 100, 0, 100, 120, 255, 200, 120,

90, 100, 255, 0, 120 };

 65

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Put middle right leg down in forward position
 positions = new int[] { 0, 200, 120, 0, 100, 0, 100, 120, 255, 200, 120,

255, 100, 255, 0, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Pull back right leg up and move forward
 positions = new int[] { 0, 200, 120, 0, 100, 0, 100, 120, 90, 100, 120,

255, 100, 255, 0, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Put back right leg down in forward position
 positions = new int[] { 0, 200, 120, 0, 100, 0, 100, 120, 255, 100, 120,

255, 100, 255, 0, 120 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(2000);

 66

 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }
 /**************End Back Right Leg Movement**************/

 /****************Push Forward with front Legs**********/
 positions = new int[] { 0, 0, 128, 0, 0, 0, 0, 128, 255, 255, 128, 255,

255, 255, 255, 128 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }
 /************End Push Forward with all Legs*****/

 //Return legs to original position (right side first)
 positions = new int[] { 0, 0, 128, 0, 0, 0, 0, 128, 90, 100, 128, 90, 100,

90, 100, 128 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 //Return legs to original position (now the left side too)
 positions = new int[] { 70, 70, 128, 70, 70, 70, 70, 128, 90, 100, 128,

90, 100, 90, 100, 128 };

 getQwerkController().getServoService().setPositionsWithVelocities(servoMask,

 positions, velocities);
 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);

 67

 }
 /****************End Walking Gait*****************/

 }//end for loop
 BackandForth = false;
 }//end backandforth if statement
 }//end wheel movement while loop
 }//end buttonIndex == 1
 else if (buttonIndex == 2) //move in reverse
 {
 getQwerkController().getMotorService().setMotorVelocitiesByIds(0, -5000, 1, 5000);
 }
 else if (buttonIndex == 22) //turn left
 {
 getQwerkController().getMotorService().setMotorVelocitiesByIds(0, 5000, 1, 2500);
 }
 else //turn right
 {
 getQwerkController().getMotorService().setMotorVelocitiesByIds(0, -2500, 1, -5000);
 }
 // sleep for 20 seconds
 try
 {
 Thread.sleep(20000);
 }
 catch (InterruptedException e1)
 {
 LOG.error("InterruptedException while sleeping", e1);
 }

 // stop the motor
 getQwerkController().getMotorService().stopMotors(0, 1);

 return null;
 }
 }

 private final class MoveServoAction extends AbstractTimeConsumingAction
 {
 private final int buttonIndex;
 private final int servoIndex;

 private MoveServoAction(final int buttonIndex, final int servoIndex)
 {
 super(PrototypingPlayground.this);
 this.buttonIndex = buttonIndex;
 this.servoIndex = servoIndex;
 }

 protected Object executeTimeConsumingAction()
 {
 // get the desired servo position
 final int servoPosition = getTextFieldValueAsInt(buttonIndex);

 // set the servo position

 68

 getQwerkController().getServoService().setPosition(servoPosition, servoIndex);

 return null;
 }
 }

 private final class SingleDigitalOutAction extends AbstractTimeConsumingAction
 {
 private final boolean digitalOutState;
 private final int buttonIndex;

 private SingleDigitalOutAction(final int buttonIndex, final boolean digitalOutState)
 {
 super(PrototypingPlayground.this);
 this.buttonIndex = buttonIndex;
 this.digitalOutState = digitalOutState;
 }

 protected Object executeTimeConsumingAction()
 {
 // get the desired digital out port
 final int digitalOutPort = getTextFieldValueAsInt(buttonIndex);

 appendMessage("Sending [" + digitalOutState + "] to digital out port [" + digitalOutPort + "]...");

 // set the digital out
 getQwerkController().getDigitalIOService().setOutputs(digitalOutState, digitalOutPort);

 appendMessage("Done sending digital out command!");

 return null;
 }
 }

 private class SpeedTestAction extends AbstractTimeConsumingAction
 {
 private static final int NUM_CALLS = 50;

 private SpeedTestAction()
 {
 super(PrototypingPlayground.this);
 }

 protected Object executeTimeConsumingAction()
 {
 final long[] millisecondsPerCall = new long[NUM_CALLS];

 final QwerkController qwerkController = getQwerkController();

 for (int i = 0; i < NUM_CALLS; i++)
 {
 final long startTime = System.currentTimeMillis();
 qwerkController.getQwerkState();
 final long endTime = System.currentTimeMillis();
 millisecondsPerCall[i] = endTime - startTime;
 }

 69

 return millisecondsPerCall;
 }

 protected void executeGUIActionAfter(final Object resultOfTimeConsumingAction)
 {
 final long[] millisecondsPerCall = (long[])resultOfTimeConsumingAction;
 final StringBuffer str = new StringBuffer("Milliseconds per call: " + LINE_SEPARATOR);
 int sum = 0;
 for (int i = 0; i < NUM_CALLS; i++)
 {
 str.append(" ").append(millisecondsPerCall[i]).append(LINE_SEPARATOR);
 sum += millisecondsPerCall[i];
 }
 str.append(" Total: ").append(sum).append(" ms");
 str.append(" Average: ").append(sum / (double)NUM_CALLS).append(" ms");
 appendMessage(str.toString());
 }
 }

 private final class FPSDisplayRunnable implements Runnable
 {
 private final NumberFormat decimalFormatter = new DecimalFormat("#,##0.0");

 public void run()
 {
 PrototypingPlayground.this.framesPerSecondLabel.setText(decimalFormatter.format(fps) + "

fps");
 }
 }
 }//End PrototypingPlayground

 70

APPENDIX B

HIGH-LEVEL PROGRAM FLOW CHART

Move Forward using Wheels

Average Ground
Signature Changed?

No

Deploy Legs/Stand

Commence Walking
Mechanism

Yes

Move Left Front
Leg forward

Move Right Front
Leg forward

Push Forward
with all Legs

Return Legs to Original
Position

Position of Horizon
Line Shifted?

Position of Landmark
Shifted?

No

Yes

Yes

No

 71

APPENDIX C

THE CHARMED LABS QWERK CONTROLLER

Hardware [27]

• 200 MHz ARM9 RISC processor with MMU and hardware floating point unit
• 32 Mbytes SDRAM, 16 Mbytes flash memory
• Xilinx Spartan 3E FPGA for custom I/O peripherals
• Linux 2.6 installed
• WiFi wireless networking support
• WebCam video input support
• 4 Amp switching power supply, 90% efficient, 7 to 30 Volt input range
• 5.1� x 5.8� x 1.3�, 11.8 Ozs

I/O

• 4 closed-loop 2.0 Amp motor controllers (supports both quadrature encoder and
back-EMF �sensorless� feedback)

• 16 RC-servo controllers
• 16 programmable digital I/Os
• 8 12-bit analog inputs
• 2 RS-232 ports
• USB 2.0 host ports for connecting standard USB PC peripherals
• 10/100BT Ethernet port
• Built-in audio amp for playing MP3 and WAV files

 72

APPENDIX D

THE LOGITECH QUICKCAM® COMMUNICATE STXTM

System Requirements [28]

• Windows® 2000, Windows® XP
Pentium® 4 1.4 GHz or AMD Athlon� 1GHz processor (Pentium® 4 2.4
GHz recommended)
128MB RAM (256 MB recommended)

• Windows Vista�
Pentium® 4 2.4 GHz (2.8 GHz recommended)

• 512MB RAM (1GB recommended)
• 200 MB hard drive
• CD-ROM drive
• 16-bit color display adapter
• OS compatible sound card and speakers
• 1.1 or 2.0 USB port

Technical Specifications

Hardware

• High quality VGA sensor with RightLight� Technology
• Video capture: Up to 640 x 480
• Still image capture: Up to 1.3 megapixel with software enhancement
• Built-in microphone with RightSound� Technology
• Frame rate: Up to 30 frames per second with recommended system
• Adjustable base fits any monitor or notebook
• USB 2.0 certified
• Optics: Fixed Focus

 73

APPENDIX E

HS-322HD STANDARD DELUXE SERVO

 74

APPENDIX F

HS-645MG STANDARD DELUXE HIGH TORQUE SERVO

 75

APPENDIX G

HG16-060-AA DC MOTORS

(Provided by COPAL- producer of gear motors)

 76

APPENDIX H

ROBOT PRICE LIST

Item Company
Price

per Unit
of

Units
Total
Price

Qwerk Processor Charmed Labs $349.00 1 $349.00
Logitech Communicate STX Camera Amazon $40.59 1 $40.59
AirLink AWLL3026 Ultra Slim USB 2.0 Adapter Amazon $35.00 1 $35.00
12V 4200mAh Flat NiMH Battery Pack for DC
Power

Total Power Solution - All
Battery.com $48.99 1 $48.99

 Total for Current Parts $473.58
Parts from original design
Servo Controller SSC-32 Lynxmotion $39.95 1 $39.95
Lite Flite" Foam Tires (pair) Robot Marketplace $4.79 2 $9.58
Wheel Hub/Prop Adapter, for 1/8" & 3mm shaft Robot Marketplace $4.95 4 $19.80
Motor Bracket Mounts Robot Marketplace $8.99 4 $35.96
COPAL 60:1 Gearmotor Robot Marketplace $21.99 4 $87.96
Hitec Standard Servo - Ball Bearing Robot Marketplace $7.99 16 $127.84

Hitec HS-5645MG High-Torque 2BB MG Servo Lynxmotion
Package
of 6 6 $239.94

Dubro Full Threaded Rod 4-40 12" Tower Hobbies $14.39 1 $14.39
Dubro Threaded Coupler 4-40 (2) Tower Hobbies $1.49 3 $4.47
Dubro Heavy Duty Ball Links 4-40 (12) Tower Hobbies $19.99 1 $19.99
 Total for Robot Parts to Purchase $1,013.52

 77

APPENDIX I

UPPER CRITICAL VALUES OF t DISTRIBUTION WITH φ
DEGRESS OF FREEDOM [29]

Probability of exceeding the critical value

 φ 0.10 0.05 0.025 0.01 0.005 0.001

 1. 3.078 6.314 12.706 31.821 63.657 318.313
 2. 1.886 2.920 4.303 6.965 9.925 22.327
 3. 1.638 2.353 3.182 4.541 5.841 10.215
 4. 1.533 2.132 2.776 3.747 4.604 7.173
 5. 1.476 2.015 2.571 3.365 4.032 5.893
 6. 1.440 1.943 2.447 3.143 3.707 5.208
 7. 1.415 1.895 2.365 2.998 3.499 4.782
 8. 1.397 1.860 2.306 2.896 3.355 4.499
 9. 1.383 1.833 2.262 2.821 3.250 4.296
 10. 1.372 1.812 2.228 2.764 3.169 4.143
 11. 1.363 1.796 2.201 2.718 3.106 4.024
 12. 1.356 1.782 2.179 2.681 3.055 3.929
 13. 1.350 1.771 2.160 2.650 3.012 3.852
 14. 1.345 1.761 2.145 2.624 2.977 3.787
 15. 1.341 1.753 2.131 2.602 2.947 3.733
 16. 1.337 1.746 2.120 2.583 2.921 3.686
 17. 1.333 1.740 2.110 2.567 2.898 3.646
 18. 1.330 1.734 2.101 2.552 2.878 3.610
 19. 1.328 1.729 2.093 2.539 2.861 3.579
 20. 1.325 1.725 2.086 2.528 2.845 3.552
 21. 1.323 1.721 2.080 2.518 2.831 3.527
 22. 1.321 1.717 2.074 2.508 2.819 3.505
 23. 1.319 1.714 2.069 2.500 2.807 3.485
 24. 1.318 1.711 2.064 2.492 2.797 3.467
 25. 1.316 1.708 2.060 2.485 2.787 3.450
 26. 1.315 1.706 2.056 2.479 2.779 3.435
 27. 1.314 1.703 2.052 2.473 2.771 3.421
 28. 1.313 1.701 2.048 2.467 2.763 3.408
 29. 1.311 1.699 2.045 2.462 2.756 3.396
 30. 1.310 1.697 2.042 2.457 2.750 3.385
 31. 1.309 1.696 2.040 2.453 2.744 3.375
 32. 1.309 1.694 2.037 2.449 2.738 3.365
 33. 1.308 1.692 2.035 2.445 2.733 3.356
 34. 1.307 1.691 2.032 2.441 2.728 3.348
 35. 1.306 1.690 2.030 2.438 2.724 3.340
 36. 1.306 1.688 2.028 2.434 2.719 3.333
 37. 1.305 1.687 2.026 2.431 2.715 3.326
 38. 1.304 1.686 2.024 2.429 2.712 3.319
 39. 1.304 1.685 2.023 2.426 2.708 3.313
 40. 1.303 1.684 2.021 2.423 2.704 3.307
 41. 1.303 1.683 2.020 2.421 2.701 3.301
 42. 1.302 1.682 2.018 2.418 2.698 3.296
 43. 1.302 1.681 2.017 2.416 2.695 3.291
 44. 1.301 1.680 2.015 2.414 2.692 3.286
 45. 1.301 1.679 2.014 2.412 2.690 3.281

 78

REFERENCES

1. Johns, B., Design and Control of a New Reconfigurable Robotic Mobility

Platform, in School of Mechanical Engineering. 2007, Georgia Institute of
Technology: Atlanta, GA. p. 112.

2. Matthies, L., et al., Computer Vision in the Mars Exploration Rover (MER)
Mission, in Computational Vision in Neural and Machine Systems. 2007,
Cambridge University Press. p. 71-84.

3. Milner, A.D. and M.A. Goodale, The Visual Brain in Action. 1995: Oxford
University Press.

4. Chao, L.L. and A. Martin, Representation of manipulable man-made objects in
dorsal stream. NeuroImage, 2000(12): p. 478-484.

5. Howard, A. and H. Seraji, "Vision-Based Terrain Characterization and
Traversability Assessment". Journal of Robotic Systems, 2001. 18(10): p. 10.

6. Ciftcioglu, O., M.S. Bittermann, and I.S. Sariyildiz, "Towards Computer-Based
Perception by Modeling Visual Perception: A Probabilistic Theory", in IEEE
International Conference on Systems, Man and Cybernetics, 2006. SMC '06.
2006: Taipei. p. 5152-5159.

7. Ferreira, F., V. Santos, and J. Dias. "Landmark Detection for Vision-based
Navigation using Multi-Scale Image Techniques". in Proceedings of the World
Automation Congress, 2004. 2004. Seville.

8. Happold, M. and M. Ollis, "Autonomous Learning of Terrain Classification
within Imagery for Robot Navigation", in IEEE International Conference on
Systems, Man and Cybernetics, 2006. SMC '06 2006: Taipei. p. 260-266.

9. Kim, D., et al., "Tracking Control of a Moving Object for Robokers with Stereo
Visual Feedback", in IEEE International Conference on Integration Technology,
2007. ICIT '07. 2007: Shenzhen. p. 52-57.

10. Song, X., et al., "Visual Odometry for Velocity Estimation of UGVs", in
International Conference on Mechatronics and Automation, 2007. ICMA 2007.
2007: Harbin. p. 1611-1616.

11. Sun, T.-Y., et al. "The study on intelligent vehicle collision-avoidance system with
vision perception and fuzzy decision making". in IEEE Proceedings on Intelligent
Vehicles Symposium, 2005. 2005.

12. Terzopoulos, D. and T.F. Rabie. "Animat vision: Active vision in artificial
animals". in Proceedings of the Fifth International Conference on Computer
Vision, 1995. 1995. Cambridge, MA.

13. Balch, T. and R. Arkin. Avoiding the past: a simple but effective strategy for
reactive navigation. in Robotics and Automation, 1993. Proceedings., 1993 IEEE
International Conference on. 1993. Atlanta, GA.

14. Talukder, A., et al. "Autonomous terrain characterisation and modelling for
dynamic control of unmanned vehicles". in Intelligent Robots and System, 2002.
IEEE/RSJ International Conference on 2002. Pasadena, CA.

15. Xiangjun, G., et al., "The Path Planning of Virtual Endoscopy Based on Image
Segmentation", in Control Conference, 2007. CCC 2007. Chinese. 2007: Hunan.

 79

16. Castano, A. and L. Matthies, "Foliage Discrimination using a Rotating Ladar", in
Proceedings of the 2003 IEEE International Conference on Robotics and
Automation. 2003: Taipei, Taiwan.

17. Maimone, M., et al. (2004) "Autonomous Navigation Results from the Mars
Exploration Rover (MER) Mission". NASA Jet Propulsion Laboratory Volume,

18. Volpe, R., Navigation Results from Desert Field Tests of the Rocky 7 Mars Rover
Prototype. The International Journal of Robotics Research, 1999. 18(7): p. 14.

19. Kennedy, B., et al., "LEMUR: Legged Excursion Mechanical Utility Rover",
NASA Jet Propulsion Laboratory, California Institute of Technology: Pasadena,
CA. p. 11.

20. Biesiadecki, J.J. and M.W. Maimone, The Mars Exploration Rover surface
mobility flight software driving ambition, in 2006 IEEE Aerospace Conference.
2006: Pasadena, CA, USA.

21. Li, R., et al., "Rover Localization and Landing Site Mapping Technology for the
2003 Mars Exploration Rover Mission". Journal of Photogrammetric Engineering
and Remote Sensing, 2004.

22. Goldber, S., M. Maimone, and L. Matthies, "Stereo Vision Rover Navigation
Software for Planetary Exploration", in IEEE Aerospace Conference. 2002: Big
Sky, Montana.

23. Olson, C., L. Matthies, and M. Schoppers, "Rover Navigation using Stereo Ego-
motion". Robotics and Autonomous Systems, 2003. 43(4).

24. Wilcox, B. and T. Nguyen, "Sojourner on Mars and Lessons Learned for Future
Planetary Rovers", in 28th International Conference on Environmental Systems.
1998: Danvers, MA.

25. Bickler, D., "A New Family of JPL Planetary Surface Vehicles", in Missions,
Technologies, and Design of Planetary Mobile Vehicles. 1992: Toulouse, France.
p. 301-306.

26. Schneider, S., V. Chen, and G. Pardo-Castellote, "The ControlShell Component-
Based Real-Time Programming System", in IEEE International Conference on
Robotics and Automation. 1995. p. 2381 - 2388.

27. Charmed Labs, L. CharmedLabs - Qwerk. 2006 [cited 2008 March 19];
Available from:
http://www.charmedlabs.com/index.php?option=com_content&task=view&id=29
.

28. Corp., L. Logitech > Webcams + Communications > Webcams > QuickCam®.
2008 [cited 2008 March 18]; Available from:
http://www.logitech.com/index.cfm/webcam_communications/webcams/devices/
352&cl=us,en.

29. Pham, H., ed. Springer Handbook of Engineering Statistics. 2006, Springer-
Verlag London Limited.

30. Howard, A. and L. Parker, "A hierarchical strategy for learning of robot walking
strategies in natural terrain environments", in 2007 IEEE International
Conference on Systems, Man and Cybernetics. 2007: Montreal, QC, Canada. p.
2336-2341.

