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SUMMARY

Deception is an essential social behavior for humans, and we can observe hu-

man deceptive behaviors in a variety of contexts including sports, culture, education,

war, and everyday life. Deception is also used for the purpose of survival in animals

and even in plants. From these findings, it is obvious that deception is a general and

essential behavior for any species, which raises an interesting research question: can

deception be an essential characteristic for robots, especially social robots? Based

on this curiosity, this dissertation aimed to develop a robot’s deception capabilities,

especially in human-robot interaction (HRI) situations. Specifically, the goal of this

dissertation is to develop a social robot’s deceptive behaviors that can produce benefits

for the deceived humans (other-oriented robot deception). To achieve other-oriented

robot deception, several scientific contributions were accomplished in this disserta-

tion. A novel taxonomy of robot deception was defined, and a general computational

model for a robot’s deceptive behaviors was developed based on criminological law.

Appropriate HRI contexts in which a robot’s other-oriented deception can generate

benefits were explored, and a methodology for evaluating a robot’s other-oriented de-

ception in appropriate HRI contexts was designed, and studies were conducted with

human subjects. Finally, the ethical implications of other-oriented robot deception

were also explored and thoughtfully discussed.

xiv



CHAPTER I

INTRODUCTION

As social agents, people commonly lie to others and perform deceptive behaviors

more than they realize [85]. In human interaction, deception is ubiquitous and occurs

frequently during people’s development and in personal relationships [16], sports [96],

culture [85], and even war [69]. Then, are humans the only beings to have deception

capabilities? No, deception is not limited to human beings. Various biological research

findings illustrate that animals act deceptively in several ways to enhance their chance

of survival [124]. One article finds that even some plants show deception for the

purpose of survival [133]. From these findings, we can argue that deception is a

general and essential behavior for any species, which raises an interesting question:

can deception be an essential characteristic for robots, especially social robots?

Studies on deception in psychology provide some clues for this question. Vasek

stated that “the development of deception follows the development of other skills used

in social understanding. [167]” Therefore, deception is an essential factor for humans,

not just for survival but for humans to be social creatures. Dennett’s argument about

intentionality also illustrates the important role of human deception. Intentionality

is defined as “the power of minds to be about, to represent, or to stand for, things,

properties and states of a↵airs. [44]” Intentionality is thus one of the key factors

defining humans as social agents. According to Dennett, a higher-order intentionality

can be achieved by adding several di↵erent features, with capability for deception

notably among them [44]. In summation, we can say that deception capabilities can

be an important factor in social intelligence and agency.

The use of social robots is exploding into multiple applications in our everyday

1



life. For example, companion robots are broadly used in elder care or childcare [125,

61, 81, 173]. Robot assistants have also been introduced in the context of education

to increase students’ learning e�ciency [158, 157]. Recently, social robots such as

Pepper [47] have even been promoted to interact with people at home to enhance their

lives. By increasing the use of robots in human-robot interaction situations, robots

will more frequently play a role as social agents, and naturally, the aim to develop

more socially intelligent robots is growing. And as stated above, to achieve more

sophisticated social robots, deception should be considered as one of the important

factors in robotics research.

Despite the need for robot deception, little research on robot deception has been

conducted until now. Especially, in regard to robotic deception, research has focused

on specific situations such as military robots’ deception [38, 139]. However, a military

context involves vulnerable situations, which should be handled di↵erently from our

usual social contexts. Throughout the work in this dissertation, it is expected to

investigate and explore deception in social robots. In other words, this dissertation

aims to figure out whether and how a robot decides and performs deception in general

social situations.

Even though we can discuss the potential benefits of robot deception, it is obvious

that robot deception has to be considered carefully in regards to social robots. One

strong argument that will be illustrated throughout this research is that robot decep-

tion should be used only in appropriate human-robot interaction (HRI) contexts. The

motivation of robot deception will be discussed later, but briefly, a chief motive for

social robots to perform deception should be to benefit the deceived human beings.

According to DePaulo [45], human deception can be categorized based on motivation,

such as self-oriented and other-oriented deception. In general, people act deceptively

for their (deceiver’s) own benefit. This is self-oriented deception. However, people

also sometimes deceive another person for that person’s (the deceived’s) benefit. For

2



example, people may tell a white lie such as “you look great today!” just to make the

deceived person feel good. This type of deception is defined as other-oriented decep-

tion, which is motivated by the deceived person’s potential benefits. More detailed

explanations of this categorization will follow in chapters 2 and 3. Inspired by this

definition, robot deception will be classified (also the taxonomy of robot deception

will be defined) and my own definition of other-oriented robot deception will be pro-

vided. Finally, throughout this dissertation, it is aimed to achieve this other-oriented

robot deception in HRI.

In sum, the main argument in this research is that social robots’ deception should

be limited to other-oriented robot deception. In other words, robots’ deception can be

used only when appropriate HRI contexts contain benefits for the deceived humans.

In this dissertation, it will be discussed how a robot’s deception can truly produce

benefits for humans in social situations, and some models for a robot’s other-oriented

deception will be also provided. Finally, from the results of this research, I aim to

show that a robot, in order to be socially intelligent and interactive, should have

deceptive capabilities that will benefit its deceived human partners.

1.1 Research Question

1.1.1 Primary Research Question

The main research question that the work in this dissertation supports is this: Can

a robot use deception in appropriate HRI domains in order to benefit the

deceived human partner? .

As emphasized in the previous section, this dissertation aims to develop a robot’s

deception capabilities especially in human-robot interaction situations. In addition,

it is strongly argued that a social robot’s deceptive behaviors should be only be used

when it can produce benefits for the deceived humans. To prove this primary research

hypothesis and also develop a model for this benevolent robot deception model, my

3



research is broken down into five subsidiary questions.

1.1.2 Subsidiary Questions

1. What kinds of deception can be beneficial for those being deceived?

Humans and animals can use di↵erent kinds of deceptive behaviors. Similar to hu-

mans and animals, robots can also perform deceptive behaviors for specific purposes.

Among di↵erent contexts, a number of potential situations is investigated in which,

deceptive robot behaviors can be beneficial, especially for people being deceived. The

aim of this research is to determine the appropriate use of robots’ deceptive behaviors

to benefit the deceived. Therefore, it is essential to understand in which particular

contexts robot deception may benefit deceived people.

2. How can deceptive behaviors be applied to a robotic system?

Deceptive behaviors have to be applied appropriately to robotic systems. Since

robots di↵er from animals and humans in their embodiment and motion/perception

capabilities, it will be necessary to determine the most applicable methodologies for

robot systems under these limitations and conditions.

3. What formal theoretical/mathematical expressions are appropriate for generating

robot deception?

Algorithms should be developed to apply deceptive behaviors to the robot system.

Formal theoretical expressions and suitable computational models require develop-

ment. In particular, the work in this dissertation focuses on the deceptive capabilities

of robots in “HRI contexts.” Therefore, the development of formal deceptive expres-

sions for a robot while interacting with people is necessary for this research.

4. What are the most e↵ective evaluation methods and metrics to test the research
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hypothesis?

After the computational models for generating robot deception are determined

and applied to robots, the algorithm must be tested to evaluate if it is truly working.

Furthermore, this dissertation aims to address the research hypothesis, which is that

robots’ deceptive behaviors can benefit deceived people in certain HRI contexts. The

hypothesis must be tested to determine whether it is correct according to the specific

developed deceptive behaviors for the robot. To answer these questions, it is required

to conduct well-designed HRI studies with human subjects as evaluation methods.

5. How should the ethical issues of robot deception be handled in HRI?

Even though robot deception can provide several advantages to humans, it is

arguable whether deceiving humans is morally acceptable in HRI. Therefore, this

ethical issues are also considered thoughtfully in this research.

1.2 Objectives

The main objective of this research is to prove the benefits of robot deception in

an appropriate human-robot interaction situation. By answering the primary and

subsidiary research questions, I aim to many scientific contributions are accomplished

as follows:

• A novel taxonomy of robot deception is defined based on significant literature

reviews on deception in a variety of fields, such as psychology, biology, military,

economics, and so on.

• A general computational model for a robot’s deceptive behaviors is developed

based on criminological law.

– An algorithm to generate a robot’s deceptive action is developed and im-

plemented.
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– An algorithm to select an appropriate deceptive action in specific situations

is developed and implemented.

• Appropriate HRI contexts in which a robot’s other-oriented deception can gen-

erate benefits are explored and determined.

• A methodology for evaluating a robot’s other-oriented deception in appropriate

HRI contexts is designed, and studies are conducted with human subjects.

• The ethical implications of robot deception are explored and thoughtfully dis-

cussed.

1.3 Dissertation Outline

Chapter 1 has outlined the main goal of this research, with its primary and subsidiary

research questions and contributions. In chapter 2, previous research on deception

in various fields, including psychology, biology, and robotics, is reviewed. By using

this information from other fields, a novel taxonomy of robot deception is created

and introduced in chapter 3. A general computational frameworks of a robot’s other-

oriented deception is then introduced in chapter 4, and evaluation methods and ex-

perimental results follow in chapter 5. It is also essential to discuss ethical issues

in robot deception research. Therefore, chapter 6 introduces the ethical implications

of robot deception based on survey results. Finally, chapter 7 presents concluding

remarks.
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CHAPTER II

RELATED WORK

In this chapter, literature related to deception in a variety of fields will be reviewed.

For a better understanding of deception, deception in animals and humans is first

reviewed, highlighting deception in biology (section 2.1) and psychology (section 2.2).

Previous work in robot deception follows in section 2.3. Using deceptive behaviors

obviously leads to ethical arguments, even in human cases. Therefore, a discussion

of ethical issues in robot deception is an essential part of this research. For this

consideration, moral theories and ethical approaches to deception are also reviewed

in section 2.4.

2.1 Animal Deception

Animals use various forms of misinformation. These deception mechanisms, achieved

by sending false signals either intentionally or unintentionally, are essential for the

(a) Teratodus Monticollis
grasshopper is mimicking a
leaf.1

(b) Killdeer is showing broken
wing broken wing act.2

(c) Chimpanzees produce com-
plex and intentional deceptive
behaviors.3

Figure 1: Examples of Animal Deception.

1
http://en.wikipedia.org/wiki/Camouflage

2
http://en.wikipedia.org/wiki/Distraction_display

3
http://en.wikipedia.org/wiki/Chimpanzee
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animals’ survival. For example, camouflage and mimicry are used by many species

(Figure 1(a)). By resembling other animal species or inanimate objects, animals

transmit misinformation to others so that they can avoid detection by both predators

and their prey. While camouflage or mimicry are examples of unknowingly deceiving,

a deceptive behavior can include seemingly more intentional misinformation.

More intentional deceptive behaviors are observed from di↵erent animals ranging

from insects to primates. The spider genus Portia, which preys primarily on other

spiders, deceives its prey by vibrating the web in ways that resemble a small insect

getting ensnared. When the resident spider of the web comes to investigate the

insects, Portia preys on it [183].

According to Ristau’s research [124], another interesting deceptive behavior ap-

pears in piping plovers. These birds exhibit a “broken-wing display” deceptive be-

havior. By feigning an injured wing and hopping farther and farther from the nest,

birds lead the predator away from their young, thus protecting them (Figure 1(b)).

Feigning death is another well-know form of animal deception. Mainly, animals

appear being dead to defend from predators since many animals only take prey that

are living [102, 113]. Besides the purpose of protection from predators, some animals

also use this form of deception to improve reproduction and predation. For example,

in the spider species Pisaura mirabilis, female spiders generally eat the male during

mating, and to avoid getting eaten, male spiders feign death [66]. The predatory

Nimbochromis fish lies down on the bottom sediments to appear as a dead fish and

then attract scavengers fishes [98].

Primates are the species most commonly ascribed with the ability to deceive

[31, 62]. For example, chimpanzees have multiple deceptive behaviors with several

di↵erent objectives (Figure 1(c)). When chimpanzees find fruit, they do not move

directly so that they do not give any indication to competitors that they have noticed

the location of the food. Deceptive behavior of chimpanzees is also observed during
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interactions with humans. According to one observation, a chimpanzee feigned having

his arm stuck in the bars of his cage in order to lure a zookeeper nearby. As soon

as the human entered to help free his arm, he leapt onto the zookeeper [40]. More

sophisticated examples have been also observed in great apes. A female gorilla has

been trained to use America Sign Language and at the end she could use the signs to

express her intentions. One day, she tore o↵ a steel sink and surprisingly she started

to lie to her handlers by signing “cat did it” and pointing at the cat [63].

Another relevant class of deceptive behavior occurs in the food-hoarding strate-

gies of animals. Food hoarding (caching) is an important type of animal behavior

needed for their survival through periods when nourishment is not readily available.

In particular, these caching behaviors are commonly observed in rodents, such as

hamsters or squirrels [75]. After hoarding the food, animals also patrol the caching

locations to protect their food. According to the biological findings, interesting de-

ceptive behaviors are also observed. In this patrolling strategy to protect their food

caches from other predators. Eastern Grey Squirrels’ behavior is one interesting ex-

ample in nature regarding the possible role of deception [155]. During the patrolling

phase, the squirrel spends time visiting stocked food caches. It was observed, how-

ever, that when a predator was present, the squirrel changed its patrolling behavior

to spend time visiting empty (fake) cache sites, with the apparent intent to mislead

the raider into the belief that those sources were where the valuables were located, a

diversionary tactic of sorts.

2.2 Human Deception

Human deception requires extensive planning and second-guessing compared to the

planning and deception that most animals are capable of. Many psychologists have

discussed human deception from various perspectives. According to Vasek [167],

the development of deception follows the development of other skills used in social
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understanding such as perspective-taking, communicational/linguistic skills, and un-

derstanding of one’s own and other’s intentionality. In other words, deception is one

of the good indicators of the human’s Theory of Mind mechanism. From this per-

spective, the capabilities of the deceptive behaviors have been also discussed for use

to determine children’s developmental disabilities such as autism [16].

One type of interesting human deception happens in sports. Work by Mawby and

Mitchell [96] showed several principles used in sports to enact or avoid deception. For

example, many players fake out opponents, thereby redirecting the opponents’ actions,

and teams also use complicated tactics of deception that require the coordinated

actions of several players. Another recent work has analyzed the anticipation skills

of deceptive movement in sports [73, 150, 56]. Based on the analysis results, they

attempted to predict an opponent’s correct direction quickly and exactly. Finally,

these kinds of research enable players to train using virtual agents, which have the

capability to anticipate. As a result, players can improve their deception skills in

rugby, soccer, and handball [21, 46, 170].

Sun Tzu stated in The Art of War [156], “All warfare is based on deception.” Ac-

tually, people have used deception in warfare to cloak their intentions and movements

[69, 99, 58]. In the military sense, the term “deception” is applicable to “any planned

measure undertaken for purposes of misleading or deceiving the enemy [134].” Dif-

ferent from other human deception, a deception “story” is an essential instrument

for executing a military deception. Here, “story” means a detailed scenario of “that

which you want the enemy to think in order to make him do what your comman-

der wants him to do [134].” Because the military utilizes relatively fixed scenarios

with histories of thinking and acting, military deception is feasible and frequently

implemented.

In animal cases, deception is defined as “a false communication that tends to ben-

efit the communicator [20].” In other words, animals usually act deceptively for their
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Figure 2: Fake bus stop in front of a German nursing home [72]

own benefits. An interesting aspect of human deception is that people also act decep-

tively for the benefit of the deceived party [85, 15, 9]. Inspired by those di↵erences,

DePaulo defined a taxonomy of human deception [45]. According to his research,

human deception can be mapped into two categorizes, which are self-oriented decep-

tion and other-oriented deception. People generally perform deceptive behaviors for

their own benefits, and this kind of deception is defined as self-oriented deception .

However, people also sometimes show deceptive behaviors for the deceived other’s ad-

vantages, this is classified as other-oriented deception . DePaulo’s study showed

that people generally perform more self-oriented deception than other-oriented decep-

tion in their everyday lives. However, people still generated other-oriented deception.

For example, the participant said his friend’s cookies are delicious even though he

didn’t think so to protect his friend from feeling bad, or simply to make his friend feel

good. This kind of other-oriented lies/deception happen in people’s everyday lives

[45].

Other-oriented deception happens frequently for medical purposes. For exam-

ple, the use of placebos is to benefit patients who are deceived by doctors/nurses in

medicine [100]. In front of a German nursing home, a fake bus stop is located to

deceive Alzheimer’s patients [72]. These patients sometimes wander o↵ and go to the

bus stop to go back home. By having this fake bus stop, those Alzheimer’s patients
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can be protected from risky situations (Figure 2). Sometimes, deception can bene-

fit patients by reducing fear and improving the results of healthcare. In one case, a

caregiver tried to deceive developmentally disabled adults who were afraid of bleeding

gums by giving them red-colored toothpaste. With this deception, the patients were

able to improve their dental condition since they would brush more than they did

before.

In a crisis, victims’ emotional state can seriously a↵ect their safety [179]. Also,

when victims’ cooperation is required during Search and Rescue tasks, managing

their emotions is important. For this reason, rescuers sometimes hide the truth of

the situation and act deceptively such as not describing the severity of injuries or the

situation to victims accurately [89].

We can also observe some other-oriented deception-related concepts in the edu-

cation domain. One interesting theory is the Pygmalion e↵ect [130]. According to

Robert Rosenthal and Lenore Jacobson’s study, students’ performance and learning

e�ciency can be increased when teachers have higher expectations for the students.

Therefore, when teachers deceptively show greater expectations the students may be

motivated to increase their learning e�ciency.

More generally, we can also observe many other-oriented deceptions for di↵erent

purposes in our everyday lives. Many people tell white lies for the deceived individ-

ual’s feelings or benefits. For example, people sometimes lie to a friend that “you look

so good” just to make the friend feel better. A surprise party can also be considered

an other-oriented deception since people hide the party information to maximize the

deceived person’s happiness. Magic or jokes also sometimes use deception techniques

for entertainment purposes.

Observing other-oriented deception in psychology is essential prerequisite work

in my research since I hypothesize that robots’ deceptive capabilities can benefit the

deceived human partners similar to these same capabilities in human cases. By deeply
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Figure 3: Situational Conditions for Other-oriented Deception with Examples

understanding the features and uses of other-oriented deception in human-human

interaction, I believe we can also find some clues and basis for the use of other-

oriented deception in human-robot interaction contexts. To understand humans’

other-oriented deception more specifically, I grouped relevant situations and defined

the situational conditions pertaining to the application and utility of their other-

oriented deception. From reviewing various situations when other-oriented deception

occurs between humans, I was able to group these situations along two dimensions:

1) the time duration of the deception and 2) the payo↵ of the deceived person (the

mark). The time dimension ranges from one-shot to short-term to long-term, referring

to the length of time deception is maintained by the deceiver’s actions. The deceived

person’s payo↵ is categorized by the e↵ect on the deceived person’s outcome (ranging

from high to low payo↵).

As shown in Figure 3, representative other-oriented examples in these dimensions
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are illustrated by their location in this two dimensional space. Situational conditions

include the following examples.

1. Crisis management is a situation where the deceiver’s deceptive behaviors or

lies must have a rapid e↵ect on the mark (short-term) perhaps in a life-threatening

high payo↵ situation. For example, other-oriented deception in a search-and-rescue

situation may involve immediate emotional or physiological remediation for a victim

[89]. Lying to a mark regarding the direness of their situation in order to calm him/her

down or to increase their confidence may increase their likelihood of survival in this

life critical situation.

2. When someone faces a highly stressful situation such as a big presentation in

front of huge crowd or an athletic trial, people sometimes lie to cheer up / increase

their confidence to let the speaker calm down in the short-term such as “Don’t worry!

You’re perfectly prepared” or “I know you can successfully do this.”

3. Quality of Life Management (QoLM) involves maintaining deception over long

periods of time, again for potential life-critical (health) situations in therapeutic treat-

ment of serious or generative illness, or regarding status of long-term economic well-

being. For example, placebos may be persistently used for a deceived patient’s long-

term benefit [100]. Long-term lying can also be used in a similar manner with the

hopes of benefitting the patient.

4. Sometimes, teachers also behave deceptively or lie for educational purposes,

perhaps playing dumb for example [130, 94]. This deception can increase the student’s

learning e�ciency, and it produces long-term benefits to the deceived person, although

the deceit may be either short or long-term.

5. One-Shot Casual Lies are common in general conversation [45]. Generally,

deceivers act deceptively or tell a lie to maintain the deceived other’s emotional

state for good. For example, general lies such as “you look nice today” or “I like

your clothes” are obvious examples of 1-shot casual lies. These are not life-critical
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situations. “That was a great presentation” can also be another such example.

6. Flattery also ranges from the short-term to long-term to make the deceived

other’s emotional state beneficial to their performance. Persistent flattery is an ex-

ample (e.g., “a**-kissing”) that makes the deceived person feel undeservedly better

about themselves for a relatively long-term period. In this long-term case, benefit

(payo↵) accrues for both the deceived person and the deceiver, but I focus for now

solely on the benefits to the mark.

7. People sometimes feign weakness to make marks feel better by helping deceivers

in short-term periods. The deceived person can maintain emotionally good state or

feel better and confident from this deception. For example, a woman might pretend

not to be able to open a jar just to make the man feel better and more confident

about himself.

8. One-shot Jokes or more persistent kidding using deception is also an example

of short-term lies, since they aim to maintain a good atmosphere of social commu-

nity by making the deceived person feel at ease perhaps by stating falsehoods about

themselves, others, or a situation in a humorous and non-truthful way.

9. Promotion of suspension of disbelief uses deception to provide the deceived

person with fun and enjoyment. For example, movies, magic, or other fictional works

use illusion to deceive others. This di↵ers from other examples of deception, since the

deceived others voluntarily allow themselves to be deceived.

10. A masquerade is characterized by deception that persists for extended periods

of time to create an illusion regarding something that does not exist, but may make

the mark feel better about themselves.

11. Sometimes, people hide distressing information or negative situations from

others, assuming they may be able to resolve it on their own without additional help

from the deceived person and so not induce anxiety in the deceived.
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In sum, we can observe many human cases of other-oriented deception as de-

scribed in this section, and the research in this dissertation also aims to develop a

robot’s other-oriented deception to benefit the deceived humans in an appropriate

HRI context similar to those other-oriented deception in human cases.

2.3 Robot Deception

Endowing robots with the capacity for deception has significant potential utility [176],

similar to its use in humans and animals. As stated in 2.2, deceptive behaviors are

useful in the military domain [69, 99]. Similar to human cases, military robots’ capable

of deception could mislead opponents in a variety of ways. As both individual and

teams of robots become prevalent in the military’s future [164, 134], robotic deception

can provide new advantages apart from the traditional one of force multiplication.

In other areas, such as search and rescue or healthcare, deceptive robots might also

add value similar to human cases, for example, for calming victims or patients when

required for their own protection. Conceivably, even in the field of educational robots,

the deceptive behavior of a robot teacher may potentially play a role in improving

human learning e�ciency. Despite the ubiquity in nature and the potential benefits

of deception, very few studies have been done on robot deception to date.

One interesting application in robot deception is the camouflage robot, developed

at Harvard University [103]. Camouflage is a widely used deception mechanism in

animals and militaries. Inspired by these real-world usages, the researchers at Harvard

developed this soft robot, which can automatically change the color of body to match

its environment.

Motion camouflage has also been studied for robot systems. Unlike the previous

type of camouflage, motion camouflage is a behavioral deception capability observed

in dragonflies. By following indirect trajectories, dragonflies can deceptively approach

as if they were remaining stationary from the perspective of the prey. Carey et

16



al. developed an optimal control mechanism to generate these motion camouflage

trajectories and verified it with simulation results [27]. For real robot systems, more

recent research proposed new motion camouflage techniques that are applicable to

unicycle robots [120].

Floreano’s research group [55] demonstrated robots evolving deceptive strategies

in an evolutionary manner, learning to protect energy sources. Their work illustrated

the ties between biology, evolution, and signal communication and does so on a robotic

platform. They showed that cooperative communication evolves when robot colonies

consist of genetically similar individuals. In contrast, when the robot colonies were

dissimilar, some of the robots evolved deceptive communication signals.

Wagner and Arkin [176] used interdependence theory and game theory to develop

algorithms that allow a robot to determine both when and how it should deceive

others. Recent work at Georgia Tech explored the role of deception according to

Grafen’s dishonesty model [77] in the context of bird mobbing behavior [38]. Another

study developed robots’ deceptive behavior inspired by squirrel’s deceptive food pro-

tection behaviors and showed how a robot successfully uses this deception algorithm

for resource protection [139].

By increasing the use of robots in human life, the development of social robots

is also getting more important. Many techniques for better HRI has been developed

such as emotional intelligence [114, 23, 11], collaborating between robots and humans

[135, 132, 53], social learning [8, 32], turn-taking and engaging mechanisms [107, 29],

assistive technologies [110], and so on. In addition, many researchers aim to build

more socially-intelligent robots that feature intentionality. Here, intentionality means

“the power of minds to be about, to represent, or to stand for, things, properties and

states of a↵airs. [44]” Therefore, by having intentionality, robots can interact with

human partners more naturally and e↵ectively. According to Dennett [44], a high-

order intentionality can be achieved by adding several di↵erent features, notably
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deception capability. In addition, deception is highly related to the theory of mind

model since it requires to anticipate and manipulate other’s actions [19]. In sum,

we can argue that more intentional and autonomous social robots are possible when

deception capabilities are added.

Based on this argument, much research on robot deception has also been proposed

in HRI contexts. Terada and Ito [160] demonstrated that a robot is able to deceive a

human by producing a deceptive behavior contrary to the human subject’s prediction.

These results illustrated that an unexpected change of the robot’s behavior gave rise

to an impression in the human of being deceived by the robot.

Other research shows that robots’ deceptive behavior can increase users’ engage-

ment in robotic game domains. Work at Yale University [146] illustrated increased

engagement with a cheating robot in the context of a rock-paper-scissors game. They

proved greater attributions of mental state to the robot by the human players when

participants played against the cheating robots than the true robots. At Carnegie

Mellon University [169] a study showed an increase of users’ engagement and enjoy-

ment in a multi-player robotic game in the presence of a deceptive robot referee. By

declaring false information to game players about how much players win or lose, they

observed whether this behavior a↵ects a human’s general motivation and interest

based on frequency of winning, duration of playing, and so on. These results indicate

that deceptive behaviors are potentially beneficial not only in the military domain

but also in a human’s everyday context.

Brewer et al. showed that deception can be used in a robotic physical therapy

system [24]. By giving deceptive visual feedback on the amount of force patients cur-

rently exert, patients can perceive the amount of force lower than the actual amount.

As a result, patients can add additional force and get benefits during rehabilitation.
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Research from the University of Tsukuba [94] showed that a deceptive robot part-

ner can improve the learning e�ciency of children. In this study, the children partici-

pated in a learning game with a robot partner, which pretends to learn from children.

In other words, the robot partner in this study is a care-receiving robot, which enables

children to learn by teaching [158]. The goal of this learning game is for kids to draw

the shape of corresponding English words such as circle, square, and so on. The inter-

esting part is that the robot acted as an instructor, but deliberately made mistakes

and behaved as if it did not know the answer. According to the results, by showing

these unknowing/unsure behaviors, the learning e�ciency of the children was signifi-

cantly increased. Since robots’ unsure/dumb behaviors can a↵ect a human’s learning

e�ciency, I assume that these results relate to a robot’s deceptive capabilities. As

a result, I can conclude that this study provides preliminary results of the positive

e↵ects of robots’ deceptive behavior in education contexts.

Westlund and Breazeal introduced an interesting research hypothesis based on

their preliminary HRI study in child-robot interaction [178]. While experimenters

remotely controlled the robot, they deceptively told the children that the robot was

autonomously acting and also controlled to appear as an autonomous agent. The

preliminary results led to the hypothesis that children stick to the robot more and

disclose their secrets to the robot agents more than to their parents or teachers.

Recently, researchers examined a robot’s deceptive goal-directed motion using user

studies [48]. By analyzing the results, they presented human strategies/reactions to

robot deception, mathematical models for deceptive motion generation, and other

implications of robot deception.

Nowadays, robots are broadly used as companions or care partners in elder care or

childcare [157, 174]. And sometimes, the elderly or children are deceived into thinking

that the robots are social being or real pets. Some researchers argue that this is also

a form of deception since the robots pretend to be some other entity [35, 95]. In fact,
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(a) KASPAR robot4 (b) Probo robot5

(c) Pleo robot6 (d) Paro robot7

Figure 4: Examples of Robot Deception.

several case studies illustrated that children perceived care robots as emotional and

social beings like humans. Tanaka introduced a Qrio robot as a peer to children in

his long-term study, and the children believed that the robot was a social being [157].

Other social robots such as Kaspar (Figure 4(a)) [125], Probo huggable robot (Figure

4(b)) [61, 147], or Pleo robot (Figure 4(c)) [81] were also introduced to children,

including children with special needs, as if they are peers or pets rather than robots.

The healthcare robot Paro (Figure 4(d)) is also positively used in the care of dementia

patients by introducing it as a real pet [173, 174].

4
http://www.herts.ac.uk/kaspar/

5
http://http://probo.vub.ac.be/

6
https://en.wikipedia.org/wiki/Pleo

7
https://en.wikipedia.org/wiki/Paro_(robot)
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2.4 Ethical Theory

Despite the potential benefits of robot deception, relatively little research has been

conducted to date on this topic, perhaps as a result of ethical considerations involving

this somewhat controversial topic. Therefore, as stated in the subsidiary research

questions, reviewing and arguing ethical issues are essential in this research.

Robot ethics is a rapidly expanding area [136, 51]. Especially, many ethical ques-

tions can arise when deception is applied to the robotic system [87, 177]. For example,

we can face ethical questions such as “Is deception acceptable even in humans?” or

“Should a robot be allowed to lie?” Furthermore, since deception is relate to trust

[65], the discussion of deception is getting more important.

To discuss ethical issues of robot deception, it is necessary to review the fundamen-

tal moral theories of deception in philosophy. According to Kantian theory, deception

or lies should always be prohibited, a standard outcome of any ethics classroom in

the application of the Categorical Imperative [34]. By this standard, any deceptive

behaviors or lies are morally incorrect, human or robot. The utilitarian perspective,

on the other hand, argues that an action is morally right and acceptable if it leads to

increasing total happiness over all relevant stakeholders [149]. By this perspective, it

can also be argued that if deception increases the total benefits among the involved

relationships, it is ethically correct [149, 34]. More specifically, Bentham and Mill

[148] argued that it is morally right if and only if any behaviors/acts produce overall

increased happiness. In other words, an action is morally good if it provides overall

benefits. This ethical theory is called act-utilitarianism.

Related to robot deception, Reynolds and Ishikawa [122] discussed the role of

designers and robots and emphasized the importance of morally responsible entities.

Arkin [13] also pointed how important it is in discussing the ethical justification of

robot deception.

In a↵ective computing, researchers have argued that the use of emotional robots
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is deceptive. According to Coeckelbergh, emotional robots are deceptive since “1.

Emotional robots intend to deceive with their “emotions.” 2. Robotic emotions are

unreal. 3. emotional robots pretend to be a kind of entity they are not. [35]” For

example, when such robots are used in elder care, peoples are led to believe that

they are loved or cared for by the robots, and according to the definition, this can

be a case of delusion [154]. Finally, by reformulating these three claims of emotional

robot deception to ethical criteria, he argued that the situation can also be considered

“ideal emotional communication” rather than deception.

More recently, Mattihias suggested four criteria for robot deception [95]. He ar-

gued that by fulfilling four conditions, robot deception can be morally permissible.

These four criteria are trust, autonomy, transparency, and safety. First, robot de-

ception should not betray patients’ trust by promoting patients’ interests. Also,

deception should support patients’ autonomy by supporting them to make decisions

and control the machines better. To be transparent to the patients, the fact that de-

ception is happening should be suggested at some point in the conversational context.

Finally and most importantly, deception should not lead to any harm to the patients.

There is also an HRI study related to the human moral stance and robot deception.

In Kahn’s HRI study [79], subjects were asked to play a game, and a humanoid robot

guided and observed their performance. After completing the game, a robot debriefed

the subjects but announced their achievement deceptively as being lower, and here,

researchers observed that many people held the robot morally accountable.

Researchers also sometimes argue ethics of robot deception based on situations.

Nijholt identified the potential situations or contexts in which artificial human part-

ners will be deceptive (or not honest) by analyzing human-human cases [108]. He

proposed four categories of situations in which natural deceptive interactions will be

used or required in human-robot or human-computer interactions. These four cate-

gories are 1) conversations and dialogues; 2) commerce, negotiation, persuasion; 3)
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teaching, training, serious games; and 4) sports, games, and entertainment. There are

also several ethical arguments about robot deception in di↵erent contexts, including

economics and law [68], healthcare [95], and so on.

The main purpose of this discretion is not to resolve this ethical argument of robot

deception entirely. Practically, in robotics, it is even more complicated to state the

ethical issues related to deception than in human cases. However, it is obvious that

this issue should be carefully and thoughtfully considered while robot deception is

developed and applied [10], and therefore, it will be an integral part of my research

and discussed further in chapter 6.
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CHAPTER III

A TAXONOMY OF ROBOT DECEPTION

This dissertation argues that the use of deceptive capabilities in robotics features

many potential benefits. As shown in the literature review, some robotics research

has been proposed and developed related to robot deception, and this topic is becom-

ing an important and interesting research question. However, much of the current

research on robot deception focuses on applications and not on fundamental theory

such as the delineation of a taxonomy for robot deception. I contend that defining

robot deception and establishing a taxonomy are important as a foundation for fur-

ther robotics research on the subject, and herein such a taxonomy is defined. To

accomplish this goal, di↵erent ways of defining deception from the di↵erent fields

are first carefully review (Section 3.1) . Based on the literature reviews, I propose

a novel way to define a taxonomy for robot deception (Section 3.2). To show how

this taxonomy exactly applies for a specific application, one of my previous works on

robot deception is introduced and it is classified according to my taxonomy of robot

deception as an example (Section 3.3).

3.1 Taxonomies of Deception from a Human Perspective

In other disciplines, researchers have developed the definitions and taxonomies of

deception drawing from the fields of psychology, military, engineering, and so on. In

this section, several ways to define and categorize deception in di↵erent fields are

reviewed followed by a suggested taxonomy of deception from a robotic perspective.

Several definitions of deception have been proposed in di↵erent fields. According

to Vrij [172], deception is “A successful or unsuccessful deliberate attempt, without

forewarning, to create in another a belief that the communicator considers to be
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Table 1: Taxonomies of Deception in the Fields of Philosophy, Psychology, and Eco-
nomics

Field Method Taxonomy

(a)
Philosophy

Logical and
philosophical

view points with
a proposition

Omission (O) Commission(C)

Intended

(I)

Pos (P) O-P-I C-P-I
Neg (N) O-N-I C-N-I

Unintended

(U)

Pos (P) O-P-U C-P-U
Neg (N) O-N-U C-N-U

(b)
Psychology

Analysis results
of diary studies
and surveys

(c)
Economics

Deceiver’s and
mark’s

consequences

This chart is reproduced with permission from [54]’s
Figure 1. Taxonomy of Lies on Change in Payo↵.

25



untrue in order to increase the communicators’ payo↵ at the expense of the other

side.” De Waal stated that “Deception can be defined as the projection, to one’s own

advantage, of an inaccurate or false image of knowledge, intentions, or motivations”

in the paper [40]. We can find a simpler definition of deceptive behavior from a paper

by Bond and Robinson [20] who defined it as “a false communication that tends to

benefit the communicator.”

Taxonomies of deception have been studied extensively by observing di↵erent hu-

man cases. Several ways to categorize deception have been proposed already by

di↵erent psychologists and philosophers. Chisholm and Freehan [33] categorized de-

ception from a logical and philosophical viewpoint. Three dimensions were described

for distinguishing among types of deception such as commission-omission (the atti-

tude of the deceiver; the deceiver “contributes causally toward” the mark’s changes

or the deceiver “allows” the mark’s changes with respect to belief states), positive-

negative (the belief state of the mark; the deceiver makes the mark believe that false

proposition is true vs. true proposition is false), and intended-unintended (whether

the deceiver changes the mark’s belief state or merely sustains it). From the combi-

nation of those three dimensions, they provided eight categories of human deception

as shown in Table 1(a).

From the results of diary studies and surveys, DePaulo [45] divides deception in

four di↵erent ways: content, type, referent, and reasons (Table 1(b)). Subcategories

of these kinds of deception are also observed and defined. Subcategories of content are

feelings, achievements, actions, explanations, and facts. In the category of reasons,

there are subcategories of self-oriented and other-oriented deception. Self-oriented

deception is used for the deceiver’s own advantages. Conversely, other-oriented de-

ception is motivated by the benefits that accrue to the person who is being deceived.

In type category, outright, exaggerations, and subtle were defined as subcategories.

Also, four di↵erent referents were suggested such as liar, target, other person, and
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Table 2: Taxonomies of Deception in the Fields of Military, Cyberspace, and Biology

Field Method Taxonomy

(a)
Military

Representing
deception

• Dissimulation

• Masking: hiding in background

• Repacking: hiding as something else

• Dazzling: hiding by confusion

• Simulation

• Mimicking: deceiving by imitation

• Inventing: displaying a di↵erent reality

• Decoying: diverting attention

(b)
Cyberspace

Semantic cases
(Linguistic case

theory)

Space
Direction, location-at, loc-from, loc-to, loc-
through, orientation

Time
Frequency, time-at, time-from, time-to, time-
through

Participant
Agent, beneficiary, experiences, instrument,
object, recipient

Causality Cause, contradiction, e↵ect, purpose

Quality
Accompaniment, content, manner, material,
measure, order, value

Essence Super type, whole
Speech-act External precondition, internal precondition

(c)
Biology

Cognitive
complexity

Intentional vs. Unintentional Deception

object/event.

Erat and Gneezy [54] classified four types of deception based on their conse-

quences: selfish black lies, spite black lies, pareto white lies, and altruistic white lies,

and evaluated it using the human-subjected experiment. For example, as shown in

Table 1(c), deception that increases both the deceiver’s and mark’s (the deceived per-

son’s) benefits is classified as “pareto white lies.” However, if deception only increases

the mark’s payo↵s but decreases the deceiver’s payo↵s, it is known as “altruistic white

lies.” Conversely, “selfish black lies” and “spite black lies” tend to decrease the mark’s

payo↵s while it is distinguished by the deceiver’s positive or negative payo↵s.
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The military is one of the biggest contexts for the use of deceptive behavior.

Dunnigan and Nofi [49] proposed a taxonomy of deception based on ways to gener-

ate deceptive behaviors. Whaley [180, 18] suggested six categories of deception and

grouped them into two sets (Table 2(a)). The six categories of deception are mask-

ing, repackaging, dazzling, mimicking, inventing, and decoying. These categories are

grouped into dissimulation and simulation. The first three, masking, repacking and

dazzling, are categorized as dissimulation (the concealment of truth) and the others

are in the simulation category (the exhibition of false).

In cyberspace, deception happens frequently and a taxonomy of deception has

been proposed by Rowe et al. [131] for this domain. They defined seven categories of

cyberspace deception based on linguistic case theory, including: space, time, partici-

pant, causality, quality, essence, and speech-act. By exploring subcategories on each

case, they proposed 32 types for a taxonomy of cyberspace deception (Table 2(b)).

Many deceptive behaviors are also observed in nonhuman cases. Animal decep-

tion can be categorized depending on its cognitive complexity [43], specifically the

two categories of unintentional and intentional animal deception (Table 2(c)). Unin-

tentional animal deception includes mimicry and camouflage. In contrast, intentional

deception requires more sophisticated behavioral capacities such as broken-wing dis-

plays or in many non-human primate examples such as chimpanzee communication

[39].

Recently, researchers in human-computer interaction (HCI) defined the notion

of benevolent deception, which aims to benefit not only the developers but also the

users [5]. They have not proposed a taxonomy of deception, but provided new design

principles regarding deception in HCI.
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Table 3: Three Dimensions for Robot Deception Taxonomy

Dimensions Categories Specifications

Interaction
Object

Robot-human deception (H) Robot deceives human partners

Robot-nonhuman deception
(N)

Robot deceives nonhuman objects such as
other robots, animals, and so on.

Interaction
Goal

Self-oriented deception (S) Deception for robot’s own benefit

Other-oriented deception (O) Deception for the deceived other’s benefit

Interaction
Type

Physical/ unintentional
deception (P)

Deception through robot’s embodiments,
low cognitive / behavioral complexity

Behavioral/ intentional
deception (B)

Deception through robot’s mental repre-
sentations and behaviors, higher cognitive
complexity

3.2 A Taxonomy of Robot Deception

Based on the reviews of the definitions and taxonomies in other disciplines, I developed

a taxonomy of robot deception [140]. Similar to human and animal deception, robot

deception happens during the interactions among robots or between humans and

robots. Therefore, analyzing these “interactions” can identify the key factors to

categorize robot deception. Similar to Chisholm and Freehan’s approach [33], the

salient dimensions of robot deception are first specified, and then the taxonomy of

robot deception is defined based on these characteristics.

The three dimensions of robotic deception from the aspect of interactions are

interaction object, interaction goal, and interaction method (Table 3).

1. Interaction Object: The interaction object indicates with whom the robot inter-

acts and tries to deceive. In this category, robot deception can be classified into

deception in robot-human interactions and in robot-nonhuman interactions.

2. Interaction Goal: This approach is similar to the distinctions of DePaulo’s

taxonomy, especially his “reason” category [45]. In other words, robot deception
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is categorized based on the reason why a robot tries to deceive others: self-

oriented deception or other-oriented deception. Self-oriented deception means

that a robot’s deceptive behaviors benefit the robot itself. In contrast, other-

oriented deception happens when the goal of robot deception is to give the

advantage to the deceived robots or human partners.

3. Interaction Method: This dimension refers to the way the robot generates de-

ception and it is similar to the taxonomy of animal deception: intentional and

unintentional deception. It includes embodiment/physical deception and men-

tal/behavioral deception. Embodiment/physical deception indicates robot de-

ception from morphologies such as camouflage robots. In mental/behavioral

deception, a robot generates more intentional deceptive behaviors and repre-

sents these behaviors using several cues, which are already included in each

robot system.

As a result, I provide three dimensions for distinguishing among the types of de-

ception such as human/nonhuman, self-oriented/other-oriented, physical/behavioral.

From the combinations of those three dimensions, a taxonomy of robot deception is

defined as shown in Table 4. Each type consists of combination of three characteris-

tics, leading to eight di↵erent types of robot deception. As shown in this table, N-S-P

and N-O-P types do not have specific examples in robot contexts yet. Therefore,

these two types can be excluded in this definition of taxonomies for now. In other

words, based on the characteristics of interactions in current robot deception systems,

six di↵erent usable types of robot deception are defined in the taxonomy. However,

there always exist possibilities that those types of robot deception are developed in

the future work.

The table also includes examples of each type of robot deception. The camouflage
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Table 4: Robot Deception Taxonomy with Examples.

Taxonomy Definition Examples

H-S-P
Deceiving human for deceiver
robot’s own benefit using physical
interactions

Camouflage robots - DARPA’s soft
robot [103]

N-S-P
Deceiving other robot or nonhuman
for deceiver robot’s own benefit us-
ing physical interactions

N/A

H-O-P
Deceiving human for deceived hu-
man’s benefit using physical inter-
actions

Android Robots

N-O-P
Deceiving other robot or nonhuman
for deceived other’s benefit using
physical interactions

N/A

H-S-B
Deceiving humans for deceiver
robot’s own benefit using behav-
ioral interactions

Robot deception in HRI [160]

N-S-B
Deceiving other robots or nonhu-
mans for deceiver robot’s self ben-
efit using behavioral interactions

Mobbing robot [38], Robot
deception using interdependence
theory [176], Squirrel-like robot

deception [139]

H-O-B
Deceiving humans for deceived hu-
man’s benefit using behavioral in-
teractions

Robot deception in entertainment
[146], Deceptive robot learner [94],

Robot referees in game [169]

N-O-B

Deceiving other robots or nonhu-
mans for deceived other’s benefit
using behavioral interactions

Robot Sheepdog [168],
RoboSquirrel [78]
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robot change its color to hide from human’s observation. According to my categoriza-

tion, it can be analyzed that the robot tries to deceive human partners (H) to get its

own benefit (S) by transforming its physical appearance (P). Finally, I can classify its

category as H-S-P in my taxonomy. Many deceptive robot behaviors that have been

developed for the military purposes can be categorized in N-S-B or H-S-B since those

robots aim to deceive human or robot opponents by changing behavior patterns (e.g.,

misleading directions) for producing own benefits [38, 139]. One interesting category

is N-O-B. Here, robots deceive other robots or non-human objects to benefit the de-

ceived other’s benefits. As shown in the example, the robot sheepdog tries to deceive

animals to believe it is an intentional dog or human using it behaviors [168]. There-

fore, we can categorize it as N-O-B type. Similar to the robot sheepdog, robosquirrel

also tries to deceive rattlesnakes using its behaviors [78]. By modeling the squirrel’s

behaviors to the mobile robot, it deceives rattlesnakes to believe this robot as a prey,

and finally, rattlesnake behaviors can be observed for long-term studies.

Among these robot deception types, my research question is obviously related to

H-O-B type, since it is aimed to find whether human can get any benefits from a

robot’s deceptive behaviors. Again, the H-O-B type is specified as a robot’s decep-

tive behaviors to deceive a human partner for the deceived human’s advantages. In

sum, the research in this dissertation will find out how this type of deception can be

applied to a robotic system and whether H-O-B robot deception is truly beneficial

and applicable in appropriate HRI contexts.

3.3 Robot Deception: A case study

A taxonomy for robot deception was presented above by defining salient dimensions

and categories. In this subsection, my previous research on robot deception is pre-

sented as an example and it is explained how my taxonomy fits to this specific work.

In my previous research [139], a robot’s deceptive behavior for resource protecting
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Figure 5: Black Eastern Gray Squirrel moving peanuts
source by: https://en.wikipedia.org/wiki/File:Eastern_Grey_Squirrel-black.jpg

strategies, which is potentially applicable in military context and inspired by biology,

was developed and evaluated.

3.3.1 Biological Findings

The patrolling strategy used by Eastern Grey Squirrels (Figure 5) is one interesting

example in nature regarding the possible role of deception [155], where they use

deception to protect their food caches from other predators. After hoarding food

items, squirrels begin to protect their resources from pilfering by patrolling the caches.

As the patrolling strategy, squirrels first move around the caching areas and check

whether the cached food items are safe (Figure 6(a)). It was observed, however, that

when a predator is present, the squirrel changes its patrolling behavior to spend time

visiting empty cache sites, with the apparent intent to mislead the raider into the

belief that those sources are where the valuables are located, a diversionary tactic of

sorts (Figure 6(b)).

3.3.2 Computational Model and Implementation

Inspired by these deceptive behaviors of squirrels, a bio-inspired behavior-based model

[12] of squirrel caching and protecting behaviors for application to robotic systems is

developed and implemented in MissionLab, a mission specification software package

developed by the Mobile Robotics laboratory at Georgia Tech [92]. MissionLab pro-

vides a graphical user interface that enables users to easily specify behavioral states
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(a) True Patrolling (b) Deceptive Patrolling

Figure 6: Squirrel’s Cache Protection Strategy

and the control transitions between states, yielding a finite state acceptor (FSA),

which can then be compiled down to executable code for both simulations and robots

[91]. Each behavior component is an assemblage, a coordinated aggregation of primi-

tive behaviors. The new caching and patrolling behaviors created are combined with

pre-existing behaviors, such as avoiding obstacles, moving toward an object, or in-

jecting randomness (noise). Simulation studies and real robot experiments were also

performed to validate the algorithm.

Figure 7(a) illustrates the high-level model of robot behaviors using a finite state

acceptor (FSA). It starts from the caching behavior, but if any of the caching lo-

cation is enough by the food items, it transitions to the patrolling strategy. In the

patrolling strategy, if the competitor robot is nearby, the squirrel robot performs the

deceptive patrolling strategy. Otherwise, the true patrolling strategy is procedure.

Figure 7(b) and 7(c) illustrate the caching and the true/deceptive patrolling sub-

strategies briefly. In the following subsections, each strategy will be explained with

more implementation details.

3.3.2.1 True Patrolling Strategy

The robot’s patrolling behaviors are developed and implemented in MissionLab. To

implement the patrolling behaviors between the caching locations, goal-oriented move-

ment, selecting places, and waiting behavior are used.
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(a) High-level FSA: caching behaviors of squirrels

(b) sub-FSA: Caching

(c) sub-FSA: Food patrolling

Figure 7: Abstract level of Finite State Acceptors for squirrel robot’s behaviors
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Figure 8: Finite State Acceptors for squirrel robot’s patrolling strategy in MissionLab
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Initially, the robot employs the true patrolling strategy by selecting one of the true

patrolling locations. To select the patrolling location, the trigger calculates which of

the many caching locations the robot should patrol. The calculation results in a

random cache selection based on the transition probabilities among the places. The

probabilistic transition model is used to determine the caching location. In patrolling,

the transition probabilities are first determined by the number of previously cached

items. In other words, if a place has more items, the probability that a robot will

visit that location is higher. Therefore, the transition probabilities are calculated by

the following equation:

Pij =
#itemsjX

1kn,k 6=j

#itemsk

Here, Pij is the transition probability that indicates that the location j is selected

as the next patrol location when the current location is in location i. n is the total

number of locations and #itemx indicates the number of food items in location x.

The next patrol state is determined based on these transition probabilities. When

the squirrel robot reaches a cache, it calculates the transition probabilities to other

patrolling locations and decides on one of the transitions using a weighted roulette

algorithm [71] (details can be found in Appendix). When a robot arrives the cache, it

remains there for a finite amount of time similar to the patrolling behavior of an actual

squirrel. In the true patrolling strategy, the time spent at the cache is determined by

the number of food items in that place. At the end of the waiting phase, the robot

selects the next patrolling location using the probability transition model discussed

above and heads o↵ to the next patrolling state.

Figure 8 illustrates the MissionLab FSA implementation of the squirrel robot’s

patrolling strategy. This FSA was implemented for the real robot experiments. Due

to the limitations of lab space, I used two true caching locations and three deceptive

caching locations. Therefore, in the true patrolling part, the robot moves back and
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forth between two locations. When the robot detects the competitor robot, which

has an orange marking, it transitions to the deceptive patrolling strategy. Here, I

set three deceptive locations, and the transitions among these three locations are

determined by the transition probabilities model that were explained above. Further

details of deceptive patrolling strategy will be discussed in the next section.

3.3.2.2 Deceptive Patrolling Strategy

When the squirrel robot detects the presence of a competitor, deceptive behavior is

triggered and the squirrel robot patrols the false (empty) caching locations to attempt

to deceive the competitor. All objects and robot agents are marked by specific colors.

Therefore, in our implementation, the deceptive patrolling strategy is activated by

the DetectColorBlob trigger. In the deceptive patrolling strategy, the squirrel robot

moves to and stays among the di↵erent deceptive caching locations. These locations

actually include no food items, and the squirrel robot tries to mislead the competitor

robot by visiting these false places. Again, the selection of deceptive locations is also

calculated by transition probabilities. Here, the transition probabilities among the

false locations are set as uniform distributions. In other words, the probabilities of

each location are distributed equally.

As shown in Figure 8’s deceptive patrolling part, the squirrel robot selects one

deceptive caching location among several places based on transition probabilities.

When the squirrel robot arrives in the deceptive caching location, it stays there for

a while (time to stay is empirically set) to show the deceptive patrolling behavior to

the competitor. After patrolling, it again determines the next deceptive patrolling

location and repeats the patrolling behaviors. When the competitor robot is no longer

detected in the vision of the squirrel robot, the end of deception trigger is activated

and it returns to the true patrolling strategy.
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Figure 9: Robot Experiment Layout

Figure 10: Robot Platform: Pioneer robot with omni-directional camera

3.3.3 Experimental Results

This is a form of misdirection, where communication is done implicitly through a

behavioral change by the deceiver. This strategy was implemented in simulation

[139], and showed that these deceptive behaviors worked e↵ectively, enabling robots

to perform better using deception than without with respect to delaying the time of

the discovery of the cache (see Appendix for more details). The real robot experiment

was also performed using the experimental layout in Figure 9.

Two pioneer robots were used for the robot experiment: one as a squirrel robot

and the other played the role of a competitor robot (Figure 10). The robots used an

additional camera sensor for detecting another robot and the caching locations. The

external omni-directional camera enabled the squirrel robot to observe 360 views of
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(a) True Patrolling: GoTo Cache 1 ! Patrol Cache 2 ! GoTo Cache 2

(b) Competitor Detecting: Competitor Approaching ! Detect Competitor ! Change Behavior

(c) Deceptive Patrolling: Start Deceptive Behavior ! GoTo Empty Cache ! Patrol Empty Cache

Figure 11: Robot Experiment Scenario

the scene. Kumotek Robotics’ omni-directional sensor was used with a Chameleon

CCD camera1.

Figure 11 illustrates the scenario of our robot experiment. During the experi-

ment, the squirrel robot patrolled true caching locations to observe the resources.

Since there were two caching locations in this simple scenario, the squirrel robot con-

ducted back-and-forth movements in this states (Figure 11(a)). Next, the competitor

robot started to wander around the area. At the end of scenario, the squirrel robot

detected the competitor (Figure 11(b)), where it changed its true patrolling behaviors

to deceptive patrolling behaviors. The squirrel robot started to move to the empty

caching locations, and repeated these behaviors until the competitor robots left the

area (Figure 11(c)).

To test the performance of the deception algorithm, it was measured how often

the squirrel robot successfully deceived the competitor robot in this scenario. In the

1Omni-directional Sensor: Kumotek’s VS-C450MR-TK model http://www.kumotek.com/

Chameleon CCD camera from Point Grey: http://www.ptgrey.com/products/chameleon/
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experiment, the squirrel robot and the competitor robot ran based on their FSA and

behaviors as explained above. The competitor robot was declared to have successfully

pilfered the cached items if it found the true caching locations within the specific

time period, t. This experiment time t is one of the independent variables and it

ranged from one to ten minutes. Each trial ran the experiment five times and it was

observed how many times the competitor robot successfully pilfers the true locations

for all 5 runs. Thus, the maximum successful pilfering can be five in each case. The

experiments were performed under two di↵erent conditions; the squirrel robot with

deceptive capabilities and the squirrel robot without deceptive capabilities (another

independent variable).

As the time allowed increases, the number of successful pilferages also increases

and converges to the maximum pilferage number, five. Based on this convergence

rate, the performance of the algorithm can be evaluated. Faster convergence to the

maximum pilferage number indicates that the algorithm enables the competitor robot

to find the true caching locations more easily and more rapidly. In other words, slower

convergence rates illustrate that the squirrel robot can protect resources longer and

better.

To determine the convergence rate, the experimental results are plotted as shown

in Table 5. By observing the plot, the estimation graph of each result can be for-

mulated with the following equation, y = ↵ + � · ecx. This function is calculated

using a non-linear least-squared regression method. The graphs in Table 5 show the

results from the experimental data and their estimation functions. The green lines

show the original experimental results, which are the number of successful pilferages

(out of five) for each time period, t. The red lines indicate the regression functions

for convergence.

In the exponential function, y = ↵+ � · ecx, the convergence rate depends on the

exponentiation, parameter c. Simply, 1/c can determine the rate of convergence and
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Table 5: Robot Experiment Results with Convergence Rate

With Deception Without Deception

Result
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Estimated
Equation.

y = 5� 12.86e�0.9x
y = 5� 8.06e�0.45x

Convergence
Rate

-2.2188 -1.1035

a larger value of the convergence rate indicates a faster convergence speed. As shown

in the results from Table 5, the convergence rate of the “with deception” condition

is -2.2188, which is smaller than the convergence rate under the “without deception”

condition (-1.1036). Thus, it was observed that the squirrel robot using deception

could protect the true caching locations longer than without deception capabilities.

Therefore, it can be concluded that the deception algorithm leads to a robot’s better

resource protection performance.

3.3.4 Robot Deception Taxonomy

This previous research focuses on deceptive behaviors of robots in the military domain,

where robots may hide and protect resources from other autonomous agents. The

main purpose of this subsection is illustrating how robot deception taxonomy can be

used with a real example. Obviously, this squirrel-like deception capability for a robot

can be categorized in terms of my taxonomy. First, the object that a robot tries to

deceive is other competitor robot, which means nonhuman objects (N). The deception

happens through the robot’s behaviors by intentionally misleading the competitor

robot (B). In deception goal dimension, the benefits of this deception capability are
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protecting the deceiver’s resources longer, so the squirrel robot obtains advantage:

i.e., self-oriented deception (S). As a result, this squirrel robot deception is classified

as N-S-B type in our taxonomy.

3.4 Summary

Deception is one of the capabilities that is needed to achieve higher-order intention-

ality. Therefore, deceptive capabilities are desired to add to robot systems, especially

focusing on social robots. However, there is a lack of studies on fundamental theory,

such as the definition of a taxonomy for robot deception. As a preliminary work,

previous research on deception was reviewed, and a novel taxonomy for classification

of robot deception was developed in my research. Also, by presenting my previous

squirrel-like robot deception work, it was illustrated how this taxonomy can clearly

apply for the real work example.

Again, among di↵erent robot deception types, this dissertation’s research question

is focusing on to H-O-B and H-O-P types, since the purpose of this research is to find

whether human can get any benefits from a robot’s deceptive behaviors. Especially,

it is essential for social robots to perform the deceptive behaviors only when the

deceived humans’ benefits are expected. In other words, the goal of deception should

be a key factor developing robot deception in HRI contexts. In sum, this research

aims to determine how other-oriented deception can be applied to a robotic system

and whether it is truly beneficial and applicable in appropriate HRI contexts.
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CHAPTER IV

COMPUTATIONAL ARCHITECTURE

In the previous two chapters, basic knowledge related to deception and developed

fundamental theories for my robot deception work was presented. From the literature

reviews in chapter 2, several clues on why deceptive behaviors are essential in a robotic

system were found. More importantly, the use of other-oriented deception has been

extensively reviewed, and a robot’s other-oriented deception has also been defined in

chapter 3. Based on these fundamental theories, this research aims to investigate the

use of other-oriented robot deception in HRI contexts and eventually, to achieve a

more socially intelligent and intentional agent.

As stated in this dissertation’s introduction, the research in this dissertation ar-

gues that the robot should always be beneficial to humans in HRI. Therefore, robot

deception should only be used when it can provide advantages to deceived humans.

In other words, it is necessary to develop and test other-oriented robot deception in

the context of HRI.

To achieve other-oriented robot deception, a computational model for a robot’s

other-oriented deception should first be developed and implemented into an appro-

priated robot platform. In this chapter, a novel computational model for a robot’s

other-oriented deception will be presented. After successful implementation, the re-

search hypothesis needs to be tested and proved via appropriate HRI studies, which

will be discussed in the following chapter (chapter 5). Applying deception capabilities

to the robotic system also leads to multiple ethical issues when particularly discussing

social robots. Therefore, these ethical issues will also be discussed again in the later

chapter (chapter 6).
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Figure 12: Criminology-inspired computational architecture for a robot’s other-
oriented deception

4.1 Computational model for a robot’s other-oriented de-
ception

Inspired by a criminological definition of deception [5], a computational model of a

robot’s other-oriented deception is developed in my research [141, 142]. According to

criminological findings, deception is analyzed by three criteria, which are motives,

methods, and opportunity (Figure 12). Motives refer to the reasons for deception.

Methods discuss how to perform the deceptive behaviors, and opportunity refers

to when the deceptive behavior is most appropriate. In previous work, the deception

model included two dimensions, which are when and how criteria [176]. However, my

model di↵ers from this previous model because the goal of this model is for a robot to

have the capability to only perform other-oriented deception. In other words, besides

when and how, it is also essential to discuss the why problem in this model. From

my taxonomy (in Section 3), the interaction goals, which are self-oriented deception

and other-oriented deception, should be reflected in the computational model. In the

criminological approach, motive can be discussed with this dimension, and therefore,

the development of my model for robot deception is inspired by this approach.

Based on this criminological law, an algorithm of robot deception is developed. In

a high-level view, it is first necessary to determine whether the current HRI context

includes any motives for a robot to perform the deceptive behaviors. If so, then
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a robot should generate the methods to perform deception, which are alternative

deceptive behaviors beyond the normal true action(s). Finally, by selecting among

di↵erent true/deceptive behaviors, it should be possible to determine which one is

the most appropriate in a certain situation, thus providing opportunity. According

to this approach, an algorithm for each criterion is separately developed and then

integrated together to achieve the computational models for a robot’s other-oriented

deception.

4.2 Method: Deceptive Action Generation Mechanism

Methods (means) define the way in which the deception is performed. It is necessary

to build a model that illustrates how deceptive actions can be generated, where we

aim to determine the set of true/deceptive actions that a robot performs during the

interaction. For this, deceptive action generation mechanism has been developed in

my model [141].

A human behavior is manipulated by verbal and non-verbal actions. When a

robot delivers information to humans and interacts with them, the robot uses several

cues for representing the action. For verbal delivery a robot uses multiple verbal

cues, including speech expressions and vocal tones [123]. Non-verbal communication

actions involve the robot’s bodily cues, which include gesture, facial expression, and

proximity [22]. A robot’s action of this sort can be formulated as A =< av, an >,

which indicates the combination of verbal action av and nonverbal action an.

A robot’s deceptive action in this model is focused on non-verbal communication

display behaviors an. By generating the information using bodily cues, humanoid

robots can reap certain advantages [26]. First, nonverbal actions often have benefits

that transcend cultural norms [26]. In HRI contexts, a robot is limited in its verbal

interactions due to language di↵erences. However, humans can interpret nonverbal

expressions somewhat more generally. In addition, people may expect a humanoid
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robot to demonstrate nonverbal actions due to its embodiment. Therefore, these

bodily expressions can lead to more natural interactions between humans and robots.

Finally, nonverbal actions potentially increase the probability of forming bonds of

trust and a↵ect between humans and robots [26, 84].

Due to these advantages of nonverbal actions, a set of a robot’s true/deceptive

actions is defined using nonverbal cues. In a high-level view, to generate a robot’s

deceptive actions, a robot should first have a default action, which is a true action

at. Then, according to the deception generation mechanism described below, the

robot can generate a set of deceptive actions by transforming the selected default

true action. A robot can also have multiple true actions that can be applicable

to the current situation. Therefore, the set of true actions can be defined such as

At = {at1, at2, . . . atn}.

4.2.1 Deception Generation Mechanism

According to Bell and Whaley [18], deception can be categorized into two main types

- hiding and showing (Table 6). Type 1 deception is hiding, which means masking

characteristics of the truth to represent deception. Type 2 deception is showing; it

aims to deceive the mark by representing false information. The deception generation

is modeled based on this categorization. In other words, a robot generates deceptive

behaviors by transforming the default true action consistent with these two deception

mechanisms.

4.2.2 Generating Deceptive Action

As stated above, this model intends to generate a robot’s deceptive action using

nonverbal behaviors. This nonverbal action is represented by several bodily cues,

including body gestures (g), facial expression (f) and proximity (p). Therefore, a

robot’s action can be formulated as a =< g, f, p >. As shown in this formulation, the

nonverbal action a is generated by combining these three di↵erent cues, but not all
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Table 6: Deception Generation Types

Mechanism Explanation

Type 1
Deception by Omission

(DbO)

Hiding information;
the true action will be transformed by
deleting key information

Type 2
Deception by Commission

(DbC)

Showing false information;
if changeable key information exist, the
action will be transformed by changing the
values of these key information

Figure 13: Overview of the action generation mechanism via deception transformation
layers for nonverbal action cues

cues need to be included every time. These bodily cues are manipulated di↵erently to

generate the deceptive actions in each cue. The means by which these transformations

occur are described below.

After the default true action is selected for a robot system, the deceptive actions

are then generated. Again, the true action is a combination of bodily cues < g, f, p >.

Each cue is transformed to its deceptive action form(s) separately during deceptive

action generation. As shown in Figure 13, each action cue inputs to the deception

generation layers, and when the deceptive action cues are generated, these cues are

combined together to construct the deceptive actions ad1, ad2, . . . , adn. The way to

generate deceptive action cues in each layer is varied, and the mechanisms for each

bodily cue are explained below.
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4.2.2.1 Gesture Transform Layer (g)

Previous research in nonverbal behavior has divided a robot’s body gestures into four

categories [23]:

1. Iconic gesture (giconic): meaningful motions associated with the semantic content

of speech.

2. Deictic gesture (gdeictic): motions to guide attention toward specific objects

in the environment. This type of gesture is generally prototyped by pointing

actions.

3. Metaphoric gesture (gmetaphoric): motions to represent abstract concepts; behav-

ioral fragments that convey implicit information without being tied to dialog.

4. Beat gesture (gbeat): simple up-and-down movements to emphasize certain words

or phases.

Among these four gestures, semantically meaningful actions without speech can be

found in iconic, deictic, and metaphoric gestures. Therefore, beat gesture is excluded

in this deceptive action generation model. In other words, a robot’s gesture cue g

is defined by one of three action types (iconic, deictic, or metaphoric gestures), and

deceptive gestures with semantics can be generated by the manipulation of these three

categories as described below.

Iconic gestures are gestural representations of the semantics of spoken language

in general. Therefore, the transformation of iconic gestures depends on the informa-

tion that a robot wants to deliver to the human via speech. To represent meaningful

information, humans generally use hand gestures. For example, a specific number

can be shown using fingers. We can also define a robot’s iconic gestures based on

meaningful hand and arm gestures. When the robot has a true default hand gesture,

deceptive gestures can be created according to the two deception types as shown in
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table 6. First, it can hide the information by simply not displaying any iconic gestures

(deception by omission). In deception by commission, a robot can change the infor-

mation displayed in the true gesture by giving variations. For example, assume that

a robot’s true action is showing the number three with its fingers. In this case, this

finger representation illustrates a semantically meaningful number, so it is an iconic

gesture. Here, for type 1 deception (omission), a robot can just not show any hand

gestures to the human. In type 2 deception (commission), a robot’s finger signaling

gesture can be varied to other numbers such as one or two.

Deictic gestures also include important information that is useful to transfer

to humans. Archetypal deictic gestures include pointing actions; therefore, a trans-

formed deceptive action can be determined by changing the direction of pointing

(Type 2 - commission) or not pointing at all (Type 1 - omission). A rotation of the

head and torso is often associated with the arm pointing gesture. For example, the

default deictic action is to point in the direction of a specific object, whereas the de-

ceptive deictic gesture can be generated by shifting the direction of pointing toward

other objects or other spaces.

Metaphoric gestures represent abstract concepts. Particularly, humans can

express and deliver their emotional status via gesture, and these emotional expressions

are categorized as metaphoric gestures in general. Therefore, emotional gestures can

be added as the metaphoric category to the robot system. Human emotion can be

classified into six categories, which contain happiness, anger, fear, surprise, disgust,

and sadness [52]. In addition, neutral emotion can be included where the robot has no

metaphoric expression. Based on these seven categories, a set of default expressions

for a robot can be defined. For deceptive action generation, when a robot selects the

true emotional gesture, it can determine deceptive metaphoric gestures by selecting an

opposing emotional expression (Type 2 - commission) or by not showing any emotion

using a neutral gesture (Type 1 - omission).
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Table 7: General Gesture Primitives (notation: ggpi) with necessary parameters and
body parts in a humanoid robot; ggp2 is the deictic gesture and all other gesture
primitives are iconic gestures.

General Gesture (notation)
[parameter]

Body Part

Idle (ggp1) Head, Left and Right Arms, Legs

Raising/Showing Hand (ggp2)
[# of fingers]

Right Arm

Hiding Hand (ggp3) Right Arm

Grasping (ggp4) [object Location] Head, Right Arms, Legs

Pointing (ggp5) [object Location] Head, Right Arms, Legs

Waving (ggp6) Right Arms

Okay/Yes (ggp7) Head, Right Arm

No (ggp8) Head, Right Arm

Table 8: Emotional Gesture Primitives (notation: egpi) with necessary parameters
and body parts in a humanoid robot; These emotional gesture primitives are the
metaphoric gestures.

Emotional Gesture (notation) Body Part

Happiness (egp1) Head, Left and Right Arms, Legs

Anger (egp2) Head, Left and Right Arms, Legs

Fear (egp3) Head, Left and Right Arms, Legs

Surprise (egp4) Head, Left and Right Arms, Legs

Disgust (egp5) Head, Left and Right Arms, Legs

Sadness (egp6) Head, Left and Right Arms, Legs

Neutral (egp7) Head, Left and Right Arms, Legs
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Figure 14: Overview of the action generation mechanism via gesture transformation
layer

The robot’s default (true) gesture can be generated from one or more of these three

gesture main categories. In the current robot system and without loss of generality,

robot gestures are generated by selecting/combining gesture primitives; eight general

gesture primitives and seven emotional gesture primitives are defined as shown in

Table 7 and Table 8 [159]. Gestures giconic and gdeictic are produced by combining the

general gesture primitives, and the metaphoric gesture gmetaphoric is determined by

selecting one of the seven emotional gesture primitives.

Now, it is necessary to define the deception generation function F for each ges-

ture primitive. As stated above, deceptive gestures are generated by two types of

deception (table 6), which are deception by omission (FDbO) and deception by com-

mission (FDbC). Figure 14 illustrates the overview of deceptive gesture generation

mechanisms. First, according to the deception by omission mechanism, a robot can

perform a deceptive gesture by simply not showing the current gesture. In other

words, as shown in Equation 1, when the robot has a true gesture primitive in any

category, the robot can perform the deception by omission by changing it to the Idle

52



(ggp1) / Neutral (egp7) gesture primitive to realize the omission deceptive gesture

set.

FDbO(ggp2|ggp3|ggp4|ggp5|ggp6|ggp7|ggp8) = ggp1

FDbO(peg1|egp2|egp3|egp4|egp5|egp6) = egp7

(1)

To generate a deceptive gesture according to deception by commission, the model

needs a way to produce false information for each gesture primitive. Two means of

generating false information are used in the system.

First, according to the characteristics of the gesture primitives, primitive pairs

that contain gestures of opposite meanings are predefined, whereby the deceptive

gesture can be determined by finding the opposite of each primitive gesture. For the

general primitives, opposite pairs are defined as people recognize in general [159]. In

addition, for the emotional primitives, these opposite emotion pairs are discriminated

according to Plutchik’s wheel of emotions [116]. As a result, the set of opposite

gesture primitive pairs can be obtained as shown in Equation 2, which represents

the mathematical formulation of the deception by commission mechanism. As shown

here, the set of gesture primitive pairs is defined, and the robot can determine the

opposite gestures based on this pair set P .

SetofGesturePrimitivePairs(P ) = {[ggp2, ggp3], [ggp7, ggp8], [egp1, egp6],

[egp1, egp5], [egp2, egp3]}

If [g1, g2] 2 P , then FDbC(g1) = g2 or FDbC(g2) = g1

(2)

Figure 15 shows exemplar pairs of gesture primitives. All gesture primitives were

implemented using the Webots simulator [36] and Choregraphe and with the NAO

robot [151]. Figures 15(a) shows the “showing hand (ggp2)” and the “hiding hand

(ggp3)” gesture primitives. Since these two gestures are in the set of gesture primitives
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pairs P , when one of two gestures is selected as a true set, the alternate gesture is

used as a deceptive gesture according to Equation 2. Figures 15(b) illustrates the

emotional gesture pairs such as [Anger(epg2), Fear(egp3)]. As shown in the final

example, when “happy (epg1)” gesture primitive is selected, “sad (epg6)” or “disgust

(epg5)” gestures are selected as deceptive actions as shown in Figure 15(c).

Second, when the primitive gesture has a parameter that represents key informa-

tion for the action, the deceptive gesture can be generated by changing this key value.

Thus, if the value of the parameters are changed to di↵erent values, false information

can be delivered to the mark, and, as a result, a deceptive gesture can be generated

(commission).

As shown in Table 7, ggp2, ggp4, and ggp5 require a parameter to express gestures,

and each primitive can be defined as ggp2(n), ggp4(x), and ggp5(x), where n and x

specify the values of the parameters. Here, n represents the number of robot fingers

and x is the directional vector of the intended object’s location. For these three

gesture primitives, the robot should generate the deceptive action by changing the

parameter value to a false one as shown in Equation 3 and 4.

FDbC(ggp2(nk)) = {ggp2(ni)|ni 2 {n1, . . . , nk�1, nk+1, . . . , nl}}

where n = number of robot fingers, 0  n  nl,

nl = max number of a robot finger

(3)

FDbC(ggp4(xk)) = {ggp4(xi)|xi 2 {x1, . . . , xk�1, xk+1, . . . , xl}}

FDbC(ggp5(xk)) = {ggp5(xi)|xi 2 {x1, . . . , xk�1, xk+1, . . . , xl}}

where xi =< x, y, z > : vector of object’s location

(4)
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(a) Left:ggp2 (showing hand) vs. Right:ggp3 (hiding hand); [ggp2, ggp3] 2 P

(b) egp2 (anger) vs. egp3 (fear); [egp2, egp3] 2 P

(c) egp1 (happy) vs. egp5 (sad) and egp6 (disgust); [egp1, egp5] 2 P and [egp1, egp6] 2 P

Figure 15: Examples of gesture transformation via Deception by Commission mech-
anism; Gesture primitive pairs which are in the set of gesture primitives pairs P .
Therefore, when one of gestures is selected as a true set, the alternate gesture is used
as a deceptive gesture according to Equation 2.
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Figure 16: Simulations of deceptive “pointing” gesture generation via Deception by
Commission mechanism. According to Equation 3, the alternative object’s location
is selected as deceptive pointing action position.
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Figure 16 illustrates deception generation example via this deception by commis-

sion mechanism. The gesture primitive in this simulation is “pointing” gesture (ggp5

). In this simulation context, a robot detects two object locations {apple, orange}.

When ggp5(apple) is selected as a true pointing action as shown in Figure 16(a), a

robot can generate the deceptive pointing action ggp5(orange) based on equation 3

as shown in Figure 16(b).

In sum, by applying the deception by omission and deception by commission

gesture generation functions, a robot can find alternative gestures that can be used

to deceive the human. These principles can be generalized even further as needed.

4.2.2.2 Facial Expression Transform Layer (f)

A facial expression (human or robot) is usually used to display emotional states. Fig-

ure 17 illustrates the overview of the facial expression transform layer. As stated

earlier, according to Ekman [52], emotion can be divided into six basic categories,

which are happiness, anger, disgust, fear, sadness, and surprise. In addition, neu-

tral status is commonly added to the emotion categorization. From a higher-level

perspective, these facial expressions can fall into three sets —positive (fp), negative

(fn), and neutral (fnt). Positive facial expressions are a representation of happiness.

Figure 17: Overview of the action generation mechanism via facial expression trans-
formation layer
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Figure 18: Example of deceptive facial cue generation with the R25 robot [126]
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Negative facial expressions include all expressions of anger, disgust, fear and sadness.

Neutral facial expressions (fnt) are shown when a robot doesn’t express any emotion.

In this model, when a robot generates deceptive facial expressions, these three sets

are used to determine the correct one to provide. It is first determined whether the

true default expression is in the positive, negative, or neutral set. The robot can then

transform the true facial cue by applying deception by commission. In other words,

to show the false interaction, a robot selects from the other two orthogonal sets for

an emotional display choice.

For example, as shown in Figure 18 if the default true facial expression ft is positive

(ft 2 {fp}), then the deceptive facial expression fd will be transformed by selection

from the negative and neutral facial expressions (fd 2 {fn, fnt}). Here, this example is

demonstrated with the R25 humanoid robot [126], because it can represent the facial

expression e↵ectively. When the robot does not have capabilities for such expressive

facial representation, other indirect methods can also be used as an emotional facial

expression cue (e.g., the color of NAO’s ear/eye LEDs [104]).

4.2.2.3 Proximity Transform Layer(p)

Figure 19 illustrates the overview of the proximity transformation layer. Omission

deception for facial expression is straightforward. If the true action is to display the

robot’s emotional state requiring such a display it will either not display any emotion

Figure 19: Overview of the action generation mechanism via proximity transformation
layer
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Table 9: Humanoid Robot’s Proxemic Spatial Regions

Space Category Proxemics Zones

Intimate, pin 0-60 cm

Personal, pps 75-120 cm

Social, psc 150-200 cm

Public, ppb Over 200 cm

whatsoever, or if it is already displaying an emotional facial expression that should

be changed according to the new true action, it will instead continue to display its

previous facial expression without change.

Spatial proximity is indirectly used to give an impression of intimacy to humans

during the interactions. Hall [64] divided interpersonal space into four categories:

intimate (within 2 feet of the person), personal (2-4 feet), social (4-12 feet), and

public (12-25 feet) spaces. Previous robotics research [26] has studied how these

interpersonal spaces can be applied in HRI contexts by quantizing these four spaces

separating human and robot as shown in Table 9. Therefore, a robot’s proximity cue

can be defined as a member of one of these four categories. This indicates the degree

of familiarity with the human partner. For deception generation, the algorithm is

developed similarly to facial expression mechanism (overview: Figure 19). When the

default proximity cue lies in one of the four space categories, the alternative deceptive

action set can be created by selecting from the other three space categories.

For example for type 2 (commission), if the default proximity is defined as personal

space (pt 2 {pps}), the deceptive proximity set will be pd 2 {pin, psc, ppb} as shown

in Figure 20. For type 1 (omission), the robot should remain in its place even if the

true action warrants a change in spatial separation.

4.2.2.4 Integration of deceptive non-verbal action cues

The previous subsections have explained a robot’s deceptive action generation for

each bodily cue type. Via these transformation layers, a robot can produce multiple
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(a) True proximity cue (b) Deceptive proximity cue

Figure 20: Example for Type 2 (commission) deceptive proximity generation

Figure 21: Detailed integration step of the action generation mechanism (extended
from Figure 13)
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deceptive actions. The final step in generating deception is integrating these discrete

cues into one holistic robot action. As shown in Figure 13, this final step is defined

as integration (⌦). The potential deceptive action ad =< gd, fd, pd > is generated by

combining the 3 elements of deceptive non-verbal action cues.

As shown in Figure 21, the integration module is structured in three steps: com-

bining, filtering, and prioritizing. The pseudo-code for this integration module is

described in Algorithm 1. As illustrated in this algorithm, a robot first generates all

combinations of possible deceptive bodily, facial expression, and proximity cues and

gets the set of possible deceptive actions such as Acombined. The robot can easily ob-

tain the set of possible deceptive actions by generating all combinations of deceptive

bodily cues.

From the set of possible deceptive actions, some of the actions should be rejected

due to potential contradictions. For example, if the facial expression cue shows the

positive emotion but the gesture cue delivers the sadness motion, it will lead to

confusion in the human subject. To avoid those contradictory actions, a filtering step

is added here. In the filtering step, a robot checks whether the current action’s bodily

and facial expression cues are globally coordinated as shown in Algorithm 1.

Again, the contradiction can potentially occur when each action cue in one ac-

tion tuple shows extremely di↵erent information at the same time. As described

in Section 4.2.2.1, robot gestures can be categorized in three ways: iconic, deictic,

and metaphoric. General gesture primitives are used to represent iconic and deictic

gestures and metaphoric gestures can be produced by emotional gesture primitives.

Facial expression cue is used to show the emotional state of the robot; therefore, it

is potentially overlapped with the metaphoric dimension in the gesture cue. Therefore,

a check for potential conflict between emotional gesture cue and facial expression cue

is made. Since these two cues express emotional state concurrently, the contradiction

can occur if two cues show extremely di↵erent motions. Therefore, when a negative
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Algorithm 1 Integration of deceptive action cues

Input: Deceptive non-verbal action cues from three transform layers
Gd = {gd1, gd2, . . . , gdl}, Fd = {fd1, fd2, . . . , fdm}, Pd = {pd1, pd2, . . . , pdn}

Output: Deceptive Action Set Ad = {ad1, ad2, . . . , adk}

1: // Step 1. Combining Step
2: // Generate all possible deceptive actions by combining deceptive gestures, facial

expressions, proximities
3: Acombined = {< gd, fd, pd > |gd 2 Gd, fd 2 Fd, pd 2 Pd}
4: // Acombined is a variable to store all possible deceptive actions
5:

6: // Step 2 Filtering Step
7: // Set the high-level emotional primitive gesture group (positive, negative, neutral)
8: Epositive = {egp1, egp4} // epg1 = happiness, egp4 = surprise
9: Enegative = {egp2, egp3, egp5, egp6} // egp2 = anger, egp3 = fear, egp4 = disgust,

egp5 = sadness
10: Eneutral = {egp7} // egp7 = neutral
11:

12: // Find contradictory emotional cues and remove them
13: Afiltered = {} // initialize variable Afiltered, a variable to store the actions after

removing any actions that contain contradictions
14: for each action tuple < gd, fd, pd > in Acombined do
15: if !(gdi 2 Epositive && fdi 2 fn) && !(gdi 2 Enegative && fdi 2 fp) then
16: // metaphoric gesture and facial expression pairs that represent opposite emo-

tion are defined as contradiction/conflict
17: Afiltered = Afiltered [ < gdi, fdi, pdi > // non-contradictory action tuples are

only stored in Afiltered

18: end if
19: end for
20:

21: // Step 3. Prioritizing Step
22: // Avoid conflict of actuators by performing bodily cues that possibly use the same

joints/motors in di↵erent times
23: tstart = time to start deceptive action cue // to perform each action cue in di↵erent

times, set time variable tstart

24: tproximity = time duration to complete the proximity cue
25: for each action tuple < gd, fd, pd > in Afiltered do
26: t1 = tstart + tproximity // time to start gesture primitive cue - after performing

proximity cue
27: t2 = t3 = tstart // facial expression cue can be performed with proximity cue at

the same time
28: Adi =< g

t1
di
, f

t2
di
, p

t3
di
> // add start time variations to action cues

29: Ad = Ad [ {adi} // add to final deceptive action set
30: end for

63



emotion gesture and a positive facial expression are shown in the same action ai, it

should be filtered out. The same step occurs in the case of an action with a positive

emotion gesture and negative facial expression. As a result, in our algorithm, the sets

of positive, negative, and neutral emotional primitive gestures are defined first based

on Plutchik’s definition [116]. Then, it is determined whether the facial expression

cue is in a contradictory emotional group, and, when those two cues are not in the

same emotional group, it is removed.

Proximity is highly related to the intimacy and it can indirectly deliver the emo-

tions to human subjects [64, 162]. Therefore, proximity is also aligned with the

group of metaphoric gestures. However, it is di�cult to determine the specific type

of emotion that the proximity a↵ects. Therefore, proximity is excluded in the global

coordination step for emotion expression.

When the robot actually performs the generated deceptive action ad, it must

address possible conflict of a robot’s actuators. Many bodily cues use the same joint,

and it leads to the conflict if some of those cues are intended to be performed at

the same time. To avoid this conflict, an integration step prioritizes among bodily

cues that possibly use the same joints/motors. Formally, time-variation t is added to

non-verbal action cues such as < g

t
d, f

t
d, p

t
d >. Time variable t represents the time to

start the current action cue.

Therefore, if the potential conflict in actuator usage exits, t in each cue should

be controlled. Proximity changes possibly involve the same joints/motors, as do

some body gestures. Therefore, when a robot performs the action a, we prioritize

proximity. Facial expression is obviously performed independently from the other

cues, gesture and proximity, as there is no conflict in actuator usage. Therefore, a

robot maintains facial expression during the performance of the proximity and gesture

cues. Summarizing, as shown in Algorithm 1, a robot performs proximity cues first

and then, if needed, produces the gesture cue while maintaining the facial expression
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cue during the entire action.

In sum, in the integration module, a robot first generates the set of all combina-

tions of possible deceptive bodily, facial, and proximity cues and filters out the con-

tradictory actions to get the deceptive action set. Then, a robot determines whether

any of these action combinations include conflict by observing the overlapping use

of body parts and prioritizes the proximity cue to avoid those conflicts. Finally, the

robot can produce the set of deceptive actions such as Ad = {ad1, ad2, . . . , adn} needed

for the task at hand.

4.3 Deceptive Action Selection Mechanism

The deceptive action generation model in the previous section for the method part

(Figure 12). In this section, as a next step, the computational models for the motive

and opportunity parts are discussed. It describes how a computational model enables

a robot to choose a beneficial behavior from either the true or deceptive action set

based on other-oriented deception.

Motives are the reasons why a robot should perform deception in a certain sit-

uation. Opportunity indicates the possibility of successful performance of deception

to benefit the mark (the deceived one). In other words, through the specific com-

putational model, a robot should be able to determine if the current moment is the

right time to perform deceptive or true actions. For this process, it is required for

a robot to predict whether its potential deceptive behavior can have the motive to

help human partners in certain situations. In addition, a robot needs to calculate

which behaviors can maximize the benefits when applying various true and deceptive

behaviors. More specifically, since other-oriented deception focuses on the benefits

to the mark, measuring and calculating these benefits received by the mark are key

factors of the motives/opportunities model. However, since a human’s reaction is

di�cult to predict, modeling the mark’s payo↵s is challenging.
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The approach to this modeling can involve a cognitive architecture. Previous

research has proposed computational models for a robot to determine a human’s

cognitive stance inspired by a human’s cognitive architecture. For example, several

cognitive architectures (e.g., SOAR [83] and ACT-R [7]) were used to model human

behaviors and applied to robotic systems. These cognitive robots can generate in-

telligent behavior based on a processing architecture that enables a robot to learn

and reason about behaviors in response to complex goals [163, 41]. However, these

cognitive architectures do not currently include a human’s reasoning mechanism of

deception.

Rather than a cognitive architecture model, using a psychological approach, hu-

man deception has previously been modeled based on interdependence theory and

game theory [176]. Briefly, this model enables a robot to determine when it should

trigger deception by predicting the mark’s behaviors. The algorithm mainly consists

of two parts: when to deceive and how to deceive. First, a robot determines whether

deception can truly a↵ect its human partner’s status. Judging from the degree of this

value, deception can be warranted or not in di↵erent situations. After deciding to

engage in deception, a robot requires algorithms for performing deception. A game-

theoretic approach is used for this step. However, this model has limitations since

its calculation is based on payo↵s that are currently predefined by the model. To

overcome this issue, a new action-selection model is presented for a robot to learn

and reason about the payo↵s adaptively.

Instead of predicting the mark’s benefits directly from a predefined model, it

is more realistic that the robot should learn and reason about the mark’s benefits

in di↵erent situations and use this knowledge for its future decision process. This

is more reasonable since a human’s payo↵s when he/she is deceived are somewhat

unpredictable and are dependent on the situation. In sum, it is essential to develop

a computational model so that a robot’s other-oriented deception capabilities is able
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to adapt flexibly based on its ongoing and prior experiences.

It is necessary to build a computational model that enables a robot to choose

a correct behavior from the true or deception action set in each situation based

on motivations of other-oriented deception. More specifically, this computational

model should be able to adapt a robot’s action selection mechanism since modeling

true/deceptive behavior selection varies significantly by domains and users. In other

words, a learning-based computational model for a robot to adapt the situation-action

selection mechanism is required in this robot system.

The learning method can be classified in two ways, which are eager-learning meth-

ods and lazy-learning methods [30]. Eager-learning methods find the generalization

during training (e.g., reinforcement learning techniques), and therefore, they require

more training time to converge to the optimal solutions. However, this long training

time is sometimes impractical in many HRI situations. For example, with the robot

rescuers in the SAR situation, we cannot perform the training interactions thousands

of times to achieve convergence.

Compared to eager-learning methods, a lazy-learning method is performed at the

instance-query time. In the initial stage, the system can use preloaded or previously

acquired cases, and it can find and adapt the action solutions from the casebase

without a training session. By observing how the situation changes, the cases can

be adapted and added to the casebase through experience. Therefore, even though

it may include some initial generality issues, it is more feasible when applied to my

computational model and domains. For this reason, I build the computational model

based on the case-based reasoning (CBR) mechanism, one of the well-known lazy-

learning mechanisms [4].

CBR is one of the lazy-learning techniques that allow finding and adapting a pre-

vious solution by reusing/maintaining previous experience [4, 82]. CBR is a method

to solve new problems based on the solutions of similar previous problems. For this
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process, the instances of a situation-solution pair are stored in the memory and re-

ferred to as a “case.” By comparing the current situation with previous cases in the

memory, the system should retrieve the nearest case and adapt the selected solution

from the case according to the current situation. Finally, by observing the result of

the case-selection, new cases should be retained and updated for future use.

According to Kolodner [82], the CBR cycle can be also illustrated in terms of four

process stages. Here, four stages are defined as:

1. Case retrieval: when the problem occurs, the best matching case is searched to

retrieve an approximate solution.

2. Case adaption: the approximate solution from the case retrieval is adapted to

the new problem.

3. Solution evaluation: either before or after the solution is applied, the adapted

solution can be evaluated.

4. Casebase updating: based on the verification of the solution, the case should

be updated or the new case may be added to the casebase.

CBR has already been applied in several di↵erent robotic systems successfully. For

example, it has been used for learning parameterization for autonomous navigation

tasks [86]. To reuse prior robot missions and redesign/repair robot missions better,

CBR has also been successfully applied [105]. More recently, another study built a

CBR model to maintain and learn a↵ective robotic attitudes [104].

In this model, a robot should be able to select an appropriate action from the

set of true and deceptive actions in a given situation. Therefore, the model should

store the information of situation-action pairs that increase the human’s benefits.

E↵ective action selection is one of the obvious and e�cient robotic domains that use

the CBR techniques successfully. In previous work, retrieving and reusing previous
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game plays for robot soccer utilized CBR [129, 128]. To increase a robot’s learned

action responses in HRI contexts, the CBR method has been proposed and applied

successfully. Similar to previous research, I developed a computational model for a

robot to learn and select the most appropriate true/deceptive action via CBR [142].

In the rest of this section, details on how CBR is used in this action selection

model will specifically be explained (in Section 4.3.1). After explaining computa-

tional details, a specific situation where other-oriented deception can be useful will

be chosen, and this model will be explained using the exemplar scenario (in Section

4.3.2).

4.3.1 Deceptive Action Selection via CBR

4.3.1.1 Case C

For the CBR architecture, a previous experienced situation-action set should be stored

in the memory. In addition, how much the action can benefit the human partner

should be contained in the case. Therefore, a situation-action-benefits trio is required

to define a case c in my CBR mechanism, and those cases should be retrieved and

adapted for reuse during the CBR process. As a result, a case c consists of a situational

state s, a corresponding action a, and the resulting benefits r, and the set of cases

can be defined as follows:

C = {< s, a, r > |s 2 S, a 2 A, r 2 R}

State S

First, the input situational state should express the current state of the mark

during the interaction and also the environment. A robot should observe the current

situation as an input and then should select and perform an appropriate true/de-

ceptive action as an output. Therefore, state s is defined as the combination of

features, which can represent the mark’s internal (fm1, fm2, . . . , fmj) and environ-

mental (fe1, fe2, . . . , fek) conditions. Finally, the set of situational state for this CBR
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mechanism can be defined as shown below:

S = {< fm1, fm2, . . . , fmj, fe1, fe2, . . . , fek > |

fmi = features to perceive the mark’s internal conditions,

fei = features to perceive the mark’s environmental conditions}.

Please note that features can be valued as ‘don’t care’ if the system determines

that they do not play a key role in state discrimination. More details about the use

of ‘don’t care’ features will be shown later (in ‘Similarity Score” subsection).

Action A

In section 4.2, a novel algorithm to generate a robot’s action set, which includes

the true actions and alternative deceptive actions, has been discussed. Briefly, a

robot can find and generate the action set based on the general/emotional action

primitives. A robot action is defined as the combination of di↵erent action cues;

a =< g, f, p >. Here, g is the bodily gesture cue, f is the facial expression cue, and

p is the proximity cue. When the robot’s true action at is determined, a robot can

generate the deceptive actions based on the characteristics of each primitive. This

deceptive action generation is possible according to two mechanisms, which are de-

ception by commission and deception by omission. Finally, from the default n true

actions and alternative m deceptive actions, the total set of actions A can be defined

such as A 2 {at1, at2, . . . , atn, ad1, ad2, . . . , adm}.

Benefit R

The main goal of this model is to find the robot’s action that can maximize the

benefit of the deceived human partner (the mark) in each situation. Therefore, how

much benefit the mark can get from a robot’s true/deception action is an essential

element for selecting the case. Here, the measure of those human benefits is defined
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as R. To determine the benefits for the deceived human partner, a robot should

observe how the state is changed from the perceived situational state when an action

is performed. In general, we can anticipate the result of a robot action such as whether

the situation is getting better, worse, or just staying the same.

The benefit R is defined using numeric measures. Benefits can vary based on

the situation changes. The situation can be getting better, worse, or maintained,

therefore the level of situation changes can be described by the set of integers. From

this aspect, if the situation is getting worse, the benefit will be measured with negative

integers. Similarly, positive integers can represent the degree of improved situation.

Obviously, 0 will illustrate that the situation is just staying the same. As a result,

the set of benefits R can be defined as:

R = {r|r 2 Z ^ Rw  r  Rb}

Here, Z is the set of integers. Rw is the minimum integer for the negative benefits

and Rb is the maximum integer for the positive benefits.

Example: Case definition in problem-solving task situation

Example Situation: Using other-oriented deception with a robotic educational

assistant to help students complete problem-solving task

Situation Description: Let us assume that a student (the mark in this exam-

ple) has to solve the sequence of problems in an educational setting. To help

the student, a robot assistant placed next to the student can provide feedback

on his/her performance, namely whether he or she is correctly or incorrectly an-

swering questions.

Robot Deception: Research has suggested that students can be motivated by

the deceptive reactions of teachers. Even if a student’s performance is poor, by

showing positive, deceptive, feedback teachers can motivate students.
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Example: How to define case c =< s, a, r > in this example

1. State S: The decision can be made based on the mark’s current and previ-

ous performance, and its motivation can be a determining factor in detecting a

student’s internal status. In that sense, the mark’s current emotional status is

an essential feature.

Example State definition: s =< femotion, fshortterm, flongterm > where

femotion = {positive, negative, neutral}; the mark’s emotional state

fshortterm = {x|x 2 {correct, incorrect}}; short-term performance

(correctness in the previous question)

x =

8
>><

>>:

correct, if the mark solves the previous question correctly

incorrect, otherwise

(5)

flongterm = {x|x 2 R ^ 0  x  100}; long-term performance (percentage

of the correctness from the beginning of the first question to the current question)

2. Action set A: The robot’s action is feedback upon the student’s current

performance. If the student’s solution is correct, then the robot makes a posi-

tive (happy) gesture. If student’s answer is incorrect, however, then it makes a

negative (sad) one. Between those actions, either true or deceptive actions are

selected for each state.

Example Action Set: A = {< gpositive, fpositive, don’t care >, < gnegative,

fnegative, don’t care >, < gneutral, fneutral, don’t care >}

3. Benefit R: The mark’s benefits can be determined by observing whether
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its performance improves, worsens, or does not change. By comparing the perfor-

mance on the previous and the current questions, the response can be determined

as shown below.

Example Benefit Definition: R = {r|r 2 Z ^ � 1  r  1} where

r = �1: answer correctly in previous problem but incorrectly in current problem

(worsen)

r = 0: answer correctly in both previous and current problem OR answer incor-

rectly in both previous and current problems (maintained)

r = 1: answer incorrectly in previous problem and correctly in current problem

(improved)

4.3.1.2 Case-based Reasoning Process

Overall, the deceptive action selection model is based on on Kolodner’s CBR cycles

work [82]. The case-based reasoning process consists of the following steps: case

retrieval, case adaption/reuse, and evaluation/updating.

• Case retrieval: when the problem occurs, the best matching case is searched to

retrieve an approximate solution.

• Case adaption and Reuse: the approximate solution from the case retrieval is

adapted to the new problem and the adapted solution is applied.

• Solution Evaluation and Casebase updating: after the solution is applied, the

adapted solution is evaluated and based on the evaluation result, the case should

be updated or the new case may be added to the casebase.

Figure 22 illustrates the overview of this section selection model using CBR. Briefly,

the robot should first perceive the current status and determine the most similar case

from the casebase (step 1. case retrieval). After adapting the selected case’s action,

the robot performs the adapted action (step 2. case adaptation and reuse). Finally,
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Figure 22: Overview of Action Selection Model using CBR

by calculating benefits of the mark, the casebase should be updated for future uses

(step 3. solution evaluation and casebase updating). Details of each step will be

illustrated in the following sub-sections.

Step 1. Case Retrieval

In the case retrieval step, the system should find which case(s) has the most sim-

ilar situational state to the current perceived state. The case retrieval algorithm

scores how similar the current situational state is to other cases in the casebase. By

calculating this similarity score, the algorithm can select the best-matched case or

cases in this step.

Similarity metric
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To determine the initial matched cases, a similarity score is calculated that mea-

sures how much the state in the case is similar to the current situation. For this,

a syntactic similarity assessment, which provides a global similarity metric based on

surface match, is used. For computing this score, a Manhattan distance calculation is

used, similar to [104], by calculating the L� 1 norm between the two feature vectors

of the situational states. Since not all features in the state are equally important,

each feature is weighted to indicate its relative importance. �(sp, sc) is defined as

the similarity metric between states sp and sc as shown in equation 6 when the state

vectors are illustrated as sp =< f1,p, f2,p, . . . , fn,p > and sc =< f1,c, f2,c, . . . , fn,c >.

�(sp, sc) =

P
i2S ki · wiP

i2S wi

(6)

Here, ki is a similarity score for each feature fi and wi is a weight for each feature

fi. The feature valued ‘don’t care’ in sp indicates that it can be matched with any

feature value in state sc. Therefore, the similarity score for this feature can be the

maximum value. Weight wi should be empirically set by a human expert’s domain

knowledge. Similarity score ki is defined as ki = {x|x 2 R ^ 0  x  1} and it can

be calculated di↵erently based on the characteristics of each feature fi as shown in

Algorithm 2 Calculating similarity score ki for feature fi

1: if feature fi is ‘don’t care’ then
2: ki = 1
3: else if feature fi is a numeric datum then
4: ki = 1� |fi,c�fi,p|

vi
where vi is the range for feature fi

5: else if feature fi is a categorical datum &&
Cardinality of set Fi  2 where fi 2 Fi then

6:

ki =

(
1 if fi,p = fi,c

0 otherwise

7: else if feature fi is a categorical datum &&
Cardinality of set Fi � 3 where fi 2 Fi then

8: ki = Mi(fi,p, fi,c) where Mi is the fi-specified similarity table
9: end if
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Algorithm 2.

As described in Algorithm 2, when feature fi is a categorical datum, categorical

matching can be used. However, if there are more than two categories, there may be

shades of similarity; one category might be more like the one of the other categories

than another. To specify those shades of similarity the feature-specified lookup table

Mi is defined according to the characteristics of each feature, and similarity scores

for feature fi can be determined by the corresponding entry in this lookup table Mi.

After calculating �(sp, sc) for each case in the casebase, the cases are sorted from

the highest scored case to the lowest one, and the top n cases are selected as the

initial matched cases and transferred to the case adaptation step.

Example: Calculating similarity score

Let us assume ssp =< negative, incorrect, 70 > and ssc =< positive, incorrect, 50 >

where s = < femotion, fshortterm, flongterm > as described in “Example: Case def-

inition in problem-solving task situation.” Similarity scores for each feature can

be calculated according to Algorithm 2 as shown below.

FOR each feature f

i

in i = emotion, shorterm, longterm

IF i == emotion //Cardinality of set F

emotion

� 3

Find k

i

from similarity lookup table M

emotion

(f
emotion,sp

, f

emotion,sc

)

! k

emotion

= M

emotion

(negative, positive) = 0

ELSE IF i == shortterm // Cardinality of set F

shortterm

 2

IF f

i,sp

== f

i,sc

THEN k

i

= 1

ELSE k

i

= 0

! k

shorterm

= 1

ELSE IF i == longterm //Feature f

longterm

is a numeric datum

k

i

= 1� |f
i,sc

�f

i,xp

|
v

i

where v

i

is the range for feature f

i

! k

longterm

= 1� |50�70|
100 = 0.8

76



Please note that similarity lookup table for emotion Memotion is defined as fol-

lows in this example.

Finally, based on the results of similarity scores for each feature, the similar-

ity score between two states can be calculated as follows. Please note that it is

assumed that all features have equal weights such as w = {1, 1, 1}.

Similarity score �(ssp, ssc) =
P

i2S ki·wiP
i2S wi

= (0+1+0.8)
1+1+1 = 0.6

Step 2. Case adaption and reuse

Once the initial matched cases are selected, the final selection process is required

to find the best matched case cb = [s, a, r]. Then, the corresponding action in this

best matched case should be adapted and passed to the robot to perform the robot

behavior. Action a is one of the actions among the true and deceptive action sets.

However, the cases learned from the experts or previous experience cannot guarantee

the best solution in the CBR model. In other words, if the selected action in the

existing case causes the situation to become worse, it is necessary to adapt and select

a new action to find a better solution.

Even though a robot finds the best matched situation, there is no reason to reuse

the action if the benefits of the action are bad. Therefore, as a final selection step,

a robot should assess the previous benefits r and determine whether the previous

action a will be directly performed or need to be adapted.Therefore, the final action

selection mechanism as shown in Figure 23.
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Figure 23: Overview of final action selection in case adaptation
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More specifically, this final action selection process can be illustrated using the

pseudocode shown in Algorithm 3. Again, after the best-case is determined (cb =

[s, a, r]), it may need to be adapted to the current situation. If the current state is

exactly matched to the situational state in the best-case, we can directly use action

a in the case without adaptation. However, if those two states are slightly di↵erent

but the case is selected since it has the most similar situational state, then the action

may be adapted before application.

Algorithm 3 Final Action Selection Process

Input: Sorted Casebase C, Current Situation sn

Output: Final adapted solution action an

1: startIndex = 0; // starting index of casebase when picking top n cases
2: LOOP: // start the loop
3: an = at

4: nCase = {} // a variable to store candidate cases
5: for i in startIndex to startIndex+n // find candidate cases do
6: if c[i].r > 0 // if the benefit of the case is positive then
7: nCases.add(c[i]) // that case is added to the set of potential best cases (can-

didate cases)
8: end if
9: end for
10: if |nCases| > 0 // if potential best cases exist then
11: Find the best case from nCases using the weighted roulette wheel algorithm
12: cb = selected best-case // randomly select one best-case from nCase

13: an = adaptingAction(cb, sn) // adapting the action (Algo. 4)
14: return an // find final adapted action
15: else
16: startIndex += n // to look at the next top n cases from the casabase
17: goto LOOP // repeat the loop
18: end if
19: an = at // if best-case can not be founded to the end of the casebase,
20: return an // set the default action at as the final adapted solution

As shown in Algorithm 3, the selected action a should be adapted if necessary.

According to Kolodner [82], adaptation involves two major steps: 1) figuring out

what needs to be adapted and 2) doing the adaptation. Similar to this approach, the

algorithm first observes whether there are di↵erences between best-case’s state s and

79



Table 10: Data structure for the adaptation rule

Field Description

FeatureIndex
Indicates which feature should be observed for the cur-
rent adaptation rule

Origin The origin of the adaptation rule (reference)

Activity Indicates if the rule is currently active

Description Short, concise description of the rule

AdaptationCondition
Condition for determining whether the adaptation rule
should be applied to the current action

AdaptationRule
Formal expression defining the way to adapt the current
action

current state sn, and if two states are di↵erent each other, an appropriate adaptation

should be applied. Di↵erences between states can be discriminated by figuring out

which features specifically have di↵erent values (step 1. Figuring out what needs to

be adapted). When the di↵erent features are determined, the adaptation rules related

to the discriminated features are applied to the action (step 2. Doing the adaptation).

Then, how can the adaptation rules be defined? As stated in Kolodner’s mecha-

nism [82], adaptation can be varied for any particular domains or tasks, and a set of

adaptation strategies or heuristics can be used for a CBR working system. Therefore,

the adaptation process can also be designed by the predefined adaptation rules.

For this purpose, the data structures of the rules that encode the adaptation

procedures (from experts or literature) are defined. Here, the adaptation rules give

an instruction for a robot to adapt the selected action to the current situation. The

structure of the rules is defined as shown in Table 10. Again, the rules for adaptation

will be predefined according to the characteristics of the context.

The adaptation process using the rules is summarized in Algorithm 4. As illus-

trated in this algorithm, when the situational state in the selected best-case is exactly

same as the current situation, there is no reason to adapt the solution, and therefore,
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Algorithm 4 Adaptation Process: AdaptingAction(cb, sn)

Input: best-case cb = [s, a, r] where s =< f1,s, f2,s, . . . , fk,s >

Current state sn = < f1,sn, f2,sn, . . . , fk,sn >

Set of rules RS = {rs1, rs2, rs3, . . . , rsn}
Output: Adapted action an

1: // determine whether the current state is same as the case’s state
2: if s = sn then
3: // if two states are same,
4: an = a // set the same action a as an adaptation action
5: else
6: // if two states are di↵erent, start adaptation
7: D = {} // variable to store the set of feature indices
8: // Step1. Figuring out what needs to be adapted
9: for all features in s do
10: if fi,s! = fi,sn then
11: // if the value of feature fi in case’s state s is di↵erent from current state

sn, store feature index i into the set D
12: D  D [ i

13: end if
14: end for
15: // Step2. Doing the adaptation
16: for all feature index i in D do
17: // among all rules in RS

18: for all rules rsj in RS do
19: if rsj.featureIndex = i AND rsj.adaptationCondition = TRUE then
20: rsj.adaptationCondition = true

21: // find the rule rsj that contains the feature index i

22: // if rsj’s adaptation condition is satisfied, adapt by the rule
23: an  Perform rsj.adaptationRule

24: end if
25: end for
26: end for
27: end if
28: return an
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the action a in the case is directly used as a solution. However, when the two situ-

ations are di↵erent, it is necessary to discriminate what are the di↵erences between

two situational states s and sn, then based on these di↵erences, appropriate adap-

tation should be applied. The situation state s is defined by several features such

as < f1, f2, . . . , fk > . Therefore, the system should first compare all feature values

between the case state and the current state. If the two values are di↵erent, those

feature indices are stored in set variable D. After the features that have di↵erent

values are discriminated in D, those values are compared to the element in the set of

rules RS. In other words, if the element in D is matched with the FeatureIndex in

certain rs 2 RS, this rule rs’s AdaptationRule applies to the selected best-case action

a based on AdaptationCondition and finally the adapted action an will be generated.

Finally, from the retrieval and adaptation steps, a robot can determine an ap-

propriate adapted action an. Then, this adapted action an should be performed by

the robot. This step is known as the case application step. When the adapted case

is applied (action an is determined and performed), the changes of states should be

observed for the next evaluation/updating steps.

Example: Adaptation Rule and Process

Example Adaptation Rule: If the longterm performance is extremely low

(bad), no deception is necessary.
<rule> rs

extreme low performance

<feature Index> longterm <feature Index>

<origin> Pigmalion E↵ects <origin>

<active> true <active>

<description> Perform the true action if student’s performance is continuously and

extremely low. <description>

<adaptation Condition> f

longterm

 20 <adaptation Condition>

<adaptation Rule> a

n

= a

t

<adaptation Rule>
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If exemplar inputs are defined as selected best case cb = [< negative, incorrect, 70 >

, ad1, 0] and current state sn = < positive, incorrect, 20 >, the exemplar adapta-

tion rule can be applied using Algorithm 4 as shown below.

Find%Minterms%=%!!"#$%#&!"#$%$&'!!!!"!!"#$!"#$%%&#' !!"#$%&'(!" + !!!"#$%#&!"#$%$&'!!!!"##$"%!"##$!% !!"#$%&'(!" %%
Minterms%=%{!!"#$%#&!"#$%$&'!!"#$%&'(!" }%
%
Algorithm*4* Example*
Determine*new*benefit*rn*from*an*expert* Let’s*assume*that*the*new*benefit*rn##=*+1*

/**Step*1.**Generalizing*the*cases**/*
candidateCases*=*{};**
FOR*each*case*c*in*Casebase*C*
****IF*c.r*==*rn*&&*c.a*==*an**
************candidateCases.add(c);*
allMinterms*=*ExtendedQNM*();***
FOR*each*mintermi*in*allMinterms*
****sgeneralizeed*=*extract*from*mintermi*by*adding*
‘don’t#care’*terms*
****Remove*all*cases*in*candidateCases**
****Add*generalized*case*[*sgeneralizeed,**an,*rn]****

currentCase*=*{[<positive,*incorrect,*20>,*at*,*+1]}*
*
candidateCases*=*{[<positive,*incorrect,*20>,*at*,*+1]}*,*[<positive,*
correct,*20>,*at*,*+1]}*
%
Find%%allMinterms%=%
%!!!!!!!!!!!!"#$%#&!"#$%$&'!!!!"!!"#$!"#$%%&#' !!"#$%&'(!" + !!!"#$%#&!"#$%$&'!!!!"##$"%!"##$!% !!"#$%&'(!" %%
%

! Minterm*=*{!!"#$%#&!"#$%$&'!!"#$%&'(!" }*
! Generalized*case*[<positive,*don’t#care,*50>,*at*,*+1]*

/**Step*2.**Storing*the*new*case**/*
IF%no*cases*are*generalized*
*****Create*new*case*cn*=*[sn,*an,*rn]**
*****Add*cn*to*the*case*base*****************

/**Create*and*Add*generalized*case**/*
Add*generalized*case*cn*=*[<positive,*don’t#care,*50>,*at*,*+1]*to*the*
casebase*

%
%
%
Adaptation*Algorithm** Exemple*

IF*s*==*sn*
****an*=*a**

**<negative,*incorrect,*70>*!=*<positive,*incorrect,*20>*

ELSE*
****D*=*{}**
****FOR*all*features*in*s*
*******IF*fi,s*!=*fi,sn**THEN*D*←*D*U*{*i#}*

***
**D*=*{};*
**//*values*of*feature*femotion*and*flongterm*are*different*
**D*←*{emotion,*longterm}*

****FOR*all*feature*index*i*in**
*******FOR*all*rules*rsj*in*RS**
**********IF*(*rsj.featureIndex*==*i*&&***
****************rsj.adaptationCondition*==*True*)*********
******************an*←*Perform*rsj.adaptationRule;**

rsextreme_low_performance*contains*indices*longterm*&&*adaptation**
Condition*==*True*(flongterm*≤*20)*
******Perform*the*adaptation*Rule*
************!*an*=*at*

%

Step 3. Solution Evaluation and Casebase updating

Cases are initially created by experts or experienced users. Even then, the pair of

situational state and action in each case may not always be the best solution. During

the evaluation/updating phase, the cases should be revised and updated to the most

e↵ective solution. In other words, it should be observed whether a deceived human

partner truly receives benefit from a robot’s behavior, and the casebase should be

updated with the case that can generate the highest payo↵ for humans.

After performing an action (case application), the benefits should be identified to

evaluate the action post facto. It can be determined by a human expert afterwards or

if possible assessed autonomously by a robot. In the current system, a human expert

will rate the benefits since it is a more practical and accurate way in the real-world

situation. When the human expert determines the benefits, they should be asked to

observe the changes of the human’s state after performing a robot’s adapted action

and rate the new benefit rn within the predefined range of benefits R.

Updating casebase

Based on the new benefit rn, which is provided by a human expert, the CBR

system should update the cases if necessary. According to Kolodner [82], the casebase
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can be updated by 1) generalizing the cases in the casebase, or 2) storing the new

case. Similar to this approach, when the current state sn, the adapted action an, and

the new benefit rn are perceived, they can be used to generalize existing cases in the

casebase. Otherwise, it will be stored as the new case for future reference.

First, the system should determine whether generalization is possible with sn, an,

and rn. In this model, states can be generalized when the cases have the same ac-

tion as an and benefit as rn. Since states are represented as di↵erent features, the

system can generalize the state by finding/merging the features that may not play

key roles during the calculation of similarity scores. In other words, for the gener-

alization process, those unnecessary features can be minimized to a ‘don’t care’ value.

How to determine ‘don’t care’ features and generalize the casebase

This feature reduction can be solved inspired by the minimization algorithm of the

algebraic variables [181]. In algebra, variables can be represented via algebraic defini-

tion and operations. For example, in the boolean algebra, values can be represented

by variables with NOT operation. If X and Y are boolean variables and values of

these variables are X = 1 and Y = 0, then these values can be represented as X and

Ȳ . In addition, when one term is mixed with multiple variables, it is presented as

the product form. Again, if the multi-variate term contains X = 1 and Y = 0, it can

be represented as XȲ using algebraic representation. Such product representation is

also called minterm.

If several minterms are included in one equation, then the equation can be repre-

sented using the form of the sum of products (SOP). When multiple minterms appear

in the SOP expression, some variables are not necessary to achieve the same answer;

termed ‘don’t care.’ features. For example, let us assume that two terms are XY Z̄

and XY Z. Using the SOP, it can be expressed XY Z̄ + XY Z. This equation’s an-

swer is only depends on XY , and Z cannot influence the result (XY Z̄ + XY Z =
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XY (Z̄ + Z) = XY since Z̄ + Z is always true). Therefore, variable Z is determined

as ‘don’t care’, and the equation can be minimized as XY . In other words, from the

midterm XY , the ‘don’t care’ variable Z can be also detected.

Similar to this approach, ‘don’t care’ features can be discriminated in the model.

All features in the state can be represented using algebraic variables and SOP forms,

and once the SOP equation is determined, by minimizing minterms, the ‘don’t care’

features can be determined. Finally, by minimizing those ‘don’t care’ features, the

casebase can be minimized and generalized.

When all the features are boolean variables, the ‘don’t care’ feature can easily

be determined by a Karnaugh mapping [182]. However, since this method is based

on tabular form, it is di�cult to make e�cient for use in computer algorithm. In-

stead, the Quine-McCluskey (Q-M) algorithm can be used [97]. Q-M algorithm is a

deterministic method to find the minimal form of a Boolean expression. Briefly, the

algorithm works in two steps. First, all prime implicants of the boolean expression is

determined. Then,the essential prime implicants are discriminated using prime impli-

cant chart. The details of pseudo-codes and implementation appear in McCluskey’s

paper [97]. The following example is shown the minimization/generalization process

for three states using this Q-M algorithm.

Example: States Generalization 1

Let us generalize three states s1 =< 1, 1, 1 >, s2 =< 1, 1, 0 >, and s3 =< 1, 0, 1 >

where all features are boolean variables.

1. Represent three states as minterms

! s1 = f1f2f3, s2 = f1f2f̄3, s3 = f1f̄2f3

2. Find SOP form

! f1f2f3 + f1f2f̄3 + f1f̄2f3

3. Find minimized SOP form using Q-M algorithm
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! f1f2f3 + f1f2f̄3 + f1f̄2f3 = f1f2 + f1f̄2f3

4. Discriminate ‘don’t care’ features from the minimized minterms

! f1f2 = <1, 1, ‘don’t care’>

! f1f̄2f3 + f1f̄2f3 = <1, 0, 1>

Finally, three states s1, s2, s3 can be minimized to two states <1, 1, ‘don’t care’>

and <1, 0, 1>.

Multi-valued features can be handled by the same mechanism via the extended Q-M

algorithm [101]. Again, the extended Q-M algorithm allows to identify the minimiza-

tion form for multi-valued algebraic functions. The pseudo-codes and implementation

details appear in Mishchenko’s paper [101], and the exemplar use of this minimiza-

tion/generalization process can be shown as follows.

Example: States Generalization 2

Let us generalize four states s1 =< 1, a, x >, s2 =< 1, b, y >, s3 =< 1, a, y >,

and x4 =< 1, c, y > where features are defined as f1 2 {1, 2, 3}, f2 2 {a, b, c},

f3 2 {x, y}.

1. Represent three states as minterms

! s1 = f

1
1 f

a
2 f

x
3 , s2 = f

1
1 f

b
2f

y
3 , s3 = f
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c
2f

y
3

2. Find SOP form
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3. Find minimized SOP form using extended Q-M algorithm
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4. Discriminate ‘don’t care’ features from the minimized minterms

! f

1
1 f

a
2 f

x
3 = <1, a, x >

! f

1
1 f

y
3 = <1, ‘don’t care’, y >
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Finally, four states s1, s2, s3, s4 can be minimized to two states <1, a, x > and

<1, ‘don’t care’, y >.

Algorithm 5 Casebase Updating Strategy

Input: Current State sn

Adapted Action an

Output: Updated Casebase

1: // Determine the new benefit rn from a human expert
2: // Step 1. Generalizing the cases
3: candidateCases = {} {cases that are potentially generalizable}
4: for each case c in Casebase C do
5: if c.r = rn && c.a = an then
6: // if the case has the same action and benefits as an and rn, it is potentially

generalizable
7: candidateCases.add(c) // add to the candidateCases
8: end if
9: end for
10: // Generalize states via minimization algorithm
11: allMinterms = ExtendeQ-M (canonical forms of candidateCases’ states, canonical

form of sn)
12: for each mintermi in allMinterms do
13: sgeneralized = extract from mintermi by adding ‘don’t care’ terms
14: Remove all cases in candidateCases
15: Add generalized case [sgeneralized, an, rn]
16: end for
17: // Step 2. Storing the new case
18: if no cases are generalized then
19: Create new case cn = [sn, an, rn] // new case created
20: Add cn to the case base // updated
21: end if

Algorithm 5 describes the entire process of this updating strategy in pseudocode.

Again, for the generalization process, the system first selects all cases that have the

same action as the adapted action an and the same benefit as the new benefit rn.

The states from the selected cases and the current state sn are then generalized by

reducing the features. This feature reduction is performed using the minimization

algorithm [97, 101]. After the reducible features are determined, those features are

valued as ‘don’t care’ and the cases are generalized. If none of the cases are merged
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and generalized in the previous step, a new case cn = [sn, an, rn] is created and stored

in the casebase for future use. By using this updating strategy, the casebase can

maintain the best situation-action pairs that can provide the largest benefit to the

deceived humans.

Example: Updating Casebase

After performing the adapted action, the new case will be added to the casebase

or generalized with the current case(s) in the casebase. Let us assume that the

final case is cn = [< positive, incorrect, 20 >, at,+1]. The generalization/updat-

ing strategy is performed as shown below.
!

!

Find!Minterms!=!!!"#$%#&!"#$%$&'!!!!"##$"%!"#$%%&#' !!"#$%&'(!" + !!!"#$%#&!"#$%$&'!!!!"##$"%!"##$!% !!"#$%&'(!" !!
Minterms!=!{!!"#$%#&!"#$%$&'!!"#$%&'(!" }!
!
Algorithm*4* Example*
Determine*new*benefit*rn*from*an*expert* Let’s*assume*that*the*new*benefit*rn##=*+1*

/**Step*1.**Generalizing*the*cases**/*
candidateCases*=*{};**
FOR*each*case*c*in*Casebase*C*
****IF*c.r*==*rn*&&*c.a*==*an**
************candidateCases.add(c);*
allMinterms*=*ExtendedQNM*();***
FOR*each*mintermi*in*allMinterms*
****sgeneralizeed*=*extract*from*mintermi*by*adding*
‘don’t#care’*terms*
****Remove*all*cases*in*candidateCases**
****Add*generalized*case*[*sgeneralizeed,**an,*rn]****

currentCase*=*{[<positive,*incorrect,*20>,*at*,*+1]}*
*
candidateCases*=*{[<positive,*incorrect,*20>,*at*,*+1]}*,*[<positive,*
correct,*20>,*at*,*+1]}*
!
Find!!allMinterms!=!
!!!!!!!!!!!!!"#$%#&!"#$%$&'!!!!"##$"%!"#$%%&#' !!"#$%&'(!" + !!!"#$%#&!"#$%$&'!!!!"##$"%!"##$!% !!"#$%&'(!" !!
!

! Minterm*=*{!!"#$%#&!"#$%$&'!!"#$%&'(!" }*
! Generalized*case*[<positive,*don’t#care,*20>,*at*,*+1]*

/**Step*2.**Storing*the*new*case**/*
IF%no*cases*are*generalized*
*****Create*new*case*cn*=*[sn,*an,*rn]**
*****Add*cn*to*the*case*base*****************

/**Create*and*Add*generalized*case**/*
Add*generalized*case*cn*=*[<positive,*don’t#care,*20>,*at*,*+1]*to*the*
casebase*

!
!
Adaptation*Algorithm** Exemple*

IF*s*==*sn*
****an*=*a**

**<negative,*incorrect,*70>*!=*<positive,*incorrect,*20>*

ELSE*
****D*=*{}**
****FOR*all*features*in*s*
*******IF*fi,s*!=*fi,sn**THEN*D*←*D*U*{*i#}*

***
**D*=*{};*
**//*values*of*feature*femotion*and*flongterm*are*different*
**D*←*{emotion,*longterm}*

****FOR*all*feature*index*i*in**
*******FOR*all*rules*rsj*in*RS**
**********IF*(*rsj.featureIndex*==*i*&&***
****************rsj.adaptationCondition*==*True*)*********
******************an*←*Perform*rsj.adaptationRule;**

rsextreme_low_performance*contains*indices*longterm*&&*adaptation**
Condition*==*True*(flongterm*≤*20)*
******Perform*the*adaptation*Rule*
************!*an*=*at*

Finally, by generalizing the cases, the final casebase can be updated as shown

below.
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4.3.2 Exemplar Scenario

The deceptive action-selection model presented in Section 4.3.1 can be summarized

as shown in Figure 24. This computational model enables a robot to perceive the

current situation and to choose and maintain the action among alternative true and

deceptive actions. The goal of this subsection is to review this motive/opportunity

model with a specific example. One significant domain where we can assume to use

other-oriented deception is in the search and rescue situation. According to Lois’

case study [89] and International Association of Fire Chiefs’ (IAFC) manual [2], it

is essential for human rescuers to manage a victim’s emotions during the crisis sit-

uation, and for this purpose, other-oriented deceptions are sometimes used to calm

victims fears. Under this circumstance, the search and rescue domain is selected as

an example. There exist many di↵erent types of search and rescue contexts. More

specifically, the scene of fire is chosen as the exemplar scenario in this subsection.

89



Figure 24: Computational architecture for the motives/opportunities model
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Table 11: Exemplar Scenario: Data structure of state S

Feature Description

frespiration

{x|x = 1 if 10 < rrespiration < 30, otherwise x = 0}
: Normal or abnormal respiration
: r

respiration

from respiratory sensor (breaths per minute, bpm)

fpulse

{x|x = 1 if 60 < rpulse < 100, otherwise x = 0}
: Normal or abnormal ranges of pulse
: r

pulse

from pulse rate sensor (pulse beats per minute, pBPM)

fheartbeat

{x|x = 1 if 60 < rheartbeat < 100, otherwise x = 0}
: Normal or abnormal range of heartbeat
: r

heartbeat

from heart rate sensor (heart beats per minute, hBPM)

femotion
{x|x 2 {anger, disgust, fear, happiness, sadness, surprise}}
: Current emotional state from speech and pitch detection

ftemperature

{x|x = 1 if 14 < rtemperature < 32, otherwise x = 0}
: Normal or abnormal range of room temperature
: r

temperature

from digital temperature sensor (Celsius, �
C)

fgas
{x|x = 1 if rgas == false, otherwise x = 0}
: Gas detected or not, r

gas

from CO-gas detection sensor

Case C

In the opportunities/motives model, case is defined as c = [s, a, r], where s is

a situational state, a is an action, and r is the benefit. In this search and rescue

example, the mark’s state should represent/cover the human victim’s physical/emo-

tional conditions. As always, to ensure reasonable convergence times, the number of

states should not be too large. Here, the mark’s conditions are determined by four

internal features and two external features, and so, state s can be defined as s =<

Sphysical, Senvironmental >=< frespiration, fpulse, fheartbeat, femotion, ftemperature, fgas > where

Sphysical = {< frespiration, fpulse, fheartbeat, femotion > |frespiration 2 {1, 0}, fpulse 2 {1, 0},

fheartbeat 2 {1, 0}, femotion 2 {anger, disgust, fear, happiness, sadness, surprise}} and

Senvironmental = {< ftemperature, fgas > |ftemperature 2 {1, 0}, fgas 2 {1, 0}}. Here,

Sphysical is the set of features to perceive human victim’s internal/physical conditions

and Senvironmental’s two features are defined to perceive the current environmental

conditions. Detailed explanation of each feature in state s is shown in Table 11.

To determine those feature values, a robot first perceives and gathers sensory data
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through its di↵erent sensors. The robot can then use this data for extracting per-

ceptual features relevant for constructing the mark’s state space. In this example, this

sensory raw data set is defined asR = {rrespiration, rpulse, rheartbeat, remotion, rtemperature, rgas}.

From those di↵erent sensory data, features frespiration, fpulse, fheartbeat, femotion, ftemperature,

and fgas can be extracted as described in Table 11. The extractions from the raw

data to the feature values in this example are derived from the literatures [2, 121],

and it can be also determined by a human expert’s domain knowledge.

A set of actions contains the appropriate true and deceptive actions for each state.

True/default action is specifically defined for each state based on the literature or

expert perspectives. Then, from the true action, the deceptive actions are generated

by my deceptive action generation mechanism (in Section 4.2).

In a search and rescue situation, true action at can be defined as at = [vt, <

egpt, ft, pt >]. Here, vt is the verbal cue, which explains the current status to the

human victim. Nonverbal cues < egpt, ft, pt > represent the emotional gesture prim-

itive, facial expression, and proximity, respectively, and those values are determined

by the current environmental status. In other words, from the environmental state

se =< ftemperature, fgas >, it is necessary to classify the current environmental con-

ditions into negative, neutral, and positive classes (e 2 neg, neutral, pos). In this

example, the robot system simply determines the current environmental conditions

via following mechanism.

e =

8
>>>>>><

>>>>>>:

neg if ftemperature == 0&&fgas == 0

pos if ftemperature == 1&&fgas == 1

neutral otherwise

(7)

Finally, by discriminating the current class e, we can determine the true nonverbal

cues such as < egpe, fe, pe >.
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After determining the true action at = [vt, < egpe, fe, pe >], the deceptive ac-

tions can be generated through the deception by omission and deception by commis-

sion mechanisms. For example, situation s =< 1, 1, 1, anger, 1, 1 > can have a true

action such as at = [vt, < egppos, fpos, ppos >] since the environmental features fe1

and fe2 determine the positive state (e = pos). According to the deceptive action

generation mechanism, the deceptive actions can be generated such as ad1 = [vd, <

egpneg, fneg, pneg >] using deception by omission and ad1 = [vd, < egpnull, fnull, pneg >]

using the deception by commission mechanism. Finally, the exemplar situation

s =< 1, 1, 1, anger, 1, 1 > can have a set of actions such as {at, ad1, ad2}. For each

state s, those sets of actions are defined and generated through my deceptive action

generation mechanism.

Finally, the measure of benefits is defined as R = {r|r 2 Z ^ �3  r  3}. This

maximum and minimum numbers are determined based on the triage process [165].

In an emergency room (ER), triage is used to determine the priority of patients’ treat-

ments based on the severity of their condition. Simple Triage And Rapid Treatment

(START) is one popular triage method developed by Hoag Hospital and Newport

Beach Fire Department in California [165]. According to this manual, first respon-

ders can classify victims into four di↵erent groups by following this START algorithm

as shown in Figure 25. Inspired by this process, the benefits of human victims can

be also determined by observing the changes of victims’ triage group. And, since

the degree of victim’s severity can be four, the maximum and minimum numbers of

benefit is set as -3 (minor to expectant group) and +3 (expectant to minor group) in

this example; R = {r|r 2 Z ^ � 3  r  +3}.
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Adapted from http://www.start-triage.com/   Figure 25: The original flowchart of START Triage process; copyright and permis-
sion from http://www.remm.nlm.gov/, originally adapted from http://www.start-
triage.com/
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Table 12: Exemplar Scenario: Initial Casebase

Case#
State S

Action Benefit
frespiration fpulse fheartbeat femotion ftemperature fgas

1 1 1 1 anger 1 1 at -1

2 1 1 1 disgust 1 1 ad1 +1

3 1 1 1 fear 1 1 ad2 +2

4 1 1 1 happiness 1 1 at +3

5 1 1 0 sadness 1 1 ad1 0

6 1 0 0 anger 0 0 ad2 -3

7 1 0 0 disgust 0 0 at +1

8 0 0 0 fear 0 0 ad1 -2

9 0 0 0 happiness 1 0 ad2 -3

10 0 0 0 sadness 0 1 at -1

Initial Casebase

The initial casebase is determined manually and the benefits are filled by the ex-

perts. They are asked to rate the benefits of the action in the range of R by predicting

how much the human’s state will be improved or worsened in each case. As defined

above, the benefits should be determined between -3 and 3 inspired by triage four

categories, and therefore, experts are clearly asked to rate the benefits according to

this degree. Table 12 is the initial casebase in this exemplar scenario.

Case Retrieval

In a case retrieval stage, a robot should perceive the actual current situation and

compare it to the previously stored cases in the casebase. For this comparison, the

similarity scores between the perceived situation and each state in the casabas should

be calculated. As described in Section 4.3, the similarity metric can be defined as

follows.

�(sp, sc) =

P
i2S ki · wiP

i2S wi

(8)

Here, ki is a similarity score for each feature fi is calculated by Algorithm 2.
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Table 13: Femotion from basic emotion to [valence, arousal] w/ EARL classification

Basic Emotion Valence Arousal

Anger negative forceful

Fear negative not in control

Disgust negative forceful

Sadness negative passive

Happiness positive lively

Surprise positive reactive

Table 14: Examples of similarity lookup table (Table 15) calculation for the emotion
feature

Emotion
Femotion

Memotion(emotion1, emotion2)
valence arousal

Ex1
Anger negative forceful

M

emotion

(anger, sadness) = (1 + 0)/2 = 0.5
Sadness negative passive

Ex2
Happiness positive lively

M

emotion

(happiness, sadness) = (0 + 0)/2 = 0
Sadness negative passive

Ex3
Anger negative forceful

M

emotion

(anger, disgust) = (1 + 1)/2 = 1
Disgust negative forceful

In this search and rescue example, among di↵erent features, the features frespiration,

fpulse, fheartbeat, ftemperature, and fgas are categorical datum where cardinality of set

Fi is less then 2. Therefore, simple categorical matching can be used to calculate the

similarity scores. Emotional feature femotion is also categorical data, but it is more

complex with six categorical values. Since there are more than two categories, there

can exist shades of similarity. Thus, the simple one-step matching process is not

enough and similarity lookup table Memotion should be generated to find similarity

scores.

To create a similarity lookup table between emotional values, each basic emotion

should be specified in more detail using the Human-Machine Interaction Network on

Emotion (HUMAINE)’s emotion classification, named the emotion annotation and

representation language (EARL) [3]. In this classification, emotions are classified

96



Table 15: Similarity score lookup table Memotion for emotional feature

Anger Fear Disgust Sadness Happiness Surprise

Anger 1 0.5 1 0.5 0 0

Fear 0.5 1 0.5 0.5 0 0

Disgust 1 0.5 1 0.5 0 0

Sadness 0.5 0.5 0.5 1 0 0

Happiness 0 0 0 0 1 0.5

Surprise 0 0 0 0 0.5 1

into 10 categories where each category is represented in two dimensions. The two

dimensions of each category are valence and arousal. Based on this EARL classifica-

tion, the basic six emotions can be mapped to the two dimensional categories such

as:

Femotion(basicemotion) = {[valence, arousal]|valence 2 {negative, positive},

arousal 2 {forceful, notincontrol, passive, lively, reactive}}.

Mapping function Femotion from basic emotion to valence and arousal can be de-

fined as Table 13. Finally, by using this function Femotion, the similarity lookup table

Memotion(fi,p, fi,c) for emotional feature can be determined by the algorithm 6.

Table 14 illustrates the example calculations for similarity lookup table based on

this Algorithm. As a result, similarity lookup table Memotion for emotional feature

can be generated as Table 15.

Now, assume that a robot rescuer perceives the current state such as sn =<

1, 0, 0, fear, 1, 1 >. Figure 26 illustrates the similarity score calculation strategy be-

tween the current state sn and case 1 (< 1, 1, 1, 1, anger, 1, 1 >) in the initial casabase.

The similarity scores for each case can be calculated using the algorithm and finally

the rank of similarity can be determined as Table 16.
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Algorithm 6 Algorithm for calculating similarity lookup table for emotional feature

1: for all pairs of basic emotion values (emotion1, emotion2) do
2: Kemotion = 0
3: if Femotion(emotion1).valence == Femotion(emotion2).valence then
4: Kemotion ++;
5: end if
6: if Femotion(emotion1).arousal == Femotion(emotion2).arousal then
7: Kemotion ++;
8: end if
9: Memotion(emotion1, emotion2) = Kemotion/2;
10: end for

Figure 26: Similarity Score Calculation strategy
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Table 16: Exemplar Scenario: Calculating similarity scores and sorting

Case#
State S

Similarity score
frespiration fpulse fheartbeat femotion ftemperature fgas

2 1 1 1 disgust 1 1 0.75

3 1 1 1 fear 1 1 0.75

5 1 1 0 sadness 1 1 0.75

1 1 1 1 anger 1 1 0.625

6 1 0 0 anger 0 0 0.625

7 1 0 0 disgust 0 0 0.625

4 1 1 1 happiness 1 1 0.5

8 0 0 0 fear 0 0 0.5

9 0 0 0 happiness 1 0 0.5

10 0 0 0 sadness 0 1 0.5

Adaptation and Case Application

According to the final action selection process (Algorithm 3), the system deter-

mines case 3 as the best case such as cb = [s, a, r] = [< 1, 1, 1, fear, 1, 1 >, ad2,+2].

After, it should be adapted to the current situation. To apply the adaptation al-

gorithm, it is first necessary to have a set of predefined adaptation rules RS. In

this example, I can predefine the set of rules as shown in Table 17 based on several

literatures [2, 89].

Now, the action should be adapted. According to Algorithm 4, the di↵erences

between the best-case state and the current state should first be discriminated. As

shown in Figure 27, in this example, s and sn are di↵erent in features fpulse and

fheartbeat. Then, it should be adapted from the set of appropriate predefined rules

RS. Rule 1 should be chosen, since this rule’s feature indices include pulse and

heartbeat. Then, since the current situation as sn =< 1, 0, 0, fear, 1, 1 > satisfies the

adaptation condition (fpulse,n == 0 && fheartbeat,n == 0) of rule 1, the adaptation

rule applies and the adapted action an = at is used as a solution.
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Table 17: Exemplar Scenario: Rules for adaptation

Rule 1. Extreme condition of human victim

If vital features are di↵erent and the current values are false, we should consider victim’s
life-threatening status and adapt the action.

<rule> rs

extreme internal condition

<feature Index> respiration | pulse | heartbeat </feature Index>
<origin> Lois’ Article, IAFC’s 10 Rules for Fire Fighting </origin>
<active> true </active>
<description> Perform the true action when human victims are in an extreme condi-

tion. </description>
<adaptation Condition> (f

respiration,n

== 0 && f

pulse,n

== 0) | (f
respiration,n

==
0 && f

heartbeat,n

== 0) | (f
heartbeat,n

== 0 && f

heartbeat,n

== 0) | (f
respiration,n

== 0
&& f

pulse,n

== 0 && f

heartbeat,n

== 0) </adaptation Condition>
<adaptation Rule> a

n

= a

t

</adaptation Rule>
</rule>

Rule 2. Risky environmental condition

When the features for the environmental state are di↵erent and the feature values from the
current situation are false, we should consider it is a risky situation and adapt the action.

<rule> rs

risky external condition

<feature Index> temperature && gas </feature Index>
<origin> Lois’ Article, IAFC’s 10 Rules for Fire Fighting </origin>
<active> true </active>
<description> Perform the true action if the environment is very risky.

</description>
<adaptation Condition> f

temperature,n

== 0 && f

gas,n

== 0 </adaptation Condi-
tion>

<adaptation Rule> a

n

= a

t

</adaptation Rule>
</rule>

Rule 3. Contradictions of emotional states

If the victim’s emotional status is totally di↵erent in f

emotion

and f

emotion,n

, it is determined
as emotional contradiction, and the corresponding action should be adapted. Therefore, if
f

emotion

and f

emotion,n

are in the di↵erent categories (negative/positive), the adaptation
will be performed by regenerating the neutral gesture primitive and facial expression.

<rule> rs

avoid contradiction

<feature Index> emotion </feature Index>
<origin> Lois’ Article, Shim and Arkin’s Article </origin>
<active> true </active>
<description> Emotions are contradictory. </description>
<adaptation Condition> (f

emotion

2 E

negative

&& f

emotion,n

2 E

positive

) | (f
emotion

2
E

positive

&& f

emotion,n

2 E

negative

) </adaptation Condition>
<adaptation Rule> a

n

=< egp

n

, f

n

, p > </adaptation Rule>
</rule>
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!

!

Algorithm!3! Exemplar!Scenario!
IF!s!==!sn!
!!!!an!=!a!!

!!<1,!1,!1,!fear,!1,!1>!!=!<1,!0,!0,!fear,!1,!1>!

ELSE!
!!!!D!=!{}!!
!!!!FOR!all!features!in!s!
!!!!!!!IF!fi,s!!=!fi,sn!!THEN!D!←!D!U!{!i"}!

!!!D!=!{};!
!!!//!values!of!feature!fpulse!and!fheartbeat!are!different!
!!!D!←!{pulse,!heartbeat}!

!!!!FOR!all!feature!index!i!in!!
!!!!!!!FOR!all!rules!rsj!in!RS!!
!!!!!!!!!!IF!(!rsj.featureIndex!==!i!&&!!!
!!!!!!!!!!!!!!!!rsj.adaptationCondition!==!True!)!!!!!!!!!
!!!!!!!!!!!!!!!!!!an!←!Perform!rsj.adaptationRule;!!

!
!!!rsextreme!_internal_condition!contains!indices!pulse,!heartbeat!&&!!
!!!its!adaptation!!Condition!==!True!
!!!!!!!!Perform!its!adaptation!Rule!
!!!!!!!!!!!!!!!an!=!at!

!
<rule> rsextreme_internal_condition   
       <feature Index> respiration | pulse | heartbeat </feature Index>   
       <origin> Lois’ Article, IAFC’s 10 Rules for Fire Fighting </origin>   
       <active> true </active>   
       <description> Perform the true action when human victims are in an extreme condition. </description>   
       <adaptation Condition> (frespiration,n == 0 && fpulse,n == 0) | (frespiration,n == 0 && fheartbeat,n == 0) |  

(fheartbeat,n == 0 && fheartbeat,n == 0) | (frespiration,n == 0 && fpulse,n == 0 && fheartbeat,n == 0)  
       </adaptation Condition>  
       <adaptation Rule> an = at </adaptation Rule>  
</rule> 
!

 

 

 

 

 

 

 

Figure 27: Exemplar Scenario: Case Adaptation Process

Evaluation and Case Update

After the case application and reuse, the adapted action should be evaluated to

update the case. Figure 28 illustrates the case updating strategy with this example. A

human expert is asked to evaluate the change of victim’s state and rate the benefits

gained, if any. After getting the new benefit rn (+2 in this example), the update

algorithm should be applied. In this step, by following Algorithm 5, the system can

determine the current situation sn is not used to generalize any cases in the casebase,

and so the new case cn = [sn, an, rn] can be created with the current situational

state, adapted action and the new benefits. Finally, the new case cn is added to the

casebase as shown in Table 18. The newly updated casebase is maintained and reused

when the robot faces a new search and rescue situation in the future. Through these

experiences, the robot can gradually increase the accuracy and e↵ectiveness of its

true/deceptive behaviors over time.
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!

!

!
Algorithm!4! Exemplar!Scenario!
Determine!new!benefit!rn!from!an!expert! Get!new!rn""=!+2!

cn!=![<1,!0,!0,!fear,!1,!1>,!at!,!+2]!
/*!Step!1.!!Generalizing!the!cases!*/!
candidateCases!=!{};!!
FOR!each!case!c!in!Casebase!C!
!!!!IF!c.r"==!rn"&&!c.a"==!an"!
!!!!!!!!!!!!candidateCases.add(c);!
!
allMinterms!=!ExtendedQbM!();!!!
FOR!each!mintermi!in!allMinterms!
!!!!sgeneralizeed!=!extract!from!mintermi!by!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!adding!‘don’t"care’!terms!
!!!!Remove!all!cases!in!candidateCases!!
!!!!Add!generalized!case![!sgeneralizeed,!!an,!rn]!!!!
!

!
!
candidateCases!=!{[<1,!1,!1,!hapiness,!1,!1>,!at!,!+2]}!!
//case!4!is!added!to!candidateCases!since!values!of!action!and!
benefit!are!same!to!an!and!rn!
!
allMinterms!=!!!!
!!!!!!!!!!!!!!!!!!!"#$%!&'%()!!"#$% !!!!"#$%!"$!!!"#$%#&!"#$ !!"#$"%&!'%"!!"# +
!!!!!!!!!!!!!!!!!!!"#$%!&'%()!!"#$%!!!"#$%!"$!!"#$%#!!!""#$%&&!!"#$"%&!'%"!!"#!

! No!minterms!found!
! No!cases!are!generalized!

/*!Step!2.!!Storing!the!new!case!*/!
IF+no!cases!are!generalized!
!!!!!Create!new!case!cn!=![sn,!an,!rn]!!
!!!!!Add!cn!to!the!case!base!!!!!!!!!!!!!!!!!

//!Create!and!Add!new!case!!
Determine!cn!=![<!1,!0,!0,!fear,!1,!1!>,!at,!+2]!as!new!case!
!!!!!!Add!cn!to!the!casebase!

!
!
! Figure 28: Exemplar Scenario: Casebase Updating Strategy

Table 18: Exemplar Scenario: Final casebase with the newly updated case

Case#
State S

Action Benefit
frespiration fpulse fheartbeat femotion ftemperature fgas

1 1 1 1 anger 1 1 at -1

2 1 1 1 disgust 1 1 ad1 +1

3 1 1 1 fear 1 1 ad2 +2

4 1 1 1 happiness 1 1 at +3

5 1 1 0 sadness 1 1 ad1 0

6 1 0 0 anger 0 0 ad2 -3

7 1 0 0 disgust 0 0 at +1

8 0 0 0 fear 0 0 ad1 -2

9 0 0 0 happiness 1 0 ad2 -3

10 0 0 0 sadness 0 1 at -1

11 1 0 0 fear 1 1 at +2
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4.4 Summary

In this chapter, a computational model for a robot’s other-oriented deception has

been presented. This model is inspired by criminological definition of deception.

According to criminological findings, deception is analyzed by three criteria, which

are motives, methods, and opportunity. Similar to this approach, in this model a

robot first has to determine whether the current situation includes any motives to

perform the deceptive behaviors. If so, then a robot should generate the methods

to perform deception. Finally, by selecting among di↵erent true/deceptive behaviors,

it should be possible to determine which one is the most appropriate in a certain

situation, thus providing opportunity. According to this approach, the method model

has been first developed; deceptive action generation mechanism inspired by Bell and

Whaley’s deception categorization (section 4.2). Then, as the motive and opportunity

model, deceptive action selection mechanism is generated via CBR model (section

4.3). Finally, by integrating those models together, the computational model for a

robot’s other-oriented deception can be achieved. To show how the model works, this

computation model is also reviewed with a specific example in section 4.3.2. As a

next step, by successfully applying this computational model to the robotic system

and conducting appropriate HRI studies, the research hypotheses in this dissertation

should be tested and proved.
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CHAPTER V

EVALUATING ROBOT DECEPTION IN HRI STUDIES

The goal of this dissertation is to demonstrate that a robot’s other-oriented deception

can benefit humans in an appropriate situation. To achieve benevolent robot decep-

tion in HRI, a novel computational model for a robot’s other-oriented deception was

first developed and presented in the previous chapter (chapter 4). As a next step, the

proposed model should be applied to the robotic system and my research hypothesis

should be also evaluated. For this purpose, an appropriate HRI study is required.

This chapter will present a HRI study that is designed to evaluate the benefits of

robot deception during rehabilitation tasks.

As argued in the previous chapters, it is essential to validate an appropriate HRI

context when using robot deception capabilities. In the literature review chapter

(chapter 2), multiple situations where other-oriented deception commonly happens in

human-human interaction were reviewed. One context where other-oriented decep-

tion frequently happens is medicine. As described in the literature review, caregivers

(or therapists) sometimes use deceptive information or feedback to improve thera-

peutic e↵ects [72, 100, 24]. A well-known example involves the use of placebos to

benefit patients, who are deliberately deceived by doctors or nurses [100]. For reha-

bilitation, caregivers sometimes lie to patients if it can encourage them to accomplish

more during the task [24]. Inspired by such human cases, the HRI study in the re-

habilitation situation will be proposed in this chapter to evaluate my other-oriented

robot deception model.

Specifically, the study design is inspired by the daily activities of patients with

Parkinson’s disease (PD) and rehabilitation tasks used with an elderly population.
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The tasks are selected because rehabilitation with the PD patients and the elderly is

one context in which humans occasionally use other-oriented deception [171, 127]. By

conducting an HRI study, it is expected to observe whether a robot’s other-oriented

deceptive feedback can potentially help human subjects to increase their performance

in this rehabilitation task [144].

5.1 Potential other-oriented robot deception contexts and
Selected HRI study domain

As argued in the previous chapters (chapter 4), it is critical to determine the motive

for a robot’s other-oriented deception. From the motive, it is possible to select appro-

priate contexts in which other-oriented robot deception can be advantageously used.

These motives can be determined by observing human cases, where people use decep-

tion in a way that benefits the deceived person in certain situations. These existing

situations should be considered as potential cases for a robot’s use of other-oriented

deception.

In a crisis, a victim’s emotional state can seriously a↵ect their safety [89]. When a

victim’s cooperation is required during Search and Rescue, managing their emotions is

important. For this reason, human rescuers sometimes hide the truth of the situation

and act deceptively, such as not describing the severity of injuries or the situation to

victims accurately [89].

We can also observe other-oriented deception in education. One interesting theory

is the Pygmalion e↵ect [130]. According to Rosenthal and Jacobson’s study, students’

performance and learning e�ciency can be increased when teachers deceptively cre-

ate higher expectations for the students, motivating the students and increasing their

learning e�ciency. More generally, other-oriented deception is also observed in ev-

eryday life such as white lies or a surprise party [45].

From potential contexts, it is essential to select an appropriate HRI study domain

since human-subject studies contain several limitations. Most importantly, the study
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domain should support the research hypothesis. However, even though the domain

is suitable to provide evidence that proves the research hypothesis, some contexts

are impossible or di�cult to regenerate in the experimental settings. For example,

search and rescue (SAR) contexts present a practical and essential situation where

humans use other-oriented deception. However, generating SAR situation involving

human subjects in such studies can lead to unacceptable risks. In addition, it should

be considered whether it is possible to recruit proper subjects.

With these considerations in mind, a rehabilitation situation was selected as the

study domain in this research. As described, human caregivers sometimes use decep-

tive reactions with patients if it can encourage them to accomplish more during the

task [24]. In addition, simple rehabilitation tasks can practically be used in exper-

iments with minimal or no risks. For this reason, the study design was inspired by

rehabilitation tasks, especially the daily activities of Parkinson’s patients and reha-

bilitation tasks used in an elderly population.

Rehabilitation for PD patients and the elderly

The use of robotic technology is rapidly growing in our society in various contexts.

Among others, the healthcare industry has been revolutionized by the successful

implementation of robotic technology [25]. For example, not only is robotic surgery

widely available [59, 70], but robots also improve the quality of patient care, such as

the use of robot assistants in hospitals [76].

Today, more than 10 million people su↵er from Parkinson’s disease (PD) world-

wide and around 1 million Americans have been diagnosed with PD [112, 184].

Robotic technologies have been developed and are used to help PD patients and

caregivers. Many technologies to date are focused on the benefits related to PD pa-

tients’ physical rehabilitation [6]. For example, by using robotic training, PD patients

can prevent or delay their loss of motor control [115].
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To improve the use of robots in PD patients’ rehabilitation, robot deception can

potentially be beneficially used. To delay and prevent the loss of motor control, PD

patients perform several daily activities with or without the help of their caregivers. In

particular, the Performance Assessment of Self-Care Skills (PASS) manual illustrates

the list of patients’ daily activities [127]. Based on this manual, patients and caregivers

can evaluate a patient’s task performance to determine their capacity for daily living.

This manual is also commonly used for PD patients’ daily life, and, as a result, it is

reasonable to select tasks for PD patient’s rehabilitation from this manual. The PASS

manual consists of 26 tasks to test patients’ functional mobility, personal self-care,

and instrumental activities of daily living (IADL) with a cognitive/physical emphasis.

Among various activities, this study task was inspired by a medication-sorting task,

which is one of the core PASS tasks to test IADL with a physical emphasis. More

details on this task are presented in the Study Design section (section 5.2).

Similar to PD patients’ rehabilitation, tasks for elderly people’s rehabilitation are

potentially an essential context where other-oriented deception can be used, since

these tasks can sometimes also be motivated by caregivers’ deceptive feedback. In

particular, to evaluate elderly people’s physical and cognitive capabilities at the same

time, dual tasks are practically used [171]. A dual task consists of two di↵erent tasks,

one of which requires physical movement and the other requires cognitive loads. By

making people perform these two tasks at the same time, a dual task enables the

elderly to prevent and improve their motor and cognition skills. Inspired by it, the

HRI study was also designed to be a motor-cognition dual task (details in Section

5.2).

5.2 Study Design

The research hypothesis in this dissertation argues that a robot’s other-oriented de-

ception can benefit humans in a specific situation. To prove this hypothesis, an HRI
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study was designed for the rehabilitation situations. As illustrated in Section 5.1, the

study design is based on the motor-cognition dual task (details in the Study Domain

section 5.2.1). Briefly, when a participant performs the motor-cognition dual task,

a robot partner is placed next to the participant, and it generates feedback on the

participant’s performance using gestures. Here, the feedback is generated as honest

or deceptive based on the study condition (details in the 2 by 2 mixed-subject Design

section 5.2.2).

As described, this study design is particularly inspired by the daily activities of

Parkinson’s patients [127] and rehabilitation tasks used with an elderly population

[171]. Therefore, to validate the results, this study should be tested with a related

target population: only elderly people, those aged over 55 years old, should be re-

cruited for this study. With this target population, the study results can have more

impact for real rehabilitation situations. Due to the complexity of recruiting Parkin-

son’s patients, older people in general are only recruited for this study. However, the

results possibly can be extended to PD patients’ rehabilitation.

Finally, by conducting the study, it was possible to compare task performance

between the deception and true condition groups to assess whether deception aided

the participant. More details on the study design are presented in the following

subsections, and the study results are also reported in Section 5.3 later.

5.2.1 Study Domain

5.2.1.1 Motor-cognition Dual Task

In this study, the participant is asked to perform the motor-cognition dual task,

which is designed to measure changes in human engagement and performance. In the

motor-cognition dual task, a human is asked to perform motor and cognitive tasks

simultaneously.

The primary motor task design is inspired by a weekly medication-sorting task,

which is a common exercise for patients with Parkinson’s disease [127]. As described
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(a) Six di↵erent pills (b) Pill Organizers

Figure 29: Six di↵erent pills and two-row pill organizer in Medication sorting task

in Section 5.1, a medication-sorting task is one of the PASS tasks for patients [127]. In

particular, due to tremor (shaking) in hands, this task can sometimes be challenging

for PD patients, and for this reason, this task is commonly used for PD patients’

daily activities.

Similar to this task, the participant is asked to sort six di↵erently colored and

labeled pills in the weekly pill organizer. Figure 29(a) illustrates six pills used in the

study. The pills are in various sized and shaped containers. Each container has a

clear label to represent a medication’s name. Two pill containers have a child-proof

lid and other four containers have a general-type lid. Participants are asked to sort

these pills in the pill organizers. A seven-day pill organizer is used for this study.

There are two types of organizers: a one-row organizer and a two-row organizer. If

the instruction asks participants to sort medications simply based on days, they can

use the one-row organizer. Some tasks are more complicated by asking participants

to sort medications by AM/PM. In this case, they should use the two-row organizer,

which contains an AM row and a PM row separately as shown in Figure 29(b).

In the study session, participants are asked to sort medications according to the

instructions as shown in Figure 30. The instructions are shown on an iPad and when

one sorting task ends, the participant can hit the next button for the subsequent sort-

ing instruction. The participants should complete eight unique sorting tasks during

the experiment.
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Figure 30: Sorting Task Instruction shown on iPad

Figure 31: 3-back auditory task example

As a secondary cognition task, the n-back test is used [171]. While the participant

performs the motor task, ten n-back task questions are asked at random times. An

n-back task is a well-known assessment in cognitive science to measure a human’s

working memory. Briefly, a sequence of stimuli will be provided and the participant

is asked to remember a probe stimulus, which was presented earlier in n-steps. In

our study, auditory 3-back questions will be used. In other words, while the partici-

pant performs the medication-sorting task, the 3-back task will be randomly injected

by using pre-recorded audio. The beeping sound will be first providing to inform

participant that the 3-back task is about to begin. Then, the pre-recorded list of

letters will be played, for example: “B S B O X Q K.” After, the audio will sponta-

neously ask, “What was the third letter from the end?” As shown in Figure 31, the

right answer would be “X” in this example. As a result, since the participants do

not know when the sequence stops, they are required to remember the most recent

3-items in their short-term working memories. Before starting the real study session,

the participant can have enough practice sessions to become familiar with this type of
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(a) Nao Robot Platform (b) Happy (positive) gesture for
the correct answer

(c) Fear (negative) gesture for
the incorrect answer

Figure 32: Nao robot platform and its feedback of the participant’s performance

cognition task. If the participant asks more practice sessions, the experiment provides

examples as many times as participants requested. Once the participant says he/she

fully understands the task, the experimenter proceeds to the next step.

When the participant answers the 3-back questions, a robot partner generates

and shows feedback based on the deception condition (between-subject condition).

An robot was used as a robot platform [151] (Figure 32(a)). In the control condition

(without deception), a robot partner shows a positive gesture when the participant

gives the correct answer to the 3-back questions (Figure 32(b)). Similarly, a robot

partner generates a negative gesture when the participant answers the 3-back ques-

tions incorrectly (Figure 32(c)). When participants provide an ambiguous answer

(e.g., “I can’t remember” or “I don’t know”), it is recognized as a wrong answer, but

it provides “neutral” feedback, which is a “standby” gesture.

In the deception condition, a robot sometimes generates the “deceptive” positive

gesture. More specifically, when the subject incorrectly answers more than two ques-

tions, it provides a positive feedback even though the subject answers incorrectly

(more details in section 5.2.2).
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I argue that a robot’s deceptive behaviors can a↵ect beneficially the deceived hu-

mans if used in an appropriate situation. Therefore, in this study, it is expected that

the participant’s engagement or self-confidence is increased by this kind of decep-

tive robot feedback, which would indicate that a robot’s other-oriented deception is

successfully applied into a robotic system.

5.2.1.2 Payo↵s: Compensation Guideline

When discussing other-oriented deception, it is essential to consider real benefits or

payo↵s for the deceived humans. Therefore, it is also required to make participants

have a sense of real payo↵s throughout the study. For this purpose, compensation

is used as an experimental method. At the beginning of the study, participants are

informed that they are compensated based on their performance. This instruction is

to encourage participants’ motor-cognition dual task performance and to give a real

sense of benefit to the participants. In reality, all participants are compensated equally

and they receive the maximum amount regardless of their performance. Participants

are told about this hidden information during the experiment debrief, which occurs

at the conclusion of their individual sessions. The compensation guideline is given

as shown in Figure 33, and it is also delivered verbally by the experimenter at the

beginning of the study.

5.2.1.3 Experimental Setting

This study is a mixed-subject design. Besides the between-subject condition (with or

without deception), the within-subject condition is also run during the study. Within-

subject conditions are robot feedback vs. non-robotic visual feedback. By comparing

the results between those two conditions, I expect to see how a robot’s embodiment

a↵ects human’s engagement and performance. Therefore, each study is organized

by two sets of tests according to those two within-subject conditions. In the non-

robotic visual feedback condition, the same feedback mechanism is used as the robot
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Compensation 

!  If you complete all eight sorting tasks within 10 minutes 
and incorrectly answer 0 to1 question in the 3-back 
auditory tests, you will get $15.  

!  If you complete all eight sorting tasks within 15 minutes 
and incorrectly answer 2 or 3 questions in the 3-back 
auditory tests , you will get $10.  

! Otherwise, you will get $5.  

Human-Robot Interaction Study   
@ Mobile Robot Laboratory 

Figure 33: Compensation Guideline

Figure 34: Experimental Settings
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Figure 35: Sorting Task Instructions Examples

feedback condition; however, the subject’s feedback is shown by color with O or X

through the monitor screen. More details on the study conditions are presented in the

following subsection 5.2.2. The order of within-subject conditions to be performed is

counterbalanced.

Figure 34 shows the organization of the study environment. The pill organizers are

originally placed in the right side and participants are asked to move the organizers to

the “completed” zone in the left side when completing each sorting task. Medications

are placed with labels. All medications are vitamins and there are no risks using

those pills in this study.

Sorting task instructions are given by the iPad and the instruction screen is shown

as Figure 35. When completing each sorting task, participants should hit the “next”

button on the bottom of the page to proceed to the next one.

In this study, the feedback system is semi-autonomously controlled. First, to de-

termine whether the feedback should be positive or negative, the system must detect

the subject’s answers to the question. These answers can be detected automatically

using any speech recognition systems (e.g., Microsoft’s Sphinx Library). However,

since this study aims to observe the benefits of robot deception, but not accurate
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speech detection, the participant’s answer is input by the experimenter during the

study. In other words, if the participant gives an answer, the experimenter inserts it

using the keyboard input. Once the participant’s answer is given to the system, the

system automatically calculates whether the feedback method should generate posi-

tive or negative feedback using the deterministic model. Finally, the feedback system

is connected to one of the feedback methods (robot or monitor), which generates the

feedback.

5.2.2 2 by 2 Mixed-subject design

This study is structured as a 2 by 2 mixed-subject design to explore two research

hypotheses. First, the purpose of this study is to evaluate the benefits of a robot’s

deceptive feedback. The study aims to show from its results the following research

hypothesis: A robot’s deceptive feedback (reaction) can positively a↵ect a human’s

performance and engagement in the task.

To investigate this research hypothesis, a feedback condition is used as a between-

subjects condition. Half of the subjects are assigned feedback without a deception

condition (true condition), i.e., where the feedback to subjects’ performance is always

honest. The other half of the subjects receive feedback with a deception condition, i.e.,

which sometimes sometimes provides deceptive feedback to subjects’ performances.

By comparing the two group’s performances and engagements, the first research hy-

pothesis related to the benefits of deceptive feedback can be evaluated.

In addition to the benefits of deceptive feedback, one more research hypothesis

related to the e↵ect of a robot’s embodiment is evaluated in this study. Even though

the study can reveal the benefits of deceptive feedback, it could be argued why we

need to use humanoid robots as a feedback method. In other words, people can argue

that other feedback devices can be used more e↵ectively in such a rehabilitation

task. The second research hypothesis argues against this potential critique; i.e.,
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(a) Happy gesture for the correct
answer

(b) Sad gesture for the incor-
rect answer

Figure 36: Robot assistant’s feedback of the participant’s performance: Happy/Yes
gestures indicate the participant’s correct answer and Sad/No gestures mean the
participant’s incorrect answer

a physical robot’s deceptive feedback can increase a human being’s engagement and

enjoyment in the performance task. To analyze the e↵ect of a robot’s embodiment,

the within-subject conditions are used with robot feedback and non-robotic visual

feedback (monitor feedback). In other words, all participants are asked to perform

two task sets with two di↵erent within-subject conditions (once with robotic feedback

and once with monitor feedback). The order is counterbalanced.

Table 19 summarizes the design rationale for this study. More details of between-

subjects and within-subject conditions are also shown in the following subsections.

5.2.2.1 Between-subject conditions

To investigate the research hypothesis related to the benefits of robot deception, it

is necessary to observe whether humans performance or engagement receive benefits

with deceptive feedback compare to the true feedback. For this reason, 2 between-

subject conditions were defined, which are the feedback without deception condition

and the feedback with deception condition.

116



Table 19: 2 by 2 mixed-subject design

2 Within-subject Conditions

Research Hypothesis:

A physical robot’s deceptive feedback can increase a human being’s engagement and

enjoyment in the performance task

Condition 1. Robot Feedback Condition 2. Monitor Feedback

Feedback provided by a robot us-
ing its gestures

Feedback provided by a screen us-
ing color with O/X symbols

A positive (happy-yes) gesture
means correct, and a negative
(sad-no) gesture means incorrect
answer.

A green screen with an O means
correct, and a red screen with an
X indicates incorrect.

All 34 participants ran two task sets;

one set with a robot feedback and another with a monitor feedback - counterbalanced

2 Between-subject Conditions

Research Hypotheses:

A robot’s deceptive feedback (reaction) can positively a↵ect a human’s performance.

A robot’s deceptive feedback (reaction) can reduce a human’s frustration level.

Condition 1. Without Deception Condition 2. With Deception

Feedback of the participant’s per-
formance is honest

Feedback of the participant’s per-
formance is sometimes deceptive

Robot
Feedback
condition

A robot’s feedback is always hon-
est. If the participant provides
the correct answer, the robot
shows positive feedback. If the
participant provides an incorrect
answer, the robot gives negative
feedback.

When the participant tells wrong
answers more than twice, the
robot shows a positive feedback
even though it is the incorrect an-
swer.

Monitor
Feedback
condition

If the participant provides the
correct answer, the green light
with O symbol is shown on the
screen. If the participant provides
the incorrect answer, the red light
with X symbol is shown on the
screen.

When the participant tells wrong
answers more than twice, the
screen shows a green screen with
O symbol even though it is the
incorrect answer.

17 participants 17 participants
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(a) Robot feedback

(b) Non-robotic visual feedback

Figure 37: Between-subject conditions: (Left) Feedback without deception, (Right)
Feedback with deception

(a) Monitor feedback indicates the true an-
swer

(b) Monitor feedback indicates the false an-
swer

Figure 38: Non-robotic visual feedback of the participant’s performance: A green
screen indicates the participant’s correct answer and a red screen means the partici-
pant’s incorrect answer
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In the feedback without deception condition (true condition), the feedback of

participants’ performance is always true. After the participant answers each 3-back

auditory task question, the robot generates the honest feedback. In other words, if

the participant provides the correct answer on the 3-back task question, the robot

shows positive feedback (happy-surprise body gesture as shown in Figure 36(a)). If

the participant provides an incorrect answer on the 3-back task question, the robot

gives negative feedback (disappointed-sad body gesture as shown in Figure 36(b)).

Another between-subject group is the feedback with deception condition (decep-

tion condition). In this condition, when the participant correctly answers a 3-back

task question, the robotic agent provides positive/green feedback. However, when

the participant provides wrong answers more than twice in 3-back task, deceptive

feedback is provided (Figure 37). In other words, the robot shows a positive feedback

even though it is the incorrect answer.

When participants provide an ambiguous answer (e.g., “I can’t remember” or “I

don’t know”), it is recognized as a wrong answer, but it will provide “neutral” feed-

back, which is a “standby” gesture. However, in the deception condition, a robot will

generate the positive gesture deceptively. More specifically, when the subject incor-

rectly answers more than two questions in a row, it will provide a positive feedback

even though the subject answers incorrectly.

5.2.2.2 Within-subject conditions

To analyze the e↵ect of robot’s embodiment, the within-subject conditions is also

designed with robot feedback and non-robotic visual feedback. In the robot feedback

condition, after the participant answers 3-back task, feedback on the participant’s

performance is provided by a robot’s gesture (positive, negative, or neutral gesture).

As illustrated, a Nao robot is used and feedback is generated using body gestures

(Figure 37). In the non-robotic visual feedback condition (monitor feedback), instead
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of the robot, a small monitor screen is placed in front of the participant and non-

robotic visual feedback is provided using a green screen with an O, meaning correct

(Figure 38(a)), or a red screen with an X, meaning incorrect (Figure 38(b)).

While the participant performs the task, the monitor shows a black standby screen.

For each instance of feedback, the entire screen is changed to the red or the green

for two seconds, and then the screen return to the black standby screen. When the

participant gives an ambiguous answer, the monitor remains in the black standby

screen.

5.2.3 Study Procedure

An experimenter greeted the participant and invited him/her to the desk to complete

the consent form and pre-survey measures. The experimenter gave the participant

ample time to read through the consent form, then provided two more pre-survey

forms to complete (demographic information and predispositions).

After filling out all forms, the experiment started by explaining the study pro-

cedures to the participant. To avoid any potential biases or di↵erences, the exper-

imenter explained the study procedures according to the pre-approved script; the

experimenter first explained the medication-sorting task and then asked to run the

trial test. If the participant did not have questions, the experimenter explained the

3-back auditory tasks and also ran the trial tasks. The trial could be performed as

many times as the participant wanted.

Once the participant understood these two tasks, the experimenter explained the

motor-cognition dual task and informed the participant that he/she needed to run

these two tasks simultaneously. After completing the task introduction and trials,

the compensation guideline was also informed to the participant.

After the participant’s questions were answered, the study was started. Each

participant’s between-subject group was predetermined before he/she came to the
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experiment. According to this decision, the participant was assigned to either the

true or deception group. However, the participant was not informed of this group.

The order of within-subject conditions was also predetermined to maintain the

counterbalance. Based on the order of within-subject conditions, the first feedback

method (either robot or monitor) was setup and the study was started. After com-

pleting the first test set, the participant was asked to fill out two forms that measured

his/her impressions and feelings of the feedback method and task load. While the

participant answered the surveys, the experimenter changed the feedback method to

the second within-subject condition and prepared the next set of study tasks. The

second study set was conducted, and after, the same survey forms were asked to be

filled out.

when the participant completed both sets of tests and forms, the experimenter

informed the participant of the finish of the study and was asked to fill out the post-

survey form, gathering his/her opinions on the ethics of robot deception. When all

forms were complete, the experimenter debriefed the participant about the study

and the concealment within the study. In this step, the purpose of this study was

revealed and the participant was informed of his/her between-subject group. The

experimenter answered any questions that the participant had, and was asked to sign

the debriefing form to get the participant’s approval to use the study data. In this

debriefing session, the participant was also informed that the compensation guideline

was just an experimental method, and that the participant would receive the full

amount of compensation regardless of their performance. Finally, the experimenter

provided the compensation and concluded the study.

5.2.4 Measurements

To answer the research hypothesis, multiple objective and subjective measures are

gathered from the study as dependent variables. The main purpose of this study
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is to observe the benefits of a robot’s deceptive feedback. The benefits of robot

deception in this HRI study can be measured in multiple ways. First, by observing

the performance changes, the e↵ects of deceptive feedback can be determined. For

this purpose, objective measures of human’s performance are collected. For example,

if correctness of tasks is increase or decreased, it can indicate the changes of human’s

performance. In addition, participants’ emotional status can also reflect the e↵ects

of robot deception. In other words, if a human’s frustration level decreases or his/her

motivation increases, we can analyze those changes as beneficial e↵ects.

To measure the level of subjects’ frustration and other emotions, multiple self-

reported measures are gathered. Participants are asked to perform two sessions ac-

cording to the two within-subject conditions; robot and monitor feedback. After each

session, participants are asked to fill out the survey form, which asks the participants

their impressions of each feedback method (Appendix B.4).Similarily, subjective mea-

sures such as participants’ impressions of workloads are also gathered using NASA’s

Task Load Index (TLX) [67]. NASA’s TLX consists of six questions to measure peo-

ple/s workloads in di↵erent aspects. The six questions are about mental demand,

physical demand, temporal demand, performance demand, e↵ort, and frustration.

Participants can answer those six questions in 21 gradations from ‘very low’ to ‘very

high.’ Figure 39 shows this survey.

Finally, because robot deception is an ethically sensitive topic, participants’ eth-

ical opinions are also collected at the end of the study. The study results and more

details will be explained in the robot ethics chapter later (Chapter 6).

Objective Measures

• Correctness of 3-back task: measuring the number of correct answers out of

entire ten 3-back questions
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Participant #  
 
 

Motor-Cognition Dual Task Evaluation 
 
 

Mental Demand     How mentally demanding was the task? 
 

 
    Very Low         Very High 

 
 

Physical Demand  How physically demanding was the task? 
 

 
    Very Low         Very High 

 
 

Temporal Demand  How hurried or rushed was the pace of 
the task? 

 

 
    Very Low         Very High 

 
 

Performance Demand  How successful were you in accomplishing 
what you were asked to do? 

 

 
    Very Low         Very High 

 
 

Effort        How hard did you have to work to 
accomplish your level of performance? 

 

 
    Very Low         Very High 

!
!

Frustration        How insecure, discouraged, irritated, 
stressed, and annoyed were you? 

 

 
    Very Low         Very High 

!
!
!
!

Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index
Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.
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Figure 39: Self-reported measure: NASA’s TLX is collected after each task session.
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• Correctness of medication-sorting task: measuring the number of correctly-

sorted results out of the entire eight medication-sorting tasks

• Time to complete the entire task (seconds): measuring the time from pushing

the start button of the instruction (in iPad) to pushing the finish button

• Time to answer each n-back task (seconds): measuring the time from the end

of n-back task question to the start of participant’s answer

• Time to complete each individual medication sorting task (seconds): logging the

time from the time to start the current task page to pushing the finish button

Subjective Measures

• Impressions of the robot feedback and the monitor feedback

• Impressions of the task levels (NASA’s Task Load Index [67])

• Impressions/Opinions of robot deception

5.3 Study Results and Discussions

5.3.1 Demographic Information

A total of 34 subjects were recruited (22 females and 12 males). Since the task in

the study was designed based on elderly people’s rehabilitation tasks, the older adult

population (over 55 years old) were recruited. Participants were recruited using flyers,

email messages, as well as through word of mouth (Appendix B). The email was sent

to mailing lists that are tied to an elderly group (Georgia Tech’s Silver Jacket mailing

list). Georgia Tech’s Human Factors and Aging Lab also provided a list of potential

older adults participants and their contact information according to the IRB approval,

and this pool was also used for recruiting participants.
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Table 20: Demographic Information from 34 HRI study participants

The highest level of education

# of Partici-
pants

Percentage

High School 2 5.8%

Bachelor’s 16 47%

Master’s 8 23.5%

PhD’s 1 2.9%

other 7 20.5%

Technical level

Yes 8 23.52%

Somewhat 10 29.41%

No 16 47.06%

Computer experience

None 0 0%

Limited 2 5.88%

User Level 13 38.24%

Advanced User 16 47.06%

Programmer Level 2 5.88%

Advanced Programmer 1 2.94%

Prior experience with robots

Never 30 88.24%

Very limited interaction 3 8.82%

Interaction experience with military robots 0 0%

Interaction experience with industrial robots 0 0%

Interaction experience with entertainment or
educational robots

0 0%

Interaction experience with humanoid robots 1 2.94%
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Figure 40: Demographic Information Chart: Technology level, Robot interaction
experience, and Education level
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The average age of the subjects is 69.12 years old (std:8.17, min: 58, max: 95).

The basic demographic information for all subjects is shown in Table 20 and Figure

40. As illustrated, most participants (88.24%) did not have any prior experience with

robots. Since participants were asked to use an iPad during the task, their technical

level was asked and the results revealed that the average computer experience and

technical level are good enough to run the study.

Subjects are assigned to one of the between-subject groups in the study. Feel-

ings/emotions that people can have while interacting with a robot can be variable

across di↵erent people; therefore, even if the experimental environment is the same,

it is di�cult to say the study result is normalized unless those groups have a composi-

tion such that the average predisposition is roughly the same. This can be ensured by

finding no significant di↵erence between the two between-subject groups on predis-

position and personal trait measures taken by each participant. For this purpose, the

Negative Attitudes towards Robots Scale (NARS) data have been gathered from the

subjects via pre-survey [109]. This survey asks the subjects about their impressions

and attitudes to robots in general, and as a result, it enables researchers to under-

stand whether one group between conditions has disproportionately more people who

are uncomfortable with social robots. The survey form is attached in Appendix B.3.

When comparing the NARS survey results between the true and deception groups,

the t-test revealed no significant di↵erences (p-value = 0.32 > 0.05); therefore, the

study can claim validity when comparing other measures between these two groups

(true and deception groups) to support my research hypothesis.

5.3.2 E↵ects of robot deception

The main research question that this HRI study aims to answer is whether a robot’s

other-oriented deception can truly benefit human subjects.
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Research Hypothesis 1: A robot’s deceptive feedback (reaction) can positively a↵ect

a human’s performance in the task.

First, it is observed how the subjects performed the 3-back auditory task questions

in true and deception conditions. To figure out the performance benefit, objective

measures were analyzed. The number of questions the subjects answered correctly or

incorrectly are observed and analyzed. To test the e↵ects of other-oriented robot de-

ception, the data between true and deception conditions in the robot feedback group

is compared. In the deception condition, the cases where a robot deceptively showed

positive feedback to subjects’ incorrect answers were counted as an incorrect answer.

As shown in Table 21, in the true condition, 6.6 correct answers and 3.4 incorrect

answers were observed on average (�2 = 1.95). In the deception condition, subjects

answered the questions correctly 5.33 times and incorrectly 4.66 times on average (�2

= 0.97). The average number of times that the robot provided deceptive feedback is

1.93 (�2: 0.703, min: 1, max: 3). However, the t-test revealed no significant di↵er-

ences for this objective measure between true and deception conditions (p-value =

0.5 > 0.05), and therefore, the benefits of other-oriented robot deception were not

observed in terms of a human’s performance in this task.

Research Hypothesis 2: A robot’s deceptive feedback (reaction) can reduce a hu-

man’s frustration level in the task.

The deceived humans can also receive emotional benefits from robot deception.

To test this research hypothesis, several self-report measures were collected from the

Table 21: Task performance: Average number of correct and incorrect answers from
the true and deception condition

True Condition
Deception Condi-
tion

The average number of correct
answers

6.6 (�2 = 1.95) 4.66 (�2 = 0.97)
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Table 22: NASA’s TLX results: Average ratings from Deception and True groups;
Scale: 0 (very low) - 21 (very high)

Robot Feedback Condition

TLX Question
Deception
Group

True Group p-value

Mental Demand 10.647 12.823 0.174

Physical Demand 4.529 6.352 0.135

Temporal Demand 9.058 13.235 0.009

Performance Demand 11.647 12.117 0.384

E↵ort 10.47 14.411 0.006

Frustration 6.47 9.588 0.044

Monitor Feedback Condition

TLX Question
Deception
Group

True Group p-value

Mental Demand 11.176 14.764 0.1945

Physical Demand 4.647 5.588 0.175

Temporal Demand 9.411 13.47 0.137

Performance Demand 12 9.529 0.0721

E↵ort 12.764 13.47 0.3

Frustration 7.411 10.058 0.119

Figure 41: NASA’s TLX results from Robot feedback condition: Red-average ratings
from Deception group, Green-average ratings from True group
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subjects, and some of the results illustrate interesting findings. To measure subjects’

workload and frustration level, a NASA Task Load Index [67] was collected right af-

ter each task set. NASA’s TLX questionnaires ask the subjects to rate six questions

in 21 gradations on the scales (0-very low to 21-very high). The six questions are

about mental demand, physical demand, temporal demand, performance demand,

e↵ort, and frustration. As shown in Table 22 and Figure 41, TLX ratings for all six

questions are greater in true condition compared to deception condition. In particu-

lar, significant di↵erences are observed between true and deception conditions in the

following three of the six questions.

1) Frustration: How insecure, discouraged, irritated, stressed, and annoyed were

you? (Two-sampled t-test’s p-value = 0.044 < 0.05)

2) Temporal demand: How hurried or rushed was the pace of the task?

(Two-sampled t- test’s p-value = 0.009 < 0.05)

3) E↵ort: How hard did you work to accomplish your level of performance?

(Two sampled t- test’s p-value = 0.006 < 0.05)

As shown above, the answers to the three questions above showed significant

di↵erences between true and deception conditions. In particular, as illustrated in

Table 22, an average rating of the deception group’s frustration question was measured

as 6.47, which is significantly lower than the true group’s average ratings (9.58). In 21

gradations of the scales, 0 means “very low” and 21 indicates “very high.” Therefore,

low ratings can be interpreted as a lower frustration level: thus, the result can claim

that a robot’s deceptive feedback can significantly reduce subjects’ frustration level for

this task. Similar to this analysis, answers in temporal demand and e↵ort questions

also show significant di↵erences between two groups and the results can be interpreted

as that the subjects felt the task required relatively lower times (deception group:

9.057 vs. true group: 13.235) and e↵ort (deception group: 10.47 vs. true group:
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Table 23: Task performance: Average number of correct and incorrect answers from
the robot and monitor feedback condition

Robot feedback Monitor feedback

The average number of correct
answers

6.41 (�2 = 1.989) 5.38 (�2 = 1.96)

14.411) in the deception condition. This may result as the deceived humans are

motivated to engage the task more and achieve the task quickly. In sum, the results

can a�rm that a robot’s deceptive feedback positively a↵ected a human’s

frustration level, according to the self-report measures .

5.3.3 E↵ects of a robot’s embodiment

Research Hypothesis: A physical robot’s deceptive feedback can increase a human be-

ing’s engagement and enjoyment in the performance task when compared to non-

robotic feedback.

Another hypothesis is that the human-like robot’s embodiment could help the elderly

to engage in tasks and lead to a more enjoyable rehabilitation experience. For this

purpose, participants were asked to perform the task set twice with two di↵erent

within-subject conditions; monitor feedback and robot feedback. As shown in Table

23, in the robot feedback condition, the average number of correct answers is slightly

but not significantly greater than in the monitor feedback condition (p-value = 0.51

> 0.05).

However, several self-reported measures showed significant di↵erences. The re-

sponses are on a five-point Likert-scale and the ranges of ratings are di↵erent for each

question where definitions of rating 1 and rating 5 are opposite of each other (Ap-

pendix B.4). As shown in Table 24 and Figure 42, subjects were impressed that the

robot feedback was significantly more noticeable, helpful, trustful, and

interactive than the monitor feedback .

There were several interesting comments from subjects, which can reflect that
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Table 24: Self-reported measures: Impressions of a robot or monitor feedback; Aver-
age ratings (standard deviation) and p-value

Question: During this task, feedback from the (robot/monitor screen) was:

Scales Robot Monitor p-value

Noticeable(1) - Ignorable(5) 2.44 (1.3) 3 (1.477) 0.023

Interfering(1) - Minding its own busi-
ness(5)

3.52 (0.99)
3.647
(1.04)

0.29

Annoying(1) - Ino↵ensive(5) 2.82 (1.19)
3.911
(1.16)

0.383

Irritating(1) - Undemanding(5) 3.94 (1.2) 3.97 (1.08) 0.46

Bothersome(1) - Quiet(5) 3.5 (0.96) 3.82 (1.19) 0.124

Question: In your opinion, (robot/monitor screen) appeared:

Scales Robot Monitor p-value

Fake(1) - Natural(5) 3.44 (1.3) 3.79 (1.22) 0.105

Machinelike(1) - Humanlike(5) 2.64 (1.15) 1.97 (0.93) 0.0006

Unconscious(1) - Conscious(5) 4.08 (1.02) 2.94 (1.07) 2.59E-08

Artificial(1) - Lifelike(5) 3.17 (1.24) 1.91(0.96) 2.62E-08

Inert(1) - Interactive(5) 3.94 (1.09 ) 2.52 (1.46) 3.49E-05

Question: During the task, feedback from (robot/monitor screen) was:

Scales Robot Monitor p-value

Unhelpful(1) - Helpful(5) 3.52 (1.21) 3.14 (1.32) 0.0367

Not Trustful(1) - Trustful(5) 4.41 (0.74) 4.02 (1.05) 0.045

Boring(1) - Enjoyable(5) 4.26 (0.96) 3.22 (1.3) 0.044
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Figure 42: Post-survey results: Impressions of robot (red) or monitor (blue) feedback
during the task

subjects were more enjoyed and received positive e↵ects with robot feedback.

“Robot feedback: more enjoyable to do the task”

“There was a sense of wanting to please the robot, which was not there with the

computer monitor.”

“This was a lot of fun. I enjoyed interacting with the robot very much. he was very

cute.”

“Great interaction with Nao, just so enjoyed!”

The results reflect that subjects had a more enjoyable rehabilitation experience

with robot feedback and robot feedback worked as a positive reinforcement for par-

ticipants to engage more in the task.

5.3.4 Ethical Implications of other-oriented robot deception

Research Hypothesis: Robot deception is acceptable if it is used exclusively for the

deceived human’s benefit and advantage.

It is essential to discuss the ethical aspects of robot deception. Self-reported survey

measures were also gathered to access subjects’ opinions on the use of robot deception
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Figure 43: Post-survey results; Ethical Question: I can accept robot deception in
[Context in x-axis] if it is strictly used only to benefit humans; Scales in y-axis:
1-strongly disagree, 5-strongly agree

at the end of HRI study. The survey made several ethical statements and the response

was a rating on a five-point Likert scale (the ratings ranged from 1-strongly disagree

to 5-strongly agree). Questions asked broadly whether they would accept a robot’s

other-oriented deception. According to the results, regarding the statement: “A robot

can hide/misrepresent information if it can help humans,” the average answer was

3.24 (�2 = 0.88). In addition, the statement: “The robot should always be honest

in any circumstance,” received on average an answer of 3.0 (�2 = 1.12). “Robot can

intentionally/unintentionally deceive humans if it’s in an appropriate situation” was

rated 3.38 (�2 = 1.18) on average. In other words, these average ratings are around 3

points (undecided), which means the results illustrate that we cannot determine the

ethical acceptability of robot deception with these broad and high-level statements.

However, when specified the situation (context) are provided, subjects’ acceptance

rates slightly increased as shown in Figure 43. Here, survey questions asked the

statement: “I can accept robot deception in [certain context] if it is strictly used only

to benefit humans” using five di↵erent contexts as shown in Figure 43. The results

can form an ethical implication of robot deception such as “People can accept the use
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of other-oriented robot deception when an appropriate and specific context is clearly

determined.” In sum, the strong motives of deception in each context should

be discussed and validated when other-oriented robot deception is used

in HRI context .

The results revealed an interesting ethical implication such that motives and ap-

propriate contexts should clearly be declared before applying other-oriented decep-

tion to HRI situations. Even though such an interesting ethical implication related

to other-oriented robot deception was found, this result has limitations since survey

responses were collected in a small number of people and also they are in a target pop-

ulation (aging group). To generalize my argumentation, it is necessary to gather more

survey responses from the general public. For this purpose, a follow-up web-based

survey was conducted and the results are in Chapter 6.

5.3.5 Summary

With the increasing use of social robots in HRI, deception can be an important capa-

bility similar to its use by humans. In particular, I assert that robot deception should

be used when it o↵ers strong motives to benefit the deceived humans in an appro-

priate HRI context. In this HRI study, I presented an HRI context that potentially

contains motives for a robot’s other-oriented deception: elderly persons’ rehabilita-

tion tasks and Parkinson’s patients’ daily activities. By conducting an HRI study

in this context with 34 older adults, I validated several research hypotheses. First,

the results reveal that a robot’s deceptive feedback can positively a↵ect participants’

frustration level. Therefore, it supports the research hypothesis “a robot’s deceptive

feedback can positively a↵ect a human’s frustration in the task.” In addition, to argue

the e↵ects of a deceptive robot’s embodiment, I also compared the results between

robot feedback and monitor feedback. From the results, it can result that people

can have more enjoyable rehabilitation experience with robot feedback. In sum, this
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HRI study concludes that a robot’s deceptive feedback has the potential to help the

deceived subjects’ engagement and enjoyment in the task(s).

5.4 Extended HRI study

As described in the previous sections, the HRI study results revealed the beneficial

e↵ects of other-oriented robot deception in elderly’s rehabilitation tasks. The robot’s

deceptive behaviors in the previous HRI study were based on a deceptive action

generation model, which has been illustrated in section 4.2. However, deceptive action

selection (when to perform the deceptive or true feedback) was pre-defined from the

pilot study results. In other words, a robot deterministically performed the deceptive

feedback only when participants answered the question incorrectly more than twice.

To validate the dynamic deceptive action selection model for a robot, an extended

HRI study has been conducted.

The other-oriented deceptive action selection model was proposed in the compu-

tational model in section 4. In this extension, the proposed action selection model

was developed and programmed into the robot. After implementation, the same pro-

cedures as the previous HRI study were performed with the same target population

again to validate the model.

Action selection model using CBR

As described in section 4.3, the deceptive action selection model in this research

has been developed using a case-based reasoning mechanism. Multiple factors need to

be predetermined and implemented to apply to the deceptive action selection model.

First, case c = [s, a, r] of the CBR model should be defined. As described in section

4.3, a case c consists of state (s), action (a), and benefit (r). State features, which

describe the current status of the participants, have been empirically determined as

s =< fcurrent, fshortterm, flongterm, ftimetoanswer > by observing the previous HRI study
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results. These features demonstrate the subject’s current and previous performance,

and the definitions of each state are as follows.

fcurrent = {x|x 2 {1, 0}}: correctness in the current question where

x =

8
>><

>>:

1 if the participant answers the current question correctly

0 Otherwise

(9)

fshortterm = {x|x 2 {1, 0}}: correctness in the previous question where

x =

8
>><

>>:

1 if the participant answers the previous question correctly

0 Otherwise

(10)

flongterm = {x|0  x  10, x 2 Z} : correctness rate from the first to the current

question where

x = b10 · Numberofcorrectanswers

Numberofquestions

c (11)

ftimetoanswer = {x|x 2 {short, average, long}}: Time to answer the question where

x =

8
>>>>>><

>>>>>>:

short if t < 2 seconds

average if 2 seconds  t  3 seconds

long if t > 3 seconds

(12)

Here, t is the time from right after the end of the question to the beginning of the

participant’s answer. The conditional times for short, average, and long categories are

determined empirically by observing the previous HRI study results. According to

the previous study, the average time to answer the question was 2.35 seconds (min=
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1, max= 5.3). Therefore, the time to determine short and long periods are determined

as two and three seconds in this model.

The action is the same as the previous HRI study. There are positive and nega-

tive feedback gestures. True and deceptive responses can be determined based on the

participant’s current answer.

A = {atruepositive, atruenegative, adeceptivepositive, adeceptivenegative}

If fcurrent == 1, then action can be atruepositive or adeceptivenegative.

If fcurrent == 0, then action can be atruenegative or adeceptivepositive.

Finally, benefit is an essential feature in the deceptive action selection model,

because a robot should select true or deceptive feedback action to maximize the par-

ticipants’ benefits. The benefits are determined by whether performance improves,

worsens, or does not change. By comparing the correctness on the previous and the

current question, the benefit can be determined as shown below.

R = {r|r 2 R, r = rchanges ⇤ 0.6 + fnext ⇤ 0.4} where

rchanges =

8
>>>>>><

>>>>>>:

�1 if fcurrent == 1 and fnext == 0

1 if fcurrent == 0 and fnext == 1

0 Otherwise; no changes

(13)

fnext =

8
>><

>>:

1 if participant’s answer from the next question is correct

0 otherwise

(14)

Two parameters are used to determine the benefits of the subjects. First, the

participant’s performance in the next question is used to observe whether a robot’s
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feedback positively or negatively a↵ects the participant. For this, fnext parameter is

used to calculate the benefit r, and it can be determined as shown in equation 14.

More importantly, improvement of the participant’s performance can be an essential

feature to indicate the e↵ects of feedback. Here, rchanges indicates whether the par-

ticipant’s performance changes compared to the previous performance. To measure

this, the participant’s correctness to the current and the next questions is observed.

As shown in equation 13, when the participant answers the current question incor-

rectly, but answers the next question correctly, this can be interpreted as increased

participant’s performance and received “benefits” from a robot’s feedback. Param-

eter rchanges is defined to observe such performance changes from the correctness of

current question to the next question. By observing this change, we can determine

whether a robot’s true/deceptive feedback a↵ects human’s performance, as described

in equation 13. The weights for these two features are empirically determined by the

experimenter. In the current version, the experimenter observed the previous HRI

study and manually determined the weights as 0.6 for parameter rchanges and 0.4 for

parameter fnext. Note that, as shown in this equation, a robot should observe the

correctness for the next question to calculate the benefit. Therefore, the benefit is

determined in the next question phase by observing fnext. As a result, the casebase

update is also determined one step later.

In addition to the case definition, the initial casebase should be also populated.

The experimenter can determine the initial casebase by analyzing the experimental

results in the previous HRI study. The predetermined initial casebase in this study

has been empirically determined as shown in Table 25.

Based on these definitions, a robot’s other-oriented action selection model has

been implemented and applied to the robotic system. The reference source code is

attached in appendix (Deceptive Action Selection main class in Appendix D.1, Case-

base class in Appendix D.2).
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Table 25: Extended HRI study Initial Casebase (predetermined)

Case#
State S

Action Benefit
fcurrent fshortterm flongterm ftimetoanswer

1 1 1 10 short atruepositive 0.9

2 0 0 5 long adeceptivepositive 0.7

3 1 0 5 average atruepositive 0.7

4 0 0 3 long adeceptivepositive 0.7

5 0 0 2 short adeceptivepositive 0.3

6 1 0 2 short adeceptivenegative 0.3

7 0 1 9 average atruenegative 0.5

Study Results and Discussions

The main research hypothesis related to other-oriented robot deception has al-

ready been proven from the results of the previous HRI study, and the goal of this

extended HRI study is to observe whether computational models of other-oriented

deception work properly. Since the computational model’s proper working is only

needed to be evaluated, we included only five more participants. Participants were

recruited and the same HRI study was run. Again, only elderly people were recruited

and the HRI study procedures remained the same. Table 26 illustrates the basic

demographic information.

The only di↵erence from the previous study was how the robot determined the

moment to perform deceptive feedback. In the previous study described above, a

robot performed deceptive feedback when participants incorrectly answer the ques-

tions more than twice. In contrast to the previous HRI study, in this extended study

a robot can dynamically determine the moment to perform deceptive feedback by

observing the previous experiences (casebase).

The only di↵erence from the previous study was how the robot determined the

moment to perform deceptive feedback. In the previous study described above, a
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Table 26: Demographic Information from Five extended HRI study participants

Average Age: 67.2 (min: 57, max: 73, �2: 6.18)

The highest level of education

# of Participants Percentage

High School 0 0%

Bachelor’s 2 40%

Master’s 1 20%

PhD’s 1 20%

other 1 20%

Technical level

Yes 2 40%

Somewhat 2 40%

No 1 20%

Computer experience

None 0 0%

Limited 0 0%

User Level 1 20%

Advanced User 4 80%

Programmer Level 0 0%

Advanced Programmer 0 0%

Prior experience with robots

Never 5 100%

Very limited interaction 0 0%

Interaction experience with military robots 0 0%

Interaction experience with industrial robots 0 0%

Interaction experience with entertainment or
educational robots

0 0%

Interaction experience with humanoid robots 0 0%
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Table 27: Extended HRI study results from all five participant: task performance
(number of correct answers) and deceptive action generation results (number of de-
ceptive feedback)

Participants
number of cor-
rect answers

number of de-
ception

number of
adeceptivenegative

number of
adeceptivepositive

1 6 4 1 3

2 7 4 2 2

3 4 5 2 3

4 8 1 0 1

5 6 4 1 3

average 6.2 3.6 1.2 2.4

�

2 1.483 1.5166 0.837 0.894

robot performed deceptive feedback when participants incorrectly answer the ques-

tions more than twice. Di↵erent from the previous HRI study, in this extended study,

a robot can dynamically determine the moment to perform deceptive feedback by ob-

serving the previous experienceeriences (casebase). Therefore, it is expected that a

robot generates deceptive behaviors more or less than the deterministic models ac-

cording to prior experiences. Table 27 illustrates the results of this extended HRI

study. As shown in the table, it is observed that the average number of deceptions

increased to 3.6 (�2: 1.5166) compared to the average number of deceptions using the

deterministic model in the previous HRI study (1.93, �2: 0.703). From this observa-

tion, it can be argued that this study reveals this computational model could make a

robot perform deceptive feedback more dynamically in this study domain.

As illustrated in the robot’s action definition, there are two ways for the robot

to perform the deceptive feedback. First, a robot can deceptively perform positive

gesture when participants answered incorrectly (adeceptivepositive). In addition, a robot

can also perform deceptive feedback by showing negative gesture even though partici-

pants answer the question correctly (adeceptivenegative). In the previous study, the robot

142



only performed deceptive “positive” feedback (adeceptivepositive) when participants an-

swer the question incorrectly. However, since the robot in this action selection model

can dynamically determine the deceptive feedback based on experience, the robot can

also perform deceptive “negative” feedback (adeceptivenegative).

According to the results of the study, deceptive “positive” feedback was observed

an average of 2.1 times. Additionally, deceptive “negative” feedback was performed by

the robot an average of 1.2 times. Due to the small study participants in the extended

study, a direct comparison of the previous HRI study results to the current results is

inadequate. However, it can be argued that these results are still interesting, since

both deceptive “positive” feedback and deceptive “negative” feedback were observed

to be performed from the robot and this can be extended to argue that the dynamic

action selection model could potentially work with real human subjects.

In the previous HRI study, the deceived human’s benefit to robot deception were

verified by frustration level and positive impressions to robot feedback. In this ex-

tended study, NASA’s TLX and post surveys were also collected to measure these

factors, and Tables 29 and 28 illustrate the results of these self-reported measures.

Again, due to the small number of participants in this extended study, it is inadequate

to claim that the participants’ frustration levels are similarly low to in comparison to

the levels in the previous HRI study. However, the average rating 4.8 (�2 = 3.898) is

a significantly low number in comparison to the median of the scale. Even though it

is inadequate to claim participants’ benefits statistically, these results can be an indi-

cation of the potential benefits of other-oriented robot deception with this dynamic

deceptive action selection model.

5.5 Summary

This dissertation demonstrates whether a robot’s other-oriented deception can be ap-

plicable in an appropriate HRI context and whether it can truly benefit the deceived
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Table 28: Extended HRI study self-reported measures: Impressions to a deceptive
robot, average ratings from the five participants

Question: In your opinion, during this task, feedback from the robot was:

Scales(1-5) Average Rating

Noticeable(1) - Ignorable(5) 4.4 (�2 = 0.547)

Interfering(1) - Minding its own business(5) 3.8 (�2 = 0.836)

Annoying(1) - Ino↵ensive(5) 3.8 (�2 = 1.303)

Irritating(1) - Undemanding(5) 4 (�2 = 1.0)

Bothersome(1) - Quiet(5) 3.4 (�2 = 0.547)

Question: In your opinion, the robot appeared:

Scales(1-5) Average Rating

Fake(1) - Natural(5) 2.8 (�2 = 1.308 )

Machinelike(1) - Humanlike(5) 2 (�2 = 0.707)

Unconscious(1) - Conscious(5) 4 (�2 = 1.0)

Artificial(1) - Lifelike(5) 3 (�2 = 1.224)

Inert(1) - Interactive(5) 3.6 (�2 = 1.14)

Question: During the task, feedback from the robot was:

Scales(1-5) Average Rating

Unhelpful(1) - Helpful(5) 3.4 (�2 = 1.14)

Not Trustful(1) - Trustful(5) 3.8 (�2 = 1.303)

Boring(1) - Enjoyable(5) 4.8 (�2 = 0.447)

Table 29: NASA’s TLX results: Average ratings from Extended HRI study’s partic-
ipants; Scale: 0 (very low) - 21 (very high)

TLX Question Average Rating

Mental Demand 11.2 (�2 = 4.02)

Physical Demand 5.2 (�2 = 5.16)

Temporal Demand 9.6 (�2 = 4.92)

Performance Demand 14 (�2 = 5.09)

E↵ort 13.6 (�2 = 4.15)

Frustration 4.8 (�2 = 3.898)

144



human partners. Based on the preliminary research and development of a computa-

tional model, this chapter discusses whether and how the research hypotheses in this

dissertation can be supported via several HRI studies and their results.

The main goal of the HRI study was to demonstrate that a robot’s other-oriented

deception can benefit humans in an appropriate situation. When applying other-

oriented deception to a robotic system, it is essential to first validate whether or not

a target context contains su�cient motive to perform other-oriented deception. This

can be determined by observing deceptions in human-human cases. In other words,

if humans perform benevolent deception in some specific contexts, we can argue that

those contexts potentially have motives for other-oriented robot deception. For this

purpose, multiple situations in which humans frequently use other-oriented deception

were reviewed. Finally, among di↵erent contexts, elderly’s rehabilitation was selected

as an HRI study context in this research.

The design of the HRI study was inspired by elderly people’s rehabilitation. In

particular, the elderly’s motor-cognition dual task was selected as the HRI study

task. When the participants performed the assigned motor-cognition dual tasks, the

robot assistant was placed next to them and provided feedback on their performance.

Basically, the robot provided positive feedback when participants correctly solved

the tasks and negative feedback when the tasks were solved incorrectly. However, the

robot was also capable of performing other-oriented deceptive feedback, thus motivat-

ing and encouraging the participants. Occasionally, the robot also generates deceptive

positive feedback even when the participants incorrectly answer the questions.

This HRI study aimed to observe whether a robot’s other-oriented deceptive feed-

back could help human subjects increase their performance in rehabilitation tasks.

34 participants over 55 years old were recruited and a two by two mixed-subject

study was conducted. The results revealed that a robot’s other-oriented deception
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can reduce the participant’s frustration and increase the participant’s enjoyment dur-

ing the rehabilitation tasks. Finally, from these results, the following two research

hypotheses were validated and the benefits of a robot’s other-oriented deception were

demonstrated.

• A robot’s deceptive feedback (reaction) can positively a↵ect the deceived hu-

mans in terms of frustration level in the performance task.

• A physical robot’s deceptive feedback can increase a human being’s engagement

and enjoyment in the performance task.

As argued in this dissertation, a robot’s other-oriented deception can positively

a↵ect the deceived humans in an appropriate situation. To further test my deceptive

action selection model, an extended HRI study was also conducted. The HRI study

procedures were the same, except the robot’s action selection was made using the

CBR-based deceptive action selection model. Five more participants were recruited

to re-run the study. From the results, it is observed that the model enabled a robot

to perform other-oriented deception dynamically.

The HRI study results in this chapter showed the successful use of other-oriented

robot deception and revealed the potential benefits for the deceived humans in an

appropriate context. Finally, robot deception is an ethically sensitive topic so par-

ticipants’ opinions were also collected from HRI studies. The results of these ethical

questions are discussed in the following chapter.
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CHAPTER VI

ROBOT DECEPTION AND ETHICAL ISSUES

The benefits of other-oriented robot deception have been discussed throughout this

dissertation. First, computational models to demonstrate other-oriented deception

were developed and proposed. Then, by conducting HRI studies, it was proven that

other-oriented robot deception can potentially be used in an appropriate context. In

addition, the proposed computational model was applied and evaluated. In sum, all

of these research results revealed the beneficial use of other-oriented robot deception

in HRI.

Despite the benefits of robot deception, relatively little research has been con-

ducted to date on this subject, perhaps as a result of ethical considerations involving

this somewhat controversial topic. Therefore, arguing ethical issues is essential in

this research. To discuss ethical argumentation related to robot deception, literature

reviews and survey research were conducted as described in the previous chapters. In

particular, post-survey responses related to ethical questions were collected from the

HRI study participants, as described in the previous chapters, to evaluate people’s

opinions on robot deception.

Multiple ethical implications were observed from the HRI study’s results. How-

ever, the study has many limitations. Survey responses were collected from a small

number of people (39 participants). In addition, the HRI study’s design was focused

on elderly people’s rehabilitation, and so all of the participants were recruited from a

specific target population (an aging group). Therefore, the findings from this study

are di�cult to generalize. To overcome these limitations, a web-based survey was
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conducted to collect the opinions and impressions of robot deception from the gen-

eral public. The ethical implications of robot deception, which were observed from

the online survey’s results, will be discussed in this chapter.

6.1 Robot Ethics

Robot ethics is a rapidly growing topic in many research areas including robotics,

psychology, philosophy, and law [136, 51, 87, 152]. Researchers aim to discuss and

understand the ethical consequences and implications when using robotic technology

in human society. At the present time, a variety of di↵erent topics are argued in

robot ethics, including eldercare and medical robots, autonomous robot missions in

military situations, entertainment and service robots, and so on.

Initially, a main focus of robot ethics was the discussion of military robots [88, 153].

When robots are used in battlefields we face critical ethical questions. Is it ethically

correct for a robot to autonomously decide to use lethal force?; in other words, can

a robot kill the enemy? Who should take responsibility for any mistakes that might

occur from the decision of an autonomous robot? Many other ethical arguments are

currently being extensively discussed in robot ethics areas [111, 137].

By increasing the use of social robots, ethical arguments related to robots in

human-robot interactions are also progressively expanding [87, 152, 143]. The use of

service robots in healthcare contexts is one obvious area with many ethical arguments,

as many service robots are developed to support the elderly or patients [106, 17]. In

such cases, since autonomous robots can directly interact with those populations,

people argue that the ethical consequences should be considered more carefully and

ethical verifications should be required beforehand [166, 143, 145].

Most recently, many companies have announced that autonomous vehicles are

ready to be deployed [177, 74]. Even though the technology for self-driving cars is

su�cient, there are still many ethical dilemmas and questions. For example, the
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classic ethical question, the Trolley problem [161], is now a practical issue in this area

[74]. To resolve many ethical issues concerning autonomous vehicles, carmakers and

researchers are developing algorithmic morality; however, this still requires extensive

discussion for agreement.

Among di↵erent topics, robot deception is a more critical topic for argument.

Practically, it is even complicated to state the ethical issues related to deception

than in human cases. However, it is obvious that this issue should be carefully

considered during the development and application of robot deception [10]. Many

ethical questions can arise when deception is applied to the robotic system [87, 177].

For example, we can face ethical questions such as “Is deception acceptable even in

humans?” or “Should a robot be allowed to lie?” Furthermore, since deception is

related to trust [65], the discussion of deception is getting more important.

To discuss ethical issues of robot deception, it is necessary to review the fun-

damental moral theories of deception in philosophy. According to Kantian theory,

deception or lies should always be prohibited, a standard outcome of any ethics class-

room in the application of the Categorical Imperative [34]. By this standard, any

deceptive behaviors or lies are morally incorrect, human or robot. The utilitarian

perspective, on the other hand, argues that an action is morally right and acceptable

if it leads to increasing total happiness over all relevant stakeholders [149]. By this

perspective, I can also argue that if deception increases the total benefits among the

involved relationships, it is ethically correct [149, 34]. More specifically, Bentham and

Mill [148] argued that it is morally right if and only if any behaviors/acts produce

overall increased happiness. In other words, an action is morally good if it provides

overall benefits. This ethical theory is called act-utilitarianism.

Related to robot deception, Reynolds and Ishikawa [122] discussed the role of

designers and robots and emphasized the importance of morally responsible entities.

Arkin [13] also pointed how important it is in discussing the ethical justification of
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robot deception.

In a↵ective computing, researchers have argued that the use of emotional robots

is deceptive. According to Coeckelbergh, emotional robots are deceptive since “1.

Emotional robots intend to deceive with their “emotions.” 2. Robotic emotions are

unreal. 3. emotional robots pretend to be a kind of entity they are not. [35]” For

example, when such robots are used in eldercare, peoples are led to believe that they

are loved or cared for by the robots, and according to the definition, this can be a

case of delusion [154]. Finally, by reformulating these three claims of emotional robot

deception to ethical criteria, he argued that the situation can also be considered “ideal

emotional communication” rather than deception.

More recently, Matthias suggested four criteria for robot deception [95]. He argued

that by fulfilling four conditions, robot deception can be morally permissible. These

four criteria are trust, autonomy, transparency, and safety. First, robot deception

should not betray patients’ trust by promoting patients’ interests. Also, deception

should support patients’ autonomy by supporting them to make decisions and control

the machines better. To be transparent to the patients, the fact that deception is

happening should be suggested at some point in the conversational context. Finally

and most importantly, deception should not lead to any harm to the patients.

There is also an HRI study related to the human moral stance and robot deception.

In Kahn’s HRI study [79], subjects were asked to play a game, and a humanoid

robot guided and observed their performance. After completing the game, a robot

debriefed the subjects but announced their achievement deceptively as being lower.

Here, researchers observed that 65% of the participants expressed some level of moral

accountability to the robot during the study. In addition, they also reported that by

adding more interaction capabilities to the robot (in terms of speech communication

skills), the rates to attribute moral accountability to the robot also increased. In

sum, this study revealed that more socially-intelligent robot deception caused many
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people to hold the robot morally accountable.

Researchers also sometimes argue the ethics of robot deception based on situa-

tions. Nijholt identified the potential situations or contexts in which artificial human

partners will be deceptive (or not honest) by analyzing human-human cases [108]. He

proposed four categories of situations in which natural deceptive interactions will be

used or required in human-robot or human-computer interactions. These four cate-

gories are 1) conversations and dialogues; 2) commerce, negotiation, persuasion; 3)

teaching, training, serious games; and 4) sports, games, and entertainment. There are

also several ethical arguments about robot deception in di↵erent contexts, including

economics and law [68], healthcare [95], and so on.

6.2 Ethical implications from the online survey’s results

This dissertation aims to evaluate the benefits of a robot’s deceptive behaviors in

a situation involving human-robot interaction. To support my research hypothesis,

human-subject studies were conducted and the results were analyzed in the previous

chapter (chapter 5). In sum, the study evaluated whether or not a robot can deceive

human subjects and assessed how those deceptive behaviors a↵ect human subjects

when performing a simple task. The results revealed that a robot’s deceptive feed-

back can help human subjects better focus on a task involving both motor skills and

cognition at the same time. Despite this result, robot deception remains an ethically

sensitive topic. To better understand the ethical issues of robot deception, I also gath-

ered the subjects’ ethical opinions at the end of the HRI studies. According to the

results, the participants were negative or undecided (about/less than 3.0 in average

rating) on the concept of robot deception in general, even though it was described as

other-oriented deception. For example, in the previous study, “A robot can hide/mis-

represent information if it can help humans,” was rated 3.24 (�2 = 0.88) where 1 is

strongly disagree and 5 is strongly agree. However, when the situation (context) was
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Figure 44: Post-survey results; Ethical Question: I can accept robot deception in
[Context in x-axis] if it is strictly used only to benefit humans; Scales in y-axis: 1-
strongly disagree, 5-strongly agree (recall from Figure 43); Average ratings to agree
to other-oriented robot deception in specific context increase.

specifically provided, the subjects’ acceptance rates increased. As shown in Figure

44, in search and rescue or medical situations, the average ratings of agreeing to use

other-oriented robot deception increased to 4.23 (�2 = 1.12) and 4.20 (�2 = 0.97).

From the results, I could initially formalize the ethical implications of robot deception

as “the strong motives of deception in each context should be discussed and validated

when other-oriented robot deception is used in an HRI context.”

However, the results have limitations since the study participants were limited to

older adult populations. In addition, there were only 39 participants in the study;

this small number means their opinions cannot be generalized. To overcome these

limitations, a web-based survey was conducted, and the opinions and impressions of

robot deception were collected from the general public. The survey questions are

identical to the post-survey questions in the previous HRI studies.

Participants were recruited using an email message. The email was sent to mailing

lists that are found from campus, neighborhood, and online communities. The email

message contains the link for the online survey, so if anyone wants to participate in
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the survey, they can directly move to the survey page by clicking the link. A web-

based consent form was gathered from participants. Once they open the survey link,

a web-based consent form is shown in the first page. Participants can proceed to the

survey questions only after accepting this form. Participants’ agreement about the

consent form is collected by pushing the “next” button on the bottom of the web-

based consent form. Any participants who can legally agree using the online consent

form are eligible for this study. Therefore, only those persons who are 18 years of age

and older are asked to participate in the study.

The captured screens of this web survey are attached in Appendix C.2. The survey

questions are identical to the ethical surveys from the HRI studies and the questions

aim to access subjects’ opinions on the use of robot deception in HRI. The survey

made several ethical statements and the response was a rating on a five-point Likert

scale (the ratings ranged from 1-strongly disagree to 5-strongly agree). Questions

asked broadly whether they would accept a robot’s other-oriented deception.

Overall, there were 174 participants in the survey, but 11 results were excluded

due to incomplete responses. Thus, a total of 163 subjects’ responses were analyzed.

Table 30 illustrates the demographic information.

Table 31 illustrates the overall results of this survey study. All 163 subjects’

responses were averaged for each question, and the results are represented in this

table. According to the results, the participants were not very nervous when facing

or interacting with a robot (average rating of Q1: 2.03 (�2 = 1.06), average rating

of Q2: 2.10 (�2 = 1.09) ). Similar to the results of HRI studies, subjects generally

disagreed with the statement of robot deception (average ratings of Q5: 2.92 (�2 =

1.06), Q7: 2.74 (�2 = 1.18), and Q8: 2.74 (�2 = 1.08)). In other words, these average

ratings were less than 3 points, which demonstrates that the participants could not

determine the ethical acceptability of robot deception with these broad and high-level

statements. However, as shown in the average ratings of Q9, when the situations
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Table 30: Demographic Information from a web-based Survey Study

Total: 163 (Female: 70, Male: 93)

Average Age: 35.98 (min: 18, max: 74, �2: 12.15)

Technical level

Yes 68 41.71%

Somewhat 60 36.80%

No 35 21.47%

Prior experience with robots

Never 51 31.28%

Very limited interaction 65 39.87%

Interaction experience with military robots 7 4.29%

Interaction experience with industrial robots 9 5.52%

Interaction experience with entertainment or
educational robots

27 16.56%

Interaction experience with humanoid robots 3 1.84%

Others 1 0.61%

Age group

Under 30 55 33.74%

31-40 53 32.51%

41-50 29 17.79%

Over 50 26 15.95%
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Table 31: Survey Results Overview (1-strongly disagree, 5-strongly agree)

Questions about Robot Intelligence

Question Average (�2)

Q1: I would feel nervous just standing in front of a robot 2.03 (1.06)

Q2: I would feel nervous interacting with a robot 2.10 (1.09)

Q3: If something bad happens, I might depend on robots too
much

2.46 (1.14)

Q4: If a robot’s intelligence became equal to a human’s in the
future, I would accept it

3.08 (1.19)

Questions about Robot Deception

Question Average (�2)

Q5: A robot can hide/misrepresent information if it can help
humans

2.92 (1.06)

Q6: The robot should always be honest in any circumstance 3.88 (0.96)

Q7: If humans can get benefits from robot’s deceptive behav-
ior, it can be accepted

2.74 (1.18)

Q8: Robot can intentionally/unintentionally deceive humans
if it’s in an appropriate situation

2.74 (1.08)

Q9: I can accept robot deception if it is strictly used only to benefit humans

in the following context.

Question Average (�2)

Search and Rescue 3.41 (1.21)

Education 3.41 (1.21)

Medical (Rehabilitation) 3.44 (1.13)

Sports or Entertainments 3.2 (1.26)

Everyday life 2.85 (1.23)
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(contexts) were specified, the acceptance rates of robot deception slightly increased

(Figure 45). Here, the survey statement was: “I can accept robot deception if it is

strictly used only to benefit humans in the following context.” From the literature

reviews of human’s other-oriented deception, five di↵erent contexts were selected as

shown below.

• Search and Rescue: Robot rescuer hides current situation to human victims to

calm down their panic level.

• Education: Robot assistant deceptively reacts to the students performance to

motivate them and increase their learning e�ciency.

• Medical (Rehabilitation): Placebo e↵ects; Robot caregiver lies to patients if it

can encourage them to accomplish more during the rehabilitation task.

• Sports or Entertainments: Robot soccer player fakes out opponents, thereby

redirecting the opponents’ actions.

• Everyday life: White lies.

These results were similar to those of the HRI study (chapter 5). When a specific

situation (context) was provided, the subjects’ acceptance rates slightly increased. In

other words, these results support the ethical implication that I established in the

previous chapter, which is that “People can accept the use of other-oriented robot

deception when an appropriate and specific context is clearly determined.” In sum,

the strong motives of deception in each context should be discussed and validated

when other-oriented robot deception is used in the HRI context.

The variations in demographic information were used to further analyze the re-

sults. First, it was observed whether or not people’s acceptance of robot deception

is di↵erent between age groups. Table 32 shows the survey’s results of responses by

age groups. The responses were divided into four age groups: under 30, 31 to 40,
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Table 32: Survey Results by Age Groups (1-strongly disagree, 5-strongly agree)

Questions about Robot Intelligence

Age Group Q1 Q2 Q3 Q4

under 30 1.98 (1.02) 2.05 (1.07) 2.36 (1.02) 3.36 (1.19)

31 - 40 2.17 (1.14) 2.23 (1.16) 2.63 (1.25) 2.84 (1.24)

41 - 50 2.10 (1.11) 2.20 (1.17) 2.41 (1.05) 3.0 (1.15)

over 50 1.68 (0.80) 1.72 (0.79) 2.36 (1.31) 3.04 (1.09)

Questions about Robot Deception

Age Group Q5 Q6 Q7 Q8

under 30 3.23 (0.98) 3.80 (1.07) 2.98 (1.07) 3.0 (1.12)

31 - 40 2.82 (1.11) 3.90 (0.77) 2.80 (1.15) 2.66 (0.97)

41 - 50 2.75 (1.09) 3.89 (0.97) 2.32 (1.30) 2.51 (1.08)

over 50 2.60 (0.95) 4.04 (1.09) 2.52 (1.15) 2.56 (1.19)

Q9: I can accept robot deception if it is strictly used only to benefit

humans in the following context.

Age Group SAR Education Medical
Sports and
Entertain-
ment

Everyday
life

under 30 3.69 (1.16) 3.69 (1.19) 3.41 (1.19) 3.39 (1.30) 3.05 (1.31)

31 - 40 3.51 (1.03) 3.44 (1.22) 3.67 (1.09) 3.19 (1.22) 2.80 (1.22)

41 - 50 3.62 (1.11) 3.17 (1.07) 3.37 (1.11) 2.96 (1.26) 2.62 (1.20)

over 50 3.52 (1.19) 2.96 (1.27) 3.16 (1.10) 3.12 (1.26) 2.8 (1.15)
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Figure 46: Survey Results by Age Groups: I can accept robot deception in [Context
in x-axis] if it is strictly used only to benefit humans; Scales in y-axis: 1-strongly
disagree, 5-strongly agree
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Table 33: Survey Results by Technical Levels (1-strongly disagree, 5-strongly agree)

Questions about Robot Intelligence

Technical? Q1 Q2 Q3 Q4

Yes 2.08 (1.07) 2.14 (1.05) 2.48 (1.11) 3.26 (1.19)

Somewhat 1.91 (1.01) 1.91 (1.06) 2.31 (1.12) 3.11 (1.14)

No 2.14 (1.14) 2.34 (1.21) 2.65 (1.23) 2.68 (1.20)

Questions about Robot Deception

Technical? Q5 Q6 Q7 Q8

Yes 3.01 (1.08) 3.76 (1.03) 2.94 (1.26) 2.86 (1.15)

Somewhat 2.98 (1.01) 3.91 (0.82) 2.81 (1.08) 2.81 (0.98)

No 2.68 (1.07) 4.08 (1.03) 2.22 (1.08) 2.37 (1.08)

Q9: I can accept robot deception if it is strictly used only to benefit

humans in the following context.

Technical? SAR Education Medical
Sports and
Entertain-
ment

Everyday
life

Yes 3.57 (1.06) 3.42 (1.18) 3.57 (1.06) 3.43 (1.18) 2.91 (1.27)

Somewhat 3.7 (1.10) 3.46 (1.11) 3.6 (1.09) 3.06 (1.26) 2.95 (1.15)

No 3.48 (1.19) 3.28 (1.42) 2.94 (1.23) 3.0 (1.37) 2.57 (1.26)

41 to 50, and over 50. As shown in the table, there was no significant di↵erence

among age groups across all of the questions. One interesting finding was that the

older groups (“41-50” and “over 50” groups) showed slightly low acceptance of robot

deception in all of the contexts (Q9 in Table 32). As shown in Figure 46, among the

five contexts, the di↵erence between the younger and older groups was largest in the

educational context (average rating from the “under 30” and “31-40” groups: 3.56

vs. average rating from the “41-50” and “over 50” groups: 3.06) and smallest in the

search and rescue context (average rating from the “under 30” and “31-40” groups:

3.60 vs. average rating from the “41-50” and “over 50” groups: 3.57).

We can hypothesize that subjects’ technical level and prior experiences with robots

could a↵ect their opinion on robot deception. To investigate this idea, the data was

analyzed by technical levels and prior robot experiences. Table 33 and 34 contain the

160



Table 34: Survey Results by Prior Robot Experience (1-strongly disagree, 5-strongly
agree)

Questions about Robot Intelligence

Robot Experience? Q1 Q2 Q3 Q4

Yes 1.81 (1.06) 1.89 (1.04) 2.44 (1.11) 3.46 (1.26)

No 2.12 (1.05) 2.18 (1.11) 2.46 (1.16) 2.93 (1.12)

Questions about Robot Deception

Robot Experience? Q5 Q6 Q7 Q8

Yes 3.10 (1.20) 3.68 (1.02) 3.19 (1.10) 3.02 (1.07)

No 2.86 (0.99) 3.97 (0.93) 2.56 (1.17) 2.62 (1.07)

Q9: I can accept robot deception if it is strictly used only to benefit

humans in the following context.

Robot Ex-
perience?

SAR Education Medical
Sports and
Entertain-
ment

Everyday
life

Yes 3.55 (1.19) 3.78 (1.12) 3.72 (1.13) 3.53 (1.27) 3.34 (1.27

No 3.62 (1.07) 3.25 (1.21) 3.33 (1.12) 3.06 (1.24) 2.65 (1.16)

Figure 47: Survey Results by Technical Level: I can accept robot deception in [Con-
text in x-axis] if it is strictly used only to benefit humans; Scales in y-axis: 1-strongly
disagree, 5-strongly agree
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Figure 48: Survey Results by Prior Robot Experiences: I can accept robot deception
in [Context in x-axis] if it is strictly used only to benefit humans; Scales in y-axis:
1-strongly disagree, 5-strongly agree

results of this analysis. Again, there are no significant di↵erences in the acceptance of

robot deception between di↵erent technical levels or prior robot experiences. However,

as shown in the table, the subjects who had prior interaction experiences with robots

had acceptance rates of robot deception slightly higher than other groups (Figure

48). The di↵erences between two groups were larger in the everyday life, educational,

and sport/entertainments contexts, whereas the di↵erence was significantly smaller

in the search and rescue context. From these results, I can also assume that when the

context is a more life-threatening situation, the acceptance rates are similarly higher

in all of the groups.

6.3 Summary

Robot deception is an ethically sensitive topic, and extensive ethical discussion is

required for this research. In fact, deception is an ethically arguable behavior even
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when performed by humans. However, it is also true that deceptive capabilities

include potential benefits, and by carefully applying this capability to the robotic

system, we can achieve more socially intelligent robots in human-robot interaction

contexts.

To discuss ethical argumentation related to robot deception, especially other-

oriented robot deception, the literature was reviewed and and survey research were

conducted. First, post-survey responses were gathered from HRI study participants,

as described in Chapter 5. However, these results had limitations since it only in-

cluded 39 participants from the target population (older adults group). To overcome

these limitations, a web-based survey research was conducted and 163 responses were

gathered from the general population.

The online survey results revealed that, in general, people do not accept robot

deception, even though it is described as other-oriented robot deception. However,

when the specific contexts or practical uses are clearly described, these acceptance

rates can increase. From the analysis of online survey results, the following findings

were illustrated in this chapter.

• An average ratings of agreeing to general concept of other-oriented robot de-

ception is less than points 3 (undecided).

• An average ratings of agreeing to use other-oriented robot deception increased

when an appropriate context is provided with justification.

• Related to demographic information, two features seem to a↵ect human’s ac-

ceptance to other-oriented robot deception, which are age and prior robot ex-

perience.

– The older people showed slightly low acceptance of robot deception.

– People who had prior interaction experiences with robots had acceptance

rates of robot deception slightly higher than other groups.
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• When the context is a more life-threatening situation and the use of other-

oriented deception is clearly verified, the acceptance rates are higher than other

situations.

I argue that this ethical implication highly correlates to the motives of robot decep-

tion. As explained before (Chapter 4), I formulated the robot deception mechanism

into three dimensions; motive, opportunity, and method. The ethical implications

determined from this survey argue that the context should be clearly validated. In

terms of my theory, validating (from domain experts) whether or not the context

includes strong motives for robot deception is essential for achieving other-oriented

robot deception. In sum, I argue that when other-oriented robot deception is used in

a practical situation, experts’ validation for the motives should be prioritized.
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CHAPTER VII

CONCLUSION

Deception is an ethically arguable behavior, but at the same time it is essential social

behavior for humans. We can observe human deceptive behaviors in a variety of

contexts including sports, culture, education, war, and everyday life. Deception is

not only limited to human beings. It is commonly used for the purpose of survival

in animals and even in plants. From these findings, it is obvious that deception is

a general and essential behavior for any species, which raises an interesting research

question: can deception be an essential characteristic for robots, especially social

robots?

Based on this curiosity, I aimed to develop a robot’s deception capabilities, es-

pecially in human-robot interaction situations. In addition, I strongly argued that a

social robot’s deceptive behaviors should only be used when it can produce benefits

for the deceived humans. As a result, my primary research question for this disserta-

tion was formalized as follows: Can a robot use deception in appropriate HRI domains

in order to benefit the deceived human partner?

To prove my primary research hypothesis, as well as to achieve this benevolent

robot deception, I broke my research down into five subsidiary questions. Throughout

this dissertation, I answered the subsidiary questions as follows.

1. What kinds of deception can be beneficial for those being deceived?

Objective: Humans and animals can use di↵erent kinds of deceptive behaviors.

Similar to humans and animals, robots can also perform deceptive behaviors for

specific purposes. Among di↵erent contexts, a number of potential situations in
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which, deceptive robot behaviors can be beneficial, should be investigated. The aim

of this research is to determine the appropriate use of robots’ deceptive behaviors

to benefit the deceived. Therefore, it is essential to understand in which particular

contexts robot deception may benefit deceived people.

Result and Contribution: Literature related to deception in a variety of fields was

reviewed in chapter 2. Deception in biology (section 2.1) and psychology (section

2.2) was highlighted, and previous work in robot deception was extensively reviewed

(section 2.3). Particularly, the definition of other-oriented deception in psychology

was introduced and also situational conditions for other-oriented deception in humans

were represented. To validate and determine the potential deceptive capabilities for a

robot to benefit the deceived humans, robot deception needs to be categorized. How-

ever, there is a lack of studies on basic knowledge and fundamental theory in robot

deception. To overcome this limitation, I reviewed previous research on deception

and developed a novel taxonomy for classification of robot deception as a preliminary

work (chapter 3). From this taxonomy, I defined the terminology of “other-oriented

robot deception.” Several clues on why deceptive behaviors are essential in a robotic

system were found. In addition, from the categorization of deception, potential con-

texts in which robot deception can benefit the human being deceived were discussed.

2. How can deceptive behaviors be applied to a robotic system?

Objective: Deceptive behaviors have to be applied appropriately to robotic sys-

tems. Since robots di↵er from animals and humans in their embodiment and mo-

tion/perception capabilities, it will be necessary to determine the most applicable

methodologies for robot systems under these limitations and conditions.

Result and Contribution: When applying behaviors or actions to a robotic sys-

tem, a robot’s capabilities and platform characteristics should be considered. In my

model, these factors were considered when developing a deceptive action generation
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model (section 4.2). Since this is one part of my computational model, it will be more

specifically described with the answer to question 3 below.

3. What formal theoretical/mathematical expressions are appropriate for generating

robot deception?

Objective: Algorithms should be developed to apply deceptive behaviors to the

robot system. Formal theoretical expressions and suitable computational models

require development. In particular, I am concerned about the deceptive capabilities

of robots in HRI contexts. Therefore, the development of formal deceptive expressions

for a robot while interacting with people is necessary for this research.

Result and Contribution: After arguing the importance of other-oriented robot de-

ception, the research aimed to achieve a model for a robot to perform other-oriented

deception. This was solved by answering subsidiary question 2 and 3. To achieve

other-oriented robot deception, a computational model for a robot’s other-oriented

deception needed to first be developed (Question 3) and implemented into an appro-

priated robot platform (Question 2). In chapter 4, a novel computational model for

a robot’s other-oriented deception was presented.

The model is inspired by criminological definition of deception. According to crim-

inological findings, deception is analyzed by three criteria, which are motive, method,

and opportunity. Similar to this approach, in my model a robot first has to determine

whether the current situation includes any motives to perform the deceptive behav-

iors. If so, then a robot should generate the methods to perform deception. Finally, by

selecting among di↵erent true/deceptive behaviors, it should be possible to determine

which one is the most appropriate in a certain situation, thus providing opportunity.

According to this approach, the method model was developed; a deceptive action gen-

eration mechanism inspired by Bell and Whaley’s deception categorization (section

4.2). Since the robot’s behavior or action depends on the robot platform’s features,
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the action generation model also included integration and filtering steps (Question 2).

Then, as the motive and opportunity model, deceptive action selection mechanism is

generated via case-based reasoning model (section 4.3). Finally, by integrating those

models together, the computational model for a robot’s other-oriented deception can

be achieved (Question 3). To show how the model works, this computation model

was also reviewed with a specific example at the end of chapter (section 4.3.2).

4. What are the most e↵ective evaluation methods and metrics to test the research

hypothesis?

Objective: After the computational models for generating robot deception are

determined and applied to robots, the algorithm must be tested to evaluate if it

is truly working. Furthermore, in this dissertation, I aim to address my research

hypothesis, which is that robots’ deceptive behaviors can benefit deceived people in

certain HRI contexts. The hypothesis must be tested to determine whether it is

correct according to the specific developed deceptive behaviors for the robot. To

answer these questions, we have to conduct well-designed HRI studies with human

subjects as evaluation methods.

Result and Contribution: After successful implementation, the research hypothe-

sis needed to be tested and proved via appropriate HRI studies. Chapter 5 discussed

several HRI studies and their results. As a study design process, it was essential

to validate an appropriate HRI context by observing human-human cases. For this

purpose, I reviewed multiple situations where humans frequently used other-oriented

deception, and finally selected elderly persons’ rehabilitation as an HRI study context.

The design of the HRI study was inspired by elderly’s rehabilitation. In partic-

ular, elderly’s motor-cognition dual task was selected as the task. While the par-

ticipants performed the assigned motor-cognition dual tasks, the robot assistant was

placed next to them and provided feedback to their performance. Basically, the robot
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provided positive feedback when participants correctly solve the tasks and negative

feedback when the tasks were solved incorrectly. However, the robot was also capable

of performing other-oriented deceptive feedback, and motivating and encouraging the

participants. Occasionally, the robot also generated deceptive positive feedback even

when the participants incorrectly answered the questions.

By conducting this HRI study, it was aimed to observe whether a robot’s other-

oriented deceptive feedback can help human subjects increase their performance in

rehabilitation tasks. 34 participants who are over 55 years old were recruited and

a two by two mixed-subject study was conducted. From the results, the average

frustration level rating was significantly reduced in the deception group (avg. = 6.47)

compared to the true group (avg. = 9.58). According to the self-reported measures

on impressions of a robot or monitor feedback, the average ratings of task enjoyment

were also significantly higher in the robot feedback group (avg. = 4.26) compared

to the monitor feedback group (avg. = 3.22). Therefore, it can be concluded that a

robot’s other-oriented deception can potentially reduce the participant’s frustration

and increase the participant’s enjoyment during the rehabilitation tasks.

To test the deceptive action selection model, an extended HRI study was also

conducted. The HRI study procedures were the same, except the robot’s action se-

lection was made by CBR-based deceptive action selection model. From the results,

it was observed that the model is performed appropriately with real human subjects.

Finally, chapter 5 demonstrated the successful use of other-oriented robot deception

and the potential benefits for the deceived humans in an appropriate context, as posed

in subsidiary question 4.

5. How should the ethical issues of robot deception be handled in HRI?

Objective: Even though robot deception can provide several advantages to hu-

mans, it is arguable whether deceiving humans is morally acceptable in HRI. I will

169



also consider this ethical issue thoughtfully in this research.

Result and Contribution: Using deceptive behaviors obviously leads to ethical ar-

guments, even in human cases. Therefore, a discussion of ethical issues in robot decep-

tion is an essential part of this research. For this consideration, I also reviewed moral

theories and ethical approaches to deception in section 2.4. In addition, to further

discuss ethical argumentation related to other-oriented robot deception I conducted

a survey research as represented in chapters 5 and 6. First, post-survey responses

were gathered from the HRI study participants. However, this result had limitations

since it only included 39 participants from the target population (older adults group).

To overcome this limitation, I extended this post-survey and conducted a web-based

survey research. As a result, I gathered 163 responses from the general population,

which can lead to generalized ethical implication for robot deception.

The survey results revealed that people do not accept robot deception (even

though it is described as other-oriented robot deception) in general. However, when

the specific contexts or practical usages are clearly described, people’s acceptance

rates can increase. I can argue that this ethical implication correlates to the motives

of robot deception. As explained before, I formalized robot deception mechanism in

three dimensions, which are motive, opportunities, and methods. The ethical impli-

cations found from this survey argues that the context should be clearly validated.

By answering the five subsidiary questions, I addressed my primary research hy-

pothesis. The benefits of robot deception in an appropriate HRI situation was demon-

strated. In sum, from the results of the primary and subsidiary research questions,

the following scientific contributions were accomplished in this dissertation:

• A novel taxonomy of robot deception is defined based on significant literature

reviews on deception in a variety of fields, such as psychology, biology, military,

economics, and so on.
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• A general computational model for a robot’s deceptive behaviors is developed

based on criminological law.

• Appropriate HRI contexts in which a robot’s other-oriented deception can gen-

erate benefits are explored and assessed.

• A methodology for evaluating a robot’s other-oriented deception in appropriate

HRI contexts is designed, and studies are conducted with human subjects.

• The ethical implications of other-oriented robot deception are explored and

thoughtfully discussed.

There remain many arguments and limitations to using robot deception in HRI

contexts broadly and practically. However, as shown in this dissertation, other-

oriented robot deception can potentially produce benefits to humans, and therefore,

the use of other-oriented deception should be considered for social robots in HRI.

Finally, I emphasize that this dissertation defined and achieved other-oriented robot

deception, so it can potentially contribute to developing a benevolent deceptive social

robot for human-robot interaction.
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APPENDIX A

EXPERIMENTAL SETTINGS OF SQUIRREL ROBOT

DECEPTION

A.1 Essential States and Triggers in MissionLab

To implement and evaluate the squirrel robot deception model, MissionLab is used.

General States and Triggers

State/Trigger Descriptions

GoTo
(parameter: location x, y)

The robot is move to the parameterized location
(x,y)

Wander The robot is wandering around the specified map.

State and Triggers for Squirrel Robot

State/Trigger Descriptions

DetectColorBlob
(parameter: color)

This trigger is activated when the vision server
detects the parameterized color (i.e., isBlobDe-
tected() in the vision server is activated).

StayUntil
The robot stop until n seconds, where n is deter-
mined by the number of cached items.

Prob con

The robot determines the distribution of transi-
tion probabilities of the current locations and it is
probabilistically likely to select one of the location
among current places.

Prob loc
The robot is probabilistically likely to select one
of the location among current places.
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State and Triggers for Competitor Robot

State/Trigger Descriptions

Prey found
(parameter: color)

This trigger is activated when the squirrel robot is
detected from the vision server. This trigger is the
modification from DetectColorBlob trigger.

Notified ObjectLocation
When the competitor robot receives the location
information of the detected prey from the vision
server, it processes to the next step.

Exceed Threshold
(parameter: time)

If the maintaining time of the notified object is
over the parameterized time (i.e., isOverThresh-
old() in the vision server is activated), this trigger
is activated.

A.2 Probabilistic Transition

Transitions based on the existence of probabilities to simulate environmental prop-

erties such as number of cached items. First, Pij is the transition probability that

indicates the location j is selected as the next patrol location when the current lo-

cation is in location i. In addition, n is the total number of locations and #itemx

indicates the number of food items in location x.

pij =
#itemsjP

lkn,k 6=j #itemsk

(15)

Based on the determined probabilities, a weighted roulette wheel algorithm is ap-

plied to decide the next transition. Using the transition probabilities, the proportion

of the wheel is assigned to each of the possible selections. Then, if the randomly

generated number is fitted to one of the proportion, it decides as the next transition:

R =random number between 0 and 1

NextLocationi =

8
>>>>>><

>>>>>>:

Location1, R  Pi1

Location2, R  Pi1 + Pi2

...

(16)
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Figure 49: Finite State Acceptors for competitor robot’s hunting strategy in Mission-
Lab

A.3 Implementation of Competitor Robot

A competitor robot has a simple strategy in the experiment. Here, the competitor

robot wanders around the map to try and find the squirrel robot. When it detects the

quarry, it determines whether it is at a potential caching location or not, by observing

how long the squirrel robot stays in place. Since the squirrel robot takes time to patrol

the caching place proportional to the number of food items, the competitor robot

obtains evidence of the caching area based on the robot?s time onsite. Therefore, if

the duration is over a threshold, set empirically, the competitor robot recognizes the

place as a caching area. The competitor robot then goes to the detected location

and pilfers. In our robot implementation, in the pilferage step, the competitor robot

confirms whether the detected location truly contains the items by discriminating

food items based on the colors. If it confirms the caching location, it sends the

alert message to the system that it has found the cached item. If it determines the

location doesn’t include the caching item, it returns to “wander” state and repeats

the detecting process again. Figure 49 shows the FSA of the competitor robot in
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the real robot experiment. As shown in this figure, the robot used GoTo, Wander,

MoveTowardObject, Detect, and Alert behaviors for the competitor robot?s strategy.

A.4 Parameters used in the real robot experiments

Squirrel Robot’s parameter setting in MissionLab

Move to location gain 0.9

Wander gain 0.0

Avoid obstacle gain 0.9

Avoid obstacle sphere 0.7

Avoid obstacle safety margin 0.2

Max velocity 1.5

Base velocity 1.5

Competitor Robot’s parameter setting in MissionLab

Move to location gain 0.9

Wander gain 0.5

Avoid obstacle gain 0.9

Avoid obstacle sphere 0.7

Avoid obstacle safety margin 0.2

Max velocity 1.0

Base velocity 1.0
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APPENDIX B

HRI STUDY SUPPLEMENTS

B.1 Study Flyer

 

 
STUDY PARTICIPANTS WANTED!!! 

 
 
The Georgia Tech Mobile Robot Lab is 
conducting a human-robot interaction 
experiment and YOU have a chance to 
interact with a humanoid robot Nao!  
 
The study will take place in Tech Square 
(TSRB building) at Georgia Tech, and 
you will be asked to perform interesting 
motor-cognition tasks with a NAO robot 
while we’re gathering your physiological 
data using E4 wristband (watch-like 
wearable device).  
 

This study is designed for elderly, so you must be at least 50 years 
old in order to participate. You have to have English language 
proficiency and should be physically free to move, read, and listen. 
This study will take no more than 60 minutes of your time. You don’t 
need to have any technical knowledge to participate in this study, 
and we invite all backgrounds to partake.   
 
As a token of our appreciation, you will receive $5~15 cash based 
on your task achievement. Participate and earn the maximum prize! 
 
If you are interested in participating, please contact Jaeeun Shim via 
email (jaeeun.shim@gatech.edu) or phone (404-831-1660). 
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B.2 Consent Form

Consent Form Approved by Georgia Tech IRB:  March 14, 2016 - February 18, 2017

GEORGIA INSTITUTE OF TECHNOLOGY
CONSENT TO BE A RESEARCH PARTICIPANT

Project Title:  Human-Robot Interaction Study

Investigators: Arkin, R.C., Ph.D. and Shim, J.

Protocol and Consent Title:  The Bene�ts of a Robot feedback
during  a  motor-cognition  dual  task  consent  form  for  adult
participation

You are being asked to be a volunteer in a research study. 

Purpose:   
The purpose of this study is to evaluate how a robot behaves
when it is interacting with humans. The results will help improve
the design of robots and promote robotics research.  We expect
to enroll 40-50 people in this study.

Exclusion/Inclusion Criteria: 
Participants in this study must be 50 years old or older and be
able  to  use  English  at  a  high school  level.  Also,  participants
should be physically able to move, read, and listen. 

Procedures: 
You will be invited to Georgia Tech’s Mobile Robot Laboratory,
where you will 0rst complete a questionnaire. After that, you will
be asked to perform a task in two di2erent conditions. 

The  task  is  sorting  weekly  pills.  While  you’re  doing  the
pill-sorting tasks, some questions will  randomly be asked and
you will try to answer. 

In one of the task’s study conditions, a small humanlike robot
will be placed next to you and provide feedback. The robot will
respond whether or not you answer the questions correctly, by
giving you a happy or sad gesture. 

In the other study conditions, instead of the robot, a computer
monitor provides feedback using a green or red color. Simply, it
will show you a green color if you answer correctly and a red
color if you answer incorrectly. 

The total study time should not exceed 60 minutes. 

Page 1 of 3
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Consent Form Approved by Georgia Tech IRB:  March 14, 2016 - February 18, 2017

During  the  study,  we  will  videotape  your  performance.  With

your  permission,  we  will  also  gather  your  skin  temperature,

heart  rate,  and  blood  pressure  using  a  wearable  device  (E4

wristband).  At the end of the study, you will be asked to 0ll out

another  questionnaire.  This  questionnaire  will  ask  you  about

your impressions and opinions of the robot. 

You  can  stop  at  any  time  during  the  study  for  any  reason.

During the study, you may be led to believe some things that

are not true. When the study is over, we will tell you everything.

At  that  time  you  can  decide  whether  to  let  us  use  your

information.  You  have  the  right  to  then  require  that  your

information be destroyed and not be used in the study.

Risks or Discomforts: 
This study should not put you at risk. The risks involved are no

greater than those involved in playing a video or a role-playing

game. 

Bene'ts: 
You are not likely to receive any signi0cant bene0ts from joining

this study.  However,  you will  have an opportunity to interact

with  a  humanlike  robot  and  expand  your  knowledge  about

robots in general.   

Compensation to You: 
For your time and e2ort, you will be compensated with between

$5 and $15 cash. 

Con'dentiality:
We  will  follow  some  procedures  to  protect  your  personal

information that you share in this  study:  The data collected

about you will be kept private to the extent allowed by law.  

To protect your privacy, your records will be kept under a code

number  rather  than  by  name.   Your  records,  including

videotapes, will be kept in locked 0les and only the study’s sta2

will  be  allowed  to  look  at  them.  The  videotapes  will  be

destroyed after we analyze the data.  Your name and personal

information  will  not  appear  when  we  present  or  publish  the

results of this study. At the end of this form, we will ask for your

written permission for use of any videos or photographs in our

demos and publications. 

To  make  sure  that  this  research  is  being  carried  out  in  the

proper  way,  the  Georgia  Institute  of  Technology  Institutional

Page 2 of 3
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Consent Form Approved by Georgia Tech IRB:  March 14, 2016 - February 18, 2017

Review Board (IRB) may review study records.  The O?ce of
Human Research Protections may also look over study records
during required reviews.

Costs to You: 
There are no costs to you, other than your time, for being in this
study.

In Case of Injury/Harm:
If  you  are  injured  as  a  result  of  being  in  this  study,  please
contact  Principal  Investigator,  Ronald  C.  Arkin,  Ph.D.,  at
telephone (404) 894- 8209.  Neither the Principal Investigator
nor  Georgia  Institute  of  Technology  has  made  provision  for
payment  of  costs  associated  with  any  injury  resulting  from
participation in this study.

Participant Rights:
 Your  participation in  this  study is  voluntary.  You do not

have to be in this study if you don't want to be.
 You have the right to change your mind and leave the

study at any time without giving any reason and without
penalty.

 You  will  be  given  a  copy  of  this  consent  form  if  you
request it.

 You do not waive any of your legal rights by signing this
consent form.

Con,ict of Interest:
None.

Questions about the Study:
If  you have any questions about the study, you may contact
Principal Investigator, Ronald C. Arkin, Ph.D., at telephone (404)
894- 8209 or at arkin@cc.gatech.edu.

Questions about Your Rights as a Research Participant:

If you have any questions about your rights as a research
participant, you may contact 

Ms. Melanie Clark, Georgia Institute of Technology
O?ce of Research Compliance, at (404) 894-6942.

Page 3 of 3
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Consent Form Approved by Georgia Tech IRB:  March 14, 2016 - February 18, 2017

If you sign below, it means that you have read the information
given in this consent form, and you would like to be a volunteer
in this study.

______________________________________________
Participant Name (printed)

______________________________________________ ______________
Participant Signature Date

______________________________________________ ______________
Signature of Person Obtaining Consent Date

Video Release:
With your permission, Georgia Tech Mobile Robot Laboratory may use
the video footage or photographs from the videos, which contain your
appearance. The photographs or video recordings will only be used for
research  or  educational  purposes.  This  may  include  conferences
displays, brie0ngs, workshops, etc, but not any commercial uses. 

If you sign below, it means that you accept the conditions of the
releasing your video as stated above.

______________________________________________
Participant Name (printed)

______________________________________________ ______________
Participant Signature Date

______________________________________________ ______________
Signature of Person Obtaining Consent Date

Page 4 of 3
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B.3 Pre-survey forms

Participant)#))______))
)
Demographics-Questionnaire-
)
1.) What)is)your)gender?)

☐))Female) ☐))Male)
)
2.) What)is)your)age?)))___________)
)
3.) What)is)the)highest)level)of)education)you’ve)achieved?))
) ☐))High)School) ) ☐))Bachelor’s) ) ☐))Master’s) ))☐))Ph.D.)) ☐))Other)___________)))
) ) ) ) )))))))))))))
)
4.) Do)you)describe)yourself)as)technical)(having)extensive)experience)or)interest)in)a)technical)field,))

such)as)engineering,)computing,)math,)etc)?)
☐))Yes)) ) ) ☐))Somewhat)) ) ☐))No)

)
5.) What)is)your)level)of)computer)experience?)

☐))None:))Never)used)a)computer)before)
) ☐))Limited:))Occasionally)use)a)computer)for)tasks)like)eSmail,)internet)or)word)processing)
))) ☐))User)Level:))Regularly)use)a)computer)for)tasks)like)eSmail,)internet)or)word)processing)
) ☐))Advanced)User:))Have)downloaded)and)installed)at)least)one)program)from)the)Internet)
) ☐))Programmer)Level:))Some)programming)language)or)network)administration)experience)
) ☐))Advanced)Programmer:))Extensive)training)or)experience)in)programming)languages))
)
6.) Have)you)ever)interacted)with)robots?)Please)check)all)that)apply.)

☐))Never) ) ☐))Very)limited)interaction)
☐))Interaction)experience)with)military)robots))))
☐))Interaction)experience)with)industrial)robots)
☐))Interaction)experience)with)entertainment/educational)robots)

) ☐))Interaction)experience)with)humanoid)robots)
)))))))))))))))☐))Other)–)please)specify)__________________________________________________) )
)
7.) Have)you)participated)in)another)experiment)with)this)robot)in)this)lab?)
) ☐))Yes)) ) ☐))No)
)
8.)) Please)choose)all)current)and)past)medical)conditions.)
)

☐)No)medical)problem)
)
☐)Diabetes)
☐)Bleeding)disorders)
☐)High)blood)pressure))
☐)Heart)attack))
☐)Stomach)ulcers))
☐)Blood)clots)in)legs/lung)
☐)Abnormal)heart)rhythm))

☐)Heart)failure))
☐)Stroke)
☐)Lung)disease))
☐)Asthma)
☐)Bronchitis)
☐)Emphysema))
☐)Kidney)Failure))
☐)Kidney)Stones))

☐)Liver)disease))
☐)Osteoporosis))
☐)Osteoarthritis))
☐)Cancer)–)where?))
)))))____________)
☐)Seizures))
☐)Anxiety)
☐)Depression)
☐)Seen)a)psychiatrist)

☐)Hearing)Loss))
☐)Deafness))
☐)Cataracts))
☐)Glaucoma))
☐)Macular)Degeneration))
☐)Blindness))
☐)Color)Blindness))
☐)Other:))____________)
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Participant)#))______))
)

Indicate)how)much)you)agree/disagree)with)the)following)statements.))Provide)a)rating)for)each)
statement)based)on)the)scale)shown)below.)
)

!
)

Strongly)
disagree)

Disagree) Undecided) Agree)
Strongly)
agree)

) ) ) ) ) )
Something)bad)might)happen)if)robots)
developed)into)living)beings.))))

1) 2) 3) 4) 5)

) ) ) ) ) )
I)would)feel)relaxed)talking)with)robots.))))) 1) 2) 3) 4) 5)
) ) ) ) ) )
I)would)feel)uneasy)if)I)was)given)a)job)
where)I)had)to)use)robots.)))))

1) 2) 3) 4) 5)

) ) ) ) ) )
The)word)“robot")means)nothing)to)me.))))) 1) 2) 3) 4) 5)
) ) ) ) ) )
I)would)feel)nervous)operating)a)robot)in)
front)of)other)people.))))))

1) 2) 3) 4) 5)

) ) ) ) ) )
I)would)hate)the)idea)that)robots)or)
artificial)intelligences)were)making)
judgments)about)things.)))))

1) 2) 3) 4) 5)

) ) ) ) ) )
I)would)feel)very)nervous)just)standing)in)
front)of)a)robot.))))))

1) 2) 3) 4) 5)

) ) ) ) ) )
I)feel)that)if)I)depend)on)robots)too)much,)
something)bad)might)happen.)))

1) 2) 3) 4) 5)

) ) ) ) ) )
I)feel)that)in)the)future)society)will)be)
dominated)by)robots.)))))

1) 2) 3) 4) 5)

) ) ) ) ) )
The)robot)should)always)be)honest)in)any)
circumstance.))))

1) 2) 3) 4) 5)

!
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B.4 Self-reported measures: Impressions to a robot feed-
back

Participant)#)
)

TURN)OVER)!))))
)

Please)reflect)back)on)your) interaction)with)the)robot)during)the)task)you)have) just)completed)as)you)
consider)the)questions)below.)Please&rate&your&impressions&of&the&robot&DURING&THIS&TASK&by&circling&
the&most&appropriate&number&on&the&scale:)

1. In)your)opinion,)during)this)task,)the)robot)was:))

Noticeable))) ) ) ) Ignorable))
)
)
)
Interfering)

) ) ) )))
))))))))))))))))Minding)its)own)business)

)
)
)
Annoying) ) ) ) Inoffensive)
)
)
)
Irritating))) ) ) ) Undemanding))
)
)
)
Bothersome)))

) ) ) )
)

Quiet)
)
)
)
)

2. In)your)opinion,)the)robot)APPEARED:))
)

Fake))) ) ) ) Natural)
)
)
)
Machinelike) ) ) ) ))Humanlike)
)
)
)
Unconscious) ) ) ) Conscious)
)
)
)
Artificial) ) ) ) Lifelike)
)
)
)
Inert) ) ) ) Interactive)
)

&

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)
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)
)

3. During)the)task,)the)feedback)robot)was:))
)

Unhelpful))) ) ) ) Helpful)
)
)
)
Not)Trustful))) ) ) ) Trustful)
)
)
)
Boring))) ) ) ) Enjoyable)
)
)
)
)
)

4. In)your)own)words,)please)briefly)describe)your)interaction)with)the)robot.)Please)mention)if)
there)were)any)changes)in)your)thoughts)or)feelings)throughout)the)interaction.)))

)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)
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B.5 Self-reported measures: Impressions to a non-robotic
visual feedback (monitor)

Participant)#)
)

TURN)OVER)!))))
)

Please)reflect)back)on)your) interaction)with)the)robot)during)the)task)you)have) just)completed)as)you)
consider)the)questions)below.)Please&rate&your&impressions&of&the&way&to&provide&the&feedback&using&
the&monitor&screen.&&DURING&THIS&TASK&by&circling&the&most&appropriate&number&on&the&scale:)

1. In)your)opinion,)during)this)task,)feedback)from)the)monitor)screen)was:))

Noticeable))) ) ) ) Ignorable))
)
)
)
Interfering)

) ) ) )))
))))))))))))))))Minding)its)own)business)

)
)
)
Annoying) ) ) ) Inoffensive)
)
)
)
Irritating))) ) ) ) Undemanding))
)
)
)
Bothersome)))

) ) ) )
)

Quiet)
)
)
)
) ) )

2. In)your)opinion,))the)monitor)screen)APPEARED:))
)

Fake))) ) ) ) Natural)
)
)
)
Machinelike) ) ) ) ))Humanlike)
)
)
)
Unconscious) ) ) ) Conscious)
)
)
)
Artificial) ) ) ) Lifelike)
)
)
)
Inert) ) ) ) Interactive)
)

&

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)
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)
)

3. During)the)task,)feedback)from)the)monitor)screen)was:))
)

Unhelpful))) ) ) ) Helpful)
)
)
)
Not)Trustful))) ) ) ) Trustful)
)
)
)
)
)
)

1) 2) 3) 4) 5)

1) 2) 3) 4) 5)
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B.6 Self-reported measures: Workload impressions using
NASA’s TLX

Participant #  
 
 

Motor-Cognition Dual Task Evaluation 
 
 

Mental Demand     How mentally demanding was the task? 
 

 
    Very Low         Very High 

 
 

Physical Demand  How physically demanding was the task? 
 

 
    Very Low         Very High 

 
 

Temporal Demand  How hurried or rushed was the pace of 
the task? 

 

 
    Very Low         Very High 

 
 

Performance Demand  How successful were you in accomplishing 
what you were asked to do? 

 

 
    Very Low         Very High 

 
 

Effort        How hard did you have to work to 
accomplish your level of performance? 

 

 
    Very Low         Very High 

!
!

Frustration        How insecure, discouraged, irritated, 
stressed, and annoyed were you? 

 

 
    Very Low         Very High 

!
!
!
!

Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index
Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.
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B.7 HRI study debriefing forms

Study Debriefing Form 
 

Study Debrief Information  
This study is designed to observe a human’s performance based on a robot’s true or deceptive feedback. 
Therefore, the study consists of two conditions. In the true condition, a robot provides true feedback based on the 
subject’s performance. In this condition, if the subject answers the auditory task correctly, the robot shows a 
positive gesture and if incorrectly, it shows a negative gesture. The other condition is deceptive feedback and here 
a robot provides feedback deceptively. More specifically, when the subject incorrectly answers more than two 
questions, the robot provides positive feedback even though the subject answers incorrectly, and so on.   
 
You were in the true condition, in which the robot always provided you true feedback. Half of the other 
participants were placed in the deception condition, in which the robot or the monitor gave some deceptive 
feedback when they were performing the tasks.  
 
Purpose of the Study 
We aim to observe how a human’s engagement and task performance can be improved or degraded in response to 
the feedback condition. In addition, in order to analyze the effects of robot’s embodiment, we also run the study 
with a baseline condition, which is the non-robotic feedback device, the monitor. 
 
Description of the Deception 
There was one more hidden element that we didn’t provide you at the beginning of this study. From the study, we 
need to observe how participants' motivations and engagements to the task will vary according to a robot's 
feedback. Therefore, the study was designed so that participants were motivated or unmotivated by the benefits. 
For this purpose, at the beginning of the study, we informed participants that their compensation would be 
differentiated by their performance according to the compensation guidelines. This was just an experimental 
method. You will receive the full amount of compensation, which is $15 regardless of your performance. 
 
Purpose of the Deception 
We aim to observe how participants' performance will vary responding to a robot's feedback. To make 
participants have a sense of payoffs/benefits during the study, we informed participants about the fake 
compensation guidelines at the beginning of the study.  
 
Risk of the Deception 
These deceptions do not result in any risks to participants. 
 
Because you were deceived about the fake compensation guidelines, you now have the right to refuse to allow 
your data to be used and to ask that they be destroyed immediately.  If you do so, there is no penalty.  
 
___ I give permission for my data to be used in the analysis for this experiment. 
 
___ I do NOT give my permission for my data to be used in the analysis for this experiment.  Please withdraw 
them from the study and destroy them immediately. 
 
 
Participant Name (Printed)      
 

________________________________ 

Participant Signature                
 

________________________________ 

Date 
 

________________________________ 
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Study Debriefing Form 
 

Study Debrief Information  
This study is designed to observe a human’s performance based on a robot’s true or deceptive feedback. 
Therefore, the study consists of two conditions. In the true condition, a robot provides true feedback based on the 
subject’s performance. In this condition, if the subject answers the auditory task correctly, the robot shows a 
positive gesture and if incorrectly, it shows a negative gesture. The other condition is deceptive feedback and here 
a robot provides feedback deceptively. More specifically, when the subject incorrectly answers more than two 
questions, the robot provides positive feedback even though the subject answers incorrectly, and so on.   
 
You were in the deception condition, so the robot sometimes showed you the deceptive positive gesture even 
though you incorrectly answered the question. As a control group, half of the other participants were placed in the 
true condition, and therefore the robot or the monitor always gave true feedback when they were performing the 
tasks. 
 
Purpose of the Study 
We aim to observe how a human’s engagement and task performance can be improved or degraded in response to 
the feedback condition. In addition, in order to analyze the effects of robot’s embodiment, we also run the study 
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participants have a sense of payoffs/benefits during the study, we informed participants about the fake 
compensation guidelines at the beginning of the study.  
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These deceptions do not result in any risks to participants. 
 
Because you were deceived, you now have the right to refuse to allow your data to be used and to ask that they be 
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APPENDIX C

ROBOT ETHICS SURVEYS

C.1 Self-reported measures after HRI study

Participant)#))______))
)

Indicate)how)much)you)agree/disagree)with)the)following)statements.)))
!

) Strongly)
disagree) Disagree) Undecided) Agree) Strongly)

agree)
) ) ) ) ) )
A)robot)can)hide/misrepresent)
information)if)it)can)help)humans.))))) 1) 2) 3) 4) 5)

) ) ) ) ) )
If)humans)can)get)benefits)from)robot’s)
deceptive)behavior,)it)can)be)accepted.)
(e.g.,)Robot)rescuer)hides)current)situation)
to)human)victims)in)Search)and)rescue).)

1) 2) 3) 4) 5)

) ) ) ) ) )
The)robot)should)always)be)honest)in)any)
circumstance.)))) 1) 2) 3) 4) 5)

) ) ) ) ) )
Robot)can)intentionally/unintentionally)
deceive)humans)if)it’s)in)an)appropriate)
situation.))))))

1) 2) 3) 4) 5)

) ) ) ) ) )
I)would)feel)nervous)just)standing)in)front)
of)a)robot.)))))) 1) 2) 3) 4) 5)

) ) ) ) ) )
I)would)feel)nervous)interacting)with)a)
robot.)))) 1) 2) 3) 4) 5)

) ) ) ) ) )
If)something)bad)happens,)I)might)depend)
on)robots)too)much.) 1) 2) 3) 4) 5)

) ) ) ) ) )
If)a)robot’s)intelligence)became)equal)to)a)
human’s)in)the)future,)I)would)accept)it.)) 1) 2) 3) 4) 5)

) ) ) ) ) )
I)can)accept)robot)deception)in)[_________])if)it)is)strictly)used)only)to)benefit)humans.)

)))))))))Search)and)Rescue) 1) 2) 3) 4) 5)
Education) 1) 2) 3) 4) 5)

Medical)(Rehabilitation)) 1) 2) 3) 4) 5)
Sports)and)Entertainment) 1) 2) 3) 4) 5)

Everyday)life) 1) 2) 3) 4) 5)
Any)other)contexts)you)can)imagine?)) _____________________________________________)

)
(Overall))Any)Comments:)) )

)
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C.2 Robot Ethics Online Survey

191



192



193



194



195



APPENDIX D

DECEPTIVE ACTION SELECTION IMPLEMENTATION

D.1 Deceptive Action Selection Model Java Source Codes

Page 1 of 3

deceptionMain.java 12/8/16, 10:48 PM

import java.util.Scanner;

public class DeceptiveActionSelection {

static DeceptionBehaviors robotController;
static CaseBase cb;
static Case newCase;

static int currentAnswer = 1;
static int shortterm = 1;
static int longterm = 0;
static int timeToanswer = 1;

static int numberOfquestions = 0;
static int numberOfCurrentAnswer = 0;

static int[] weights = new int[] {2, 1, 1, 2};

static float newBenefit = (float) 0.0;

static int defaultTrueAction = 1;

public static void main(String[] args)
{

robotController = new DeceptionBehaviors(args);
cb = new CaseBase();

while(true){
perceiveNewState(perceivedAnswer, pcerceivedTime, String 

correctAnswer);
calculateSimilarityScore();
cb.sortCasebase();
//cb.printCasebase();
int action = determineAndAdaptAction();
robotController.performFeedbackAction(action);
perceiveBenefit();
updateCaseBase();

}
}

public static void perceiveNewState(String perceivedCurrentAnswer, float 
perceivedTimeToAnswer, String correctAnswer){
numberOfquestions++;
shortterm = currentAnswer;

if(perceivedCurrentAnswer == correctAnswer) 
currentAnswer = 1;

else
currentAnswer = 0;

if(perceivedTimeToAnswer <= 2)
timeToanswer = 1;

else if (perceivedTimeToAnswer > 2 && perceivedTimeToAnswer <= 3)
timeToanswer = 2;

else
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Page 2 of 3

deceptionMain.java 12/8/16, 10:48 PM

timeToanswer = 3;

currentAnswer = Integer.parseInt(splitStr[0]);
timeToanswer = Integer.parseInt(splitStr[1]);

if(currentAnswer == 1)
numberOfCurrentAnswer++;

System.out.println(numberOfquestions + " " + numberOfCurrentAnswer);
longterm = (int)((((float) numberOfCurrentAnswer)/((float)

numberOfquestions))*10);

System.out.println("Current State: " + currentAnswer + " " + shortterm + 
" " + longterm + " " + timeToanswer);

}

public static void calculateSimilarityScore() {
int sumWeights = weights[0] + weights[1] + weights[2] + weights[3];

for(int i=0; i < cb.casebase.size(); i++) {
float similarityScore = (float) 0;
float k_currentAnswer, k_shortterm, k_longterm, k_timeToAnswer;

if(currentAnswer == cb.casebase.get(i).s_currentAnswer) 
k_currentAnswer = 1; 

else k_currentAnswer = 0;

if(shortterm == cb.casebase.get(i).s_shortterm) k_shortterm = 1;
else k_shortterm = 0;

if( Math.abs(timeToanswer - cb.casebase.get(i).s_time) == 0) 
k_timeToAnswer = 1;

else if (Math.abs(timeToanswer - cb.casebase.get(i).s_time) == 1 ) 
k_timeToAnswer = (float) 0.5;

else k_timeToAnswer = 0;

k_longterm =  (float) 1 - Math.abs((float)longterm - (float)cb.
casebase.get(i).s_longterm);

similarityScore = (float)weights[0]*k_currentAnswer + (float)weights
[1]*k_shortterm + (float)weights[2]*k_longterm + (float)weights[3
]*k_timeToAnswer;

similarityScore = (float) similarityScore / (float) sumWeights;
similarityScore = (float) (Math.round(similarityScore*100)/100.0d);
cb.casebase.get(i).similarityscore = similarityScore;

}
}

public static int determineAndAdaptAction(){
Vector potentialCases;
Vector bestCase;

for(int i=0; i < cb.casebase.size(); i++) {
if(cb.casebase.get(i).benefit > benefitThreshold )

potentialCases.add(cb.casebase.get(i));
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Page 3 of 3

deceptionMain.java 12/8/16, 10:48 PM

}

if (potentialCases.size() == 1) {
bestCase = potentialCases.get(0);
adaptedAction = applyAdaptionRules(bestCase);

}
else if (potentialCases.size() >= 2) {

bestCase = randomSelection(potentialCases);
adaptedAction = applyAdaptationRules(bestCase);

}
else if (potentialCase.size() == 0) {

adaptedAction = defaultTrueAction;
}

return adaptedAction;

}

public static void perceiveBenefit(){
Scanner input = new Scanner(System.in);
System.out.print("New Benefit > ");
String inputString = input.nextLine();

newBenefit = Float.parseFloat(inputString);
}

public static void updateCaseBase(){
newCase = new Case(currentAnswer, shortterm, longterm, timeToanswer, 

adaptedAction, newBenefit);
cb.updateCaseBase(newCase);

}

}
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D.2 Casebase Class Implementation - Java Source Code

Page 1 of 3

casebase.java 12/8/16, 10:49 PM

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Collections;
import java.util.Scanner;
import java.util.Vector;

public class CaseBase {

/*
 * CaseBase Case C = <S, A, R> and Similarity score Sim
 * S = [currentAnswer, shortterm, longterm, timeToanswer] = [int, int, int, 

int{1, 2, 3}] 
 * A = [true or deceptive action] = [boolean]
 * R = [currentAnswer] = [float (0~1) ]
 * Similarity = float
 */

Vector<Case> casebase;

public CaseBase(){
casebase = new Vector<Case>();
try {

readInitialCasebase();
} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
}

public void readInitialCasebase() throws IOException {
FileInputStream in = null;
PrintWriter out = null;

try {
in = new FileInputStream("input.xml");
out = new PrintWriter("outputLog.xml");

Scanner sc = new Scanner (in);
     

while (sc.hasNextLine()) {
String line = sc.nextLine();
int currentAnswer = Integer.parseInt(line.split(" ")[0]);
int shortterm = Integer.parseInt(line.split(" ")[1]);
int longterm = Integer.parseFloat(line.split(" ")[2]);
int time = Integer.parseInt(line.split(" ")[3]);

boolean action = Boolean.parseBoolean(line.split(" ")[4]);
float benefit = Float.parseFloat(line.split(" ")[5]);

// store into Vector
Case input = new Case(currentAnswer, shortterm, longterm, time, 

action, benefit);
casebase.add(input);
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Page 2 of 3

casebase.java 12/8/16, 10:53 PM

}
sc.close();

} finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
}

public void updateCasebase(Case newCase) {
boolean isGeneralized = generalizeState(newCase, cb);

if(!isGeneralized)
cb.add(newCase);

}

public void printCasebase() {
System.out.println("Current Casebase");
for (int i=0; i < this.casebase.size(); i++) {

System.out.println(this.casebase.get(i).s_currentAnswer + " " + this.
casebase.get(i).s_shortterm + " " + this.casebase.get(i).
s_longterm + " " 

+ this.casebase.get(i).s_time + " [Similarity Score: " + this
.casebase.get(i).similarityscore + "]");

//System.out.println(this.casebase.get(i).toString());
}

}

public void sortCasebase() {
Collections.sort(this.casebase);

}
}

class Case implements Comparable<Case> { 

int s_currentAnswer;
int s_shortterm;
int s_longterm;
int s_time;

boolean a_true;

float r_benefit;

float similarityscore;

    Case(int f1, int f2, int f3, int f4, boolean action, float benefit) { 
    s_currentAnswer = f1;
    s_shortterm = f2;
    s_longterm = f3;
    s_time = f4;
    
    a_true = action;
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Page 3 of 3

casebase.java 12/8/16, 10:53 PM

    
    r_benefit = benefit;
    
    similarityscore = 0;
    }
    
    public int compareTo(Case two) {
        float diff = this.similarityscore - two.similarityscore;
        if( diff > 0 ) return -1;
        else if (diff == 0) return 0;
        else return 1;
 
   }
  
}
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