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Introduction 

 

Nuclear reactor pressure vessels are manufactured from high strength steels like A302B. The 

inner surface of the pressure vessel is exposed to extremely corrosive environments at high 

temperatures. The pressure vessels are therefore clad with corrosion resistant materials such as 

austenitic stainless steel. However, the manufacturing process results in defects in the clad 

material and the clad/base material interface. These defects are subject to fatigue loading due to 

the pressurization/shutdown cycles of the pressure vessel during service resulting in fatigue crack 

formation and growth from the defects. Here, we focus on the formation and growth of a fatigue 

crack from a surface defect in the cladding material to the base metal that could lead to exposure 

of the base metal to the corrosive environment in the pressure vessel and subsequent failure. 

To quantify the crack propagation rate from these defects under cyclic loading conditions, a 

Short crack growth (ShCGr) model has been developed by Dr. Clint Geller of the Bettis Atomic 

Power Laboratory (BAPL). The ShCGr model employs the concept of an accumulating debris 

field associated with the irreversibility attributed to dislocations encountering obstacles to their 

motion over a number of loading cycles; this contributes to stress intensification at the crack tip. 

The model uses an irreversibility factor to account for the damage accumulation. The number of 

cycles required for crack extension is found from energy balance between the free energy change 

associated with creating a crack and the energy released by a dislocation pile-up when a crack is 

created. The model is able to correlate crack initiation lives in smooth specimens through certain 

assumptions. 

The model also attempts to capture the credit for the cycles required to incubate the crack 

growth process up until the point at which steady state (i.e., Paris growth law behavior) is 

realized. This is described as the process of “conditioning” the state of cyclic plastic deformation 

in the process zone to a point where crack extension can occur. An hypothesis to be explored is 

that the a full description of this “conditioning” process can lead to the realization of a “credit” 

of fatigue cycles relative to application of the Paris growth law for propagation treating the initial 

defect as a crack. Realization of such a “credit” could have extremely important implications for 

nuclear reactor pressure vessel maintenance schedules and procedures and could provide a basis 

for extending useful service lifetime. In its current form, the foundational elements of the ShCGr 

model have a sound basis. However, there are certain key elements that require either 

experimental calibration or numerical modeling strategies to establish reliable functional forms. 
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This research program at Georgia Tech has been subcontracted from QuesTek LLC with 

Bettis Atomic Power Lab (BAPL) as prime. The objective of the research is to develop crystal 

plasticity-based computational methods to model fatigue crack initiation in cladding materials 

(SS 308). The research conducted in this program is intended to augment and provide input into 

the Short Crack Growth (ShCGr) model developed by Dr. Clint Geller (BAPL) and enhance its 

predictive capabilities. A key outcome of the Phase I (2009) effort was the understanding of the 

ShCGr model and strategies to enhance its capabilities. The present Phase II research program 

commenced on 8/1/10. The overall Gantt chart for the entire Phase II program is shown in Figure 

1. 

 

 

Figure 1: Project Gantt chart of the 10 months Phase II program (Year 1 of a multi-year Phase II 

program). 

 
As in the original proposal, the GT effort has addressed the following tasks in the first year: 

 

• Worked with QuesTek to fit a limited slip crystal plasticity model suitable for description of 

cyclic plastic straining of low stacking fault energy alloys of relevance to cladding applications, 

with top-down parameter estimation from experimental data.  An ABAQUS [1] User Material 

Subroutine (UMAT) was  developed for this purpose to model single and polycrystalline 

behavior. 

• Meshes for polycrystals with realistic grain size/secondary dendrite cell size distribution were 

developed for notch root radii of relevance to initial defects in claddings, in the range of tens to 

hundreds of microns.  Input from QuesTek guided consideration of dendritic structure in 

meshing, include orientation of primary dendrites. 

• An initial crystal plasticity-based model was developed to assess driving forces for Stage I 

crystallographic cracks, including cracks embedded in homogeneous planar slip regions and 

cracks growing at the interface of the matrix and slip bands.  Algorithms were established for 

estimating local crack tip driving forces as a function of notch depth and root radius to grain 

diameter.   These models will be applied later in the program to estimate crack growth rates for 
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crack expansion in a field of grains with size and orientation distribution in the small crack 

growth regime prior to attaining conditions of similitude characteristic of a fully developed crack 

front. 

• Exercised the polycrystalline model for various applied stress amplitudes and R-ratios (mean 

stress) to quantify the distribution of slip and average notch root stress shielding effects. 

• Relevance of these tools and studies to informing elements of the ShCGr model were expanded 

upon and clarified. 

  
1. Problem Description 

The problem of interest is the formation and early growth of cracks from surface defects 

occurring in cladding materials subjected to fatigue loading as the pressure vessel undergoes 

pressurization/shutdown cycles. The defects occur on the surface of the cladding material, with 

the crack forming and propagating into the cladding material. The focus is on the role of clad 

microstructure in the development of cyclic plasticity around the deep notch root that drives 

formation and early growth of a fatigue crack into the cladding material. This study is intended 

to characterize the stress distribution in the vicinity of the notch for different notch root radii and 

remote stress loading amplitudes. Also of primary interest is the distribution of slip in the 

microstructure around the notch root which drives fatigue crack formation and early growth.  

To this end, a computational model along the lines of that shown in Figure 2 has been 

developed based on decomposing the volume around the notch into several regimes with 

different constitutive laws. The immediate vicinity of the notch is modeled as an explicit 

ensemble of grains or dendrite cells using crystal plasticity.  This innermost region is surrounded 

by a regime described by nonlinear kinematic hardening plasticity beyond which linear elasticity 

is used. The constitutive relations for each regime are addressed next. 

 

         
Figure 2: Domain decomposition in the vicinity of the notch (not to scale). 
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2.  Domain Decomposition: Constitutive Relations 

 

2.1 Crystal Plasticity 

The primary vehicle to simulate the formation of small cracks at the notch tip and analyze the 

driving forces associated with the crack growth is crystal plasticity. The material in question is 

austenitic steel with FCC crystal structure with 12 possible octahedral slip systems. The shearing 

rate of a slip system is described by a power law as 
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where αγ�  is the shearing rate on slip systemα , 0γ� is the reference shearing rate, αχ is the back 

stress on slip systemα , g
α is the drag stress,  ακ is the threshold stress, m is the inverse strain 

rate sensitivity exponent, and 
ατ is the resolved shear stress on slip system α . Here, 

( ) ( )u
α α α α α ατ χ τ χ τ χ− = − −  is the Macauley bracket function of overstress. 

For austenitic steels, the threshold stress is important in terms of isotropic hardening, and 

evolves according to a hardening versus dynamic recovery format [1], i.e.,  
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Here, A and B are the direct hardening and dynamic recovery coefficients and hαβ represents the 

hardening matrix, with hαα  
representing self-hardening and ,hαβ α β≠ representing latent 

hardening. 

The evolution of the slip system back stress is given by a nonlinear kinematic hardening rule 

[2, 3] of the Armstrong–Frederick self-hardening form, i.e.,  

 

 C D
α α α αχ γ χ γ= −� � �           (3) 

 

where C and D are the direct hardening and dynamic recovery coefficients, respectively. 

 

2.2 Elastic-Plastic Zone 

The crystal plasticity zone is surrounded by an elastic-plastic material with a yield function 

given by 
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Here, S is the deviatoric part of the stress tensor, 'χ is the deviatoric part of the back stress 

tensor, and yσ is the uniaxial yield strength of the material. A nonlinear kinematic hardening law 

[4] is used to describe the evolution of the back stress tensor, i.e., 

( ) pl pl

y

c
ε γ ε

σ
= − −χ σ χ χ� ��          (5) 

where  and c γ are material parameters to be calibrated, and plε� is the rate of evolution of the 

equivalent plastic strain, given by 

2
:

3
pl pl plε = ε ε� � �           (6) 

Since the hardening law used for the continuum description of the material is purely kinematic, 

the cyclic stress-strain response will be stable. The material parameters used in the nonlinear 

kinematic hardening law in Equation (5) is calibrated to cyclic stress-strain data provided by 

QuesTek at the temperature(s) and strain rate(s) of interest.   

 

 

3.  Considerations for Modeling 

3.1  Stable Hysteresis 

Stainless steel 308 exhibits transient hardening during the first half of fatigue life [5] as 

shown in Figure 3 for completely reversed (R=-1) loading. The majority of proposed simulations 

will make use of the stable half life hysteresis response, i.e., the cyclically stable stress-strain 

curve, ignoring transient isotropic hardening.   

 

 

 

Figure 3: (a) Stress responses from strain-

controlled fatigue tests and (b) strain responses 

from load-controlled fatigue tests versus number 

of cycles for stainless steel 304L [5]. 
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The influence of isotropic hardening transients will be considered in selected simulations to 

consider the approximation error incurred due to this assumption. 

 

3.2  Planar Slip  

An additional consideration is that the cladding material (SS 308) is a low stacking fault 

energy material which exhibits planar slip [6]. Secondary slip is observed in some cases for these 

materials [7], and is primarily restricted to interfaces such as grain boundaries to account for 

compatibility with the neighbouring grains and also with the δ-Ferrite at the grain boundaries, as 

shown in Figure 4 (from Ref. [7]).  This clearly suggests that the interior of the grain has fewer 

active slip systems than regions near the grain boundary and that the distance from the grain 

boundary should be used as a basis for assigning the maximum number of active slip systems at 

a spatial point in a grain. 

 

 
Figure 4: Scanning electron micrographs showing the slip pattern near the interface between the 

matrix and δ-ferrite. Both primary and secondary slip are shown, and the secondary slip was 

explained by strain incompatibility (from Ref. [7]). 

 

We will consider mainly primary slip with perhaps 1-2 active secondary systems at the 

relatively low strain amplitudes relevant to fatigue. This can be achieved by specifically 

constraining the slip on all the systems other than the slip on a few initially activated systems 

based on the local (actual) Schmid factor acting on these slip systems. The algorithm for 

constrained slip was developed by Lloyd [8].  The premise of the algorithm is to limit the 

maximum number of active slip systems based on the distance from the grain boundary with 

regions near the grain boundary – “mantle”, being allowed more active slip systems than the 

interior – “core”. A schematic of the mantle – core approach is shown in Figure 5. It is to be 

noted that the elastic properties of the mantle and core of a grain are the same and they differ 

only in the number of active slip systems. Based on Figure 4, it can be observed that the regions 

that are about 5 mµ from the grain boundaries form the mantle of a grain and the rest is the core. 

The implementation of identifying the mantle and core of a grain will be elaborated later.  
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Figure 5: Mantle-Core model showing limited slip on the interior section, and multiple slip near 

the grain boundary (from Ref. [9]). 

 

The algorithm used here is a slight modification of that proposed by Lloyd [8]. While Lloyd 

prescribes an inflated drag stress to reduce the slip rates on the inactive slip systems, we 

explicitly nullify it. A flowchart of the algorithm used is shown below. The algorithm is 

implemented as a user material (UMAT) in ABAQUS [4] with modifications from Lloyd [8]. 
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Here, maxN is the number of allowable activated slip systems (4 for mantle, 2 for core) and 

activeN  is the number of active slip systems which is updated when a new slip system activates. It 

is to be noted that this approach will be consistent in the calibration studies performed using 3D 

finite element meshes. 

 

3.3  Viscoplastic Behavior 

 

The material under consideration, SS 304, exhibits significant time-dependent properties 

(strain rate sensitivity and creep) at both room temperature and elevated temperatures. Krempl 

[10] performed rate-sensitive creep tests on SS 304 at room temperature.  The strain rates ranges 

from 1x10
-8

 to 1x10
-2

 s
-1

.  A uniaxial stress-strain curve of three different tests with two of the 

tests changing the strain rate by three orders of magnitude instantaneously during the test is 

shown in Figure 6.  Figure 7 is a unaxial stress-strain curve depicting SS 304 undergoing cyclic 

creep at room temperature. Kujawski [11] studied the influence of uniaxial strain on subsequent 

creep in SS 304 at room temperature.  Figure 8 is a stress-strain curve of uniaxial loading with 

subsequent creep tests (holds) performed at three increasing stress levels. 

 

 
Figure 6: Three tensile tests at varying strain rates (10

-2
 to 10

-8
 s

-1
) [10]. 

 

 
Figure 7: Cyclic creep of a specimen with prior mechanical history [10]. 
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It can be concluded from the previous figures that SS 304 shows considerable positive strain 

rate sensitivity (stress increases with strain rate) at room temperature. As addressed earlier the 

majority of the simulations will be conducted using half-life response as representative of the 

cyclically stable stress-strain behavior. Figure 9 depicts the stabilized hysteresis response of SS 

304 at two different strain rates from experiments by Krempl [10]. He conducted cyclic straining 

of the specimen subjected to both constant strain rates and strain rate jump tests during cyclic 

straining. It was observed that the stress jump when the strain rate was changed decreased with 

the number of cycles. Also, Moosbrugger [12] demonstrated that the overstress of SS 304 does 

not change appreciably as cyclic hardening occurs during cycling. This implies that the material 

undergoes a very complex hardening phenomenon. The parameters for the crystal viscoplasticity 

are estimated based on this behavior (Figs 6 and 9). 

 

 

 
Figure 8:  Effects of uniaxial prestrain on subsequent creep in 304SS (creep-plasticity 

interaction) [11]. 

 

 
Figure 9: Cyclically stable stress-strain curves at different strain rates (10

-3
 and 10

-5
 s

-1
) [10]. 



 

4  Calibration studies 

 

4.1  Calibration of J2 plasticity parameters

 

The constitutive relations describing the elastic

hardening rule (5) with an isotropic yield function (4). The parameters of the hardening rule need 

to be estimated to fit the material response at the tem

largely confined to the crystal plasticity zone, a rate independent constitutive model is being 

followed. The purpose of the J2 zone is to avoid 

mismatch between the crystal plastici

parameters requires cyclically stable

Leax [13] provide this data at the operating temperature (288

 

Figure 10: Cyclic

 

The data in Figure 10 show the amplitudes of stress and strain at the temperature of interest

A power law relation between the stress and plastic strain

by partitioning the total strain amplitude

 

Figure 11: Power law relation between the plastic strain and stress

True stress (MPa) 

(log scale) 
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4.1  Calibration of J2 plasticity parameters 

utive relations describing the elastic-plastic zone follow a nonlinear kinematic 

hardening rule (5) with an isotropic yield function (4). The parameters of the hardening rule need 

to be estimated to fit the material response at the temperature of interest. Since the plasticity is 

confined to the crystal plasticity zone, a rate independent constitutive model is being 

followed. The purpose of the J2 zone is to avoid a strong jump discontinuity of

mismatch between the crystal plasticity and the linear elastic zones. Estimation of the J2 

ally stable stress-strain curves at different amplitudes

] provide this data at the operating temperature (288
o
C), as shown in Figure 

 
Cyclically stable stress-strain curve (288

o
C) [13]. 

the amplitudes of stress and strain at the temperature of interest

between the stress and plastic strain ampliudes can be deduced (Figure 

amplitude into elastic and plastic parts.  

Power law relation between the plastic strain and stress amplitudes

 

Plastic strain (log scale) 

plastic zone follow a nonlinear kinematic 

hardening rule (5) with an isotropic yield function (4). The parameters of the hardening rule need 

Since the plasticity is 

confined to the crystal plasticity zone, a rate independent constitutive model is being 

a strong jump discontinuity of tangent stiffness 

stimation of the J2 

. Experiments by 

Figure 10. 

the amplitudes of stress and strain at the temperature of interest. 

can be deduced (Figure 11) 

 
amplitudes (288

o
C). 
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The simulation cell (cube) used for the calibrations contains 64 finite elements subjected to 

fully reversed strain cycles and random periodic boundary conditions using ABAQUS [4]. The 

response of the simulation cell is compared with the hysteresis curves obtained using data from 

Leax [13], as shown in Figure 12. 

 

 

 
 

 

 
 

Figure 12: Calibration simulations for J2 plasticity. 3 completely reversed strain cycles with 

strain amplitudes of (a) 0.25% and (b) 0.4%. 

 

The following values were obtained from the calibration studies: 

110 MPa,  65000 MPa,  500y c rσ = = =  

 

 

 

 

 

Strain 

True stress 

(MPa)  

(a) 

Strain 

True stress 

(MPa)  

(b) 

Hysteresis curves 

obtained from [13] 

 

Response of the 

FE model  
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4.2  Calibration of Crystal plasticity parameters 

 

The crystal plasticity model should capture the effect of the rate sensitivity. Calibration tests 

for parameter estimation were conducted based on data from Krempl [10], who performed rate 

sensitivity experiments at room temperature. Single strain rate and strain rate jump tests were 

conducted on a 1000 element, 50 grain 3D mesh with random periodic boundary conditions that 

takes into account the mantle – core zone distribution. The average values of overstress of all the 

active slip systems have also been listed. The results for uniaxial tensile tests are shown in Figure 

13. 

 

 
 

 

 
 

   Data from Krempl [10]   Simulation results 

Figure 13: Single strain rate and strain rate jump tests – comparison with experiments. 

Strain (%) 

Stress  

(MPa) 

3 110 sε − −=�
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(MPa) 
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The anistropic (single crystal) elastic constants [14] are: 

11 12 44206 GPa     133 GPa      119 GPaC C C= = =  

 

The calibrated crystal plasticity parameters are:
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As mentioned earlier, the material hardening evolves as it is loaded cyclically implying that the 

hardening parameters for stable cyclic hysteresis would be different from the tensile parameters. 

  

 
 

 
 

   Data from Krempl [10]   Simulation results 

Figure 14: Fully reversed strain controlled tests for three cycles – comparison with experiments. 
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Completely reversed strain was imposed for three

calibration of crystal plasticity parameters for stabilized hysteresis. The comparison of 

simulations with experiments is shown in Figure 1

comparable for the same strain rates for tensile and cyclic loading. The 

plasticity parameters are: 
4 -1
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5  Meshing strategies and Microstructure modeling

 

5.1  Meshing 

 

The numerical means used to solve the bound

(ABAQUS, Simulia, Dassault Systemes,

discretizing the domain into contiguous segments and obtaining a solution such that it satisfies 

the governing differential equation in each finite element and is also continuous over the entire 

domain.  

The problem at hand produces significant gradients of solution

root. This requires that the problem domain be much larger than the notch

length scale of the gradients of the 

mesh at the notch root should be fine. To account for the change in the mesh sizes, a domain 

decomposition approach is taken, as explained in the pr

governed by different constitutive relations and 

notch root. The decomposition of the problem domain into different zones is shown in Figure 

(compare with Fig. 2). 

 

Figure 15: Domain decomposition for the graded finite element mesh

14 

train was imposed for three cycles on the same finite element mesh for 

calibration of crystal plasticity parameters for stabilized hysteresis. The comparison of 

simulations with experiments is shown in Figure 14. Note that the average overstress values are

comparable for the same strain rates for tensile and cyclic loading. The calibrated 

and Microstructure modeling 

The numerical means used to solve the boundary value problem is the finite element method

Simulia, Dassault Systemes, Providence, RI, 2009). The method involves 

discretizing the domain into contiguous segments and obtaining a solution such that it satisfies 

ion in each finite element and is also continuous over the entire 

The problem at hand produces significant gradients of solution fields (strain) at the notch 

root. This requires that the problem domain be much larger than the notch size and the as

gradients of the solution fields. The solution gradients also require that the 

mesh at the notch root should be fine. To account for the change in the mesh sizes, a domain 

decomposition approach is taken, as explained in the previous sections, with each domain 

governed by different constitutive relations and progressively coarsened mesh away from the 

notch root. The decomposition of the problem domain into different zones is shown in Figure 

 
: Domain decomposition for the graded finite element mesh

cycles on the same finite element mesh for 

calibration of crystal plasticity parameters for stabilized hysteresis. The comparison of 

. Note that the average overstress values are 

calibrated crystal 

ary value problem is the finite element method 

. The method involves 

discretizing the domain into contiguous segments and obtaining a solution such that it satisfies 

ion in each finite element and is also continuous over the entire 

s (strain) at the notch 

and the associated 

solution fields. The solution gradients also require that the 

mesh at the notch root should be fine. To account for the change in the mesh sizes, a domain 

, with each domain 

mesh away from the 

notch root. The decomposition of the problem domain into different zones is shown in Figure 15 

: Domain decomposition for the graded finite element mesh. 



 

 

An additional factor that governs the size of the mesh near the notch root is the cutoff length 

of the mantle (Section 3.2). Prescribing the mesh size to be the same as the cutoff length assures 

the desired partition of a grain into the mantle and core zones. This yields the size of the finite 

element in the crystal plasticity zone to be

elastic) are coarsened gradually. An examp

depth of 100 mils (2.54 mm) and not

    
(a)   

Figure 16: (a) Overall mesh of the domain (

 

5.2  Equiaxed grain structure modeling (Wrought microstructure)

 

The influence of microstructure

fatigue cracks is one of the aspects being explored in this program. Both annealed (wrought) 

dendritic microstructures will be investigated.  This section details the computational 

implementation of the microstructure 

Annealed materials usually display wrought microstructure. The grains do not favor any 

particular shape, but rather grow into each other. Topologically, the grain structure is very 

similar to a Voronoi tessellation. However, using a regular Voronoi tessellation to create the 

microstructure results in grain sizes 

uses a weighted Voronoi approach in which the weight of individual seeds for the tessellation is 

described by a log-normal distribution i.e.

distributed. The probability density function for the distributi
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1

, , exp ;      0f x x
x

µ σ
σ π
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where σ and µ  are the mean and standard deviation of the natural logarithm 

The microstructure generation algorithm

for the applicable geometry and the capability to identify the mantle 
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An additional factor that governs the size of the mesh near the notch root is the cutoff length 

ection 3.2). Prescribing the mesh size to be the same as the cutoff length assures 

he desired partition of a grain into the mantle and core zones. This yields the size of the finite 

element in the crystal plasticity zone to be 5 mµ . The meshes in the successive zones (J2 and 

. An example of the meshing is shown in Figure 1

and notch root radius 2 mils (50.8 µm). 

     
           (b) 

: (a) Overall mesh of the domain (115535 Nodes, 116972 Elements) (b) Graded mesh 

near the notch root. 

.2  Equiaxed grain structure modeling (Wrought microstructure) 

of microstructure on the driving force for formation and early growth

fatigue cracks is one of the aspects being explored in this program. Both annealed (wrought) 

dendritic microstructures will be investigated.  This section details the computational 

implementation of the microstructure instantiation. 

Annealed materials usually display wrought microstructure. The grains do not favor any 

her grow into each other. Topologically, the grain structure is very 

similar to a Voronoi tessellation. However, using a regular Voronoi tessellation to create the 

microstructure results in grain sizes that fit a normal distribution [15]. Instead, Musinski

a weighted Voronoi approach in which the weight of individual seeds for the tessellation is 

normal distribution i.e. the logarithm of the grain sizes 

The probability density function for the distribution is given by 
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( )

2

2
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, , exp ;      0

22

x
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µ
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are the mean and standard deviation of the natural logarithm of the 

The microstructure generation algorithm has been adopted from Musinski [1

for the applicable geometry and the capability to identify the mantle – core zones of each grain. 

An additional factor that governs the size of the mesh near the notch root is the cutoff length 

ection 3.2). Prescribing the mesh size to be the same as the cutoff length assures 

he desired partition of a grain into the mantle and core zones. This yields the size of the finite 

. The meshes in the successive zones (J2 and 

16 for a notch 

 

Elements) (b) Graded mesh 

formation and early growth of 

fatigue cracks is one of the aspects being explored in this program. Both annealed (wrought) and 

dendritic microstructures will be investigated.  This section details the computational 

Annealed materials usually display wrought microstructure. The grains do not favor any 

her grow into each other. Topologically, the grain structure is very 

similar to a Voronoi tessellation. However, using a regular Voronoi tessellation to create the 

]. Instead, Musinski [15] 

a weighted Voronoi approach in which the weight of individual seeds for the tessellation is 

sizes is normally 

  (7) 

of the variable x . 

15] with changes 

core zones of each grain. 



 

In the first step, the number of grains is determined based on the total area of the crystal 

plasticity zone and the average grain size. Characterization studies by QuesTek have revealed 

that the average grain size is 25 mµ

of grains in the crystal plasticity zone. Here, values of 

The resulting distribution is the size of the grains normalized 

Initially, the grains are assumed to be circular, and are arranged in the crystal plasticity zone 

as shown in Figure 17 (a). The 

circles descending from the largest circle 

be noted that random sequential addition produces a low packing fraction

into account by scaling down the circle sizes. The resulting packing forms the bas

equiaxed structure is generated. 

The subsequent step involves the identification of finite elements that lie inside a circle. The 

finite elements that do not explicitly lie inside a circle are assigned to the nearest circle available. 

In essence, the grain grows to encompass its surrounding area. Once a grain has been formed, the 

next closest grain is identified. The mid

forms the grain boundary. The distance of each finite element centroid is calculated 

grain boundary and is identified as belong

distance. An example of the circular packing and the resulting microstructure is shown in Figure 

17. The mantle and core zones of each grain can be identified in Fig 1

size distribution is compared with the in

 

(a)  

Figure 17: (a) Circular packing and (b) the resulting equiaxed grain structure derived. (Edges of 

finite element mesh not plotted for visibility)
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In the first step, the number of grains is determined based on the total area of the crystal 

and the average grain size. Characterization studies by QuesTek have revealed 

25 mµ . A log-normal distribution is employed based on the number 

of grains in the crystal plasticity zone. Here, values of 0.4 and 0.1µ σ= =− have been assumed. 

The resulting distribution is the size of the grains normalized by the average size. 

Initially, the grains are assumed to be circular, and are arranged in the crystal plasticity zone 

 circular packing is achieved by random sequential addition of 

circles descending from the largest circle – with the constraint that no two circles overlap. It is to 

be noted that random sequential addition produces a low packing fraction( 0.7≈

into account by scaling down the circle sizes. The resulting packing forms the bas

 

The subsequent step involves the identification of finite elements that lie inside a circle. The 

elements that do not explicitly lie inside a circle are assigned to the nearest circle available. 

In essence, the grain grows to encompass its surrounding area. Once a grain has been formed, the 

next closest grain is identified. The mid-point of the line joining the surfaces of these two circles 

forms the grain boundary. The distance of each finite element centroid is calculated 

and is identified as belonging to the mantle zone if it is less than the cutoff 

the circular packing and the resulting microstructure is shown in Figure 

. The mantle and core zones of each grain can be identified in Fig 17 (b). The resulting grain 

size distribution is compared with the initially prescribed distribution, as shown 

   
   (b) 

: (a) Circular packing and (b) the resulting equiaxed grain structure derived. (Edges of 

finite element mesh not plotted for visibility). 

In the first step, the number of grains is determined based on the total area of the crystal 

and the average grain size. Characterization studies by QuesTek have revealed 

based on the number 

have been assumed. 

by the average size.  

Initially, the grains are assumed to be circular, and are arranged in the crystal plasticity zone 

circular packing is achieved by random sequential addition of 

with the constraint that no two circles overlap. It is to 

)0.7 which is taken 

into account by scaling down the circle sizes. The resulting packing forms the base on which the 

The subsequent step involves the identification of finite elements that lie inside a circle. The 

elements that do not explicitly lie inside a circle are assigned to the nearest circle available. 

In essence, the grain grows to encompass its surrounding area. Once a grain has been formed, the 

joining the surfaces of these two circles 

forms the grain boundary. The distance of each finite element centroid is calculated from this 

is less than the cutoff 

the circular packing and the resulting microstructure is shown in Figure 

(b). The resulting grain 

in Figure 18. 

 

: (a) Circular packing and (b) the resulting equiaxed grain structure derived. (Edges of 
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Figure 18: Comparison of the target and achieved grain size distribution for the equiaxed grain 

structure, normalized by the mean grain volume. 

 

5.3  Dendritic microstructure 

 

The computational procedure for generating dendritic microstructure is outlined here. The 

creation of the dendritic microstructure differs from the equiaxed structure in only the formation 

of the base from which the structure is derived – circular packing in the case of equiaxed grains. 

For a dendritic microstructure a wireframe structure is formed. Each of the dendrites is assumed 

to have width defined by a log-normal distribution. The initial structure is formed by placing 

rectangles with equal height, and width defined by the log-normal distribution without overlap. 

Within each rectangle, wireframe structures are allowed to grow randomly. The result is a 

random wireframe structure that is spaced according to the size distribution specified. The 

assignment of finite elements to each dendrite and identification of the mantle – core zones 

follows the same procedure as for the equiaxed structure with points on the wireframe structure 

replacing centers of circles packed. The resulting dendritic structure and the associated mantle-

core zones are shown in Figure 19(b). The example shown in Fig 19 is for a notch root radius 0.2 

mils which is smaller than the average grain size. In such a case, the defect is assumed to have 

occurred along a grain boundary. This configuration is achieved by constraining that no single 

grain spans the width of the notch. In cases where the notch root dimensions are larger than the 

average grain size, such constraints are not necessary. 

 

Frequency 

Target distribution 

Distribution achieved 



 

 (a)  

Figure 19: (a) Initial rectangle packing

finite element mesh not plotted for visibility)

 

6  Notch analysis: results 

The boundary conditions for the simulation cell are shown in figure 20. The dimensions of the 

simulation cell are much larger than the dimensions of the notch. 

Figure 20: Boundary conditions for t
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      (b) 

Initial rectangle packing and (b) the resulting Dendritic grain structure. (Edges of 

finite element mesh not plotted for visibility). 

The boundary conditions for the simulation cell are shown in figure 20. The dimensions of the 

simulation cell are much larger than the dimensions of the notch.  

 

Figure 20: Boundary conditions for the simulation of surface defects

0xu =∑

x

yyσ

 

0xu =∑

 

and (b) the resulting Dendritic grain structure. (Edges of 

The boundary conditions for the simulation cell are shown in figure 20. The dimensions of the 

 

he simulation of surface defects. 
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Detailed parametric simulations considering varying notch root radii were performed. We are 

presently focusing on dendritic microstructure. The dendritic microstructure is highly textured. 

The measured texture reported by Hofer [16] and Vendermeulen at al. [14] is used to prescribe 

the initial orientation of the dendrites. Presently, we assume an orientation distribution that 

introduces slight misorientation from {100} <110> texture. The distribution of orientations was 

obtained using a Monte carlo approach which controls the misorientation angle. The average 

misorientation was -0.15
0
 with a standard deviation of 10.2

0
 (from QuesTek). An example of the 

varying microstructure being simulated is shown in figure 19. Typically, four cyclic loading 

cycles are imposed and the stress distribution at the end of fourth loading cycle is plotted. This is 

reasonable since cyclically stable hysteresis is achieved with four loading cycles. The stress 

intensification in the vicinity of the notch root for different R ratios is shown in figure 21. The 

stresses plotted are the average of the maximum principal stresses within an averaging volume of 

radius 5 µm. The stresses are averaged at the end of the 4
th

 cycle. 

 

 

Figure 21: Notch root stress intensification at the end of 4
th

 cycle for an applied remote load of 

(a) 0.5ff yieldσ σ= and (b) 0.75ff yieldσ σ= . The notch depth for all simulations is 100 mils. 
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The stress intensification is highest for the sharpest notch. Also, the peak stresses are 

lowest for the case of R = 0 due to the compressive stresses imposed by the surrounding material 

at the notch root. The observed scatter with respect to the R ratio seems to decrease with the 

notch root radius for both values of far field stress. This could be due to the dimensions of the 

notch for a root radius of 10 mils is much larger than the average grain size, thus reducing the 

variability induced due to the microstructure. The stress – strain history of the same group of 

elements is plotted in figure 22. The motivation is to compare the macroscopic R ratio to the 

local R ratio in the vicinity of the notch. Since the remote loading is in the y direction (fig. 20), 

we plot the corresponding components of the Second Piola-Kirchhoff stress tensor and the 

Green’s strain tensor given by 

 

( )1

2

T= ⋅ −E F F I          (8) 

 

where F is the deformation gradient tensor. 

   
(a)       (b) 

 
(c) 

Figure 22: Hysteresis loops for local R ratios for remote load 0.5ff yieldσ σ= and notch depth 100 

mils and notch root radius of (a) 0.2 mils, (b) 2.0 mils and (c) 10.0 mils. 
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Note that the identification of these elements is based on the maximum principal stress values 

at the end of the 4
th

 cycle, which may not be the same elements which have the maximum 

principal stress at, say, the end of the first cycle. Indeed, this was found to be true in some cases. 

This indicates that the stress is redistributed with loading cycles indicating that the ratcheting 

strain plays an important role in this mechanism. The variation between the applied R ratio and 

the local R ratio seems to decrease with increasing notch root radius. The variation of the cyclic 

plastic strain range and ratcheting strain with loading conditions and notch geometry is shown in 

Figure 23. 

 
 

 

Figure 23: Variation of (a) maximum cyclic plastic strain range and (b) maximum ratcheting 

strain with remote loading, notch root radius and far field stress. Notch depth is 100 mils. 

The maximum cyclic shear strain is observed for the completely reversed loading since it has 

the largest range of applied stress. The maximum cyclic shear strain varies predictably with the 

loading conditions with the shear strain range decreasing with increasing R ratio and increasing 

for increased remote stress amplitude. The ratcheting strain displays a more complex relation 

with the applied loading conditions. Also, note that for both loading remote stress amplitudes, 
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the case for R = 0 displays the least variation in ratcheting strain with varying notch root radii. 

The effect of the intergranular interactions on the slip distribution will need to be investigated.   

7. Deliverables 

 

The following codes/scripts have been transferred to QuesTek: 

 

• Python script files for geometric modeling and mesh generation. 

• Matlab codes for microstructure generation. 

• Matlab codes for preparing the input file for ABAQUS. 

• UMAT subroutine for ABAQUS – limited slip implementation. 
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