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SUMMARY 

One of the central questions in modern biology is to understand the molecular basis 

of phenotypic variation. This question can be partially answered by examining 

(epi)genomic variation between species or between individuals within the same species 

exhibiting phenotypic variation. The aim of my thesis is to study the implication of 

epigenetic modifications on phenotypic traits and evolution, using DNA methylation data.  

The human brain is a great example of evolutionary innovation at multiple levels, 

having undergone dramatic expansion accompanied by structural and molecular 

reorganization in a relatively short geological time. At the same time, it is becoming clear 

that some human brain specific traits such as disease vulnerability can be better understood 

in the context of their evolutionary origins. In chapter 2 and 3, we elucidated the 

evolutionary origins of cell-type-specific epigenetic modifications in the human brain, by 

performing a comparative whole genome methylome analysis of human, chimpanzee, and 

rhesus macaque brains. We used fluorescence-activated sorted nuclei of neurons and 

oligodendrocytes from the prefrontal cortex, a region involved in cognition and 

neuropsychiatric diseases, to compare cell-type specific methylomes of human and non-

human primates.  

In chapter 2, we show that human brains have overall reduced CG methylation 

compared to brains of non-human primates. The reduction of CG methylation in human 

brains contributed to human brain-specific active regulatory landscape. We discovered that 

human neuron-specific CG hypomethylation significantly contributes to susceptibility to 

schizophrenia. Interestingly, cytosine methylation in different contexts (CG vs. CH) has 



 xi 

played distinctive roles during human brain evolution. Specifically, in chapter 3, we show 

that CH methylation has increased along the evolution of human brains. The increase of 

CH methylation in human brains is associated with the epigenetic definition of neuronal 

subtypes. These novel findings link the epigenetic evolution of human brains to regulation 

and disease susceptibility.  

It has been known for several decades that aging has a profound influence on DNA 

methylation. However, genomic patterns of brain DNA methylation with aging at cell-type 

resolution remain not well understood. In chapter 4, we examined aging-associated DNA 

methylation changes at the whole-genome scale and at cellular resolution. Our 

comprehensive analyses discovered that age explains a substantial proportion of DNA 

methylation variation observed in human brains. Moreover, we show that CpG methylation 

that varies with aging exhibits highly cell-type-specific patterns. The cell-type-specific 

age-associated methylated loci significantly contribute to genetic risk for brain disorders. 

Since molecular mechanisms of aging may share common evolutionary 

characteristics across closely related species, aging studies from non-human primates can 

be useful for studying human aging. In chapter 5, using DNA methylation data from 

baboons, we developed a DNA methylation-based age predictor. Using a few hundred of 

CpG positions, we show that the baboon age predictor accurately predicts DNA 

methylation ages similar to the chronological ages. Also, we showed that early social 

rearing experiences differentially affect rates of epigenetic aging. 



 xii 

Together, these comprehensive epigenome studies will shed light on our 

understanding of the epigenetic evolution of the human brain and aging epigenetic 

programs in human brains. 
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CHAPTER 1. INTRODUCTION 

One of the most distinguishing traits of the human lineage is its large and complex 

brain. The size of the human brain is more than three times larger than that of the 

chimpanzee when considering body size (Herculano-Houzel 2012). A number of 

comparative studies have shown that the human brain exhibits the species-specific shapes 

of neuroepithelial cells and neuron morphology (Rakic 1995, DeFelipe, Alonso-Nanclares 

et al. 2002, Rakic 2007). Also, the human brain shows a substantial increase in a total 

number of neurons compared to chimpanzees and gorillas (de Sousa, Sherwood et al. 2010, 

Benito-Kwiecinski, Giandomenico et al. 2021).  

Even though the brains of great apes have been increasing during evolution, the 

human brain has experienced a recent acceleration of size expansion, considering 

divergence time between humans and chimpanzees (approximately 5-6 million years ago) 

(Herculano-Houzel 2012). Analyses of hominin skull fossils show that the average brain 

size of human ancestors has gradually and continuously increased over the past 3 million 

years, and the size of the brain became similar to that of modern humans from about 

500,000 years ago (Kappelman 1996, Du, Zipkin et al. 2018). Thus, the expansion of the 

human brain has occurred in a relatively short geological time. 

Genes expressed in the brain are known to evolve slowly compared to those in the 

other regions. Because the human brain had evolved rapidly, when the analysis of the 

sequence evolution of the human brain first began, an initial hypothesis was that brain-

expressed genes in the human brain might show substantial changes in DNA sequence level. 

Some genes showed this pattern. For example, the SLIT-ROBO Rho GTPase-activating 
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protein 2 has experienced multiple rounds of human-specific duplications and has an 

important role in brain size and cognitive abilities in mammals (Guerrier, Coutinho-Budd 

et al. 2009, Sudmant, Kitzman et al. 2010, Dennis, Nuttle et al. 2012). Also, many human 

accelerated regions reside on the genes that produce proteins that contribute to the genetic 

risk of neuropsychiatric disorders and neurodegenerative diseases (Pollard, Salama et al. 

2006, Capra, Erwin et al. 2013, Hubisz and Pollard 2014). However, the brain genes show 

the overall slow rate of evolution in humans than in chimpanzees (Wang, Chien et al. 2007). 

This result might appear to be contradictory to the finding of the human brain-expressed 

genes showing faster evolution in gene expression.   

Previous studies have shown that genomic differences between humans and other 

apes are enriched in non-coding parts of the genome (Shulha, Crisci et al. 2012, Prescott, 

Srinivasan et al. 2015, Mendizabal, Shi et al. 2016). Thus, it has been proposed that human-

specific traits are enriched within regulatory elements in which gene expression is 

regulated by various epigenetic modifications (Mendizabal, Shi et al. 2016, Vermunt, Tan 

et al. 2016, Castelijns, Baak et al. 2020). Epigenetic change, which is a chemical 

modification of the genome and of proteins that package the genome, is another important 

aspect of understanding the human brain evolution and genetic and gene expression 

changes  (Razin and Riggs 1980, Vaillant and Paszkowski 2007, Lister, Mukamel et al. 

2013). Since epigenetic modification is critical for many regulatory processes, epigenetic 

changes along the evolution of the human brain can reveal yet unknown information on 

important regulatory changes. In addition, epigenetic changes are often implicated in 

neuropsychiatric disorders, including some thought to be specific to humans, such as 

schizophrenia (Feng, Chang et al. 2005, Feng and Fan 2009). To understand the 
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contribution of epigenetics to the origins and molecular mechanisms of brain-specific gene 

regulation and neuropsychiatric disorders, we need to extend our knowledge of 

evolutionary changes in epigenome during human evolution. 

In this thesis, we specifically focused on one type of epigenetic modification called 

DNA methylation. This refers to the addition of methyl group to cytosines in the genome, 

which is facilitated by DNA methyltransferases (DNMTs) (Moore, Le et al. 2013). DNA 

methylation is believed to affect gene expression, directly and indirectly (Holliday and 

Pugh 1975). DNA methylation is also known to suppress transposable elements and 

maintain tight packaging of genomic DNA (Hutnick, Huang et al. 2010). Dysregulation of 

DNA methylation has been reported in many diseases, including cancer and 

neuropsychiatric disorders  (Aran, Sabato et al. 2013, Mendizabal, Berto et al. 2019). Many 

human cells are heavily modified by DNA methylation, and patterns of DNA methylation 

vary across different cell types (Mendizabal, Berto et al. 2019). A limitation of many 

previous studies is that they often used bulk tissues while DNA methylation between 

different cell types is known to show substantially divergent patterns. Consequently, 

comparing DNA methylation from bulk tissue can be biased toward specific cell types and 

generate false positives and false negatives due to the heterogeneity of brain tissue and the 

different relative cell compositions of other species. Thus, it is necessary to perform a cell-

type-specific DNA methylation study to clearly understand the functional roles and 

implications of DNA methylation changes that occurred in the human lineage.  

In chapter 2, we perform DNA methylation analyses of neurons and 

oligodendrocytes sorted from bulk brain samples. For single nucleotide resolution 

methylation maps, we utilized the whole genome bisulfite sequencing (WGBS) approach. 
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We perform comprehensive analyses of whole-genome methylomes from humans, 

chimpanzees, and rhesus macaques, thus elucidating evolutionary changes of DNA 

methylation during human brain evolution with unprecedented cell-type resolution. 

Evolutionary alterations in DNA methylation of closely related species can be an extremely 

powerful tool for deciphering the genotype-to-phenotype connections and providing the 

causal link between evolution and disease vulnerability. We hypothesize that DNA 

methylation changes in the human brain since the divergence of humans and chimpanzees 

may have affected human brain-specific regulation and contributed to genetic risk to 

neuropsychiatric disorders. To test our hypotheses, we investigate the association of 

species-specific DNA methylation changes with neuropsychiatric diseases by examining 

genetic risk loci resulting from genome-wide association studies. 

Although DNA methylation at CG context is a dominant form of methyl-cytosines, 

DNA methylation at non-CG contexts is also abundant in a few cell types, especially 

enriched in neurons (Lister, Mukamel et al. 2013, Stroud, Su et al. 2017). In chapter 3, we 

investigate DNA methylation changes in a non-CG context, namely CH methylation, 

during recent human brain evolution. Using WGBS data, we compare the human brains to 

chimpanzee and rhesus macaque brains both in neurons and oligodendrocytes. Because CH 

methylation is often found in neurons, we aim to understand whether human-specific CH 

methylation changes are enriched in regions that play a role in neuronal functions. In 

addition, we present comprehensive multi-omics analyses of human brain evolution by 

integrating DNA methylome data with transcriptome data from the same individuals 

(Berto, Mendizabal et al. 2019) and recent data from studies of bulk and cell-type-specific 
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epigenetic and transcriptomic modifications of human brains (Shulha, Crisci et al. 2012, 

Luo, Keown et al. 2017, Zhu, Sousa et al. 2018, Price, Collado-Torres et al. 2019).  

Although DNA methylation is a relatively stable epigenetic mark, DNA methylation 

is known to co-vary strongly with aging in diverse species (Horvath 2013, Lu, Fei et al. 

2021). Interestingly, it has been observed for several decades that DNA methylation 

changes constantly with chronological age. A term ‘epigenetic drift’ is often used to refer 

to this change of DNA methylation during aging (Teschendorff, West et al. 2013). 

Epigenetic drift involves both the increase and decrease of DNA methylation, suggesting 

that epigenetic drift might be due to gradual dysregulation of epigenetic maintenance 

(Teschendorff, West et al. 2013, Sun and Yi 2015).  

Despite the development of age-associated DNA methylation research, the extent of 

genomic patterns of DNA methylation changes with age is relatively little understood. For 

instance, almost all of the current epigenetic aging studies analyze DNA methylation from 

methylation arrays. A limitation of array-based methods is that these methods capture DNA 

methylation from only a subset of CpG positions in the genome. Even high-density 

methylation array methods can only cover less than 2% of the total CpG sites in the human 

genome. Also, the selected CpG positions captured by the methylation array are often 

biased towards promoter regions. Therefore, it is necessary to extend the study of aging-

associated DNA methylation changes to the whole genome, using methods developed to 

examine all genomic CpGs. Also, another key missing piece of information is 

understanding DNA methylation at cellular resolution (Horvath and Raj 2018, Bell, Lowe 

et al. 2019). As epigenomic studies show heterogeneity of cellular epigenetic programs, 

we need to evaluate how aging-associated DNA methylation changes occur in different cell 
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types. To address these issues, in chapter 4, we present comprehensive analyses of age-

associated DNA methylation changes using 127 WGBS data sets from postmortem brains 

of individuals from neonate to old adults. We take advantage of cell-type-specific 

epigenetic data, including neurons, non-neuronal cells, and oligodendrocytes, to 

investigate the genomic patterns of epigenetic drift for the cell types. In addition, by 

integrating transcriptome data from the same tissues as well as the disease risk genetic 

variants resulting from genome-wide association studies (GWAS), we aim to examine 

functional consequences and disease enrichment of age-associated DNA methylation 

changes. 

Previous studies have demonstrated that methylated CpG positions that are subject 

to age-associated changes can be used to predict chronological and phenotypic ages 

(Hannum, Guinney et al. 2013, Horvath 2013). This age predictor is known to be 

remarkably robust and estimates the biological age using DNA methylation levels of only 

a few hundred CpG positions. Because of its high accuracy, the DNA methylation-based 

age predictor is often called the ‘epigenetic clock’. Despite the fact that most epigenetic 

clock studies focus on human aging, epigenetic clocks have been also developed for non-

human species (Anderson, Johnston et al. 2021, Bors, Baker et al. 2021, Horvath, Zoller et 

al. 2021). Although the epigenetic clocks are generated to predict species-specific age-

related conditions, DNA methylation levels of the clock CpGs exhibit a high age 

correlation at least within mammalian species (Lu, Fei et al. 2021). These highly 

concordant aging DNA methylation patterns across species suggest that molecular 

mechanisms of aging may share common evolutionary characteristics across species, 

emphasizing the potential significance of epigenetic research from non-human primates in 
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aging studies. In chapter 5, by utilizing newly sequenced reduced representation bisulfite 

sequencing (RRBS) data of 140 anubis baboons from a broad age span to build epigenetic 

clocks, which can be used to study health and aging in this population. In this study, we 

used two groups of baboons that experience different early rearing experiences (mother-

raised or nursery-raised). Thus, another goal of this study is to test if the social rearing 

experience during early life differentially affects rates of epigenetic aging.  

In summary, these studies highlight that comprehensive epigenome analyses can be 

a compelling approach to uncovering genotype-to-phenotype connections and provide the 

causal link between evolution and disease vulnerability. 
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CHAPTER 2. EVOLUTION OF DNA METHYLATION IN THE 

HUMAN BRAIN 

DNA methylation is a critical regulatory mechanism implicated in development, learning, 

memory, and disease in the human brain. Here we have elucidated DNA methylation 

changes during recent human brain evolution. We demonstrate dynamic evolutionary 

trajectories of DNA methylation in cell-type-specific manner. DNA methylation in CG 

context shows pronounced reduction (hypomethylation) in human brains, notably in cis-

regulatory regions, leading to up-regulation of downstream genes. We show that the 

majority of differential CG methylation between neurons and oligodendrocytes originated 

before the divergence of hominoids and catarrhine monkeys, and harbors strong signal for 

genetic risk for schizophrenia. Remarkably, a substantial portion of differential CG 

methylation between neurons and oligodendrocytes emerged in the human lineage since 

the divergence from the chimpanzee lineage and carries significant genetic risk for 

schizophrenia. Therefore, recent epigenetic evolution of human cortex has shaped the 

cellular regulatory landscape and contributed to the increased vulnerability to 

neuropsychiatric diseases. Contents in this chapter have been published in Nature 

Communications, as Jeong et al. 2021 “Evolution of DNA methylation in the human brain”.  

2.1 Introduction 

DNA methylation is a stable epigenetic modification of genomic DNA with critical 

roles in brain development (Lister, Mukamel et al. 2013, Spiers, Hannon et al. 2015, Price, 

Collado-Torres et al. 2019). To understand the contribution of DNA methylation to human 
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brain-specific gene regulation and disease susceptibility, it is necessary to extend our 

knowledge of evolutionary changes in DNA methylation during human brain evolution. It 

was previously suggested that human brain specific CG methylation may be associated 

with human brain specific regulation of gene expression (Zeng, Konopka et al. 2012, 

Mendizabal, Shi et al. 2016). However, these studies used bulk tissues, while DNA 

methylation is known to vary substantially between cell types. Cell-type specific epigenetic 

marks, including DNA methylation and histone modifications, are implicated in cell-type 

specific gene expression and disease susceptibility in humans (Girdhar, Hoffman et al. 

2018, Mendizabal, Berto et al. 2019). Data from bulk tissues can be biased toward specific 

cell types and consequently, underpowered to detect cell-type specific evolutionary 

changes (Berto, Mendizabal et al. 2019, Khrameeva, Kurochkin et al. 2020). Therefore, to 

fully understand the role of DNA methylation in human brain evolution, it is necessary to 

study cell type specific changes of DNA methylation.  

In this work, we present comparative analyses of neuron- and oligodendrocyte-

specific whole-genome DNA methylomes of humans, chimpanzees, and rhesus macaques. 

We further integrated these data with transcriptome data from the same individuals (Berto, 

Mendizabal et al. 2019) and recent data from studies of bulk and cell-type specific 

epigenetic and transcriptomic modifications of human brains (Shulha, Crisci et al. 2012, 

Luo, Keown et al. 2017, Zhu, Sousa et al. 2018, Price, Collado-Torres et al. 2019). By 

doing so, we show that dramatic changes of DNA methylation have occurred in a cell-type-

specific manner during human brain evolution.  
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2.2 Results 

2.2.1 Distinctive methylomes of neurons and oligodendrocytes in human and non-human 

primate prefrontal cortex 

We generated cell-type specific DNA methylomes of sorted nuclei from post-mortem 

brain samples of humans (Mendizabal, Berto et al. 2019), chimpanzees (Pan troglodytes), 

and rhesus macaques (Macaca mulatta). We selected Brodmann area 46 (BA46) from 

dorsolateral prefrontal cortex (also referred to as ‘prefrontal cortex’ or ‘cortex’ henceforth), 

which is involved in higher-order cognitive functions that have likely undergone marked 

changes in human evolution (Sherwood, Subiaul et al. 2008, Preuss 2011). Neuronal 

(NeuN+) and oligodendrocyte (OLIG2+) cell populations were isolated using 

fluorescence-activated nuclei sorting (FANS) as previously described (Berto, Mendizabal 

et al. 2019, Mendizabal, Berto et al. 2019). We used whole-genome bisulfite sequencing 

(WGBS) to generate DNA methylomes at nucleotide resolution for NeuN+ and OLIG2+ 

populations (Figure A. 1). Altogether, we compared 25, 11, 15 NeuN+ methylomes and 

20, 11, 13 OLIG2+ methylomes from human, chimpanzee, and rhesus macaque, 

respectively (Table A. 1 and Table A. 2). We also performed whole-genome sequencing 

(WGS) of the same individuals (Table A. 3). Polymorphic sites at cytosines (i.e. C to T for 

forward strand and G to A for reverse strand) were excluded to avoid spurious methylation 

calls due to the technical limitation of distinguishing bisulfite-converted thymine from 

unmethylated cytosine. The mean coverages for the WGBS and WGS data are 20.6X (±8.8) 

and 23.2X (±5.9), respectively. 

2.2.2 Conservation and divergence of cell-type-specific CG methylation 
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Due to the high rate of CG mutations associated with DNA methylation (Elango, 

Kim et al. 2008), only 9.6 million CG sites (out of 28 million total human CGs) are 

conserved in all three species (Figure A. 2) and these sites are biased toward 

hypomethylation (Figure A. 3). As expected, evolutionarily conserved CpG sites co-

localize with CpG islands and exons (Kim, Elango et al. 2006, Mendizabal and Yi 2016) 

(Figure A. 4). In addition, evolutionarily conserved CpGs and human- specific CpGs are 

enriched in distinctive transcription factor binding motifs (Figure A. 5). Interestingly, HOX 

and FOX transcription factor families, among others, are significantly more often 

associated with human-specific CpGs than conserved CpGs (Table A. 4).  

To avoid bias associated with CG conservation, we first identified differentially 

methylated regions (DMRs) that distinguish humans and chimpanzees using conserved 

sites (21 out of 25 million CGs analyzed), and subsequently added DNA methylation data 

from rhesus macaques to polarize direction of evolutionary change (Methods). In this 

analysis, we applied methods developed for the analysis of whole genome bisulfite 

sequencing data to identify species, cell-type and interaction effects on DNA methylation 

while taking into account variation due to sex, age, and bisulfite conversion rates 

(Methods).  

Non-human primate methylomes of NeuN+ and OLIG2+ are highly distinct from 

each other and show clear clustering of cell types in each species (Figure A. 6), as in 

humans (Mendizabal, Berto et al. 2019). There are 56,532 CG DMRs (75.9 Mbp) between 

NeuN+ and OLIG2+ DNA that are conserved in all three species (Figure 2.1A). These 

conserved DMRs account for nearly 50% of all DMRs between NeuN+ and OLIG2+ in 

humans (Figure 2.1B). Consequently, a large portion of differential CG methylation 
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between NeuN+ and OLIG2+ DNA originated before the divergence of hominoids and 

catarrhine monkeys.  

 

Figure 2.1 DNA methylomes of neurons (NeuN+) and oligodendrocytes (OLIG2+) are 
highly distinct and show conserved patterns across species. (A) CG methylation levels 
in neurons (left columns for each species) and oligodendrocytes (right columns for each 
species). A greater number of DMRs are hypermethylated in neurons (red, in the left 
columns) compared to oligodendrocytes (right columns). (B) Approximately half (45.5%) 
of CG DMRs differentially methylated between NeuN+ and OLIG2+ cells are conserved 
in all three species, with 27% conserved between humans and chimpanzees, and 27.5% 
specific to the human. (C) The absolute methylation difference of NeuN+ and OLIG2+ 
cells is highest for DMRs conserved in all three species (39,202 and 17,284 DMRs 
hypermethylated in neurons and oligodendrocytes, respectively) compared to those 
specific to humans (3,103 and 5,361 DMRs hypermethylated in neurons and 
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oligodendrocytes, respectively) or chimpanzees (4,370 and 2,989 DMRs hypermethylated 
in neurons and oligodendrocytes, respectively). Methylation differences between NeuN+ 
and OLIG2+ cells calculated from genomic regions serving as statistical control (CTRL), 
with a matched number of CG and G+C nucleotide contents, are also displayed. Statistical 
significance was computed using two-sided Mann-Whitney U-test. Box represents a range 
from the first quartile to the third quartile. The line in the box indicates the median value. 
The minima and maxima are within 1.5 times the distance between the first and third 
quartiles from box. 

 

Enrichment tests utilizing cis-regulatory interactions based on long-range regulatory 

domains (McLean, Bristor et al. 2010) show that these regions are highly enriched in genes 

harboring functions specific to neurons and oligodendrocytes (Table A. 5). For example, 

we show one conserved DMR spanning the whole QKI locus. This gene, which is an RNA 

binding protein involved in myelination and oligodendrocyte differentiation (Ebersole, 

Chen et al. 1996), is covered entirely by a DMR in all three species so that it is 

hypomethylated in oligodendrocytes while hypermethylated in neurons. Gene expression 

data from matched samples (Berto, Mendizabal et al. 2019) shows that QKI is significantly 

up-regulated in oligodendrocytes compared to neurons in all three species (P < 10-7 in all 

three species, Methods). This example illustrates that differential DNA methylation may 

facilitate cell-type specific regulation in human and non-human primate brains. 

Interestingly, the absolute methylation difference between neurons and oligodendrocytes 

was significantly more pronounced in the evolutionarily ‘old’ DMRs conserved in all three 

species compared to those recently evolved in human (Figure 2.1C).   

2.2.3 Pronounced CG hypomethylation of human prefrontal cortex and human neuron-

specific regulatory landscape   
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We found 23,703 CG DMRs (13.1Mbp) that experienced differential CG 

methylation since the divergence of humans and chimpanzees (Methods, Figure 2.2A and 

Figure 2.2B), distributed across different functional categories, including regions currently 

annotated as non-coding intergenic (Figure A. 7). These CG DMRs include 7,861 for which 

both cell types are differentially methylated between humans and chimpanzees (4,253 

human-specific and 3,608 chimpanzee-specific CG DMRs, based on the comparison to 

macaques). The rest of the CG DMRs show DNA methylation changes in a cell-type-

specific manner in each species (Figure 2.2A). Interestingly, CG DMRs were found more 

often than expected near previously identified brain mQTLs (Ng, White et al. 2017) (Figure 

A. 8), suggesting that some genomic regions might be more susceptible to genetic changes 

that affect DNA methylation. This is in line with the observation that the evolution of DNA 

methylation is associated with underlying genetic sequences (Yi 2017).   

To provide insights into how DNA methylation changes at cell-type level have 

affected gene expression and other functional features, in the following we present results 

of DNA methylation analyses for each cell type, combining DMRs that are common in 

both cell types and DMRs that are cell-type-specific in each species (Methods). While most 

previous studies focused on neurons, recent studies have begun to unveil the functional and 

evolutionary importance of oligodendrocytes-specific changes (Berto, Mendizabal et al. 

2019, Castelijns, Baak et al. 2020). Indeed, we identified a substantial number of human-

derived hypomethylated DMRs specific to oligodendrocytes (Figure 2.2B).  
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Figure 2.2 Evolutionary changes in CG methylation. (A) Heatmap representation of 
mean DNA methylation of all 23,703 human DMRs in the three species illustrates dramatic 
reduction of CG methylation in human prefrontal cortex, especially in neurons. (B) 
Numbers of DMRs in NeuN+ and OLIG2+ cells in human and chimpanzee frontal cortex. 
(C) An example of the relationship between human neuron-hypo CG DMR and other 
epigenetic marks in the CLUL1 locus, a gene widely expressed in the brain. This DMR 
overlaps with multiple other epigenetic marks of active chromatin in the human brain, 
including neuron-specific ATAC-Seq peak, neuron-specific H3K4me3 peak, neuron-
specific H3K27ac peak. This DMR also overlaps with a human-specific brain H3K4me3 
peak compared to chimpanzee and macaque. Box represents a range from the first quartile 
to the third quartile. The line in the box indicates the median value. The minima and 
maxima are within 1.5 times the distance between the first and third quartiles from box. 
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CG DMRs tend to show reduction of DNA methylation (hypomethylation) in human 

prefrontal cortex compared to chimpanzee in both cell-types (Figure 2.2B). Their 

enrichments in promoters and the 5’ end of genes (Figure A. 7) suggest impacts on gene 

regulation, as hypomethylation near transcription start sites is significantly associated with 

up-regulation of gene expression (Schübeler 2015). Indeed, genes harboring human-

hypomethylated CG DMRs are significantly enriched in human up-regulated genes 

compared to chimpanzees, in the same oligodendrocyte and neuron cell populations (Berto, 

Mendizabal et al. 2019) (Table A. 6). These results indicate widespread and significant 

contributions of recent CG hypomethylation to the transcriptional landscape of the human 

brain.  

Human neurons in particular harbor a large number of hypomethylated CG DMRs 

compared to chimpanzee neurons (6,363 hypomethylated CG DMRs in human neurons 

versus 3,499 hypomethylated DMRs in chimpanzee neurons, OR = 2.82, P = 5.5 x 10-20, 

chi-square test). Taking advantage of recent functional genomics data from human 

neurons, we show that human neuron-specific hypomethylated CG DMRs (referred to as 

‘neuron-hypo CG DMRs’ henceforth) mark active regulatory regions of the neuronal 

genome (Figure A. 9). Specifically, a substantial portion of human neuron-hypo CG DMRs 

co-localize with brain-specific enhancers (Figure A. 10), as well as other recently 

characterized cell-type specific human brain epigenetic marks, including neuron-specific 

H3K27ac (fold-enrichment = 3.1, P < 0.01, permutation test), H3K4me3 (fold-enrichment 

= 8.5, P < 0.01), and ATAC-Seq (fold-enrichment = 8.2, P < 0.01) peaks (Fullard, Hauberg 

et al. 2018, Girdhar, Hoffman et al. 2018) (Figure A. 9). For example, we show a human-

specific neuron-hypo CG DMR in a 5’ region of the CLUL1 locus, which overlaps with 
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other epigenomic signatures of active chromatin marks observed in human neurons (Figure 

2.2C). Even though its functional role is not resolved yet, previous studies showed that this 

gene is highly expressed across different brain regions (GTEx, Aguet et al. 2017). Using 

matched gene expression data, we show that this locus is up-regulated in a cell-type and 

lineage-specific manner in human neurons, consistent with the role of human-specific 

neuron CG hypomethylation.  

In order to reveal the target genes of these epigenetically coordinated regulatory 

elements in human neurons, we integrated three-dimensional maps of chromatin contacts 

from the developing human cortex (Won, de la Torre-Ubieta et al. 2016). This analysis 

identified 213 enhancer-promoter pairs (Figure A. 11, fold-enrichment = 2.45, P < 0.01, 

permutation test), supporting physical chromatin interactions between spatially adjacent 

human neuron-hypo CG DMRs in human neuron nuclei (Table A. 7). Interestingly, genes 

affected by these enhancer-promoter interactions are enriched in functional categories 

including neuron differentiation and development (Table A. 8).  

We also explored the co-occurrence of epigenetically identified regulatory elements 

with those emerging from DNA sequence analyses. Human hypo-methylated CG DMRs, 

while enriched for both conserved and human-specific CpGs, are significantly associated 

with binding motifs for three transcription factors, including two Forkhead box factors 

(FOXP1 and FOXK1) and the nuclear factor 1 C-type, NFIC. The presence of these motifs 

further associates with greater hypomethylation of the DMRs themselves, as well as with 

increased expression of downstream genes (Figure A. 12). Furthermore, non-coding human 

accelerated regions (ncHAR) significantly overlap with human-specific hypomethylated 

CG DMRs (Figure A. 11, fold-enrichment = 4.45, P < 0.01, permutation test). In contrast, 
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chimpanzee-specific hypomethylated CG DMRs did not show significant patterns (Figure 

A. 11). Notably, ncHARs also show an excess of three-dimensional interactions with 

distant human hypo CG DMRs, which include 7 experimentally validated human brain 

enhancer ncHARs (Capra, Erwin et al. 2013). In addition, human neuron-hypo CG DMRs 

frequently co-occur with human neuron-specific histone H3-trimethyl-lysine 4 (H3K4me3) 

modification (Shulha, Crisci et al. 2012) (fold-enrichment = 18.1, empirical P-value < 0.01, 

permutation test). Taken together, these results demonstrate the confluence of human-

derived genetic and epigenetic innovations, and that CG hypomethylation of human 

neurons contributed to the active chromatin landscape of human prefrontal cortex in a cell-

type specific manner.  

2.2.4 Human neuron-specific CG methylation contributes additional risk to 

schizophrenia heritability 

We have previously shown that genomic regions exhibiting differential CG 

methylation between neurons and oligodendrocytes are associated with increased risk for 

neuropsychiatric disorders, especially for schizophrenia (Mendizabal, Berto et al. 2019). 

Other studies have noted that sites of differential histone modification (Girdhar, Hoffman 

et al. 2018) or DNA methylation (Rizzardi, Hickey et al. 2019) between neurons and non-

neurons significantly contribute to heritability for neuropsychiatric disorders. Our data can 

provide further insights into the evolution of genetic risk for neuropsychiatric disorders.  
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Figure 2.3 Evolutionarily derived DMRs contribute to brain disease susceptibility. 
(A) Significance levels for the enrichment for genetic heritability in different DMRs (+/-
25kb) and complex traits. Both conserved and human-specific neuronal DMRs are 
associated with schizophrenia. Enrichment with FDR < 0.05 are highlighted in squares. 
Notably, CG DMRs hypomethylated in NeuN+ cells compared to OLIG2+ cells in all three 
species (conserved NeuN+ hypo) are highly enriched in variants for several brain-related 
traits, and human-specific NeuN+ hypo shows enrichment in schizophrenia. (B) A sliding-
windows analysis further demonstrates that the aforementioned signal for schizophrenia 
was centered at the DMRs and did not originate from extended adjacent regions. The Y-
axis represents the P-values in sliding windows around DMRs classified by species (human 
or chimpanzee), cell-type (NeuN+ or OLIG2+), and cytosine context (mCG or mCH). 

 

We used the stratified linkage disequilibrium score regression framework (Finucane, 

Bulik-Sullivan et al. 2015) to estimate the contribution of DMRs to the genetic heritability 

of various diseases and complex traits (Methods). We found a strong enrichment of risk 



 20 

for schizophrenia and other brain-related traits at neuron-hypo CG DMRs that are 

evolutionarily conserved in the three species, while no signal was detected at OLIG2+ 

conserved DMRs (Figure 2.3A and Table A. 9). Non-brain polygenic traits such as height 

and body mass index (BMI) were also detected, consistent with the previously proposed 

role of the central nervous system in the genetic architecture of BMI (Finucane, Bulik-

Sullivan et al. 2015). Moreover, human-specific neuron-hypo CG DMRs exhibited 

significant enrichment for schizophrenia heritability (Figure 2.3A), even though the degree 

of enrichment is lower than that for the conserved DMRs as suggested by down-sampling 

analyses (Figure A. 13). In contrast, chimpanzee neuron-hypo CG DMRs did not show 

significant enrichment for any human trait, while both conserved and human-specific 

DMRs in the non-CpG context (i.e., CH DMRs) show significant depletion for 

schizophrenia heritability (Figure 2.3A). Notably, the depletion signal was centered around 

the CH DMRs, whereas no other diseases (with the exception of bipolar disorder) nor 

chimpanzee-specific regions showed a significant trend (Figure 2.3B), implying that CH 

hypermethylated genomic regions are devoid of common DNA polymorphisms associated 

specifically with schizophrenia. Given that CH DMRs are enriched in inhibitory neuron 

markers, this observation may suggest that different neuron subclasses contribute 

disproportionately to schizophrenia phenotype (Finucane, Reshef et al. 2018, Hauberg, 

Creus-Muncunill et al. 2020).  

2.3 DISCUSSION 

Decades of research have solidified DNA methylation as a critical regulatory 

mechanism in human brains, including but not limited to brain development (Hon, 

Rajagopal et al. 2013, Lister, Mukamel et al. 2013, Price, Collado-Torres et al. 2019), cell-
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type differentiation (Lister, Mukamel et al. 2013, Luo, Keown et al. 2017, Mendizabal, 

Berto et al. 2019), and disease susceptibility (Mendizabal, Berto et al. 2019, Rizzardi, 

Hickey et al. 2019). These processes are associated with cognitive and neurodevelopmental 

programs and neuropsychiatric disorders that are key to human uniqueness (Varki, 

Geschwind et al. 2008, Jakovcevski and Akbarian 2012). Despite such importance for 

genome regulation and human evolution, how DNA methylation and other epigenetic 

mechanisms have changed in human brains have not previously been characterized at the 

cell-type level. Reliable identification of human-specific epigenetic modifications at the 

cell-type level has been a limiting factor in previous studies due to the heterogeneity of 

brain tissue and the different relative cell compositions of different species. Here, we have 

presented comprehensive analyses of whole-genome methylomes of neurons and 

oligodendrocytes from humans, chimpanzees, and rhesus macaques, thus elucidating 

evolutionary changes of DNA methylation during human brain evolution with 

unprecedented cell-type resolution.  

Previous studies have demonstrated an excess of CG hypomethylation in human 

prefrontal cortex compared to chimpanzee (Zeng, Konopka et al. 2012), mostly impacting 

noncoding regulatory regions of the human genome (Mendizabal, Shi et al. 2016). We find 

this to be the case for both neurons and oligodendrocytes, which could contribute to 

increased gene expression levels that have been reported in human brains (Caceres, 

Lachuer et al. 2003, Preuss, Caceres et al. 2004, Babbitt, Fedrigo et al. 2010, Sousa, Meyer 

et al. 2017, Berto, Mendizabal et al. 2019). Furthermore, these epigenomic innovations 

connect to potential underpinnings in genome evolution. For example, human derived 

hypomethylated CG DMRs are enriched for binding motifs for specific transcription 
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factors including FOXP1, a hub gene in human-specific transcriptional networks in the 

brain and which is implicated in several cognitive diseases in humans, including language, 

intellectual disability and autism (Konopka, Friedrich et al. 2012). In addition, non-coding 

human accelerated regions (ncHAR) are preferentially found in human-specific 

hypomethylated CG DMRs. These results begin to reveal the connections between genetic 

and epigenetic innovations of the human brain involving CG hypomethylation.  

 

Our data also demonstrate that the majority of differential DNA methylation between 

neurons and oligodendrocytes has long been established before the divergence of apes and 

other catarrhine monkeys, echoing that a large portion of human brain regulatory programs 

have deep evolutionary roots (Vermunt, Tan et al. 2016). We further investigated the 

implication of this finding in the context of a complex neuropsychiatric disorder. We and 

others have previously shown that, in humans, epigenetic differences between neurons and 

non-neuronal cells are prevalent in non-coding regions and locate in regions that account 

for schizophrenia heritability (Girdhar, Hoffman et al. 2018, Mendizabal, Berto et al. 2019, 

Rizzardi, Hickey et al. 2019). Here we show that genomic regions with differential CG 

methylation between neurons and oligodendrocytes that contribute greatest to 

schizophrenia risk originated before the emergence of the catarrhine ancestor. It is known 

that genomic regions under strong and ancestral purifying selection (thus remain 

conserved) are enriched for disease genes and heritability (Domazet-Lošo and Tautz 2008, 

Finucane, Bulik-Sullivan et al. 2015, Hujoel, Gazal et al. 2019). For example, ancient 

enhancers and promoters have greater contributions to susceptibility to complex diseases 

compared to more recently evolved regulatory regions (Hujoel, Gazal et al. 2019). Our 
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results suggest that even though the phenotype of schizophrenia is highly specific to 

humans, the molecular and developmental mechanisms of this disease have deep 

phylogenetic roots. Moreover, human- brain specific CG hypomethylation provides 

additional significant genetic risk to schizophrenia, albeit a relatively small proportion. 

Therefore, recent, human brain specific epigenetic changes also contribute to schizophrenia 

pathology. These results advance our understanding of the relevance of conserved and 

derived regulatory mechanisms to the genetic and epigenetic architecture of complex 

diseases.  

 

2.4 Methods 

2.4.1 Sample acquisition, whole-genome sequencing, and whole-genome bisulfite 

sequencing 

Information on samples used in this work was previously described in Berto et al. 

(Berto, Mendizabal et al. 2019). Briefly, adult human postmortem brain samples from 

Brodmann area 46 (BA46) were acquired from the National Institutes of Health 

NeuroBioBank (the Harvard Brain Tissue Resource Center, the Human Brain and Spinal 

Fluid Resource Center, VA West Los Angeles Healthcare Center, and the University of 

Miami Brain Endowment Bank) and the University of Texas Neuropsychiatry Research 

Program (Dallas Brain Collection). These samples included 25 and 22 NeuN+ and OLIG2+ 

specimens, respectively. Nonhuman primate tissue samples were obtained from Yerkes 

National Primate Research Center (macaque samples) and the National Chimpanzee Brain 

Resource (chimpanzee samples). For human samples, UT Southwestern Medical Center 
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Institutional Review Board has determined that as this research was conducted using post-

mortem specimens, the project does not meet the definition of human subjects research and 

does not require IRB approval and oversight. Non-human primate samples were obtained 

from archival, post-mortem brain tissue opportunistically collected from subjects that died 

from natural causes, and following procedures approved by the Emory Institutional Animal 

Care and Use Committee and in accordance with federal and institutional guidelines for 

the humane care and use of experimental animals. No living great apes were used in this 

study. All non-human primate samples were obtained from homologous regions in 

chimpanzees (NeuN+ n = 11, OLIG2+ n = 11) and rhesus macaques (NeuN+ n = 15, 

OLIG2+ n = 13).  

Nuclei isolation was performed as described previously (Berto, Mendizabal et al. 

2019). Briefly, frozen postmortem brain was homogenized and subject to sucrose gradient 

and ultracentrifuge. The resulting nuclei pellet was then incubated with mouse NeuN and 

OLIG2 antibodies (alexa488 conjugated anti-NeuN (1:200), #MAB377X, Millipore, 

Billerica, MA and rabbit alexa555 conjugated anti-OLIG2 (1:75), #AB9610-AF555, 

Millipore). We then performed the fluorescence-activated nuclei sorting (FANS), followed 

by nucleic acid purification via the ZR-Duet DNA/RNA MiniPrep (Plus) kit (#D7003, 

Zymo Research, Irvine, CA). 

2.4.2 Whole-genome bisulfite data processing 

We followed the same data processing steps described in our previous work 

(Mendizabal, Berto et al. 2019). Briefly, extracted DNA was fragmented by S-series 

Focused-ultrasonicator (Covaris, Woburn, MA) using the “200 bp-target peak size 
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protocol”. Fragmented DNA was then size selected (200-600 bp) with an Agencourt 

AMPure XP bead-based (#A63880, Beckman Coulter, Brea, CA), followed by the End 

repair step was performed with End-It DNA End-Repair Kit (#ER81050, Epicentre, 

Madison, WI) and A-tailing (#M0202, New England Biolabs, Ipswich, MA), and ligation 

of methylated adaptors (#511911, B100 Scientific, Austin, TX). The methylome libraries 

were diluted and loaded onto Illumina HiSeqX system for sequencing using 150bp paired-

end reads. We performed quality and adapter trimming using TrimGalore v.0.4.1 

(Babraham Institute) with default parameters. Reads were mapped first to PhiX genome 

(NC_001422.1) to remove the spike-in control and the remaining reads were subsequently 

mapped to the chimpanzee PanTro5 and macaque rheMac8 reference genomes using 

Bismark v 0.14.5 (Krueger and Andrews 2011) and bowtie v2.3.4 (Langmead and Salzberg 

2012). After de-duplication, we obtained coverage for over 84% of the CpGs in the 

chimpanzee genome with an average read depth 19.32x, and over 91% of CpGs in the 

macaque genome with an average read depth of 21.61x. We calculated fractional 

methylation (ratio of the number of methylated cytosine reads to the total number of reads) 

levels at individual cytosines. Bisulfite conversion rates were estimated by mapping the 

reads to the lambda phage genome (NC_001416.1). 

2.4.3 Whole-genome sequencing data processing 

Quality and adapter trimming was performed using TrimGalore v.0.4.1 (Babraham 

Institute) with default parameters. Reads were mapped to the hg19, PanTro5 or rheMac8 

reference genomes using BWA v0.7.4 (Li 2013) and duplicates were removed using picard 

v2.8.3 (https://broadinstitute.github.io/picard/index.html). We identified genetic 

polymorphisms from re-sequencing data following the GATK v4 best practices workflow 



 26 

(McKenna, Hanna et al. 2010). For base recalibration, we used vcf files for known variants 

from dbSNP for chimpanzee and macaque from the following links:  

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/chimpanzee_9598/VCF/  

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/macaque_9544/VCF/  

We applied hard filters for genotype calling with the following parameters: 

 --filterExpression "QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || 

ReadPosRankSum < -8.0"  

For chimpanzee, we identified 10,980,856 variants with mean depth >24x. For 

macaque, we identified 30,001,119 variants with mean depth >24x. Since C>T and G>A 

polymorphisms at CpG sites can generate spurious differential methylation patterns, we 

removed polymorphic CpGs from downstream differential methylation analyses keeping a 

total of 26,024,877 and 24,740,404 non-polymorphic CpGs for chimpanzee and macaque 

genomes, respectively. For quality control of SNP calling, we performed principal 

component analyses using additional chimpanzee and bonobo samples from de Manuel et 

al. (De Manuel, Kuhlwilm et al. 2016) using 75,575 common SNPs from chromosome 20. 

As expected, our chimpanzee samples clustered with other chimpanzees and not with 

bonobos. We recapitulated the genetic ancestry of de Manuel et al. samples and identified 

most of our individuals as Western chimpanzees (Pan troglodytes verus) while one sample 

(sample ID Anja) clustered with Nigeria-Cameroon chimpanzees (Pan troglodytes ellioti). 

2.4.4 Transcription factor motif enrichment analyses 
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We performed TF enrichment tests using the MEME suite’s (Bailey, Boden et al. 

2009) AME software and two HOCOMOCO v11 databases (Kulakovskiy, Vorontsov et 

al. 2016) of human TF motifs. We used 7 primates (human, chimpanzee, gorilla, orangutan, 

rhesus macaque, baboon, and gibbon) for which we have high quality genome sequences 

to identify cytosines that are conserved in all 7 primate species (n = 567,893) as ‘conserved 

CpGs’. In comparison, ‘variable CpGs’ refer to CpGs that are specific to humans but not 

in other primates (n = 237,956). We identified TF motifs enriched at variable CpGs 

compared to conserved CpGs, as defined above. For this analysis, we added 20 bps to each 

side of each CpG given that the longest motif length in the database is 25bp. We compared 

the variable CpGs to control CpG sets as follows. We ran AME 100 times comparing the 

variable CpGs to a matched number of random CpG (defined as not overlapping with 

variable or conserved CpGs) using the following command: 

ame --verbose 2 --oc variable_CpG.fa --scoring avg --method fisher --hit-lo-fraction 

0.25 --evalue-report-threshold 10.0 --control control_CpG_1.fa 

HOCOMOCOv11_core_HUMAN_mono_meme_format.meme 

Similarly, we also ran AME for conserved CpGs using 100 control CpG sets as 

background, as well as using the Full Homocomo v11 database. 

We subsequently defined variable CpG-specific motif as those that satisfy both of 

the following conditions: 

 (frequency of enrichment in variable CpGs compared to control CpGs >0.95 in the 

100 comparisons) AND (frequency of enrichment in conserved CpGs compared to control 

CpGs < 0.05)  
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In comparison, conserved CpG-specific motifs are those that satisfy both of the 

following conditions: 

(frequency of enrichment in variable CpGs compared to control CpGs for >0.95) 

AND (frequency of enrichment in conserved CpGs compared to control CpGs < 0.05)  

A total of 81 and 121 motifs were identified as variable CpG-specific and conserved 

CpG-specific in the core database, and 183 and 190 in full database, respectively (Table A. 

4). The TF families with at least 5% difference between the two categories are shown 

in Figure A. 5.  

We also applied MEME suite’s AME software and two HOCOMOCO v11 databases 

to compare human-hypomethylated DMRs to chimpanzee-specific hypomethylated 

DMRs. We extended the DMRs 10bp to each side and run AME using the parameters as 

shown before. We found 3 TF motifs significantly associated with human hypomethylated 

DMRs, including two Forkhead box factors (FOXP1 and FOXK1) and the nuclear factor 

1 C-type, NFIC. Identical results were obtained for both core and full datasets. 79% of 

human-hypomethylated DMRs showed a hit in any of the three TF motifs. A total of 1996 

human-specifically hypomethylated DMRs associated with FOXP1 motif, 1906 DMRs 

with FOXK1 and 462 with NFIC motif. The DMRs with positive hits were highly shared 

among TFs, with around 80% shared between FOXP1 and FOXK1, and around 60% of 

NFIC binding-DMRs also bind the other two TFs. We compared the methylation levels of 

these DMRs and the associated gene expression patterns compared to other DMRs without 

enriched motifs (Figure A. 12).  

2.4.5 RNA-Seq data 
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We used our previously generated matched samples of RNA-Seq datasets for human 

(without brain-related diseases), chimpanzee, and rhesus macaques from GSE108066, 

GSE107638, and GSE123936. The list of differentially expressed genes (DEGs) were also 

obtained from this previous work (Berto, Mendizabal et al. 2019). 

2.4.6 Liftover of non-human primates cytosine positions to human genome 

We lifted over the non-human primates’ cytosine coordinates to human hg19 genome 

using UCSC batch liftover tool (panTro5ToHg19.over.chain.gz and 

rheMac8ToHg19.over.chain.gz for chimpanzee and rhesus macaque, respectively). For the 

CG DMR analysis, we did not perform three-way species analyses based on lifted over 

coordinates due to the rapid evolutionary loss of CG sites since the macaque split. 

Compared to around 21 million CG sites conserved between human and chimpanzee, only 

around 9.6 million CGs are conserved between human and macaque, whereas 13 million 

CGs in macaque show non-CG dinucleotides in human. To circumvent this issue, we first 

identified human-chimpanzee differentially methylated regions (DMRs) using conserved 

CGs and then used orthologous regions in the macaque rheMac8 genome to polarize the 

DMRs (see “Incorporation of Rhesus Macaque as an outgroup species” for additional 

details). We removed cytosines located in paralogous sequences in at least one species to 

avoid erroneous mapping (i.e. one-to-many or many-to-one mapping between species). For 

the CH methylation analysis, we used orthologous cytosines conserved among the three 

species.  

2.4.7 Identification of CG differential methylation 
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We identified differentially methylated positions of 1) cell-types (NeuN+ vs. 

OLIG2+), 2) species (human vs. chimpanzee where both cell types show the same direction 

and magnitude of methylation differences between two species) and 3) cell-type-specific 

species changes (either cell-type exclusively shows DNA methylation difference between 

species) using DSS (ver. 2.3) Bioconductor package (Feng, Conneely et al. 2014). DSS 

handles variance across biological replicates and models read counts from WGBS 

experiments while accounting for additional biological factors. Specifically, we considered 

age (converted to three level categorical variable), sex, and conversion rates as covariates 

in the following model;  

Fractional methylation ~ cell_type + species + species:cell_type + sex + age_class + 

conversion_rates 

To remove low coverage loci, we only included sites with at least 5x coverage in 

80% of individuals per species or cell-type. We used a false discovery rate (FDR) threshold 

of 5% to identify significant differentially methylated positions. For DMR identification, 

we considered a minimum length of 50bp with at least 4 significant differentially 

methylated positions. We removed cell-type DMRs and species DMRs that overlap with 

cell-type-specific species changes (i.e. interaction of cell-type and species effects) to 

remove redundant DMRs. We only considered the DMRs that show >10% of average 

methylation difference between human and chimpanzee for species DMR and >15% of 

average methylation difference between cell-types for cell-type DMR (please also see the 

section “Incorporation of Rhesus Macaque as an outgroup species” for detailed explanation 

of final set of DMRs). 
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Of note, as our differential methylation analyses were run under a multifactor design 

in DSS, the estimated coefficients in the regression were based on a generalized linear 

model framework using the arcsine link function to reduce dependence of variance on the 

fractional methylation levels (Park and Wu 2016). The distribution of the statistic is 

determined by the differences in methylation levels as well as by biological and technical 

factors such as read depth. The sign of the test statistic indicates the direction of 

methylation. However, the values of the test statistic cannot be directly interpreted as 

fractional methylation differences. For DMRs, the tool generates “areaStat” values which 

are defined as the sum of the test statistic of all CG sites within the DMR. To identify the 

stringent sets of DMRs we excluded DMRs if the average test statistics of corresponding 

CGs in the region (areaStat divided by the number of CGs) was below the test statistic 

corresponding to FDR = 0.05. 

2.4.8 Incorporation of rhesus macaque as an outgroup species 

We retrieved the corresponding genomic coordinates in rheMac8 using the Ensembl 

Primate EPO multiple sequence alignment (Zerbino, Achuthan et al. 2018). Read counts 

and methylation values of the CGs in corresponding regions were obtained from the 

macaque samples. Only CG sites with at least 5x coverage in 80% of the individuals per 

species were considered. The DMRs resulting from human and chimpanzee samples that 

had low alignment coverages with macaque (<50%) or included less than 4 CGs in 

macaque were considered “unclassified” DMRs. After adding macaque data, we fitted a 

beta regression model using the average methylation level of each individual accounting 

for the covariates indicated above. Among the cell-type DMRs resulting from human and 

chimpanzee samples, DMRs in which macaque showed cell-type changes in the same 
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direction and exhibited >15% fractional methylation difference were considered conserved 

cell-type DMRs.   

We then used stringent criteria to categorize the species specificity of DMRs as 

human- or chimpanzee-specific. For example, a human-specific hypomethylated DMR 

should satisfy the following criteria: 1) the average fractional methylation of human is 

significantly lower than that of chimpanzee and macaque (FDR < 0.05), 2) the absolute 

methylation difference between human and macaque is greater than that between 

chimpanzee and macaque, 3) the proportion of the absolute methylation difference between 

human and macaque is greater than 5%, and 4) both of the two cell-types satisfy these 

criteria. Those DMRs that did not satisfy these criteria were considered “unclassified”. We 

used the same logic to specify human-specific hypermethylated DMRs and chimpanzee-

specific hypo- and hypermethylated DMRs. We also examined species-specific DMRs that 

show differential methylation between species but exclusively in one cell-type (i.e. either 

cell-type shows differential methylation patterns derived from either the human or 

chimpanzee lineage).  

2.4.9 Lineage-specific accelerated non-coding regions 

We used a set of human accelerated regions from Capra et al. (Capra, Erwin et al. 

2013), which combined regions identified from independent studies (i.e. the 721 ‘Pollard 

HARs’ from Lindblad-Toh et al. (Lindblad-Toh, Garber et al. 2011), the 1356 ‘ANC’ 

regions from Bird et al. (Bird, Stranger et al. 2007), the 992 ‘HACNS’ regions from 

Prabhakar et al. (Prabhakar, Noonan et al. 2006), and the 63 ‘Bush08’ regions from Bush 

and Lahn (Bush and Lahn 2008)). Statistical significance and fold-enrichment for DMRs 
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were computed from the occurrences of DMRs for each feature compared to GC matched 

control region sets (n=100). 

2.4.10 Hydroxymethylation  

We used previously published methylome and hydroxymethylome maps at 

nucleotide resolution in the adult human brain (Wen, Li et al. 2014). The hmC and mC 

sites were defined in the original paper. We included the cytosines that are orthologous 

across the three species (n = 2,905,389). We compared the proportions of differentially 

methylated loci between 5-hydroxymethylcytosines (hmC) and 5-methylcytosines (mC). 

The proportions of the differentially methylated loci at hmC loci (4.2%) and mC loci 

(4.2%) showed no difference.  

2.4.11 Contribution of DMRs to disease heritability using stratified LD score regression 

To quantify the contribution of DMRs to the genetic risk of different traits and 

diseases, we performed stratified LD score regression analyses (Finucane, Bulik-Sullivan 

et al. 2015). This method estimates the percentage of heritability explained by a set of SNPs 

in a certain trait using GWAS summary statistics and computes the enrichment and 

significance by comparing the observed heritability to the expectation given the fraction of 

the genome considered. We used default parameters and excluded the MHC region as in 

Finucane et al. (Finucane, Bulik-Sullivan et al. 2015). Together with the DMR annotations, 

we also included the basal functional categories described in the original paper. The list of 

GWAS traits and references are listed in Table A. 10.  
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 The stratified LD score regression method produces large standard errors when the 

annotation categories cover a small fraction of the genome. Since evolutionary DMRs are 

generally short (e.g. the median lengths of human CG DMR and CH DMR are 471 bps and 

246 bps, respectively) we extended the DMR windows by 25kbp on both sides to improve 

the confidence intervals of the estimates as in other studies (Karczewski, Francioli et al. 

2020). To ensure the GWAS signals were centered around the DMRs and not emerging 

from the extended regions, we further performed the stratified LD score regression in 

sliding windows 300kb around the DMRs with a window size of 20kb and step size of 5kb. 

 Conserved CG DMRs were more numerous and longer than human-specific ones, 

which could lead to increased statistical power on stratified LD score regression analyses. 

In order to directly compare the significance of conserved and human-specific DMR 

categories to schizophrenia heritability, we performed partitioned stratified LD score 

analyses using 100 random sub-samplings of conserved regions.  
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CHAPTER 3. EVOLUTIONARY DYNAMICS OF CH 

METHYLATION IN HUMAN NEURONS 

DNA methylation shows strong dynamics during mammalian brain development, and the 

comparative study of cell-type specific DNA methylation patterns across primate brains is 

highly relevant to further the understanding of human brain evolution. Although DNA 

methylation at CG context is a dominant form of methyl-cytosines, DNA methylation at 

non-CG contexts is also abundant in a few cell types, especially enriched in neurons. Here 

we have elucidated DNA methylation changes in non-CG context, namely CH methylation, 

during recent human brain evolution. CH methylation has increased (hypermethylation) in 

neuronal gene bodies during human brain evolution, contributing to human-specific down-

regulation of genes and co-expression modules. The effects of CH hypermethylation is 

particularly pronounced in early development and neuronal subtypes. Contents in this 

chapter have been published in Nature Communications, as Jeong et al. 2021 “Evolution 

of DNA methylation in the human brain”. 

 

3.1 Introduction 

DNA methylation at non-CG contexts (CH methylation, where H = A, C, T) is 

relatively abundant in brains, where it is associated with postnatal neuronal maturation and 

cell-type specific transcriptional activity (Lister, Mukamel et al. 2013, Kozlenkov, Wang 

et al. 2016, Stroud, Su et al. 2017). Despite such importance, the evolutionary trajectories 

and significance of CH methylation during human brain evolution remain little understood.  
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In this work, we present comparative analyses of whole-genome CH DNA 

methylomes of humans, chimpanzees, and rhesus macaques. By integrating these data with 

matched transcriptome data from the same individuals (Berto, Mendizabal et al. 2019) and 

public data from studies of single-cell DNA methylation of human brains, we show that 

dramatic changes of CH methylation have occurred in neuronal gene bodies during human 

brain evolution, contributing to human-specific down-regulation of genes and co-

expression modules. Our work extends the knowledge of the unique roles of CH 

methylation in human brain evolution and offers a new framework for investigating the 

role of the epigenome evolution in connecting the genome to brain development, function 

and diseases. 

 

3.2 Results 

3.2.1 Distinctive genomic methylation patterns in different contexts of cytosine 

methylation 

We found that as in humans, non-human primate prefrontal cortex is highly 

methylated at CG sites, and NeuN+ DNA is more highly methylated than OLIG2+ DNA 

(P < 10-10, two-sample K-S tests, Figure 3.1A). In comparison, CH methylation occurs in 

much lower frequencies than CG methylation, and is nearly exclusive to NeuN+ DNA in 

humans (Lister, Mukamel et al. 2013, Mendizabal, Berto et al. 2019) and non-human 

primates (Figure 3.1A). Interestingly, neurons of humans and chimpanzees have 

significantly more highly CH methylated sites than those of rhesus macaques and mice (P 

= 4.3 x 10-5, Kruskal-Wallis test), indicating that brain CH methylation may have increased 
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in human and ape brains. In turn, human brains show greater CH methylation compared to 

chimpanzee brains (P = 0.03, Mann-Whitney U test using proportions of mCH > 10%).  

 

 

Figure 3.1 CG and CH methylation in NeuN+ and OLIG2+ in human and non-human 
primate prefrontal cortex. (A) The proportions of methylated CG and CH sites. Human 
and non-human primate neurons and oligodendrocytes are highly CG methylated. Human 
and non-human primate neurons show low levels of CH methylation and oligodendrocytes 
show even lower levels.  CH methylation is highest in human neurons, followed by 
chimpanzees, rhesus macaques, and mice. (B) Principal component analysis of methylated 
cytosines in two contexts (CG and CH). The top two principal components (PCs), PC1 and 
PC2, distinguish cell type and species, respectively. 
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Principal component analyses demonstrate that cell type explains the largest amount 

of variation in both methylation contexts, followed by species (Figure 3.1B). Since 

OLIG2+ DNA is largely devoid of CH methylation, there is little separation of species for 

CH OLIG2+ (Figure 3.1B). As the genomic patterns and cellular distributions of CG and 

CH methylation are highly distinct from each other, we analyzed them separately. 

3.2.2 Signature of evolutionarily recent CH hypermethylation in human neurons  

CH methylation is limited to a few cell types in the body (Lister, Pelizzola et al. 2011, 

Ziller, Müller et al. 2011), and occurs at much lower frequency than CG methylation (Fig. 

1a). Nucleotide substitution rates at CH sites and CH methylation do not have a significant 

correlation (Mugal and Ellegren 2011). Consequently, we were able to follow the 

evolutionary dynamics of CH methylation for the majority of CH positions. Among the 1.1 

billion CH positions examined in the human genome, 716 million sites (71.2%) were found 

in the three species we examined (Methods). We found 51.9 million CH sites 

hypermethylated in NeuN+ compared to OLIG2+ DNA (FDR < 0.05). Among these, 23.6 

million sites (45.5%) show NeuN+ DNA hypermethylation in all three species. Human and 

chimpanzee neurons share an additional 16.3 million (31.4%) CH hypermethylated sites 

not found in macaque (Figure 3.2A). Moreover, an additional 3.1 million CH sites gained 

methylation in the human neurons (Figure B. 1), which is a significant excess compared to 

the 2.2 million sites gained via CH methylation in the chimpanzee neurons (OR = 1.54, 

95% CI 1.534 – 1.546, P < 10-20, chi-square test). Thus, in contrast to the pronounced 

hypomethylation in the CG context, human neurons are predominantly hypermethylated 

compared to other primates (Figure 3.2B).  
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Figure 3.2 CH hypermethylation is significantly higher in human neurons compared 
to other primates. (A) Differences in the proportions of sites with neuronal CH 
methylation between species. (B) Mean methylation levels of human-specific CH DMRs 
demonstrate pronounced hypermethylation of human neurons. (C) CH methylation 
between humans and chimpanzees strongly predicts gene expression difference. The 
shaded band represents the 95% confidence interval for the fitted regression line. 
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CH methylation of gene bodies is one of the strongest predictors of repression of 

gene expression in humans and mice (Lister, Mukamel et al. 2013, Stroud, Su et al. 2017, 

Mendizabal, Berto et al. 2019, Rizzardi, Hickey et al. 2019). We find similarly strong 

repressive effects of genic CH methylation on gene expression in human and non-human 

primate neurons (Figure B. 2). Moreover, differential CH methylation between species is 

strongly negatively correlated with gene-expression differences between species, 

indicating that the change of CH methylation is a major determinant of neuronal 

transcriptional divergence (Figure 3.2C).  

3.2.3 Distinctive evolutionary signatures of CG and CH methylation on the human 

neuronal transcriptome 

We have demonstrated that DNA methylation at different cytosine contexts shows 

distinctive patterns during the recent evolutionary history of human brains. Specifically, 

the pronounced hypomethylation in CG context, associated with active cis-regulatory 

elements, contrasts with the repressive hypermethylation observed at CH sites in gene-

bodies in human neurons.  Given that both types of methylation correlate with gene 

expression (Lister, Mukamel et al. 2013, Schübeler 2015, Stroud, Su et al. 2017, Spainhour, 

Lim et al. 2019) (Figure B. 3), we analyzed their effects jointly using tools designed to 

measure independent effects of highly correlated variables (Kim and Yi 2007). These 

analyses point to significant and independent effects of both CG hypomethylation and CH 

hypermethylation (Table B. 1 and Table B. 2). Compared to chimpanzees, genes up-

regulated in human neurons are more likely to have been impacted by CG hypomethylation 

at promoters, while those down-regulated are prone to genic CH hypermethylation (Figure 

B. 4). In line with these observations, coordinately up-regulated gene modules in human 
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neurons are enriched in promoter CG hypomethylation, whereas down-regulated modules 

are significantly enriched in CH hypermethylated gene bodies. These results illuminate 

contrasting yet additive effects of CG and CH during recent evolution of human neurons. 

3.2.4 Developmental and cellular specificity of CH methylation 

CH methylation is nearly absent in fetal brains and accumulates rapidly after birth 

(Lister, Mukamel et al. 2013). We thus hypothesized that the repressive impact of CH 

methylation might be more pronounced in early postnatal development, and subsequently 

examined gene expression data from bulk brain tissue during development (Zhu, Sousa et 

al. 2018). Indeed, genes bearing signatures of human-specific CH methylation 

accumulation (referred to as human CH DMR genes, Methods) are similarly expressed in 

human and macaque brains during prenatal growth but show reduced expression in humans 

following birth (Figure 3.3A). In contrast, chimpanzee CH DMR genes do not exhibit such 

a pattern (Figure 3.3A and Figure B. 5). We integrated our data with those from sorted 

neurons from individuals of different ages (Berto, Mendizabal et al. 2019, Price, Collado-

Torres et al. 2019), to examine cell-type differences. Human CH DMR-genes showed 

lower expression in neurons than in non-neurons or oligodendrocytes in most 

developmental stages, and the reduction of neuronal expression was more evident in 

toddler and early teen data compared to data from adults (Figure B. 6).  
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Figure 3.3 CH methylation has profound influence on developmental and cellular 
specificity. (A) Gene expression fold-change between human and macaque in CH DMR 
genes across developmental time points (Human CH DMR genes, n= 450 and Chimpanzee 
CH DMR genes, n=144). Macaque samples were age-matched to human developmental 
time points. Statistical significance was computed using Kruskal-Wallis test (two-sided). 
(B) Enrichment of human and chimpanzee CH DMR genes in specific cell-types. Human 
CH DMR genes are enriched in inhibitory neurons whereas chimpanzee CH DMR genes 
are enriched in excitatory neurons. In each gene set, genes expressed in at least 50% of the 
cells that are statistically significant (FDR < 0.05 and log2FC > 0.3) are included. Cell-
type data are from human medial temporal gyrus (MTG). OR = Odds Ratio. (C) CH 
methylation of neuronal subtypes for CH DMR genes using methylation of single nuclei 
from the human frontal cortex. Human CH DMR genes are hypomethylated in inhibitory 
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neurons whereas chimpanzee CH DMR genes are hypomethylated in excitatory neurons 
(excitatory neurons, n = 1879 and inhibitory neurons, n = 861). Statistical significance was 
computed using two-sided Mann-Whitney U-test. Box represents a range from the first 
quartile to the third quartile. 

 

Interestingly, human CH DMR genes are significantly enriched in gene sets 

representing inhibitory neurons, based on single-nucleus transcriptome data from the 

middle temporal gyrus (Hodge, Bakken et al. 2019) (Figure 3.3B), as well as those 

previously identified as markers of inhibitory neurons (Wonders and Anderson 2006, Lein, 

Hawrylycz et al. 2007, Luo, Keown et al. 2017) (FE = 5.3, P < 0.0001, permutation test). 

Moreover, these genes were more highly methylated in excitatory neurons than in 

inhibitory neurons in single-nucleus DNA methylation data from the same brain region 

(Luo, Keown et al. 2017) (Figure 3.3C and Figure B. 7). Integrating these observations, we 

hypothesize that human-specific CH methylation of inhibitory-neuron-specific genes may 

silence their expression in the genomes of excitatory neurons, thereby promoting functional 

specificity of neuron subtypes. Alternatively, there may have been a substantial shift of cell 

type composition in the human brain since the divergence from chimpanzees, to increase 

the ratio of excitatory to inhibitory neurons.  

3.3 Discussion 

We show that CH methylation is significantly higher in human and chimpanzee 

prefrontal cortex neurons compared to rhesus macaque and mice. Moreover, human 

prefrontal cortex neurons have higher CH methylation than chimpanzees and rhesus 

macaques. Although more data from brain tissues of a wider variety primates and other 

mammals are necessary to fully understand evolutionary dynamics of DNA methylation, 
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our observation suggests that CH methylation in the prefrontal cortex neurons has 

increased during the evolution of primates. CH methylation is highly negatively correlated 

with gene expression and is a strong predictor of gene-expression divergence between 

neurons of different species. Consequently, the evolutionary trajectory of increasing CH 

methylation during primate brain evolution may have contributed to shaping finer 

resolution transcriptional identities of cell types. In this regard, yet a further human-brain 

specific increase of CH methylation is intriguing. Based on joint analyses of CG and CH 

methylation, we show that these distinctive cytosine contexts both contribute additively to 

the human brain transcriptional program. Integrating our results with developmental bulk 

tissue data and single-cell functional genomics data from human brains, we show that the 

human-specific increase of CH methylation appears particularly important for early human 

brain development, and fine-tuning of neuron subtype cell identities.  

Due to the limitation of bisulfite sequencing, our data cannot separate 

methylcytosines from hydroxymethylcytosines (hmCs), which might play distinctive roles 

in neuron subtypes (Kozlenkov, Li et al. 2018). While additional data are needed, currently 

available maps (Wen, Li et al. 2014) do not suggest a significant impact of hmC on the 

differential methylation patterns identified in this study.   

 

3.4 Methods 

3.4.1 Identification of CH differential methylation 
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Unlike CG methylation, >70% of cytosine positions were conserved among the three 

species. Thus, we used orthologous cytosines across the three species to infer differentially 

methylated positions. Because CH methylation is sensitive to bisulfite conversion rate 

(Warnecke, Stirzaker et al. 2002), we only used individuals with high bisulfite conversion 

rates (>99.5%). We down-sampled and matched sample size across the species to avoid 

any bias derived from the different sample sizes across groups (N=11 for each species and 

cell-type). We removed sites in which >50% of individuals in at least one group have fewer 

than 5 read counts.  

For each CH site, we fitted a generalized linear model using the arcsine function to 

identify differentially methylated CH positions among species adjusting for other 

covariates (age, sex, and bisulfite conversion rate) using DSS. To fit our parsimonious 

approach, we also performed pair-wise analyses between species considering all 

combinations (i.e. human vs. chimpanzee, human vs. macaque, and chimpanzee vs. 

macaque). Benjamini–Hochberg correction (FDR) was used to perform multiple 

comparisons. We used the parsimonious approach to detect species-specific methylation 

changes with a cutoff of fractional methylation difference between species > 10% and FDR 

< 0.05. For example, human-specific CH methylated sites showed FDR < 0.05 from both 

human vs. chimpanzee and human vs. macaque comparisons and FDR > 0.05 from the 

chimpanzee vs. macaque comparison as well as a >10% difference of fractional 

methylation in humans compared to both chimpanzee and macaque fractional methylation 

levels.    

To identify human-specific and chimpanzee-specific CH DMRs, we identified 

significantly differentially methylated regions between human and chimpanzee using the 



 47 

differentially methylated positions generated from a human-chimpanzee comparison. We 

considered a minimum region of 50bp with at least 4 significant differentially methylated 

positions (FDR < 0.05) and covering >10 cytosines. Similarly, we used an average 

methylation difference of 10% as a cutoff. Using average methylation of macaque from 

corresponding regions, we detected human-specific and chimpanzee-specific CH DMRs 

using the following criteria. Human-specific CH DMRs are defined as DMRs that show a 

significant human-chimp difference with at least 4 differentially methylated positions as 

well as a methylation difference between human and macaque of >5% that is also greater 

than the methylation difference between chimpanzee and macaque. Similarly, chimp-

specific CH DMRs are DMRs that satisfy the following criteria: a significant human-chimp 

difference with at least 4 differentially methylated positions and a methylation difference 

between chimpanzee and macaque of >5% that is also greater than methylation difference 

between human and macaque. To obtain regions in which both human and chimpanzee 

were differentially methylated compared to macaque, we checked the overlap between 

human-macaque CH DMRs and chimpanzee-macaque CH DMRs. 

3.4.2 Identification of DMR genes 

To identify differentially methylated genes, we extracted genes with at least one 

DMR within a 3kb window upstream and downstream of the gene body. To remove 

redundant genes among different categories of DMR genes, we used average gene body 

methylation as an additional indicator to assign genes into the DMR gene category using 

the following criteria. Human-specific hyper CH DMR-genes are defined as DMR genes 

that include at least one human-specific hyper CH DMR and show higher average gene 

body methylation compared to the average gene body methylation of chimpanzee and 
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macaque. Also, the absolute methylation difference between human and macaque should 

be greater than the methylation difference between chimpanzee and macaque. 

3.4.3 CH methylation of neuronal subtypes 

We examined methylation patterns of neuronal subtypes for CH DMR genes. 

Average gene body methylation of CH DMR genes was calculated for neuronal cells from 

21 human neuronal subtypes (Luo, Keown et al. 2017). For the marker gene analysis of 

neuron subtypes, we used known excitatory and inhibitory neuron markers from Luo et al. 

2017 (Luo, Keown et al. 2017). We included the marker genes that are orthologous to the 

three species. These include 20 excitatory neuron markers (SATB2, TYRO3, ARPP21, 

SLC17A7, TBR1, CAMK2A, ITPKA, ABI2, RASAL1, FOXP1, SLC8A2, SV2B, 

PTPRD, LTK, LINGO1, NRGN, NPAS4, KCNH3, BAIAP2, ARPP19) and 13 inhibitory 

neuron markers (ERBB4, GAD1, SLC6A1, CCNE1, EPHB6, KCNAB3, LPP, TBC1D9, 

DUSP10, KCNMB2, UBASH3B, MAF, ANK1).  
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CHAPTER 4. DYSREGULATION OF CELL-TYPE EPIGENETIC 

IDENTITY ASSOCIATED WITH AGING IN HUMAN BRAIN 

4.1 Introduction 

It has been observed for several decades that aging has a profound influence on DNA 

methylation. Studies dating back several decades have demonstrated that DNA methylation 

levels of specific CpGs were subject to age-associated changes (e.g., (Wilson Vincent and 

Jones Peter 1983, Hoal-van Helden and van Helden 1989, Richardson 2003)).  

Technical advances in the last decade led to the development of relatively cost-

friendly microarray methods to study DNA methylation of a large number of CpGs. 

Subsequently, DNA methylation profiling of large cohorts and from different tissue types 

followed (e.g., (Rakyan, Down et al. 2010, Hernandez, Nalls et al. 2011, Bell, Tsai et al. 

2012, Heyn, Li et al. 2012, Numata, Ye et al. 2012, Hannum, Guinney et al. 2013)). To 

study the effect of aging on DNA methylation, these studies typically performed either 

correlation and/or linear regression analyses between DNA methylation and age, 

identifying numerous CpGs that showed significant variation with aging. The results of 

these studies solidified that aging has fundamental impacts on DNA methylation. 

It was shown that DNA methylation of genetically identical monozygotic twins also 

diverges with aging (Fraga, Ballestar et al. 2005), indicating that aging-associated DNA 

methylation changes are not necessarily programmed in the genome. Rather, the term 

‘epigenetic drift’ is often used to refer to changes of DNA methylation, and of other 

epigenetic marks that occur during aging (Cooney 1993, Egger, Liang et al. 2004, 
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Teschendorff, West et al. 2013). While there was some earlier disagreement over the nature 

of epigenetic drift regarding whether it involves a decrease or increase of DNA 

methylation, it became apparent that both patterns were prevalent. Promoters and CpG 

islands, which tend to have lower levels of DNA methylation (e.g., (Saxonov, Berg et al. 

2006, Weber, Hellmann et al. 2007, Elango and Yi 2008)), are often subject to 

hypermethylation, while intergenic/repetitive regions with higher DNA methylation tend 

to experience hypomethylation (Teschendorff, West et al. 2013, Jones, Goodman et al. 

2015, Sun and Yi 2015). These patterns support the idea that epigenetic drift might be due 

to gradual dysregulation of epigenetic maintenance over the lifespan, a pattern we will 

demonstrate more clearly in this work using nucleotide-resolution data of nearly all CpGs 

in the human genome. 

Another exciting development in aging-associated DNA methylation research is the 

development and application of the so-called ‘DNA methylation clocks’ (Hannum, 

Guinney et al. 2013, Horvath 2013, Horvath and Raj 2018, Levine, Lu et al. 2018, Bell, 

Lowe et al. 2019, Mammalian Methylation, Lu et al. 2021). Briefly, these are subsets of 

CpGs whose DNA methylation can be used as predictors of age. They are often identified 

using supervised machine learning methods with DNA methylation values as independent 

variables and age as the dependent variable. DNA methylation clock studies require large 

cohorts, and each clock can be constructed using data from single tissue or multiple tissues, 

using either biological age or phenotypic age derived from multiple measures (Horvath and 

Raj 2018, Bell, Lowe et al. 2019). DNA methylation clocks are known to be remarkably 

robust and sometimes perform better than other traditional predictors of biological aging 
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(Horvath and Raj 2018). DNA methylation clocks have wide-ranging applicability for the 

study of human health and medicine.  

These two aspects of aging-associated DNA methylation changes, namely epigenetic 

drift and DNA methylation clocks, open many questions and opportunities to study aging 

from the perspective of epigenetic programs over the lifespan (Jones, Goodman et al. 2015, 

Horvath and Raj 2018, Bell, Lowe et al. 2019). At the same time, there are several current 

deficiencies of knowledge that are critical to fully understanding and utilizing these 

patterns. For example, is the epigenetic drift a feature of all CpGs in the genome? How 

different or similar are epigenetic drift occurring in distinct tissues and cell types? What is 

the relationship between epigenetic clocks and epigenetic drift? Fundamentally, how do 

the epigenetic drift and epigenetic clocks relate to the underlying biological mechanisms 

of aging?  

To address these questions, we need to extend the study of aging-associated DNA 

methylation changes to the whole genome, using methods developed to examine all 

genomic CpGs, such as the whole-genome bisulfite sequencing (WGBS). Ideally, these 

studies should be conducted in large cohorts, to enable the analyses of epigenetic clocks 

and a more refined analysis of phenotypic traits. Another key missing pieces of information 

in addressing these issues is understanding DNA methylation at cellular resolution 

(Horvath and Raj 2018, Bell, Lowe et al. 2019). As epigenomic studies begin to reveal 

tremendous heterogeneity of cellular epigenetic programs, it is necessary to evaluate how 

aging-associated DNA methylation changes occur in different cell populations.  
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Here, we present our analyses of extensive whole-genome bisulfite sequencing data 

sets of DNA methylation from neuronal nuclei, separated by fluorescence-activated nuclei 

sorting, from 77 postmortem brains of individuals ranging from neonate to 85 years old. 

We identify CpGs that show the most DNA methylation changes with aging in neurons, 

using a regression method specifically developed for the analysis of WGBS data. By doing 

so, we demonstrate genomic patterns of epigenetic drift in neurons. We further contrast 

these results with those of non-neuronal cells, including oligodendrocytes.  

Our study first demonstrates a clear relationship between DNA methylation levels 

and age-associated DNA methylation change in the genome-wide scale for both cell 

populations. While the overall trend is consistent in the two cell populations, the specific 

CpGs that show aging-associated methylation changes are distinct, highlighting the cell-

type specific nature of DNA methylation. Moreover, we show that specific DNA 

methylation landscapes of distinct cell types become less distinct with aging, as a 

consequence of epigenetic drift and the divergent DNA methylation landscapes of different 

cell types. In other words, aging is associated with dysregulation of cell type specific 

epigenetic identities. Given the emerging significance of cell type specificity in disease and 

development, dysregulation of cell type specific epigenetic identity may be a meaningful 

component of aging.  

 

4.2 Results 

4.2.1 Age is a major driver of DNA methylation change in the WGBS data 
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To gain insight into the aging programs in the human brain at cell type resolution, 

we examined DNA methylation of two major brain cell populations - neurons and 

oligodendrocytes, separated using fluorescence-activated nuclei sorting method. 

Specifically, we analyzed 127 whole-genome bisulfite sequencing (WGBS) data sets of 

neurons (NeuN+, N=77), oligodendrocytes (OLIG2+, N = 42) and non-neuronal cells 

(NeuN-, N = 8) from the dorsolateral prefrontal cortex, collected from two independent 

studies (Mendizabal, Berto et al. 2019, Price, Collado-Torres et al. 2019). These data are 

from individuals across a broad age span, ranging from 2.4 months to 85 years; mean = 

43.5 years (Table C. 1).  

 

 

Figure 4.1 Age is a main determinant of DNA methylation variation. (A) Circular 
dendrogram plot resulting from hierarchical clustering of 127 whole-genome bisulfite 
sequencing (WGBS) data used in this study. Branches and nodes were colored based on 
the number of clusters setting to k=2. (B) The proportion of variation explained by each 
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variable controlled across 10 principal components (SCZ, schizophrenia; PMI, post-
mortem interval). (C) Principal component analysis of whole-genome CpG methylation 
values. The first principal component (PC1) which explains 10.3% of the total variation of 
DNA methylation distinguishes the age groups. (D) Concordance of DSS statistics between 
results from the combined data set (Mendizabal and Price) and results from using only 
Mendizabal data set. CpG sites with disconcordant DSS statistics from two analyses were 
colored in red. (E) Barplot shows the numbers and percentage of significant age-associated 
CpG methylation changes (age-DML) in NeuN+ and OLIG2+. (F) Examples of NeuN+ or 
OLIG2+ specific age-DML. DNA methylation indicates fractional methylation of the CpG 
site. 

 

To avoid erroneous methylation calls due to genetic polymorphism at cytosine bases, 

we first mapped all the matched whole genome sequencing data and excluded positions 

that were polymorphic at cytosines (Methods). Consequently, we were able to determine 

DNA methylation levels of 23.6 million CpGs from these data. Hierarchical clustering 

analysis indicated that NeuN+ samples from the two data sets cluster together, while 

OLIG2+ and NeuN- cluster together, reaffirming cell identities (Figure 4.1A).  

In both data sets, age was the main determinant of variation of DNA methylation. 

Overall, age explained a greater amount of DNA methylation (11.4% and 16.3% for 

NeuN+ and OLIG2+, respectively) compared to other factors such as disease status 

(<1.6%) and sex (<2.2%, using CpGs in autosome) (Figure 4.1B). Using only Price et al. 

(Price, Collado-Torres et al. 2019) data set, age explained an even greater amount of DNA 

methylation variation (23.4% and 23.6% for NeuN+ and NeuN-, respectively) than in the 

total data set (Figure C. 1). It should be noted that samples from the Price et al. (Price, 

Collado-Torres et al. 2019) are biased toward relatively young age groups (neonate to early 

20s) while those from Mendizabal et al. (Mendizabal, Berto et al. 2019) range from late 

20s to 80s (Table C. 1). Given that DNA methylation dramatically changes during early 
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development (Price et al. 2019, other papers), the amount of DNA methylation explained 

by age in Price et al. data set would also include the effect of the shift of DNA methylation 

during early development. Accordingly, principal components and pairwise correlation 

coefficients showed that DNA methylation levels are influenced by both the difference 

between early age and the two studies (Figure 4.1C). In addition to the developmental shift 

of DNA methylation, the two data sets are generated from two different labs, thus subject 

to slightly different protocols, sequencing platforms, and other potential yet unknown 

differences. Also, phenotypic attributes associated with data are distinct between the two 

data sets, thus making it difficult to control for confounding factors while performing 

statistical tests. Consequently, even though cell identities and the major impact of age on 

DNA methylation are consistent between the two data sets, we treated the two data sets 

separately in the subsequent analyses. 

4.2.2 CpGs that vary with aging are highly cell type specific 

To characterize age-associated DNA methylation changes, we investigate aging-

associated DNA methylation changes using data from Mendizabal et al. (2019). This data 

set contains samples from the aging lifespan, rather than developmental shift. We applied 

a generalized linear model framework developed to analyze WGBS data (Park and Wu 

2016) and considered covariates including the postmortem interval, sex, disease status, and 

bisulfite conversion rates (similar to in Mendizabal et al. 2019, Methods).  

Following these procedures, we identified 4,480 and 2,253 CpGs that show 

significant age-associated methylation changes in NeuN+ and OLIG2. These CpGs were 

detected using the cutoff of FDR < 0.1, which corresponds to P< 3.18 x 10-5 and P<1.52 x 
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10-5 for NeuN+ and OLIG2+, respectively. They are henceforth referred to as ‘age-

differentially methylated loci’ or simply ‘age-DMLs’. We also performed the same 

analysis after combining Mendizabal et al. and Price et al. data sets. Test statistics from 

Mendizabal et al. and the combined data sets are strongly correlated (Spearman’s rho = 

0.76) (Figure 4.1D). For example, we observed that 73% of age-DMLs resulting from 

Mendizabal et al. are overlapped with DMLs resulting from the combined sets, suggesting 

consistent patterns of age-associated DNA methylation changes in the two data sets.  

DNA methylation changes with age show distinct patterns between two cell types. 

In NeuN+, the majority of age-DMLs exhibit hypermethylation (77.2%, also referred to as 

‘age-hyper DMLs’). In contrast, age-DMLs in OLIG2+ are biased toward hypomethylation 

(55.6%, also referred to as ‘age-hypo DMLs’) (Figure 4.1E). Aging DMLs of the two cell 

types had only 16 overlapping CpGs, demonstrating highly distinctive sets of age-

associated differentially methylated sites between NeuN+ and OLIG2+. Some examples of 

aging-DMLs are shown in Figure 4.1F.  

The number of age-DMLs highly correlated with the size of chromosomes (rho = 

0.9) (Figure C. 2), with a few outliers, notably chromosomes 1, 4, and 13. This pattern is 

not caused by clusters of adjacent CpGs with similar DNA methylation levels (i.e., (Lister, 

O'Malley et al. 2008, Huh, Yang et al. 2014)); when we re-examined the pattern after 

excluding age-DMLs within 1kbp of any other age-DMLs, the differences remained.  

4.2.3 Genomic patterns of epigenetic drift 

Previous studies have demonstrated that genome-wide DNA methylation changes 

with aging could be explained by the so-called epigenetic drift, or random changes of DNA 
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methylation. In particular, aging associated epigenetic drift may reflect decreased 

efficiency of DNA methylation maintenance, therefore leading to an increase or decrease 

of DNA methylation for sites that are initially lowly or highly methylated (Teschendorff, 

West et al. 2013, Jones, Goodman et al. 2015, Sun and Yi 2015).  

 

 

Figure 4.2 The initial methylation level is a major determinant of epigenetic drift. For 
each CpG site, we fitted a linear model to estimate the age effect on DNA methylation 
adjusted for other biological variables (post-mortem interval, sex, disease status, and 
bisulfite conversion rate). Y-axis indicates mean methylation levels of neonates for the 
corresponding CpG site. For an illustration purpose, only 10,000 randomly selected CpG 
sites were displayed in the plots. 

 

Our data on DNA methylation on a nearly entire set of CpGs in the genome offer an 

unprecedented opportunity to examine this in a truly genome-wide fashion. We examined 

age-associated DNA methylation changes of CpG positions in relation to their DNA 

methylation states. We used an average methylation level of neonates as a proxy for the 
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putative initial methylation state and asked if the direction of epigenetic drift is related to 

the initial level of DNA methylation. We found that the initial methylation state and the 

direction of aging-associated change were significantly negatively correlated (Spearman’s 

rho = -0.32, P< 2.2X10-16, Figure 4.2). In other words, CpG positions that were lowly 

methylated in neonates tended to increase methylation with age, while those with heavy 

initial methylation tended to lose DNA methylation. It should be noted, however, that the 

relationship between these two variables is messy and by no means represent a perfect 

correlation. Nevertheless, the genome-wide trend is clear. When we used the mean 

methylation of individuals with ages less than 20 as a predictor, we found similarly 

significant patterns (Figure C. 3). These results indicate that the baseline level of DNA 

methylation is an important, and likely a major, determinant of age-associated DNA 

methylation change. 

In mammalian and other vertebrate genomes, DNA methylation levels show clear 

bimodal distribution (Elango and Yi 2008). Given the direction of epigenetic drift we have 

demonstrated above, it is expected that the genome-wide epigenetic drift diminishes 

differences between the extreme ends of DNA methylation (since heavily methylated CpGs 

lose DNA methylation and lowly methylated CpGs gain DNA methylation). Indeed, when 

we compared DNA methylation distributions across the age groups in adults, we observed 

that the clear bimodality is more dispersed in old adults, although the distributions vary 

across individuals (Figure C. 4). 

4.2.4 Connecting epigenetic drift with highly cell-type-specific aging differential DNA 

methylation 
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Having examined the genome-wide patterns of epigenetic drift, we questioned 

whether the observed age-DMLs in NeuN+ and OLIG2+ follow the genome-wide pattern 

of epigenetic drift. Distributions of DNA methylation in age-DMLs show cell-type specific 

patterns (Figure 4.3). For example, accumulation of DNA methylation (referred to as ‘age-

hyper’ in Figure 4.3) in neurons shift initially lowly or intermediately methylated positions 

in NeuN+ (but highly methylated in OLIG2+) to a high level of DNA methylation (Figure 

4.3A; see also Figure 4.3C for DNA methylation in OLIG2+ for the corresponding CpG 

sites). Loss of DNA methylation in neurons was observed for positions that are highly 

methylated NeuN+ while exhibiting a broad range of DNA methylation in 

oligodendrocytes (Figure 4.3A). On the other hand, accumulation of DNA methylation in 

the oligodendrocyte genomes mainly occurs in sites where early methylation levels were 

very low in both cell types, but increase in OLIG2+ only (Figure 4.3B; see also Figure 

4.3D for DNA methylation in NeuN+ for the corresponding CpG sites).  
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Figure 4.3 Accumulation and loss of DNA methylation with age show highly cell-type-
specific patterns. (A) Trajectories of distributions of DNA methylation in NeuN+ age-
DMLs. (B) Trajectories of distributions of DNA methylation in OLIG2+ age-DMLs. (C) 
and (D) DNA methylation distributions of the same CpG positions in the other cell type 
are also shown for control. 

 

It should be noted that although the two brain cell types showed cell-type-specific 

patterns of genome-wide aging epigenetic drift, there is a weak but positive correlation of 

DNA methylation changes with aging between cell types (Figure C. 5). It is not surprising 

given that brain cell types contain both common and cell-type-specific methylated regions.  

4.2.5 Dysregulation of cell-type identity is one potential mechanism of aging 

Above we have demonstrated that age-associated changes of DNA methylation occur 

in distinctive CpGs in NeuN+ and OLIG2+, even though the overall pattern of epigenetic 

drift follows a common trend. These observations could be reconciled by noting that 

NeuN+ and OLIG2+ exhibit highly distinctive DNA methylation landscapes. For example, 
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we have previously shown that more than 20% of the human genome exhibits significant 

differential methylation between neuron and oligodendrocyte (Mendizabal, Berto et al. 

2019) and the majority of these differences are evolutionarily conserved (Jeong, 

Mendizabal et al. 2021). CpGs that are highly differentiated between cell types tend to be 

more often identified as age-DMLs (Figure 4.4A). Concordantly, DNA methylation 

between the cell types shows more pronounced differences in aging-DMLs than randomly 

selected CpGs (Figure 4.4B). This pattern is stronger in OLIG2+ than in NeuN+.  

 

 

Figure 4.4 Age-associated DNA methylation changes contribute to the dysregulation 
of cell type identity. (A) Age-DML is highly enriched for the genomic regions 
differentially methylated between NeuN+ and OLIG2+ cells (cell type DMR). Fold 
enrichment analysis was performed based on the occurrences of NeuN+ age-DMLs for cell 
type DMR compared to random control sets (n=100). (B) The absolute CpG methylation 
difference between cell types is significantly higher for age-DMLs compared to control 
sets with matched G+C nucleotide contents. (C) and (D) Trajectories of cell type 
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methylation difference with age. Relative methylation difference between NeuN+ and 
OLIG2+ was calculated for the samples collected from the same brain tissue. 

 

Since epigenetic drift pushes DNA methylation levels to intermediate levels, 

epigenetic drift can ultimately dim cell-type methylation differences. To test this 

hypothesis, for each CpG, we calculated the relative DNA methylation difference between 

neuron and oligodendrocyte collected from the same brain tissue sample. We then 

examined the cell-type methylation difference trajectories with age. The relative 

differences in DNA methylation between cell types tend to gradually decrease with age 

(Figure 4.4C). This trend is especially pronounced in NeuN+ age-hyper DML. However, 

we observed that epigenetic drift does not always act in the direction of decreasing DNA 

methylation differences between cell types. For example, OLIG2+ age-hypo DML showed 

a slight increase of cell type methylation difference between with age (Figure 4.4D).  

Such observed aging-associated DNA methylation changes can alter epigenetic cell 

type identities. We examined DNA methylation cell type identity of different age groups 

to test this hypothesis. Specifically, we defined DNA methylation cell type identity as a 

point in a two-dimensional plane, where one axis is the methylation in neurons and the 

other axis is the methylation level in oligodendrocytes or non-neurons. We then examined 

how the DNA methylation cell type identities change with aging, by approximating 

epigenetic distances between age groups using the Euclidian distance between the above-

defined cell type epigenetic identities (Methods for more details). Figure C. 6 demonstrates 

the results of this analysis. Epigenetic distance of cell type identity from the neonate is 

depicted for different age groups for age-DMLs. Epigenetic distances of the randomly 
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selected CpG positions are also shown for control. First, we observe that cell type 

epigenetic identity changes dramatically from neonates to toddlers, which is explained by 

the developmental shift of DNA methylation. Second, we show that cell type identity of 

age-DMLs was drifted further away from the initial epigenetic profile set up in the 

neonates. For example, the mean epigenetic distance of NeuN+ age-DMLs in old adults is 

0.28, while those in control is 0.18 (P < 2.2 x 10-16, Mann-Whitney test). Finally, this trend 

is more pronounced in OLIG2+ age-DMLs.  

4.2.6 Functional consequences of aging DMLs and disease enrichment 

We examined functional implications of age-DMLs using genomic annotations, 

matched RNA-seq data, and comparisons with GWAS variants of different diseases. In 

both cell types, age-hyper DMLs were significantly enriched in promoters, suggesting their 

potential impact on the regulation of gene expression (Figure 4.5A). It is well known that 

promoter methylation is negatively correlated with its corresponding gene expression. 

Using gene expression data from the matched samples, we found that genes that 

accumulate DNA methylation in the promoter (i.e., harboring age-hyper DML) are 

expressed most strongly early in life (Figure 4.5B). In contrast, promoters with age-hypo 

tend to increase gene expression with age. In addition, the hypomethylating age DMLs 

exhibited strong enrichment in brain enhancers in the dorsolateral prefrontal cortex inferred 

from Roadmap epigenomics data.  
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Figure 4.5 Functional implication and brain trait heritability of age-DMLs. (A) 
Distribution of Age-DML in different functional genomic regions. Age-hyper DMLs are 
highly enriched for promoter regions, while age-hypo DMLs are enriched for brain 
enhancers. Fold enrichment analysis was performed based on the occurrences of age-
DMLs for each feature compared to random control sets (n=100). (B) The effect of age on 
gene expression for age-DML using the matched RNA-Seq data (Method). (C) 
Significance levels for genetic heritability in different age DML and complex traits. Red 
dots indicate the statistical significance of age-DML for the traits. Boxplots represent 
results from random control sets (Method). 
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We also find that age-DMLs are enriched in distinctive transcription factor (TF) 

binding motifs. Within the significant binding motifs was the nuclear factor 1 A-type 

(NFIA). Its expression drives neural stem cells toward astrocyte fate by regulating Gfap 

expression (Cebolla and Vallejo, 2006, Glasgow et al., 2014, Kang et al., 2012). Some age-

DMLs occurred nearby, indicating the presence of genomic regions whose DNA 

methylation undergoes aging-associated changes (Figure C. 7). Interestingly, 21 OLIG2+ 

age-hypo DMLs are clustered in a window (chr1: 226.83Mbp – 226.92Mbp) residing on 

ITPKB locus and significantly overlapping with a significant GWAS risk locus of 

Parkinson’s disease (rs16846351). 

Given that cell type specificity is implicated in disease and development, we further 

examined cell-type aging epigenetic drift may contribute to genetic heritability associated 

with human diseases. We performed the stratified linkage disequilibrium score regression 

(Finucane, Bulik-Sullivan et al. 2015) to estimate the contribution of age-DMLs to disease 

and other complex traits using GWAS summary statistics (Figure 4.5C). Previously, we 

showed that differentially methylated regions between neurons and oligodendrocytes 

contribute to neuropsychiatric and neurodegenerative disorders (Mendizabal, Berto et al. 

2019). To avoid a bias derived from the DNA methylation between neurons and 

oligodendrocytes, we compared the results with two control sets controlling for the cell-

type methylation difference and GC ratios (Methods). We found a significant enrichment 

for various brain disorders (e.g., bipolar disorder, neuroticism, and schizophrenia) in 

NeuN+ age-hyper DMLs (Bonferroni adjusted P-value < 0.05). Educational attainment and 

body mass index (BMI) also showed significant enrichment.  

4.2.7 Relationship with DNA methylation clocks  
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Recent studies of age predicter models from DNA methylation arrays from multiple 

studies and tissues showed that chronological ages could be accurately predicted (within 

four years) based on the DNA methylation of a few hundred CpG positions (Horvath 2013, 

Levine, Lu et al. 2018). Our data, while providing nucleotide-resolution DNA methylation 

data from the largest number of CpGs possible, lack the adequate sample size to construct 

a DNA methylation clock. Nevertheless, we examined whether the DNA methylation age 

predictor could estimate biological ages close to the known chronological ages of our 

WGBS samples. We performed the Horvath multi-tissue DNA methylation age clock 

(Horvath 2013), the most well-known age predicter.  

 

 

Figure 4.6 DNA methylation variation of multiple tissues in clock CpGs. (A) Horvath 
estimated DNA methylation age is highly correlated with a chronological age of WGBS 
samples. (B) The coefficient of methylation variation resulting from 10 different WGBS 
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tissues shows highly variable DNA methylation for age-DML and reduced DNA 
methylation variation for clock CpGs. 

 

The Horvath clock accurately predicts methylation ages very similar to chronological 

ages in our WGBS samples (Figure 4.6A). The correlation between the estimated DNA 

methylation ages and the chronological ages is 0.76 and 0.72 for NeuN+ and OLIG2+, 

respectively, reaffirming that clock CpGs can accurately predict ages from multiple tissues. 

Given that we have demonstrated that age-DMLs are highly distinct between cell types, we 

hypothesized that clock CpGs might represent those that show less variability between 

tissues compared to age-DMLs. Indeed, the multi-tissue age predictor clock CpGs such as 

Horvath (Horvath 2013) and Levine (Levine, Lu et al. 2018) exhibited reduced DNA 

methylation variation in 10 tissues (Methods), while age-DML found in neurons and 

oligodendrocytes show significantly higher methylation variation compared to clock CpGs 

and randomly selected CpGs (Figure 4.6B and Figure C. 8).  

 

4.3 Discussion 

Our study is, as far as we are aware, the first to examine aging-associated DNA 

methylation changes at the whole-genome scale (23.6 million CpGs) from distinctive cell 

populations. By doing so, we first show that aging explains a significant amount of 

variation observed in DNA methylation. Across the two different data sets, aging explained 

more than 10% of the total variation in DNA methylation, which is greater than the 

estimated effect of sex in both data sets, and the effect of schizophrenia diagnosis in 
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Mendizabal et al.’s data. Moreover, we show that the majority of age-associated variation 

in DNA methylation can be explained by the effect of DNA methylation in early ages. 

Using DNA methylation levels at neonates as a proxy, nearly 8.1% of the total variation in 

genomic DNA methylation could be explained by the level of DNA methylation in the 

early stage.  

The term ‘epigenetic drift’ has been used in the context of age-associated DNA 

methylation changes (Cooney 1993, Egger, Liang et al. 2004, Teschendorff, West et al. 

2013, Sun and Yi 2015). The term drift itself explicitly refers to random changes, and 

epigenetic drift implicates stochastic change of DNA methylation. However, having 

demonstrated that the direction of DNA methylation change is significantly related to the 

DNA methylation level in early age, our study indicates that a significant amount of aging-

associated DNA methylation changes is non-random.  

Epigenetic drift was thought to occur due to the noise introduced by the imperfect 

DNA methylation machinery accumulated in every cell cycle (e.g., Cooney 1983). We 

show here that neurons show age-associated DNA methylation changes even though they 

are largely devoid of cell divisions. Therefore, epigenetic drift does not necessarily 

associate with cell division.  

Emerging studies, including those from our group, have shown that DNA 

methylation and other epigenetic landscapes of different cell types are highly distinct, 

which in turn are enriched in positions implicated in diseases (Mendizabal et al. 2019, 

others). As we have demonstrated above, age-associated DNA methylation changes are 

dependent on DNA methylation levels in early stages. Consequently, CpGs that show DNA 
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methylation change with aging is likely to be highly divergent between different cell types, 

as we demonstrate here for between neurons and oligodendrocytes.  

One of the most exciting recent development in aging research in general is the 

presence of Aging CpG clocks, which are subsets of CpGs can predict the biological and 

phenotypic ages with high accuracy. How can we reconcile aging CpG clocks with our 

findings that aging-associated DNA methylation changes occur in a highly cell type 

specific manner? It should be noted that our study and aging CpG clocks use fundamentally 

different approaches. The goal of aging CpG lock studies is to identify predictors of aging 

from the CpGs that are present in large studies, which are typically those included in widely 

used DNA methylation arrays. The specific CpGs within the clocks often do not show a 

higher correlation with age than other CpGs (Horvath 2013). Rather, these two types of 

CpGs represent two different aspects of aging-associated changes of DNA methylation. 

Nevertheless, interestingly, clock CpGs appear to have less variability of DNA methylation 

between tissues compared to randomly selected CpGs as well as aging-DMLs. Among the 

clock CpGs, those selected from a single tissue (Hannum clock) show a similar level of 

variability with the cell-type aging-DMLs.  

 

4.4 Methods 

4.4.1 Whole-genome bisulfite sequencing data processing 

To investigate comprehensive brain cell-type DNA methylation changes with aging, 

we used our previously published WGBS data set of 53 NeuN+ and 42 OLIG2+, which 
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comprised samples from individuals of different ages (range from 25 yrs to 85 yrs). We 

also collected brain cell-type WGBS data from neonates, toddlers, and teens to examine 

DNA methylation trajectories across different age groups and infer the initial cell-type 

DNA methylation state. 

WGBS reads were quality trimmed with TrimGalore v.0.4.1 (Babraham Institute) 

using a default setting. The trimmed reads were mapped to the human reference genome 

(hg19) using Bismark v.0.14.5 (Krueger and Andrews 2011) with Bowtie 2 mode. 

Duplicated reads were further processed and filtered by the deduplicate module in Bismark 

(deduplicate_bismark). We removed lowly mapped CpG positions (average mapped reads 

less than 5).  

Principal component analysis of methylated cytosines was performed using 

randomly selected 2 million CpG sites. To retain informative CpG sites, we excluded the 

positions with the mean fractional methylation either less than 0.1 or greater than 0.9. To 

compute the proportion of the overall variance of DNA methylation explained by 

covariates, we regress each principal component on all covariates, take the coefficient of 

determination multiplied by the fraction of variance that the principal component captures, 

and sum over results from all principal components. To reduce computation cost, we used 

the top 10 principal components.   

4.4.2 Identification of age-DML 

For each CpG position, we fitted a generalized linear model using the arcsine link 

function to estimate the age effect. The model fitting is conducted utilizing the DSS (ver. 

2.4) Bioconductor package (Feng, Conneely et al. 2014). We considered bisulfite 
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conversion rates, sex, postmortem intervals, and disease status as covariates. A hypothesis 

test of the age effect for each CpG site was performed using the Wald test using the 

estimated coefficient and standard error from the fitted model. False discovery rate (FDR) 

is computed using the Benjamini-Hochberg method.      

The coefficients of age from the DSS analyses are estimated from the GLM 

framework, making it difficult to interpret the explicit meaning of methylation differences 

compared across CpG sites. Thus, we also fitted general linear models using fractional 

methylation to estimate biologically interpretable methylation level differences with aging.  

4.4.3 RNA-Seq data processing 

RNA-Seq data from the matched with WGBS samples were collected from previous 

studies (Mendizabal 2019, Price et al. 2019). Raw sequencing reads were quality trimmed 

with Trimmomatic (ver. 0.39) and then mapped to the human reference genome (hg19) 

using STAR (ver. 2.7) with the following options: --alignSJDBoverhangMin 1 --

outFilterMismatchNmax 3 --outFilterMultimapNmax 10 --alignSJoverhangMin 10 --

twopassMode Basic. We removed any secondary alignments and duplicated reads using 

Samtools (ver. 1.13) to ensure that only uniquely mapped reads were retained for further 

analyses. We calculated the gene expression using htseq (ver. 0.11.2) using intersection-

strict mode by the exonic regions. We quantified protein-coding genes using the human 

Ensembl annotation (GRCh37.87).  

4.4.4 Disease heritability using stratified LD score regression 
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To measure the contribution of age-DML to the genetic risk of disease and complex 

traits, we performed the stratified LD score regression analysis. We followed the same 

processing steps and used the list of GWAS traits described in the previous work (Jeong et 

al. 2021). Briefly, we examined extended genomic regions of age-DML (25 kbp on both 

sides of focal age-DML) to improve the confidence intervals of the estimates. As a 

statistical control, we performed partitioned stratified LD score analyses using CpG 

positions that are differentially methylated between neurons and oligodendrocytes. G+C 

nucleotide contents were matched based on the GC ratio of 1kbp window (+-500bp of age-

DML).  

4.4.5 Coefficient of methylation variation 

To estimate the coefficient of variation of each CpG site, we processed WGBS data 

from 9 tissues (placenta, sperm, hair follicle, adrenal gland, liver, colon, ovary, embryonic 

stem cell, and b-cell). Because CpGs selected from methylation array data are often biased 

toward promoter regions, coefficient of variation of those CpGs are inflated (because mean 

methylation is close to 0). Thus, the coefficient of variation was calculated using the 

corrected equation.   

Coefficient	of	methylation	variation =
2∑(𝑥! − 𝜇)"

2𝜇(1 − 𝜇)
 

where  𝑥!  denotes fractional methylation of i-th tissue and 𝜇  denotes the mean 

methylation value.  
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CHAPTER 5. DIFFERENTIAL EPIGENETIC AGING 

ASSOCIATED BY SOCIAL REARING EXPERIENCES DURING 

EARLY LIFE 

5.1 Introduction 

One of the most notable advances in DNA methylation research in the last decade is 

the development of aging CpG clocks, which are subsets of CpGs whose DNA methylation 

levels can predict chronological and phenotypic ages with high accuracy (Horvath 2013, 

Horvath and Raj 2018, Horvath, Zoller et al. 2021). These clocks are obtained via machine 

learning methods to identify reliable predictors of age. Initially developed from single 

tissues from DNA methylation arrays (Hannum, Guinney et al. 2013), aging CpG clocks 

are now being obtained from multiple tissues, DNA methylation arrays with a greater 

number of CpGs, and/or custom DNA methylation arrays (Horvath, Zoller et al. 2021). 

These clocks offer tremendous diversity of opportunities to study health and aging.  

Aging is nearly ubiquitous in the tree of life. Molecular mechanisms of aging thus 

may share common evolutionary characteristics (Horvath, Zoller et al. 2021). It follows 

that aging CpG clocks can be also obtained for many species, provided that we can measure 

DNA methylation levels from a large number of individuals across the lifespan. Indeed, 

aging CpG clocks are actively being developed from many species (Bell, Lowe et al. 2019, 

Anderson, Johnston et al. 2021, Bors, Baker et al. 2021, Horvath, Zoller et al. 2021). These 

aging CpG clocks should provide information on common and divergent mechanisms of 

aging for different species, as well as candidate genes and pathways to understand species-
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specific health and aging trajectories. For example, a study of wild baboons (Papio 

cynocephalus) in the Amboseli ecosystem of Kenya demonstrated that dominance rank in 

male baboons, but not female baboons, is strongly correlated with the acceleration of aging 

CpG clock (Anderson, Johnston et al. 2021). This result provides several hypotheses on 

how to understand aging in male and female baboons, which could yield information the 

conserved, universal mechanisms of aging.  

Apart from the aging CpG clock generated in the Anderson et al. study, there are 

other aging CpG clocks from four other non-human primates, including the vervet monkey, 

rhesus macaque, marmoset, and the hamadryas baboon (P. hamadryas) (Horvath, Haghani 

et al. 2020). Aging CpG clocks from the hamadryas baboon hybrids showed high accuracy 

when used against the human data, emphasizing their potential significance in aging 

studies.  

In this study, we utilized the Specific Pathogen Free (SPF) colony of the anubis 

baboons (P. anubis) at the MD Anderson Center. This colony is specifically developed for 

biomedical research, with medical and health records concurrently being developed. This 

specific colony setting provides another unique and interesting biological factor. To create 

a SPF breeding colony, newborn infant baboons must be separated from non-SPF females 

to prevent maternal transfer of all undesirable pathogens. When removed from the non-

SPF females, the neonates are raised in a human nursery-setting (‘nursery-raised’ or NR 

baboons). There are also offspring born to existing SPF females who are not separated and 

are therefore raised by their biological mother in a nuclear family setting (‘mother-raised’ 

or MR baboons). Therefore, these groups of baboons experience different early rearing 

experience. Previous studies that examined the effect of similarly different rearing 
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experience discovered several characteristics that lasted into the adulthoods (Perris and 

Andersson 2000, Goel and Lee 2007, Lomanowska, Lovic et al. 2011).  

The goal of this study is three-fold. First, we wanted to develop aging CpG clocks 

from the anubis baboons, which can be applied to the study of health and aging in this 

population. Second, we wanted to test if rearing experience during early life affect rates of 

epigenetic aging. Third, we wanted to further explore the relationships between epigenetic 

aging and differential DNA methylation with sex, aging and rearing experience.   

 

5.2 Results 

5.2.1 DNA methylation-based age estimator accurately predicts chronological age   

To better understand the long-term effects of early-life social rearing experiences on 

epigenetics, we generated reduced-representation bisulfite sequencing (RRBS) data from 

blood-derived DNA samples of baboons (N = 140; 119 females and 22 males). These data 

were collected from two distinct groups of early social rearing experience. One group of 

individuals were raised by their biological mothers (mother-reared, MR), while the other 

group was raised in a human-nursery setting (nursery-reared, NR). Also, we collected the 

samples from across broad age span, ranging from 14 months to 19.3 years (mean = 9.6 

years) to investigate age effects on epigenetic variation. RRBS reads were mapped to the 

baboon papAnu4 reference genome to quantify DNA methylation at base level resolution. 

Using whole-genome sequencing (WGS) data from 100 baboons, we excluded any 

nucleotide polymorphisms occurring at cytosine sites to avoid incorrect methylation calls 
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due to the technical limitation of distinguishing bisulfite converted thymine from 

unmethylated cytosine. After stringent filtering procedures (Methods), we obtained 

coverage for over 2.6 million CpGs in the baboon genome with an average read depth of 

>5. 

 

 

Figure 5.1 Age prediction using DNA methylation of baboon blood samples. Predicted 
age is estimated using the leave-one-out cross-validation approach (Methods). Solid lines 
indicate the fitted regression line. 
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DNA methylation can be used as a strong predictor to estimate the biological age of 

samples (Horvath 2013). Using our RRBS data, we generated DNA methylation-based 

baboon age predictor (Figure 5.1). The baboon epigenetic clock accurately predicts age 

using DNA methylation of 153 CpG sites (R=0.98 and mean error 2.1 years). Consistent 

with previous findings, the clock CpGs are more enriched in CpG islands than control 

CpGs that match GC-content (± 500 bp). We found that the clock CpGs consist of both 

age-hypermethylated (n=89) and age-hypomethylated sites (n=64).  

We further examined whether the clock CpGs resulting from our study are located 

closely with other clock CpGs that are identified from an independent study (Anderson 

2021). We found that 34 clock CpGs from our study (22.2%) are overlapping or closely 

located (< 500 bp) with the other clock CpGs (P-value < 0.01, permutation test). Notably, 

two epigenetic clock CpGs were generated from different baboon species (Papio Anubis 

and Papio cynocephalus) and different rearing environments (domesticated vs. wild). This 

result implies that epigenetic clock CpGs are a robust predictor of age and applicable for 

other species.  

5.2.2 Age-associated methylation changes vary with early life social rearing experience 

We performed principal component analyses (PCA) using DNA methylation of the 

CpG sites to explore the association of biological and environmental factors with DNA 

methylation. The first PC shows a clear trajectory by age (Figure 5.2A). This result is in 

agreement with the previous studies that age is a major determinant of DNA methylation 

changes. Interestingly, we found that there is a distinct separation of old individuals that 

has nursery-reared experience. However, there is no separation of individuals for rearing 
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experience when we observe young individuals. This result may indicate that there exists 

a long-term effect of the social rearing experience. Indeed, a significant amount of DNA 

methylation variation is explained by age, rearing experience, and their interaction effect 

(Figure 5.2B). 

 

 

Figure 5.2 DNA methylation in baboon blood samples from RRBS data. (A) Principal 
component analysis of fractional methylation of CpG sites. Samples were colored and 
shaped by age and rearing experience, respectively. (B) DNA methylation variance 
explained by biological and environmental factors. 

 

We compared DNA methylation levels from two rearing groups to identify methyl-

CpG positions associated with differences in social rearing experience. For each CpG, we 

fitted a generalized linear model controlling for biological covariates (Methods). We 

identified 285 CpGs that show significant social rearing-associated methylation changes 

(henceforth, rearing-differentially methylated loci or rearing-DML). These CpGs were 
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detected using the cutoff of FDR < 0.1, which corresponds to P < 6.28 x 10-5. We also 

compared the relationship between DNA methylation and age for two social rearing 

experiences to identify age-DMLs associated with differences in social rearing experience. 

We identified 18 CpGs that show a significant interaction effect between age and social 

rearing experience.   

 

5.3 Methods 

5.3.1 Generation of DNA methylation data 

Baboon blood samples were obtained from the MD Anderson Center. We used 

blood-derived DNA to generate DNA methylation data. All the samples were obtained 

following all relevant ethical regulations and institutional review boards of the MD 

Anderson Center.  

We generated reduced-representation bisulfite sequencing (RRBS) data from 140 

baboons (N = 140; 119 females and 22 males). These data are from samples across a broad 

age span, ranging from 14 months to 19.3 years (mean = 9.6 years). RRBS libraries were 

constructed using the NuGEN library preparation kit according to the manufacturer's 

protocol. The RRBS libraries were diluted and loaded onto Illumina HiSeq3000 system for 

sequencing using 57 bp single-end reads. We performed quality and adapter trimming 

using TrimGalore v.0.4.1 with a default setting (Babraham Bioinformatics). The libraries 

from the NuGEN kit use a 6-base barcode with an additional six random bases, which can 

be used for determining duplicate reads. We removed the additional adaptor sequences 
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added by the diversity adaptors using a custom python script provided by NuGEN 

Technologies (https://github.com/nugentechnologies/NuMetRRBS). The sequencing reads 

were mapped to the baboon papAnu4 reference genome using Bismark v 0.14 (Krueger 

and Andrews 2011). Duplicated reads were removed using the deduplicate module built in 

the Bismark software program.  

Because genetic polymorphisms of thymine at CpG sites are not distinguishable from 

bisulfite-converted cytosines, we removed polymorphic CpGs from downstream analyses. 

Genetic variants collected from 100 baboons were downloaded from 

https://doi.org/10.5281/zenodo.2583266.   

5.3.2 Elastic net regression model  

To retain informative CpG sites, we removed CpGs with a mean methylation level 

either less than 0.1 or greater than 0.9. Also, we removed CpGs with a mean depth of 

coverage less than 5. We excluded CpG sites with missing data in any individuals. DNA 

methylation clock for baboons was built using elastic net regression. We used the R 

package glmnet to build the elastic net regression model (Engebretsen and Bohlin 2019). 

The optimal regularization parameter, lambda, was determined by 10-fold cross-validation 

on the data using cv.glmnet. We estimated the DNA methylation age of each individual 

using the leave-one-out cross-validation approach in which age is predicted for the sample 

using all samples but that sample as a training set.   

5.3.3 Functional enrichment analysis 
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We investigated the genomic distribution of the clock CpG sites. Statistical 

significance and fold-enrichment were determined by the occurrences of the CpGs for each 

genomic feature compared with those in random control sets with matched numbers of the 

clock CpGs. The random sets were G+C content matched control CpGs (GC ratio of ±500 

bp of the focal CpG). Genomic coordinates of functional genomic regions were 

downloaded from the UCSC genome browser.   

5.3.4 Identification of differentially methylated CpGs 

For each CpG site, we fitted a linear model to estimate the interaction effect of age 

and rearing experience. The generalized linear models were created with the DSS (ver. 2.4) 

Bioconductor package (Park and Wu 2016). We considered sex and bisulfite conversion 

rates as covariates. We conducted a hypothesis test of the interaction effect using the Wald 

test based on the estimated coefficient and standard error from the fitted model. We used 

the Benjamini-Hochberg method for multiple testing corrections.  
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CHAPTER 6. CONCLUSIONS 

A long-standing hypothesis states that due to the high similarity at the protein level, 

regulatory genetic changes rather than protein sequence changes may explain most species-

derived traits over evolutionary time (King and Wilson 1975). This implies that epigenetic 

functional changes implicated in the gene regulatory differences play a key role in 

understanding phenotypic variation within and between species. This thesis focuses on 

understanding the role of epigenetic variation in the genotype-to-phenotype relationship 

within and between human and non-human primate species and what are the mechanistic 

basis of the interplay between genome and epigenome. 

The focus of the chapters 2 and 3 is the epigenetic evolution of the human brain 

evolution. The human brain underwent such a dramatic expansion with structural and 

molecular reorganization in a short period of time. The rapid expansion of the human brain 

is a fascinating example of evolutionary innovation. Humans are specifically susceptible 

to many neuropsychiatric and neurodegenerative diseases compared to other closely related 

non-human primates (Varki, Geschwind et al. 2008, Jakovcevski and Akbarian 2012, 

Mendizabal, Berto et al. 2019). Thus, some of these human brain-specific traits can be 

better understood in the context of their evolutionary origins. Previous studies have shown 

that dysregulation of DNA methylation process is associated with various diseases 

including cancer and neuropsychiatric disorders (Aran, Sabato et al. 2013, Mendizabal, 

Berto et al. 2019). Therefore, the characterization of DNA methylation modifications is 

critical for understanding disease vulnerability in humans as well as morphological and 

cognitive differences between human and non-human primates. In chapter 2 and 3, we 
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investigated genome-wide DNA methylation differences in the human brain comparing 

with non-human primate brains, by performing whole genome methylation sequencing 

from neurons and oligodendrocytes.    

Consistent with the previous findings of an excess of hypomethylation in the human 

brain from bulk tissues, we found that human brains have overall reduced CG methylation 

compared to brains of non-human primates for both neurons and oligodendrocytes. The 

reduction of CG methylation in human brains contributed to increased gene expression 

levels and human brain-specific active regulatory landscape.  

Interestingly, we show that the reduction of human hypomethylation is significantly 

more pronounced in neurons than in oligodendrocytes. This human neuron-hypo CG DMR 

resides on brain-specific enhancers as well as other cell-type specific human brain 

epigenetic marks. Also, we found that the neuron-specific human hypomethylated regions 

significantly contribute to genetic risk for schizophrenia. These results demonstrate that 

the human-specific neuron-hypomethylation contributes to the human-derived genetic and 

epigenetic innovations in a cell-type specific manner.  

Although a majority of DNA methylation occurs at CpG sites, DNA methylation at 

non-CG sites (CH methylation) is relatively abundant in brains. Recent studies have shown 

that CH methylation plays an important role in gene expression regulation in early brain 

development. Despite such importance, knowledge is lacking on the evolutionary 

trajectories and significance of CH methylation during human brain evolution. In chapter 

3, we focused our attention on the degree of CH methylation divergence of prefrontal 

cortex neurons between human and non-human primates. We found that cytosine 
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methylation in different contexts has played distinctive roles during human brain evolution. 

First, we discovered that CH methylation has increased along the evolution of human 

brains. The increase of CH methylation in human brains is associated with the definition 

of neuronal subtypes. This human-specific CH methylation changes are highly correlated 

(negatively) with neuronal gene expression divergence between human and chimpanzee. 

Thus, we hypothesize that evolutionary trajectory of human-derived hypermethylation of 

CH positions may contribute to fine-tuning of neuron subtype cell identities. 

 It has been known for several decades that aging has a significant influence on DNA 

methylation. Traditionally, DNA methylation profiling of age-associated changes has been 

studied using relatively cost-efficient methods such as DNA methylation arrays. Therefore, 

genomic patterns of DNA methylation with aging remain yet to be comprehensively 

characterized. In chapter 4, we examined aging-associated DNA methylation changes at 

the whole-genome scale and the cellular resolution. Our comprehensive analyses on DNA 

methylation at the nearly entire set of CpGs in the genome offer an unprecedented 

opportunity to estimate the age effect on DNA methylation in a truly genome-wide fashion. 

We showed that age explains more than 10% of the total variation observed in DNA 

methylation. Moreover, we show that DNA methylation level in early age is a significant 

determinant of the direction of DNA methylation changes with aging. This result indicates 

that a significant amount of epigenetic drift is a non-random process. 

One of the exciting developments in the aging research field is the development of 

epigenetic clocks. Using a subset of CpGs, the epigenetic clock can predict biological ages 

with very high accuracy. Because molecular and physiological mechanisms of aging may 

share common evolutionary characteristics across closely related species, the development 
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of epigenetic clocks from non-human primates can be applied to the study of human health 

and aging. In chapter 5, we developed DNA methylation-based epigenetic clock using 

newly generated baboon RRBS data. Our epigenetic baboon age predictor clock accurately 

predicts DNA methylation ages very close to chronological ages in our RRBS samples (R 

= 0.93). More importantly, we showed the evidence of social rearing experience affecting 

rates of epigenetic aging.  

In summary, our comprehensive analyses of DNA methylation profiles of human and 

non-human primates will expand our understanding of the epigenetic evolution of the 

human brain and aging epigenetic programs. We hope these novel findings stimulate 

interest in studies linking the epigenetic evolution of human brains to regulation and 

disease susceptibility. 
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

   

Figure A. 1. Overview of the workflow for WGBS and WGS data processing and 
differential methylation analyses. 

  

Step Step Description Step Step Description

1 WGBS library preparation DNA extraction 1 WGS library preparation DNA extraction
Bisulfite conversion of DNA Library preparation and QC
Library preparation and QC

2 Sequencing Paired-end Illumina sequencing 2 Sequencing Paired-end Illumina sequencing
(Hi-SeqX) (Hi-SeqX)

3 Adapter and quality trimming Trim low quality base-pairs at read ends 3 Adapter and quality trimming Trim low quality base-pairs at read ends
(Trim Galore v.0.4.1, FastQC) Trim adapters sequenced within reads (Trim Galore v.0.4.1, FastQC) Trim adapters sequenced within reads

Evaluate read quality Evaluate read quality

4 PhiX removal Removal of phiX spike-in control 4 Mapping Map reads to respective genome
(Bowtie2 v2.2.7) (bwa v 0.7.4-r385)

5 Lambda mapping Estimate bisulfite conversion rates
(Bowtie2 v2.2.7) 5 Deduplication Remove potential PCR duplicates

5 Mapping Map reads to respective genome
(Bowtie2 v2.2.7, Bismark v0.19.0)

6 Variant Discovery SNP calling
6 Deduplication Remove potential PCR duplicates

 Bismark v0.19.0)

7 Methylation extraction Estimate per base fractional methylation
 (Bismark v0.19.0) mCpg/CpG

8 Differential Methylation Analysis

Exclusion of polymorphic CpG sites (C->T and G->A)
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A       B 

 

C        

 

Figure A. 2. Loss of CG sites over evolutionary time. (A) Comparison of the total number 
of CpGs in either the human (hg19) or chimpanzee (panTro5) genomes with the total 
number of conserved CpGs in genic regions in both genomes or in non-genic regions in 
both genomes. (B) Comparison of the total number of CpGs in human (hg19) or macaque 
(rheMac8) genomes with the total number of conserved CpGs in genic regions in both 
genomes or in non-genic regions in both genomes. (C) Dinucleotide composition of CpGs 
of rheMac8 in the hg19 genome. 
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Figure A. 3. Comparison of fractional methylation between conserved CG sites and 
species-specific CG sites in humans. To illustrate, a subset of 100,000 sites were selected 
for each CG group. A one-tailed t-test was conducted to test whether conserved CG sites 
are biased toward hypomethylation. Box represents a range from the first quartile to the 
third quartile. The line in the box indicates the median value. The minima and maxima are 
within 1.5 times the distance between the first and third quartiles from box. 
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Figure A. 4. Distribution of evolutionarily conserved CpGs and variable CpGs in different 
functional genomic regions. Fold-enrichment was computed from the occurrences of the 
CpGs for each feature compared to random control sets (n=100). Red dashed lines indicate 
fold-enrichment values of 1. 
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Figure A. 5. Transcription factor families with differential motif enrichment in conserved 
CpGs (gray dots) vs. human-specific-CpGs (variable CpGs, blue dots) in (A) core v11 and 
(B) full HOCOMOCO v11 databases. 
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Figure A. 6. Hierarchical clustering of CG methylomes for chimpanzees and macaques. 
Names ending in ND represent neuronal (NeuN+) cell samples and names ending in OD 
represent oligodendrocyte (OLIG2+) cell samples.  
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Figure A. 7. (A) Genomic locations of human DMRs show that most DMRs are within or 
nearby genes and (B) enriched in promoters and genic regions. Fold enrichment is 
computed by occurrences of DMRs in each genomic feature compared to GC matched 
control region sets (n=100). 
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Figure A. 8. Genomic windows (200bps each) containing mQTLs are more often 
associated with DMRs than genomic windows containing SNPs matched for their minor 
allele frequency (MAF) (control) of the same size across different GC contents. 
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Figure A. 9. Genomic locations of human neuron-specific hypomethylated CG DMRs are 
enriched in cell-type specific human brain epigenetic marks. Fold enrichment is computed 
by observed numbers of DMRs (red dashed line) overlapping with each neuron-specific 
epigenetic mark compared to GC matched control region sets (n=100). 
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Figure A. 10. Enhancer enrichment at human-specific hypomethylated CG DMRs. 25 
chromatin state-model maps based on 6 chromatin mark ChIP-Seq experiments 
(H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3 and H3K27ac) were obtained 
from the Roadmap Epigenomics Project. Each dot represents the enrichment for enhancer-
related states (TxReg, TxEnh5', TxEnh3', TxEnhW, EnhA1, EnhA2, EnhW1, EnhW2, and 
EnhAc) compared to 100 sets of GC-content matched control DMR sets for a given cell-
type or tissue. The original 117 cell-type and tissue-types were grouped into 11 categories 
shown in the y-axes (total number of cell-type/tissues per group is indicated). Empirical 
P<0.01 for all enrichments. 
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Figure A. 11. (A) Human neuron-hypo CG DMRs are significantly co-localized with 
enhancer-promoter (E-P) pairs and ncHARs (red dashed lines). Null distributions were 
plotted based on the GC matched control region sets (n=100) that overlap with enhancer-
promoter pairs and ncHARs. (B) Chimpanzee DMRs that overlap with enhancer-promoter 
pairs and ncHARs were falling in the distribution based on the GC matched control region 
sets (n=100) that overlap with enhancer-promoter pairs and ncHARs. 
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Figure A. 12. (A) Distribution of DNA methylation differences between human and 
chimpanzee brain cell-types at human-specific hypomethylated DMRs with and without 
enriched TF motifs. P-values for one-sided Wilcoxon signed-ranked test with alternative = 
greater (TF n=2439 vs non-TF n=652 for each cell-type). (B) Same as in panel A but 
separated by the specific TF enriched (FOXP1 n=1996, FOXK1 n=1906, NFIC n=462 and 
non-TF n=652 for each cell-type). (C) Distribution of gene expression differences between 
human and chimpanzee at human-specific hypomethylated DMRs with and without 
enriched TF motifs. P-values for one-sided Wilcoxon signed-ranked test with alternative = 
greater (NeuN+: TF n=1110 vs non-TF n=7262, and OLIG2+: TF n=1031 vs non-TF 
n=6529). (D) Same as in panel C but separated by the specific TF enriched (NeuN: FOXP1 
n=957, FOXK1 n=901, NFIC n=248, non-TF n=7262, and OLIG2: FOXP1 n=892, 
FOXK1 n=833, NFIC n=229 and non-TF n=6529). Box represents a range from the first 
quartile to the third quartile. The line in the box indicates the median value. The minima 
and maxima are within 1.5 times the distance between the first and third quartiles from 
box. 
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A             B 

 

C             D 

  

Figure A. 13. (A) and (B) Enrichment and P-values for schizophrenia heritability at 100 
subsets of conserved NeuN+ Hypo DMRs that match the number and length of human-
derived NeuN+ Hypo DMRs. Boxplots show the results of 100 conserved NeuN+ Hypo 
DMR subsets and the red lines indicate the observed values for human-derived NeuN+ 
Hypo DMRs. (C) and (D) Similar analyses for subsampling of human hyper CH DMRs to 
match the number and length distribution of chimpanzee hyper CH DMRs. Boxplots show 
the human hyper CH DMR subsets, red lines indicate observed chimpanzee hyper DMRs 
and blue lines indicate observed human hyper DMRs (full set). Box represents a range from 
the first quartile to the third quartile. The line in the box indicates the median value. The 
minima and maxima are within 1.5 times the distance between the first and third quartiles 
from box. 
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Table A. 1. List of covariates included in the WGBS analyses. 

Sample ID Species Sex Age 
class 

Pmi Cell type 

X4615_Control_NeuN Human M 2 15 NeuN 
X3611_Control_NeuN Human M 3 17.5 NeuN 
X3602_Control_NeuN Human M 3 13.2 NeuN 
X3590_Control_NeuN Human M 3 11.5 NeuN 
X3586_Control_NeuN Human M 3 16 NeuN 
X3545_Control_NeuN Human M 3 14 NeuN 
X1541_Control_NeuN Human F 2 15.3 NeuN 
X1539_Control_NeuN Human F 2 23 NeuN 
X1538_Control_NeuN Human F 2 25 NeuN 
X1537_Control_NeuN Human M 2 22 NeuN 
X1536_Control_NeuN Human M 2 24 NeuN 
X1535_Control_NeuN Human M 2 15.4 NeuN 
X1534_Control_NeuN Human M 3 7.5 NeuN 
X1533_Control_NeuN Human M 2 19.3 NeuN 
X1532_Control_NeuN Human F 3 19 NeuN 
X1531_Control_NeuN Human M 2 17.1 NeuN 
X1527_Control_NeuN Human M 1 23 NeuN 
X1525_Control_NeuN Human F 3 11 NeuN 
X1524_Control_NeuN Human M 1 10 NeuN 
Miami0001_Control_NeuN Human M 1 16.3 NeuN 
AN16799_Control_NeuN Human M 2 14.68 NeuN 
AN15240_Control_NeuN Human F 1 18.08 NeuN 
AN10090_Control_NeuN Human M 2 13.12 NeuN 
AN05483_Control_NeuN Human M 3 16.97 NeuN 
AN03398_Control_NeuN Human F 3 12.1 NeuN 
YN14.020_Chimp_NeuN Chimpanzee F 2 0.9 NeuN 
YN15.033_Chimp_NeuN Chimpanzee F 3 0.9 NeuN 
YN06.108_Chimp_NeuN Chimpanzee F 3 0.5 NeuN 
YN07.147_Chimp_NeuN Chimpanzee M 1 3 NeuN 
YN14.056_Chimp_NeuN Chimpanzee F 2 0.9 NeuN 
YN07.387_Chimp_NeuN Chimpanzee M 3 2 NeuN 
YN06.147_Chimp_NeuN Chimpanzee M 3 2.5 NeuN 
YN15.384_Chimp_NeuN Chimpanzee F 3 0.9 NeuN 
YN15.310_Chimp_NeuN Chimpanzee F 3 0.9 NeuN 
YN04.30_Chimp_NeuN Chimpanzee M 2 0.5 NeuN 
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Table A. 1 (continued) 

YN14.020_Chimp_NeuN Chimpanzee M 3 0.9 NeuN 
YN04.200_Macaque_NeuN Rhesus 

macaque 
M 1 0.9 NeuN 

YN08.380_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN09.122_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN09.173_Macaque_NeuN Rhesus 
macaque 

M 3 0.9 NeuN 

YN09.179_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN09.59_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN09.72_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN11.300_Macaque_NeuN Rhesus 
macaque 

M 2 0.9 NeuN 

YN11.64_Macaque_NeuN Rhesus 
macaque 

F 1 0.9 NeuN 

YN11.77_Macaque_NeuN Rhesus 
macaque 

M 1 0.9 NeuN 

YN11.78_Macaque_NeuN Rhesus 
macaque 

F 1 0.9 NeuN 

YN12.335_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN12.409_Macaque_NeuN Rhesus 
macaque 

M 2 0.9 NeuN 

YN12.654_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 NeuN 

YN14.248_Macaque_NeuN Rhesus 
macaque 

M 1 0.9 NeuN 

X1524_Control_Olig2 Human M 1 10 OLIG2 
X1525_Control_Olig2 Human F 3 11 OLIG2 
X1527_Control_Olig2 Human M 1 23 OLIG2 
X1532_Control_Olig2 Human F 3 19 OLIG2 
X1536_Control_Olig2 Human M 2 24 OLIG2 
X1538_Control_Olig2 Human F 2 25 OLIG2 
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Table A. 1 (continued) 

X1539_Control_Olig2 Human F 2 23 OLIG2 
X1541_Control_Olig2 Human F 2 15.3 OLIG2 
X3545_Control_Olig2 Human M 3 14 OLIG2 
X3586_Control_Olig2 Human M 3 16 OLIG2 
X3590_Control_Olig2 Human M 3 11.5 OLIG2 
X3602_Control_Olig2 Human M 3 13.2 OLIG2 
X3611_Control_Olig2 Human M 3 17.5 OLIG2 
X4615_Control_Olig2 Human M 2 15 OLIG2 
AN03398_Control_Olig2 Human F 3 12.1 OLIG2 
AN05483_Control_Olig2 Human M 3 16.97 OLIG2 
AN10090_Control_Olig2 Human M 2 13.12 OLIG2 
AN15240_Control_Olig2 Human F 1 18.08 OLIG2 
AN16799_Control_Olig2 Human M 2 14.68 OLIG2 
Miami0001_Control_Olig2 Human M 1 16.3 OLIG2 
YN16.043_Chimp_Olig2 Chimpanzee F 2 0.9 OLIG2 
YN15.033_Chimp_Olig2 Chimpanzee F 3 0.9 OLIG2 
YN06.108_Chimp_Olig2 Chimpanzee F 3 0.5 OLIG2 
YN07.147_Chimp_Olig2 Chimpanzee M 1 3 OLIG2 
YN14.056_Chimp_Olig2 Chimpanzee F 2 0.9 OLIG2 
YN07.387_Chimp_Olig2 Chimpanzee M 3 2 OLIG2 
YN06.147_Chimp_Olig2 Chimpanzee M 3 2.5 OLIG2 
YN15.384_Chimp_Olig2 Chimpanzee F 3 0.9 OLIG2 
YN15.310_Chimp_Olig2 Chimpanzee F 3 0.9 OLIG2 
YN04.30_Chimp_Olig2 Chimpanzee M 2 0.5 OLIG2 
YN14.020_Chimp_Olig2 Chimpanzee M 3 0.9 OLIG2 
YN04.200-Macaque_Olig2 Rhesus 

macaque 
M 1 0.9 OLIG2 

YN08.380_Macaque_Olig2 Rhesus 
macaque 

F 3 0.9 OLIG2 

YN09.122_Macaque_NeuN Rhesus 
macaque 

F 3 0.9 OLIG2 

YN09.173_Macaque_Olig2 Rhesus 
macaque 

M 3 0.9 OLIG2 

YN09.179_Macaque_Olig2 Rhesus 
macaque 

F 3 0.9 OLIG2 

YN09.72_Macaque_Olig2 Rhesus 
macaque 

F 3 0.9 OLIG2 
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Table A. 1 (continued) 

YN11.300_Macaque_Olig2 Rhesus 
macaque 

M 2 0.9 OLIG2 

YN11.64_Macaque_Olig2 Rhesus 
macaque 

F 1 0.9 OLIG2 

YN11.77_Macaque_Olig2 Rhesus 
macaque 

M 1 0.9 OLIG2 

YN11.78_Macaque_Olig2 Rhesus 
macaque 

F 1 0.9 OLIG2 

YN12.335_Macaque_Olig2 Rhesus 
macaque 

F 3 0.9 OLIG2 

YN12.654_Macaque_Olig2 Rhesus 
macaque 

F 3 0.9 OLIG2 

YN14.248_Macaque_Olig2 Rhesus 
macaque 

M 1 0.9 OLIG2 
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Table A. 2. WGBS data processing and mapping statistics. 

Sample Species Cell type Mapping % Mean DP 
YN15-384_ND Pan Troglodites NeuN 72.31 8.29 
YN15-033_ND Pan Troglodites NeuN 69.76 13.68 
YN16-043_ND Pan Troglodites NeuN 71.73 27.39 
YN06-108_ND Pan Troglodites NeuN 63.83 22.99 
YN07-147_ND Pan Troglodites NeuN 40.90 3.38 
YN04-30_ND Pan Troglodites NeuN 58.52 16.77 
YN07-387_ND Pan Troglodites NeuN 71.23 25.86 
YN06-147_ND Pan Troglodites NeuN 63.35 20.63 
YN14-056_ND Pan Troglodites NeuN 74.38 31.99 
YN15-310_ND Pan Troglodites NeuN 72.63 32.04 
YN14-020_ND Pan Troglodites NeuN 70.56 26.14 
YN15-384_OD Pan Troglodites OLIG2 73.87 9.01 
YN15-033_OD Pan Troglodites OLIG2 75.56 10.28 
YN16-043_OD Pan Troglodites OLIG2 77.31 19.66 
YN06-108_OD Pan Troglodites OLIG2 78.17 17.28 
YN07-147_OD Pan Troglodites OLIG2 76.32 9.10 
YN04-30_OD Pan Troglodites OLIG2 72.63 16.45 
YN07-387_OD Pan Troglodites OLIG2 75.97 21.45 
YN06-147_OD Pan Troglodites OLIG2 41.70 2.58 
YN14-056_OD Pan Troglodites OLIG2 74.85 28.26 
YN15-310_OD Pan Troglodites OLIG2 71.94 31.98 
YN14-020_OD Pan Troglodites OLIG2 74.11 29.79 
YN08-380_ND Rhesus Macaque NeuN 74.12 27.29 
YN09-122_ND Rhesus Macaque NeuN 70.94 17.55 
YN09-179_ND Rhesus Macaque NeuN 64.36 19.22 
YN09-59_ND Rhesus Macaque NeuN 49.30 10.58 
YN11-300_ND Rhesus Macaque NeuN 51.29 8.99 
YN11-77_ND Rhesus Macaque NeuN 73.88 22.89 
YN11-78_ND Rhesus Macaque NeuN 67.74 14.04 
YN12-335_ND Rhesus Macaque NeuN 63.16 16.47 
YN12-409_ND Rhesus Macaque NeuN 27.18 2.09 
YN12-654_ND Rhesus Macaque NeuN 70.79 24.13 
YN04-200_ND Rhesus Macaque NeuN 72.26 23.35 
YN09-173_ND Rhesus Macaque NeuN 72.93 17.73 
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Table A. 2 (continued) 

YN09-72_ND Rhesus Macaque NeuN 75.46 25.50 
YN11-64_ND Rhesus Macaque NeuN 71.00 23.52 
YN14-248_ND Rhesus Macaque NeuN 68.37 22.95 
YN08-380_OD Rhesus Macaque OLIG2 74.01 34.08 
YN09-122_OD Rhesus Macaque OLIG2 69.45 30.31 
YN09-179_OD Rhesus Macaque OLIG2 73.79 36.82 
YN11-300_OD Rhesus Macaque OLIG2 68.19 24.54 
YN11-77_OD Rhesus Macaque OLIG2 70.75 30.05 
YN11-78_OD Rhesus Macaque OLIG2 71.88 27.19 
YN12-335_OD Rhesus Macaque OLIG2 62.40 10.44 
YN12-654_OD Rhesus Macaque OLIG2 71.08 30.20 
YN04-200_OD Rhesus Macaque OLIG2 70.09 24.61 
YN09-173_OD Rhesus Macaque OLIG2 70.35 24.75 
YN09-72_OD Rhesus Macaque OLIG2 74.49 26.59 
YN11-64_OD Rhesus Macaque OLIG2 71.2 5.81 
YN14-248_OD Rhesus Macaque OLIG2 69.01 23.37 

 

  



 105 

Table A. 3. WGS data processing and mapping statistics  

Sample Mapped reads Mapping % Mean DP 
YN16-043 446678671 89.3% 24.1 
YN15-033 436626713 95.9% 33.48 
YN06-108 455929295 90.6% 23.58 
YN07-147 441722229 89.6% 26.04 
YN14-056 374973270 96.0% 21.86 
YN07-387 201895989 99.7% 17.97 
YN06-147 222137036 99.5% 19.35 
YN15-384 441160742 95.7% 33.96 
YN15-310 417208392 94.6% 24.95 
YN04-30 421681615 91.4% 23.64 
YN14-020 220850613 99.5% 18.06 
YN04-200 211971044 99.1% 17.03 
YN08-380 376925788 94.9% 29.75 
YN09-59 180566422 99.1% 15.57 
YN09-72 181442176 99.1% 15.58 
YN09-122 376252657 89.7% 23.6 
YN09-173 229848671 99.2% 18.12 
YN09-179 354685331 95.0% 28.57 
YN11-64 174683507 99.1% 14.81 
YN11-77 376350631 96.6% 30.89 
YN11-78 369949049 92.2% 23.04 
YN11-300 403831657 92.3% 16.73 
YN12-335 433762376 92.7% 29.76 
YN12-409 387683227 88.5% 25.07 
YN12-654 386504856 94.3% 29.98 
YN14-248 202304006 99.1% 16.42 

 

  



 106 

Table A. 4. List of variable CpG-specific and conserved CpG-specific  transcription 
factor (TF) motifs. 

Motif_class TF TF.family 
Conserved_specific FEV Ets-related factors[3.5.2] 
Conserved_specific ETV1 Ets-related factors[3.5.2] 
Conserved_specific ELK4 Ets-related factors[3.5.2] 
Conserved_specific TGIF1 TALE-type homeo domain factors[3.1.4] 
Conserved_specific MYB Myb/SANT domain factors[3.5.1] 
Conserved_specific NEUROD

2 
Tal-related factors[1.2.3] 

Conserved_specific ETS1 Ets-related factors[3.5.2] 
Conserved_specific LYL1 Tal-related factors[1.2.3] 
Conserved_specific GABPA Ets-related factors[3.5.2] 
Conserved_specific PTF1A Tal-related factors[1.2.3] 
Conserved_specific ELF1 Ets-related factors[3.5.2] 
Conserved_specific ERG Ets-related factors[3.5.2] 
Conserved_specific ELK1 Ets-related factors[3.5.2] 
Conserved_specific ATOH1 Tal-related factors[1.2.3] 
Conserved_specific ELF2 Ets-related factors[3.5.2] 
Conserved_specific BHLHA15 Tal-related factors[1.2.3] 
Conserved_specific OSR2 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific PBX1 TALE-type homeo domain factors[3.1.4] 
Conserved_specific RBPJ CSL-related factors[6.1.4] 
Conserved_specific ETV5 Ets-related factors[3.5.2] 
Conserved_specific NR2C2 RXR-related receptors (NR2)[2.1.3] 
Conserved_specific ZBTB14 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific NEUROD

1 
Tal-related factors[1.2.3] 

Conserved_specific ETV4 Ets-related factors[3.5.2] 
Conserved_specific MYOD1 MyoD / ASC-related factors[1.2.2] 
Conserved_specific TFAP4 bHLH-ZIP factors[1.2.6] 
Conserved_specific OLIG2 Tal-related factors[1.2.3] 
Conserved_specific MECP2 

 

Conserved_specific MYF6 MyoD / ASC-related factors[1.2.2] 
Conserved_specific MYOG MyoD / ASC-related factors[1.2.2] 
Conserved_specific NR1H4 Thyroid hormone receptor-related factors 

(NR1)[2.1.2] 
Conserved_specific ELF5 Ets-related factors[3.5.2] 
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Table A. 4 (continued) 

Conserved_specific PKNOX1 TALE-type homeo domain factors[3.1.4] 
Conserved_specific NKX2-5 NK-related factors[3.1.2] 
Conserved_specific ETV2 Ets-related factors[3.5.2] 
Conserved_specific PBX3 TALE-type homeo domain factors[3.1.4] 
Conserved_specific TCF12 E2A-related factors[1.2.1] 
Conserved_specific ZNF563 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific TFAP2A AP-2[1.3.1] 
Conserved_specific ZBTB48 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific MZF1 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific FLI1 Ets-related factors[3.5.2] 
Conserved_specific E2F1 E2F-related factors[3.3.2] 
Conserved_specific TFAP2B AP-2[1.3.1] 
Conserved_specific TCF4 E2A-related factors[1.2.1] 
Conserved_specific NR5A1 FTZ-F1-related receptors (NR5)[2.1.5] 
Conserved_specific NRF1 NRF[0.0.6] 
Conserved_specific MAFB Maf-related factors[1.1.3] 
Conserved_specific EBF1 Early B-Cell Factor-related factors[6.1.5] 
Conserved_specific ZIC3 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific ZBTB18 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific TFDP1 E2F-related factors[3.3.2] 
Conserved_specific TFAP2C AP-2[1.3.1] 
Conserved_specific CTCF More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific RFX2 RFX-related factors[3.3.3] 
Conserved_specific ZNF667 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific ASCL1 MyoD / ASC-related factors[1.2.2] 
Conserved_specific NHLH1 Tal-related factors[1.2.3] 
Conserved_specific RELB NF-kappaB-related factors[6.1.1] 
Conserved_specific ZBTB33 Other factors with up to three adjacent zinc 

fingers[2.3.2] 
Conserved_specific E2F2 E2F-related factors[3.3.2] 
Conserved_specific ZNF341 Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific TCF3 E2A-related factors[1.2.1] 
Conserved_specific PPARG Thyroid hormone receptor-related factors 

(NR1)[2.1.2] 
Conserved_specific RFX1 RFX-related factors[3.3.3] 
Conserved_specific MYC bHLH-ZIP factors[1.2.6] 
Conserved_specific GRHL2 Grainyhead-related factors[6.7.1] 
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Table A. 4 (continued) 

Conserved_specific HNF4G RXR-related receptors (NR2)[2.1.3] 
Conserved_specific ZNF547 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific NR5A2 FTZ-F1-related receptors (NR5)[2.1.5] 
Conserved_specific ZFP42 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific ZBTB7A More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific MBD2 

 

Conserved_specific REST Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific ATF6 CREB-related factors[1.1.7] 
Conserved_specific MYCN bHLH-ZIP factors[1.2.6] 
Conserved_specific PPARA Thyroid hormone receptor-related factors 

(NR1)[2.1.2] 
Conserved_specific EPAS1 PAS domain factors[1.2.5] 
Conserved_specific ZNF467 Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific MAX bHLH-ZIP factors[1.2.6] 
Conserved_specific RFX5 RFX-related factors[3.3.3] 
Conserved_specific TAF1 TCF-7-related factors[4.1.3] 
Conserved_specific ARNT PAS domain factors[1.2.5] 
Conserved_specific VEZF1 Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific HIF1A PAS domain factors[1.2.5] 
Conserved_specific YY1 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific CTCFL More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific E2F6 E2F-related factors[3.3.2] 
Conserved_specific ATF2 Jun-related factors[1.1.1] 
Conserved_specific MXI1 bHLH-ZIP factors[1.2.6] 
Conserved_specific CREM CREB-related factors[1.1.7] 
Conserved_specific NFE2 Jun-related factors[1.1.1] 
Conserved_specific INSM1 Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific ZFX More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific E2F3 E2F-related factors[3.3.2] 
Conserved_specific ZNF76 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific ZBTB6 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific THAP11 THAP-related factors[2.9.1] 
Conserved_specific ZNF281 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific NR2C1 RXR-related receptors (NR2)[2.1.3] 
Conserved_specific HIC1 Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific ZNF257 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific ZNF335 Factors with multiple dispersed zinc fingers[2.3.4] 



 109 

Table A. 4 (continued) 

Conserved_specific ZNF143 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific NFKB1 NF-kappaB-related factors[6.1.1] 
Conserved_specific CLOCK PAS domain factors[1.2.5] 
Conserved_specific HINFP Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific NFIC Nuclear factor 1[7.1.2] 
Conserved_specific T Brachyury-related factors[6.5.1] 
Conserved_specific MAFK Maf-related factors[1.1.3] 
Conserved_specific MAFF Maf-related factors[1.1.3] 
Conserved_specific ZNF263 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific VDR Thyroid hormone receptor-related factors 

(NR1)[2.1.2] 
Conserved_specific NFKB2 NF-kappaB-related factors[6.1.1] 
Conserved_specific MAFG Maf-related factors[1.1.3] 
Conserved_specific ZNF549 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific E2F4 E2F-related factors[3.3.2] 
Conserved_specific PATZ1 Factors with multiple dispersed zinc fingers[2.3.4] 
Conserved_specific SNAI1 More than 3 adjacent zinc finger factors[2.3.3] 
Conserved_specific ESRRG Steroid hormone receptors (NR3)[2.1.1] 
Conserved_specific GLI3 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific SRY SOX-related factors[4.1.1] 
Variable_specific IRF7 Interferon-regulatory factors[3.5.3] 
Variable_specific PRDM6 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific SOX5 SOX-related factors[4.1.1] 
Variable_specific HOXB13 HOX-related factors[3.1.1] 
Variable_specific FOXK1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific FOXP1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific GATA3 GATA-type zinc fingers[2.2.1] 
Variable_specific TBP TBP-related factors[8.1.1] 
Variable_specific FOXM1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific POU1F1 POU domain factors[3.1.10] 
Variable_specific NFATC1 NFAT-related factors[6.1.3] 
Variable_specific HOXA10 HOX-related factors[3.1.1] 
Variable_specific SMARCA1 Myb/SANT domain factors[3.5.1] 
Variable_specific DBP C/EBP-related[1.1.8] 
Variable_specific FOXO4 Forkhead box (FOX) factors[3.3.1] 
Variable_specific POU2F1 POU domain factors[3.1.10] 
Variable_specific FEZF1 More than 3 adjacent zinc finger factors[2.3.3] 
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Table A. 4 (continued) 

Variable_specific SOX2 SOX-related factors[4.1.1] 
Variable_specific ZNF350 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific PBX2 TALE-type homeo domain factors[3.1.4] 
Variable_specific NKX6-1 NK-related factors[3.1.2] 
Variable_specific ZNF394 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific FOXA1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific FOXJ2 Forkhead box (FOX) factors[3.3.1] 
Variable_specific AR Steroid hormone receptors (NR3)[2.1.1] 
Variable_specific SOX4 SOX-related factors[4.1.1] 
Variable_specific HNF1A POU domain factors[3.1.10] 
Variable_specific ARID5B ARID-related factors[3.7.1] 
Variable_specific FOXO1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific FOXA3 Forkhead box (FOX) factors[3.3.1] 
Variable_specific LEF1 TCF-7-related factors[4.1.3] 
Variable_specific ALX1 Paired-related HD factors[3.1.3] 
Variable_specific STAT2 STAT factors[6.2.1] 
Variable_specific NKX3-2 NK-related factors[3.1.2] 
Variable_specific IRF3 Interferon-regulatory factors[3.5.3] 
Variable_specific IRF1 Interferon-regulatory factors[3.5.3] 
Variable_specific LHX3 HD-LIM factors[3.1.5] 
Variable_specific GATA6 GATA-type zinc fingers[2.2.1] 
Variable_specific HOXA13 HOX-related factors[3.1.1] 
Variable_specific ZNF354A More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific MEF2B Regulators of differentiation[5.1.1] 
Variable_specific MEF2C Regulators of differentiation[5.1.1] 
Variable_specific NR2E3 RXR-related receptors (NR2)[2.1.3] 
Variable_specific AIRE AIRE[5.3.1] 
Variable_specific HNF1B POU domain factors[3.1.10] 
Variable_specific MEF2A Regulators of differentiation[5.1.1] 
Variable_specific BATF B-ATF-related factors[1.1.4] 
Variable_specific FOXQ1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific MECOM Factors with multiple dispersed zinc fingers[2.3.4] 
Variable_specific CEBPE C/EBP-related[1.1.8] 
Variable_specific IRF8 Interferon-regulatory factors[3.5.3] 
Variable_specific FOXC1 Forkhead box (FOX) factors[3.3.1] 
Variable_specific IRF9 Interferon-regulatory factors[3.5.3] 



 111 

Table A. 4 (continued) 

Variable_specific SRF Responders to external signals 
(SRF/RLM1)[5.1.2] 

Variable_specific DUX4 Paired-related HD factors[3.1.3] 
Variable_specific ZNF8 Factors with multiple dispersed zinc fingers[2.3.4] 
Variable_specific ZIM3 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific SOX17 SOX-related factors[4.1.1] 
Variable_specific IRF2 Interferon-regulatory factors[3.5.3] 
Variable_specific HLF C/EBP-related[1.1.8] 
Variable_specific ZNF250 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific ZNF146 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific ZNF85 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific ZNF260 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific OTX2 Paired-related HD factors[3.1.3] 
Variable_specific MEF2D Regulators of differentiation[5.1.1] 
Variable_specific ZFP82 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific ZNF418 Factors with multiple dispersed zinc fingers[2.3.4] 
Variable_specific BATF3 B-ATF-related factors[1.1.4] 
Variable_specific FOXJ3 Forkhead box (FOX) factors[3.3.1] 
Variable_specific TEAD4 TEF-1-related factors[3.6.1] 
Variable_specific ZNF136 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific NKX3-1 NK-related factors[3.1.2] 
Variable_specific ZFP28 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific ZNF490 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific POU3F2 POU domain factors[3.1.10] 
Variable_specific ZNF586 More than 3 adjacent zinc finger factors[2.3.3] 
Variable_specific ATF4 ATF-4-related factors[1.1.6] 
Variable_specific TEAD1 TEF-1-related factors[3.6.1] 
Variable_specific CEBPG C/EBP-related[1.1.8] 

 

  



 112 

Table A. 5. Gene ontology (GREAT) output for genes associated with conserved CG 
DMRs between NeuN+ and OLIG2+. 

DMR type # Term Name    Binom 
FDR 

 FE1 

CG NeuN 
hypo DMR 

regulation of synaptic plasticity 9.1E-78 2.27 

CG NeuN 
hypo DMR 

regulation of dendritic spine development 4.4E-45 2.36 

CG NeuN 
hypo DMR 

positive regulation of synaptic transmission 5.0E-43 2.04 

CG NeuN 
hypo DMR 

neuromuscular junction development 1.9E-37 2.83 

CG NeuN 
hypo DMR 

long-term synaptic potentiation 2.2E-37 2.65 

CG NeuN 
hypo DMR 

regulation of neurotransmitter receptor activity 1.4E-36 2.73 

CG NeuN 
hypo DMR 

regulation of vesicle fusion 3.9E-35 2.52 

CG NeuN 
hypo DMR 

regulation of glutamate receptor signaling pathway 1.9E-34 2.72 

CG NeuN 
hypo DMR 

ephrin receptor signaling pathway 1.2E-32 2.12 

CG NeuN 
hypo DMR 

peptidyl-threonine phosphorylation 2.5E-32 2.23 

CG NeuN 
hypo DMR 

cardiac conduction 6.0E-32 2.06 

CG NeuN 
hypo DMR 

activation of GTPase activity 8.5E-32 2.16 

CG NeuN 
hypo DMR 

regulation of cardiac conduction 1.1E-30 2.24 

CG NeuN 
hypo DMR 

glutamate secretion 2.0E-30 2.99 

CG NeuN 
hypo DMR 

regulation of alpha-amino-3-hydroxy-5-methyl-4-
isoxazole propionate selective glutamate receptor 
activity 

2.0E-29 3.38 

CG NeuN 
hypo DMR 

vesicle docking 4.0E-29 2.56 

CG NeuN 
hypo DMR 

mRNA splice site selection 5.8E-29 3.29 
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Table A. 5 (continued) 

CG NeuN 
hypo DMR 

peptidyl-threonine modification 1.1E-28 2.03 

CG NeuN 
hypo DMR 

regulation of dendritic spine morphogenesis 3.4E-28 2.52 

CG NeuN 
hypo DMR 

detection of calcium ion 5.7E-26 3.42 

CG NeuN 
hypo DMR 

postsynapse 6.8E-
180 

2.03 

CG NeuN 
hypo DMR 

asymmetric synapse 3.0E-
137 

2.33 

CG NeuN 
hypo DMR 

postsynaptic specialization 6.8E-
136 

2.35 

CG NeuN 
hypo DMR 

postsynaptic density 4.4E-
135 

2.35 

CG NeuN 
hypo DMR 

neuron to neuron synapse 6.5E-
135 

2.31 

CG NeuN 
hypo DMR 

cation channel complex 1.1E-85 2.15 

CG NeuN 
hypo DMR 

axon part 5.4E-62 2.06 

CG NeuN 
hypo DMR 

potassium channel complex 9.5E-46 2.11 

CG NeuN 
hypo DMR 

voltage-gated potassium channel complex 2.6E-45 2.13 

CG NeuN 
hypo DMR 

G-protein coupled receptor heterodimeric complex 3.2E-43 15.21 

CG NeuN 
hypo DMR 

voltage-gated calcium channel complex 8.5E-30 2.57 

CG NeuN 
hypo DMR 

calcium channel complex 8.7E-30 2.21 

CG NeuN 
hypo DMR 

GABA receptor complex 1.6E-29 3.59 

CG NeuN 
hypo DMR 

terminal bouton 4.2E-29 2.35 

CG NeuN 
hypo DMR 

ionotropic glutamate receptor complex 1.6E-28 2.19 
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Table A. 5 (continued) 

CG NeuN 
hypo DMR 

main axon 2.2E-28 2.15 

CG NeuN 
hypo DMR 

G-protein coupled receptor dimeric complex 1.0E-20 4.40 

CG NeuN 
hypo DMR 

axon initial segment 1.3E-20 3.32 

CG NeuN 
hypo DMR 

postsynaptic specialization membrane 1.7E-20 3.48 

CG NeuN 
hypo DMR 

dense body 5.2E-20 5.40 

CG NeuN 
hypo DMR 

calmodulin binding 1.1E-60 2.07 

CG NeuN 
hypo DMR 

voltage-gated cation channel activity 3.9E-51 2.05 

CG NeuN 
hypo DMR 

calcium ion transmembrane transporter activity 2.2E-48 2.06 

CG NeuN 
hypo DMR 

syntaxin-1 binding 8.0E-37 3.69 

CG NeuN 
hypo DMR 

G-protein coupled GABA receptor activity 1.1E-35 10.10 

CG NeuN 
hypo DMR 

pre-mRNA binding 6.2E-31 3.20 

CG NeuN 
hypo DMR 

GABA receptor activity 1.1E-30 3.33 

CG NeuN 
hypo DMR 

voltage-gated calcium channel activity 1.2E-30 2.60 

CG NeuN 
hypo DMR 

glutamate-gated calcium ion channel activity 2.3E-28 6.17 

CG NeuN 
hypo DMR 

high voltage-gated calcium channel activity 4.2E-28 3.89 

CG NeuN 
hypo DMR 

NMDA glutamate receptor activity 2.9E-24 4.68 

CG NeuN 
hypo DMR 

calcium-transporting ATPase activity 3.9E-24 4.13 

CG NeuN 
hypo DMR 

neurotrophin binding 1.9E-23 4.03 
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Table A. 5 (continued) 

CG NeuN 
hypo DMR 

calcium-dependent protein binding 2.7E-23 2.41 

CG NeuN 
hypo DMR 

neurotrophin receptor activity 6.2E-22 5.53 

CG NeuN 
hypo DMR 

calcium-dependent protein kinase activity 5.3E-21 4.61 

CG NeuN 
hypo DMR 

brain-derived neurotrophic factor binding 2.3E-20 5.20 

CG NeuN 
hypo DMR 

delayed rectifier potassium channel activity 1.1E-19 2.81 

CG NeuN 
hypo DMR 

adenylate cyclase binding 7.2E-19 3.05 

CG NeuN 
hypo DMR 

calcium-dependent protein serine/threonine kinase 
activity 

2.2E-18 4.38 

CG OLIG2 
hypo DMR 

myelin assembly 8.9E-19 2.08 

CG OLIG2 
hypo DMR 

otic vesicle formation 3.4E-39 3.35 

CG OLIG2 
hypo DMR 

otic vesicle morphogenesis 1.4E-37 3.00 

CG OLIG2 
hypo DMR 

prostate gland morphogenetic growth 2.3E-36 3.30 

CG OLIG2 
hypo DMR 

lacrimal gland development 3.1E-35 3.05 

CG OLIG2 
hypo DMR 

ureter development 1.8E-34 2.52 

CG OLIG2 
hypo DMR 

otic vesicle development 2.7E-32 2.49 

CG OLIG2 
hypo DMR 

limb bud formation 4.3E-29 2.28 

CG OLIG2 
hypo DMR 

forebrain ventricular zone progenitor cell division 1.6E-28 3.14 

CG OLIG2 
hypo DMR 

neural crest cell fate specification 1.8E-28 4.35 

CG OLIG2 
hypo DMR 

nephron tubule formation 8.4E-28 2.12 
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Table A. 5 (continued) 

CG OLIG2 
hypo DMR 

regulation of epithelial cell proliferation involved in 
lung morphogenesis 

1.6E-27 2.55 

CG OLIG2 
hypo DMR 

embryonic camera-type eye morphogenesis 1.6E-26 2.02 

CG OLIG2 
hypo DMR 

stem cell fate specification 1.7E-26 3.70 

CG OLIG2 
hypo DMR 

primary sex determination 2.4E-25 3.75 

CG OLIG2 
hypo DMR 

intrahepatic bile duct development 5.9E-25 5.03 

CG OLIG2 
hypo DMR 

epithelial cell proliferation involved in prostatic bud 
elongation 

5.9E-25 5.03 

CG OLIG2 
hypo DMR 

regulation of cell proliferation involved in tissue 
homeostasis 

5.9E-25 5.03 

CG OLIG2 
hypo DMR 

metanephric nephron morphogenesis 8.5E-25 2.08 

CG OLIG2 
hypo DMR 

neural crest cell fate commitment 1.4E-24 3.44 

CG OLIG2 
hypo DMR 

ARC complex 5.2E-14 5.10 

CG OLIG2 
hypo DMR 

guanyl-nucleotide exchange factor complex 2.8E-13 2.08 

CG OLIG2 
hypo DMR 

RISC-loading complex 3.3E-13 2.91 

CG OLIG2 
hypo DMR 

micro-ribonucleoprotein complex 2.1E-11 2.70 

CG OLIG2 
hypo DMR 

RNAi effector complex 4.4E-11 2.25 

CG OLIG2 
hypo DMR 

Derlin-1-VIMP complex 4.8E-11 5.88 

CG OLIG2 
hypo DMR 

PCAF complex 8.5E-10 4.07 

CG OLIG2 
hypo DMR 

XPC complex 6.6E-09 3.22 

CG OLIG2 
hypo DMR 

hemidesmosome 1.5E-08 2.39 
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CG OLIG2 
hypo DMR 

beta-catenin-TCF7L2 complex 2.5E-08 2.34 

CG OLIG2 
hypo DMR 

catenin-TCF7L2 complex 8.2E-08 2.26 

CG OLIG2 
hypo DMR 

DBIRD complex 8.2E-08 3.26 

CG OLIG2 
hypo DMR 

signal recognition particle receptor complex 1.9E-07 3.14 

CG OLIG2 
hypo DMR 

CBM complex 3.5E-07 2.89 

CG OLIG2 
hypo DMR 

VCP-NPL4-UFD1 AAA ATPase complex 4.6E-07 2.36 

CG OLIG2 
hypo DMR 

condensed nuclear chromosome inner kinetochore 9.8E-07 7.84 

CG OLIG2 
hypo DMR 

tumor necrosis factor receptor superfamily complex 1.0E-06 7.02 

CG OLIG2 
hypo DMR 

mitotic checkpoint complex 1.0E-06 3.61 

CG OLIG2 
hypo DMR 

bub1-bub3 complex 1.0E-06 3.61 

CG OLIG2 
hypo DMR 

phosphopyruvate hydratase complex 1.5E-06 3.91 

CG OLIG2 
hypo DMR 

RNA polymerase II repressing transcription factor 
binding 

7.2E-19 2.03 

CG OLIG2 
hypo DMR 

fibroblast growth factor-activated receptor activity 1.8E-16 3.39 

CG OLIG2 
hypo DMR 

CD8 receptor binding 2.2E-16 5.86 

CG OLIG2 
hypo DMR 

ribonuclease III activity 7.2E-15 3.84 

CG OLIG2 
hypo DMR 

armadillo repeat domain binding 1.1E-14 2.54 

CG OLIG2 
hypo DMR 

1-phosphatidylinositol-5-phosphate 4-kinase activity 1.9E-14 4.62 

CG OLIG2 
hypo DMR 

type 5 metabotropic glutamate receptor binding 5.7E-14 3.01 
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Table A. 5 (continued) 

CG OLIG2 
hypo DMR 

deoxyribonuclease I activity 1.6E-13 4.65 

CG OLIG2 
hypo DMR 

1-phosphatidylinositol-4-phosphate 5-kinase activity 1.3E-11 3.29 

CG OLIG2 
hypo DMR 

1-phosphatidylinositol-3-phosphate 4-kinase activity 3.3E-11 3.44 

CG OLIG2 
hypo DMR 

methylated-DNA-[protein]-cysteine S-
methyltransferase activity 

5.6E-11 3.44 

CG OLIG2 
hypo DMR 

pre-miRNA binding 1.1E-10 3.43 

CG OLIG2 
hypo DMR 

pre-mRNA intronic binding 4.5E-10 2.48 

CG OLIG2 
hypo DMR 

T cell receptor binding 5.3E-10 3.11 

CG OLIG2 
hypo DMR 

tropomyosin binding 5.5E-10 2.27 

CG OLIG2 
hypo DMR 

virion binding 9.3E-10 2.58 

CG OLIG2 
hypo DMR 

rRNA (guanosine-2'-O-)-methyltransferase activity 2.0E-09 4.01 

CG OLIG2 
hypo DMR 

DNA-methyltransferase activity 3.0E-09 2.39 

CG OLIG2 
hypo DMR 

G-protein coupled glutamate receptor binding 1.8E-08 2.24 

CG OLIG2 
hypo DMR 

CD4 receptor binding 1.9E-08 2.65 

1FE: fold enrichment 
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Table A. 6. Association of differentially expressed genes (DEG) and DMR-genes. 

DEG type DMR-gene type # of genes1 Odds ratio P-value 
Human-UP 
NeuN+ 

mCG Human-hyper 
NeuN+ 

9037;313;262;5 0.54 9.50E-01 

Human-UP 
NeuN+ 

mCG Human-hypo 
NeuN+ 

9037;313;717;37 1.52 9.00E-03 

Human-DOWN 
NeuN+ 

mCG Human-hyper 
NeuN+ 

9037;181;262;5 0.95 6.10E-01 

Human-DOWN 
NeuN+ 

mCG Human-hypo 
NeuN+ 

9037;181;717;11 0.76 8.60E-01 

Human-UP 
OLIG2+ 

mCG Human-hyper 
OLIG2+ 

9037;354;298;10 0.85 7.40E-01 

Human-UP 
OLIG2+ 

mCG Human-hypo 
OLIG2+ 

9037;354;552;31 1.46 2.70E-02 

Human-DOWN 
OLIG2+ 

mCG Human-hyper 
OLIG2+ 

9037;179;298;3 0.5 9.40E-01 

Human-DOWN 
OLIG2+ 

mCG Human-hypo 
OLIG2+ 

9037;179;552;10 0.91 6.60E-01 

1 # of all orthologous genes expressed in NeuN+; # of DEGs; # of DMR-genes; # of 
overlap between DEGs with DMR-genes 
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Table A. 7. Three-dimensional chromatin Interaction profiles for human neuron CG 
DMRs. 

Chromosome DMR1_start DMR1_end DMR2_start DMR2_end 
chr8 145148281 145149216 145998048 145999189 
chr9 140374163 140374609 140425003 140425420 
chr17 5488727 5488946 6297077 6297463 
chr2 120397080 120397368 120581182 120582332 
chr18 61009566 61009665 60683377 60683494 
chr6 159423639 159423743 160070649 160071041 
chr4 185186763 185187403 185905643 185905908 
chr12 31741600 31742027 32674286 32674774 
chr4 1974091 1974618 2007413 2007773 
chr12 122109709 122110258 122355246 122355636 
chr11 60693440 60694121 60897649 60897782 
chr8 142158244 142159039 141849213 141849299 
chr8 144156247 144156462 144432099 144432433 
chr3 107409990 107410835 108180570 108181050 
chr15 93618135 93618635 94550656 94551123 
chr6 710426 711826 1699131 1700235 
chr8 41692955 41693075 41573648 41574533 
chr20 30007668 30011036 29998900 30000624 
chr2 208919627 208920218 208621549 208622136 
chr16 48644359 48644730 48309672 48310323 
chr16 12990780 12990909 13929128 13930648 
chr3 126399360 126399896 127178020 127178134 
chr6 169361157 169361978 169899046 169900347 
chr8 67342861 67343760 66975924 66976744 
chr2 68696763 68696957 69547747 69547844 
chr2 68696763 68696957 69152321 69152841 
chr11 60708025 60708478 60809013 60809344 
chr16 48644359 48644730 48310977 48311513 
chr4 113432450 113432637 113271457 113271652 
chr20 29963100 29964215 29998900 30000624 
chr11 69514746 69515349 68919875 68920140 
chr18 77288526 77288614 77152688 77153550 
chr2 9487885 9488285 9319444 9319552 
chr2 9487885 9488285 9302585 9302974 
chr6 110526893 110526966 110677371 110677726 
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Table A. 7 (continued) 

chr11 574130 574273 696503 697163 
chr8 11626450 11626687 11664930 11665230 
chr5 173236055 173236120 173260376 173260821 
chr18 3279931 3280035 3453836 3454017 
chr8 142193554 142193720 141849213 141849299 
chr15 100252193 100252905 99792722 99792809 
chr20 29998900 30000624 29979118 29980313 
chr20 29998900 30000624 29963100 29964215 
chr4 113432450 113432637 113218384 113219113 
chr11 62181904 62182027 62316367 62316430 
chr18 3279931 3280035 3652876 3654558 
chr9 546271 547720 546271 547720 
chr8 142193554 142193720 141863750 141864595 
chr12 116993376 116993629 117048319 117048384 
chr6 27112594 27113055 27728086 27731326 
chr2 202006735 202007150 201754731 201755116 
chr20 29979118 29980313 29998900 30000624 
chr15 86287198 86287302 86380318 86380711 
chr4 7043263 7043392 6986436 6987164 
chr14 91075377 91076483 90896401 90896783 
chr14 91075377 91076483 90882977 90883566 
chr21 43223019 43223402 42637335 42638459 
chr2 10439495 10439753 10360711 10361108 
chr2 10439495 10439753 10342647 10343058 
chr7 121514511 121514732 121243330 121245795 
chr11 598826 599155 598826 599155 
chr20 29950946 29952785 30007668 30011036 
chr11 93392145 93392818 92969873 92970428 
chr16 87899783 87900324 87614309 87614552 
chr20 29950946 29952785 29979118 29980313 
chr3 127633556 127633768 127494063 127494368 
chr3 71353312 71353997 70579578 70580143 
chr8 142158244 142159039 141863750 141864595 
chr4 6788323 6788647 6986436 6987164 
chr20 29979118 29980313 29950946 29952785 
chr20 29979118 29980313 29935052 29935123 



 122 

Table A. 7 (continued) 

chr8 142148178 142148470 141849213 141849299 
chr9 135293208 135294865 135463667 135463754 
chr2 2337254 2337759 3304537 3305034 
chr13 114107155 114107280 113929508 113930151 
chr9 140637039 140637617 140723560 140724155 
chr11 92969873 92970428 93392145 93392818 
chr5 4519547 4519879 3709040 3710552 
chr8 144432099 144432433 144156247 144156462 
chr6 27112594 27113055 27778414 27778541 
chr6 110677371 110677726 110526893 110526966 
chr4 3204685 3204843 3278747 3279277 
chr4 3204685 3204843 3267372 3267657 
chr16 3451820 3452364 3361385 3362750 
chr16 48285998 48286127 48644359 48644730 
chr3 16349338 16350044 16546090 16546888 
chr18 77152688 77153550 77378864 77380085 
chr18 77152688 77153550 77288526 77288614 
chr1 11026448 11026635 10570639 10573205 
chr1 36615863 36617947 36754509 36754863 
chr11 66606019 66606263 66492913 66493554 
chr8 142148178 142148470 142049147 142050235 
chr11 117742251 117742667 117843375 117843895 
chr5 173236055 173236120 173184454 173184824 
chr8 41689805 41691302 41573648 41574533 
chr2 120407892 120410678 120581182 120582332 
chr8 9521379 9522029 9207998 9208423 
chr4 3174179 3175520 3809147 3810264 
chr11 62316367 62316430 62181904 62182027 
chr16 51183282 51183378 51789366 51789674 
chr5 139536374 139536525 139428483 139428585 
chr11 68919875 68920140 69514746 69515349 
chr14 103968154 103968949 104014168 104014266 
chr11 125777710 125777873 126068708 126069272 
chr6 16200639 16201079 15706076 15706585 
chr1 204412084 204412402 204477275 204477744 
chr10 116849576 116851817 116637263 116637625 
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Table A. 7 (continued) 

chr18 3652876 3654558 3279931 3280035 
chr4 152601154 152603165 152032769 152033047 
chr3 124175533 124175633 123720218 123720576 
chr4 6986436 6987164 6788323 6788647 
chr6 159459522 159460416 160070649 160071041 
chr6 159423639 159423743 159128888 159129250 
chr15 99792722 99792809 100252193 100252905 
chr6 52283764 52284433 52376482 52376647 
chr15 101981827 101982177 102156691 102156911 
chr12 49751948 49752319 49937369 49939010 
chr1 36754509 36754863 36615863 36617947 
chr9 135293208 135294865 135435912 135437844 
chr5 139428483 139428585 139536374 139536525 
chr9 115140681 115140853 115468241 115468325 
chr13 112237303 112237489 113097314 113099228 
chr8 1489854 1490077 1471821 1472040 
chr17 1488595 1490976 1262954 1263885 
chr2 217364686 217364951 216981251 216983091 
chr18 3453836 3454017 3279931 3280035 
chr4 909244 909785 830232 832167 
chr4 909244 909785 909244 909785 
chr4 113218384 113219113 113432450 113432637 
chr4 113271457 113271652 113432450 113432637 
chr6 159639020 159639293 160070649 160071041 
chr1 36043652 36043901 36240504 36240784 
chr4 1974091 1974618 1508772 1508925 
chr20 29935052 29935123 29979118 29980313 
chr20 29935052 29935123 29982661 29984776 
chr3 108180570 108181050 107409990 107410835 
chr10 12231172 12232484 13116696 13116777 
chr9 98075703 98076254 98980833 98982341 
chr9 13444503 13444652 14346519 14346674 
chr2 3304537 3305034 2337254 2337759 
chr2 9530868 9531082 9302585 9302974 
chr2 9530868 9531082 9353287 9353484 
chr6 169361157 169361978 170054064 170055846 
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Table A. 7 (continued) 

chr8 142158244 142159039 142049147 142050235 
chr5 67535222 67535514 66534239 66534504 
chr1 154404242 154404455 154439458 154439542 
chr8 38562302 38562375 38408369 38408924 
chr16 4002026 4002442 3976480 3976729 
chr5 168125769 168126016 169008697 169009297 
chr16 1675018 1675252 1607684 1607791 
chr11 66492913 66493554 66606019 66606263 
chr1 8680303 8680895 8746926 8747163 
chr17 1262954 1263885 1488595 1490976 
chr14 104014168 104014266 103968154 103968949 
chr4 6788323 6788647 6944314 6945708 
chr5 134892901 134893026 134779092 134779952 
chr11 125803029 125803296 126068708 126069272 
chr5 173211905 173212814 173236055 173236120 
chr8 11664930 11665230 11626450 11626687 
chr2 216981251 216983091 217364686 217364951 
chr14 21798680 21798806 21701119 21702057 
chr9 27527070 27527513 27338161 27338736 
chr7 130598497 130598908 130698629 130698697 
chr12 122355246 122355636 122109709 122110258 
chr6 28616985 28617483 28910952 28911221 
chr13 27998114 27998202 28555201 28557055 
chr16 1669023 1669244 1607684 1607791 
chr13 44715484 44717469 44880709 44881113 
chr9 14346519 14346674 13444503 13444652 
chr16 3361385 3362750 3451820 3452364 
chr9 130693708 130693848 130369975 130370458 
chr2 10976424 10977657 11103608 11104445 
chr6 170494794 170495159 170433199 170434077 
chr6 134492177 134492300 135223946 135224369 
chr6 167555853 167556037 167192345 167192689 
chr3 52520163 52520423 52494991 52495352 
chr9 140723560 140724155 140883593 140883876 
chr6 16132062 16136539 15706076 15706585 
chr6 16146602 16146948 15706076 15706585 
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Table A. 7 (continued) 

chr7 104558936 104559408 103872030 103872393 
chr13 21061903 21062662 21394314 21395209 
chr5 173236055 173236120 173211905 173212814 
chr17 161146 161901 868468 868830 
chr20 30007668 30011036 29950946 29952785 
chr20 29998900 30000624 29982661 29984776 
chr8 145148281 145149216 145522376 145522552 
chr9 139989779 139990557 140425003 140425420 
chr9 140723560 140724155 140637039 140637617 
chr3 37864732 37865546 37374546 37375216 
chr21 46312390 46312868 45775435 45776847 
chr8 11626450 11626687 11828094 11828386 
chr7 104558936 104559408 103882407 103883182 
chr3 52494991 52495352 52520163 52520423 
chr6 27778414 27778541 27112594 27113055 
chr5 137475360 137475717 137167320 137168403 
chr12 122109709 122110258 122223048 122223163 
chr5 34006884 34007296 34467975 34468475 
chr15 101833362 101834236 102216098 102216850 
chr15 101833362 101834236 102156691 102156911 
chr6 34458536 34458635 34137456 34138344 
chr4 3045531 3045901 3809147 3810264 
chr13 45152779 45153144 45481055 45481432 
chr2 240114989 240115861 240139250 240139380 
chr20 29998900 30000624 30007668 30011036 
chr4 2609495 2609934 3278747 3279277 
chr3 128349611 128349731 127821216 127821862 
chr12 49937369 49939010 49751948 49752319 
chr4 6986436 6987164 7043263 7043392 
chr5 169008697 169009297 168477935 168478206 
chr9 130369975 130370458 130693708 130693848 
chr18 3029220 3029814 3093161 3094168 
chr18 3093161 3094168 3029220 3029814 
chr2 201754731 201755116 202006735 202007150 
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Table A. 8. Gene ontology output (ShinyGO) for three-dimensional chromatin 
Interaction profiles for human neuron CG DMRs. 

Enrichment FDR # of genes Functional Category 
2.6E-02 45 Organelle organization  
2.6E-02 22 Cytoskeleton organization  
2.6E-02 24 Neurogenesis  
2.6E-02 22 Neuron differentiation  
2.6E-02 19 Cellular component morphogenesis  
2.6E-02 29 Cell development  
2.6E-02 19 Neuron development  
2.6E-02 23 Generation of neurons  
3.4E-02 32 Regulation of cellular component organization  
3.5E-02 22 Plasma membrane bounded cell projection 

organization  
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Table A. 9. LD score regression results 

DMR class Disease h2 FE P-value FDR 
CG Conserved 
NeuN Hypo 

Alzheimer 0.39 1.92 2.1E-03 4.1E-02 

CG Conserved 
NeuN Hypo 

Anorexia 0.34 1.69 6.2E-05 1.7E-03 

CG Conserved 
NeuN Hypo 

Autism 0.28 1.39 3.7E-02 2.5E-01 

CG Conserved 
NeuN Hypo 

Bipolar_Disorder 0.40 1.95 3.1E-05 9.3E-04 

CG Conserved 
NeuN Hypo 

DS 0.32 1.58 3.9E-03 6.7E-02 

CG Conserved 
NeuN Hypo 

Neuroticism 0.34 1.65 9.2E-09 1.2E-06 

CG Conserved 
NeuN Hypo 

Schizophrenia 0.39 1.94 1.4E-23 3.6E-21 

CG Conserved 
NeuN Hypo 

SWB 0.35 1.74 3.5E-03 6.3E-02 

CG Conserved 
NeuN Hypo 

Years_of_Education1 0.37 1.84 6.4E-07 2.5E-05 

CG Conserved 
NeuN Hypo 

BMI1 0.31 1.52 5.0E-07 2.2E-05 

CG Conserved 
NeuN Hypo 

Celiac 0.20 0.96 8.9E-01 9.9E-01 

CG Conserved 
NeuN Hypo 

Coronary_Artery_Disease 0.32 1.59 2.3E-02 2.0E-01 

CG Conserved 
NeuN Hypo 

Crohns_Disease 0.21 1.02 8.8E-01 9.9E-01 

CG Conserved 
NeuN Hypo 

Ever_Smoked 0.30 1.50 8.4E-03 9.9E-02 

CG Conserved 
NeuN Hypo 

Fasting_Glucose 0.33 1.61 3.1E-02 2.4E-01 

CG Conserved 
NeuN Hypo 

HDL 0.27 1.33 3.5E-02 2.5E-01 

CG Conserved 
NeuN Hypo 

Height1 0.22 1.09 3.6E-01 7.6E-01 

CG Conserved 
NeuN Hypo 

IBD 0.20 0.98 8.7E-01 9.9E-01 

CG Conserved 
NeuN Hypo 

LDL 0.20 1.00 9.9E-01 1.0E+00 

CG Conserved 
NeuN Hypo 

Lupus 0.26 1.26 3.1E-01 7.3E-01 
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Table A. 9 (continued) 

CG Conserved 
NeuN Hypo 

Multiple_sclerosis 0.30 1.49 5.0E-01 8.2E-01 

CG Conserved 
NeuN Hypo 

Primary_biliary_cirrhosis 0.25 1.22 3.9E-01 7.9E-01 

CG Conserved 
NeuN Hypo 

Rheumatoid_Arthritis 0.27 1.31 1.5E-01 6.2E-01 

CG Conserved 
NeuN Hypo 

Triglycerides 0.31 1.52 1.4E-02 1.4E-01 

CG Conserved 
NeuN Hypo 

Type_1_Diabetes 0.23 1.11 8.1E-01 9.6E-01 

CG Conserved 
NeuN Hypo 

Type_2_Diabetes 0.21 1.04 8.5E-01 9.9E-01 

CG Conserved 
NeuN Hypo 

Ulcerative_Colitis 0.18 0.88 5.3E-01 8.3E-01 

CG Conserved 
OLIG2 Hypo 

Alzheimer 0.42 0.94 7.8E-01 9.4E-01 

CG Conserved 
OLIG2 Hypo 

Anorexia 0.53 1.20 4.8E-02 3.1E-01 

CG Conserved 
OLIG2 Hypo 

Autism 0.49 1.10 3.5E-01 7.6E-01 

CG Conserved 
OLIG2 Hypo 

Bipolar_Disorder 0.29 0.66 4.9E-03 7.8E-02 

CG Conserved 
OLIG2 Hypo 

DS 0.52 1.16 1.1E-01 5.4E-01 

CG Conserved 
OLIG2 Hypo 

Neuroticism 0.51 1.14 1.6E-02 1.6E-01 

CG Conserved 
OLIG2 Hypo 

Schizophrenia 0.46 1.02 4.7E-01 8.1E-01 

CG Conserved 
OLIG2 Hypo 

SWB 0.49 1.09 5.3E-01 8.3E-01 

CG Conserved 
OLIG2 Hypo 

Years_of_Education1 0.43 0.96 6.2E-01 8.6E-01 

CG Conserved 
OLIG2 Hypo 

BMI1 0.55 1.24 1.4E-04 3.5E-03 

CG Conserved 
OLIG2 Hypo 

Celiac 0.45 1.02 8.8E-01 9.9E-01 

CG Conserved 
OLIG2 Hypo 

Coronary_Artery_Disease 0.49 1.10 4.8E-01 8.1E-01 

CG Conserved 
OLIG2 Hypo 

Crohns_Disease 0.55 1.23 9.8E-03 1.1E-01 
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Table A. 9 (continued) 

CG Conserved 
OLIG2 Hypo 

Ever_Smoked 0.51 1.16 1.4E-01 5.8E-01 

CG Conserved 
OLIG2 Hypo 

Fasting_Glucose 0.59 1.32 5.1E-02 3.1E-01 

CG Conserved 
OLIG2 Hypo 

HDL 0.51 1.14 9.2E-02 4.5E-01 

CG Conserved 
OLIG2 Hypo 

Height1 0.57 1.29 6.0E-08 5.4E-06 

CG Conserved 
OLIG2 Hypo 

IBD 0.50 1.12 1.6E-01 6.2E-01 

CG Conserved 
OLIG2 Hypo 

LDL 0.44 0.99 9.2E-01 9.9E-01 

CG Conserved 
OLIG2 Hypo 

Lupus 0.52 1.16 2.5E-01 6.9E-01 

CG Conserved 
OLIG2 Hypo 

Multiple_sclerosis 0.73 1.64 8.9E-02 4.4E-01 

CG Conserved 
OLIG2 Hypo 

Primary_biliary_cirrhosis 0.59 1.32 6.7E-03 9.2E-02 

CG Conserved 
OLIG2 Hypo 

Rheumatoid_Arthritis 0.58 1.30 6.5E-03 9.2E-02 

CG Conserved 
OLIG2 Hypo 

Triglycerides 0.47 1.06 4.7E-01 8.1E-01 

CG Conserved 
OLIG2 Hypo 

Type_1_Diabetes 0.45 1.01 9.6E-01 1.0E+00 

CG Conserved 
OLIG2 Hypo 

Type_2_Diabetes 0.58 1.31 2.6E-02 2.1E-01 

CG Conserved 
OLIG2 Hypo 

Ulcerative_Colitis 0.49 1.11 3.0E-01 7.3E-01 

CG Human-
specific NeuN 
Hypo 

Alzheimer 0.05 0.98 9.8E-01 1.0E+00 

CG Human-
specific NeuN 
Hypo 

Anorexia 0.07 1.36 3.5E-01 7.6E-01 

CG Human-
specific NeuN 
Hypo 

Autism 0.09 1.84 4.5E-02 3.0E-01 

CG Human-
specific NeuN 
Hypo 

Bipolar_Disorder 0.09 1.74 1.7E-01 6.3E-01 
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Table A. 9 (continued) 

CG Human-
specific NeuN 
Hypo 

DS 0.05 0.99 9.8E-01 1.0E+00 

CG Human-
specific NeuN 
Hypo 

Neuroticism 0.06 1.25 4.0E-01 7.9E-01 

CG Human-
specific NeuN 
Hypo 

Schizophrenia 0.08 1.57 7.4E-04 1.5E-02 

CG Human-
specific NeuN 
Hypo 

SWB 0.07 1.31 6.0E-01 8.6E-01 

CG Human-
specific NeuN 
Hypo 

Years_of_Education1 0.05 1.01 9.9E-01 1.0E+00 

CG Human-
specific NeuN 
Hypo 

BMI1 0.05 1.06 7.5E-01 9.4E-01 

CG Human-
specific NeuN 
Hypo 

Celiac 0.05 0.97 9.6E-01 1.0E+00 

CG Human-
specific NeuN 
Hypo 

Coronary_Artery_Disease 0.07 1.47 3.3E-01 7.4E-01 

CG Human-
specific NeuN 
Hypo 

Crohns_Disease 0.04 0.77 4.5E-01 8.0E-01 

CG Human-
specific NeuN 
Hypo 

Ever_Smoked 0.10 1.90 3.1E-02 2.4E-01 

CG Human-
specific NeuN 
Hypo 

Fasting_Glucose 0.04 0.78 7.1E-01 9.1E-01 

CG Human-
specific NeuN 
Hypo 

HDL 0.04 0.85 7.1E-01 9.1E-01 

CG Human-
specific NeuN 
Hypo 

Height1 0.06 1.18 3.9E-01 7.9E-01 
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Table A. 9 (continued) 

CG Human-
specific NeuN 
Hypo 

IBD 0.04 0.83 5.9E-01 8.6E-01 

CG Human-
specific NeuN 
Hypo 

LDL 0.06 1.26 5.4E-01 8.3E-01 

CG Human-
specific NeuN 
Hypo 

Lupus 0.05 1.00 1.0E+00 1.0E+00 

CG Human-
specific NeuN 
Hypo 

Multiple_sclerosis 0.09 1.80 6.4E-01 8.6E-01 

CG Human-
specific NeuN 
Hypo 

Primary_biliary_cirrhosis 0.09 1.86 1.2E-01 5.6E-01 

CG Human-
specific NeuN 
Hypo 

Rheumatoid_Arthritis 0.07 1.35 5.0E-01 8.2E-01 

CG Human-
specific NeuN 
Hypo 

Triglycerides 0.07 1.42 2.9E-01 7.3E-01 

CG Human-
specific NeuN 
Hypo 

Type_1_Diabetes 0.09 1.79 4.6E-01 8.1E-01 

CG Human-
specific NeuN 
Hypo 

Type_2_Diabetes 0.05 0.94 9.2E-01 9.9E-01 

CG Human-
specific NeuN 
Hypo 

Ulcerative_Colitis 0.03 0.54 3.3E-01 7.4E-01 

CG Human-
specific OLIG2 
Hypo 

Alzheimer 0.00 0.10 2.5E-01 6.9E-01 

CG Human-
specific OLIG2 
Hypo 

Anorexia 0.06 1.40 3.4E-01 7.5E-01 

CG Human-
specific OLIG2 
Hypo 

Autism 0.05 1.26 5.4E-01 8.3E-01 
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Table A. 9 (continued) 

CG Human-
specific OLIG2 
Hypo 

Bipolar_Disorder 0.04 0.92 9.0E-01 9.9E-01 

CG Human-
specific OLIG2 
Hypo 

DS 0.06 1.40 4.1E-01 7.9E-01 

CG Human-
specific OLIG2 
Hypo 

Neuroticism 0.05 1.24 3.6E-01 7.6E-01 

CG Human-
specific OLIG2 
Hypo 

Schizophrenia 0.04 0.99 9.6E-01 1.0E+00 

CG Human-
specific OLIG2 
Hypo 

SWB 0.03 0.66 6.4E-01 8.6E-01 

CG Human-
specific OLIG2 
Hypo 

Years_of_Education1 0.05 1.33 4.2E-01 8.0E-01 

CG Human-
specific OLIG2 
Hypo 

BMI1 0.05 1.15 5.4E-01 8.3E-01 

CG Human-
specific OLIG2 
Hypo 

Celiac 0.06 1.59 5.1E-01 8.3E-01 

CG Human-
specific OLIG2 
Hypo 

Coronary_Artery_Disease 0.03 0.81 7.6E-01 9.4E-01 

CG Human-
specific OLIG2 
Hypo 

Crohns_Disease 0.03 0.77 5.6E-01 8.5E-01 

CG Human-
specific OLIG2 
Hypo 

Ever_Smoked 0.05 1.16 7.4E-01 9.4E-01 

CG Human-
specific OLIG2 
Hypo 

Fasting_Glucose 0.02 0.48 4.8E-01 8.1E-01 

CG Human-
specific OLIG2 
Hypo 

HDL 0.07 1.73 2.1E-01 6.7E-01 
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Table A. 9 (continued) 

CG Human-
specific OLIG2 
Hypo 

Height1 0.04 1.04 8.8E-01 9.9E-01 

CG Human-
specific OLIG2 
Hypo 

IBD 0.01 0.22 2.6E-02 2.1E-01 

CG Human-
specific OLIG2 
Hypo 

LDL 0.02 0.51 2.6E-01 6.9E-01 

CG Human-
specific OLIG2 
Hypo 

Lupus 0.03 0.67 6.1E-01 8.6E-01 

CG Human-
specific OLIG2 
Hypo 

Multiple_sclerosis 0.04 0.99 1.0E+00 1.0E+00 

CG Human-
specific OLIG2 
Hypo 

Primary_biliary_cirrhosis 0.08 1.96 1.8E-01 6.3E-01 

CG Human-
specific OLIG2 
Hypo 

Rheumatoid_Arthritis 0.03 0.64 4.8E-01 8.1E-01 

CG Human-
specific OLIG2 
Hypo 

Triglycerides 0.06 1.57 2.5E-01 6.9E-01 

CG Human-
specific OLIG2 
Hypo 

Type_1_Diabetes 0.07 1.80 4.7E-01 8.1E-01 

CG Human-
specific OLIG2 
Hypo 

Type_2_Diabetes 0.06 1.56 4.0E-01 7.9E-01 

CG Human-
specific OLIG2 
Hypo 

Ulcerative_Colitis 0.01 0.18 1.7E-01 6.3E-01 

CG Chimp-
specific NeuN 
Hypo 

Alzheimer 0.06 2.25 2.5E-01 6.9E-01 

CG Chimp-
specific NeuN 
Hypo 

Anorexia 0.03 1.26 6.4E-01 8.6E-01 
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Table A. 9 (continued) 

CG Chimp-
specific NeuN 
Hypo 

Autism 0.05 1.99 1.3E-01 5.8E-01 

CG Chimp-
specific NeuN 
Hypo 

Bipolar_Disorder 0.05 1.72 2.7E-01 7.0E-01 

CG Chimp-
specific NeuN 
Hypo 

DS 0.01 0.50 4.2E-01 8.0E-01 

CG Chimp-
specific NeuN 
Hypo 

Neuroticism 0.03 1.20 5.0E-01 8.2E-01 

CG Chimp-
specific NeuN 
Hypo 

Schizophrenia 0.03 1.06 7.8E-01 9.4E-01 

CG Chimp-
specific NeuN 
Hypo 

SWB 0.03 1.26 7.5E-01 9.4E-01 

CG Chimp-
specific NeuN 
Hypo 

Years_of_Education1 0.03 0.96 9.3E-01 1.0E+00 

CG Chimp-
specific NeuN 
Hypo 

BMI1 0.02 0.75 3.2E-01 7.3E-01 

CG Chimp-
specific NeuN 
Hypo 

Celiac 0.06 2.05 3.0E-01 7.3E-01 

CG Chimp-
specific NeuN 
Hypo 

Coronary_Artery_Disease 0.04 1.53 4.4E-01 8.0E-01 

CG Chimp-
specific NeuN 
Hypo 

Crohns_Disease 0.04 1.50 3.7E-01 7.9E-01 

CG Chimp-
specific NeuN 
Hypo 

Ever_Smoked 0.02 0.86 7.9E-01 9.5E-01 

CG Chimp-
specific NeuN 
Hypo 

Fasting_Glucose 0.00 -0.13 1.2E-01 5.6E-01 
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Table A. 9 (continued) 

CG Chimp-
specific NeuN 
Hypo 

HDL 0.04 1.57 4.0E-01 7.9E-01 

CG Chimp-
specific NeuN 
Hypo 

Height1 0.02 0.83 4.1E-01 8.0E-01 

CG Chimp-
specific NeuN 
Hypo 

IBD 0.04 1.46 4.3E-01 8.0E-01 

CG Chimp-
specific NeuN 
Hypo 

LDL 0.00 0.00 3.4E-02 2.5E-01 

CG Chimp-
specific NeuN 
Hypo 

Lupus 0.00 0.04 1.7E-01 6.3E-01 

CG Chimp-
specific NeuN 
Hypo 

Multiple_sclerosis 0.04 1.62 7.7E-01 9.4E-01 

CG Chimp-
specific NeuN 
Hypo 

Primary_biliary_cirrhosis 0.02 0.59 6.2E-01 8.6E-01 

CG Chimp-
specific NeuN 
Hypo 

Rheumatoid_Arthritis 0.02 0.78 7.5E-01 9.4E-01 

CG Chimp-
specific NeuN 
Hypo 

Triglycerides 0.03 1.15 7.7E-01 9.4E-01 

CG Chimp-
specific NeuN 
Hypo 

Type_1_Diabetes 0.04 1.56 7.0E-01 9.1E-01 

CG Chimp-
specific NeuN 
Hypo 

Type_2_Diabetes 0.05 1.69 3.2E-01 7.3E-01 

CG Chimp-
specific NeuN 
Hypo 

Ulcerative_Colitis 0.06 2.14 2.2E-01 6.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

Alzheimer 0.01 2.13 6.0E-01 8.6E-01 
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Table A. 9 (continued) 

CG Chimp-
specific OLIG2 
Hypo 

Anorexia 0.00 0.01 4.3E-01 8.0E-01 

CG Chimp-
specific OLIG2 
Hypo 

Autism 0.01 2.04 5.2E-01 8.3E-01 

CG Chimp-
specific OLIG2 
Hypo 

Bipolar_Disorder 0.01 3.02 3.1E-01 7.3E-01 

CG Chimp-
specific OLIG2 
Hypo 

DS 0.01 3.14 1.8E-01 6.3E-01 

CG Chimp-
specific OLIG2 
Hypo 

Neuroticism 0.01 2.28 1.8E-01 6.3E-01 

CG Chimp-
specific OLIG2 
Hypo 

Schizophrenia 0.01 2.12 6.5E-02 3.7E-01 

CG Chimp-
specific OLIG2 
Hypo 

SWB 0.01 2.20 5.7E-01 8.6E-01 

CG Chimp-
specific OLIG2 
Hypo 

Years_of_Education1 0.01 2.52 3.4E-01 7.5E-01 

CG Chimp-
specific OLIG2 
Hypo 

BMI1 0.01 1.85 2.3E-01 6.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

Celiac -0.01 -1.80 1.5E-01 6.0E-01 

CG Chimp-
specific OLIG2 
Hypo 

Coronary_Artery_Disease -0.01 -1.80 1.8E-01 6.3E-01 

CG Chimp-
specific OLIG2 
Hypo 

Crohns_Disease -0.01 -1.33 1.7E-02 1.7E-01 

CG Chimp-
specific OLIG2 
Hypo 

Ever_Smoked 0.00 0.94 9.7E-01 1.0E+00 
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Table A. 9 (continued) 

CG Chimp-
specific OLIG2 
Hypo 

Fasting_Glucose 0.02 3.91 2.0E-01 6.7E-01 

CG Chimp-
specific OLIG2 
Hypo 

HDL 0.00 0.81 8.6E-01 9.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

Height1 0.00 0.42 4.0E-01 7.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

IBD 0.00 -0.89 2.2E-02 2.0E-01 

CG Chimp-
specific OLIG2 
Hypo 

LDL 0.00 1.00 1.0E+00 1.0E+00 

CG Chimp-
specific OLIG2 
Hypo 

Lupus 0.01 2.98 6.2E-01 8.6E-01 

CG Chimp-
specific OLIG2 
Hypo 

Multiple_sclerosis -0.03 -5.64 1.6E-01 6.2E-01 

CG Chimp-
specific OLIG2 
Hypo 

Primary_biliary_cirrhosis 0.01 1.23 9.0E-01 9.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

Rheumatoid_Arthritis 0.00 -1.03 2.3E-01 6.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

Triglycerides 0.01 3.09 1.6E-01 6.3E-01 

CG Chimp-
specific OLIG2 
Hypo 

Type_1_Diabetes 0.01 2.74 6.3E-01 8.6E-01 

CG Chimp-
specific OLIG2 
Hypo 

Type_2_Diabetes 0.01 1.44 8.5E-01 9.9E-01 

CG Chimp-
specific OLIG2 
Hypo 

Ulcerative_Colitis 0.00 0.61 7.6E-01 9.4E-01 

CH NeuN 
Conserved Hyper 

Alzheimer 0.71 1.02 8.3E-01 9.8E-01 
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Table A. 9 (continued) 

CH NeuN 
Conserved Hyper 

Anorexia 0.68 0.98 6.5E-01 8.6E-01 

CH NeuN 
Conserved Hyper 

Autism 0.75 1.08 7.9E-02 4.1E-01 

CH NeuN 
Conserved Hyper 

Bipolar_Disorder 0.48 0.69 1.9E-06 6.3E-05 

CH NeuN 
Conserved Hyper 

DS 0.70 1.00 9.9E-01 1.0E+00 

CH NeuN 
Conserved Hyper 

Neuroticism 0.69 0.99 7.5E-01 9.4E-01 

CH NeuN 
Conserved Hyper 

Schizophrenia 0.61 0.87 2.1E-07 1.1E-05 

CH NeuN 
Conserved Hyper 

SWB 0.63 0.90 2.2E-01 6.9E-01 

CH NeuN 
Conserved Hyper 

Years_of_Education1 0.61 0.87 8.4E-03 9.9E-02 

CH NeuN 
Conserved Hyper 

BMI1 0.71 1.01 6.2E-01 8.6E-01 

CH NeuN 
Conserved Hyper 

Celiac 0.75 1.08 2.6E-01 6.9E-01 

CH NeuN 
Conserved Hyper 

Coronary_Artery_Disease 0.61 0.87 8.1E-02 4.1E-01 

CH NeuN 
Conserved Hyper 

Crohns_Disease 0.75 1.07 1.3E-01 5.8E-01 

CH NeuN 
Conserved Hyper 

Ever_Smoked 0.65 0.94 2.8E-01 7.1E-01 

CH NeuN 
Conserved Hyper 

Fasting_Glucose 0.70 1.01 9.1E-01 9.9E-01 

CH NeuN 
Conserved Hyper 

HDL 0.70 1.01 8.6E-01 9.9E-01 

CH NeuN 
Conserved Hyper 

Height1 0.74 1.05 4.4E-02 3.0E-01 

CH NeuN 
Conserved Hyper 

IBD 0.73 1.04 3.3E-01 7.4E-01 

CH NeuN 
Conserved Hyper 

LDL 0.72 1.02 6.5E-01 8.6E-01 

CH NeuN 
Conserved Hyper 

Lupus 0.75 1.07 5.0E-01 8.2E-01 

CH NeuN 
Conserved Hyper 

Multiple_sclerosis 0.87 1.24 2.3E-01 6.9E-01 
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Table A. 9 (continued) 

CH NeuN 
Conserved Hyper 

Primary_biliary_cirrhosis 0.71 1.01 8.8E-01 9.9E-01 

CH NeuN 
Conserved Hyper 

Rheumatoid_Arthritis 0.76 1.09 2.1E-01 6.8E-01 

CH NeuN 
Conserved Hyper 

Triglycerides 0.66 0.95 2.5E-01 6.9E-01 

CH NeuN 
Conserved Hyper 

Type_1_Diabetes 0.80 1.14 4.1E-01 7.9E-01 

CH NeuN 
Conserved Hyper 

Type_2_Diabetes 0.74 1.05 4.4E-01 8.0E-01 

CH NeuN 
Conserved Hyper 

Ulcerative_Colitis 0.73 1.05 2.8E-01 7.2E-01 

CH NeuN 
Human-specific 
Hypo 

Alzheimer 0.07 2.94 7.0E-02 3.8E-01 

CH NeuN 
Human-specific 
Hypo 

Anorexia 0.05 1.82 1.7E-01 6.3E-01 

CH NeuN 
Human-specific 
Hypo 

Autism 0.04 1.58 4.4E-01 8.0E-01 

CH NeuN 
Human-specific 
Hypo 

Bipolar_Disorder 0.02 0.91 9.0E-01 9.9E-01 

CH NeuN 
Human-specific 
Hypo 

DS 0.03 1.08 9.0E-01 9.9E-01 

CH NeuN 
Human-specific 
Hypo 

Neuroticism 0.01 0.48 6.5E-02 3.7E-01 

CH NeuN 
Human-specific 
Hypo 

Schizophrenia 0.02 0.84 4.8E-01 8.1E-01 

CH NeuN 
Human-specific 
Hypo 

SWB 0.07 2.78 7.0E-02 3.8E-01 

CH NeuN 
Human-specific 
Hypo 

Years_of_Education1 0.01 0.35 1.8E-01 6.3E-01 
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Table A. 9 (continued) 

CH NeuN 
Human-specific 
Hypo 

BMI1 0.02 1.00 9.9E-01 1.0E+00 

CH NeuN 
Human-specific 
Hypo 

Celiac 0.01 0.54 6.3E-01 8.6E-01 

CH NeuN 
Human-specific 
Hypo 

Coronary_Artery_Disease 0.03 1.04 9.6E-01 1.0E+00 

CH NeuN 
Human-specific 
Hypo 

Crohns_Disease 0.04 1.61 1.9E-01 6.4E-01 

CH NeuN 
Human-specific 
Hypo 

Ever_Smoked 0.01 0.26 2.0E-01 6.6E-01 

CH NeuN 
Human-specific 
Hypo 

Fasting_Glucose 0.01 0.33 4.0E-01 7.9E-01 

CH NeuN 
Human-specific 
Hypo 

HDL 0.02 0.69 5.9E-01 8.6E-01 

CH NeuN 
Human-specific 
Hypo 

Height1 0.01 0.24 3.3E-04 7.5E-03 

CH NeuN 
Human-specific 
Hypo 

IBD 0.03 1.37 4.5E-01 8.0E-01 

CH NeuN 
Human-specific 
Hypo 

LDL 0.02 0.82 7.6E-01 9.4E-01 

CH NeuN 
Human-specific 
Hypo 

Lupus 0.01 0.48 4.4E-01 8.0E-01 

CH NeuN 
Human-specific 
Hypo 

Multiple_sclerosis -0.03 -1.32 2.7E-01 7.0E-01 

CH NeuN 
Human-specific 
Hypo 

Primary_biliary_cirrhosis 0.04 1.47 5.7E-01 8.6E-01 
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Table A. 9 (continued) 

CH NeuN 
Human-specific 
Hypo 

Rheumatoid_Arthritis 0.03 1.06 9.4E-01 1.0E+00 

CH NeuN 
Human-specific 
Hypo 

Triglycerides 0.02 0.95 9.3E-01 1.0E+00 

CH NeuN 
Human-specific 
Hypo 

Type_1_Diabetes 0.00 -0.09 4.5E-01 8.0E-01 

CH NeuN 
Human-specific 
Hypo 

Type_2_Diabetes 0.04 1.56 5.0E-01 8.2E-01 

CH NeuN 
Human-specific 
Hypo 

Ulcerative_Colitis 0.01 0.52 4.0E-01 7.9E-01 

CH NeuN 
Human-specific 
Hyper 

Alzheimer 0.09 0.78 6.3E-01 8.6E-01 

CH NeuN 
Human-specific 
Hyper 

Anorexia 0.10 0.90 7.0E-01 9.1E-01 

CH NeuN 
Human-specific 
Hyper 

Autism 0.08 0.69 2.3E-01 6.9E-01 

CH NeuN 
Human-specific 
Hyper 

Bipolar_Disorder 0.08 0.71 3.1E-01 7.3E-01 

CH NeuN 
Human-specific 
Hyper 

DS 0.11 0.96 8.9E-01 9.9E-01 

CH NeuN 
Human-specific 
Hyper 

Neuroticism 0.08 0.72 6.4E-02 3.7E-01 

CH NeuN 
Human-specific 
Hyper 

Schizophrenia 0.06 0.55 1.9E-07 1.1E-05 

CH NeuN 
Human-specific 
Hyper 

SWB 0.09 0.78 5.7E-01 8.6E-01 
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Table A. 9 (continued) 

CH NeuN 
Human-specific 
Hyper 

Years_of_Education1 0.04 0.40 7.2E-03 9.2E-02 

CH NeuN 
Human-specific 
Hyper 

BMI1 0.11 0.99 9.5E-01 1.0E+00 

CH NeuN 
Human-specific 
Hyper 

Celiac 0.06 0.52 2.4E-01 6.9E-01 

CH NeuN 
Human-specific 
Hyper 

Coronary_Artery_Disease 0.03 0.29 1.9E-02 1.7E-01 

CH NeuN 
Human-specific 
Hyper 

Crohns_Disease 0.05 0.48 1.0E-02 1.1E-01 

CH NeuN 
Human-specific 
Hyper 

Ever_Smoked 0.08 0.69 2.6E-01 6.9E-01 

CH NeuN 
Human-specific 
Hyper 

Fasting_Glucose 0.05 0.42 7.2E-02 3.8E-01 

CH NeuN 
Human-specific 
Hyper 

HDL 0.06 0.58 6.1E-02 3.7E-01 

CH NeuN 
Human-specific 
Hyper 

Height1 0.08 0.74 3.3E-02 2.5E-01 

CH NeuN 
Human-specific 
Hyper 

IBD 0.10 0.85 4.4E-01 8.0E-01 

CH NeuN 
Human-specific 
Hyper 

LDL 0.07 0.61 1.1E-01 5.4E-01 

CH NeuN 
Human-specific 
Hyper 

Lupus 0.09 0.79 5.2E-01 8.3E-01 

CH NeuN 
Human-specific 
Hyper 

Multiple_sclerosis 0.12 1.07 9.4E-01 1.0E+00 
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Table A. 9 (continued) 

CH NeuN 
Human-specific 
Hyper 

Primary_biliary_cirrhosis 0.01 0.07 7.2E-03 9.2E-02 

CH NeuN 
Human-specific 
Hyper 

Rheumatoid_Arthritis 0.11 1.02 9.4E-01 1.0E+00 

CH NeuN 
Human-specific 
Hyper 

Triglycerides 0.09 0.80 2.6E-01 6.9E-01 

CH NeuN 
Human-specific 
Hyper 

Type_1_Diabetes 0.13 1.12 8.5E-01 9.9E-01 

CH NeuN 
Human-specific 
Hyper 

Type_2_Diabetes 0.07 0.63 2.6E-01 6.9E-01 

CH NeuN 
Human-specific 
Hyper 

Ulcerative_Colitis 0.09 0.81 5.1E-01 8.2E-01 

CH NeuN 
Chimp-specific 
Hyper 

Alzheimer 0.08 1.10 8.8E-01 9.9E-01 

CH NeuN 
Chimp-specific 
Hyper 

Anorexia 0.09 1.32 3.0E-01 7.3E-01 

CH NeuN 
Chimp-specific 
Hyper 

Autism 0.07 1.06 8.5E-01 9.9E-01 

CH NeuN 
Chimp-specific 
Hyper 

Bipolar_Disorder 0.02 0.32 5.1E-02 3.1E-01 

CH NeuN 
Chimp-specific 
Hyper 

DS 0.08 1.16 6.7E-01 8.9E-01 

CH NeuN 
Chimp-specific 
Hyper 

Neuroticism 0.07 1.05 8.0E-01 9.5E-01 

CH NeuN 
Chimp-specific 
Hyper 

Schizophrenia 0.06 0.83 1.3E-01 5.8E-01 
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Table A. 9 (continued) 

CH NeuN 
Chimp-specific 
Hyper 

SWB 0.06 0.86 8.0E-01 9.5E-01 

CH NeuN 
Chimp-specific 
Hyper 

Years_of_Education1 0.06 0.90 7.0E-01 9.1E-01 

CH NeuN 
Chimp-specific 
Hyper 

BMI1 0.08 1.20 4.3E-01 8.0E-01 

CH NeuN 
Chimp-specific 
Hyper 

Celiac 0.11 1.55 3.1E-01 7.3E-01 

CH NeuN 
Chimp-specific 
Hyper 

Coronary_Artery_Disease 0.08 1.13 7.8E-01 9.4E-01 

CH NeuN 
Chimp-specific 
Hyper 

Crohns_Disease 0.04 0.63 2.3E-01 6.9E-01 

CH NeuN 
Chimp-specific 
Hyper 

Ever_Smoked 0.08 1.21 5.9E-01 8.6E-01 

CH NeuN 
Chimp-specific 
Hyper 

Fasting_Glucose 0.03 0.37 1.9E-01 6.3E-01 

CH NeuN 
Chimp-specific 
Hyper 

HDL 0.07 1.09 7.8E-01 9.4E-01 

CH NeuN 
Chimp-specific 
Hyper 

Height1 0.09 1.27 1.4E-01 5.8E-01 

CH NeuN 
Chimp-specific 
Hyper 

IBD 0.05 0.70 3.0E-01 7.3E-01 

CH NeuN 
Chimp-specific 
Hyper 

LDL 0.11 1.59 2.1E-01 6.7E-01 

CH NeuN 
Chimp-specific 
Hyper 

Lupus 0.05 0.73 5.4E-01 8.3E-01 
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Table A. 9 (continued) 

CH NeuN 
Chimp-specific 
Hyper 

Multiple_sclerosis 0.13 1.92 4.4E-01 8.0E-01 

CH NeuN 
Chimp-specific 
Hyper 

Primary_biliary_cirrhosis 0.05 0.72 5.4E-01 8.3E-01 

CH NeuN 
Chimp-specific 
Hyper 

Rheumatoid_Arthritis 0.05 0.80 6.1E-01 8.6E-01 

CH NeuN 
Chimp-specific 
Hyper 

Triglycerides 0.06 0.89 6.8E-01 9.0E-01 

CH NeuN 
Chimp-specific 
Hyper 

Type_1_Diabetes 0.04 0.63 6.4E-01 8.6E-01 

CH NeuN 
Chimp-specific 
Hyper 

Type_2_Diabetes 0.08 1.21 6.4E-01 8.6E-01 

CH NeuN 
Chimp-specific 
Hyper 

Ulcerative_Colitis 0.06 0.81 6.0E-01 8.6E-01 
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Table A. 10. The list of GWAS traits and references used in LD score regression 
analyses. 

Disease Reference 
BMI  Speliotes et al., 2010 Nat Genet  
Height  Lango Allen et al., 2010 Nature  
Anorexia Boraska et al., 2014 Mol Psych  
Bipolar Disorder BIP Working Group of the PGC, 2011 Nat 

Genet  
Coronary Artery Disease Schunkert et al., 2011 Nat Genet  
Crohn's Disease Jostins et al., 2012 Nature  
Ever Smoked TAG Consortium, 2010 Nat Genet  
Fasting Glucose Manning et. al., 2012 Nat Genet 
HDL Teslovich et al., 2010 Nature 
LDL Teslovich et al., 2010 Nature  
Rheumatoid Arthritis Okada et al., 2014 Nature  
Schizophrenia SCZ Working Group of the PGC, 2014 Nature 
Triglycerides Teslovich et al., 2010 Nature 
Type 2 Diabetes Morris et al., 2012 Nat Genet  
Ulcerative Colitis Jostins et al., 2012 Nature  
Years of Education Rietveld et al., 2013 Science 
IBD Jostins et al., 2012 Nature  
Autism Spectrum PGC Cross-Disorder Group, 2013 Lancet 
Alzheimer's Disease Lambert et al., 2013 Nat Genet 
Type 1 Diabetes Bradfield et al., 2011 Plos Genet 
Multiple Sclerosis IMS Genetics Consortium, 2011 Nature 
Celiac Disease Dubois et al., 2010 Nat Genet 
Primary Biliary Cirrhosis Cordell et al., 2015 Nat Commun 
Systemic Lupus 
Erythematosus 

Bentham et al., 2015 Nat Genet 

Subject well being Okbay et al., 2016 Nat Genet 
Depressive symptoms Okbay et al., 2016 Nat Genet 
Neuroticism Okbay et al., 2016 Nat Genet 
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APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

 

Figure B. 1. Evolutionary lineages and their divergence time among the three primate 
species. Human-specific methylation changes are depicted in blue and chimpanzee-specific 
methylation changes are shown in grey. Sites in which macaque show methylation 
divergence from human and chimpanzee but exhibit no difference between human and 
chimpanzee are denoted in green. Numbers of CH sites showing significant methylation 
changes on the three evolutionary lineages are plotted. 
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Figure B. 2. Correlation between gene expression and CH methylation in neuronal cells 
across all three primate species. 
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Figure B. 3. Correlation coefficient between different methylation contexts and between 
methylation and gene expression in human NeuN+. 
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Figure B. 4. Relationship between CH gene body methylation (relative difference between 
species, X-axis) and CG promoter methylation (relative difference between species, Y-
axis) in different gene types. DEG: differentially expressed gene list from Berto et al. 2019. 
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Figure B. 5. (A) Gene expression in human and macaque for CH DMR genes over 
developmental time points (Human CH DMR genes, n = 450 and Chimpanzee CH DMR 
genes, n =144). Macaque samples were age-matched to human developmental time points 
(PCW: Post conception week; M: Month; Yr: Year). Same as in panel A but (B) using CG 
DMR genes (hypo; Human DMR genes, n = 742 and Chimpanzee DMR genes, n = 201) 
and (C) using CG DMR genes (hyper; Human DMR genes, n = 223 and Chimpanzee DMR 
genes, n = 627). Box represents a range from the first quartile to the third quartile. The line 
in the box indicates the median value. The minima and maxima are within 1.5 times the 
distance between the first and third quartiles from box.  
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Figure B. 6. Gene expression of lineage-specific CH DMR genes (Human CH DMR genes, 
n = 590 and Chimpanzee CH DMR genes, n =159) in neuronal (NeuN+) cell samples and 
oligodendrocyte (OLIG2+) cell samples. Statistical significance was calculated using two-
sided Mann-Whitney U-test. Box represents a range from the first quartile to the third 
quartile. The line in the box indicates the median value. The minima and maxima are within 
1.5 times the distance between the first and third quartiles from box. 
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Figure B. 7. CH methylation of single cell methylomes. (A) Boxplots display average 
methylation differences between human CH DMR genes (n = 674) and Chimpanzee CH 
DMR genes (n = 173) of neuronal cells for neuronal subtypes. (B) As a control, we 
randomly selected the same number of genes. Box represents a range from the first quartile 
to the third quartile. The line in the box indicates the median value. The minima and 
maxima are within 1.5 times the distance between the first and third quartiles from box. 
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Table B. 1. Partial correlation analysis explaining correlation coefficient between 
methylation and expression account for effects from other methylation contexts 

Predictors Gene expression 

Normal1 (P-value) Partial2 (P-value) 

mCG promoter -0.36 (P < 10-10) -0.27 (P < 10-10) 

mCG gene body -0.22 (P < 10-10) 0.18 (P < 10-10) 

mCH gene body -0.53 (P < 10-10) -0.48 (P < 10-10) 

1ordinary correlation coefficient (spearman) 2partial correlation coefficient (spearman) 
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Table B. 2. Multiple linear regression models explaining variation of gene expression 
levels of humans and human-chimpanzee difference. 

Predictors Estimate of b t-value Significance   

Human data alone 

    

Intercept 3.05 67.15 < 10-15  

 

Promoter mCG -1.46 -33.28 < 10-15  

 

Gene body mCG 2.2 29.38 < 10-15  

 

Gene body mCH -44.14 -65.74 < 10-5 

 

Adj-R2 

   

0.39      

Human-chimpanzee 
difference 

    

Intercept 0.005 1.83 0.06 

 

Promoter mCG difference -0.17 -3.19 0.001 

 

Gene body mCG difference 0.21 1.91 0.06 

 

Gene body mCH difference -11.72 -19.32 < 10-10  

 

Adj-R2 

   

0.14 
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APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

Figure C. 1. Proportion of variation explained by each variable controlled across 10 
principal components (SCZ, schizophrenia; PMI, post-mortem interval). See also Figure 
1B for results from the combined data sets. 
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Figure C. 2. The number of age-DMLs occurred in each chromosome. Correlation 
coefficient is computed between the number of DMLs and the chromosome length. 
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Figure C. 3. A relationship between mean methylation and the effect of age on 
methylation. For each CpG site, we fitted a linear model to estimate the age effect on DNA 
methylation adjusted for other biological variables (post-mortem interval, sex, disease 
status, and bisulfite conversion rate). Y-axis indicates mean methylation levels of samples 
with age < 20 for the corresponding CpG site. For the illustration purpose, only 10,000 
randomly selected CpG sites were displayed in the plots. 
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Figure C. 4. Distributions of whole-genome CpG methylation across age groups. NeuN+ 
samples were ordered by age (from bottom to top). For the illustration purpose, CpG sites 
with fractional methylation greater than 0.9 or less than 0.1 for more than 90% of samples 
were excluded. Sample index is denoted as ‘sample name_age’   
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Figure C. 5. Comparison of DSS statistics of age effect between the cell types. NeuN+ 
age-DMLs and OLIG2+ age-DMLs are colored in cyan and magenta, respectively. Results 
from randomly selected 10,000 CpGs were also displayed (colored in grey). 
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Figure C. 6. Dysregulation of cell identity with age measured by DNA methylation 
changes in neurons and oligodendrocytes in each age group from initial cell type DNA 
methylation. Epigenetic distance is calculated by Euclidian distance between points in a 
two-dimensional plane (DNA methylation of two cell types). Epigenetic distances of cell 
type identity from the neonate is depicted for different age groups for cell-type specific 
age-DMLs. Epigenetic distances of the randomly selected CpG positions are also shown 
for control. 
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Figure C. 7. Distributions of age-DMLs across the genome. Each vertical line indicates 
age-DML and is colored based on the occurrence of age-DML in the 5Mbp bin window. 
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Figure C. 8. DNA methylation variation of multiple tissues in clock CpGs. Coefficient of 
methylation variation resulting from 10 different WGBS tissues shows highly variable 
DNA methylation for age-DML and reduced DNA methylation variation for clock CpGs.   
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Table C. 1. List of WGBS samples  

Sample index Disease 
status 

Cell 
type 

Se
x 

Ag
e 

Pmi BS 
Conv 
Rate 

Data 

Miami0001_Control_Ne
uN 

Control NeuN
+ 

M 25 16.3 0.942 Mendizab
al 

AN15240_Control_Neu
N 

Control NeuN
+ 

F 36 18.0
8 

0.971 Mendizab
al 

X1507_Schizo_NeuN Schizo NeuN
+ 

M 32 27 0.991 Mendizab
al 

AN09634_Schizo_NeuN Schizo NeuN
+ 

M 26 16 0.997 Mendizab
al 

X1524_Control_NeuN Control NeuN
+ 

M 40 10 0.997 Mendizab
al 

X1527_Control_NeuN Control NeuN
+ 

M 36 23 0.998 Mendizab
al 

X4730_Schizo_NeuN Schizo NeuN
+ 

F 32 12.3 0.998 Mendizab
al 

X1514_Schizo_NeuN Schizo NeuN
+ 

M 40 9 0.998 Mendizab
al 

X1511_Schizo_NeuN Schizo NeuN
+ 

M 26 24 0.998 Mendizab
al 

X1510_Schizo_NeuN Schizo NeuN
+ 

M 33 20 0.998 Mendizab
al 

AN16799_Control_Neu
N 

Control NeuN
+ 

M 43 14.6
8 

0.935 Mendizab
al 

X4504_Schizo_NeuN Schizo NeuN
+ 

M 55 10.7 0.971 Mendizab
al 

X1541_Control_NeuN Control NeuN
+ 

F 49 15.3 0.979 Mendizab
al 

AN10090_Control_Neu
N 

Control NeuN
+ 

M 52 13.2 0.992 Mendizab
al 
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Table C. 1 (continued) 

X1516_Schizo_NeuN Schizo NeuN
+ 

M 47 25 0.996 Mendizaba
l 

X4448_Schizo_NeuN Schizo NeuN
+ 

M 46 21.7 0.996 Mendizaba
l 

AN17799_Schizo_Neu
N 

Schizo NeuN
+ 

F 56 10.5 0.996 Mendizaba
l 

X1531_Control_NeuN Control NeuN
+ 

M 60 17.1 0.996 Mendizaba
l 

X1505_Schizo_NeuN Schizo NeuN
+ 

F 46 23 0.996 Mendizaba
l 

X4615_Control_NeuN Control NeuN
+ 

M 49 15 0.997 Mendizaba
l 

X1538_Control_NeuN Control NeuN
+ 

F 55 25 0.997 Mendizaba
l 

X1521_Schizo_NeuN Schizo NeuN
+ 

M 60 22.5 0.997 Mendizaba
l 

X1518_Schizo_NeuN Schizo NeuN
+ 

F 52 27.5 0.997 Mendizaba
l 

X1512_Schizo_NeuN Schizo NeuN
+ 

F 43 11 0.997 Mendizaba
l 

X1539_Control_NeuN Control NeuN
+ 

F 53 23 0.997 Mendizaba
l 

X1523_Schizo_NeuN Schizo NeuN
+ 

F 42 15.5 0.998 Mendizaba
l 

X4395_Schizo_NeuN Schizo NeuN
+ 

M 56 14.7 0.998 Mendizaba
l 

X1536_Control_NeuN Control NeuN
+ 

M 41 24 0.998 Mendizaba
l 

X1515_Schizo_NeuN Schizo NeuN
+ 

F 50 27.1
5 

0.999 Mendizaba
l 
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Table C. 1 (continued) 

X1533_Control_NeuN Control NeuN+ M 54 19.3 0.999 Mendizaba
l 

X1519_Schizo_NeuN Schizo NeuN+ M 54 15.5 0.999 Mendizaba
l 

X1535_Control_NeuN Control NeuN+ M 52 15.4 0.999 Mendizaba
l 

X1537_Control_NeuN Control NeuN+ M 46 22 0.999 Mendizaba
l 

X1509_Schizo_NeuN Schizo NeuN+ M 52 21 0.999 Mendizaba
l 

AN03398_Control_Neu
N 

Control NeuN+ F 75 12.1 0.990 Mendizaba
l 

X3545_Control_NeuN Control NeuN+ M 80 14 0.945 Mendizaba
l 

X4336_Schizo_NeuN Schizo NeuN+ F 85 11.5 0.976 Mendizaba
l 

X3586_Control_NeuN Control NeuN+ M 76 16 0.979 Mendizaba
l 

X1532_Control_NeuN Control NeuN+ F 68 19 0.983 Mendizaba
l 

X3611_Control_NeuN Control NeuN+ M 64 17.5 0.985 Mendizaba
l 

X4804_Schizo_NeuN Schizo NeuN+ M 61 28 0.995 Mendizaba
l 

X3590_Control_NeuN Control NeuN+ M 75 11.5 0.996 Mendizaba
l 

X4361_Schizo_NeuN Schizo NeuN+ F 77 14.7 0.997 Mendizaba
l 

AN18099_Schizo_NeuN Schizo NeuN+ M 66 16.4
7 

0.997 Mendizaba
l 
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Table C. 1 (continued) 

X1522_Schizo_NeuN Schizo NeuN+ M 63 17 0.997 Mendizaba
l 

X1534_Control_NeuN Contro
l 

NeuN+ M 75 7.5 0.997 Mendizaba
l 

X1525_Control_NeuN Contro
l 

NeuN+ F 65 11 0.997 Mendizaba
l 

X3602_Control_NeuN Contro
l 

NeuN+ M 66 13.2 0.998 Mendizaba
l 

X1513_Schizo_NeuN Schizo NeuN+ F 73 14 0.998 Mendizaba
l 

X1517_Schizo_NeuN Schizo NeuN+ M 77 32 0.998 Mendizaba
l 

X1506_Schizo_NeuN Schizo NeuN+ F 85 9 0.998 Mendizaba
l 

X1508_Schizo_NeuN Schizo NeuN+ F 73 36 0.998 Mendizaba
l 

AN05483_Control_NeuN Contro
l 

NeuN+ M 66 16.9
7 

0.999 Mendizaba
l 

X1520_Schizo_Olig2 Schizo OLIG2
+ 

M 38 14 0.984 Mendizaba
l 

Miami0001_Control_Olig
2 

Contro
l 

OLIG2
+ 

M 25 16.3 0.987 Mendizaba
l 

X1507_Schizo_Olig2 Schizo OLIG2
+ 

M 32 27 0.992 Mendizaba
l 

AN15240_Control_Olig2 Contro
l 

OLIG2
+ 

F 36 18.0
8 

0.996 Mendizaba
l 

X1514_Schizo_Olig2 Schizo OLIG2
+ 

M 40 9 0.997 Mendizaba
l 

AN09634_Schizo_Olig2 Schizo OLIG2
+ 

M 26 16 0.997 Mendizaba
l 
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Table C. 1 (continued) 

X1510_Schizo_Olig2 Schizo OLIG2
+ 

M 33 20 0.997 Mendizaba
l 

X1511_Schizo_Olig2 Schizo OLIG2
+ 

M 26 24 0.997 Mendizaba
l 

X1527_Control_Olig2 Contro
l 

OLIG2
+ 

M 36 23 0.998 Mendizaba
l 

X1524_Control_Olig2 Contro
l 

OLIG2
+ 

M 40 10 0.998 Mendizaba
l 

X4730_Schizo_Olig2 Schizo OLIG2
+ 

F 32 12.3 0.998 Mendizaba
l 

X4448_Schizo_Olig2 Schizo OLIG2
+ 

M 46 21.7 0.978 Mendizaba
l 

X1536_Control_Olig2 Contro
l 

OLIG2
+ 

M 41 24 0.992 Mendizaba
l 

X1505_Schizo_Olig2 Schizo OLIG2
+ 

F 46 23 0.995 Mendizaba
l 

AN16799_Control_Olig
2 

Contro
l 

OLIG2
+ 

M 43 14.6
8 

0.997 Mendizaba
l 

X1515_Schizo_Olig2 Schizo OLIG2
+ 

F 50 27.1
5 

0.997 Mendizaba
l 

X1518_Schizo_Olig2 Schizo OLIG2
+ 

F 52 27.5 0.997 Mendizaba
l 

X1541_Control_Olig2 Contro
l 

OLIG2
+ 

F 49 15.3 0.997 Mendizaba
l 

X1512_Schizo_Olig2 Schizo OLIG2
+ 

F 43 11 0.997 Mendizaba
l 

X1538_Control_Olig2 Contro
l 

OLIG2
+ 

F 55 25 0.997 Mendizaba
l 

X1539_Control_Olig2 Contro
l 

OLIG2
+ 

F 53 23 0.997 Mendizaba
l 
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Table C. 1 (continued) 

X4395_Schizo_Olig2 Schizo OLIG2
+ 

M 56 14.7 0.998 Mendizaba
l 

X4504_Schizo_Olig2 Schizo OLIG2
+ 

M 55 10.7 0.998 Mendizaba
l 

AN10090_Control_Olig
2 

Contro
l 

OLIG2
+ 

M 52 13.2 0.998 Mendizaba
l 

X1523_Schizo_Olig2 Schizo OLIG2
+ 

F 42 15.5 0.998 Mendizaba
l 

X4615_Control_Olig2 Contro
l 

OLIG2
+ 

M 49 15 0.998 Mendizaba
l 

AN17799_Schizo_Olig2 Schizo OLIG2
+ 

F 56 10.5 0.998 Mendizaba
l 

X3590_Control_Olig2 Contro
l 

OLIG2
+ 

M 75 11.5 0.916 Mendizaba
l 

X3611_Control_Olig2 Contro
l 

OLIG2
+ 

M 64 17.5 0.947 Mendizaba
l 

X1525_Control_Olig2 Contro
l 

OLIG2
+ 

F 65 11 0.980 Mendizaba
l 

X3545_Control_Olig2 Contro
l 

OLIG2
+ 

M 80 14 0.988 Mendizaba
l 

X4361_Schizo_Olig2 Schizo OLIG2
+ 

F 77 14.7 0.994 Mendizaba
l 

X4336_Schizo_Olig2 Schizo OLIG2
+ 

F 85 11.5 0.995 Mendizaba
l 

X3586_Control_Olig2 Contro
l 

OLIG2
+ 

M 76 16 0.996 Mendizaba
l 

X1513_Schizo_Olig2 Schizo OLIG2
+ 

F 73 14 0.996 Mendizaba
l 

AN18099_Schizo_Olig2 Schizo OLIG2
+ 

M 66 16.4
7 

0.996 Mendizaba
l 
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Table C. 1 (continued) 

X4804_Schizo_Olig2 Schizo OLIG2
+ 

M 61 28 0.997 Mendizaba
l 

X3602_Control_Olig2 Contro
l 

OLIG2
+ 

M 66 13.2 0.997 Mendizaba
l 

AN03398_Control_Olig
2 

Contro
l 

OLIG2
+ 

F 75 12.1 0.997 Mendizaba
l 

X1508_Schizo_Olig2 Schizo OLIG2
+ 

F 73 36 0.998 Mendizaba
l 

AN05483_Control_Olig
2 

Contro
l 

OLIG2
+ 

M 66 16.9
7 

0.998 Mendizaba
l 

X1532_Control_Olig2 Contro
l 

OLIG2
+ 

F 68 19 0.998 Mendizaba
l 

WGC052318L Contro
l 

NeuN+ M 0.2 36 0.982 Price 

WGC059588L Contro
l 

NeuN+ M 0.25 36.5 0.983 Price 

WGC059608L Contro
l 

NeuN+ M 0.33 22 0.987 Price 

WGC059594L Contro
l 

NeuN+ M 0.36 16 0.986 Price 

WGC052309L_reseq Contro
l 

NeuN+ F 2.49 8 0.991 Price 

WGC059592L Contro
l 

NeuN+ F 2.71 44 0.986 Price 

WGC052311L Contro
l 

NeuN+ M 5.34 18 0.981 Price 

WGC059612L Contro
l 

NeuN+ M 8.25 30 0.986 Price 

WGC055562L Contro
l 

NeuN+ F 13.0
2 

26 0.986 Price 
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Table C. 1 (continued) 

WGC055573L Contro
l 

NeuN+ M 13.69 18 0.985 Price 

WGC052324L Contro
l 

NeuN+ M 14.09 16 0.989 Price 

WGC055575L Contro
l 

NeuN+ M 14.62 10 0.985 Price 

WGC059600L Contro
l 

NeuN+ M 15.15 20 0.983 Price 

WGC052328L Contro
l 

NeuN+ M 15.48 14.5 0.989 Price 

WGC052314L Contro
l 

NeuN+ M 16.79 25 0.992 Price 

WGC059598L Contro
l 

NeuN+ F 17.22 19 0.986 Price 

WGC059603L Contro
l 

NeuN+ M 18.05 14.5 0.980 Price 

WGC055577L Contro
l 

NeuN+ M 18.11 6 0.985 Price 

WGC059607L Contro
l 

NeuN+ M 18.15 36.5 0.985 Price 

WGC052312L Contro
l 

NeuN+ M 19.89 21.5 0.982 Price 

WGC055570L Contro
l 

NeuN+ M 20.77 25.5 0.985 Price 

WGC055568L Contro
l 

NeuN+ M 21.01 28.5 0.990 Price 

WGC059601L Contro
l 

NeuN+ M 22.58 54.5 0.983 Price 
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Table C. 1 (continued) 

WGC059604L Contro
l 

NeuN+ M 22.71 38.5 0.979 Price 

WGC052316L Contro
l 

NeuN- M 0.2 36 0.991 Price 

WGC059613L Contro
l 

NeuN- F 2.71 44 0.983 Price 

WGC059614L Contro
l 

NeuN- M 5.34 18 0.980 Price 

WGC052317L Contro
l 

NeuN- M 8.25 30 0.991 Price 

WGC055558L Contro
l 

NeuN- F 13.02 26 0.984 Price 

WGC055559L Contro
l 

NeuN- F 17.22 19 0.984 Price 

WGC059596L Contro
l 

NeuN- M 19.89 21.5 0.986 Price 

WGC055561L Contro
l 

NeuN- M 22.71 38.5 0.986 Price 
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