
NUMERICAL AND STREAMING ANALYSES OF CENTRALITY
MEASURES ON GRAPHS

A Dissertation
Presented to

The Academic Faculty

By

Eisha R. Nathan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology

May 2018

Copyright c© Eisha R. Nathan 2018

NUMERICAL AND STREAMING ANALYSES OF CENTRALITY
MEASURES ON GRAPHS

Approved by:

Dr. David A. Bader, Advisor
Computational Science and Engi-
neering
Georgia Institute of Technology

Dr. Srinivas Aluru
Computational Science and Engi-
neering
Georgia Institute of Technology

Dr. Umit Catalyurek
Computational Science and Engi-
neering
Georgia Institute of Technology

Dr. Bistra Dilkina
Computer Science Department
University of Southern California

Dr. Jason Riedy
Computational Science and Engi-
neering
Georgia Institute of Technology

Dr. Geoffrey Sanders
Center for Applied Scientific
Computing
Lawrence Livermore National
Laboratory

Date Approved: March 14, 2018

To my grandparents,

the two I have in this world,

and the two I know are watching me everyday from above.

ACKNOWLEDGEMENTS

I would like to thank my advisor, David Bader, for introducing me to the world

of graphs, and for his mentorship over the last four years. A very important thank

you to Geoff Sanders for not only being on my thesis committee, but for being an

amazing mentor with constant support and ideas along the way, and thanks to Van

Henson for allowing me to intern at LLNL multiple summers, introducing me to a

whole network of brilliant researchers.

Thanks to Jason Riedy for helpful guidance, always being ready to engage in

interesting research (or otherwise) talks with me, brainstorm new research directions,

and for serving on my committee. Thanks to the rest of my committee, Bistra Dilkina,

Umit Catalyurek, and Srinivas Aluru, as well, for their time and feedback.

Thanks to my friends both inside and outside the department for keeping me

(moderately) sane these last four years: Debolina Dasgupta, Amrita Gupta, James

Fairbanks, Sabra Neal, Vinh Nguyen, Colin Ponce, and Anita Zakrzewska. Each of

you has made the last few years so much more bearable.

Last, the most important acknowledgment goes to my family. Thanks especially

to my parents, Ram and Saumya Nathan, and sister Anusha, for encouraging me

every step of the way and motivating me to never give up. I am so lucky to have

these three in my life.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . vii

List of Figures . ix

Chapter 1: Introduction . 1

Chapter 2:Background and Literature Review 7

2.1 Graph Theory . 7

2.2 Linear Algebra . 8

2.3 Ranking in Graphs . 10

2.4 Dynamic Analysis of Centrality Measures 16

2.5 Community Detection . 20

Chapter 3:Numerical Approximations for Centrality Measures 24

3.1 Theory . 24

3.2 Results . 33

3.3 Conclusions . 48

Chapter 4:Dynamic Algorithms for Centrality Measures 50

4.1 Dynamic Katz Centrality using Linear Algebra 50

v

4.2 Agglomerative Personalized Katz Centrality 76

4.3 Nonbacktracking Walk Centrality . 89

4.4 Streaming Exponential Centrality . 103

Chapter 5:Local Community Detection in Dynamic Graphs 114

5.1 Community Detection in Graphs . 115

5.2 Communities from Personalized Centrality 119

5.3 Dynamic Communities from Personalized Centrality 126

5.4 Conclusions . 139

Chapter 6:Conclusions . 142

References . 153

vi

LIST OF TABLES

3.1 Undirected graphs used in numerical experiments. Columns are graph
name, number of vertices, number of edges, and type of graph. . . . 34

3.2 Directed graphs used in numerical experiments. Columns are graph
name, number of vertices, number of edges, and type of graph. . . . 34

4.1 Graphs used in experiments. Columns are graph name, number of
vertices, and number of edges. 61

4.2 Speedup in time for Erdos-Renyi graphs. 63

4.3 Speedup in iterations for Erdos-Renyi graphs. 63

4.4 Speedup in time for R-MAT graphs. 63

4.5 Speedup in iterations for R-MAT graphs. 64

4.6 Summary statistics of recall of top vertices for different graphs for a
terminating tolerance of 10−4. 69

4.7 Summary statistics of average error versus batch size for different
graphs for a terminating tolerance of 10−4. 71

4.8 Speedup for real-world networks used in experiments. 85

4.9 Averages over time for real-world graphs for dynamic algorithm com-
pared to static recomputation. Columns are graph name, speedup,
absolute error, and recall for R = 10, 100 and 1000. 88

4.10 Several walk-based centralities as functions of the adjacency matrix . 89

4.11 Real graphs used in experiments. 98

4.12 Real graphs used in experiments. 107

vii

4.13 Recall values for preferential attachment graphs. 109

4.14 Recall values for small world graphs. 109

4.15 Recall for real-world graphs. 111

4.16 Values of τ for real graphs. 111

5.1 The quality of communities detected with our personalized Katz method
and greedy expansion is shown. Test graphs are stochastic block model
(SBM) graphs with n = 1000 and k = 2. (a) The average vertex de-
gree d is varied, while ρ = 0.01. (b) The proportion of inter-community
edges ρ is varied, while d = 20. (c) The proportion of inter-community
edges ρ is varied, while d = 100. 125

5.2 Average recalls at each point in time for synthetic merging and splitting
of communities over time. 133

5.3 Real graphs used in experiments. Columns are graph name, number
of vertices, and number of edges. 134

5.4 Average summary statistics over time on real graphs for all batch sizes.
Columns are graph name, batch size, speedup in time, speedup in
iterations, recall, ratio of conductance scores, and ratio of normalized
edge cut scores. 137

5.5 Results for different seeding methods. Columns are metric tested, seed-
ing method, speedup in time, speedup in iterations, recall, ratio of
conductance scores, and ratio of normalized edge cut scores. Results
shown are averaged over all graphs. 140

viii

LIST OF FIGURES

3.1 Histograms of speedups in iterations for undirected graphs with preci-
sion 1.0. Higher values of speedup are better. 36

3.2 Histograms of speedups in iterations for directed graphs with precision
1.0. Higher values of speedup are better. 37

3.3 Sorted ranking vector dKatz for facebook graph. Values are plotted in
blue circles while selected points with an extremely close error gap are
shown in red squares. Left plot is on a log-scale; right plots are on a
linear scale. 38

3.4 Performance versus required precision for Katz Centrality on undi-
rected graphs (with α = 0.9/‖A‖2). 40

3.5 Performance versus required precision for Katz Centrality on directed
graphs (with α = 0.9/‖A‖2). 42

3.6 Performance versus required precision for PageRank on undirected
graphs. 43

3.7 Performance versus required precision for PageRank on directed graphs. 44

3.8 Histogram of P values for different networks. 46

3.9 Terminating residual obtained as we increase α for Katz scores in undi-
rected graphs. 47

3.10 Terminating residual obtained as we increase α for Katz scores in di-
rected graphs. 47

4.1 Difference in consecutive solutions over time. Small changes in solu-
tions suggest a dynamic algorithm could work by applying incremental
updates to previous solutions. 54

ix

4.2 Speedup (time and iterations) versus tolerance. Higher is better. . . . 65

4.3 Speedup (time and iterations) versus batch size. Higher is better. . . 66

4.4 Raw number of iterations for the facebook graph for different batch
sizes. Dynamic algorithm is plotted in solid green line and static algo-
rithm is plotted in dotted blue line. 68

4.5 Continued on next page. 72

4.5 Average error plotted over time for both our dynamic algorithm (left
figures) and the alternate method (right figures). Results are shown
for a batch size of 1 and for global scores. Lower values are better. . . 73

4.6 Effect of time step granularity (batch size of edge insertions) on quality
of our algorithm. 74

4.7 Initial graph with walk counts of length k and visited values. 83

4.8 Updated graph with walk counts of length k and visited values. . . . 84

4.9 Error between approximate scores ck and exact solution c∗. 85

4.10 Speedup vs average degree for synthetic graphs tested. 86

4.11 Ranking accuracy over time for top R=10,100,1000 vertices for the
slashdot graph. 87

4.12 Example of Static NBTW. Propagation of different walks is shown
in different colors. For a seed vertex of 0, we propagate walks from
neighbors vertex 1, 2, and 3 throughout the network. 94

4.13 Example of Dynamic NBTW. After adding edge e between vertices
2 and 5 we show the steps of the dynamic algorithm to update NBTW
counts taking into consideration the new edge. 97

4.14 Absolute error between exact NBTW-centrality scores x∗ and our ap-
proximation xk. 99

4.15 Speedup versus batch size for real graphs. Higher is better. 101

4.16 Speedup in time of dynamic algorithm compared to static algorithm
for real graphs. 102

4.17 Speedup for synthetic graphs for batch size 20 = 1. 108

x

4.18 Speedup versus batch size for real graphs. 110

4.19 Recall over time for different graphs for batch size 27 = 128. 112

5.1 The speedup of the personalized Katz Centrality method compared to
greedy expansion is shown for SBM graphs with different parameters.
(a) The number of vertices n in the graph varies, with d = 20 and
k = 2. (b) The number of communities k in the graph varies, with
n = 47104 and d = 20. (c) The average vertex degree d varies, with
n = 1000 and k = 2. 126

5.2 Synthetic dynamic graph showing merging and splitting of communi-
ties. (a) t = 1, (b) t = 2, (c) t = 3, (d) t = 4. 132

5.3 Performance and quality behavior of dynamic algorithm compared to
static recomputation over time. (a) Speedup in iterations over time
for b = 10, (b) Ratio of conductance scores over time for b = 100. . . 137

xi

SUMMARY

Graph data represent information about entities (vertices) and the relationships

or connections between them (edges). In real-world networks today, new data are

constantly being produced, leading to the notion of dynamic graphs. When analyzing

large graphs, a common problem of interest is to identify the most important vertices

in a graph. Vertex importance is calculated using centrality, where a centrality metric

assigns a value to each vertex in the graph and these values can then be turned into

rankings. This dissertation presents novel advances in the field of graph analysis by

providing numerical and streaming techniques that help us better understand how to

compute centrality measures. Several centrality measures are calculated by solving a

linear system but since these linear systems are large, iterative solvers are often used

as an alternate method to approximate the solution. We relate the two research areas

of numerical accuracy and data mining by understanding how the error in a solver

affects the relative ranking of vertices in a graph. To calculate the centrality values

of vertices in a dynamic graph, the most naive method is to recompute the scores

from scratch every time the graph is changed, but as the graph size grows larger this

recomputation is computationally infeasible. We present four dynamic algorithms for

updating different centrality metrics in evolving networks. All dynamic algorithms

are more efficient than their static counterparts while maintaining good quality of

the centrality scores. This dissertation concludes by applying methods discussed for

the computation of centrality metrics to community detection, and we present a new

algorithm for identifying local communities in a dynamic graph using personalized

centrality.

xii

CHAPTER 1

INTRODUCTION

Graph data represent information about entities (vertices) and the relationships or

connections between them (edges). In real-world networks today, new data are con-

stantly being produced, leading to the notion of dynamic graphs. Dynamic graph

data can represent the changing relationships in social networks, financial transac-

tion networks, and computer networks. For example, in a Facebook graph, a vertex

could represent a person where the addition or deletion of an edge would represent

a friendship being created or removed, respectively. When analyzing large graphs, a

common problem of interest is to identify the most important vertices in a graph [1].

Vertex importance is calculated using centrality metrics, where a centrality metric

assigns a value to each vertex in the graph. These values can then be turned into

rankings indicating relative importance. This dissertation presents novel advances in

the field of graph analysis by providing techniques that help us better understand

how to compute centrality measures on graphs. These techniques broadly fall under

two categories: (1) numerical and (2) dynamic analysis of centrality measures.

Calculations of several centrality measures involve solving a linear system, where

the solution is an n-length vector of values indicating centrality values for all n vertices

in the graph. Oftentimes these linear systems are large and computationally expen-

sive to solve directly and exactly so iterative solvers are used as an alternate method

to approximate the solution to the system. Since iterative solvers produce only an

approximation to the exact solution, there is inherently some error in the obtained

ranking vector. Without knowing the exact solution, it is generally impossible to de-

termine how the numerical error in the approximation vector from the iterative solver

affects the resulting relative ranking of vertices in the graph. Chapter 3 addresses

1

this issue and relates the two research areas of numerical accuracy and data mining

by understanding how the error in a solver affects the accuracy of ranking vertices in

a graph [2, 3]. Current methods to identify the most highly ranked vertices in a graph

run an iterative method to a high tolerance (most commonly machine precision) and

return the highly ranked vertices as those with the highest centrality scores (or the

vertices corresponding to the scores at the top of a sorted centrality vector). How-

ever, these methods are problematic because running a solver to a high accuracy such

as machine precision can require many iterations to converge and therefore be very

time and resource consuming. Furthermore, even though iterating to a high accuracy

such as machine precision likely outputs an approximate centrality vector close to

the unknown exact solution, there is currently no means to determine exactly how

accurate the approximation is. This translates to not knowing if the highly ranked

vertices returned (judged purely on the centrality scores in a sorted ranking vector)

are actually the highly ranked ones with respect to the unknown exact solution’s

ranking. Our work addresses this problem. We study two walk-based centrality mea-

sures, Katz Centrality [4] and PageRank [5], both of which generally rank vertices

by counting the number of walks of different lengths starting at each vertex in the

graph and penalize longer walks with a user-chosen parameter. Bounding the error of

the approximation vector compared to the exact solution (in the numerical problem)

allows us to develop theory to guarantee relative ranking of vertices in graphs (in the

data mining problem). Theory is proven and discussed for both Katz Centrality and

PageRank. The theory presented lends itself to the development of a new stopping

criterion for iterative methods that guarantees, upon termination at our new stopping

criterion, returning the correct highly ranked vertices with respect to the unknown

exact solution’s ranking. Terminating at our new stopping criterion provides the pre-

viously missing theoretical guarantees of correctness of the highly ranked vertices and

returns results significantly faster than the conventional method of iterating to a high

2

tolerance to identify the highly ranked vertices.

Switching from static to dynamic graph analysis, Chapter 4 presents dynamic

algorithms for a variety of centrality measures. Several real-world datasets are com-

prised of temporal information and are therefore considered dynamic networks. To

calculate the centrality values of vertices in a dynamic graph, the most naive method

is to recompute the scores from scratch each time the graph is changed by taking snap-

shots of the graph over time and treating each snapshot as a separate static graph.

This method quickly becomes problematic as the graph size grows larger and a pure

static recomputation is rendered computationally infeasible. Furthermore, typically

in large networks, updates to the graph will only affect a small portion of the graph.

Recomputating from scratch everytime the graph is changed is both intractable and

impractical. Therefore, when calculating analytics on dynamic graphs it is preferable

to have analytics that update in real-time when the graph is changed without needing

to perform a full static recomputation. First, we present two different algorithms for

computing Katz Centrality scores in dynamic graphs. The first method presented in

Section 4.1 studies the problem in a linear algebra-based environment [6, 7]. Phras-

ing the computation of Katz Centrality as the solution to a linear system allows the

development of an algorithm that exploits properties of iterative solvers to quickly

obtain an updated centrality vector for evolving networks. The second method pre-

sented is a non-linear algebraic algorithm tailored for calculating personalized Katz

scores in graphs. When studying personalized scores, analysts may only be interested

in calculating scores of vertices surrounding the seed vertex (with respect to which

personalized scores are calculated) and be less interested in calculating exact scores

of vertices far away from the seed and near the edge of the graph. A linear algebraic

computation typically cannot distinguish between vertices close to the seed and those

far away and so Section 4.2 presents an alternate, agglomerative dynamic algorithm

for calculating personalized Katz scores in dynamic graphs [8]. Next, Section 4.3

3

presents a dynamic algorithm for calculating nonbacktracking walk-based centrality

scores on the vertices of an evolving network. Katz Centrality scores are walk-based,

where a walk allows for sequences with repetition of vertices and edges and assign

centrality scores to vertices by weighting walks of different lengths. For example, a

walk from vertices 0→ 1→ 0→ 1→ 0 and a walk from vertices 0→ 1→ 2→ 3→ 4

are weighted the same because they are the same length. While this measure suffices

for some purposes, in other applications weighting walks of the same length equally

fails. Consider the case of studying information diffusion in a network, where the

walk between vertices 0 → 1 → 0 → 1 → 0 is essentially useless and a walk that

traverses more of the network such as 0 → 1 → 2 → 3 → 4 ought to be given more

weight. Therefore, we next study walks of a nonbacktracking nature, or specifically

walks that do not allow the sequence from vertices i → j → i. Nonbacktracking

walks can be used to calculate a centrality measure similar to Katz Centrality. Fi-

nally, moving back to a linear algebraic environment, Section 4.4 presents a dynamic

algorithm for calculating matrix exponential-based centrality scores of vertices in an

evolving network [9]. All dynamic algorithms presented in Chapter 4 are compared to

their static counterparts: a pure static algorithm that recomputes the respective cen-

trality metric from scratch everytime the graph is changed. Our methods contribute

to the field with performance improvements (usually several orders of magnitude of

speedup) while maintaining good quality of the centrality scores. We are able to re-

duce the computation time, and, when applicable, the number of iterations needed to

converge to the solution in the dynamic setting compared to statically recomputing

the scores. The quality of our methods never deteriorate over time for the examples

shown in this dissertation, suggesting that they can be used for a large number of

updates.

This dissertation concludes by applying methods discussed for the computation

of centrality metrics to another popular graph analysis query: community detection.

4

Community detection is the task of identifying dense clusters, or closely related groups

of vertices, in the graph. For example, in a Facebook network, communities may be

groups of people who interact with each other fairly regularly or may be part of simi-

lar groups online. Typically, global community detection is performed by partitioning

the network into smaller subgraphs where the members (vertices) of the subgraphs,

or communities, are more closely linked to each other than to the rest of the network

by some measure. Several metrics exist for quantifying how well connected vertices

in a community are; most commonly this is done by some measure of the number

of edges in between vertices inside the communities, or intra-community edges, com-

pared to the number of edges leaving the community, or inter-community edges. An

alternate definition identifies a community as individuals who have more influence

on members of the same community than on individuals outside of the community,

where influence is calculated through pairwise ranking of vertices in a graph. Local

community detection is the task of identifying the community associated with a set

of seed vertices of interest. Chapter 5 presents a new algorithm for identifying lo-

cal communities in a dynamic graph using personalized centrality [10]. We explore

the relationship between centrality and community detection to understand what a

personalized centrality vector with respect to seed vertices can tell us about a lo-

cal community associated with the same seed vertices. The techniques discussed in

Chapter 4, Section 4.1 to update a centrality vector in a dynamic graph are extended

to track local communities in dynamic graphs. Results on several synthetic networks

(where ground truth is known) show that our method is able to accurately track the

local communities with respect to seed vertices. Applying our method to real-world

networks shows that we can identify similar quality communities to other commonly

used community detection methods. Finally, the results of our analyses show that

our dynamic algorithm is able to identify local communities in a fraction of the time

it takes a corresponding static algorithm.

5

In summary, this thesis makes the following contributions:

• A new error bound on elements of a ranking vector to provide graph ranking

guarantees to the computation of Katz Centrality and PageRank and demon-

strations that this bound provides practical results in real datasets [2, 3]

• A new stopping criterion for iterative solvers to identify highly ranked vertices in

a graph that reduces runtime compared to running a solver to machine precision

[2, 3]

• Empirical evidence of a tighter probabilistic upper bound on ‖A‖2 compared to

deterministic Gershgorin bounds for real-world graphs [2, 3]

• A new dynamic algorithm using linear algebra to update Katz Centrality scores

in streaming graphs [6, 7]

• New agglomerative algorithms for approximating personalized Katz Centrality

in both static and dynamic graphs [8]

• New algorithms for calculating nonbacktracking walk centrality scores of vertices

in static and dynamic graphs

• A new algorithm for incrementally calculating exponential centrality in dynamic

graphs [9]

• Development of a new method for identifying local communities using person-

alized centrality metrics [10]

• A new dynamic algorithm to identify local communities in evolving networks

with validation on both synthetic and real-world dynamic graphs [10]

Together, the contributions in this thesis give us a better understanding of techniques

that can be applied for the analysis of centrality measures on graphs.

6

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter provides an overview of the necessary concepts needed to understand

the work presented in this dissertation. A brief overview of the basics of graph theory

and linear algebra are presented in Sections 2.1 and 2.2 respectively, ranking methods

on graphs are discussed in detail in Section 2.3, Section 2.4 surveys the literature in

dynamic analysis of centrality measures in graphs, and Section 2.5 concludes with a

discussion of literature on community detection.

2.1 Graph Theory

Let G = (V,E) be a graph, where V is the set of n vertices and E the set of m edges.

We denote an edge between vertices i and j as (i, j). Denote the n × n adjacency

matrix A of G as

A(i, j) =


1, if (i, j) ∈ E,

0 otherwise.

For undirected graphs, if there is an edge between vertices i and j, then there is a cor-

responding edge between vertices j and i, so ∀i, j, A(i, j) = A(j, i). This dissertation

assumes all graphs to be unweighted so all edge weights are 1, or ∀i, j, A(i, j) = 1. A

dynamic graph changes over time due to edge insertions and/or deletions, as well as

vertices being added or removed over time. As a graph changes, we can take snap-

shots of its current state at any time. We denote the snapshot of the dynamic graph

G and its corresponding adjacency matrix at time t by Gt = (Vt, Et) and At. In our

work, the vertex set stays the same over time so ∀t, Vt = V and we deal only with edge

insertions, although our work can easily be generalized to edge deletions. Changes to

7

the graph (and therefore its corresponding adjacency matrix) can be represented in

matrix-form by an n × n change-matrix ∆A. If we insert edge (i, j) into the graph

at time t, we set ∆A(i, j) = 1. Similarly if we want to delete edge (i, j) we set

∆A(i, j) = −1. A walk of length k in a graph is a series of k vertices v1, · · · , vk where

both vertices and edges are allowed to repeat. A path is a walk where all vertices are

distinct. Using powers of the adjacency matrix allows us to count walks in graphs,

where Ak(i, j) gives the number of walks of length k from vertex i to j [11].

Two commonly studied questions in graph analysis are (1) identifying important

vertices and (2) identifying groups in graphs that vertices belong to. The first problem

is answered through centrality, where a centrality metric provides a score for each

vertex in the graph indicating its relative importance. A centrality metric can be

represented by an n × 1 vector where the ith value in the vector gives the value for

the ith vertex in the graph. The second problem is answered through community

detection, where a community can be broadly defined as a group of vertices more

closely related to each other than the rest of the graph. We define a community

of vertices as C = {v1, · · · , v|C|}. This dissertation focuses primarily on the first

question of centrality, but concludes with an application of methods to compute

centrailty scores to the task of identifying communities in graphs.

2.2 Linear Algebra

Using linear algebra as a tool to aid in graph processing is a common theme in dealing

with many algorithmic applications. In this section, we give a brief overview of linear

algebra terminology used in the rest of the document.

An eigenvector of A is a vector x such that Ax is parallel to x. Mathematically

we write this as Ax = λx for some real or complex number λ. The number λ is

called an eigenvalue of A associated with the eigenvector x. A singular value σ and

associated singular vectors u,v are a nonnegative real-valued scalar and two vectors

8

such that Av = σu and AHu = σv, where AH is the Hermitian transpose of A, or the

complex conjugate transpose. The spectral radius ρ(A) of A is given by the largest

eigenvalue, maxi|λi| and the matrix 2-norm ‖A‖2 is given by the largest singular

value, σmax. For the case of undirected graphs, AT = A and ρ(A) = ‖A‖2. By [12],

ρ(A) = ‖A‖2 ∈ [
√
dmax, dmax], where dmax is the maximum degree in the graph G.

Much of the work presented here seeks to come up with a solution to a numerical

problem Mx = b, where we aim to solve for x given M and b. Solving this system

exactly using direct methods is typically fairly computationally expensive, so iterative

methods are used as an alternative to provide an approximation to x. An iterative

method starts with an initial guess x(0) and iteratively improves the current guess

with each iteration until reaching some stopping criterion. This stopping criterion

can be a predetermined number of iterations, a desired level of accuracy, or some

application-specific terminating criterion. Since iterative solvers are used to obtain

approximations to the exact solution x∗, at each step k of the iterative solver we denote

the new approximation as x(k).The error at each step is denoted as the difference

between the exact and approximation, ‖x∗ − x(k)‖2 and the residual as rk = ‖b −

Mx(k)‖2, where ‖ · ‖2 denotes the 2-norm. The residual at iteration k denotes how

close the current approximation x(k) is to solving the linear system. In practice

as the exact solution is not known, typical stopping criteria for the solver use the

residual, terminating when it hits a high accuracy. We use machine precision, or

when rk ≈ 10−15. All the work here assumes a starting approximation x(0) as the all

zeros vector, although in practice, any starting vector can be chosen.

The three iterative methods used in this dissertation are conjugate gradient,

jacobi, and GMRES (Generalized Minimal Residual Method), and are given in

Algorithms 1, 2, and 3 respectively. Conjugate gradient is used if the matrix M is

symmetric and GMRES is used for solving systems with unsymmetric matrices. In

Algorithm 1, D is the matrix consisting of the diagonal entries from M and R is the

9

matrix of all off-diagonal entries of M . In Algorithm 3, the parameter k allows us to

restart the GMRES algorithm every k iterations.

Algorithm 1 Solve Mx = b to tolerance tol using Jacobi algorithm.

1: procedure Jacobi(M,b, tol)
2: k = 0
3: x(0) = 0
4: r(0) = b−Mx(0)

5: D = diag(A)
6: R = M −D
7: while ‖r(k)‖2 > tol do
8: x(k+1) = D−1(Rx(k) + b)
9: r(k+1) = b−Mx(k+1)

10: k+ = 1
return x(k+1)

Algorithm 2 Solve Mx = b to tolerance tol using conjugate gradient algorithm.

1: procedure Conjugate Gradient(M,b, tol)
2: x(0) = 0
3: r(0) = b−Mx(0)

4: p(0) = r(0)

5: k = 0
6: while ‖r(k)‖2 > tol do

7: αk = r(k)T r(k)

p(k)TMp(k)

8: x(k+1) = x(k) + αkp
(k)

9: r(k+1) = r(k) − αkMp(k)

10: βk = r(k+1)T r+1(k)

r(k)T r(k)

11: p(k+1) = r(k+1) + βkp
(k)

12: k+ = 1
return x(k+1)

2.3 Ranking in Graphs

One of the most popular questions arising from the analysis of large graphs is to

determine the most important vertices in a graph. Vertex importance is referred to

as centrality, and centrality scores can be used to provide rankings on the vertices

of a graph. Section 2.3.1 gives a more in-depth background on several linear algebra

10

Algorithm 3 Solve Mx = b to tolerance tol using GMRES algorithm.

1: procedure GMRES(M,b, tol, k)
2: x(0) = 0
3: r(0) = b−Mx(0)

4: v(1) = r(0)/‖r(0)‖2

5: while ‖r(k)‖2 > tol do
6: for j = 1, 2, · · · , k do
7: hij = (Av(j),v(i))
8: ṽ(j+1) = Av(j) −

∑j
i=1 hijv

(i)

9: hj+1,j = ‖ṽ(j+1)‖2

10: v(j+1) = ṽ(j+1)/hj+1,j

11: Compute y(k) s.t. y(k) minimizes ‖βe(1) − H̃ky
(k)‖2

12: xk = x(0) + Vmyk
13: r(k) = b−Mx(k)

return x(k)

based metrics, and Section 2.3.2 provides background on the effect the approximation

(using iterative solvers) of a centrality measure has on the final answer.

2.3.1 Functions of the adjacency matrix

Many centrality measures are obtained by solving a linear system on the adjancency

matrix of the graph. The solution is a vector consisting of a number for each vertex in

the graph identifying its relative importance. Obtaining an exact solution via direct

methods is prohibitively computationally expensive, since we are typically required

to take the inverse of a matrix. Although direct methods can usually obtain high

accuracy solutions, these methods tend to consume large amounts of memory or take

a long time to compute. For example, when graphs are small-world and scale-free (as

are many real-world networks), direct methods like Cholesky require O(n2) to O(n3)

computations [13]. In many real networks the amount of data is massive and n can

be as large as millions or billions of vertices, so direct methods such as these do not

scale and are impractical. Moreover, there is no computationally tractable technique

to compute an exact solution for a general graph in finite precision arithmetic, so in

practice, iterative methods are often used to obtain an approximate solution. Iterative

11

methods tend to use less memory than direct methods, where each iteration costs

O(m), where m is the number of edges in the graph. However, in order for an iterative

method to be cost effective, the number of iterations must be limited. Many real-

world graphs are sparse and m� n2 [14]. While occasionally an iterative method may

require the use of a preconditioner if the system is ill-conditioned, none of the problems

analyzed here are nearly ill-conditioned enough to merit the use of a preconditioner

[15]. The cost required to build a preconditioner would not offset the performance

benefit gained and therefore in our work we do not use any preconditioner.

Several centrality measures can be expressed as functions of the adjacency matrix

of a graph [1]. Since powers of the adjacency matrix are used to count walks in

networks, typically these centrality metrics weight vertices through some kind of

walk counting. PageRank is a common method for ranking vertices in graphs, where

a high score means random walks through the graph tend to visit the highly ranked

vertices. PageRank can be thought of as either a global network centrality measure

or a more personalized version where we only examine a local region of the large

graph, and was first introduced rank webpages in a web search [16]. Given a search

term from the user, PageRank incorporates a measure of a webpage’s importance into

the results of a set of webpages that could be relevant to the desired search term.

However over time, many more applications have risen, such as in bibliometrics, social,

and information network analysis. For example, personalized PageRank vectors have

been used for local community detection [17]. It has also been used in analysis of

road networks and for link prediction and recommendation systems [5]. To define

the PageRank problem, we consider a random surfer model: a hypothetical random

web surfer navigating between webpages online. When this random surfer visits a

webpage, he tosses a coin; if the coin comes up heads he randomly clicks on a link

from the current page and transitions there, if the coin comes up tails, he teleports to

a (possibly random) page independent of the current page’s identity.

12

Let P = ATD−1 be the transition matrix of probabilities, where D is the matrix

of all diagonal values of A. Specifically P (i, j) is the probability of transitioning from

page j to page i. Assume the random surfer transitions according to the link structure

of the web with probability α and teleports randomly with probability 1− α. When

teleporting randomly, the surfer teleports according to a teleportation distribution

vector v, where v is typically a uniform distribution over all pages. Many applications

typically set α to 0.85 [5]. The solution x to Equation 2.1 gives the desired PageRank

vector.

(I − αP)x = (1− α)v (2.1)

Eigenvector centrality is another linear algebra-based centrality measures for weight-

ing relative importance of vertices in networks and does so by examining the eigenvec-

tor corresponding to the largest eigenvalue of the adjacency matrix [18]. Eigenvector

centrality takes into account all walks through the network by considering both di-

rect connections to vertices (edges to neighbors) as well as indirect (paths through the

network). It is defined as the solution x to the equation Ax = λmaxx, where λmax is

the largest eigenvalue of A, guaranteed to be positive and real by the Peron-Frobenius

Theorem [19].

The subgraph centrality of a vertex weights walks in the graph of length k by a

factor of 1
k!

[20]. Recall that the number of walks of length k between vertices i and j

is given by [Ak](i, j). To calculate subgraph centrality scores we can derive the series∑∞
k=0A

k/k!. The total subgraph communicability of a vertex is defined in terms of

the row sums of matrix functions of the adjacency matrix of the network. The most

common function is that of the matrix exponential in Equation 2.2.

eA = I + A+
A2

2!
+
A3

3!
+ · · ·+ Ak

k!
=
∞∑
k=0

Ak

k!
(2.2)

The subgraph centrality of node i is given by [eA](i, i) while the subgraph communi-

13

cability between nodes i and j is given by [eA](i, j) [21]. A relatively high subgraph

centrality indicates a more important vertex in the network and a high subgraph

communicability between two vertices indicates that information flows more easily

between those two vertices compared to other pairs of vertices with lower subgraph

communicability.

A majority of the contributions in this dissertation address the ranking problem

for Katz Centrality, a centrality metric that measures the affinity between vertices as

a weighted sum of the walks between them [4]. Katz Centrality scores penalize long

walks in the network through multiplication by a fixed, user-chosen factor α for each

edge used, where α ∈ [0, ρ(A)]. This gives rise to the series

∞∑
k=1

αk−1Ak,

where for i 6= j, the (i, j)th element gives a weighted count of the number of walks

of all lengths from vertex i to j. The ith sum of the series summarizes the ability of

vertex i to initiate walks to all other vertices in the network and therefore the (i, i)th

element gives the weighted count of closed walks that start and finish at vertex i with

a uniform shift. The Katz score of vertex i is therefore given as in Equation 2.3,

eTi

∞∑
k=1

αk−1Ak1, (2.3)

where ei is the ith canonical basis vector, the vector of all 0s except a 1 in the ith

position. In practice the Neumann formula [22] is employed to turn this series into a

linear system and we compute the Katz Centrality (c) of all vertices in the graph as

in Equation 2.4.

c =
∞∑
k=1

αk−1Ak1 = A(I − αA)−11 (2.4)

14

2.3.2 Linear Algebra for Data Analysis Applications

Linear algebraic techniques as a tool for solving other data analysis problems has

been studied in [23]. In fact, many data analysis problems are phrased as numerical

problems for a more tractable solution, where the solution for the original data mining

problem depends on the accuracy of the solution to the induced numerical problem.

While there has been literature examining how the exact solution to the numerical

problem affects the quality of the solution to the data mining problem, there has

been little work in the realm of quantifying how the quality of the solution to the

data mining problem is affected by an approximate solution to the numerical problem.

In [24] this topic is addressed for spectral partioning. In spectral partitioning, vectors

approximating eigenvectors of a graph matrix are used to partition a graph. The

relationship between low-accuracy approximations of the eigenvectors is studied on

the effect of the resulting partition. The authors conclude that although allowing more

error in the eigenvalue computation potentially results in a loss of partition quality, the

performance improvements in runtime are significant. In this dissertation, we address

the topic of turning a data analysis problem into a numerical problem for centrality,

where the data analysis problem is that of ranking vertices and the numerical problem

is that of solving a linear system. Specifically we present theoretical results to quantify

how accurate of a solution is needed when approximating a centrality vector using

iterative solvers in order to accurately guarantee ranking of vertices in graphs.

For many application purposes it is primarily the highly-ranked vertices that are

of interest. Consider performing a web search with Google. Anyone who runs a web

search only cares about the top part of the ranking, or the most relevant results to

the original search query; typically one only has enough human resources to examine

the top. In a Twitter graph, we might wish to identify the most influential voices in

a subset of Twitter users, or in a network modeling disease spread an analyst would

be interested in finding sites of disease origin. Finally, consider a social network

15

modelling relationships between people. A common query is identifying the most

active people in the network (or the most important). All these queries are answered

by examining the highly ranked vertices in the respective graph.

As mentioned earlier, solving for many linear algebra based centrality measures

directly is generally intractable so iterative solvers are used to approximate them

[25]. By treating the ranking problem as obtaining a solution to a linear system, we

present how error in the numerical approximation affects the solution to the original

ranking problem. Understanding the error in the approximate solution to the numer-

ical problem is key to understanding the error in the data mining problem. Ranking

vertices in graphs and finding the top ranked vertices is of very practical relevance to

data analysts. Relative importance of top vertices with respect to a particular seed

set and ranking in practical settings are studied in [26].

We focus on approximating the centrality score of the vertices in the graph to

a high enough accuracy to certify that the top of the ranking vector is accurate

compared to the exact solution. Several other methods for approximating Katz scores

across the network only examine walks up to a certain length [27] or employ low-rank

approximation [28]. In [29], the authors provide theoretical guarantees for pairwise

Katz scores. They use the Lanczos process to provide upper and lower bounds on

the estimate of the pair-wise scores and exploit localization of the Katz matrix to

provide estimates on the Katz scores. Our work differs in that we provide confidence

as to which portion of the global ranking is correct and use the size of the residual to

provide an accurate estimation of the ranking.

2.4 Dynamic Analysis of Centrality Measures

Since many real datasets are constantly evolving over time giving rise to a dynamic

graph, much of today’s graph analysis has focused on dynamic graph analysis. While

much of the literature tends to focus on optimizing algorithms for centrality measures

16

on static graphs, a growing body of work addresses dynamic algorithms for updat-

ing centrality measures given updates to the underlying graph. Analytics that adapt

quickly to changes in the graph are highly sought after, because otherwise re-compting

them from scratch every time an update to the graph is made becomes very compu-

tationally expensive. In this section, we discuss literature on algorithms for centrality

measures and community detection in dynamic graphs. Section 2.4.1 details liter-

ature about streaming algorithms for popular centrality measures that modify the

algorithm itself, and Section 2.4.2 details literature for streaming centrality measures

in a linear algebraic environment.

2.4.1 Popular centrality measures

Betweenness and closeness centrality are two very popular graph metrics in network

analysis for identifying the most important vertices in a graph, with specific ap-

plications in network stability, traffic predictions, and social network analysis [1].

Betweenness centrality (BC(v)) looks at the vertices with high betweenness, i.e.,

those vertices whose removal would cause a significant number of shortest paths to

not exist anymore. This notion was first established by Freeman, to compare the

number of shortest paths going through a vertex v with the total number of short-

est paths [30]. Formally the betweenness centrality score for vertex v is defined as

BC(v) =
∑

s 6=v 6=t∈V
σst(v)
σst

, where σst(v) is the number of shortest paths from vertex

s to vertex t that include vertex v and σst is the number of shortest paths from s

to t in general. Calculating the values can be done using Floyd-Warshall’s all-pairs

shortest-paths algorithm to find shortest paths from all vertices to all others in the

graph. Applying Floyd-Warshall gives a runtime of O(|V |3) [31], [32]. Johnson gave a

faster method to calculate all-pairs shortest-paths in O(mn+ n2 log n) [33]. Brandes

provided a dependency accumulation technique to calculate betweenness centrality

faster in O(|V ||E|) [34], with an improved storage complexity. This technique is

17

faster for sparse networks; for dense networks, Floyd-Warshall’s method is preferred.

Closeness centrality (CC(v)) was first introduced by Bavelas in 1950 to measure

the ‘farness’ of a vertex, defined as the sum of its distances from all other vertices,

and its ‘closeness,’ defined as the reciprocal of the farness [35]. Closeness central-

ity measures how close a vertex is to all other vertices based on the shortest-path

length. The closeness centrality score for vertex v is defined as CC(v) = 1∑
t∈V dG(v,t)

,

where dG(v, t) is the length of the shortest path between vertices v and t. The exact

closeness centrality value for each vertex in the graph can be calculated by solving

the all-pairs shortest-paths problem in O(mn+ n2 log n) [33], [36]. However, in large

networks, calculating the exact value is often too computationally expensive and an

approximation is sufficient. Eppstein provides an algorithm to approximate closeness

centrality in O(logn
ε2

(n log n + m)), with an additive error of ε∆ for the inverse of

closeness centrality with probability 1− 1
n

where ε > 0 and ∆ is the diameter of the

graph [37]. Finally, if the values themselves are not important to the application,

and only identification of vertices with high closeness centrality is required, a ranking

method is of use. Okamoto developed a method to rank and obtain the top k vertices

with the highest closeness centrality in the graph in O((k+ n
2
3 · log

1
3 n)(n log n+m))

[38].

Since both these metrics are fairly computationally intensive to calculate, in the

case of dynamic graphs it is optimal to have an algorithm that can update the cen-

trality values with minimal effort as the graph updates instead of recomputing the

centrality values from scratch. In [39], the authors propose an algorithm to update

both betweenness and closeness calculations together after receiving edge updates to

the graph. By splitting up the calculation of the centrality metrics into two parts,

they avoid performing unneccessary calculations performed in previous timesteps.

The first step repeats a calculation process until the shortest path is converged, and

the second step aggregates the shortest path calculation into closeness and between-

18

ness centralities. The first step can be performed for both closeness and betweenness

centrality simultaneously. The authors in [40] propose an incremental algorithm for

closeness centrality by exploiting specific network topological properties: specifically

their shortest-distance distributions, biconnected components distributions, and the

existence of vertices with identical neighborhoods. They achieve a mean speedup of

43.5× for smaller graphs with less than 500K edges and 99.8× for larger graphs with

more than 500K edges. Finally, the authors in [41] propose an incremental algorithm

for updating betweenness centrality values by maintaining additional data structures

to store previously computed values. They are able to achieve speedups of 100-400×

on synthetic networks and speedups of 36-148× on real networks.

2.4.2 Incremental centrality using linear algebra

In this section we focus on dynamic algorithms for centrality measures based in a

linear algebraic environment. As PageRank is one of the most commonly studied

problems in the literature, we outline several dynamic algorithms for updating the

centrality metric given edge updates to the graph. There are two general areas of

techniques used to approximate dynamic updates to the PageRank vector: (1) lin-

ear algebraic methods that mainly use techniques from linear and matrix algebra and

perhaps using some structural properties of the network [42, 43], and (2) Monte Carlo

methods that use a small number of simulated random walks per vertex to approxi-

mate PageRank scores [44, 45]. Many linear algebraic techniques use “aggregation”

methods, which operate under the assumption that changes to the underlying network

affect only a localized portion of the PageRank vector [46, 47]. Aggregation methods

partition the set of vertices into two disjoint sets S and V \S, where S is the set of all

vertices close to the incremental change and V \S is the set of all other vertices. All

the vertices in V \S are aggregated into a single hyper-vertex and a smaller graph is

created. The PageRank values of all the vertices are updated using this smaller graph

19

and the result is pushed back to the original graph. However, most aggregation tech-

niques do not translate well for real-time applications due to both performance and

quality reasons. Since the performance of these methods depends on the partitioning

of the network, a poor partitioning can cause these methods to be extremely slow

[48]. In terms of quality, since the aggregation is ultimately an approximation of the

updated PageRank vector given incremental changes to the graph, the approximation

error could potentially accumulate over time leading to a very poor quality PageR-

ank vector. Monte Carlo methods for the incremental computation of approximate

PageRank, personalized PageRank and similar random walk methods is examined in

detail in [49]. These methods are typically very efficient and can achieve good quality

personalized scores, but most literature on these approaches has thus far only been

applied to static networks. These methods maintain a small number of short ran-

dom walk segments starting at each vertex in the graph. For the case of identifying

the top k vertices, these methods are able to provide highly accurate estimates of

the centrality values for the top vertices, but smaller values in the personalized case

are nearly identical and therefore impossible to tell apart. In [17], an algorithm for

updating PageRank values in dynamic graphs by only using sparse updates to the

residual is presented. In this thesis, we develop several algorithms to update Katz

Centrality scores in dynamic graphs. To our knowledge, there is no method available

to incrementally update Katz values in a dynamic graph without performing a full

recomputation.

2.5 Community Detection

Community detection in graphs is a rapidly growing field of research and as such,

there has been much work in the recent literature regarding development of algo-

rithms for community detection. The task of community detection can broadly be

thought of as identifying groups of vertices in a graph that are more closely related

20

to each other than the rest of the graph. For example, in a network modeling user

behavior on Facebook, a community in that graph may be a group of friends who

communicate most often with each other. Alternately, a community may be a set of

people who belong and contribute to a specific page of interest on Facebook. Sim-

ilarly, a community in a graph modeling financial transactions may be a group of

individuals who primarily participate in mutual transactions with each other.

The definition of a community varies greatly amongst the existing literature. As

such, there are several metrics that exist to evaluate the “quality” of a community.

These metrics are further described in more detail in Chapter 5. Most of the lit-

erature in the field of community detection focuses on finding global communities

in a static, unchanging graph. Popular methods include greedy agglomerative algo-

rithms such as the Clauset-Newman-Moore (CNM) algorithm [50] and the Louvain

method [51]. These two methods find a global partition of the graph in which each

vertex belongs to exactly one community. Another widely used method of finding

global, non-overlapping communities is spectral partitioning, which uses the eigen-

vectors of the Laplacian of the graph adjacency matrix to partition the graph in

two [52, 53]. This process may be repeated recursively to find smaller communities.

While much of previous work has focused on partitioning methods that find non-

overlapping communities, there are many methods that identify overlapping clusters.

These include clique percolation [54], label propagation [55, 56], edge partitioning [57],

Order Statistics Local Optimization Method (OSLOM) [58], multiple local expansions

[59, 60, 61], and ensemble combinations [62].

Community detection has also been studied in the context of dynamic graph data

and this work can be broadly divided into two categories. Algorithms in the first cat-

egory focus only on quality, while those in the second aim to both detect high-quality

communities and minimize computation. Typically, methods in the former category

seek to find the best sequence of communities given the dynamic data by maximizing

21

both the quality of communities found at each point in time and the smoothness of

community change over time. This can be done by collecting all temporal data before

inferring communities, as in [63, 64, 65]. Using all temporal data may produce better

choices of communities over time, but may be computationally expensive and can

only be performed after all data is collected. Therefore, this approach is not suitable

for applications in which updated communities must be found quickly. Alternatively,

each community may be found using only past data, as in evolutionary clustering [66]

and FaceNet [67].

In the other category of dynamic community detection work, the goal is to both

maintain good communities on a changing graph while minimizing computation. Typ-

ically, this is done as follows. A graph is formed from an initial set of data and com-

munities are identified. When the graph changes due to new data, new communities

are found by starting with the previous community solution and incrementally up-

dating it. Many algorithms of this type update the results of greedy, agglomerative

algorithms. For example, Aynaud et al. [68] presents an incremental version of the

Louvain algorithm. Whenever the graph changes, the previous clusters are used as a

starting point. Changes are made by checking if the quality of the community would

increase by moving any vertex to a different community. The work in [69] is an-

other incremental version of Louvain clustering that starts with the previous cluster

assignment modified based on the graph changes that occurred. The Modules Iden-

tification in Evolving Networks algorithm (MIEN) [70] is an incremental version of

greedy agglomerative methods such as CNM. In the work by Riedy and Bader, when-

ever edges are inserted or deleted, the endpoint vertices of such edges are moved from

their communities into singleton communities before restarting their agglomerative

algorithm [71]. In the work in [72] by Görke et al., the authors present algorithms to

maintain a clustering of a dynamic graph where edges appear as a stream by optimiz-

ing the quality while guaranteeing smoother clustering dynamics. Our work in the

22

field of community detection falls into this second category of dynamic community

detection, except that we deal with local communities, which are described next.

Local community detection is the task of finding the best community for a set of

vertices of interest, often called seed vertices. This is also called seed set expansion.

When dealing with massive graphs, running computationally intensive analytics, visu-

alization, and manual inspection by human analysts is likely to be infeasible, and this

difficulty only increases for dynamic data. In such cases, local community detection

can be used to extract a smaller, relevant subgraph in order to perform such tasks.

Chapter 5 describes in more detail different local community detection methods that

have previously been developed in the literature and how they relate to our work.

23

CHAPTER 3

NUMERICAL APPROXIMATIONS FOR CENTRALITY MEASURES

This chapter relates the two research areas of numerical analysis and data mining

by turning the data analysis problem of ranking into a numerical problem of solving

a linear system to some accuracy. We show that we can approximate the centrality

scores of vertices on a graph to a high enough accuracy in order to guarantee vertex

ranking in graphs. Here, we study Katz Centrality and PageRank. Theorems 1

and 2 present a new error bound on elements of a ranking vector to provide graph

ranking guarantees to the computation of centrality. We turn our numerical theory

into a new stopping criterion for iterative solvers in Section 3.1.2 to identify highly-

ranked vertices in a graph that reduces runtime compared to running a solver to

machine precision. We use Lanczos estimates to bound ‖A‖2, the matrix 2-norm of

the adjacency matrix A in Section 3.1.3. Our analysis is applied to the computation

of both global and personalized centrality scores and we develop sound theory with

empirical analysis for both undirected and directed networks.

3.1 Theory

To solve for both Katz Centrality and PageRank, we are solving a linear system.

When Katz Centrality was first introduced, Katz used the column sums of the matrix

resolvent to obtain scores as cKatz = A(I−αA)−11 [4]. We refer to these as global Katz

scores. From a graph perspective, these scores count the total number of weighted

walks of all lengths ending at each vertex. We can also calculate personalized Katz

scores from a particular vertex i, or more intuitively, weighted counts of the number of

walks of all lengths starting at vertex i and ending at each vertex in the graph. These

scores correspond to the ith column in the matrix A(I −αA)−1 and are calculated as

24

cKatz = A(I − αA)−1ei, where ei is the ith canonical basis vector. Similarly, we can

define personalized scores from a group of vertices S = {v1, v2, · · · , v|S|} by defining a

vector eS = ev1 +ev2 + · · ·+ev|S| . The personalized scores w.r.t. S are then calculated

as cKatz = A(I − αA)−1eS . In this work when dealing with personalized scores we

only use a single vertex, although the analyses presented can easily be extended to the

group personalized case. The centrality scores obtained by Katz Centrality can thus

be summarized as cKatz = AxKatz, where xKatz is the solution to the linear system in

Equation 3.1.

MKatzxKatz = bKatz (3.1)

We define MKatz = I − αA and bKatz to be either 1 or ei depending on whether we

are solving for the global or personalized Katz scores. Similarly, for PageRank we

solve for the vector cPR = (I − αATD−1)−1bPR, or equivalently we solve the linear

system (I − αATD−1)cPR = MPRcPR = bPR, where the right-hand side bPR is set

accordingly depending on whether we are solving for the global or personalized scores.

When the solution c = M−1b to either linear system is approximated, there will

be differences between the approximate solution and the exact solution, where c is

either cKatz or cPR. We prove that these differences along with the ranking values can

indicate how far down the ranking we can go before the approximation error makes

it unreliable. For iteration k of the iterative solver, define d(k) = π(k)c(k), where π(k)

is the permutation such that d(k) is the vector c(k) ordered in decreasing order so

that d
(k)
i ≥ d

(k)
i+1. Define λmin(M) to be the smallest eigenvalue of the matrix M and

σmin(M) to be the smallest singular value of the matrix M , where M is either MKatz

or MPR. Again recall that the residual norm is given as rk = ‖b−Mx(k)‖2.

3.1.1 Error Analysis

We make the observation that if our goal is identification of the highly ranked vertices

in a graph, we ought to focus on the ranking accuracy not numerical accuracy. This

25

is because the error in the data analysis problem of ranking is dfferent than the error

in numerical problem of solving the linear system: the relative ranking of vertices can

be correct even without a fully correct centrality vector. We theoretically guarantee

the accuracy of the solution to numerical problem needed to successfully answer the

data mining question of ranking for both Katz Centrality and PageRank.

Theorem 1 below provides guarantees as to when the rank of vertex i above j is

correct from the approximate solution using Katz Centrality.

Theorem 1. For undirected graphs, for any i < j, the rank of vertex i above j using

Katz Centrality is correct if |d(k)
i − d

(k)
j | > 2εk for εk = ‖A‖2

λmin(MKatz)
rk. For directed

graphs, for any i < j, the rank of vertex i above j is correct if |d(k)
i − d

(k)
j | > 2ε̃k for

ε̃k = ‖A‖2
σmin(MKatz)

rk.

Proof. Using foundations of error analysis in linear solvers, we can bound the com-

ponentwise error in the ranking, which will then provide a sufficient error gap in the

elements of the approximation to the ranking vector.

‖d∗Katz − d
(k)
Katz‖∞ = ‖c∗Katz − c

(k)
Katz‖∞

≤ ‖c∗Katz − c
(k)
Katz‖2

= ‖Ax∗Katz − Ax
(k)
Katz‖2

≤ ‖A‖2‖x∗Katz − x
(k)
Katz‖2

= ‖A‖2‖M−1
KatzbKatz − x

(k)
Katz‖2

≤ ‖A‖2‖M−1
Katz‖2‖bKatz −MKatzx

(k)
Katz‖2

≤ ‖A‖2‖M−1
Katz‖2rk

For undirected graphs (with A symmetric), we have ‖MKatz‖−1 ≤ 1
λmin(MKatz)

, so we

26

can write:

‖d∗Katz − d
(k)
Katz‖∞ ≤

‖A‖2

λmin(MKatz)
rk (3.2)

=: εk

For directed graphs (with A nonsymmetric), ‖MKatz‖−1 is bounded by the inverse of

the minimum singular value instead of the inverse of the minimum eigenvalue:

‖d∗Katz − d
(k)
Katz‖∞ ≤

‖A‖2

σmin(MKatz)
rk (3.3)

=: ε̃k

Let d(i) be the value of the ith vertex in the graph. Since d(i)
(k)
Katz−d(i)∗Katz < εk and

d(j)∗Katz−d(j)
(k)
Katz < εk, this means that d(i)∗Katz−d(j)∗Katz > d(i)

(k)
Katz−d(j)

(k)
Katz−2εk.

If d(i)
(k)
Katz − d(j)

(k)
Katz > 2εk, then d(i)∗Katz − d(j)∗Katz > 0 meaning that the ranking of

vertex i above j is correct.

Similarly, we can derive a corresponding bound for PageRank to guarantee the

ranking of vertices in the approximate ranking vector. We again separate the bounds

into the undirected and directed graph cases.

Theorem 2. For undirected graphs, for any i < j, the rank of vertex i above j is

correct using PageRank if |d(k)
i −d

(k)
j | > 2εk for εk = 1

λmin(MPR)
rk. For directed graphs,

for any i < j, the rank of vertex i above j is correct using PageRank if |d(k)
i −d

(k)
j | > 2ε̃k

for ε̃k = 1
σmin(MPR)

rk.

27

Proof.

‖d∗PR − d
(k)
PR‖∞ = ‖c∗PR − c

(k)
PR‖∞

≤ ‖c∗PR − c
(k)
PR‖2

= ‖M−1
PRbPR − x

(k)
PR‖2

≤ ‖M−1
PR‖2‖bPR −MPRx

(k)
PR‖2

≤ ‖M−1
PR‖2rk

For undirected graphs (with A symmetric), we have ‖MPR‖−1 ≤ 1
λmin(MPR)

, so we can

write:

‖d∗PR − d
(k)
PR‖∞ ≤

1

λmin(MPR)
rk (3.4)

=: εk

For directed graphs (with A nonsymmetric), ‖MPR‖−1 is bounded by the inverse of

the minimum singular value instead of the inverse of the minimum eigenvalue:

‖d∗PR − d
(k)
PR‖∞ ≤

1

σmin(MPR)
rk (3.5)

=: ε̃k

Again, since d(i)
(k)
PR−d(i)∗PR < εk and d(j)∗PR−d(j)

(k)
PR < εk, this means that d(i)∗PR−

d(j)∗PR > d(i)
(k)
PR − d(j)

(k)
PR − 2εk. If d(i)

(k)
PR − d(j)

(k)
PR > 2εk, then d(i)∗PR − d(j)∗PR > 0

meaning that the ranking of vertex i above j is correct.

We observe in practice that the bounds in Theorems 1 and 2 are tight enough to

produce relevant results in many practical applications (seen in Section 3.2) and lend

themselves to the development of a new stopping criterion for iterative solvers when

identifying the highly ranked vertices in a graph.

28

3.1.2 New Stopping Criterion

Current methods for identifying the top vertices in a graph involve running an iter-

ative solver to machine precision to obtain an approximation of c∗. We introduce a

new stopping criterion to find these top vertices that typically provides results much

faster than existing methods, based off of the theory developed in Theorems 1 and

2 above. Furthermore, our method provides theoretically sound guarantees as to the

correctness of the top vertices, unlike the common method of simply running a solver

to machine precision and blindly hoping the resulting vector is good enough for the

desired data mining task.

Suppose a user desires a set of j vertices containing the top R highly ranked

vertices in a graph, with precision φ∗. How large does j need to be before we can

accurately certify (or guarantee) that the top vertices are in the set? We are not

concerned with the internal ordering of this set, but rather that the top R vertices

are contained somewhere within the superset of j vertices. The desired precision φ∗

gives a sense of how many false positives we will tolerate in our set. We answer this

question using our theory.

Here, we present the implementation for the theory for Katz Centrality on undi-

rected graphs, but the same principle can be applied to develop a stopping criterion

for PageRank or directed networks. For brevity, we drop the Katz subscript in this

section. This procedure is given in Algorithm 4, for an adjacency matrix A, right-

hand side b, number of top vertices R, desired precision φ∗, maximum number of

iterations kmax, and upper bound σup on ‖A‖2. Note we discuss bounds for ‖A‖2 in

the next section. At each iteration of conjugate gradient, the current solution c(k) is

ordered in decreasing order to produce the vector d(k) as described earlier. We find

the first position j > R in d(k) where we find the necessary gap of |d(k)
R − d

(k)
j | > 2εk.

The precision for these values of R and j is defined as φ = R
j−1

. If for this value of j

we have the desired precision φ∗, meaning φ = R
j−1
≥ φ∗, then we terminate, else we

29

iterate again using conjugate gradient to obtain a more accurate approximation.

Intuitively the precision shows how far past position R we must travel down the

vector to find the necessary gap to ensure we are returning the top R vertices in the

graph. Conjugate gradient can be organized to return x(k), c(k), and the residual

norm rk at each iteration (denoted CGiteration in Algorithm 4).

Algorithm 4 Obtain top R vertices in network with precision φ∗

1: procedure Top R(A,b, R, φ∗, kmax, σup)
2: k = 0; j = ∞
3: M = I − αA
4: while R

j−1
< φ∗ and k < kmax do

5: x(k), c(k), rk = CGiteration(M,x(k−1),b)
6: d(k) = π(k)c(k) . Sort c(k) in descending order
7: εk = σup

λmin(M)
rk

8: j = argmini>R|d(k)
R − d

(k)
i | > 2εk

9: k += 1

To solve for PageRank instead of Katz Centrality, we modify Line 2 to M =

I − αATD−1 and change the bound accordingly in Line 4. For the directed graph

case, we use GMRES instead of Conjugate Gradient in Line 2 and again modify

the bound in Line 4. The vector b is set to 1 or ei accordingly depending on if we are

solving for the global or personalized scores. The procedures for conjugate gradient

or GMRES are given previously in Algorithms 2 or 3 respectively.

3.1.3 Bounds on ‖A‖2

We obtain a tight bound on εk which allows us to certify that the ranking of vertex i

above j is correct if the gap between two elements in the ranking vector is greater than

our error bound, |d(k)
i − d

(k)
j | > 2εk. The iterative solver can be organized to readily

provides the residual norm rk at each iteration, and λmin(M) or σmin(M) can be

computed provided α is chosen in the given range. To certify portions of the ranking

vector, we desire εk to be as small as possible to find places in the vector where the

necessary gap |d(k)
i − d

(k)
j | exists. For the bounds on Katz Centrality, obtaining a

30

tight bound on ‖A‖2 is key to bounding εk; we present and compare two methods of

bounding ‖A‖2.

The Gershgorin Circle Theorem [73] bounds the eigenvalues of the symmetric

matrix A. Let Ti =
∑

j 6=i |aij|, the sum of the nondiagonal entries in row i. Then

D(aii, Ti) is the closed interval centered at aii with radius Ti and every eigenvalue

λ ∈ σ(A) must lie within at least one interval D(aii, Ti), where σ(A) is the spectrum

of A. Since the diagonal entries aii of A are 0, the discs are all centered around the

origin and ∀i, Ti = di = the degree of vertex i. We then have ‖A‖2 = max λi <

max Ti = dmax, where dmax is the largest degree in the graph. While this provides a

basis for an upper bound of the matrix 2-norm of A, many real-world graphs such as

social networks have a scale-free distribution and thus contain vertices with a very

large degree [74]. Therefore, this is often a non-optimal bound. By using just a

few matrix-vector multiplications applied to random vectors, we can compute tighter

bounds with high certainty.

We next examine probabilistic matrix norm bounds [75] and consider replacing

the true bound σup with an estimate of a bound with some probability. These bounds

are developed using the polynomials p, q implicitly formed as a part of the Lanczos

bidiagonalization process with starting vector v1, which is chosen randomly with

unit norm. For β0 = 0 and u(0) = 0 and k ≥ 1, the defining relations of Lanczos

bidiagonalization are stated as

γju
(j) = Av(j) − βj−1u

(j−1)

βjv
(j+1) = ATu(j) − γjv(j),

where γj = u(j)TAv(j) and βj = u(j)TAv(j+1) are nonnegative. Therefore the following

31

recurrence relations hold for the recurrent polynomials derived as below:

γj+1pj(t) = qj(t)− βjpj−1(t)

βj+1qj+1(t) = tpj(t)− γj+1qj(t),

for p−1(t) = 0 and q0(t) = 1 for j ≥ 0. The bound is stated in Theorem 3 and

the algorithm from [75] is reproduced here for clarity. Note in Algorithm 5 that the

matrices U and V are the concatenated column vectors uj and vj respectively. The

result is an upper bound σup(θ) for ‖A‖2 with probability 1-θ, where θ is the user-

chosen probability of bound failure. Define δ = θ · 1
2
B(n−1

2
, 1

2
) where B is Euler’s Beta

function, B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Theorem 3. [75] Suppose we have carried out k steps of the Lanczos bidiagonalization

process with starting vector v1, and let θ ∈ (0, 1). Then the largest zero of the

polynomials,

f1(t) = qk(t
2)− 1/δ, f2(t) = tpk(t

2)− 1/δ

with δ given above, is an upper bound σup(θ) for ‖A‖2 with probability at least 1-θ.

As a result of thorough experimentation, for all bounds used in this section, we

select values of θ=0.01 and k=10. For k=10, in order to calculate σup(0.01) we are

required to calculate the largest root of a tenth order polynomial. Since this does not

change regardless of problem size n, this calculation is asymptotically a fixed cost.

We use Python’s Sympy package to calculate the roots of these polynomials. The

deterministic Gershgorin bounds yield large values of ‖A‖2, rendering these bounds

useless. On average, these bounds return estimates of ‖A‖2 that are 30.9× greater

than the true 2-norm. In contrast, the probabilistic bounds presented in Theorem 3

return estimates of ‖A‖2 that are only on average 1.07× greater than the true 2-norm,

32

Algorithm 5 Lanczos bidiagonalization to calculate probabilistic upper bound σup(θ)
on ‖A‖2 with probability θ

1: procedure Calc Upper Bound(A, v(1), θ)
2: δ = θ · 1

2
B(n−1

2
, 1

2
)

3: p−1(t) = 0, q0(t) = 1
4: for j=1· · · k do
5: u = Av(j)

6: if j >1 then
7: u = u− βj−1u

(j−1)

8: u = u− Uj−1(uTUj−1)T

9: γj = ‖u‖
10: uj = u/γj
11: v = ATu
12: v = v − γjv(j)

13: v = v − Vj(vTVj)T
14: βj = ‖v‖
15: v(j+1) = v/βj
16: pj(t) =

qj(t)−βjpj−1(t)

γj+1

17: qj+1(t) =
tpj(t)−γj+1qj(t)

βj+1

meaning that these are able to be used for practical purposes.

Remark 1. Future work will examine obtaining the bound in real-time without

any additional computational cost. In the Lanczos algorithm to obtain σup we are

applying A to obtain u = Av, and in conjugate gradient we are applying A to obtain

(I − αA)x(k) in each iteration. These two operations can be combined and we can

apply A to both vectors in the same algorithm, effectively performing both Algorithms

4 and 5 simultaneously, which is important for distributed implementations of these

algorithms.

3.2 Results

In this section we present comparisons to existing methods for identifying the top

ranked vertices with respect to performance and experiments validating our bound

with respect to precision. We are interested in determining if our method correctly

33

Table 3.1: Undirected graphs used in numerical experiments. Columns are graph
name, number of vertices, number of edges, and type of graph.

Graph |V | |E| Type
douban 154,908 327,162 social
gowalla 196,591 950,327 social

dblp 317,080 1,049,866 coauthorship
dogster 426,820 8,546,581 social
catster 623,766 15,699,276 social

youtube 1,134,890 2,987,624 social
skitter 1,696,415 11,095,298 computer
flickr 1,715,255 15,551,250 social

california 1,965,206 2,766,607 infrastructure
facebook 63,731 817,035 social

pgp 10,680 24,316 online
livejournal 5,204,175 49,174,464 social

orkut 3,072,441 117,184,899 social

Table 3.2: Directed graphs used in numerical experiments. Columns are graph name,
number of vertices, number of edges, and type of graph.

Graph |V | |E| Type
edinburgh 23,132 312,342 lexical

cora 23,166 91,500 citation
lkml 63,399 1,096,440 social

epinions 75,879 508,837 social
enron 87,273 1,148,072 social
baidu 2,141,300 17,794,839 hyperlink

wiki-german 3,225,565 8,1626,917 hyperlink
wiki-english 18,268,991 172,183,984 hyperlink

identifies the set of top vertices and if so, how much faster we are able to certify this

set. The common method of iterating to machine precision does not theoretically

certify this set but our theory can be used on the machine precision solution as

well. We conduct experiments on both undirected and directed networks from the

KONECT [76] collection, including social networks, autonomous systems, citation,

co-authorship, and web graphs. Table 3.1 gives the undirected networks used and

Table 3.2 gives the directed networks used.

For the results shown here, we vary values of the desired precision as

34

φ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and the top R as R = 10, 100, and 1000. For Katz

Centrality, we vary the α parameter as a fraction of its upper bound 1/‖A‖2. For

personalized centrality results, we form the vector ei by choosing a vertex i randomly

from the top 10% of highest degree vertices.

3.2.1 Speedup in iterations

We first analyze the effect of our stopping criterion on reducing the number of itera-

tions taken by an iterative solver to identify the top R vertices in a graph. We denote

the number of iterations taken by either conjugate gradient/GMRES to converge to

machine precision as IE and the number of iterations using our new stopping criterion

as IA and calculate speedup w.r.t. number of iterations as

speedup =
IE
IA
.

In this section we only show results obtained with a precision of 1.0 (so for a

desired set of the top R vertices we return a set guaranteed to have no false positives)

and we show results for all values of R (10, 100, and 1000). For Katz Centrality

results, we sample all values of α as well. Figure 3.1 plots the distribution of the

speedups for undirected graphs. Figures 3.1a and 3.1b plot the histograms for global

and personalized Katz Centrality scores, respectively, and Figures 3.1c and 3.1d show

global and personalized results for PageRank, respectively. For the undirected graphs,

for Katz scores we have an average of 3.99× speedup for global scores and 4.03× for

personalized scores, and for PageRank an average of 6.24× speedup for global scores

and 10.23× for personalized scores. Figure 3.2 plots the distribution of the speedups

for directed graphs, again for global and personalized Katz and PageRank scores.

For the directed networks, for Katz scores we obtain an average of 4.60× speedup

for global scores and 5.04× for personalized scores, and for PageRank an average

35

2 4 6 8 10 12
Speedup in iterations

100

101

102

N
um

be
r o

f d
at

as
et

s

(a) Speedup for global Katz scores.

5 10 15 20 25 30
Speedup in iterations

100

101

102

N
um

be
r o

f d
at

as
et

s

(b) Speedup for personalized Katz scores.

0 20 40 60
Speedup in iterations

0

5

10

15

20

25

30

N
um

be
r o

f d
at

as
et

s

(c) Speedup for global PageRank scores.

0 10 20 30 40 50 60
Speedup in iterations

0

5

10

15

20

25

N
um

be
r o

f d
at

as
et

s

(d) Speedup for personalized PageRank
scores.

Figure 3.1: Histograms of speedups in iterations for undirected graphs with precision
1.0. Higher values of speedup are better.

of 2.52× speedup for global scores and 23.91× for personalized scores. In all cases

we obtain a speedup greater than 1× and up to a speedup of a maximum of over

two orders of magnitude. This shows that we are able to identify the top R in a

fraction of the time using our stopping criterion compared to running until machine

precision, while providing a theoretical guarantee that these vertices are in the top of

the ranking vector. This is especially significant because running to machine precision

can sometimes take hundreds or thousands of iterations.

36

5 10 15 20 25
Speedup in iterations

100

101

102

N
um

be
r o

f d
at

as
et

s

(a) Speedup for global Katz scores.

10 20 30 40
Speedup in iterations

100

101

102

N
um

be
r o

f d
at

as
et

s

(b) Speedup for personalized Katz scores.

2 4 6 8 10
Speedup in iterations

0

2

4

6

8

10

N
um

be
r o

f d
at

as
et

s

(c) Speedup for global PageRank scores.

100 101 102

Speedup in iterations

0

2

4

6

8

10

N
um

be
r o

f d
at

as
et

s

(d) Speedup for personalized PageRank
scores.

Figure 3.2: Histograms of speedups in iterations for directed graphs with precision
1.0. Higher values of speedup are better.

3.2.2 Performance vs. quality

We have shown that we are able to obtain speedups w.r.t. iteration counts using our

theory versus running an iterative solver to machine precision. In this section we

examine the effect varying the precision of the returned set of top vertices has on the

speedup obtained.

We first explain the behavior of the sorted ranking vector d of a single undirected

graph, facebook, a citation network, using Katz Centrality in Figure 3.3. Figure 3.3a

plots the sorted values of d on a log-scale for all the vertices and Figure 3.3b zooms

in on selected regions from Figure 3.3a. The top plot of Figure 3.3b shows values for

vertices 110-140 (vertices at the beginning of the sorted vector) and the bottom plot

37

0 10000 20000 30000 40000 50000 60000
Vertex i

10-4

10-2

100

102

104

V
a
lu

e
 o

f
d

(a) All vertices.

110 115 120 125 130 135 140
5500
5550
5600
5650
5700
5750
5800
5850
5900
5950

n−711 n−701 n−691 n−681
0.775

0.780

0.785

0.790

0.795

0.800

(b) Specific subsets of vertices.

Figure 3.3: Sorted ranking vector dKatz for facebook graph. Values are plotted in
blue circles while selected points with an extremely close error gap are shown in red
squares. Left plot is on a log-scale; right plots are on a linear scale.

shows values for vertices n− 711-n− 681 (vertices with scores toward the end of the

vector). The value of εk obtained as a part of our theory is absolute. We are able

to resolve the part of the vector that the data mining task cares about, namely the

top of the vector (the highly ranked vertices), with a guarantee that they are correct

compared to the exact solution. However, for another use case where the user desires

all the vertices in the graph to be returned correctly, since the values typically get

closer to each other the further one traverses down the ranking vector, the value of εk

will not be sufficient to provide the necessary gap between two elements toward the

end of the vector. This is seen in Figure 3.3b. For the top right plot, the two pairs

of open red squares indicate pairs of vertices where the gap is sufficient to certify the

ranking of one vertex above the other. Using our previous notation, this is translated

into a required precision of 1.0 (where we look for gaps between sucessive vertices).

For the first pair, the difference in the scores is 9.4 × 109 × 2εk and the difference

between the second pair of vertices is 9.9× 109 × 2εk. However, in the bottom right

plot (values for vertices further down the ranking vector) where the values are very

close together, the required gap 2εk is larger than the difference between successive

pairs of points. The two pairs of open red squares indicate pairs of vertices with

38

values too close together to obtain the necessary gap.

Overall the d vector follows an exponential decay pattern. The plateau-like be-

havior of the vector at certain points that is more clearly seen in Figure 3.3b can be

explained by the fact that the Katz vector tends to have sets of vertices grouped so

tightly together around the same value that we are unable to have the necessary sep-

aration to apply the error analysis to certify individual vertices’ ranking. Therefore,

when we want the top R vertices, it is sometimes necessary to travel further down

the ranking vector to j = R + ∆ to obtain the required separation between vertices,

where ∆ is the number of false positives returned in the set, or equivalently, obtain

highly ranked vertices with less than perfect (1.0) precision.

Next we examine the tradeoff between performance and quality of our algorithm.

Recall for the top R vertices returned in a superset of j vertices, we define precision

as R
j−1

. Requiring a predetermined precision of φ∗ means we want R
j−1

> φ∗. Figure

3.4 plots the average speedup and terminating residual for global and personalized

scores for Katz Centrality on undirected graphs, where the terminating residual is the

residual upon terminating at our new stopping criterion (iteration k = IA). We plot

results for α = 0.9
‖A‖2 , although trends seen for other values of α are similar. Figures

3.4a and 3.4b plot the average speedup versus required precision in iterations for global

and personalized scores respectively, and Figures 3.4c and 3.4d plot the terminating

residual versus required precision for global and personalized scores respectively. All

plots show results for the top R = 10, 100, and 1000 vertices.

In all cases (for both speedup and terminating residual), we have more of an im-

provement using our stopping criterion for smaller values of R. More specifically, we

obtain greater speedups and are able to terminate at a higher residual (obtaining a

less accurate numerical solution) for smaller values of R. This behavior can be at-

tributed to the shape of the centrality vector as explained by Figure 3.3 previously.

While the gap 2εk that we are looking for in between elements of the centrality vec-

39

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
12
3

R=10 R=100 R=1000

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

3

4

5

6
A

ve
ra

ge
 s

pe
ed

up

(a) Speedup versus precision for global Katz
scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

2

4

6

8

A
ve

ra
ge

 s
pe

ed
up

(b) Speedup versus precision for personalized
Katz scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 4

10 2

100

102

A
ve

ra
ge

 re
si

du
al

(c) Terminating residual versus precision for
global Katz scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 13

10 11

10 9

10 7

10 5

A
ve

ra
ge

 re
si

du
al

(d) Terminating residual versus precision for
personalized Katz scores.

Figure 3.4: Performance versus required precision for Katz Centrality on undirected
graphs (with α = 0.9/‖A‖2).

tor is fixed, elements in the vector themselves decrease exponentially. Therefore, for

larger values of R we need to traverse further down the ranking vector to obtain the

necessary gap. Nevertheless, we still see significant speedups for larger values of R

such as 1000. In all cases, even for large R and high precision rates, we are able to

terminate at a residual significantly above machine precision. For the personalized re-

sults (Figures 3.4b and 3.4d), we see a greater speedup but lower terminating residual

than their global counterparts (Figures 3.4a and 3.4c). Intuitively, we obtain smaller

terminating residuals for the personalized results because the values in the ranking

vector themselves are smaller. For a possible reason behind the greater speedup in

40

the personalized case, we turn our attention back to the theory presented in Theorem

1. Our stopping criterion terminates the iterative solver when we have a necessary

gap between elements in the ranking vector of 2εk = 2 ‖A‖2
λmin

rk, where rk is the resid-

ual norm. The gap εk differ in the global and personalized case only in the residual

norm. Therefore, the residual dictates how far we need to traverse down the ranking

vector until we can guarantee the top vertices in the returned set. Since the residual

in the personalized case is several orders of magnitude smaller than the residual in

the global case, we seek a smaller gap between elements in the ranking vector. We

are therefore able to stop after fewer iterations, relative to machine precision, in the

personalized case. Finally as expected, as we increase the required precision we see

reduced speedups and smaller terminating residuals. Increasing the required precision

means we desire a tighter set of the top R vertices to be returned. For example, for a

precision of 1.0 we are looking for a gap of 2εk between elements R and R+1, whereas

for a precision of 0.5 we are only looking for a gap between elements R and 2R + 1.

Clearly we will be able to find a gap between elements that are farther apart such as

R and 2R+1 much faster than successive elements R and R+1, so larger speedups for

smaller precisions is not surprising. However, we note that the difference in speedups

for required precisions from about 0.5 to 0.9 is about the same as the difference in

speedups for required precisions from about 0.9 to 1.0. This means that we are able

to quickly obtain highly ranked vertices without sacrificing too much quality.

Figure 3.5 broadly plots the same results as above except for directed graphs.

We again plot results for α = 0.9
‖A‖2 . Figures 3.5a and 3.5b plot the average speedup

versus required precision in iterations for global and personalized scores respectively,

and Figures 3.5c and 3.5d plot the terminating residual versus required precision

for global and personalized scores respectively. Most of the same trends discussed

from the undirected results are applicable for the directed graphs. In fact, for the

personalized speedups (Figure 3.4b), there is a much stronger trend of obtaining a

41

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
12
3

R=10 R=100 R=1000

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

3

4

5

6

7

8
A

ve
ra

ge
 s

pe
ed

up

(a) Speedup versus precision for global Katz
scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

5

10

15

20

25

A
ve

ra
ge

 s
pe

ed
up

(b) Speedup versus precision for personalized
Katz scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 4

10 3

10 2

10 1

100

A
ve

ra
ge

 re
si

du
al

(c) Terminating residual versus precision for
global Katz scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 9

10 7

10 5

10 3

A
ve

ra
ge

 re
si

du
al

(d) Terminating residual versus precision for
personalized Katz scores.

Figure 3.5: Performance versus required precision for Katz Centrality on directed
graphs (with α = 0.9/‖A‖2).

relatively constant speedup for precisions of 0.5-0.9 and then a sharp drop in speedup

for a precision of 1.0. This suggests that while there are vertices in the ranking vector

with these necessary gaps to guarantee ranking, in order to find the gap between

successive vertices the solver needs to reach a high level of accuracy. From this we

can conclude that if the use case can tolerate a few false positives in the set of the

top R highly ranked vertices, then we can obtain the top vertices in a graph quickly

with relatively high precision.

Next we analyze the effect of our stopping criterion on PageRank. Here we use

the theory from Theorem 2 for both undirected (Figure 3.6) and directed (Figure 3.7)

42

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
12
3

R=10 R=100 R=1000

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10

20

30

40
A

ve
ra

ge
 s

pe
ed

up

(a) Speedup versus precision for global
PageRank scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10

20

30

40

50

A
ve

ra
ge

 s
pe

ed
up

(b) Speedup versus precision for personalized
PageRank scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 1

100

101

102

A
ve

ra
ge

 re
si

du
al

(c) Terminating residual versus precision for
global PageRank scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 7

10 6

10 5

10 4

10 3

10 2

A
ve

ra
ge

 re
si

du
al

(d) Terminating residual versus precision for
personalized PageRank scores.

Figure 3.6: Performance versus required precision for PageRank on undirected graphs.

graphs. Similar to the results for Katz Centrality earlier, we see higher speedups and

lower terminating residuals for the personalized results (Figures 3.6b and 3.6d) com-

pared to their global counterparts (Figures 3.6a and 3.6c). For PageRank, however,

the speedups in the personalized case are considerably higher than the respective

global ones. We also see similar trends of larger speedups and higher terminating

residuals for smaller values of R. Note that in Figures 3.6a and 3.6b there are regions

in the plot where the speedup for R=10 is less than the speedup for R=100 (for the

same precision). This is likely due to the behavior of the ranking vector for these

values. For example, if the centrality values of vertices in the top 10-20 vertices are

very similar, our stopping criterion would have to iterate further in order to obtain

43

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
12
3

R=10 R=100 R=1000

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

100

101

A
ve

ra
ge

 s
pe

ed
up

(a) Speedup versus precision for global
PageRank scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

100

101

102

A
ve

ra
ge

 s
pe

ed
up

(b) Speedup versus precision for personalized
PageRank scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 3

10 2

10 1

100

A
ve

ra
ge

 re
si

du
al

(c) Terminating residual versus precision for
global PageRank scores.

0.5 0.6 0.7 0.8 0.9 1.0
Required precision

10 9

10 8

10 7

10 6

10 5

10 4

10 3

A
ve

ra
ge

 re
si

du
al

(d) Terminating residual versus precision for
personalized PageRank scores.

Figure 3.7: Performance versus required precision for PageRank on directed graphs.

that required gap of 2εk. Likewise, if the values for vertices 100 and 101 are very far

apart and the gap is found almost immediately, then the stopping criterion will be

able to terminate sooner. This behavior of the centrality vector would lead to cases

where speedup for higher values of R is greater than that of lower values of R. Fi-

nally, we examine our stopping criterion on PageRank for directed graphs. Like Katz

Centrality on directed graphs, the terminating residual (both global and personalized

rankings) stays relatively constant for a required precision between 0.5-0.8 or 0.9 and

then sharply drops for a required precision of 1.0.

44

3.2.3 Perfect ordering of top

We have shown that we are successfully able to efficiently identify sets of top ranked

vertices in networks for various set sizes. Experimentation shows that the theory

is sound across several real-world networks. While the previous experiments are

only concerned with returning the top set of vertices, here we impose the additional

constraint of perfect ordering of this set. We not only want the most highly ranked

vertices, but we also want them in the correct ordering as given by the exact solution.

We motivate the next experiment with an example concerning the web-Google graph

described earlier. When entering a search term into the Google search engine, a

typical user will only traverse the first few pages of search results, about 75-100 total

pages, expecting most relevant results to be at the top of the list. In this use case, it

is important to ensure the ordering of these results is correct. We are able to apply

the theory from Theorem 1 in this application and provide a guarantee on how many

vertices we can accurately certify are in the correct ordering in the top of the ranking

vector compared to the exact solution using Katz Centrality. In this case, we look at

the gaps between successive vertices i and i + 1 to ensure each pairwise comparison

of vertices has the necessary gap to prove the correctness of the relative ordering.

Running a solver to machine precision to identify top sets in networks cannot in fact

provide any theoretical guarantee of how many vertices in the approximation are

in the correct ordering compared to the exact solution. In this experiment, we are

interested in finding P such that P = argmaxi|d(k)
i − d

(k)
i+1| > 2εk, where P is the

number of vertices in the top of the vector in the correct order compared to the exact

solution. We traverse the sorted ranking vector d(k) after 10 iterations of conjugate

gradient to find the first place where the gap of 2εk is not satisfied. When this occurs,

we know that the previous vertices are in the correct ordering since each pair-wise

comparison of previous vertices satisfied the gap.

Figure 3.8 plots the distribution of P values for both undirected and directed

45

100 101 102 103 104

P

0

1

2

3

4

5

6

7

8

N
u
m

b
e
r

o
f

d
a
ta

se
ts

Distribution of P values

Figure 3.8: Histogram of P values for different networks.

networks using both Katz Centrality and PageRank, with values of 0 omitted. Note

the x-axis is on a log-scale. In most cases, we are able to accurately certify at least

hundreds of vertices, with an average across all datasets of P = 903. For cases where

we are only able to guarantee 1 or 0 vertices, we offer a possible explanation. If there

are vertices with the same ranking at the top of the exact solution, our theory will not

be able to go beyond this point because the necessary gap does not exist. Regardless,

from a data analysis standpoint, the numbers of vertices able to be accurately certified

in the exact order in the top validate our theory being used in this use case. Our

ability to accurately certify hundreds of vertices in the correct order is very applicable.

3.2.4 Effect of stopping criterion on harder problems

Finally we investigate on what problems our method proves to be the most useful.

For these results, we focus our analysis exclusively on Katz Centrality. We know

as α → 1
‖A‖2 , the problem becomes more ill-conditioned and typically requires more

iterations to converge to machine precision. Since α ∈ (0, 1/‖A‖2), we apply our

stopping criterion to the different graphs for various α in this range. Figure 3.9 plots

the relationship between α and the residual norm obtained when the solver terminates

using our criterion for undirected graphs for global (Figure 3.9a) and personalized

46

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of 1/||A||2

3

2

1

0

1

lo
g

re
si

du
al

(a) Global Katz scores.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of 1/||A||2

25

20

15

10

lo
g

re
si

du
al

(b) Personalized Katz scores.

Figure 3.9: Terminating residual obtained as we increase α for Katz scores in undi-
rected graphs.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of 1/||A||2

5.0

4.5

4.0

3.5

3.0

2.5

lo
g

re
si

du
al

(a) Global Katz scores.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of 1/||A||2

16

15

14

13

lo
g

re
si

du
al

(b) Personalized Katz scores.

Figure 3.10: Terminating residual obtained as we increase α for Katz scores in directed
graphs.

(Figure 3.9b) rankings. The blue scatterplot points show the averaged values and

the green line in the plots is a line fitted using regression analysis. We use values of

α ∈ { .05
‖A‖2 ,

.1
‖A‖2 , · · · ,

.95
‖A‖2}. For each value of α, the log of the averaged residual norm

obtained upon termination using our stopping criterion is plotted across graphs. All

results are averaged over values of R = 10, 100, and 1000 and over all the graphs.

When running to machine precision, the residual norm upon termination is typically

rk ≈ 10−15, but we see that we never have to iterate until machine precision using

our new stopping criterion if we are interested in only the top vertices in a graph.

Regression analysis of these results shows a strong linear correlation with a slope of

47

4.617 and mean sum of squares of 0.724 for the global values and a slope of 17.110

and mean sum of squares of 0.862 for the personalized values. We repeat the same

analysis for the directed networks in Figure 3.10, with the global results plotted in

Figure 3.10a and the personalized results plotted in Figure 3.10b. The slope of the

line plotted for the global results is 2.74 with a mean sum of squares of 0.804 and

the slope for the personalized results is 2.86 with a mean sum of squares of 0.544.

The linear relationship suggests that we need less accurate approximate solutions for

harder problems as α → 1
‖A‖2 to obtain the top vertices in the graph. Typically the

harder problems tend to take thousands of iterations to converge with the standard

stopping criterion of iterating until a residual norm of 10−15, but with our stopping

criterion we can converge faster at a lower tolerance to solve the desired data mining

task for the global scores. The low residual norm suggests we are able to certify the

top R correctly with low fidelity solutions and we are able to use this technique to

turn harder linear algebra problems into easier data mining problems.

3.3 Conclusions

This work bridged the two research areas of numerical accuracy of solvers and network

analysis by understanding how the error in a solver affects the data analysis problem

of ranking. By treating the problem of ranking vertices in a graph as understanding

numerical accuracy in a linear solver, we presented how the error in the numerical

problem affects the solution to the original data analysis problem of ranking. Our

aim in this work was to provide theoretical guarantees to bound the error in an

approximate solution from an iterative method to the exact Katz Centrality and

PageRank scores of vertices in a network. We certified ranking in undirected and

directed graphs using global and personalized Katz and PageRank scores. We turned

the data analysis problem of ranking vertices in graph into the numerical problem of

understanding accuracy in a linear solver. This allowed us to provide guarantees as to

48

how accurate of a solution to the numerical problem we need to certify highly ranked

vertices in graphs. Using our theoretical guarantees we were able to identify the most

central vertices with either Katz Centrality or PageRank with high confidence. We

do not need to accurately compute the centrality scores for every vertex and therefore

could reduce computation time. Using the theory and error analysis, we developed

a new stopping criterion that can be used in conjunction with any iterative solver

to determine when to terminate given a desired number of highly ranked vertices

with some preset precision, where the precision provides a bound on how many false

positives we will tolerate being returned. The result of our analysis is a reduction

in the number of iterations taken to solve the data analysis problem of ranking in

graphs while maintaining a high precision rate in identifying top vertices. In fact, for

personalized PageRank scores we obtained speedups of several orders of magnitude.

We demonstrated this on several real-world networks, giving high confidence that the

important portion of the ranking is correct. We presented experiments validating

the theory as a stopping criterion that can be used in conjunction with any iterative

solver, leading to significant algorithmic improvements. When using the theory to

identify top ranked vertices we were able to do so with very few false positives. Finally,

we also showed perfect recall of the top vertices with respect to the exact solution is

possible with our theory. As evidenced by the close relationship between the theory

for Katz Centrality and PageRank, the results from this section can be applied to any

linear solver based ranking. Identifying highly ranked vertices by Katz Centrality or

PageRank are just two examples in practice presented in this work, but the theory is

generalizable to other linear algebra based ranking metrics.

49

CHAPTER 4

DYNAMIC ALGORITHMS FOR CENTRALITY MEASURES

This chapter presents several algorithms for updating different centrality metrics in

dynamic graphs. Given an analytic and a dynamic graph, a naive method of obtain-

ing an updated metric is to recompute the metric from scratch every time the graph

changes. However, this becomes extremely computationally infeasible as the graph

grows larger and more and more changes are applied to the graph. We therefore seek

to update analytics efficiently for dynamic graphs without needing to perform a full

static recomputation. Sections 4.1 and 4.2 present dynamic algorithms for updating

Katz Centrality from 1) a linear algebraic perspective [6] and 2) an agglomerative

graph-based method [8], respectively. Section 4.3 presents an algorithm for updat-

ing nonbacktracking walk-based centrality scores on dynamic graphs and Section 4.4

presents a method for efficiently updating matrix exponential-based centrality scores

for dynamic graphs [9]. For all methods presented, we show our dynamic algorithm

is faster than naive static recomputation and demonstrate that the quality of our

method is on par with that of the corresponding static method. In many cases we

see several orders of magnitude of speedup comparing our method to static recompu-

tation, indicating that our algorithms are faster and more efficient when applied to

dynamic graphs.

4.1 Dynamic Katz Centrality using Linear Algebra

In this section, we present a new method from a linear algebraic standpoint to incre-

mentally update Katz Centrality scores in a dynamic graph. Our algorithm is faster

than recomputing centrality scores from scratch every time the graph is updated and

returns high quality results that are similar to results obtained with a simple static

50

recomputation method. We additionally present an alternate approach and discuss

its shortcomings compared to our algorithm. We examine how our algorithm behaves

with respect to both global and personalized centrality scores and analyze how the

granularity of the time step affects the quality of our algorithm. We compare our

dynamic algorithm to multiple static recomputation methods and also examine the

effect of our algorithm if we are only concerned with recall of the highly ranked vertices

in dynamic graphs. Section 4.1.1 provides the necessary background and definitions

required to understand our work. In Section 4.1.2 we present the alternate method

and provide the motivation for our dynamic algorithm. We present our algorithm for

updating Katz Centrality in dynamic graphs in Section 4.1.3. Section 4.1.4 provides

an analysis of our method on both synthetic and real-world networks with respect to

performance and quality. In Section 4.1.5 we discuss a possible approach for handling

vertex additions and deletions and in Section 4.1.6 we conclude.

4.1.1 Background & Definitions

A dynamic graph can change over time due to edge insertions and deletions and vertex

additions and deletions. As a graph changes, we can take snapshots of its current

state and denote the current snapshot of the dynamic graph G and corresponding

adjacency matrix A at time t by Gt = (Vt, Et) and At respectively. Here, the vertex

set is constant over time so ∀t, Vt = V , and we deal only with edge insertions, although

our algorithm can be applied for edge deletions as well. Given edge updates to the

graph, we write the new adjacency matrix at time t + 1 as At+1 = At + ∆A, where

∆A represents the new edges being added into the graph.

Recall we denote global Katz scores as A(I−αA)−11 and personalized Katz scores

w.r.t. a seed vertex i as A(I − αA)−1ei. For both cases, the result is an n-length

vector. In the global case, the ith value in the vector represents the total number of

weighted walks of all lengths starting at vertex i and in the personalized case the ith

51

value in this vector represents the number of weighted walks of all lengths ending at

vertex i. We set α = 0.85/‖A‖2 as in [21], and in this work we study both global and

personalized scores.

As mentioned before, since directly solving for the exact Katz Centrality scores c

is computationally infeasible and quickly becomes very expensive and impractical as

n grows large, in practice we use iterative methods to obtain an approximation which

costs O(m) provided the number of iterations is not very large. Unless otherwise

stated, all the work here assumes a starting approximation x(0) as the all zeros vector,

although any starting vector can be chosen to initialize the iterative solver. The

residual at the kth iteration is defined as r(k) = b−Mx(k). We let M = I − αA, so

we solve the linear system Mx = b for x using an iterative method and then obtain

the Katz scores using a matrix-vector multiplication in O(m) as c = Ax. We set

b = 1 for the global scores and b = ei for the personalized scores. The iterative

method we use here is the Jacobi algorithm [77] outlined in Algorithm 1. Here, D

is the matrix consisting of the diagonal entries from M and R is the matrix of all

off-diagonal entries of M . We terminate the solver when the solution changes by less

than a fixed tolerance tol [17], or when ‖x(k+1) − x(k)‖2 < tol.

Our dynamic algorithm is also motivated by principles of iterative refinement,

another iterative method that adds a correction to the current guess to obtain a more

accurate approximation [78]. To compute the solution x to the linear system Mx = b,

iterative refinement repeatedly performs the following steps at each iteration k.

1. Compute residual r(k) = b−Mx(k)

2. Solve system Md(k) = r(k) for correction d(k)

3. Add correction to obtain new solution x(k+1) = x(k) + d(k)

Note that we can use any other iterative method to solve the system in Step 2.

52

4.1.2 Motivation & Initial Approach

Static Algorithm

Given edge updates to the graph, the static algorithm to recompute the Katz Cen-

trality scores in the updated graph first calculates x from scratch using an iterative

method and then calculates c using a single matrix-vector multiplication. This pro-

cedure is given in Algorithm 6 to obtain the new solution ct+1 at time t + 1 given

updates ∆A to the graph. After a batch of edges has been inserted into the network,

the adjacency matrix is updated to At+1 and the vector xt+1 is recomputed using the

Jacobi method from Algorithm 1.

Algorithm 6 Solve for ct+1 at time t+ 1 given new edge updates ∆A.

1: procedure Static Katz(At,∆A)
2: At+1 = At + ∆A . Updated adjacency matrix
3: Mt+1 = I − αAt+1 . New linear system
4: xt+1 = Jacobi(Mt+1,1, 10−4) . Recomputed vector
5: ct+1 = At+1xt+1 . New Katz scores
6: return ct+1

Since calculating ct given xt at any timepoint t is one matrix-vector multiplication

and can be done in O(m), this is not the bottleneck of the static algorithm. As more

data is added to the graph, the number of iterations taken to update xt+1 in Line 4

increases and pure recomputation becomes increasingly expensive as the graph size

increases. We thus focus the development of our dynamic algorithm on limiting the

number of iterations taken to obtain the updated vector xt+1. Calculating c is the

same in the static and our dynamic algorithm and so for the rest of this section we

focus our discussions on the vector x.

Motivation

In many low-latency applications, the number of edge updates, or equivalently, the

size of ∆A, is significantly smaller than the size of the entire graph A. If the change

53

0 50 100 150 200 250
Time steps

10-2

10-1

100

||x
t
+

1
−

x
t||

2

Figure 4.1: Difference in consecutive solutions over time. Small changes in solutions
suggest a dynamic algorithm could work by applying incremental updates to previous
solutions.

∆A is small relative to the size of the graph, the new graph will be similar to the

old graph. It follows that the new solution xt+1 at time t+ 1 might be similar to the

old solution xt at time t. This is the intuition behind our dynamic algorithm. Figure

4.1 plots the differences between subsequent solutions for global scores each time the

graph changes for the Facebook graph (63,731 vertices and 817,035 edges). The

x-axis simulates time as more edges are being added into the graph. We insert 1000

edges into the graph at each time step. The y-axis is the 2-norm difference between

solutions at consecutive timepoints, ‖xt+1−xt‖2. Since the Katz scores themselves can

be as high as 104, a difference of 10−1 across insertions of edges over time is relatively

small. This indicates that the solutions themselves are not very different, suggesting

that the static algorithm of recomputing the centrality metric from scratch is doing a

lot of unnecessary work. Our dynamic algorithm therefore only targets places in the

vector that are affected by updates to the graph and obtains the new solution xt+1 by

solving for a correction ∆x to add to the old solution xt to calculate xt+1 = xt+∆x.

54

Initial Approach

Here we present a “first-pass” algorithm and discuss its shortcomings. This provides

the motivation for the development of our dynamic algorithm in Section 4.1.3. Sup-

pose we have the solution xt for the adjacency matrix At at a specific timepoint t.

We want to solve for the new solution at time t + 1 as xt+1 = xt + ∆x. Given

edge updates to the graph, we want to solve for the vector xt+1 in the linear system

(I − αAt+1)xt+1 = 1 for the global scores, or (I − αAt+1)xt+1 = ei for the personal-

ized scores equivalently. Using basic algebra we can rearrange the terms in the linear

system to derive an iterative update as follows:

1 = (I − αAt+1)xt+1

1 = (I − αAt+1)(xt + ∆x)

1 = (I − αAt+1)xt + (I − αAt+1)∆x

1 = xt − α(At + ∆A)xt + ∆x− αAt+1∆x

1 = xt − αAtxt − α∆Axt + ∆x− αAt+1∆x

1 = (I − αAt)xt − α∆Axt + ∆x− αAt+1∆x

Since (I − αAt)xt = 1, we can rearrange the terms as

∆x = αAt+1∆x + α∆Axt, (4.1)

and turn this into an iterative update to solve for ∆x:

∆x(k+1) = αAt+1∆x(k) + α∆Axt (4.2)

However, this simplistic approach tends to accumulate error over time instead

55

of converging to the same solution as static recomputation. We provide a more in-

depth analysis of the quality of this alternate method in Section 4.1.4. This approach

(henceforth referred to as the “alternate” method) is based off of a forward error

analysis. Therefore, we next present our dynamic algorithm based off of a backward

error analysis in Section 4.1.3.

4.1.3 Dynamic Algorithm

Our dynamic algorithm computes the correction ∆x, the difference in the solutions

at timepoints t and t + 1, using principles of iterative refinement. For the purposes

of deriving the algorithm, we do so w.r.t. the global scores. For personalized scores

w.r.t. vertex i, we simply replace the vector 1 with ei. Since we use the old solution

as a starting point for the new solution, we first measure how close the old solution is

to solving the system for the new graph. We do so by introducing the concept of an

“approximate residual” denoted as r̃t+1. This can be written in terms of the current

residual at time t, rt = 1 −Mtxt, edge updates ∆A, and the old solution xt. The

algorithm to compute r̃t+1 is given in Algorithm 7 with the corresponding proof of

correctness in Theorem 4.

Algorithm 7 Solve for approximate residual r̃t+1 at time t+ 1.

1: procedure Get Approximate Residual(∆A, rt,xt)
2: r̃t+1 = rt + α∆Axt
3: return r̃t+1

Theorem 4. Algorithm 7 correctly calculates the approximate residual at time t+ 1.

Proof. The approximate residual r̃t+1 measures how close the current solution xt is

56

to solving the updated system At+1.

r̃t+1 = 1−Mt+1xt

= 1− (I − αAt+1)xt

= 1− xt + αAt+1xt

= 1− xt + αAtxt − αAtxt + αAt+1xt

= rt + α(At+1 − At)xt

= rt + α∆Axt

We then use the approximate residual r̃t+1 to solve a linear system for the cor-

rection ∆x. Solved exactly, this linear system will give the same scores as static

recomputation but solved to some preset tolerance as discussed earlier, it will provide

a good quality approximation of the updated centrality scores. We examine the effect

of varying the tolerance on the performance of our dynamic algorithm in Section 4.1.4.

This procedure and the corresponding proof of correctness are given in Algorithm 8

and Theorem 5 respectively.

Algorithm 8 Use iterative refinement to obtain ∆x.

1: procedure Obtain Del x(At+1, r̃t+1)
2: ∆x = Jacobi(I − αAt+1, r̃t+1, 10−4)
3: return ∆x

Theorem 5. Algorithm 8 correctly calculates the correction ∆x at time t+ 1.

Proof. Since the approximate residual r̃t+1 measures how close the current solution

is to the solution of the updated system, we use r̃t+1 to solve for the correction ∆x

57

using principles of iterative refinement.

(I − αAt+1)∆x = r̃t+1 = rt + α∆Axt

∆x− αAt+1∆x = rt + α∆Axt

We can turn this into an iterative update:

∆x(k+1) = αAt+1∆x(k) + α∆Axt + rt

This formulation lends itself quite nicely to using the Jacobi method.

The final step of our algorithm is to update the residual rt for the next timepoint.

We do so by calculating ∆r, the difference in the two residuals at time t and t + 1.

This procedure is given in Algorithm 9 with the corresponding proof of correctness

in Theorem 6.

Algorithm 9 Updating residual at time t+ 1.

1: procedure Update Residual(At+1,∆A,xt+1)
2: ∆r = α∆Axt − (I − αAt+1)∆x
3: return ∆r

Theorem 6. Algorithm 9 correctly updates the residual at time t+ 1.

Proof. The residual rt+1 at time t+1 measures the correctness of the updated solution

xt+1. We write the new residual rt+1 in terms of the old residual rt to obtain the

58

difference between the two as ∆r.

rt+1 = 1− (I − αAt+1)xt+1

= 1− (I − αAt+1)(xt + ∆x)

= 1− (I − αAt+1)xt − (I − αAt+1)∆x

= r̃t+1 − (I − αAt+1)∆x

= rt + α∆Axt − (I − αAt+1)∆x

= rt + ∆r

∴ ∆r = α∆Axt − (I − αAt+1)∆x

The entire procedure for updating Katz Centrality scores in a dynamic graph

is outlined in Algorithm 10, Dynamic Katz, and uses the three previously de-

scribed subroutines. First in line 2 we calculate the current residual rt, which is

easily obtained given the current snapshot of the graph At and solution xt at time

t. In line 3, we form the new snapshot of the graph At+1 using the new batches of

edges that are being inserted into the graph, In line 4 we call the first subroutine

Get Approximate Residual, Algorithm 7, to return the approximate residual

r̃t+1. Next in line 5 we solve for the difference ∆x between the vectors xt+1 and xt

using the subroutine Obtain Del X, Algorithm 8. In line 6 we calculate the new

solution xt+1 using the old solution xt and the calculated correction ∆x. Finally,

after updating the solution from time t to the solution at t+ 1, lines 6 and 8 update

the residual between these two timepoints using the subroutine Update Residual

in Algorithm 9. Finally, at the end of the procedure in line 9 we return the new

solution xt+1.

Note that while in this section we only examine edge insertions in a dynamic

59

Algorithm 10 Solve for xt+1 at time t + 1 given previous solution xt at time t and
new edge updates ∆A.

1: procedure Dynamic Katz(At,xt,∆A)
2: rt = 1− (I − αAt)xt = 1− xt + αAt
3: At+1 = At + ∆A
4: r̃t+1 = Get Approximate Residual(∆A, rt,xt)
5: ∆x = Obtain Del x(At+1, r̃t+1)
6: xt+1 = xt + ∆x
7: ∆r = Update Residual(At+1,∆A,xt+1)
8: rt+1 = rt + ∆r
9: return xt+1

graph, the algorithm is equally well suited for handling edge deletions. Here, all

nonzero values in ∆A corresponding to edge insertions are set to 1 but edge deletions

can be handled easily by setting the corresponding value in ∆A to -1 as described in

Section 2.1.

Complexity Analysis

The majority of the work done by the dynamic algorithm is in Algorithm 8 (Ob-

tain Del x). Since we still require a matrix-vector multiplication by At+1 at the

end of the algorithm, the worst-case complexity of the dynamic algorithm is the same

as static recomputation and is O(m), apart from a constant (based on the number

of iterations taken by the iterative solver). However, in practice we observe that we

are able to obtain significant speedups in both time and iterations compared to static

recomputation while maintaining a good quality of results returned. This is due to

the fact that the number of iterations taken by our dynamic algorithm is far fewer

than that of static recomputation and we are able to converge to the solution faster.

4.1.4 Results

We test our method of updating Katz Centrality scores in dynamic graphs on both

synthetic and real-world networks. For synthetic networks, we use Erdos-Renyi [79]

60

and R-MAT graphs [80]. In the Erdos-Renyi model, a graph is constructed by con-

necting vertices randomly. All edges have the same probability for existing in the

graph. An R-MAT generator creates scale-free networks designed to simulate real-

world networks. Consider an adjacency matrix: the matrix is subdivided into four

quadrants, where each quadrant has a different probability of being selected. Once a

quadrant is selected, this quadrant is recursively subdivided into four subquadrants

and using the same probabilities, we select one of the subquadrants. This process is

repeated until we arrive at a single cell in the adjacency matrix. An edge is assigned

between the two vertices making up that cell. For real-world networks, we draw from

the KONECT collection of datasets [76]. The five datasets used are given in Table

4.1 and comprise a mixture of citation and social networks. These graphs are chosen

because they have timestamps associated with the edges to represent temporal data.

The code was implemented in Python.

Table 4.1: Graphs used in experiments. Columns are graph name, number of vertices,
and number of edges.

Graph |V| |E|
facebook 63,731 817,035
gowalla 196,591 950,327

dblp 317,080 1,049,866
dogster 426,820 8,546,581
youtube 1,134,890 2,987,624

To have a baseline for comparison, we treat scores obtained from static recompu-

tation as ground truth. Every time we update the centrality scores using our dynamic

algorithm, we recompute the centrality vector statically using Algorithm 6. Denote

the vector obtained by static recomputation by xS and the vector obtained by our

dynamic algorithm by xD. We create an initial graph G0 using the first half of edges,

which provides a starting point for both the dynamic and static algorithms. To sim-

ulate a stream of edges in a dynamic graph, we insert the remaining edges in batches

of size b and apply both algorithms. For the synthetic graphs, the edges are permuted

61

randomly during insertion. Edges in real graphs are inserted in timestamped order.

We use batch sizes of b = 1, 10, 100, and 1000 and vary the tolerance to which we

solve for in Algorithm 1 (the Jacobi method) and provide analysis on how this affects

the results of our algorithm.

First we present performance results on Erdos-Renyi and R-MAT graphs. For

each type of graph, we generate graphs with the number of vertices as a power of 2,

ranging from 210 to 214. We vary the average degree of the graphs from 10 to 50.

For each total number of vertices and average degree, five graphs are created and

tested. The results shown are averaged over these five trials. All results shown for

the synthetic cases use a batch size of 1, meaning after we create the initial graph G0,

we sequentially insert the remaining 1/2 of edges. The trends for other batch sizes

are similar.

The primary motivation behind a dynamic approach is to prune any unnecessary

work in the static algorithm to develop a faster method of obtaining the centrality

vector for dynamic graphs. Therefore, we evaluate the performance of the dynamic

algorithm in terms of speedup compared to the static algorithm. For a particular

timepoint after inserting a batch of edges, denote the time taken to compute Katz

scores by the static recomputation by TS and the time taken by our dynamic algorithm

as TD. We calculate the algorithmic speedup in time of the dynamic algorithm against

the static algorithm as

speeduptime =
TS
TD

.

Since we are using iterative methods to calculate the centrality vectors, we also

evaluate the performance of the dynamic algorithm with respect to the reduction in

number of iterations. For a particular timepoint t, denote the number of iterations

taken by recomputation as IS and the time taken by the streaming approach as ID.

62

Calculate the speedup w.r.t. the number of iterations as

speedupiter =
IS
ID
.

Table 4.2: Speedup in time for Erdos-Renyi graphs.

Average degree 10 20 30 40 50
n = 1024 1.44× 1.62× 1.8× 1.99× 2.17×
n = 2048 1.51× 1.77× 2.0× 2.25× 2.49×
n = 4096 1.66× 2.03× 2.37× 2.85× 3.34×
n = 8192 1.95× 2.55× 3.05× 4.02× 5.09×
n = 16384 2.51× 3.5× 4.34× 6.0× 8.02×

Table 4.3: Speedup in iterations for Erdos-Renyi graphs.

Average degree 10 20 30 40 50
n = 1024 4.56× 5.01× 5.37× 5.71× 5.99×
n = 2048 4.82× 5.4× 5.82× 6.17× 6.5×
n = 4096 5.05× 5.77× 6.27× 6.7× 7.1×
n = 8192 5.25× 6.12× 6.69× 7.24× 7.73×
n = 16384 5.40× 6.42× 7.04× 7.73× 8.33×

Table 4.4: Speedup in time for R-MAT graphs.

Average degree 10 20 30 40 50
n = 1024 1.75× 1.95× 2.15× 2.44× 2.7×
n = 2048 1.98× 2.39× 2.7× 3.14× 3.56×
n = 4096 2.42× 3.12× 3.62× 4.3× 5.08×
n = 8192 3.35× 4.32× 5.25× 6.41× 7.46×
n = 16384 4.63× 6.26× 7.64× 9.15× 10.46×

Tables 4.2 and 4.3 give the average speedup in time and reduction in iterations

respectively for Erdos-Renyi graphs, and Tables 4.4 and 4.5 show the same values

for R-MAT graphs. As we increase the average degree for both types of graphs, the

speedups in time and iterations are larger. Additionally, we see greater speedups for

graphs with larger values of n. The dynamic algorithm likely has more of an effect for

larger graphs because there is more work to be done for larger graphs with the static

63

Table 4.5: Speedup in iterations for R-MAT graphs.

Average degree 10 20 30 40 50
n = 1024 4.89× 5.29× 5.6× 6.01× 6.38×
n = 2048 5.12× 5.77× 6.27× 6.73× 7.12×
n = 4096 5.34× 6.2× 6.69× 7.24× 7.66×
n = 8192 5.81× 6.52× 7.18× 7.77× 8.25×
n = 16384 6.0× 6.89× 7.62× 8.29× 8.72×

algorithm. Unlike the static algorithm, our dynamic algorithm only traverses parts of

the graph where updates have occurred. These trends persist for both Erdos-Renyi

and R-MAT graphs, but typically we find that R-MAT graphs have greater speedups

than their respective Erdos-Renyi counterparts.

Next we examine the performance of our algorithm on the real-world graphs. First

we look at the effect of the terminating tolerance on the speedup (in both time and

iterations) obtained in Figure 4.2. Specifically, Figures 4.2a and 4.2b plot the speedup

in time for global and personalized scores respectively and Figures 4.2c and 4.2d plot

the speedup in iterations for global and personalized scores respectively. Results are

averaged across the five real datasets and show maximum (in blue), median (in green),

and minimum (in red) speedups. Note that the y-axis in Figures 4.2a and 4.2b is on

a log scale with base 10 and the y-axis in Figures 4.2c and 4.2d is on a log scale with

base 2 for clarity.

For the global scores, we observe that as the increase the value of the tolerance to

which we solve for, we obtain greater speedups. This intuitively makes sense because

as we increase the value of the tolerance required to terminate (meaning a less accurate

solution will suffice), the iterative solver will take fewer iterations to converge and our

dynamic algorithm will have more of an effect. For the personalized scores, we see

more of a plateau and the speedups obtained seem to be independent of the preset

tolerance. This is likely due to the fact that the personalized scores themselves are

so small. Therefore, it may take the same number of iterations to converge to a

tolerance of at least 10−1 as it does to converge to 10−3 for example, so we see very

64

10 9 10 7 10 5 10 3 10 1 101

Terminating tolerance

100

101

102

103

104

S
pe

ed
up

 (t
im

e)

maximum median minimum

(a) Speedup (time) for global scores.

10 9 10 7 10 5 10 3 10 1 101

Terminating tolerance

100

101

102

103

104

S
pe

ed
up

 (t
im

e)

maximum median minimum

(b) Speedup (time) for personalized scores

10 9 10 7 10 5 10 3 10 1 101

Terminating tolerance

20

22

24

26

28

S
pe

ed
up

 (i
te

ra
tio

ns
) maximum median minimum

(c) Speedup (iterations) for global scores.

10 9 10 7 10 5 10 3 10 1 101

Terminating tolerance

20

22

24

26

28

S
pe

ed
up

 (i
te

ra
tio

ns
) maximum median minimum

(d) Speedup (iterations) for personalized
scores.

Figure 4.2: Speedup (time and iterations) versus tolerance. Higher is better.

little differences in the speedups for these tolerances. We also note that the speedups

(in both time and iterations) for the personalized scores are greater than their global

counterparts. Since the values of the scores are so small in the personalized case, the

iterative solver takes more total iterations to converge and the dynamic algorithm has

more of an effect here. Nevertheless, overall we obtain speedups of several orders of

magnitude and for the global scores on average about 100× speedup in time and 32×

speedup in iterations. Similarly for the personalized scores, we obtain on average

about a 200× speedup in time and about a 64× speedup in iterations. Even for

very low values of the tolerance (such as 10−8), we always obtain > 1× speedup. This

indicates we can obtain fairly accurate scores, and with our method do so much faster

than static recomputation.

65

0 2 4 6 8

0

2

4

6

8

maximum median minimum Method 1 Method 2

100 101 102 103

Batch size

100

101

102

103

104

S
pe

ed
up

 (t
im

e)

(a) Speedup in time for global scores.

100 101 102 103

Batch size

100

101

102

103

104

S
pe

ed
up

 (t
im

e)

(b) Speedup in time for personalized scores.

100 101 102 103

Batch size

20

22

24

26

28

S
pe

ed
up

 (i
te

ra
tio

ns
)

(c) Speedup in iterations for global scores.

100 101 102 103

Batch size

20

22

24

26

28

S
pe

ed
up

 (i
te

ra
tio

ns
)

(d) Speedup in iterations for personalized
scores.

Figure 4.3: Speedup (time and iterations) versus batch size. Higher is better.

Next we examine the speedups obtained as a function of batch size and compare

our dynamic algorithm against two different static methods in Figure 4.3. Both static

methods evaluate xS using Algorithm 6 but start with different initial starting vectors

in line 3 in Algorithm 1 (Jacobi).

1. Method 1: uses an initial starting vector of x(0) = 0.

2. Method 2: uses the previous solution as a starting point for the Jacobi algo-

rithm. Essentially, if we are computing xt+1, line 3 in Algorithm 1 becomes

x(0) = xt.

Figures 4.3a and 4.3b plot the speedup in time versus batch size for global and

personalized scores respectively, comparing our dynamic algorithm against static re-

66

computation. Similarly, Figures 4.3c and 4.3d plot the speedup in iterations versus

batch size for global and personalized scores respectively. We show the maximum,

median, and minimum speedup averaged over the 5 real graphs. Method 1 is plotted

with a solid line with squares and Method 2 is plotted with a dotted line. For this, we

examine results only for a terminating tolerance of 10−4 although the trends observed

for other tolerances are similar. Note again that the y-axis in Figures 4.3a and 4.3b

is on a log scale with base 10 and the y-axis in Figures 4.3c and 4.3d is on a log scale

with base 2. In Figure 4.3a we see that our dynamic algorithm can be over two orders

of magnitude faster for a batch size of 1 than both static recomputation approaches.

It is expected that Method 2 is faster than Method 1, since we initialize Jacobi with

the vector xt that is likely closer to the new solution xt+1 than 0, but our dynamic

algorithm is still able to outperform this method in both time and iterations. The

median speedup in time for the global scores is about 100× for a batch size of 1 and

about 200× for the personalized scores for a batch size of 1. Even for a batch size

of 1000 edges we always have greater than a 1× speedup. Figure 4.3c shows that

we can obtain over an 80× reduction in iterations for both global and personalized

scores for a batch size of 1. This is especially significant because the static method

can take hundreds or thousands of iterations to converge in some cases, so our algo-

rithm would provide large savings of resources in these applications. Finally, we see a

greater speedup in both time and iterations for the smaller batch sizes of 1 and 10. As

mentioned earlier, this is because as the batch size increases, the dynamic algorithm

nears the work of a static algorithm. This shows that the dynamic approach is most

useful for monitoring applications where the rankings must be updated after only a

small number of data changes.

Next we examine the behavior of both algorithms with respect to raw iteration

counts over time. Henceforth when referring to the static algorithm, we use Method

2 from above. Figure 4.4 plots the raw number of iterations used by the static (the

67

0 20 40 60 80 100
Time steps

0

50

100

150

N
um

be
r o

f i
te

ra
tio

ns

static
dynamic

(a) b = 1

0 20 40 60 80 100
Time steps

0

50

100

150

N
um

be
r o

f i
te

ra
tio

ns

static
dynamic

(b) b = 10

0 20 40 60 80 100
Time steps

0

50

100

150

N
um

be
r o

f i
te

ra
tio

ns

static
dynamic

(c) b = 100

0 20 40 60 80 100
Time steps

0

50

100

150

N
um

be
r o

f i
te

ra
tio

ns

static
dynamic

(d) b = 1000

Figure 4.4: Raw number of iterations for the facebook graph for different batch
sizes. Dynamic algorithm is plotted in solid green line and static algorithm is plotted
in dotted blue line.

dotted blue line) and dynamic (the solid green line) algorithms for different batch

sizes for the Facebook graph. We sample at 100 evenly spaced timepoints for each

batch size. Figures 4.4a, 4.4b, 4.4c, and 4.4d plot the comparison for batch sizes

b = 1, 10, 100, 1000 respectively. All four figures show the same general behavior:

while the number of iterations for static recomputation continues to steadily increase

as edges are added into the graph, the dynamic algorithm maintains a stable number

of iterations over time. This is because the dynamic algorithm only targets the places

in the vector that are affected by edge updates. For example, take Figure 4.4b. The

dotted blue line shows that the number of iterations for the static recomputation of

the centrality vector continually increases over time as more edges are added into the

68

graph, eventually reaching about 175 iterations once all edges are added. However,

for the dynamic algorithm shown in the solid green line, the number of iterations is

stable at around 1-20 iterations for all points in time. It is important to note that

this trend persists regardless of the batch size. Even for very large batch sizes of b =

1000, while there are small fluctuations in the number of iterations, there is no trend

of increasing iteration counts over time, meaning our algorithm is robust to many

edge insertions.

Table 4.6: Summary statistics of recall of top vertices for different graphs for a ter-
minating tolerance of 10−4.

Type Graph Top 10 Top 100 Top 1000
a) Our dynamic algorithm
Global facebook 1.00 1.00 1.00

gowalla 1.00 1.00 1.00
dblp 1.00 0.99 1.00

dogster 1.00 1.00 1.00
youtube 1.00 1.00 1.00

Personalized facebook 1.00 1.00 1.00
gowalla 1.00 1.00 1.00

dblp 1.00 1.00 1.00
dogster 1.00 1.00 1.00
youtube 1.00 1.00 1.00

b) alternate approach
Global facebook 0.91 0.84 0.89

gowalla 0.92 1.00 0.99
dblp 1.00 0.93 0.92

dogster 1.00 0.95 0.96
youtube 1.00 0.97 0.95

Personalized facebook 0.89 0.94 0.91
gowalla 0.90 0.93 0.96

dblp 0.95 0.97 0.95
dogster 0.98 0.92 0.91
youtube 0.93 0.82 0.87

We have seen that we are able to achieve results faster using a dynamic algorithm

compared to static recomputation every time the graph changes when calculating

centrality scores in dynamic networks. However, it is also important to ensure that

the centrality scores returned by the dynamic algorithm are similar to those returned

69

by the static algorithm. To evaluate the quality of our algorithm, we measure two

quantities: 1) recall of top k vertices measured as

recallk =
|CS(k) ∩ CD(k)|
|CS(k)|

,

where CS(k) and CD(k) are the set of the top k highly ranked vertices from the

statically and dynamically computed centrality vectors, respectively, and 2) average

error computed as the pointwise difference between the statically and dynamically

computed vectors

error = ‖xS − xD‖∞.

Table 4.6 presents the average recall of the top 10, 100, and 1000 vertices in the

different graphs for both our dynamic algorithm and the alternate approach presented

in Section 4.1.2. We use a terminating tolerance of 10−4. Immediately we note that

our algorithm has a perfect recall of the top k vertices in all cases except for one

graph (dblp) for one value of k=100, and the recall is 0.99 here. The quality of the

alternate approach suffers and is not able to maintain perfect recall in many cases.

Furthermore, will see next that the actual values of the scores themselves (measured

by the average error) between the dynamically computed vector from the alternate

method compared to static recomputation are not similar at all, and we obtain very

high errors using this alternate method.

Table 4.7 presents the average error for each of the graphs tested and for all batch

sizes for both our dynamic method and the alternate method. We again use results

from a tolerance of 10−4. The average error obtained from our dynamic algorithm

for global and personalized scores is 1.32e-02 and 8.69e-05 respectively. However, the

average error obtained from the alternate approach compared to static recomputation

for global and personalized scores is 6.19e+03 and 1.14e-01 respectively. For both

global and personalized scores, the errors from the alternate method are several orders

70

Table 4.7: Summary statistics of average error versus batch size for different graphs
for a terminating tolerance of 10−4.

Type Graph b = 1 b = 10 b = 100 b = 1000
a) Our dynamic algorithm
Global facebook 1.64e-03 2.77e-03 4.52e-03 5.00e-03

gowalla 6.52e-03 1.55e-02 2.38e-02 2.95e-02
dblp 3.32e-05 9.87e-05 2.88e-04 1.89e-03
dogster 2.01e-03 1.75e-02 2.05e-02 2.01e-02
youtube 7.78e-03 2.17e-02 3.67e-02 4.58e-02

Personalized facebook 6.11e-07 2.76e-06 1.71e-05 1.08e-03
gowalla 5.11e-07 2.51e-06 3.54e-04 2.41e-04
dblp 6.03e-09 7.53e-09 7.20e-09 1.29e-05
dogster 1.08e-07 2.13e-06 4.48e-06 1.23e-05
youtube 1.34e-07 3.36e-06 1.11e-06 5.38e-06

b) alternate approach
Global facebook 1.84e+03 1.84e+03 1.84e+03 1.84e+03

gowalla 2.93e+03 2.93e+03 2.93e+03 2.92e+03
dblp 6.15e+01 6.15e+01 6.14e+01 6.14e+01
dogster 2.20e+03 8.59e+03 2.61e+04 2.74e+04
youtube 8.03e+03 1.08e+04 1.08e+04 1.08e+04

Personalized facebook 8.48e-03 4.22e-03 6.73e-01 7.07e-01
gowalla 4.56e-02 8.91e-02 1.05e-02 4.15e-03
dblp 1.18e-03 4.40e-05 4.57e-02 8.40e-05
dogster 4.33e-02 4.03e-02 1.01e-02 3.79e-01
youtube 1.07e-01 1.54e-02 3.25e-02 5.87e-02

of magnitude higher than the corresponding errors from our method. In fact, the

errors for the global scores from the alternate method are in the thousands or tens

of thousands. The errors for the personalized scores from the alternate method are

significantly smaller than the errors for the global scores from the alternate method

(on the order of ≈ 10−2). However, the values in the personalized centrality vector

themselves are on the order of 10−2 to 10−3 so errors of ≈ 10−2 for the personalized

scores from the alternate approach still indicate that this is a poor method.

Next we look at the behavior of both the alternate method and our dynamic

algorithm over time. Figure 4.5 plots the average error over time for our dynamic

algorithm (the figures on the left) and the alternate method (the figures on the right).

We show results for a batch size of 1 for global scores, although results for other

71

10 7

10 6

10 5

10 4

10 3

dblp

101

102

dblp

10 4

10 3

10 2
dogster

101

102

103

104

dogster

10 5

10 4

10 3

10 2 facebook

101

102

103

104

facebook

10 6

10 5

10 4

10 3

10 2

gowalla

101

102

103

104

gowalla

Figure 4.5: Continued on next page.

72

10 6

10 5

10 4

10 3

10 2

youtube

101

102

103

104

youtube

Figure 4.5: Average error plotted over time for both our dynamic algorithm (left
figures) and the alternate method (right figures). Results are shown for a batch size
of 1 and for global scores. Lower values are better.

batch sizes are similar. For our dynamic algorithm, we note that for no graph do

we see a trend of error increasing over time, unlike the results from the alternate

method. In fact using our dynamic algorithm, the average error in the two largest

graphs (gowalla and youtube) actually decreases as we insert more edges into

the graph using our dynamic algorithm. This is in stark contrast to the alternate

method where we see only a trend of error increasing over time showing that the

forward error analysis approach only accumulates error instead of converging to the

answer obtained by static recomputation. Additionally, note that the scales of the

y-axes on the figures plotting results from our dynamic algorithm are at most 10−2

indicating that values in the vector obtained from our dynamic algorithm match those

obtained from static recomputation, while the scales of the y-axes on the figures from

the alternate method range as high as 104. In summary, we note that the alternate

method presented is not sufficient to calculate the updated centrality metric and the

increasing and large values of the average error prove this method returns results of

poor quality.

Finally, Figure 4.6 explores in detail the underlying impact of the time step granu-

larity on the quality of our algorithm. Figure 4.6a plots the error versus batch size for

the global scores and Figure 4.6b plots the error versus batch size for the personalized

73

100 101 102 103

Batch size
10 5

10 4

10 3

10 2

10 1

100

A
ve

ra
ge

 e
rr

or

dblp
dogster
facebook

gowalla
youtube

(a) Average error versus batch size for global
scores.

100 101 102 103

Batch size

10 8

10 7

10 6

10 5

10 4

10 3

A
ve

ra
ge

 e
rr

or

dblp
dogster
facebook

gowalla
youtube

(b) Average error versus batch size for per-
sonalized scores.

Figure 4.6: Effect of time step granularity (batch size of edge insertions) on quality
of our algorithm.

scores for all five real graphs tested. In both cases, we see a trend of increasing error

as a function of increasing batch size. This is because the underlying assumption of

our algorithm relies on the fact that there exists smoothness between consecutive time

steps. With a larger number of edge insertions in one batch, the solutions before and

after the batch of insertions will differ considerably. Therefore, it is not surprising

that larger batch sizes impact the quality of the algorithm more than smaller batch

sizes. However, even though there is a trend of increasing error for larger batch sizes

compared to smaller batch sizes, the average error is still relatively low compared to

the values in the centrality vector themselves, and we can conclude that our dynamic

algorithm is able to maintain similar quality to static recomputation.

4.1.5 Adding and Removing Vertices

Adding and removing edges is fairly straightforward since edges only require updating

the ∆A matrix with either a 1 (insertions) or -1 (deletions) in the corresponding

position for the edge in question. However, adding and removing vertices becomes

slightly trickier, since our work is based in linear algebra with fixed size matrices.

One solution to this is to assume some reasonable bound on the total number of

74

vertices allowed (this can be application dependent or based on available storage).

The algorithm would then start with a matrix A0 with empty rows for vertices that

do not exist yet in the graph and as the vertices are added with edges into the existing

graph, the corresponding rows are also updated. Deleting a vertex can be handled in

a similar manner by allowing the vertex to technically exist but remain disconnected

from the entire graph. Essentially when deleting vertex i from the graph, we can cope

by zeroing out the ith row in the adjacency matrix.

4.1.6 Conclusions

We have presented a new algorithm that incrementally updates the Katz Centrality

scores when the underlying graph changes. Our dynamic algorithm is faster than

statically recomputing the centrality scores every time the graph changes, and the

performance improvement is greatest when low latency updates are required. How-

ever, our approach is still faster than recomputing from scratch even for large batch

insertions of edges into the graph. We compared our method to a static recomputa-

tion initialized from the all zeros vector and from the previous time step’s solution

and showed that our method is able to outperform both. Our dynamic algorithm

returns scores that are within negligible error of the scores returned by static recom-

putation and we showed that the quality of the scores using our dynamic algorithm

does not deteriorate over time. We presented and explained the problems associated

with a simple intuitive iterative approach and compared it to our dynamic algorithm

and showed that our method is far superior and is able to maintain good quality of

results and does not accumulate error over time, unlike the alternate method. We an-

alyzed the effect of the timestep granularity on the quality of our dynamic algorithm

and showed that even though the error between the results of our method and static

recomputation increases for larger batch sizes, the overall error is still relatively small

compared to the actual values of the centrality scores themselves, and is therefore

75

negligible. Moreover, our algorithm returns perfect recall of top vertices across all

graphs in nearly all cases.

4.2 Agglomerative Personalized Katz Centrality

In this section, we present a new algorithm for approximating personalized Katz Cen-

trality scores in static graphs (Static Katz) and extend our algorithm for dynamic

graphs (Dynamic Katz). We show Static Katz provides good quality approxi-

mations for personalized scores and is several orders of magnitude faster in time when

compared to the conventional linear algebraic method of computing personalized Katz

scores. Dynamic Katz is faster when compared to a pure static recomputation and

preserves the ranking of vertices in evolving networks. We present results on both

synthetic and real-world graphs. We present our algorithms in Section 4.2.2. Section

4.2.3 evaluates our methods with respect to performance and quality, and in Section

4.2.5 we conclude.

4.2.1 Background

We first recall some relevant background to motivate our work. As previously dis-

cussed, Katz Centrality scores (c) count the number of weighted walks in a graph

starting at vertex i, penalizing longer walks with a user-chosen parameter α. A walk

of length k in a graph traverses edges between a series of vertices v1, v2, · · · , vk, where

vertices and edges are allowed to repeat. Powers of the adjacency matrix allow us to

count walks of different lengths between vertices in the graph, where Ak(i, j) gives

the number of walks of length k from vertex i to vertex j. To count weighted walks

of different lengths in the graph, we can sum powers of the adjacency matrix using

the infinite series

∞∑
k=0

αkAk = I + αA+ α2A2 + α3A3 + · · ·+ αkAk + · · · .

76

Provided α is chosen to be within the appropriate range (|α| < ‖A‖2), this infinite

series converges to the matrix resolvent (I − αA)−1. Here we concern oursevles with

the personalized Katz scores with respect to vertex i, calculated as (I − αA)−1ei,

where ei is the ith canonical basis vector. We set α = 0.85/‖A‖2 as in [21]. Note

that this is the same definition of Katz Centrality given in Section 2.3.1, but offset

by a constant factor. The rankings remain the same. We study this version of the

equation in this section for ease of computation.

Typically Katz Centrality scores are calculated using linear algebra by solving the

linear system c = (I − αA)−11 for the global scores or c = (I − αA)−1ei [81]. While

solving the linear system works fairly well for the global scores, in the personalized

case many of the vertices have scores close to 0 if they are very far away from the

seed vertex i. Therefore, solving the linear system above for personalized scores be-

comes increasingly computationally intensive because it requires many iterations to

converge. For this reason, in this section we present an agglomerative algorithm as

an alternate method to the typical linear algebra approach to calculating approxi-

mate personalized Katz scores. We calculate scores by examining the actual network

structure itself to count walks without using linear algebra. Our algorithm assumes a

single seed vertex but can be extended to allow for multiple seed vertices. Henceforth,

we use seed to denote the seed vertex (so we are computing personalized Katz scores

with respect to vertex seed).

4.2.2 Algorithms

First we present our static algorithm, Static Katz. Since walks in graphs allow

for repeats of vertices and edges, calcuating exact Katz Centrality scores involves

counting walks up until infinite lengths. In practice this is not feasible and so the

algorithm we present calculates only approximate Katz Centrality scores. To approxi-

mate scores, we count walks only up to length k. We denote the vector of personalized

77

Katz scores obtained by only counting walks up until length k w.r.t. seed as ck =

(I + αA+ α2A2 + · · ·+ αkAk)eseed.

The algorithm we present is an iterative one, where at iteration j we count walks

of length j. In Static Katz, we maintain three separate data structures:

• an n × k array walks to count the number of walks in the graph. The (i, j)th

entry in this array indicates how many walks of length j exist from seed to

vertex i.

• a queue map to indicate what vertices are reachable at the current iteration,

where vertices that are “reachable” at iteration j are those that we can reach

from seed using a walk of length j. At each iteration j, the value of map[vtx]

indicates how many walks of length j exist from seed to vertex vtx.

• an n × 1 array visited, where visited[i] gives the iteration at which vertex i

was initially reached from seed. This array is primarily used in our dynamic

algorithm.

The overarching static algorithm is given in Algorithm 11 and is split into two subrou-

tines. The first subroutine in Algorithm 12, Compute Walks, counts the number

of walks. To do so, we implement a variant of breadth-first search. The queue map is

initialized with the source vertex seed. At each iteration j, we perform the following

main steps:

1. Iterate through all vertices v in map (line 7)

2. If we haven’t already visited vertex v, we set the value of visited[v] to the

current iteration j (line 9)

3. This is the key step in calculating the number of walks. Here, N(v) indicates

the set of neighbors of vertex v. For each neighbor vertex, we propagate the

number of walks from v. If there are count number of walks from seed to v of

78

length j − 1, then for each neighbor dest of v, there are count number of walks

from seed to dest of length j going through v (line 11)

4. Finally, we set the values in the walks array for the current iteration j to

indicate how many total number of walks are possible from seed to all vertices

reachable in the current iteration (line 13)

The second subroutine in Algorithm 13, Calculate Scores, actually calculates the

personalized Katz scores using the walks array. The Katz score for vertex i is the

weighted (by powers of α) sum of walks of all lengths up to k from seed to i.

Algorithm 11 Static algorithm to compute Katz scores from source vertex seed up
to walks of length k.

1: procedure Static Katz(G, seed, k, α)
2: walks = Compute Walks(G,seed,k)
3: c = Calculate Scores(walks,α)
4: return c

Algorithm 12 Static algorithm to recompute counts of walks up to length k from
source vertex seed.

1: procedure Compute Walks(G, seed, k)
2: walks = n× k array initialized to 0
3: visited = n× 1 array initialized to -1
4: map[seed] = 1
5: j = 0
6: while j < k do
7: for v in map do
8: count = map[v]
9: if visited[v]==-1 then

10: visited[v] = j

11: for nbr in N(v) do
12: map[nbr] + = count

13: for v in map do . Count walks of length j in current iteration
14: walks[v][j] = map[v]

15: j+ = 1
return walks

Denote the result of Static Katz as ck and the exact solution (obtained through

linear algebra) as c∗. We can bound the error between our approximation ck and the

79

Algorithm 13 Calculate Katz scores from walk counts.

1: procedure Calculate Scores(walks, α)
2: c = n× 1 array initialized to 0
3: for i = 1 : n do
4: for j = 1 : k do
5: c[i] += αj+1 · walks[i][k]

return c

exact solution c∗by εk as follows:

‖c∗ − ck‖2 ≤ ‖
∞∑
p=0

αpAp −
k∑
p=0

αpAp‖2

= ‖
∞∑

p=k+1

αpAp‖2

= ‖αk+1Ak+1

∞∑
p=0

αpAp‖2

≤ |αk+1|‖Ak+1‖2‖I − αA)−1‖2

≤ αk+1 ‖A‖k+1
2

λmin(I − αA)

:= εk

Note that this proof means that the scores provided from our approximation will

never be greater than εk away from the exact scores neglecting round-off errors. We

will see in Section 4.2.3 that this bound not only provides reasonable results but our

approximation empirically produces scores also several orders of magnitude closer

than what is theoretically guaranteed and ranking quality is preserved.

While results in Section 4.2.3 only examine problems where we start at a single

seed vertex, our algorithm can easily be adapted to the case where we allow multiple

seed vertices. Instead of initializing the map with only the single seed vertex in

Line 4 in Algorithm 12, we simply initialize the map with all desired seed vertices.

The rest of the algorithm can remain the same as we will then count walks from all

seed vertices. The complexity of our static algorithm is O(dmaxk), where dmax is the

80

maximum degree of a vertex in the graph. This is because at each iteration we can

touch at most dmax edges and we run our algorithm a total of k times to count walks

up to length k.

Next we present our dynamic algorithm. The overall dynamic algorithm

Dynamic Katz for updating personalized Katz scores is given Algorithm 14 and uses

a helper function Update Walks, given in Algorithm 15. For our dynamic algorithm

we consider the case where we insert a single edge e into the graph between vertices

src and dest. Instead of a complete static recomputation, we can avoid unnecessary

computation by using the previously described visited array. If we insert an edge

between vertices src and dest, we only need to update counts of walks for vertices

that have been visited after vertices src and dest. Furthermore, we only need to

update counts for walks that use the newly added edge. Given a starting vertex

curr vtx and integer j, the function Update Walks propagates the updated counts

of walks from curr vtx to the remaining vertices starting at walks of length j. We

do this by maintaining a queue of walk counts for each vertex visited using a variant

of breadth-first search, similar to the static algorithm described earlier. The key step

is in line 8, where we only traverse walks and update the walk count if we are using

the newly added edge. This effectively prunes the amount of work done compared to

a pure static recomputation.

In Algorithm 14, Dynamic Katz, for an inserted edge e=(src, dest) we calculate

which vertex has been visited first (lines 2-6). Without loss of generality, suppose

src had originally been visited first. In line 7, we update the visited value of dest

because we can now get to dest from src using the newly added edge. Accordingly,

we increment the number of walks possible for dest by one as a direct result of the

new edge in line 8. For the inserted edge e, the function Dynamic Katz calls the

helper function Update Walks for both affected vertices src and dest to update the

walk counts. For vertex src, we start updating walks of length visited[src]+1 and

81

similarly for vertex dest for walks of length visited[dest]+1. Adding these updated

counts to the existing array walks effectively propagates the effect of adding the new

edge and then in line 11 we calculate the updated Katz scores. Once we have the

updated walks, we can calculate the scores using Algorithm 13 as we did in the static

recomputation.

Note that our dynamic algorithm is an approximation to the static recomputation.

While updating the walk counts for src and dest using the new edge accounts for much

of the effect of the added edge, it is possible there are walks originating from other

vertices in the network that go through the added edge that need to be updated.

However, the effect of these extra walks will be minimal compared to the effect from

the src and dest vertices, and we show that our dynamic algorithm maintains good

quality compared to a static recomputation when concerned about recall of the highly

ranked vertices in Section 4.2.3. The worst-case complexity of our dynamic algorithm

is still the same as the static algorithm, O(dmaxm), because in the worst-case we

may still have to touch dmax edges at each iteration. However empirically we see

that we still obtain significant speedups compared to the static algorithm in Section

4.2.3 because in practice our dynamic algorithm only traverses an edge if the walk in

question uses the newly added edge.

Algorithm 14 Update Katz scores using dynamic algorithm given edge update edge
from vertex src to dest

1: procedure Dynamic Katz(G, seed, k, walks, visited, edge)
2: max visited = max(visited[src],visited[dest])
3: if visited[src]==max visited then
4: max vtx = src; min vtx = dest
5: else
6: max vtx = dest; min vtx = src

7: visited[max vtx] = visited[min vtx] + 1
8: walks[max vtx][visited[max vtx]] += 1
9: Update Walks(G, max vtx, edge, k, visited[max vtx]+1, walks)

10: Update Walks(G, min vtx, edge, k, visited[min vtx]+1, walks)
11: c = Calculate Scores(walks,α)
12: return c

82

Algorithm 15 Helper function for dynamic algorithm to update walks

1: procedure Update Walks(G, curr vtx, edge, k, starting val, walks)
2: map[curr vtx] = 1
3: j = starting val . Start updating walks of length starting val
4: while j < k do
5: for v in map do
6: count = map[v]
7: for nbr in N(v) do
8: if v==src and nbr==dest then . Only update if using new edge
9: map[nbr] + = count

10: for v in map do
11: walks[v][j] = map[v]

12: j+ = 1
return walks

We illustrate our dynamic algorithm on a small toy network. Figure 4.7 depicts

the initial graph and the corresponding walk counts of length k up until k = 3 for

seed = 0. In Figure 4.8, we add an edge between vertices 2 and 5 and show the

updated walk counts desired in red. The visited array is updated accordingly, since

we can now reach vertex 5 through vertex 2. When we update the walk counts from

vertex 5 starting at walks of length visited[5]+1 = 3, we obtain a new walk of length

3 to vertex 2 that uses the new edge (0 → 2 → 5 → 2). When we update the walk

counts from vertex 2, we obtain a new walk of length 3 to vertex 4 using the new

edge (0→ 2→ 5→ 4).

Approximating Personalized Katz Centrality in
Dynamic Graphs

Eisha Nathan and David A. Bader

School of Computational Science and Engineering
Georgia Institute of Technology, Atlanta GA 30363
enathan3@gatech.edu, bader@cc.gatech.edu

0 1

2

3

4

5

0 1

2

3

4

5

Algorithm 1 Helper function for dynamic algorithm to update walks

1: procedure Update Walks(curr vtx,)
2:

Vertex k=1 k=2 k=3
0 0 3 0
1 1 0 3
2 1 0 5
3 1 0 5
4 0 2 0
5 0 0 2

Vertex visited
0 0
1 1
2 1
3 1
4 2
5 3

Figure 4.7: Initial graph with walk counts of length k and visited values.

83

Approximating Personalized Katz Centrality in
Dynamic Graphs

Eisha Nathan and David A. Bader

School of Computational Science and Engineering
Georgia Institute of Technology, Atlanta GA 30363
enathan3@gatech.edu, bader@cc.gatech.edu

0 1

2

3

4

5

0 1

2

3

4

5

Algorithm 1 Helper function for dynamic algorithm to update walks

1: procedure Update Walks(curr vtx,)
2:

Vertex k=1 k=2 k=3
0 0 3 0
1 1 0 3
2 1 0 6
3 1 0 5
4 0 2 1
5 0 1 2

Vertex visited
0 0
1 1
2 1
3 1
4 2
5 2

Figure 4.8: Updated graph with walk counts of length k and visited values.

4.2.3 Results

We evaluate Static Katz and Dynamic Katz on synthetic and real-world graphs.

For synthetic networks, we use Erdos-Renyi graphs (ER) [79] and R-MAT graphs

[80]. In the Erdos-Renyi model, all edges have the same probability for existing in

the graph. R-MAT graphs are scale-free networks designed to simulate real-world

graphs. For real-world networks, we use four networks from the KONECT collection

[76]. Graph information is given in Table 4.8. For all results, five vertices from each

graph are chosen randomly as seed vertices and results shown are averaged over these

five seeds. Finally, many real graphs are small-world networks [82], meaning the graph

diameter is on the order of O(log(n)), where n is again the number of vertices in the

graph. Our algorithm therefore sets k = dlog(n)e, so by counting walks up to length

≈ log(n), we can touch most vertices in the graph. The code was implemented in C.

4.2.4 Static Results

For Static Katz, we present comparisons to the conventional linear algebraic method

of computing Katz scores of solving the linear sytem (I − αA)−1ei. Recall we denote

the exact solution given by linear algebra as c∗ and ck to represent the personalized

Katz scores from Static Katz. Figure 4.9 plots the absolute error from our algo-

rithm between c∗ and ck in the dotted blue line while the theoretically guaranteed

error εk is plotted in the solid green line, where error = ‖c∗ − ck‖2. Both errors are

84

0 1 2 3 4 5 6 7 8 9

k (walk length)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

error

bound

Figure 4.9: Error between approximate scores ck and exact solution c∗.

plotted as a function of k. Results are shown only for the manufacturing graph,

although similar trends are seen for the other graphs. We see that the actual experi-

mental error is always several orders of magnitude below the theoretically guaranteed

error, meaning our algorithm performs better than expected.

In Table 4.8 we summarize the relative speedup obtained from counting walks

versus calculating the exact scores using linear algebra for all the real-world graphs

by giving the raw times taken by both methods. Let TL denote the time taken by

the linear algebraic method and TS the time taken by Static Katz. We note that

counting walks using our method is several orders of magnitude faster than linear

algebraically computing personalized Katz scores.

Table 4.8: Speedup for real-world networks used in experiments.

Graph |V | |E| TL TS

manufacturing 167 82,927 0.74s 0.0059s
facebook 42,390 876,993 132.96s 0.0947s
slashdot 51,083 140,778 241.21s 0.058s

digg 279,630 1,731,653 62.58s 0.053s

We test our method of updating Katz Centrality scores in dynamic graphs on the

synthetic ER and R-MAT graphs and on the three largest real-world networks from

Table 4.8. Dynamic results are given as comparisons to a pure static recomputation

85

10 15 20 25 30 35 40 45 50

Average degree

100

101

102

S
pe

ed
up

n=213

n=214

n=215

n=216

(a) Erdos-Renyi graphs.

10 15 20 25 30 35 40 45 50

Average degree

10­1

100

101

102

103

104

105

S
pe

ed
up

n=213

n=214

n=215

n=216

(b) R-MAT graphs.

Figure 4.10: Speedup vs average degree for synthetic graphs tested.

(comparing the performance and quality of Dynamic Katz to Static Katz). To

have a baseline for comparison, every time we update the centrality scores using

Dynamic Katz, we recompute the centrality vector statically using Static Katz.

Denote the vector of scores obtained by static recomputation as cS and the scores

obtained by the dynamic algorithm as cD. We create an initial graph G0 using the

first half of edges, which provides a starting point for both the dynamic and static

algorithms. To simulate a stream of edges in a dynamic graph, we insert the remaining

edges sequentially and apply both Static Katz and Dynamic Katz.

For both ER and R-MAT graphs, we generate graphs with the number of vertices

n as a power of 2, ranging from 213 to 216. We vary the average degree of the graphs

from 10 to 50. Denote the time taken by static recomputation and our dynamic

algorithm as TS and TD respectively. We calculate speedup as TS/TD. Figure 4.10

shows the average speedup obtained over time versus the average degree in the graph.

For both types of graphs we see the greatest speedup for sparser graphs (smaller

average degree). For R-MAT graphs, we also observe greater speedups overall for

larger graphs (larger values of n).

For real graphs, we evaluate our algorithm on the three largest graphs from Table

4.8. Let SS(R) and SD(R) be the sets of top R highly ranked vertices produced by

86

0 10 20 30 40 50

Time steps

0.95

0.96

0.97

0.98

0.99

1.00

R
ec

al
l

R=10
R=100
R=1000

Figure 4.11: Ranking accuracy over time for top R=10,100,1000 vertices for the
slashdot graph.

static recomputation and our dynamic algorithm respectively. We evaluate the quality

of our algorithm based on two metrics: 1) error = ‖cS−cD‖2, and 2) recall of the top

R vertices = |SS(R)∩SD(R)|
R

. We want low values of the error, meaning Dynamic Katz

produces Katz scores similar to that of Static Katz, and values of recall close to 1,

meaning Dynamic Katz identifies the same highly ranked vertices as Static Katz.

We consider values of R = 10, 100, and 1000. For many application purposes it is

primarily the highly-ranked vertices that are of interest [83]. For example, these may

be the most influential voices in a Twitter network, or sites of disease origin in a

network modeling disease spread. Showing that our algorithm maintains good recall

on the highly ranked vertices has many practical applications.

Table 4.9 gives averages over time of the performance and quality of our algorithm.

For the three graphs tested, our dynamic algorithm is several thousand times faster

than static recomputation. Average recall of the top R vertices is very high in all

cases (greater than 0.99), showing that our approximation of Katz scores is accurate

enough in dynamic graphs to preserve the top highly ranked vertices in the graph. The

values of the error, although relatively small, indicate that our dynamic algorithm

does not find exactly the same scores as a static recomputation. Therefore, our

87

Table 4.9: Averages over time for real-world graphs for dynamic algorithm compared
to static recomputation. Columns are graph name, speedup, absolute error, and recall
for R = 10, 100 and 1000.

Graph Speedup
Average Recall

Error
R = 10 R = 100 R = 1000

facebook 27,674.50× 1.00 0.997 0.999 0.081
slashdot 47,278.82× 1.00 0.995 0.996 0.013

digg 60,073.81× 1.00 0.996 0.991 0.037

dynamic algorithm should be used if a user’s primary purpose is recall of highly

ranked vertices without concern of the exact values of the scores.

Furthermore, we observe that the quality of our algorithm does not suffer over

time and is therefore robust to many edge insertions. Figure 4.11 plots the recall over

time (sampled at 50 evenly spaced timepoints) for the slashdot graph for the top

R = 10, 100 and 1000 vertices. Note that the y-axis starts at 0.95. We are able to

maintain a high recall of the top ranked vertices with little to no decrease over time.

The results for other graphs tested are similar.

4.2.5 Conclusions

This section first presented a new algorithm, Static Katz to approximate personal-

ized Katz scores of vertices in a graph. We have shown that our approximate algorithm

produces scores numerically close to, and is several orders of magnitude faster than,

that of a conventional linear algebraic computation. We extended Static Katz and

developed an incremental algorithm Dynamic Katz that calculated updated counts

of walks to provide approximate personalized Katz scores in dynamic graphs. Our

dynamic algorithm is faster than a pure static recomputation and maintains high val-

ues of recall of the top ranked vertices returned. Adapting our algorithms to work in

parallel is a topic for future work; however this is out of the scope of this dissertation.

For instance in our dynamic graph algorithm, updating the scores for both the source

and destination vertex of the newly added edge can be done in parallel.

88

Table 4.10: Several walk-based centralities as functions of the adjacency matrix

Centrality Metric Generalized Equation
Katz Centrality ∑∞

k=0 α
kAk

PageRank
Eigenvector centrality Ax = λx
Exponential centrality ∑∞

k=0
Ak

k!
Subgraph centrality

Total communicability

4.3 Nonbacktracking Walk Centrality

This section presents a new dynamic algorithm for calculating updated centrality

values using nonbacktracking walks. Section 4.3.1 motivates the study of centrality

using nonbacktracking walks and Section 4.3.2 describes the new algorithms. Section

4.3.3 presents the main results of our method and in Section 4.3.4 we conclude.

4.3.1 Background & Motivation

We start this section by again reviewing the definition of a walk in a graph. Denote

a walk of length k as a series of vertices v1, v2, · · · , vk, where vertices and edges are

allowed to repeat. Using linear algebraic notation, we can count walks of different

lengths using powers of the adjacency matrix A where Ak(i, j) gives the number of

walks of length k from vertex i to j. As discussed earlier, several centrality metrics are

calculated as functions of the adjacency matrix and weight walks of different lengths

to quantify importance. A subset of these centrality metrics and their generalized

equation is given in Table 4.10.

The similarity amongst all these walk-based centrality metrics stems from the fact

that they weight all walks of the same length equally. For example, a walk of length

4 between vertices 0 → 1 → 0 → 1 → 0 is weighted the same as a walk of length 4

between vertices 0→ 1→ 2→ 3→ 4. The authors in [84] propose a new measure of

centrality based on the concept of a nonbacktracking walk (NBTW), a walk which does

89

not backtrack upon itself, meaning it contains no vertex sequences of the form iji.

Thus, nonbacktracking walk centrality scores are computed by counting NBTWs in

graphs and weighting longer ones by successive powers of some parameter α ∈ (0, 1).

Specifically in this section we again study personalized centrality (w.r.t. seed vertices

of interest), but using NBTWs instead of regular walks as for Katz Centrality. We

count NBTWs originating at some seed vertex and ending at all other vertices in the

graph.

When NBTW-based centrality was first introduced in [84], the authors presented

a linear algebraic formulation for calculation of the centrality scores. Solving the

linear system in Equation 4.3 for an n× 1 vector x∗ gives the centrality scores. The

vector ei indicates we are solving for personalized scores w.r.t. a seed vertex i and ∆

is the associated diagonal degree matrix of the adjacency matrix A.

(I − αA+ α2(∆− I))x∗ = (1− α2)ei (4.3)

However, for large graphs, this linear system is computationally intensive to solve

and for personalized scores, the scores of vertices far away from the seed are often

negligible. Therefore, it is desirable to have an alternate method to calculate these

centrality scores and in this work we present one such alternate algorithm. Since

walks (and NBTWs) in graphs can be infinitely long, if we are counting walks manu-

ally (without using linear algebra), we can approximate the corresponding centrality

metric by counting walks up to a certain length.

4.3.2 Algorithms

This section first presents an algorithm for approximating NBTW-based centrality

in static graphs, which serves as a starting point for the dynamic algorithm. Sup-

pose we are counting walks originating at a seed vertex seed. For a graph with n

90

vertices, we maintain an n × k array walks where walks[i][j] represents the number

of nonbacktracking walks from seed to vertex i of length j. Let N(i) denote the set

of neighbors of i. For a particular NBTW w that ends with the sequence of vertices

· · · , j, i, let Ñ(i) = N(i)\j, meaning the set of neighbors of vertex i without the

vertex the NBTW w came from (vertex j). The effect of a walk from seed to one of

its direct neighbors can be propagated recursively throughout the network, where we

only advance the walk to a vertex if we don’t backtrack. Since walks are required to

be nonbacktracking, at step k we need to keep track of the vertex that was visited

at step k − 1. We can think of propagating a walk through the network as exam-

ining the neighbors of the last vertex visited in the walk and updating walk counts

of its neighbors as long as we don’t backtrack. Specifically, for each neighbor vertex

d ∈ Ñ(v), there will be walks[v][k] walks of length k+ 1 ending at d going through v.

The main computation in counting the NBTWs occurs in Algorithm 16, where

we propagate the effect of a NBTW ending at a particular vertex throughout the

entire network. Suppose we have already calculated a NBTW of length k ending in

the sequence of vertices · · · , prev, curr. We examine the vertex curr and look at

Ñ(curr), or equivalently the set of curr’s neighbors that don’t include prev, since

these are the set of vertices that our NBTW can visit next (Line 4). For each vertex

vtx in this set we update the number of NBTWs of length k+ 1 that now end in the

sequence · · · , prev, curr, vtx in Line 8. We now recursively repeat this calculation

replacing curr with vtx (Line 9).

Algorithm 16 can be used to develop an algorithm for counting all NBTWs up

to length kmax starting at seed. This procedure is given in Algorithm 17. By the

definition of a NBTW, the only vertices that will have a NBTW of length 1 from

seed are the seed vertex’s direct neighbors. Thus, Line 2 first obtains the neighbors of

seed. For each neighbor vertex nbr we will propagate the effect of the walk from seed

to nbr throughout the rest of the network using the previously described Propagate

91

Algorithm 16 Propagate num walks walks from seed to curr of length k+ 1 going
through prev.

1: procedure Propagate(prev, curr, k, num walks, walks, kmax)
2: if k > kmax then
3: return
4: S = N(curr)\prev . Can’t backtrack through prev
5: if S is ∅ then . If ∃ 0 neighbors to propagate walks, return
6: return
7: for vtx ∈ S do
8: walks[vtx][k + 1]+ = num walks
9: propagate(seed, vtx, k + 1, num walks, walks, kmax)

return walks

function in Algorithm 16 in Line 6.

Algorithm 17 Static algorithm to calculate personalized NBTW centrality.

1: procedure Static NBTW(seed, kmax)
2: Nbrs = N(seed)
3: for nbr ∈ Nbrs do
4: num walks = 1
5: walks[nbr][1] = num walks . ∃ 1 walk from seed to nbr
6: propagate(seed, nbr, 1, num walks, walks, kmax)

return walks

We prove the correctness of our algorithm Static NBTW in Theorem 7.

Observation 1. If there are x NBTWs from seed to v of length k, then there are

x NBTWs of length k + 1 from seed to each of the vertices in Ñ(v) going through

v. Alternately, the number of NBTWs of length k + 1 from seed to vertex i can be

calculated by summing up the number of NBTWs of length k from seed to Ñ(i).

Note that this follows trivially from the definition of a NBTW.

Theorem 7. For all vertices i, Algorithm 17 updates walks[i, k] with the correct num-

ber of NBTWs of length k from seed to vertex i.

Proof. We will prove this by induction.

Base case. k = 1: The only NBTWs that exist in the network from seed of length

1 are its direct neighbors. This is taken care of in the initialization of the algorithm

92

in Line 4.

Inductive hypothesis. Assume walks[i, k] holds the correct number of NBTWS of

length k from seed to i for all vertices i.

Inductive step. We will show that it follows that walks[i, k + 1] holds the correct

number of NBTWS of length k from seed to i.

• First note that NBTWs ending in i must first traverse through a neighbor of i

before reaching i, i.e. for a NBTW w of length k+1 to end in i, the first k vertices

of w must be a NBTW of length k ending in some v ∈ N(i). Furthermore, in

order to have a NBTW, we cannot backtrack so we can impose the additional

constraint of v ∈ Ñ(i).

• By the inductive hypothesis, note that walks[v, k] holds the correct number of

NBTWs of length k from seed to vertex v ∀v. By Observation 1, ∀v ∈ Ñ(i),

walks[i, k + 1]+ = walks[v, k].

• Therefore, walks[i, k + 1] correctly counts the number of NBTWs from seed to

i of length k + 1.

Figure 4.12 gives an example of our static algorithm on a toy network. The

example graph is shown in Figure 4.12a with a seed vertex 0 outlined in green. Figure

4.12b shows how our algorithm propagates walks from the seed vertex 0. Vertex 0

has three direct neighbors, vertices 1, 2, and 3. Since the NBTW from 0 → 1 can’t

backtrack onto 0 (vertex 1’s only neighbor), this NBTW ends here. However, the

NBTWs 0→ 2 and 0→ 3 are propagated through the network as shown in the walks

array, where the result of the NBTW 0 → 2 is shown in blue and the result of the

NBTW 0→ 3 is shown in red.

For dynamic graphs, a naive implementation to obtain updated NBTW counts af-

ter changes to the graph occur would recompute from scratch the number of NBTWs

93

0 1

2

3

4

5

(a) Static graph with seed vertex 0 in green
outline.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I
3 I I
4 II
5 II

(b) Walks array.

Figure 4.12: Example of Static NBTW. Propagation of different walks is shown in
different colors. For a seed vertex of 0, we propagate walks from neighbors vertex 1,
2, and 3 throughout the network.

from seed. However, as the graph grows larger, this naive static recomputation be-

comes increasingly computationally intensive. By exploiting the locality of edge in-

sertions we can develop a more efficient dynamic algorithm that only updates NBTW

counts relevant to new edges inserted into the graph. We consider the case of inserting

a single edge e = (src, dest). Our dynamic algorithm is given in Dynamic NBTW in

Algorithm 19. We will repeat the same set of steps to obtain updated NBTW counts

for both the src and dest vertices. This set of steps is given in Dynamic Helper

in Algorithm 18. Without loss of generality, let us first consider the effect of the

src vertex. All current NBTWs ending in src need to be updated since we can now

visit dest from src by traversing the newly added edge. To identify which NBTWs

need to be looked at, we first find all the values of k where walks[src][k] is nonzero in

Line 2 (obtained in the array k vals). If walks[src][k] > 0, then there are a nonzero

number of NBTWs of length k that end in src and we need to propagate these using

the newly added edge e. Line 3 obtains the numbers of walks of length j for each

j ∈ k vals in the array num walks vals. The same technique of propagating walks

can be used as described earlier in Line 7. The same procedure described for the src

vertex can then be applied to the dest vertex. Lines 8-11 takes care of the edge case

when either src or dest is the seed vertex. In this case we need to perform a full

propagation from the start similar to the static algorithm. Since we only propagate

94

walks that use the newly added edge, we save on computation time had we performed

a full recomputation.

Algorithm 18 Helper function for dynamic update.

1: procedure Dynamic Helper(src, dest, seed, walks)
2: k vals = walks[src].nonzero
3: num walks vals = [walks[src][k vals[i]]]
4: for i in len(k vals) do
5: k = k vals[i]; num walks = num walks vals[i]
6: walks[dest][k + 1]+ = num walks
7: propagate(src, dest, k + 2, num walks, walks, k max)

8: if src is seed then . Edge case if new edge uses seed vertex
9: num walks = 1

10: walks[dest][1] = num walks
11: Propagate(seed, dest, 1, num walks, walks, k max)

Algorithm 19 Dynamic algorithm to calculate personalized NBTW centrality given
new edge e.

1: procedure Dynamic NBTW(seed, kmax, edge = (src, dest), walks)
2: Dynamic Helper(src, dest, seed, walks)
3: Dynamic Helper(dest, src, seed, walks)
4: return walks

We prove the correctness of our algorithm Dynamic NBTW in Theorem 8. As-

sume we start with the NBTW counts at time t from our static algorithm in the array

walks. We seek to prove that upon addition of a single edge e = (src, dest) at time

t+ 1, our dynamic algorithm produces the same result as would have been obtained

from a complete static recomputation using the previously described static algorithm.

Theorem 8. Upon addition of a single new edge e = (src, dest), for all vertices i,

Algorithm 19 updates walks[i, k] with the correct number of NBTWs of length k from

seed to vertex i, where correctness here is measured as computing the same NBTW

counts as static recomputation.

Proof. We will prove this by induction. Let walks static be the NBTW counts pro-

duced from static recomputation and walks dynamic be the NBTW counts produced

95

by our dynamic algorithm.

Base case. k = 1: NBTWs of length 1 can only be affected by the new edge if src

or dest is the seed vertex. This is taken care of in line 8 in Algorithm 18.

Inductive hypothesis. Assume walks dynamic[i, k] = walks static[i, k] for all ver-

tices i.

Inductive step. We will show that it follows that walks dynamic[i, k + 1]

= walks static[i, k + 1].

• Observe that the only new NBTWs that have to be accounted for are those

using the new edge e. Specifically, NBTWs ending at src can now travel to dest

and vice versa.

• Suppose by the inductive hypothesis that we have x NBTWs of length k from

seed to src. By the previous point, we have x new NBTWs of length k + 1

from seed to dest (i.e., all NBTWs ending at src of length k can now travel to

dest creating NBTWs of length k + 1). This is similar to the logic the static

algorithm employs.

• This logic is implemented in Line 6 in Algorithm 18. Since we account for all

new NBTWs, walks dynamic[i, k + 1] = walks static[i, k + 1].

Since we are not recalculating all the counts of NBTWs for all the vertices from

seed, and are only examining the effect of a single edge and the effect it has, this

dynamic approach will be significantly faster than a naive static recomputation every

time the graph is changed and we see this in Section 4.3.3. Figure 4.13 gives an

example of our dynamic algorithm using the same toy network as earlier. Consider

the effect of adding a single edge e = (2, 5) (shown in red in Figure 4.13a). Figure

4.13b gives the initial NBTW counts for the network before adding edge e. After

96

0 1

2

3

4

5

(a) Graph with seed vertex 0 and newly
added edge e = (2, 5) in red.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I
3 I I
4 II
5 II

(b) Initial walks array before adding edge e.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I I
3 I I I
4 II I
5 I II

(c) Walks array after propa-
gating NBTW of length k=1
ending at vertex 2.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I I
3 I I I
4 II I
5 I II I

(d) Walks array after propa-
gating NBTW of length k=3
ending at vertex 2.

k=1 k=2 k=3 k=4
0 II
1 I
2 I I III
3 I I I
4 II I
5 I II I

(e) Walks array after propa-
gating NBTWs of length k=3
ending at vertex 5.

Figure 4.13: Example of Dynamic NBTW. After adding edge e between vertices 2
and 5 we show the steps of the dynamic algorithm to update NBTW counts taking
into consideration the new edge.

inserting the edge between vertices 2 and 5, there are three NBTWs and their counts

to update: 1) the NBTW of length 1 starting at vertex 2, 2) the NBTW of length

3 starting at vertex 2, and 3) two NBTWs of length 3 starting at vertex 5. These

propagations are given in Figures 4.13c, 4.13d, and 4.13e respectively.

Both Static NBTW and Dynamic NBTW return an n×k array walks that can

then be used to calculate the centrality scores. This procedure is given in Algorithm

20 where we obtain the centrality value for vertex i by weighting NBTWs of different

lengths by successive powers of some user-chosen parameter α.

Algorithm 20 Calculate NBTW-centrality scores from walk counts.

1: procedure Calculate Scores(walks, α)
2: x = n× 1 array initialized to 0
3: for i = 1 : n do
4: for j = 1 : k do
5: x[i] += αj · walks[i][k]

return x

97

4.3.3 Results

We evaluate Static NBTW and Dynamic NBTW on five real-world graphs drawn

from the KONECT collection [76]. Graph information is given in Table 4.11. For all

results, five vertices from each graph are chosen randomly as seed vertices and results

shown are averaged over these five seeds. We use temporal datasets to simulate

dynamic graphs, meaning the edges already have associated timestamps. For our

dynamic algorithm, we initialize the algorithm with half the edges and then insert

the remaining edges in different batch sizes in timestamped order. We test batch

sizes of 1, 10, 100, and 1000. A batch size of b means at each time point we insert b

edges and run both the dynamic and static algorithms for comparison purposes. As

previously discussed, many real graphs are small-world networks [82], meaning the

graph diameter is on the order of O(log(n)), where n is again the number of vertices

in the graph. Our algorithm therefore sets k = dlog(n)e, so by counting walks up to

length ≈ log(n), we can touch most vertices in the graph. The code was implemented

in C++.

Table 4.11: Real graphs used in experiments.

Graph |V | |E|
wiki-news 25,042 193,618
facebook 46,952 876,993
wiki-talk 534,767 2,271,361

wiki-french 1,409,666 3,853,639
youtube 3,223,585 9,375,374

For our static algorithm we present comparisons to a conventional linear algebraic

method of solving the system in Equation 4.3 discussed in Section 4.3.1. The goal

here is to ensure our algorithm returns similar quality scores to a traditional linear

algebraic computation of centrality scores. Let x∗ be the solution to the linear system

(the exact NBTW-centrality scores) and xk be the approximation from our algorithm

by counting up to length k NBTWs. We measure error as the 2-norm difference

98

2 4 6 8 10 12
k

10­7

10­6

10­5

10­4

10­3

E
rr

or

wiki­talk
wiki­french
facebook
youtube
wiki­news

Figure 4.14: Absolute error between exact NBTW-centrality scores x∗ and our ap-
proximation xk.

between the two vectors as

error = ‖x∗ − xk‖2.

Figure 4.14 plots the error (on the y-axis) for different values of k (on the x-axis) for

all the real graphs. The first trend to note is the most intuitive: as we include counts

of longer lengths in the calculations of the scores, the error between our approximation

and the exact scores decreases. Note that after a certain value of k, the error stabilizes

and we can conclude that counting further walks of longer lengths has no significant

impact on the quality of the scores. Therefore, setting the value of k that we count

to to some constant is a viable choice in our methods.

Our dynamic algorithm produces the same NBTW counts as our static algorithm

(and therefore, the same scores), so we only examine the performance of our dynamic

algorithm w.r.t. speedup compared to the static algorithm. Let TS be the time taken

by our static algorithm to compute the NBTW-based centrality scores for a particular

graph and TD be the time taken by our dynamic algorithm. To evaluate our dynamic

99

algorithm, we calculate the speedup in time as

speedup =
TS
TD

.

Higher values of the speedup indicate our dynamic algorithm has significant perfor-

mance improvement compared to our static.

Figure 4.15 plots the maximum, mean, and minimum speedup over all the real

graphs (on the y-axis) versus the batch size (on the x-axis). In most cases even the

minimum speedup obtained is above 1× and very rarely does it drop below a 1×

speedup. We see the greatest speedup for smaller batch sizes of 1 and 10, indicating

that our method is most beneficial for low latency applications with small number of

data changes. The average speedup obtained decreases for larger batch sizes. This

is due to the fact that as the batch size grows larger, the amount of time needed

to process the updates grows because all endpoints of all edges newly added must

be taken into account. Essentially, new NBTWs must be propagated from all the

touched endpoints of the newly added edges. However, our dynamic algorithm still

on average is able to obtain several orders of magnitude in speedup over the static re-

computation. In very large graphs of billions of vertices where a static recomputation

is computationally infeasible given edge updates to a graph, our dynamic algorithm

offers significant savings because it just targets a localized portion of the graph where

the edge has been added.

Figure 4.16 plots the speedup over time for each of the different graphs tested. We

sample at 100 evenly spaced time points and plot the time taken (in seconds) for our

dynamic (in the solid blue line) and our static algorithm (in the dotted green line).

We see that the time taken by our dynamic algorithm is several orders of magnitude

lower than the time taken by our static algorithm. This indicates that our method

of only examining places in the graph that are directly affected by the edge updates

100

100 101 102 103

Batch size

10­1

100

101

102

103

104

105

S
pe

ed
up

max
mean
min

Figure 4.15: Speedup versus batch size for real graphs. Higher is better.

results in highly efficient computation of NBTW-based centrality scores.

4.3.4 Conclusions

This section presented a new algorithm for computing the values of personalized non-

backtracking walk-based centrality scores of the vertices in both static and dynamic

graphs. The algorithm returns approximations of scores by counting NBTWs up to

a certain length starting at a given seed vertex. In past literature, these centrality

values have been computed using a linear algebraic formulation and only on static

graphs. Our algorithm agglomeratively counts NBTWs in graphs to obtain the cor-

responding centrality scores and for static graphs the results presented indicate that

our method obtains good quality approximations of the scores compared to a linear

algebraic computation. For dynamic graphs, our algorithm is able to avoid a full

static recomputation and efficiently computes updated scores, given edge updates

to the graph. Our dynamic algorithm returns exactly the same scores as the static

algorithm, meaning we have no approximation error. Furthermore, our dynamic al-

gorithm is several orders of magnitude faster than the static algorithm, indicating

our approach has large performance benefits. Future work can consist of parallelizing

101

0 20 40 60 80 100
Time steps

10­6

10­5

10­4

10­3

10­2

10­1

T
im

e
(s

)

dynamic static

(a) wiki-news graph.

0 20 40 60 80 100
Time steps

10­6

10­5

10­4

10­3

10­2

10­1

T
im

e
(s

)

dynamic static

(b) facebook graph.

0 20 40 60 80 100
Time steps

10­6

10­5

10­4

10­3

10­2

10­1

T
im

e
(s

)

dynamic static

(c) wiki-talk graph.

0 20 40 60 80 100
Time steps

10­6

10­5

10­4

10­3

10­2

10­1

T
im

e
(s

)

dynamic static

(d) wiki-french graph.

0 20 40 60 80 100
Time steps

10­6

10­5

10­4

10­3

10­2

10­1

T
im

e
(s

)

dynamic static

(e) youtube graph.

Figure 4.16: Speedup in time of dynamic algorithm compared to static algorithm for
real graphs.

102

the computation in both the static and dynamic algorithm; however this is out of

the scope of this dissertation. For example, in the propagation step, if a vertex has

three neighbors, the propagation of those walks are independent from each other and

can be done in parallel. However, care would need to be taken to ensure that the

recursive nature of propagating walks does not spawn too much parallelization, which

could cause too much overhead and negate any performance benefit obtained.

4.4 Streaming Exponential Centrality

This section presents a new dynamic algorithm for updating exponential-based cen-

trality scores in evolving graphs. Our method is faster than standard static recompu-

tation and maintains high recall of the highly ranked vertices over time. Section 4.4.2

presents our new dynamic algorithm and Section 4.4.3 presents experimental results

on both synthetic and real-world graphs.

4.4.1 Background

Recall that subgraph centrality is determined by the diagonal elements of some ma-

trix function applied to the adjacency matrix A of the graph under study [20]. A

frequent function of choice is the matrix exponential eA [85]. Consider the power

series expansion of eA [86]:

eA = I + A+
A2

2!
+
A3

3!
+ · · ·+ Ak

k!
+ · · · =

∞∑
k=0

Ak

k!
,

where I is the n × n identity matrix. Since Ak(i, j) counts the number of walks of

length k between vertices i and j, the diagonal elements of eA (eA(i, i)) count the

number of closed walks (starting and ending at the same vertex) centered at vertex i

weighting a walk of length k by 1
k!

. Here, we use the diagonal elements of the matrix

exponential, eA(i, i), as the centrality scores for the vertices. An alternate means of

103

calculating centrality scores from the matrix exponential is to use the row sums of eA,

since in practice this is faster than obtaining the diagonal elements, which requires

computation of the entire matrix. However, various results in previous literature

have shown that these two methods (row sums versus only the diagonal elements)

often produce fairly different rankings and so we cannot simply replace one with the

other [21]. Since our analysis of exponential centrality requires calculating the entire

matrix, which is a dense matrix, this work focuses on medium sized graphs; however

future work can consist of using methods to approximate the matrix exponential to

scale to larger graphs.

4.4.2 Methodology

The goal of our dynamic algorithm is to prune unnecessary computation when cal-

culating the updated centrality scores of the vertices in the graph after edge updates

occur. Therefore, our algorithm uses the computations from the previous timestep

in the calculation of the scores in the current timestep. This forms the basis of our

dynamic algorithm. We obtain updated snapshots of the adjacency matrix at time

t + 1 as At+1 = At + ∆A, where ∆A represents the edge udpates occurring at time

t+ 1.

The end goal is to calculate eAt+1 , or equivalently eAt+∆A. Since we are working

with exponentials, a naive first pass algorithm is to attempt to exploit basic properties

of exponentials, namely the additive property. However, the additive property of

exponentials fails for matrices unless we have commutativity: for n × n matrices

A = B + C, eA 6= eBeC unless BC = CB. Since we cannot trust graph updates to

be commutative, this naive additive property alone is not sufficient for our purposes

and we cannot simply compute eAt+1 as eAte∆A. However, there is still a relationship

between the parts of the sum for the matrix exponential as stated in Theorem 9 that

we can use to develop a streaming algorithm for the matrix exponential in dynamic

104

graphs.

Theorem 9. Suppose A = B + C where A, B, and C are n × n matrices. Then

the exponential of A is related to the exponentials of B and C by the Trotter product

formula [87]:

eA = lim
m→∞

(eB/meC/m)m.

Furthermore, the Trotter result can be used to approximate eA by using the approxi-

mation [88]:

eA ≈ (eB/meC/m)m.

Suppose we have the matrix exponential of A at time t, eAt . Given edge updates

∆A to the graph, our goal is to compute the updated matrix exponential eAt+1 with

minimal computation. Using Theorem 9, we can calculate eAt+1 as:

eAt+1 = eAt+∆A

≈ (eAt/me∆A/m)m

As the value of m increases, although we obtain better quality approximations, the

computation time increases. Since there is an inverse relationship between quality

and performance, in this work we use values of m = 2 and 3 and results shown are

averaged between these two parameter values. We see in practice that we obtain high

quality results from this setting.

4.4.3 Results

We test our algorithm on both synthetic and real-world graphs. For synthetic net-

works, we test two types: preferential attachment and small-world. The preferential

attachment graphs are built using the Barabási-Albert model [89] and possess a scale-

free degree distribution. The graph is created by adding vertices one by one. The

105

model takes two parameters: n and d, where n is the number of vertices in the graph

and d is the number of edges each new vertex is given when it is first inserted into the

graph. To create a scale-free distribution, edges of the newly inserted vertex connect

to vertices already in the network with a probability proportional to the degree of

the existing vertices. Small-world networks are build using the Watts-Strogatz model

[90]. This model produces graphs with high levels of clustering as seen in real net-

works and with small graph diameter (the small-world property). This model takes

three parameters: n, d, and p, where n is the number of vertices in the graph, which

are arranged in a ring and connected to their d nearest neighbors. Each vertex is

then independently considered and with probability p an edge is placed between the

vertex and a randomly chosen vertex. Here, we fix p at 0.1. For both types of graphs

(Barabási-Albert and Watts-Strogatz) we use values of n = 1000, 2000, and 3000

and vary d from 1-10. For real graphs, we draw from the KONECT [76] collection of

datasets, listed in Table 5.3. All the real graphs are temporal networks, meaning the

edges have timestamps associated with them.

For the experiments, edges are permuted randomly for synthetic networks and

inserted in timestamped order for the real graphs. To simulate a dynamic graph, we

insert edges in batch sizes of 2i for i = 0, 1, 2, 3, 4, 5, 7, and 9. Specifically, at each

timepoint t, 2i more edges are added to the graph. We compare the performance and

quality of our dynamic algorithm to the standard static algorithm of recomputing the

matrix exponential from scratch every time the underlying graph is changed. The

code was implemented in Python and we use SciPy’s built in expm function to

calculate the matrix exponential.

For synthetic graphs, we show results for a batch size of 1. First we measure

performance of our dynamic algorithm. Let TS denote the time taken by the static

recomputation averaged over all points in time and let TD denote the time taken by

106

Table 4.12: Real graphs used in experiments.

Graph |V | |E|
facebook 2,888 2,981

power-grid 4,941 6,594
ca-HepTh 9,877 25,998

wb-cs-stanford 9,435 36,854

our dynamic algorithm. To measure performance, we calculate speedup as

speedup =
TS
TD

.

Values greater than 1 indicate that our dynamic algorithm is faster than a pure

static recomputation. Figures 4.17a and 4.17b plot speedup versus d for the pref-

erential attachment graphs and small-world graphs, respectively. The speedups for

the preferential attachment graphs are several orders of magnitude higher than the

corresponding small-world networks. For both types of graphs however, as the graph

becomes denser (larger values of d), the speedups increase. The speedups seen can

be attributed to two factors: the sparsity of ∆A and the rate of convergence of e∆A

versus that of eAt . Since ∆A only consists of the edge updates at a particular time

point, this matrix contains far fewer entries than that of At and therefore the calcu-

lations needed for the matrix exponential for ∆A will converge far quicker than those

needed for the full matrix At as is required by the static algorithm.

Next we evaluate the quality of our dynamic algorithm with respect to static

recomputation. Many applications in data analysis are concerned with only the highly

ranked vertices in graphs [91]. Therefore to measure quality, we calculate recall of

the top R vertices for R = 25, 50, and 100. Let CS(R) be the set of the top R highly

ranked vertices from static recomputation and CD(R) be the set of the top R vertices

from our dynamic algorithm. Then recall of the top k vertices is calculated as

recallR =
|CS(R) ∩ CD(R)|

R
.

107

2 4 6 8 10
d

100

101

102

S
pe

ed
up

n=1000
n=2000
n=3000

(a) Speedup for preferential attachment
graphs.

2 4 6 8 10
d

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
pe

ed
up

n=1000
n=2000
n=3000

(b) Speedup for small world graphs.

Figure 4.17: Speedup for synthetic graphs for batch size 20 = 1.

Values close to 1 indicate that our algorithm identifies a high percentage of the highly

ranked vertices compared to the solution from static recomputation. Tables 4.13 and

4.14 show values of the recall for the top 25, 50, and 100 highly ranked vertices for

different values of d for the preferential attachment and small-world graphs, respec-

tively. For both types of graphs we average over n = 1000, 2000 and 3000. We

observe that the recall values for the preferential attachment graphs are higher than

their small world counterparts. This can be attributed to the different degree distri-

butions of the two types of graphs. Due to the manner of creation of the small-world

networks, the topology of the network is relatively homogeneous and all vertices have

essentially the same degree. In contrast, the preferential attachment graphs have

hubs and a scale-free degree distribution. The difference in rankings of vertices is

more likely much more prominent in graphs with a scale-free degree distribution (the

preferential attachment graphs) compared to graphs with a much more homogenous

degree distribution (the small-world graphs). In graphs where all vertices have a

similar degree it is likely that the centrality scores themselves are also fairly similar.

Since our dynamic algorithm is an approximation to the statically recomputed scores,

with similar centrality scores, the rankings can themselves be easily interchanged for

similarly valued vertices. Therefore it is not surprising that the recall values for the

108

Table 4.13: Recall values for preferen-
tial attachment graphs.

d recall25 recall50 recall100
1 0.88 0.88 0.88
2 0.90 0.91 0.91
3 0.88 0.88 0.89
4 0.87 0.87 0.88
5 0.85 0.85 0.86
6 0.84 0.84 0.85
7 0.82 0.83 0.83
8 0.80 0.80 0.81
9 0.77 0.77 0.79
10 0.75 0.76 0.76

Table 4.14: Recall values for small
world graphs.

d recall25 recall50 recall100
1 0.77 0.78 0.80
2 0.77 0.78 0.80
3 0.77 0.78 0.82
4 0.78 0.80 0.83
5 0.80 0.82 0.83
6 0.77 0.80 0.84
7 0.72 0.73 0.80
8 0.73 0.78 0.80
9 0.71 0.76 0.80
10 0.68 0.72 0.78

small-world graphs are lower than their preferential attachment counterparts. Fur-

thermore, while the recall values for the preferential attachment graphs decrease as

values of d increase, there is no such trend for the small world graphs, which tend to

have fairly constant values of recall for different values of d.

Note again that these results are averaged over values of m = 2 and 3. As men-

tioned earlier, there is an inverse relationship between computational cost and quality

of our algorithm with respect to choosing the paramater m. Specifically, as we in-

crease the value of m, we would obtain recall values approaching closer to 1, but at

a higher computational cost.

Next we evaluate our dynamic algorithm on the real graphs from Table 5.3. In

terms of performance, Figure 4.18 plots the speedup versus batch size (note that

both axes are on a log scale base 2 for clarity). We are able to obtain up to a 32×

speedup for batch sizes larger than 23 = 8 with a median speedup of about 16×, and

we always have greater than a 1× speedup. As the batch size increases, the speedup

obtained increases to a certain point, after which it plateaus at an average of around

16× speedup.

Next we examine the quality of our algorithm on real-world graphs. Table 4.15

gives the average recall values over all points in time for all batch sizes for all graphs

109

21 23 25 27 29

Batch size

20

21

22

23

24

25

26

S
pe

ed
up

maximum median minimum

Figure 4.18: Speedup versus batch size for real graphs.

for the top R highly ranked vertices for R = 25, 50, and 100, and gives the average over

all batch sizes. In most cases, the average recall is over 0.75 indicating our algorithm

is able to retrieve a large percentage of the highly ranked vertices compared to static

recomputation. There is also a slight trend of increasing values of recall with larger

batch sizes, though the average recalls over all batch sizes are fairly high. Figure 4.19

plots the recall over time for all the graphs for a batch size of 128, though trends for

other batch sizes are similar. The x-axis simulates time as we insert more edges into

the graph and the y-axis plots the recall at that point in time. The most important

trend we note is that while there are occasionally dips in the recall values over time,

there is no overall trend of the quality worsening over time. This indicates that at

no point in time is there evidence that we need to restart our dynamic algorithm. In

fact, for some of the graphs (wb-cs-stanford and ca-HepTh) the recall actually

increases over time.

Finally in addition to recall, we examine the Kendall rank correlation coefficient

(τ) , a measure of the correspondence between two rankings [92]. For two n × 1

vectors x and y, we define P to be the number of concordant pairs (the number of

elements where the ranks given by both x and y agree) and Q to be the number of

discordant pairs. For example, a pair of elements (i, j) is concordant if both xi > xj

110

Table 4.15: Recall for real-world graphs.

Graph Top R
Batch size

Average
20 21 22 23 24 25 27 29

facebook
R=25 0.61 0.59 0.79 0.79 0.72 0.80 0.74 0.73 0.72
R=50 0.83 0.81 0.93 0.93 0.93 0.93 0.89 0.98 0.90
R=100 0.61 0.61 0.80 0.78 0.77 0.80 0.76 0.76 0.74

power-grid
R=25 0.83 0.86 0.86 0.86 0.87 0.89 0.89 0.92 0.87
R=50 0.84 0.87 0.87 0.86 0.86 0.88 0.93 0.87 0.87
R=100 0.86 0.88 0.87 0.88 0.88 0.90 0.95 0.92 0.89

wb-cs-stanford
R=25 0.52 0.66 0.80 0.90 0.95 0.96 0.96 0.97 0.84
R=50 0.58 0.56 0.70 0.89 0.94 0.94 0.93 0.94 0.81
R=100 0.69 0.66 0.69 0.84 0.90 0.90 0.89 0.92 0.81

ca-HepTh
R=25 0.68 0.63 0.79 0.86 0.88 0.89 0.83 0.76 0.79
R=50 0.57 0.63 0.73 0.82 0.83 0.81 0.80 0.73 0.74
R=100 0.60 0.72 0.77 0.84 0.86 0.86 0.85 0.79 0.79

Table 4.16: Values of τ for real graphs.

Graph τ
facebook 0.747

power-grid 0.812
ca-HepTh 0.528

wb-cs-stanford 0.761

111

0 5 10 15 20 25
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

R=25
R=50
R=100

(a) facebook graph.

0 5 10 15 20 25
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

R=25
R=50
R=100

(b) power-grid graph.

0 5 10 15 20 25
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

R=25
R=50
R=100

(c) wb-cs-stanford graph.

0 5 10 15 20
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

R=25
R=50
R=100

(d) ca-HepTh graph.

Figure 4.19: Recall over time for different graphs for batch size 27 = 128.

and yi > yj or if both xi < xj and yi < yj. They are discordant if xi > xj and yi < yj

or if xi < xj and yi > yj. The Kendall τ coefficient is calculated as

τ =
P −Q

n(n− 1)/2
.

We compare the rankings given by the entire statically recomputed vector versus

the vector obtained from our dynamic algorithm. Values close to 1 indicate strong

agreement whereas values close to -1 indicate strong disagreement. Specifically, if the

two rankings agree perfectly (they provide the same rankings for all pairs of vertices)

we expect a value of 1. Similarly, if the two rankings disagree perfectly, τ would be

-1. A value of 0 indicates the two rankings have no relationship to each other. Table

4.16 gives the values of τ for the real graphs averaged over all batch sizes and over

112

all points in time. We note that for all real graphs tested, the value of τ is above

0 indicating that there is always agreement between the statically computed vector

and dynamically computed vector. For all but one of the real graphs, the value of τ

is above 0.7, indicating a strong agreement in the rankings of all the vertices.

4.4.4 Conclusions

In this section, we presented a new algorithm for computing the values of exponential-

based centrality in dynamic graphs by studying the matrix exponential. We tested

our method on both synthetic and real-world graphs and observe that our dynamic

algorithm outperforms static recomputation. Additionally, the quality of our method

is robust and does not decay over time, meaning that since there is no significant

drift, there is no evidence that we would need to recompute the values at any point

in time. Since this work compares the quality of our streaming algorithm to the

exact computation of the matrix exponential (which is a computationally heavy task),

the graphs used were fairly small. However, future work can consist of scaling our

algorithm to larger graphs, which would include investigation of alternative methods

of approximating the matrix exponential. Additionally, future work can compare

rankings obtained from using the diagonal entries of the matrix exponential to row

sums and observing how these rankings change over time in dynamic graphs. While

promising avenues of research, these are out of the scope of this dissertation.

113

CHAPTER 5

LOCAL COMMUNITY DETECTION IN DYNAMIC GRAPHS

This chapter extends previous work done in [6, 17] by applying it to the problem of

local community detection, defined further in Section 5.1.2. Previous work on updat-

ing Katz Centrality and PageRank are necessary steps towards tracking “relevant”

subgraphs around seed vertices using personalized centrality metrics. Specifically,

the main contribution of this chapter is to tie together the two fields of community

detection and centrality by studying how personalized centrality metrics can be used

for local community detection in not only static but also dynamic graphs. We present

a new method of identifying local communities using personalized centrality metrics.

Section 5.2 presents comparisons to a modified version of greedy seed set expansion,

the most commonly used method of finding local communities in graphs. Results show

high recall values comparing our method to ground truth on stochastic block model

graphs and several orders of magnitude of speedup obtained using our method. Next

we present a dynamic algorithm to identify local communities in evolving networks.

We see recalls of over 0.80 for synthetic networks showing community evolution and

speedups of over 60× execution time improvement compared to static recomputation

for real graphs. Our dynamic method returns good quality communities measured

by conductance and normalized edge cut and the quality of communities is preserved

over time for real graphs. Comparisons using multiple seeds for our algorithm show

our method is robust to using many seeds. We review relevant literature regarding

community detection and centrality metrics in Section 5.1. Section 5.2’s preliminary

results include initial validation of our method on static graphs. The algorithms

for application to dynamic graphs as well as a thorough discussion of experiments

and results appear in Section 5.3. Finally, we conclude and discuss future research

114

directions in Section 5.4.

5.1 Community Detection in Graphs

5.1.1 Measures of Community Quality

Since there is no universal definition of a community, there are several metrics that

exist to evaluate the quality of a community. Several of these metrics focus on cal-

culating how tightly knit a community is in terms of comparing the number of inter-

community edges to the number of intra-community edges. Let kCin denote the number

of intra-community edges for community C; that is, the number of edges (i, j) with

both endpoints vertex i and j inside the community. Similarly, let kCout denote the

number of inter-community edges, or the number of edges (i, j) where vertex i is in

the community and vertex j is outside the community. Conductance (φ) is a popular

measure for measuring the “fitness” of a community by measuring the community

cut, or the inter-community edges. Conductance is calculated as

φ(C) =
kCout

min(2kCin + kCout, 2k
V C
in + kV Cout)

in [53]. When optimizing a community with respect to conductance, we seek to

minimize conductance scores. A lower conductance score indicates a more tightly

knit community. Another popular metric for evaluating the quality of communities

is to calculate a modified ratio of intra- to inter-community edges, or a normalized

edge cut (f) [60] as

f(C) =
2kCin + 1

2kCin + kCout
.

Here, a larger value of the normalized edge cut indicates a more tightly knit commu-

nity, so methods that optimize for the value of the normalized edge cut of a community

seek to maximize f(C). Modularity (Q) compares the number of intra-community

115

edges to the expected number under a random null model and is calculated as

Q(C) = kCin −
(2kCin + kCout)

2

4|E|

in [93]. Again, larger values of modularity indicate higher quality communities so

algorithms optimizing for modularity seek to maximize values of modularity. Several

other metrics were used in recent DIMACS (Center for Discrete Mathematics and

Theoretical Computer Science) challenges: the intra-cluster density is defined as kin

(|C|2)

and coverage of a community is calculated as kin
|E| . For a more detailed list of metrics

to measure community quality, see [94].

5.1.2 Community Detection

The main contribution of this chapter is to present a new algorithm for local commu-

nity detection in graphs, specifically how to use a centrality vector indicating relative

importance in vertices to identify local communities for seed vertices in a dynamic

graph.

Clauset presented a greedy algorithm that starts with all seed vertices in the

community and repeatedly checks all neighboring vertices for inclusion [95]. At each

iteration, the neighboring vertex that most increases the chosen fitness score is added

to the community. This method is shown in Algorithm 21, for a given graph G and

seed set of vertices seed. Here, C represents the community and N(C) is the set of

vertices neighboring C, or those with an edge to a vertex in C. In order to grow a

community of k vertices, not including any seeds, it is necessary to perform k itera-

tions and in each iteration check each neighboring vertex. Therefore, the complexity

depends on the number of vertices bordering the community. This number may be

approximated by kd, where d is the average degree of the graph and k the community

size. In this case, the time complexity is given by O(k2d). However, this is an overes-

116

timate when community members share many common neighbors, such as in graphs

with a high clustering coefficient. In Section 5.2, we use synthetic, static graphs to

compare the results of our method to this greedy seed set expansion algorithm. We

show that our centrality based approach produces high quality communities com-

pared to a common greedy approach and we explain when our approach is faster and

preferable.

Algorithm 21 Static, Greedy Seed Set Expansion

1: procedure GreedySeedset(graph G, seed set seed)
2: C = seed
3: progess = True
4: while progress do
5: maxscore = −1
6: maxvtx = null
7: for v ∈ N(C) do
8: s(v) = fit(C ∪ v)− fit(C)
9: if s(v) > maxscore then

10: maxscore = s(v)
11: maxvtx = v
12: if maxscore > 0 then
13: C = C ∪maxvtx
14: else
15: progess = false

16: return C

There has also been some work in relating centrality measures and community

detection, though much of the previous work has focused on the global or static case.

Betweenness centrality as a measure of vertex importance was originally introduced by

Freeman in [30] to measure influence of a vertex over the flow of information between

other nodes by counting shortest paths in a network. The works by Girvan and

Newman [93, 96] extend the definition of vertex betweenness centrality to define edge

betweenness as the number of shortest paths between pairs of vertices that run along

it. Assuming communities in graphs are connected by only a few inter-community

edges, these edges will have high edge betweenness. Therefore, by iteratively removing

edges with the highest edge betweenness, community structure can be uncovered. A

117

greedy local community algorithm using centrality metrics is the L-shell method [97],

in which vertices are added to the community from successive shells, or sets of vertices

at a fixed distance from the seed vertex. PageRank-Nibble is a spectral method of

finding local communities in which personalized PageRank scores are computed and

the community is formed by adding vertices with the highest values [98]. Our work

differs from these previous works because we incrementally update scores to perform

dynamic local community detection. Section 5.2.2 compares our results with static

expansion using Katz Centrality in the place of PageRank.

5.1.3 Centrality for Community Detection

This chapter presents a method for local community detection using personalized

centrality using methods presented in [6] and [17] as the base for this work. A similar

method can apply to non-backtracking variants of Katz Centrality [99] as well. Per-

sonalized PageRank vectors and conductance scores have also been used to identify

communities in graphs [100]. This method is based off of the fact that the person-

alized PageRank vector is the stationary distribution of a random walk that follows

an edge of the graph with probability α and “teleports” back to the seed vertex

with probability 1 − α. The PageRank scores are calculated by an algorithm that

pushes scores to neighboring vertices at each stage using the algorithm described in

[98]. Once the PageRank vector is calculated, the algorithm performs a sweep cut to

identify the optimal community. This procedure sweeps over all cuts induced by the

ordering of the personalized PageRank vector and chooses the best cut determined by

conductance scores of the induced cuts. The entire personalized PageRank matrix,

formed with each column starting from the corresponding vertex, has been shown

asymptotically to recover the stochastic block model used here as a test case [101].

118

5.2 Communities from Personalized Centrality

5.2.1 Local Communities from Personalized Centrality

Given a seed set of vertices of interest, we can calculate the personalized Katz or

PageRank scores as cKatz = A(I − αA)−1bKatz or cPR = M−1
PRbPR, respectively,

where MKatz = I − αA and MPR = I − α ATD−1 with bKatz and bKatz are the

corresponding right-hand sides as discussed in Chapter 3. If we want the personalized

scores w.r.t. vertex i, then bKatz = bPR = ei. Intuitively, the resultant scores from

a personalized centrality metric with respect to vertex i answers the question of how

likely we are to reach vertex i from the rest of the graph. For the question of local

community detection, this can be translated into how likely vertices in the graph are

to belong to the community of vertex i. For a community of size R, we therefore take

the top R vertices as ranked by the personalized centrality vector cPR or cKatz as the

local community.

Once personalized Katz Centrality or PageRank scores are computed, the local

community is then formed from those vertices with highest centrality values. Sorting

the entire length n vector to obtain these top entries is too computationally expen-

sive, especially in the dynamic setting where updated results are needed quickly after

changes occur. Therefore, we extract the vertices with top k values using a heap. For

the first k vertices, the centrality values are added to a heap. Thereafter, each central-

ity score is compared to the minimum value in the heap in O(1) time and if larger,

the minimum value is removed from and the new value inserted into the heap in

O(log k) time. In the worst case, the centrality values are in ascending order and all

such checks result in a removal and insertion, leading to a running time of O(n log k).

However, experiments on real graphs show far fewer replacements.

119

5.2.2 Results on Static, Synthetic Graphs

This section validates using personalized centrality for local community detection.

Static, synthetic graphs with known community structure provide test cases for the

Katz Centrality approach. We also compare our approach to the popular method

of greedy expansion [95], which was described in Section 5.1.2. To test, we generate

multiple stochastic block model (SBM) graphs with varying parameters, randomly

choose seed vertices, and detect local communities with both personalized Katz Cen-

trality and greedy expansion from Algorithm 21. The greedy expansion method uses

conductance as its fitness function.

A simple stochastic block model graph can be generated with four parameters:

the total number of vertices n, the number of communities k, the average degree of

vertices d, and the percentage of inter-community edges ρ. All communities in such

a graph are generated with the same parameters and are interchangeable. Note that

SBM graphs can also be generated with different parameters than the ones listed here

(as we show in Section 5.3.2). Instead of using an average degree and proportion of

inter-community edges, the parameters pin and pout can be used. These define the

probabilities of placing and edge between a pair of vertices that are in the same com-

munity and between a pair in different communities, respectively. Although different

parameters are used, these two models are the same when all communities are gen-

erated with the same parameters. The parameters are related as follows. For a set

community size of c = n
k
, pin = d(1−ρ)

c
and pout = dρ

c(k−1)
. All code for this chapter was

implemented in Python.

Since the SBM graphs are generated manually, we know the exact ground truth.

Tables 5.1a–c show the recall of communities found with each method compared to

the known ground truth. The recall is the fraction of the ground truth recovered

by each method. For a known community of size R, let CK(R) be the community

recovered by our Katz approach and C∗(R) be the ground truth community. We

120

calculate recall as

recall =
|C∗(R) ∩ CK(R)|

|C∗(R)|
.

Recall for the greedy seed set method is calculated similarly compared to the ground

truth. For these results, random stochastic block model graphs were created with 1000

vertices and two communities and a random seed was chosen. The minimum, mean,

and maximum recall values shown are obtained from 100 runs, each with a random

graph and seed vertex. For the results shown in Table 5.1a, the average degree of

vertices varies from 5 to 490, while the proportion of inter-community edges is fixed

at 0.01. All others are intra-community edges. Because the proportion is fixed, as the

average degree increases, both the number of intra-community and inter-community

edges increases. Overall, recall scores are at or near 1, showing that the Katz method

returns good communities for all average degrees considered.

This suggests that using personalized centrality is a viable method of local com-

munity detection. In fact, on SBM graphs with low degrees, the personalized Katz

method performs better than greedy expansion. This occurs because the greedy ex-

pansion method stops adding new vertices once a local quality maximum is reached.

On very low degree SBM graphs, it stops expanding after adding only a few vertices,

which results in very small communities and thus low recall. Therefore, we also show

results for a modified version of the greedy algorithm in which expansion is forced

to occur until the community reaches the desired size (labeled Force Expand in Ta-

bles 5.1a–c). Normally, the greedy algorithm is not run in this way, but because we

know the size of the community ahead of time, we can obtain these results. Note that

results for the normal greedy algorithm and the forced expansion version tend to differ

only for graphs in which the average degree is low compared to the community size.

Tables 5.1b,c show how the quality of communities detected varies for SBM graphs

with an increasing proportion of inter-community edges. For these experiments, the

average degree is fixed at 20 (Table 5.1b) and 100 (Table 5.1c), and the proportion of

121

edges that are inter-community varies from 0.01 to 0.4 (thus the proportion of intra-

community edges varies from 0.99 to 0.6). As the percentage of inter-community

edges increases, the community structure becomes less defined, making community

detection more difficult. As expected, all methods achieve the best recall for graphs

with a low proportion of inter-community edges. For graphs with a lower average

degree of 20, both the Katz and greedy expansion methods return high quality com-

munities only when a small proportion of edges exist between communities. However,

when the average degree is increased to 100, both methods are less sensitive to a

large proportion of inter-community edges and achieve higher recall values. Overall,

the quality of communities returned by the personalized Katz method is comparable

to those returned by greedy expansion. While the mean recall is sometimes lower, the

minimum recall tends to be higher, making the results more consistent. Note that

both the standard greedy and forced expansion greedy algorithms can return com-

munities with very low recall. This may occur if the standard greedy method stops

expanding too early or if either version returns the wrong community. Because the

method greedily maximizes conductance, if there is a single seed vertex, the next

vertex added is its lowest degree neighbor. If this neighbor belongs to a different

community, the algorithm may detect and return the wrong community.

An interesting phenomenon occurs in Table 5.1b for SBM graphs with degree 20

and 0.4 inter-community edges. The minimum recall obtained with greedy expansion

increases compared to 0.3 inter-community edges. This reversal in trend occurs be-

cause, at 0.4 inter-community edges, the community structure is almost gone and the

greedy algorithm returns an almost random set of vertices, including many correct

vertices. For graphs with a stronger community structure, on the other hand, the

minimum recall corresponded to cases in which the greedy algorithm did return a

community, but not the correct one.

Next, we consider the relative running time of the personalized Katz approach

122

compared to the greedy expansion method. Let TG be the time taken by greedy seed

set and TK the time taken by our Katz method. We calculate relative speedup as

speedup =
TG
TK

.

Figure 5.1 plots the ratio running times, where a value of x greater than 1 indicates

that the Katz method is x times faster than greedy expansion. For these tests, we also

use static, synthetic SBM graphs. As before, graphs are generated with four different

parameters: the total number of vertices, the number of communities, the average

degree of vertices, and the percentage of inter-community edges. For each experiment,

three of these parameters are held constant, while one is varied in order to isolate

its effect on the running time. The results shown use the modified version of greedy

expansion in which the algorithm is forced to expand to the desired community size.

We used this version because for those SBM graphs with a very low average degree

compared to community size, the standard greedy algorithm stopped expanding after

only a few vertices, leading to small and incorrect communities (see Table 5.1). This

is likely an artifact of the synthetic SBM graphs in which vertices have uniformly

random degrees. For all plots in Figure 5.1, the proportion of inter-community edges

ρ is set to 0.01. Overall, we see that using the personalized Katz approach tends to

be faster than running the greedy expansion method.

In Figure 5.1a, speedup is shown for graphs with an increasing number of vertices,

while the average degree is fixed at 20 and the number of communities is fixed at 2.

With all other parameters held constant, the larger the number of vertices in the

graph (and therefore the larger the community detected), the greater the speedup

of using our Katz approach compared to greedy expansion. This occurs because the

complexity of the greedy approach is approximately O(c2d) for a community size of c

and average degree d, while the complexity of the Katz approach is O(m) for a graph

123

with m edges.

The advantage of our centrality approach compared to greedy expansion is greatest

when the size of the community is large relative to the total number of vertices.

This can be seen in Figure 5.1b, where we vary the number of communities, while

keeping the size of the graph constant at 47, 104 vertices with an average degree

of 20. It is clear that the speedup of the Katz method is greatest for the graphs

with a small number of large communities. This occurs because the personalized

Katz Centrality computation is global and processes the entire graph, while greedy

expansion processes only a local subgraph composed of the community and its one

hop neighborhood. If, however, the community to be found is much smaller than the

full graph, the greedy expansion method may be preferable.

Finally, we consider how the average vertex degree affects relative running times

in Figure 5.1c. The number of vertices is held constant at 1000 with 2 communi-

ties. As the average degree increases, the speedup of the Katz method over greedy

expansion first increases and then decreases. The increase in speedup occurs because

a higher average degree results in larger community neighborhoods and the larger

the neighborhood of the community is as it expands, the slower the greedy expansion

is. However, once the average degree grows large enough, few or no new vertices

are added to the neighborhood and the clustering coefficient of the graph simply in-

creases. These results show that the running time advantage of the personalized Katz

method compared to greedy expansion is greatest in graphs in which the community

of interest has a large neighborhood and a low clustering coefficient.

124

T
ab

le
5.

1:
T

h
e

q
u
al

it
y

of
co

m
m

u
n
it

ie
s

d
et

ec
te

d
w

it
h

ou
r

p
er

so
n
al

iz
ed

K
at

z
m

et
h
o
d

an
d

gr
ee

d
y

ex
p
an

si
on

is
sh

ow
n
.

T
es

t
gr

ap
h
s

ar
e

st
o
ch

as
ti

c
b
lo

ck
m

o
d
el

(S
B

M
)

gr
ap

h
s

w
it

h
n

=
10

00
an

d
k

=
2.

(a
)

T
h
e

av
er

ag
e

ve
rt

ex
d
eg

re
e
d

is
va

ri
ed

,
w

h
il
e
ρ

=
0.

01
.

(b
)

T
h
e

p
ro

p
or

ti
on

of
in

te
r-

co
m

m
u
n
it

y
ed

ge
s
ρ

is
va

ri
ed

,
w

h
il
e
d

=
20

.
(c

)
T

h
e

p
ro

p
or

ti
on

of
in

te
r-

co
m

m
u
n
it

y
ed

ge
s
ρ

is
va

ri
ed

,
w

h
il
e
d

=
10

0.

(a
)

A
v
g
.

D
e
g
re

e
ρ

K
a
tz

R
e
ca

ll
G

re
e
d
y

R
e
ca

ll
F
o
rc

e
d

G
re

e
d
y

R
e
ca

ll
M

in
M

e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

5
0.

01
0.

68
8

0.
93

6
0.

97
4

0.
00

4
0.

01
5

0.
03

4
0.

02
4

0.
92

4
1.

00
0

10
0.

01
0.

92
0

0.
98

8
0.

99
8

0.
00

2
0.

10
4

1.
00

0
0.

00
2

0.
97

0
1.

00
0

20
0.

01
0.

97
4

0.
99

7
1.

00
0

0.
00

2
0.

90
2

1.
00

0
0.

00
2

0.
99

0
1.

00
0

50
0.

01
0.

99
4

0.
99

9
1.

00
0

0.
00

2
0.

99
0

1.
00

0
0.

00
2

0.
99

0
1.

00
0

10
0

0.
01

0.
99

0
0.

99
8

1.
00

0
0.

00
2

0.
99

0
1.

00
0

0.
00

2
0.

99
0

1.
00

0
25

0
0.

01
1.

00
0

1.
00

0
1.

00
0

0.
00

2
0.

99
0

1.
00

0
0.

00
2

0.
99

0
1.

00
0

49
0

0.
01

1.
00

0
1.

00
0

1.
00

0
0.

00
2

0.
99

0
1.

00
0

0.
00

2
0.

99
0

1.
00

0
(b

)

A
v
g
.

D
e
g
re

e
ρ

K
a
tz

R
e
ca

ll
G

re
e
d
y

R
e
ca

ll
F
o
rc

e
d

G
re

e
d
y

R
e
ca

ll
M

in
M

e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

20
0.

01
0.

97
4

0.
99

7
1.

00
0

0.
00

2
0.

90
2

1.
00

0
0.

00
2

0.
99

0
1.

00
0

20
0.

05
0.

80
6

0.
94

4
0.

98
8

0.
00

2
0.

85
2

1.
00

0
0.

00
2

0.
96

0
1.

00
0

20
0.

1
0.

67
8

0.
83

3
0.

91
0

0.
00

2
0.

77
3

1.
00

0
0.

00
2

0.
86

9
1.

00
0

20
0.

2
0.

50
2

0.
63

8
0.

73
0

0.
00

2
0.

60
3

0.
99

8
0.

00
8

0.
83

3
0.

99
8

20
0.

3
0.

47
4

0.
55

1
0.

63
0

0.
00

2
0.

50
5

0.
93

2
0.

09
6

0.
65

5
0.

94
2

20
0.

4
0.

45
6

0.
50

8
0.

54
2

0.
00

6
0.

35
4

0.
59

4
0.

41
6

0.
52

1
0.

60
4

(c
)

A
v
g
.

D
e
g
re

e
ρ

K
a
tz

R
e
ca

ll
G

re
e
d
y

R
e
ca

ll
F
o
rc

e
d

G
re

e
d
y

R
e
ca

ll
M

in
M

e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

10
0

0.
01

0.
99

0
0.

99
8

1.
00

0
0.

00
2

0.
99

0
1.

00
0

0.
00

2
0.

99
0

1.
00

0
10

0
0.

05
0.

98
0

0.
99

0
1.

00
0

0.
00

2
0.

96
0

1.
00

0
0.

00
2

0.
96

0
1.

00
0

10
0

0.
1

0.
94

2
0.

98
0

0.
99

2
0.

00
2

0.
94

0
1.

00
0

0.
00

2
0.

94
0

1.
00

0
10

0
0.

2
0.

72
8

0.
82

2
0.

90
8

0.
00

2
0.

88
0

1.
00

0
0.

00
2

0.
88

0
1.

00
0

10
0

0.
3

0.
55

2
0.

62
6

0.
70

0
0.

00
2

0.
82

8
1.

00
0

0.
00

2
0.

82
8

1.
00

0
10

0
0.

4
0.

48
2

0.
53

0
0.

57
6

0.
07

0
0.

60
4

0.
93

6
0.

07
4

0.
61

2
0.

94
4

125

0 5000 10000 15000 20000
Number of Vertices in Graph

0

5000

10000

15000

20000

25000

30000

35000

R
el

at
iv

e
S

pe
ed

up

Speedup of Katz over Greedy Expansion

max
mean
min

(a)

0 500 1000 1500 2000 2500
Number of Communities in Graph

101

102

103

R
el

at
iv

e
S

pe
ed

up

Speedup of Katz over Greedy Expansion

max
mean
min

(b)

0 100 200 300 400 500
Average Degre of Vertices in Graph

20

25

30

35

40

45

50

R
el

at
iv

e
S

pe
ed

up

Speedup of Katz over Greedy Expansion

max
mean
min

(c)

Figure 5.1: The speedup of the personalized Katz Centrality method compared to
greedy expansion is shown for SBM graphs with different parameters. (a) The number
of vertices n in the graph varies, with d = 20 and k = 2. (b) The number of
communities k in the graph varies, with n = 47104 and d = 20. (c) The average
vertex degree d varies, with n = 1000 and k = 2.

5.3 Dynamic Communities from Personalized Centrality

5.3.1 Methods

We have detailed how to obtain a local community from a personalized centrality

vector in Section 5.2.1. In this section, we describe how to obtain communities in

dynamic graphs using personalized centrality metrics. The identification of local

communities in dynamic graphs can be split into two components: (1) updating the

personalized centrality vector every time the graph changes, and (2) obtaining the

new local community from the updated centrality vector.

For both centrality metrics, if ct denotes the solution at time t, we solve for a

correction ∆c so that we can obtain the new solution at time t+ 1 as ct+1 = ct + ∆c.

126

Essentially, we use the old solution as a starting point for the new solution instead of

recomputing from scratch each time the graph is changed.

Personalized Katz Centrality scores w.r.t. vertex i are given as cKatz = AxKatz

where xKatz is the solution to the linear system (I −αA)xKatz = bKatz for bKatz = ei

and personalized PageRank scores are given as cPR = (I − αATD−1)−1bPR, where

cPR is the solution to the linear system (I − αATD−1) cPR = bPR for cPR.

After a batch of edge insertions to the graph, the static algorithm to obtain the

updated Katz scores first recomputes xt+1,Katz using an iterative solver and obtains

ct+1,Katz as At+1xt+1,Katz (for Katz Centrality) or recomputes ct+1,PR (for personalized

PageRank). For Katz Centrality, since calculating ct given xt at any time point t is

one matrix-vector multiplication and can be done in O(m), this is not the bottleneck

of static recomputation. Instead, the bottleneck is repeatedly updating xt,Katz given

more edges being inserted into the graph, and hence we focus our dynamic algorithm

on limiting the number of iterations taken to obtain the updated vector xt,Katz, and,

similarly, for PageRank, the focus of our dynamic algorithm on limiting the number

of iterations taken to obtain the updated vector ct,PR. Therefore, for Katz, we solve

for the correction ∆x so that we can obtain the new solution at time t+ 1 as xt+1 =

xt+∆x. For PageRank, we solve for the correction ∆c so that we can obtain the new

solution at time t+ 1 as ct+1 = ct + ∆c. The algorithm for updating Katz Centrality

was previously derived in Chapter 4; we reproduce it here for clarity. The algorithm

for updating PageRank is drawn from [17].

The first step in updating the centrality vector is to measure how close the old

solution xt,Katz or ct,PR is to solving the system for the updated graph At+1. We

127

calculate the new residual for Katz Centrality as r̃t+1,Katz

r̃t+1,Katz = bKatz −Mt+1,Katzxt,Katz

= bKatz − (I − αAt+1)xt,Katz

= bKatz − xt,Katz + αAt+1xt,Katz

= bKatz − xt,Katz + αAtxt,Katz − αAtxt,Katz + αAt+1xt,Katz

= rt,Katz + α(At+1 − At)xt,Katz

= rt,Katz + α∆Axt,Katz.

Similarly, for PageRank, we calculate the new residual as r̃t+1,PR (note since we

use undirected graphs, AT = A):

r̃t+1,PR = bPR −Mt+1,PRct,PR

= (1− α)v − ct,PR + αAt+1D
−1
t+1ct,PR

= (1− α)v − ct,PR + αAD−1ct,PR − αAD−1ct,PR + αAt+1D
−1
t+1ct,PR

= rt,PR + α(At+1D
−1
t+1 − AD−1)ct,PR.

For both centrality measures, r̃t+1 can be written in terms of the current residual

at time t, edge updates ∆A, and the old solution. Next, we can use r̃t+1 to set up a

linear system for the correction ∆x or ∆c. We apply iterative refinement [102] and

for Katz Centrality, solve the linear system

(I − αAt+1)∆x = r̃t+1,Katz = rt,Katz + α∆Axt,Katz

for ∆x. For PageRank, we solve the linear system

(I − αAt+1D
−1
t+1)∆c = r̃t+1,PR = rt,PR + α(At+1D

−1
t+1 − AD−1)ct,PR

128

for ∆c. Unlike iterative refinement’s typical use of a directly factored matrix, we rely

on Jacobi iteration for solving the above systems.

The final step of our algorithm is to update the residuals rt+1,Katz and rt+1,PR for

the next time point. For Katz centrality, we can write the new residual rt+1,Katz as

rt+1,Katz = bKatz − (I − αAt+1)xt+1,Katz

= bKatz − (I − αAt+1)(xt,Katz + ∆x)

= bKatz − (I − αAt+1)xt,Katz − (I − αAt+1)∆x

= r̃t+1,Katz − (I − αAt+1)∆x

= rt,Katz + α∆Axt,Katz − (I − αAt+1)∆x.

We can calculate ∆r, the difference in the two residuals at time t and t + 1 as

∆ r = α∆Axt,Katz−(I − α At+1)∆x. Likewise, updating the residual for PageRank

is very similar. We can write the new residual rt+1,PR as

rt+1,PR = (1− α)v − (I − αAt+1D
−1
t+1)(ct,PR + ∆c)

= (1− α)− (I − αAt+1D
−1
t+1)ct,PR − (I − αAt+1D

−1
t+1)∆c

= r̃t+1,PR − (I − αAt+1D
−1
t+1)∆c

= rt,PR + α(At+1D
−1
t+1 − AtD−1

t)ct,PR − (I − αAt+1D
−1
t+1)∆c.

Then, we can calculate ∆r, the difference in the two residuals at time t and

t + 1 as ∆r = α(At+1D
−1
t+1 − AtD

−1
t)ct,PR − (I − αAt+1D

−1
t+1)∆c. Updating the

residual comes with the potential issue of accumulating error over long periods of

time. However, these cases are rare, and, for our purposes, we obtain accurate results

using our methods compared to a pure static recomputation. In Sections 5.3.2 and

5.3.3, we show that our algorithm for dynamic Katz Centrality maintains good quality

of the updated scores for our community detection purposes and provides significant

129

speedup compared to a pure static recomputation in Section 5.3.3.

5.3.2 Synthetic Dynamic Graphs

In this section, we evaluate our dynamic algorithm on a synthetic network to show our

ability to track merging and splitting of communities. We use a synthetic stochastic

block model network with a recursive matrix (R-MAT) background with parameters

a = 0.55, b = 0.15, c = 0.15, d = 0.25. Recall that an R-MAT generator [80] creates

scale-free networks designed to emulate real-world networks. For an adjacency matrix,

the matrix is subdivided into four quadrants, where each quadrant has a different

probability of being selected where the probability of selecting each quadrant is given

by a, b, c, d respectively. Once a quadrant is selected, this quadrant is recursively

subdivided into four subquadrants and using the previous probabilities, we select one

of the subquadrants. This process is repeated until we arrive at a single cell in the

adjacency matrix. An edge is assigned between the two vertices making up that cell.

Figure 5.2 shows the community evolution in the stochastic block model part of

the synthetic network that we are able to track with our dynamic algorithm. In

Figure 5.2a, we start with three separate communities: C1 (the top left community),

C2 (the middle community), and C3 (the bottom right community). In Figure 5.2b,

communities C1 and C2 merge together, and, in Figure 5.2c, C1 splits off but commu-

nities C2 and C3 are merged together. Finally, in Figure 5.2d, communities C2 and

C3 split and we obtain the original graph of three disjoint communities.

We pick five seeds at random from community C2 to track both merging and

splitting of communities and evaluate the recall of the community produced by our

dynamic algorithm compared to the ground truth community at each of the four time

points and results are averaged over the different seeds. We test our algorithm on com-

munities of size 100 and 1000. The entire graph (including the R-MAT background)

is 1,048,576 vertices and 10,485,760 edges (edge factor of 10).

130

To generate dynamic stochastic block models, we use parameters pin ∈ {0.2, 0.5}

and pout = 0.01, where pin and pout are the probabilities of an edge existing between

a pair of vertices that are in the same and different communities, respectively. These

parameters ease describing communities that change size compared to parameters

used in Section 5.2.2. For example, when a community grows, the average vertex

degree would have to change in order to reflect the same pin and pout parameters.

At each time point, we compare the community obtained from static recompu-

tation versus the community obtained from our dynamic algorithm. We track the

changing centrality vector and select top R vertices as the community, where R is

the expected size of the community given the synthetic example in Figure 5.2. For a

community of size R, let CS be the community obtained from the statically computed

centrality vector (i.e., the top R highly ranked vertices from cS). Similarly, let CD

be the community obtained from the dynamically computed vector cD. We calculate

the recall of the vertices in the community produced by the dynamic algorithm as

recall =
|CS ∩ CD|

R
.

Table 5.2 gives the recall values at each time point for the different graphs tested

with the averages for each time point at the bottom. In a majority of the time

steps, we obtain a recall above 0.80 and the communities with 1000 vertices have a

higher recall than the communities with 100 vertices. Therefore, we are able to track

evolving communities over time in dynamic synthetic graphs.

131

0 200 400 600 800 1000
0

200

400

600

800

1000

(a)

0 200 400 600 800 1000
0

200

400

600

800

1000

(b)
0 200 400 600 800 1000

0

200

400

600

800

1000

(c)

0 200 400 600 800 1000
0

200

400

600

800

1000

(d)

Figure 5.2: Synthetic dynamic graph showing merging and splitting of communities.
(a) t = 1, (b) t = 2, (c) t = 3, (d) t = 4.

5.3.3 Real Graphs

We test our dynamic algorithm on five real graphs given in Table 5.3 from the

KONECT database [76]. These graphs are chosen because they have timestamps

associated with the edges in the graph. Since we have no ground truth of commu-

nities in real graphs, we use the results of the static algorithm as a pseudo-ground

truth. Thus, every time we update the centrality scores using our dynamic algorithm,

we recompute the centrality vector statically from scratch to have a baseline for com-

parison. We create an initial graph G0 using the first half of edges, which provides a

132

T
ab

le
5.

2:
A

ve
ra

ge
re

ca
ll
s

at
ea

ch
p

oi
n
t

in
ti

m
e

fo
r

sy
n
th

et
ic

m
er

gi
n
g

an
d

sp
li
tt

in
g

of
co

m
m

u
n
it

ie
s

ov
er

ti
m

e.

B
lo

ck
S
iz

e
=

1
0
0

B
lo

ck
S
iz

e
=

1
0
0
0

t
=

1
2

3
4

1
2

3
4

P
a
ra

m
e
te

rs
B

a
tc

h
S
iz

e
R

=
1
0
0

2
0
0

2
0
0

1
0
0

1
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

p i
n

=
0.

2,
p o
u
t

=
0.

01

10
0.

86
0.

94
0.

93
0.

85
0.

93
0.

97
0.

98
9.

98
10

0
0.

76
0.

89
0.

89
0.

75
0.

97
0.

99
0.

99
0.

97
10

00
0.

76
0.

84
0.

84
0.

66
0.

93
0.

97
0.

97
0.

93
p i
n

=
0.

5,
p o
u
t

=
0.

01

10
0.

92
0.

96
0.

97
0.

92
0.

96
0.

98
0.

99
0.

99
10

0
0.

79
0.

89
0.

90
0.

78
0.

95
0.

98
0.

98
0.

95
10

00
0.

88
0.

91
0.

91
0.

82
0.

96
0.

99
0.

99
0.

96
A

ve
ra

ge
0.

83
0.

91
0.

91
0.

80
0.

95
0.

98
0.

98
0.

96

133

starting point for both the dynamic and static algorithms.

To simulate a stream of edges in a dynamic graph, we insert the remaining edges

in timestamped order in batches of size b and apply both algorithms and use batches

of size b = 10, 100, and 1000. We use communities of size R ∈ {100, 1000}.

Table 5.3: Real graphs used in experiments. Columns are graph name, number of
vertices, and number of edges.

Graph |V | |E|

slashdot-threads 51,083 140,778

enron 87,221 1,148,072

digg 279,630 1,731,653

wiki-talk 541,355 2,424,962

youtube-u-growth 3,223,589 9,375,374

We evaluate our dynamic algorithm with respect to performance and quality. For

performance, we calculate the speedup with respect to time and iterations. Denote

the time taken by static recomputation and our dynamic algorithm as TS and TD,

respectively. Similarly, denote the number of iterations taken by static recomputation

and our dynamic algorithm as IS and ID, respectively. We then calculate speedups

in time and iterations as:

speeduptime =
TS
TD

, speedupiter =
IS
ID
.

Higher values of the speedups indicate that our dynamic algorithm provides more

benefits compared to a pure static recomputation. We evaluate the quality of the

results produced by our algorithms using three metrics: (1) recall, (2) ratio of con-

ductance, and (3) ratio of normalized edge cut.

We denote the conductance (φ) of the community obtained from static recom-

putation as φS and the conductance of the community obtained from our dynamic

134

algorithm as φD, so we calculate the ratio of conductance scores as φS
φD

. Since lower val-

ues of conductance indicate higher quality communities, a ratio of conductance scores

greater than 1 indicates our dynamic algorithm produces higher quality communities

than static recomputation. We denote the normalized edge cut for the community

(f) obtained by the static recomputation as fS and fD for the community obtained

from our dynamic algorithm. We calculate the ratio of cuts as fS
fD

, where values of

the ratio in scores less than 1 indicate that our dynamic algorithm produces higher

quality communities than static recomputation.

We first show averages over time for all batch sizes for all graphs tested for all

the performance and quality metrics in Table 5.4. Results shown are averaged over

both community sizes tested. Unless otherwise specified, we use a single seed vertex

and average over five different seeds for the personalized centrality metric. For a ma-

jority of the graphs, most notably the three larger graphs, the speedup in both time

and number of iterations does not decrease with increasing batch size. This shows

that our algorithm is able to maintain significant speedups even with large batch

insertions of up to 1000 edges. We note that our dynamic algorithm also produces

high quality communities compared to static recomputation. In terms of the recall,

our dynamic algorithm always has recall values greater than 0.85, meaning we cor-

rectly identify a majority of the vertices in the local community compared to static

recomputation, regardless of the batch size. Next, we examine the ratio of con-

ductance scores of the community obtain via static recomputation compared to the

community obtained from our dynamic algorithm. Ratios close to 1 indicate that the

communities produced from our dynamic algorithm are similar to the ones produced

from static recomputation w.r.t. their conductance scores, and values greater than

1 indicate our dynamic algorithm produces higher quality communities than static

recomputation. In a majority of the graphs and batch sizes tested, we obtain ratios

very close to 1, and in some cases ratios greater than 1. Since we treat static recom-

135

putation as ground truth, this means that the dynamic communities are of similar

quality to the static communities, and, in some cases, higher quality than the stati-

cally computed ones. Finally, we compare values of the normalized edge cut for both

communities. Recall that ratios of the normalized edge cut lower than 1 indicate that

our dynamic algorithm produces higher quality communities w.r.t. the normalized

edge cut. In a majority of cases, we obtain communities close in quality to that of

static recomputation, similar to the results we see from comparing the conductances

of the communities obtained from static recomputation and our dynamic algorithm.

In summary, the most prominent trends from this table are twofold: (1) we see signif-

icant speedups w.r.t. both time and iteration counts by using our dynamic algorithm

compared to static recomputation to compute local communities using personalized

centrality metrics, and (2) the communities produced by our dynamic algorithm are

of similar quality to that of static recomputation, and in some cases, of higher quality.

Next, we examine the performance and quality of our algorithm over time. Figure

5.3 plots the speedup in iterations over time (Figure 5.3a) and the ratio of conductance

scores over time (Figure 5.3b). Since our dynamic algorithm only targets places in

the centrality vector that are directly affected by edge updates to the graph, the

performance of our dynamic algorithm is unaffected by the size of the underlying

graph. This is unlike static recomputation, which is directly affected by the size of the

underlying graph. Therefore, the speedup in iterations increases over time. Finally, we

observe that the quality of our dynamic algorithm (in terms of conductance) matches

the quality of the static algorithm with little to no decrease over time. There is only

one graph for which the quality slightly decreases over time (digg); however, even

for this graph, the ratio of conductances scores is still consistently above 0.95. In

contrast, for the enron graph, the conductance of the dynamic community is better

than the conductance of the static community (ratios greater than 1). These results

show that our dynamic algorithm helps more in terms of performance over time,

136

Table 5.4: Average summary statistics over time on real graphs for all batch sizes.
Columns are graph name, batch size, speedup in time, speedup in iterations, recall,
ratio of conductance scores, and ratio of normalized edge cut scores.

Performance Quality
Graph Batch Size

TS/TD IS/ID Recall φS/φD fS/fD

slashdot-threads
10 52.94× 34.02× 0.93 0.99 1.03
100 26.88× 21.46× 0.96 1.00 1.01
1000 39.65× 31.09× 0.96 1.00 1.00

enron
10 75.42× 45.04× 0.97 1.00 1.00
100 63.61× 41.28× 0.98 1.01 0.98
1000 46.20× 29.57× 0.96 1.01 0.98

digg
10 54.29× 29.41× 0.86 0.97 1.18
100 47.64× 25.69× 0.90 0.98 1.07
1000 50.64× 26.87× 0.97 0.99 1.02

wiki-talk
10 56.02× 36.68× 0.95 1.00 1.02
100 48.87× 31.46× 0.91 0.99 1.19
1000 56.22× 36.95× 0.96 1.00 1.02

youtube- u-growth
10 56.47× 27.66× 0.96 1.00 0.94
100 50.00× 26.58× 0.96 1.00 1.00
1000 40.17× 20.44× 0.91 1.00 0.92

without sacrificing the quality of the communities produced.

0 20 40 60
Time steps

20

30

40

50

60

S
pe

ed
up

 in
 it

er
at

io
ns

slashdot-threads
enron
digg
wiki-talk
youtube-u-growth

(a)

0 20 40 60
Time steps

0.75

0.80

0.85

0.90

0.95

1.00

1.05

R
at

io
 o

f c
on

du
ct

an
ce

slashdot-threads
enron
digg
wiki-talk
youtube-u-growth

(b)

Figure 5.3: Performance and quality behavior of dynamic algorithm compared to
static recomputation over time. (a) Speedup in iterations over time for b = 10, (b)
Ratio of conductance scores over time for b = 100.

137

Different Seeding Methods

Finally, we examine different methods of choosing seed vertices. The purpose of this

section is to test our dynamic algorithm with multiple seeds used in the right-hand

side vector. All the previous results have been w.r.t. a single seed vertex (or averages

of results for single seeds) chosen randomly from a pool of the top 10% highest degree

vertices. We now use the following three methods to choose multiple seeds: (1) RW-1,

(2) RW-2, and (3) RW-3, similar to [103]. Using just one seed vertex i, the right-hand

side b = ei. In the case of using multiple seeds S = {v1, v2, · · · , v|S|}, the right hand

side is b = ev1 + ev1 + · · · + ev|S| . The method RW-k chooses |S| seeds as follows:

we first choose a vertex v at random from the existing vertices in the initial graph.

We perform a random walk of length k from v and take the terminal vertex as a

seed. We repeat this procedure to generate |S| unique seeds. Table 5.5 gives the

results for different seeds methods for all the evaluation metrics. With respect to

the speedup in both time and iterations, there is no significant difference in using a

larger number of seed vertices or a different seeding methods. This intuitively makes

sense since varying the number of seeds merely changes the right-hand side vector b

of the linear system, which has no effect on how many iterations the iterative solver

takes to converge to a solution. With regards to the recall, we see a slight increase in

recall values for a larger number of seeds. This can be attributed to the fact that a

larger number of seeds indicates that the right-hand side vector has a larger number

of nonzero values, meaning that the centrality values produced (c) are with respect

to all the seeds instead a single one.

Furthermore, the method RW-1 produces higher values of recall than RW-2, which

produces higher values of recall than RW-3 across multiple number of seed vertices.

We offer a possible explanation for this behavior. The seeds produced by RW-1 are

all neighbors of a single vertex and are more likely to belong to the same community.

Since the seeds produced by RW-3 are three steps away from the initial randomly

138

chosen vertex, it is less likely that these seeds belong to the same community, so the

highly ranked vertices in the personalized centrality metric with respect to these seeds

may not be as tightly knit of a community. However, the ratios of the conductance

and normalized edge cut see no significant differences in varying the number of seeds

or different seeding methods. All three seeding methods produce similar quality com-

munities from our dynamic algorithm compared to static recomputation. In summary,

we see that the performance doesn’t change with respect to the number of seeds used,

but the quality in terms of the recall shows a slight increase with more seeds used.

5.4 Conclusions

The problems of community detection and centrality have been well-studied in recent

years. In this work, we have bridged these two fields by presenting a new method of

identifying local communities using personalized centrality metrics.

We extended previous work in [6, 17] by using dynamic algorithms for calculating

centrality scores in order to find local communities in evolving networks.

Our method uses the top R highly ranked vertices from a personalized centrality

metric as the local community with respect to seed vertices of interest. Experiments

on synthetic networks show that our method is able to identify blocks in artificially

generated stochastic block models. We have shown that we obtain a high recall of

the vertices using our method compared to the ground truth and that our method is

faster than conventional local community detection methods such as greedy seed set

expansion. Next, we extended our method to detect evolving communities in dynamic

graphs. Using a synthetic example of a stochastic block model graph overlaid on an

R-MAT background, we showed that our method successfully detects merging and

splitting of communities over time. We applied our methods to real graphs and showed

that our algorithm yields similar quality communities to static recomputation and is

faster in both time and the number of iterations taken.

139

N
u
m

b
e
r

o
f

S
e
e
d
s

M
e
tr

ic
M

e
th

o
d

1
2

3
4

5
6

7
8

9
1
0

T
S
/T

D

R
W

-1
46

.9
×

54
.4
×

49
.3
×

41
.7
×

39
.4
×

30
.3
×

32
.4
×

47
.3
×

41
.5
×

29
.3
×

R
W

-2
33

.7
×

66
.1
×

42
.8
×

51
.5
×

57
.0
×

52
.1
×

50
.6
×

46
.1
×

53
.2
×

39
.0
×

R
W

-3
44

.5
×

53
.4
×

54
.0
×

44
.3
×

53
.6
×

44
.5
×

53
.0
×

63
.2
×

68
.5
×

47
.8
×

I S
/I
D

R
W

-1
29

.4
×

30
.9
×

29
.8
×

24
.6
×

24
.5
×

24
.4
×

21
.0
×

29
.2
×

25
.3
×

22
.3
×

R
W

-2
20

.4
×

37
.3
×

24
.4
×

30
.9
×

31
.8
×

29
.2
×

29
.0
×

28
.4
×

30
.1
×

24
.1
×

R
W

-3
26

.0
×

29
.8
×

31
.9
×

27
.9
×

33
.4
×

27
.4
×

30
.9
×

38
.2
×

37
.0
×

29
.9
×

R
ec

al
l

R
W

-1
0.

99
0.

98
1.

00
0.

98
1.

00
1.

00
0.

99
0.

98
1.

00
1.

00
R

W
-2

0.
96

0.
98

0.
95

0.
99

0.
96

0.
99

1.
00

0.
99

0.
99

0.
99

R
W

-3
0.

93
0.

97
0.

95
0.

99
0.

98
0.

99
0.

99
0.

98
0.

99
0.

99

φ
S
/φ

D

R
W

-1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
R

W
-2

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

R
W

-3
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00

f S
/f

D

R
W

-1
0.

99
0.

98
1.

00
1.

00
1.

00
1.

00
0.

94
1.

01
0.

98
1.

00
R

W
-2

1.
00

0.
97

0.
99

1.
01

1.
03

1.
00

1.
00

1.
00

1.
00

1.
00

R
W

-3
1.

03
0.

99
1.

01
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

01

T
ab

le
5.

5:
R

es
u
lt

s
fo

r
d
iff

er
en

t
se

ed
in

g
m

et
h
o
d
s.

C
ol

u
m

n
s

ar
e

m
et

ri
c

te
st

ed
,

se
ed

in
g

m
et

h
o
d
,

sp
ee

d
u
p

in
ti

m
e,

sp
ee

d
u
p

in
it

er
at

io
n
s,

re
ca

ll
,

ra
ti

o
of

co
n
d
u
ct

an
ce

sc
or

es
,

an
d

ra
ti

o
of

n
or

m
al

iz
ed

ed
ge

cu
t

sc
or

es
.

R
es

u
lt

s
sh

ow
n

ar
e

av
er

ag
ed

ov
er

al
l

gr
ap

h
s.

140

The main drawback of our method is that it requires previous knowledge of the

community size. Future work can investigate methods to identify the local community

using personalized centrality without previous knowledge of community size; however

this is out of the scope of this dissertation. For example, we can use a sweep cut

method similar to [98]. After the personalized centrality metric is calculated using

our dynamic algorithm, we can sweep over all cuts induced by the ordering of the per-

sonalized centrality vector and choose the best cut determined by conductance scores

of the induced cuts. This method would therefore identify the best local community

given the centrality scores without any size requirement. Since local communities

with respect to a seed vertex can be computed independently of other local com-

munities with respect to different seeds, the computation of separate communities

can be easily parallelized. By computing multiple local communities across an entire

graph, we can partition the global graph into different communities. This can also be

addressed in future work.

141

CHAPTER 6

CONCLUSIONS

This dissertation presented numerical and streaming techniques for the analysis of

centrality measures in graphs. We provided fast, efficient, and theoretically correct

algorithms to compute centrality metrics in both static and dynamic graphs and

concluded with an application of centrality to the equally well-studied graph query

of community detection.

Chapter 3 bridges the gap between numerical analysis and data analysis. We

developed theory and presented techniques to better understand how error in a nu-

merical problem can translate to error in a corresponding data analysis problem.

Specifically we studied how error present from an approximation to the solution to

a linear system from an iterative method can guarantee accurate ranking of vertices

in a graph. This led to the development of a new stopping criterion that can be

used in conjunction with any iterative method. We show how to obtain the exact

highly ranked vertices upon termination at this new stopping criterion, regardless of

whatever numerical accuracy we obtain at this point. When identifying highly ranked

vertices with Katz Centrality and PageRank, results show that our method is able

to not only reduce the number of iterations taken by an iterative solver compared to

commonly used techniques but also provide previously missing theoretical guarantees

of correctness of the vertices returned.

While Chapter 3 focused exclusively on static graphs, in Chapter 4 we moved into

the realm of dynamic graphs and presented four dynamic algorithms for computations

of different centrality metrics. First we presented two algorithms for calculating Katz

Centrality scores in dynamic graphs. The first algorithm exploits properties of itera-

tive solvers and updates the linear algebraic formulation of Katz Centrality in order to

142

obtain updated scores of vertices in evolving networks. The second algorithm focuses

on personalized Katz scores, or scores with respect to specific seed vertices of interest.

We moved away from linear algebraic computations and presented an agglomerative

algorithm by starting with the seed vertex and iteratively calculating scores for suc-

cessively larger neighborhoods of vertices. We shifted focus from walk-based Katz

Centrality to develop a new dynamic algorithm for a centrality metric based on non-

backtracking walks, where these walks do not allow backtracking sequences such as

0 → 1 → 0. The last dynamic algorithm for centrality presented is for exponential-

based centrality values. By exploiting properties of matrix exponentials, we were able

to derive a new algorithm to take advantage of previous timesteps’ computations to

aid in our computation of the matrix exponential in the current timestep. Each of

the algorithms presented was compared to its static counterpart: the naive algorithm

of continuously recalculating centrality scores from scratch everytime the underlying

graph is changed. For each dynamic algorithm, we obtained significant speedups in

time (and when applicable, in iterations from an iterative solver). Furthermore, our

algorithms all preserve the quality of scores (meaning they return similar numerical

scores) when compared to a pure static recomputation.

Finally, Chapter 5 applied techniques derived for the dynamic computation of

centrality to the task of identifying local communities in dynamic graphs. We studied

how we can use the resultant ranking of vertices from a personalized centrality vector

to track the respective local community in a dynamic graph. Our centrality based

community detection algorithm is able to find similar quality communities to that

of a commonly used agglomerative community detection algorithm. Results on both

synthetic and real-world networks show that our dynamic algorithm is several orders

of magnitude faster than a pure static recomputation.

In this dissertation, we have answered questions about the computation of cen-

trality from both a numerical and a dynamic standpoint. These contributions open

143

up a variety of avenues for future research, such as parallelization of the algorithms

discussed. The techniques provided in this thesis give new insight into different kinds

of analyses that can be performed when analyzing large datasets.

144

REFERENCES

[1] M. Benzi, E. Estrada, and C. Klymko, “Ranking hubs and authorities us-
ing matrix functions,” Linear Algebra and its Applications, vol. 438, no. 5,
pp. 2447–2474, 2013.

[2] E. Nathan, G. Sanders, J. Fairbanks, V. E. Henson, and D. A. Bader, “Graph
ranking guarantees for numerical approximations to katz centrality,” Procedia
Computer Science, vol. 108, pp. 68–78, 2017.

[3] E. Nathan, G. Sanders, V. E. Henson, and D. Bader, “Numerically approx-
imating centrality for graph ranking guarantees,” Journal of computational
science, 2018.

[4] L. Katz, “A new status index derived from sociometric analysis,” Psychome-
trika, vol. 18, no. 1, pp. 39–43, 1953.

[5] D. F. Gleich, “Pagerank beyond the web,” SIAM Review, vol. 57, no. 3,
pp. 321–363, 2015.

[6] E. Nathan and D. A. Bader, “A dynamic algorithm for updating katz centrality
in graphs,” in Proceedings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2017, ACM, 2017.

[7] E. Nathan and D. A. Bader, “Incrementally updating personalized katz cen-
trality in dynamic graphs,” Social Network Analysis and Mining, 2018.

[8] ——, “Approximating personalized katz centrality in dynamic graphs,” in
International Conference on Parallel Processing and Applied Mathematics,
Springer, 2017.

[9] E. Nathan, J. Fairbanks, and D. Bader, “Ranking in dynamic graphs using
exponential centrality,” in International Workshop on Complex Networks and
their Applications, Springer, 2017, pp. 378–389.

[10] E. Nathan, A. Zakrzewska, J. Riedy, and D. A. Bader, “Local community
detection in dynamic graphs using personalized centrality,” Algorithms, vol.
6, no. 1, p. 65, 2017.

[11] M. Newman, Networks: an introduction. Oxford university press, 2010.

145

[12] M. Hofmeister, “Spectral radius and degree sequence,” Mathematische Nachrichten,
vol. 139, no. 1, pp. 37–44, 1988.

[13] D. A. Spielman, “Algorithms, graph theory, and linear equations in laplacian
matrices,” in Proceedings of the International Congress of Mathematicians
2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies
Vols. II–IV: Invited Lectures, World Scientific, 2010, pp. 2698–2722.

[14] R. Albert, H. Jeong, and A.-L. Barabási, “The diameter of the world wide
web,” arXiv preprint cond-mat/9907038, 1999.

[15] O. Livne and A. Brandt, “Lean algebraic multigrid (lamg): fast graph laplacian
linear solver,” SIAM Journal on Scientific Computing, vol. 34, no. 4, B499–
B522, 2012.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: bringing order to the web.,” 1999.

[17] J. Riedy, “Updating PageRank for streaming graphs,” in Parallel and Dis-
tributed Processing Symposium Workshops, 2016 IEEE International, IEEE,
2016, pp. 877–884.

[18] P. Bonacich, “Some unique properties of eigenvector centrality,” Social net-
works, vol. 29, no. 4, pp. 555–564, 2007.

[19] O. Perron, “Zur theorie der matrices,” Mathematische Annalen, vol. 64, no. 2,
pp. 248–263, 1907.

[20] E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph centrality in complex
networks,” Physical Review E, vol. 71, no. 5, p. 056 103, 2005.

[21] M. Benzi and C. Klymko, “Total communicability as a centrality measure,”
Journal of Complex Networks, vol. 1, no. 2, pp. 124–149, 2013.

[22] D. Werner, Funktionalanalysis. Springer, 2006.

[23] E. Kokiopoulou, J. Chen, and Y. Saad, “Trace optimization and eigenproblems
in dimension reduction methods,” Numerical Linear Algebra with Applications,
vol. 18, no. 3, pp. 565–602, 2011.

[24] J. P. Fairbanks, A. Zakrzewska, and D. A. Bader, “New stopping criteria
for spectral partitioning,” in Advances in Social Networks Analysis and Min-
ing (ASONAM), 2016 IEEE/ACM International Conference on, IEEE, 2016,
pp. 25–32.

146

[25] U. Brandes and C. Pich, “Centrality estimation in large networks,” Interna-
tional Journal of Bifurcation and Chaos, vol. 17, no. 07, pp. 2303–2318, 2007.

[26] S. White and P. Smyth, “Algorithms for estimating relative importance in
networks,” in Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2003, pp. 266–275.

[27] K. C. Foster, S. Q. Muth, J. J. Potterat, and R. B. Rothenberg, “A faster katz
status score algorithm,” Computational & Mathematical Organization Theory,
vol. 7, no. 4, pp. 275–285, 2001.

[28] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social
networks,” Journal of the American society for information science and tech-
nology, vol. 58, no. 7, pp. 1019–1031, 2007.

[29] F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. Lakshmanan, “Fast
matrix computations for pairwise and columnwise commute times and katz
scores,” Internet Mathematics, vol. 8, no. 1-2, pp. 73–112, 2012.

[30] L. C. Freeman, “A set of measures of centrality based on betweenness,” So-
ciometry, vol. 40, no. 1, pp. 35–41, 1977.

[31] R. W. Floyd, “Algorithm 97: shortest path,” Commun. ACM, vol. 5, pp. 345–
345, 6 1962.

[32] S. Warshall, “A theorem on boolean matrices,” J. ACM, vol. 9, pp. 11–12, 1
1962.

[33] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,”
Journal of the ACM (JACM), vol. 24, no. 1, pp. 1–13, 1977.

[34] U. Brandes, “A faster algorithm for betweenness centrality*,” Journal of Math-
ematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[35] A. Bavelas, “Communication patterns in task-oriented groups.,” Journal of
the acoustical society of America, 1950.

[36] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms,” Journal of the ACM (JACM), vol. 34, no.
3, pp. 596–615, 1987.

[37] D. Eppstein and J. Wang, “Fast approximation of centrality.,” J. Graph Al-
gorithms Appl., vol. 8, pp. 39–45, 2004.

147

[38] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of closeness centrality for large-
scale social networks,” in Frontiers in Algorithmics, Springer, 2008, pp. 186–
195.

[39] W. Wei and K. Carley, “Real time closeness and betweenness centrality calcu-
lations on streaming network data,” 2014.

[40] A. E. Sariyüce, K. Kaya, E. Saule, and Ü. V. Çatalyiirek, “Incremental algo-
rithms for closeness centrality,” in Big Data, 2013 IEEE International Con-
ference on, IEEE, 2013, pp. 487–492.

[41] O. Green, R. McColl, and D. Bader, “A fast algorithm for incremental be-
tweenness centrality,” in Proceeding of SE/IEEE international conference on
social computing (SocialCom), 2012, pp. 3–5.

[42] Y.-Y. Chen, Q. Gan, and T. Suel, “Local methods for estimating PageRank
values,” in Proceedings of the thirteenth ACM international conference on In-
formation and knowledge management, ACM, 2004, pp. 381–389.

[43] S. Chien, C. Dwork, R. Kumar, and D Sivakumar, “Towards exploiting link
evolution,” 2001.

[44] A. D. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating PageRank on graph
streams,” Journal of the ACM (JACM), vol. 58, no. 3, p. 13, 2011.

[45] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam with
trustrank,” in Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30, VLDB Endowment, 2004, pp. 576–587.

[46] A. N. Langville and C. D. Meyer, “Updating PageRank using the group inverse
and stochastic complementation,” Informe técnico crsc02-tr32, 2002.

[47] A. N. Langville and C. D. Meyer, “Updating the stationary vector of an ir-
reducible Markov chain with an eye on Googles PageRank,” in In SIMAX,
Citeseer, 2004.

[48] A. N. Langville and C. D. Meyer, “Updating PageRank with iterative aggre-
gation,” in Proceedings of the 13th international World Wide Web conference
on Alternate track papers & posters, ACM, 2004, pp. 392–393.

[49] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and personalized
PageRank,” Proceedings of the VLDB Endowment, vol. 4, no. 3, pp. 173–184,
2010.

148

[50] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in
very large networks,” Physical review E, vol. 70, no. 6, p. 066 111, 2004.

[51] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of statistical mechanics: theory and
experiment, vol. 2008, no. 10, P10008, 2008.

[52] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with
eigenvectors of graphs,” SIAM journal on matrix analysis and applications,
vol. 11, no. 3, pp. 430–452, 1990.

[53] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, vol. 92.

[54] I. Derényi, G. Palla, and T. Vicsek, “Clique percolation in random networks,”
Physical review letters, vol. 94, no. 16, p. 160 202, 2005.

[55] J. Xie, B. K. Szymanski, and X. Liu, “Slpa: uncovering overlapping communi-
ties in social networks via a speaker-listener interaction dynamic process,” in
Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference
on, IEEE, 2011, pp. 344–349.

[56] J. Xie and B. K. Szymanski, “Towards linear time overlapping community
detection in social networks,” in Advances in Knowledge Discovery and Data
Mining, Springer, 2012, pp. 25–36.

[57] T. Evans and R Lambiotte, “Line graphs of weighted networks for overlapping
communities,” The European Physical Journal B, vol. 77, no. 2, pp. 265–272,
2010.

[58] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, “Finding sta-
tistically significant communities in networks,” PloS one, vol. 6, no. 4, e18961,
2011.

[59] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the overlapping
and hierarchical community structure in complex networks,” New Journal of
Physics, vol. 11, no. 3, p. 033 015, 2009.

[60] F. Havemann, M. Heinz, A. Struck, and J. Gläser, “Identification of over-
lapping communities and their hierarchy by locally calculating community-
changing resolution levels,” Journal of Statistical Mechanics: Theory and Ex-
periment, vol. 2011, no. 01, P01023, 2011.

[61] C. Lee, F. Reid, A. McDaid, and N. Hurley, “Detecting highly overlapping
community structure by greedy clique expansion,” in 4th SNA-KDD Work-
shop, 2010, 3342.

149

[62] C. L. Staudt and H. Meyerhenke, “Engineering parallel algorithms for com-
munity detection in massive networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 1, pp. 171–184, 2016.

[63] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A framework for
community identification in dynamic social networks,” in Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, 2007, pp. 717–726.

[64] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, “Com-
munity structure in time-dependent, multiscale, and multiplex networks,” sci-
ence, vol. 328, no. 5980, pp. 876–878, 2010.

[65] M. B. Jdidia, C. Robardet, and E. Fleury, “Communities detection and anal-
ysis of their dynamics in collaborative networks.,” in ICDIM, 2007, pp. 744–
749.

[66] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” in
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2006, pp. 554–560.

[67] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Analyzing com-
munities and their evolutions in dynamic social networks,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 3, no. 2, p. 8, 2009.

[68] T. Aynaud and J.-L. Guillaume, “Static community detection algorithms for
evolving networks,” in WiOpt’10: Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks, 2010, pp. 508–514.

[69] J. Shang, L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, and C. Wu, “A real-time
detecting algorithm for tracking community structure of dynamic networks,”
arXiv preprint arXiv:1407.2683, 2014.

[70] T. N. Dinh, Y. Xuan, and M. T. Thai, “Towards social-aware routing in dy-
namic communication networks,” in Performance Computing and Commu-
nications Conference (IPCCC), 2009 IEEE 28th International, IEEE, 2009,
pp. 161–168.

[71] J. Riedy and D. A. Bader, “Multithreaded community monitoring for mas-
sive streaming graph data,” in Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, IEEE,
2013, pp. 1646–1655.

150

[72] R. Görke, P. Maillard, A. Schumm, C. Staudt, and D. Wagner, “Dynamic
graph clustering combining modularity and smoothness,” ACM Journal of
Experimental Algorithmics, vol. 18, 2013.

[73] R. Varga, Gershgorin and his circles in springer series in computational math-
ematics, 36, 2004.

[74] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
science, vol. 286, no. 5439, pp. 509–512, 1999.

[75] M. E. Hochstenbach, “Probabilistic upper bounds for the matrix two-norm,”
Journal of Scientific Computing, vol. 57, no. 3, pp. 464–476, 2013.

[76] J. Kunegis, “KONECT: the Koblenz network collection,” in Proceedings of the
22nd International Conference on World Wide Web, ACM, 2013, pp. 1343–
1350.

[77] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[78] J. H. Wilkinson, Rounding errors in algebraic processes. Courier Corporation,
1994.

[79] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathematicae
(Debrecen), vol. 6, pp. 290–297, 1959.

[80] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: a recursive model for
graph mining.,” in SDM, SIAM, vol. 4, 2004, pp. 442–446.

[81] M. Benzi and C. Klymko, “A matrix analysis of different centrality measures,”
arXiv preprint arXiv:1312.6722, 2014.

[82] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: diameter of the world-wide
web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[83] K. Hawick and H. James, “Node importance ranking and scaling properties of
some complex road networks,” 2007.

[84] P. Grindrod, D. J. Higham, and V. Noferini, “The deformed graph laplacian
and its applications to network centrality analysis,” SIAM Journal on Matrix
Analysis and Applications, 2017.

[85] E. Estrada and D. J. Higham, “Network properties revealed through matrix
functions,” SIAM review, vol. 52, no. 4, pp. 696–714, 2010.

[86] N. J. Higham, Functions of matrices: theory and computation. SIAM, 2008.

151

[87] H. F. Trotter, “On the product of semi-groups of operators,” Proceedings of
the American Mathematical Society, vol. 10, no. 4, pp. 545–551, 1959.

[88] C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponen-
tial of a matrix, twenty-five years later,” SIAM review, vol. 45, no. 1, pp. 3–49,
2003.

[89] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,”
Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[90] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-worldnetworks,”
nature, vol. 393, no. 6684, pp. 440–442, 1998.

[91] F. Bauer and J. T. Lizier, “Identifying influential spreaders and efficiently
estimating infection numbers in epidemic models: a walk counting approach,”
EPL (Europhysics Letters), vol. 99, no. 6, p. 68 007, 2012.

[92] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no.
1/2, pp. 81–93, 1938.

[93] M. E. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Physical review E, vol. 69, no. 2, p. 026 113, 2004.

[94] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph partition-
ing and graph clustering, 10th dimacs implementation challenge workshop,”
Contemporary Mathematics, vol. 588, 2013.

[95] A. Clauset, “Finding local community structure in networks,” Physical review
E, vol. 72, no. 2, p. 026 132, 2005.

[96] M. Girvan and M. E. Newman, “Community structure in social and biological
networks,” Proceedings of the national academy of sciences, vol. 99, no. 12,
pp. 7821–7826, 2002.

[97] J. P. Bagrow and E. M. Bollt, “Local method for detecting communities,”
Physical Review E, vol. 72, no. 4, p. 046 108, 2005.

[98] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using PageR-
ank vectors,” in Foundations of Computer Science, 2006. FOCS’06. 47th An-
nual IEEE Symposium on, IEEE, 2006, pp. 475–486.

[99] F. Arrigo, P. Grindrod, D. J. Higham, and V. Noferini, “Nonbacktracking walk
centrality for directed networks,” University of Manchester, Tech. Rep. MIMS
preprint 2017.9, Mar. 2017.

152

[100] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical prop-
erties of community structure in large social and information networks,” in
Proceedings of the 17th international conference on World Wide Web, ACM,
2008, pp. 695–704.

[101] I. M. Kloumann, J. Ugander, and J. M. Kleinberg, “Block models and person-
alized pagerank,” CoRR, vol. abs/1607.03483, 2016.

[102] C. B. Moler, “Iterative refinement in floating point,” J. ACM, vol. 14, no. 2,
pp. 316–321, 1967.

[103] J. Riedy, D. A. Bader, K. Jiang, P. Pande, and R. Sharma, “Detecting com-
munities from given seeds in social networks,” Georgia Institute of Technology,
Tech. Rep., 2011.

153

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	 Introduction
	 Background and Literature Review
	Graph Theory
	Linear Algebra
	Ranking in Graphs
	Dynamic Analysis of Centrality Measures
	Community Detection

	 Numerical Approximations for Centrality Measures
	Theory
	Results
	Conclusions

	 Dynamic Algorithms for Centrality Measures
	Dynamic Katz Centrality using Linear Algebra
	Agglomerative Personalized Katz Centrality
	Nonbacktracking Walk Centrality
	Streaming Exponential Centrality

	 Local Community Detection in Dynamic Graphs
	Community Detection in Graphs
	Communities from Personalized Centrality
	Dynamic Communities from Personalized Centrality
	Conclusions

	 Conclusions
	References

