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SUMMARY 

 

Granular materials are composed of solid, discrete particles and exhibit 

mechanical properties that range from fluid to solid behavior. Some of the 

complexity exhibited by granular systems arises due to the long-range order that 

develops due to particle-particle contact. Inter-particle forces in granular 

materials often form a distributive network of filamentary force-accommodating 

chains (i.e. force chains), such that a fraction of the total number of particles 

accommodates the majority of the forces in the system. The force chain network 

inherent to a system composed of granular materials controls the macroscopic 

behavior of the granular material. Force transmission by these filamentary chains 

is focused (or localized) to the grain scale at boundaries such as the granular 

flow substrate. Recent laboratory experiments have shown that force chains 

transmit extreme localized forces to the substrates of free surface granular flows. 

In this work we combine analog and numeric experimental approaches to 

investigate the forces at the bed of a simplified granular flow. A photoelastic 

experimental approach is used to resolve discrete forces in the granular flows. 

We also conduct discrete element method (DEM) simulations, using input 

parameters derived from measureable physical material properties of 

experimental and natural materials, which successfully reproduce the analog 

experimental results. This work suggests that force chain activity may play an 

unexpected and important role in the bed physics of dense granular flows 

through substrate modification by erosion and entrainment, and that DEM 
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numerical methods effectively treat force chain processes in simulated granular 

flows.  

 

 

 



 

1 

CHAPTER 1. INTRODUCTION 

 

 Granular materials are composed of solid, discrete particles that dissipate 

energy when the constitutive particles interact – for example, through friction or 

collision [Behringer et al., 2008]. Granular materials exhibit mechanical properties 

that range from fluid to solid behavior and granular materials can have varied 

rheological response when in an excited state, that is when the materials are 

vibrated or allowed to flow [Frey and Church, 2011; Jaeger et al., 1996; Sun et 

al., 2010]. Rheology of granular materials is principal to a suite of geophysical 

processes, including dry ravel, sand dune migration, the motion of landslides, 

debris flows, pyroclastic flows, block and ash flows, avalanches, and fault 

systems [Daniels and Hayman, 2008; Dufek and Bergantz, 2007; Furbish et al., 

2008; Iverson et al., 2011; LaBerge et al., 2006; Majmudar et al., 2005].  

Recent experimental studies have highlighted that inter-particle forces in 

granular materials often form a distributive network of filamentary force-

accommodating chains (i.e. force chains) as opposed to having an isotropic 

distribution of forces, such that a fraction of the total number of particles 

accommodate the majority of body forces and externally applied forces [Geng et 

al., 2003; Majmudar and Behringer, 2005; Behringer et al.; 2008; Sun et al., 

2010]. Figure 1 illustrates an idealized force chain network in a granular flow 

down an incline, where the force chain participants are indicated by shaded 

particles.  
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Figure 1. Schematic shows granular flow down an incline. Shaded particles show 
the filamentary force chain structures formed by inter-particle force propagation 
that result in a fraction of the particles bearing the majority of body and externally 
applied body forces. The legend indicates the relative amount of participation in 
force accommodation by particles in the flow. Primary members are heavily 
loaded particles, secondary members are marginally loaded particles, and 
spectator particles are unloaded. 
 

 

 The ability of a granular system to resist deformation is a function of the 

force chain network formed within the granular system [Furbish et al., 2008; Sun 

et al., 2010]. The responses of these chain networks to applied stresses 

ultimately define the materialʼs macroscopic character and influence the transport 

capacity of these flows [Dufek et al., 2009]. Furbish et al. [2008] scaled the 

production and destruction of force chains with the flow shear rate, and allowed 

additional destruction caused by acoustic vibrations or grain collisions. Campbell 

[2006] defined granular flows exhibiting force chains as elastic flows. 

Formulations in the elastic flow theory were derived using a constant volume 

constraint. Force chains, because they are responsible for anisotropic force 

distributions in granular media, could carry significant implications for granular 
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processes in geophysical flows. Localized forces via force chains have been well 

documented for confined, static and shearing granular systems [Majmudar and 

Behringer, 2005; Behringer et al., 2008; Muthuswamy et al., 2006].  

 

 

 

1.1 Volcanic Flows 

 

 Understanding of dense volcanic flows, which often start as large blocks 

that comminute to a mixture of ash (microns) through decameter sized particles, 

has been closely linked with fundamental studies of granular flows [Grunewald et 

al., 2000; Bursik et al., 2005; Dufek and Manga, 2008; Kelfoun, 2011; Sarocchi et 

al., 2011]. Dense volcanic granular flows can initiate during eruptions (i.e. via 

dome explosion or edifice collapse) or from flank instability triggered by external 

factors (i.e. by earthquakes, erosion and flank over-steepening, or meteoric 

activity) and can form rock falls, debris avalanches, block and ash flows, and 

pyroclastic density currents [Huppert and Dade, 1998; Grunewald et al., 2000; 

Bursik et al., 2005; Ponomareva et al., 2006; Dufek and Bergantz, 2007; Bernard 

et al., 2008; Manville et al., 2009; Davies et al., 2010; Thompson et al., 2010; 

Sarocchi et al., 2011]. Debris avalanches generated by volcanic collapse events 

often lead to secondary flow hazards in the forms of lahars, floods, and tsunamis 

[Manville et al., 2009], and volcanic flows represent some of natureʼs most 

destructive disasters in terms of mortality and property damage [Huppert and 
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Dade, 1998; Bursik et al., 2005; Thompson et al., 2010; Sarocchi et al., 2011]. 

 Despite much work investigating the mobility of natural granular flows, the 

physics that govern their internal behavior are still poorly understood [Calder et 

al., 2000; Grunewald et al., 2000; Crosta et al., 2009; Mangeney et al., 2010; 

Thompson et al., 2010; Berger et al., 2011; Iverson et al., 2011; Kelfoun, 2011; 

Sarocchi et al., 2011]. Gravitational settling and atmospheric entrainment result in 

enhanced particle concentrations near the bed in pyroclastic flows, and the 

particle concentration and momentum flux control the destructive force of these 

flows [Branney and Kokelaar, 2002; Dufek and Bergantz, 2007; Ongaro et al., 

2012]. Three general effects may significantly influence transport capacity and 

energy transfer within pyroclastic flows: 1. Particle-gas interactions, 2. Particle-

Particle interactions, 3. Particle-Bed interactions [Dufek et al., 2009; Roche, 

2012].  An improved understanding of the pyroclastic flow-bed coupling is 

desirable for more accurate hazard assessments and interpretation of previous 

eruption deposits.  

 

 

1.2 Computational models 

 

Continuum and discrete element method (DEM) numerical approaches 

have both successfully reproduced many bulk characteristics of dense granular 

flows. Because many geophysical flows are multiphase, such as pyroclastic 

flows, debris flows, and landslides, forms of mixture theory have often been 
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utilized for numerical treatment [Gray et al., 1999; Denlinger and Iverson, 2004; 

Eringen, 2004; Pudasaini et al., 2005; Zanuttigh and Lamberti, 2007]. Recent 

depth-averaged continuum models have shown improved simulation of natural 

and experimental flows through various adaptations; such as modified coordinate 

systems to accommodate irregular terrain, erosion rate parameters for 

entrainment, velocity-dependent/depth-independent rheological laws to define 

basal stresses, and turbulent dissipation terms to account for basal energy 

losses [McDougall and Hungr, 2005; Pudasaini et al., 2005; Pirulli, 2010; 

Kelfoun, 2011]. 

Although continuum models utilizing local depth averaging have exhibited 

convergence towards the characteristics of natural flows, stress distributions 

within granular flows down slopes can conflict with local averaging strategies 

because the rheology depends on transient particle packing [Bursik et al., 2005]. 

Grain scale anisotropy caused by force chains also cannot be resolved in current 

continuum approaches. However, flow models that employ grain scale resolution 

may be able to resolve these localized forces [Mangeney et al., 2007; Rattanadit 

et al., 2009; Rycroft et al., 2009; Reddy and Kumaran, 2010; Estep and Dufek, 

2012]. Recent studies have indicated that stress fluctuations are only weakly 

dependant on particle size and flow depth, which counters intuition that 

fluctuations should decrease as stresses are averaged over a greater number of 

particles; i.e. an increase in flow depth corresponds to an increase in the number 

of particles present [Bursik et al., 2005].  
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Advances in DEM simulations of granular flows, through improved 

understanding of grain scale processes in granular systems, may lead to 

constitutive relationships for substrate entrainment in geophysical flows and thus 

eliminate dependence on empirical parameters to describe entrainment 

processes [Estep and Dufek, 2012; Estep and Dufek, 2013]. In DEM simulations 

each particle in the system is individually tracked and collisions are directly 

resolved, which is particularly useful for numerical treatment of force chains as 

well as the long range force transmissions due to force chain activity [Sun et al., 

2010; Estep and Dufek, 2012]. The discrete element method is generally 

constrained to small problem sizes because the approach incurs a high 

computational cost due to the neighbor search algorithms [Malone and Xu, 2008]. 

Despite this limitation, the discrete element method is a useful tool for validation 

and development of sub-grid models used in continuum approaches [Garg et al., 

2010; Estep and Dufek, 2013].  

 Several recent studies have focused on advancing the application of DEM 

models to granular processes [Silbert et al., 2002; Boyalakuntla, 2003; Brewster 

et al., 2008; Malone and Xu, 2008; Thompson et al., 2010; Sun et al., 2010; 

Estep and Dufek, 2013]. Elastic stiffness, energy dissipation, and localized force 

transmissions for grain-scale force-displacements have been recorded during 

experiments for various materials, providing information relevant for DEM 

simulations [Cole and Peters, 2008; Estep and Dufek, 2012]. DEM simulations 

employed to investigate granular flow rheological properties showed that contact 

stiffness may affect the scalings between pressure, strain rate, and shear stress 

[Aranson et al., 2008; Estep and Dufek, 2013]. DEM analyses of the response of 



 7 

granular flow bulk behavior to varied basal boundary conditions showed that 

rough bed flows may continue at angles well below the angle of repose, similar to 

landslides whereby the prolonged motion is enabled by a thin collisional layer 

near the base [Silbert et al., 2002]. A DEM model that utilized particle bonding to 

investigate structural evolution and deposit character of volcanic debris 

avalanches supported initial block sliding and horst and graben emplacement 

behaviors commonly suggested in the literature, and generated deposit 

structures that conserved original edifice stratigraphy [Thompson et al., 2010]. 

These results prompt questions that include how inter-particle and particle-bed 

force propagation may influence disaggregation, especially in terms of force 

chain network evolution. Force chain contributions were not evaluated in these 

DEM studies, however their results imply potential force chain effects.  

 

 

 

1.3 Scope of Research 

 

 Part 1 of this document discusses material published in the Journal of 

Geophysical Research [Estep and Dufek, 2012], and addresses the first 

questions we investigated with this research: (1) Do the localized forces 

characteristic of confined granular systems translate to unconfined dynamic 

systems, and if so are they important for bed forces exerted on the substrates of 

unconfined gravity-driven granular flows? (2) If force chains are present at the 

flow boundaries of dynamic granular systems, do the effects from force chains in 
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unconfined gravity-driven granular flows carry significant implications for erosion 

and entrainment of the substrate? Such modifications in erosion and entrainment 

may have implications for enhanced mobility of gravity-driven granular flows 

[Berger et al., 2011; Calder et al., 2000; Crosta et al., 2009; Mangeney et al., 

2007; Iverson et al., 2011]. The entrainment of substrate material by the flowing 

mass could potentially increase or decrease flow mobility depending on flow 

dynamics and the physical character of the substrate [Berger et al., 2011; 

Iverson, 1997; Iverson et al., 2011; Mangeney et al., 2010].  

The analog experiments, detailed in Part 1, generated two-dimensional, 

monodisperse, gravity-driven granular flows. Bed force data were acquired using 

a modified photoelastic technique, and we focused on a simple system to 

improve our ability to analyze this complex problem. However, with these 

necessary simplifications we offer the caveat that our experiments and results 

are not intended to be interpreted as a direct analogue for naturally occurring 

events. Naturally occurring systems involve complexities that are not addressed 

by these photoelastic experiments, for example, polydispersity, irregular terrain, 

pore fluids, and three-dimensional structure; and it is unclear how these results 

carry over into these more complex regimes. Our experiments represent an end 

member case of dry granular flow systems. Despite these limitations, our 

approach allows us to investigate a poorly understood mechanism that 

contributes to bed physics in natural processes involving granular materials.  
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Part 2 of this document details work published in the Journal of 

Volcanology and Geothermal Research [Estep and Dufek, 2013], and validates a 

discrete element method (DEM) approach to treat the force chain mechanism 

and assesses the DEM ability to reproduce localized bed forces from the 

experimental granular flows of Part 1. This assessment represents a necessary 

step to evaluating bed forces produced in naturally occurring dense volcanic 

flows and may give further insight into erosion and re-suspension processes 

thought to be important in these events [McDougall and Hungr, 2005; Silbert et 

al., 2005; Mangeney et al., 2010]. To investigate the broader implications of this 

research we also applied the discrete element approach using properties of 

natural materials to simulate the same type of system employed in Part 1. 

Although it is unclear how our results of 2D monodisperse granular flows 

translate to naturally occurring systems, the information presented here provides 

an important step towards resolving unanswered questions related to bed 

physics in dense granular flows.  

Part 3 of this document discusses the most recent work, which includes 

the implementation of bidisperse grain populations into the analog and numerical 

experiments. DEM simulations are also expanded into 3-dimensional domains, 

an extension that is not feasible using the analog photoelastic technique. 

Contributions from these additional constraints are evaluated in the purview of 

peak bed forces derived from force chains. Increased complexity of these 

experimental granular systems represents progression that approaches natural 
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systems properties. A verdict of force chain relevance in the bed physics of 

dense granular flows is delivered in Part 3, which is then concluded with the 

direction of continued work. 
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PART 1. ANALOG MODEL 
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CHAPTER 2. PHOTOELASTIC ANALOG EXPERIMENTS (MONODISPERSE) 

 

The photoelastic method utilizes the properties of transparent materials, 

such as glass or certain polymers that become birefringent when stressed. When 

viewed in a field of circularly or plane-polarized light, one can observe the 

transmission of the internal stresses caused by forces acting on the material 

boundaries, which is the basis of the photoelastic method [Majmudar et al., 

2005]. Birefringence has been used previously, primarily in structural engineering 

models, to observe elastic stress distributions in small-scale models of structures 

in polarized light such as dams, bridges, and mechanical components [Behringer 

et al., 2008]. The same technique can be used to observe the development and 

evolution of force chains within a sample of a granular material made of 

transparent particles.  

This photoelastic technique provides an avenue for quantitative analysis of 

force chain networks, because the intensity of transmitted light is proportional to 

the boundary forces [Figure 2; Behringer et al., 2008; Majmudar et al., 2005]. 

Figure 3a shows a schematic of the light/lens setup used for our photoelastic 

experiments, and Figure 3b illustrates the shearing motion of the 2D flows and 

provides a snapshot image of a transient force chain network. Shearing and 

compression experiments conducted by Behringer et al. [2008], Majmudar et al. 

[2005], and Sun et al. [2010] indicate mesoscale (which falls between particle-

scale and macro-scale lengths) force propagation in filamentary force chain 
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networks, in which a fraction of the total number of particles carries the majority 

of the force [Geng et al., 2003; Sun et al., 2010].  

 

 
Figure 2. (a) An example of a stress pattern observed on a single photoelastic 
disk within a force chain, where the white triangles indicate the points of applied 
force. The lighter filamentary shapes on the disk are fringes, which indicate the 
magnitude of the strain experienced by the disk – in other words, the fringe 
pattern can provide an avenue to quantify applied force. (b) An image from one of 
our experiments of the stressed photoelastic granular material exhibiting force 
chains. Notice that the fringe order for the disks pictured here does not exceed 
one, which is a characteristic that continued for the duration of our 
experimentation. 
 

 

While force chains have been observed as mesoscale features in length, it 

is important to note that termination of the force propagation (especially at 

system boundaries) often occurs over the contact of a single particle (see Figures 

2 and 3). The range of birefringence shown by disks in Figure 3 illustrates that a 

fraction of the disks indeed accommodate system forces, but also that different 

levels of participation by the disks in the force chain network exist. For example, 
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disks that are primary members of a force chain exhibit strong birefringence while 

spectator disks show no birefringence; and secondary force chain members can 

be identified by minor birefringence (i.e. Figure 1). The levels of participation by 

force chain members motivate a threshold scheme for analysis, which is 

described in the calibration section. 
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Figure 3. (a) A schematic diagram of the plane polariscope setup used for our 
photoelastic experimentation. Not depicted here is a collection hopper (shown in 
Figure 4), which was attached to the end of the apparatus. Images depicted here 
are not drawn to scale. (b) Snapshot of experimental flow illustrated with inclined 
x-z coordinate system and shear velocity (u) diagram. The optical activity of the 
photoelastic disks makes primary force-chain participants, secondary 
participants, and spectators easily identifiable. 
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2.1 Experimental Apparatus and Components 

 

 To use the photoelastic technique and implement it into our work, we 

constructed an apparatus to house the material constituting our granular system. 

Internal structuring for the apparatus consisted of: the release gate, ramp, run-out 

bed, erodible bed section, retaining wall, and spacers. These parts were 

constructed from 3.18 x 10-3 m thickness cell cast clear Plexiglass sheets, and 

7.62 x 10-5 m thickness clear polyester film sheets by Dupont. Clear glass panes 

measuring 0.91 m x 0.61 m x 2.38 x 10-3 m housed the internal acrylic members. 

Delivery and collection hoppers, used for delivery and removal of the granular 

media from the apparatus, were also constructed from the Plexiglass material. 

The collection hopper (Figure 4) was attached prior to the onset of the flows, and 

added 0.30 m to the available horizontal run-out. Two ramp configurations were 

employed during the experiments: rigid and erodible. The rigid configuration was 

a straight, rigid bed positioned at a desired inclination. The erodible configuration 

was similar to the rigid, but included a 0.12 m long x 0.04 m deep rectangular 

section cut out of the bed, initiated 0.43 m from the upper end of the ramp. 

Photoelastic disks occupied this cutout area to replicate erodible substrate 

conditions. 
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Figure 4. A side view schematic of the experimental apparatus that includes the 
collection hopper shows a typical flow deposit. Terms used in the text are 
physically identified. Image is not drawn to scale.  
 

 

The granular material we chose for our experiments consisted of 6 mm 

diameter, 1180 kg/m3 density disks made from Vishay Precision Groupʼs PSM-4 

PhotoStress model material.  Because of its low elastic modulus and uniform 

sensitivity character, this material was deemed the most suitable for our 

experiments. The disks were lightly coated with flour to minimize inter-disk 

adhesion and disk-wall friction, and from 2100 to 2400 disks were used during 

each experimental run. We recorded free-fall times from disks inside and outside 

the apparatus to test for frictional effects due to particle-wall interactions. Free-

falling particle velocities inside and outside the apparatus revealed no 
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determinable difference. We consider wall effects negligible on the basis that 

estimated particle-wall forces are very small relative to the measured particle-bed 

forces.  

The contact stiffness for the photoelastic disks can be calculated as a 

function of deformation using the Herztian contact model from the materialʼs 

Youngʼs modulus, the materialʼs Poisson ratio, and the disk radius [Coste and 

Giles, 1999; Campbell, 2006]. Based on the magnitude of particle deformation 

observed in our experiments we calculated contact stiffness for the experimental 

disks to fall within a range of 1350 to 2600 N/m. These are low stiffness values 

relative to those expected for rock or sand, however we believe the expected 

differences in contact timescales (stiffer particles having shorter contact 

durations) are not limiting to chain formation and thus force propagation. This 

argument will be revisited in the discussion. 

 The coefficients of restitution (ratio of particle velocity after and before an 

impact) for particle-particle and particle-wall contacts were measured as 0.355 ± 

0.121 and 0.473 ± 0.091, respectively. Error values represent one standard 

deviation for the cumulative data about the mean. These values originate from 

trials of free falling particles impacting the designated material while being 

recorded by a high-speed camera. Particle velocities were calculated by dividing 

particle displacement by elapsed time for sequential images of the frames 

surrounding the impact. Constraining these restitution values provides an 

important physical parameter that is necessary for discrete element simulations.  
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 We constructed the plane polariscope (Figure 3a) necessary to visualize 

force chains present in the granular system. Three 0.36 m fluorescent lights were 

mounted horizontally in parallel arrangement with 0.08 m vertical spacing, and 

placed 0.4 m behind the back glass pane of the apparatus. Rosco Laboratories 

linear polarizing film and diffuser sheets were mounted between the apparatus 

and the light setup. On the face of the front glass plane of the apparatus was a 

second polarizing sheet, oriented with orthogonal polarity relative to the larger 

backside polarizing film. The position of the polarizing films and diffuser were 

adjusted to frame the area of interest for individual experimental runs. Each 

experiment was recorded at 200 fps by a Miro Phantom high-speed camera, 

equipped with a Pentax CCTV 50 mm lens, and positioned 0.55 m from the front 

glass pane of the apparatus (opposite the lighting arrangement).   

 

 

2.2 Photoelastic Implementation 

 

 We conducted a suite of experiments consisting of 24 individual flows. 

Three ramp inclinations, 10, 20, and 30 degrees, were employed for both the 

rigid and erodible bed sections.  For the rigid bed case we used two focus areas: 

one was centered on the release gate, and a second was located down slope, 

and centered 0.185 m before the terminal end of the apparatus.  Four flows were 

initiated at each inclination (two per focus area). After each run we measured and 
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recorded run-out distance at the terminus, evacuated distance from initiation 

point, and jamming height at the head and toe of the flow deposit (Figure 4). Run-

out distance is the horizontal distance the flow reached beyond the apparatus 

walls and into the collection hopper.  Evacuated length is the down-slope 

distance between the flow deposit and the retaining wall at the top of the flow 

initiation point. Jamming height at the head and toe describes the height of the 

flow deposit at the retaining wall located above the flow initiation point and the 

terminal end of the retention hopper, respectively. For flows exhibiting evacuated 

length, no jamming occurs at the head of the deposit. Accordingly, for flows 

exhibiting run-out distance less than 0.30 m, no jamming occurs at the toe of the 

deposit. The high-speed imagery captured during the experimental runs provided 

a means of recording flow duration, bed forces, chain counts, chain lengths, 

chain frequency, and fringe orders (force magnitudes). For the erodible bed case 

we also used two focus areas: the first was the same as for the rigid bed 

experiments, and a second framed the erodible bed section down-slope from the 

release gate. Four flows were run at each inclination for the erodible bed case, 

two for each focus area. Force propagation distance and magnitude into the bed 

material was measured for the erodible bed experiments.  

 A feed hopper was used to deliver the disks into the experimental 

apparatus for each experiment. The hopper was attached to the top of the 

apparatus, and the particles were released into the upper part of the housing.  In 

this way the particles self-aligned into a random arrangement, and formed a 
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static granular system confined by the release gate. Once loaded, the disk 

arrangement was recorded. Due to the monodisperse nature of the system, the 

initial packing arrangements often exhibited some unmeasured degree of 

crystallinity (apparent order in packing). Flow motion was initiated by rapid 

removal of the release gate, which allowed the collapse of the static disk 

structure and resulted in an unconfined, gravity-driven, dense granular flow. 

High-speed video recorded the experiment, and the final deposit was recorded 

with a still image. 

Still frame images from the high speed recordings of each incline – bed 

pairing were used to evaluate localized (force chain) versus averaged (from flow 

height) bed forces, and to determine the correlations between bed force 

orientations with chain inclinations relative to the substrate and total bed force 

magnitudes. Criteria for the image selections were clarity of force chains, fringe 

patterns and disk morphologies, as well as visibility of the granular flow surface in 

measurable proximity to the substrate. 

 

 

2.3 Photoelastic Calibration 

 

 In order to quantify the force magnitudes carried within the observed force 

chains, a proper calibration of the force-strain relationship was necessary. 

Conventional low elastic modulus PhotoStress calibration is achieved by an 
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imposed-curvature method [Vishay, 2010]. For most PhotoStress coated 

surfaces, the traditional approach to photoelastic calibration is to impose a series 

of known strains on simply shaped (typically a beam or rod) material with 

photoelastic coating, record the applied force and resultant fringing, and use this 

information to quantify the strain and/or force to the more complex structure 

under investigation. Multiple fringe cycles (a fringe order greater than one) 

indicate rather large forces relative to the elastic modulus of the photoelastic 

material. For fringe orders less than one, the affected, or optically active, area of 

the photoelastic material increases with increased strain. However, when the 

fringe order exceeds one, the area of birefringence no longer requires growth. 

Instead, the fringe pattern may cycle within the same area (see Figure 2). This is 

especially true when the optically active area considered is the entire surface 

area of the investigated material.   

Our experimental granular systems possess unique characteristics, which 

allow us to justify an alternative calibration technique for our work. Most 

importantly, the relatively small-magnitude forces in our experiments never 

produce fringe orders greater than one. This is due to the small size and density 

of the disks, and the small scale of the granular systems employed.  The 

discrete, monodisperse character of the disks along with the limited fringing 

observed means that the area of optical activity on a given disk is proportional to 

the force imposed on the boundaries of the disk. We use this relationship as a 
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proxy for an incremental calibration scheme that correlates contact forces with 

area of optical activity. 

Four threshold fringe magnitudes that encompassed the spectrum 

observed during the experiments were established and systematically 

reproduced: zero – no visible fringing; contact (or quarter) – fringe initiation at the 

contact point on disk boundary; half – fringe propagation reaches midway 

through a disk; and full – fringe propagation covers the full diameter of a disk. 

Figure 5A shows a schematic diagram of the calibration setup. A 2D hopper, 

used as an alignment guide for the disks, was suspended 0.003 m above the 

surface of a digital scale. Four disks were placed on the scale in a double layer 

arrangement, and their cumulative weight recorded; this constituted the ʻzero 

fringeʼ case. The double layer allowed for clear visibility of fringing, which is 

necessary for imaging and accurate reproduction of fringe magnitudes. A dSLR 

camera was used to image the calibration sequences. A manually controlled 

acrylic arm applied force to the upper disk until the appropriate amount of fringing 

was produced, and the scale weight reading was recorded. This method was 

repeated for each of the threshold fringe magnitudes, ten times each. The scale-

weight readings were converted to force units that were normalized for an 

individual disk experiencing force applied at one point of contact by dividing the 

zero-fringe value by the number of disks used in the calibration setup. 

Subtracting the residual, self-applied force caused by the disk weight was the 

final refinement of the calibration data. Figure 5B shows the calibration results. 
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The calibration data, although discrete to threshold values, encompass the 

magnitudes of fringing observed throughout the suite of our experiments. Owing 

to this fringe containment and the small optically active area (relative to the facial 

area of a disk) available between threshold fringe levels, a simple linear 

interpolation between calibration data points is reasonable. We define a quantity, 

the fringe factor, which is the fractional area of a disk that is optically active; for 

example, if a disk has a fringe factor of 0.5, then half of its facial area is optically 

active. Table 1 compares calibration fringe thresholds to the number of self-

weighted disks required to generate a force equivalent to each fringe threshold.  

 

Table 1. Applied force and equitable disk weight in terms of calibrated fringe 
threshold values 

Fringe Threshold Number of Disks to Equal 
Applied Force 

Force Applied During 
Calibration (N) 

None 1 0.001 
Contact 9.55 0.009 
Half 36.68 0.036 
Full 70.34 0.068 
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Figure 5. (a) Schematic view of the calibration setup used during our 
experimentation. An acrylic arm applies force to a photoelastic disk until the 
desired fringe magnitude is reached. The underlying digital scale records the 
weight change; which is used to calculate the applied force. (b) Plot shows the 
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calibration results in terms of fringe threshold values. Since the fringing observed 
during experimentation falls within the bounds of our calibration data, 
interpolation between the discrete threshold values is justifiable. Note that the 
mean data points and deviations bars are offset so they are distinguishable from 
standard data. 
 

 

2.4 Image Processing 

 

 Information from the calibration-sequence images was implemented into an 

image-processing algorithm that we developed using MATLABʼs image analysis 

tools to extract data from the experiments. Individual frames from the video clips 

of each run were parsed into sequential tiff images. The image sequences were 

processed through the program, which identified the force chain fringe patterns 

and converted them into binary form, filtered the magnitudes by fringe thresholds, 

and computed several parameter values for the selected force chains. The 

program saved output files containing force chain counts, average and total chain 

lengths, and respective bed force magnitudes.   
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CHAPTER 3. PHOTOELASTIC RESULTS 
 
 
 

Flow durations for each incline, recorded as the time elapsed between 

flow initiation and establishment of a static deposit, were: 10º slope, 1.74 ± 0.16 

s; 20º slope, 2.18 ± 0.13 s; and 30º slope, 2.62 ± 0.21 s. Table 2 provides 

measured deposit values for several physical parameters depicted in Figure 4. 

External files Media 1 and Media 2 show video examples of rigid bed and 

erodible bed experimental granular flows, respectively. 

 

Table 2. Dimensional measured values for flow deposits. 

Rigid 
Incline 10º 20º 30º 

Run-out Distance (m) 0.041 ± 0.028 0.162 ± 0.026 0.300 ± 0.000* 
Evacuated Length (m) 0.000 ± 0.000 0.000 ± 0.000 0.056 ± 0.028 

Jamming Height @ Top 
(m) 0.186 ± 0.002 0.099 ± 0.003 0.000 ± 0.000 

Jamming Height @ 
Bottom (m) 0.000 ± 0.000 0.000 ± 0.000 0.009 ± 0.003 

Erodible 
Incline 10º 20º 30º 

Run-out Distance (m) 0.069 ± 0.029 0.153 ± 0.010 0.278 ± 0.021 
Evacuated Length (m) 0.000 ± 0.000 0.000 ± 0.000 0.014 ± 0.022 

Jamming Height @ Top 
(m) 0.187 ± 0.012 0.130 ± 0.002 0.005 ± 0.001 

Jamming Height @ 
Bottom (m) 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.003 

aThe available run-out distance in the collection hopper was 0.30 meters; 
therefore this represents a minimum value. 
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 Bed force time series reveal irregular distributions of discrete localized bed 

forces for each incline in both time and magnitude. The bed-force time series are 

presented in Figure 6 for each inclination of the rigid bed experiments. The data, 

a summation of localized (force chain) and averaged (flow height) bed forces, 

focus on the bed forces within an approximately 0.012 m length section on the 

ramp surface over the duration of each flow. These time series show bed forces 

at one position on the substrate as the flow passes. Visual inspection of the 

active flows also revealed irregular spatial force chain distribution patterns. 
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Figure 6. Bed force time series describes cumulative bed force magnitudes due 
to force chains combined with the flow body for each inclination during rigid case 
runs. Red inverted triangles, blue squares, and green triangles represent the 10-
degree, 20-degree, and 30-degree cases, respectively. 
 

 Peak forces imparted by force chains on the bed greatly exceeded mean 

forces due to the flow thickness, demonstrated in Figure 7. The mean local bed 

force, the time-averaged value of the measured localized bed force magnitudes, 

was obtained from analyzing the fringe factor of the chain member contacting the 

substrate. The time-averaged flow height bed force was estimated from the 

height of the flow normal to the force chain-substrate contact point to give a point 
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of comparison with those forces we would predict from a depth-averaged 

perspective (i.e. to compare the results to depth-averaged continuum models as 

a base-line).  

 

 
Figure 7. Localized bed force magnitudes from force chains compared to 
averaged bed force magnitudes calculated from flow body height for rigid and 
erodible cases.  The dashed line illustrates equity between force types, which 
emphasizes the significant force localization. Red inverted triangles, blue 
squares, and green triangles represent the 10-degree, 20-degree, and 30-degree 
cases, respectively. Solid markers indicate rigid bed data (denoted by ʻRʼ in the 
legend) while open-face markers indicate erodible bed data (denoted by ʻEʼ in the 
legend). 
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 Depth-averaged continuum models [Denlinger and Iverson, 2004; Gray, 

1999; Vreugdenhil, 1994] often calculate normal bed stresses by assuming that 

vertical stresses are dominated by weight of the flow immediately above the bed. 

In addition, Denlinger and Iverson [2004] proposed that a fluctuating vertical 

acceleration term is needed to account for the equivalent of down-slope and 

centripetal acceleration for flows over complex three-dimensional topography. 

The flow height bed force we report here is an estimated value used to reference 

the order of magnitude we expect from depth-average continuum models for 

normal bed forces. Localized (force chain) bed force relative to flow height bed 

force magnitude was 435.62 ± 0.59 % for rigid bed conditions and 738.32 ± 0.57 

% for erodible bed conditions. Error values represent one standard deviation for 

the cumulative data about the mean.  

 Photoelastic disks occupying the cutout area in the erodible-bed show an 

elastic feedback response to the flow body during flow-substrate interaction, 

which enhances the flow-bed contact forces. The material in the erodible bed 

section communicates with the flow body through extended force propagation. 

Because this extension is not reflected in the flow height bed force values (the 

flow height does not increase), the localized bed forces for the erodible section 

are significantly higher than the rigid case. On the basis of 29 rigid-bed and 14 

erodible-bed images, the localized force values include results from both focus 

areas of the experiments. Although the precise value of the averaged localized 

force is a result of the particular location chosen for the measurements and the 



 32 

geometry of the apparatus, our results indicate that considerable bed force 

excursions due to force chain development are likely in an unconfined, gravity-

driven granular flow.  

 We observed ejection of bed particles by the flow at each ramp inclination, 

with a positive correlation between the number of ejected particles and ramp 

inclination (higher inclines had more ejected bed particles). During the two 

separate flows at each ramp inclination, the total number of ejected bed particles 

was 1, 5, and 27 for the 10-degree, 20-degree, and 30-degree ramp inclinations, 

respectively. Each ejected particle was entrained into the body of the granular 

flow. Deposition of flow particles into the erodible bed section after bed particle 

ejection was also observed but not quantified.  

 Near steady state conditions for chain lengths are reached quickly relative 

to flow duration (after ~0.5 s the chain length values show little variance). Figure 

8A and B presents time series showing 2 second durations of average length, 

total length, and number of force chains for each incline from rigid bed and 

erodible bed experiments, respectively. No distinguishable patterns were 

recognized upon analysis of the chain length and number regressions. Because 

the area captured by the camera frame was limited, data presented in the time 

series plots are representative of a fraction of the flow body. 
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Figure 8. (a) Time series of average length, total length, and number of force 
chains for each incline from rigid bed experiments. (b) Time series of average 
length, total length, and number of force chains for each incline from erodible bed 
experiments. Red diamonds, blue squares, and green diamonds indicate 10-
degree, 20-degree, and 30-degree ramp inclinations, respectively.  
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 Using the Pearson product-moment method [Dutilleul et al., 2000; Trauth, 

2007], no significant correlation was found between force chain inclinations and 

the components (normal and shear) of the bed forces. Although no strong 

correlations were discovered, the chain inclinations and total bed force 

magnitudes showed small positive correlations; whereas the normal versus shear 

components displayed a medium negatively correlated relationship. Chain 

inclinations describe the force chain angle proximal to and relative to the flow 

substrate. Trauth [2007] provided a detailed description of the Pearson product-

moment method, which measures the strength of linear dependence between 

two variables. 

 Because photoelastic material was used for the erodible-bed section, our 

experiments provided an avenue to investigate bed force propagation into the 

substrate. Employing the same techniques used to determine bed forces at the 

flow-substrate interface, we recorded the extent of birefringence observed in the 

cutout bed section resulting from flow contact with the substrate.  Propagation 

extent versus bed-force magnitude is plotted in Figure 9. Propagation was limited 

by edge effects of the section domain so that the represented values are 

minimum values. The data for the bed-force propagation show no significant 

correlation between applied force and propagation extent, as the correlation 

coefficient of 0.328 is much lower than the 0.532 minimum value required for 

significance at the 95% confidence level at the given sample size. We find 

evidence of birefringence in the substrate ahead of the flow front due to forces 
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applied upslope by the flow (Figure 10). 

 

 
Figure 9. Extent of force propagation into the erodible bed section is shown, 
where length is normalized by the diameter of a disk. Normalized contact force 
refers to the magnitude of bed force at chain-bed contact point for each ramp 
inclination where force is normalized by one particleʼs gravitational acceleration.  
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Figure 10.  Images of the erodible bed section show force propagation into the 
bed section, and ahead of the flow front.  The top two pictures (A, B) are the 30 
degree case, and the bottom two pictures (C, D) are the 10 degree case.  The left 
column (A, C) shows the bed sections before the flow impacted them, and the 
right column (B, D) shows the flows contacting the erodible bed sections. The 
propagated forces are shown by the altered birefringence of particles in the 
erodible bed section, and are pointed out by blue arrows. 
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CHAPTER 4. PHOTOELASTIC DISCUSSION 
 
 
 
 Our experiments provide clear evidence of extreme localized (force chain) 

bed forces relative to average (from flow height) bed forces, considering 

ʻextremeʼ to be greater by at least an order of magnitude. This work highlights 

that force chains, even in low-slope flows, can produce particle chain networks 

that may initiate stresses exceeding critical shear thresholds and may contribute 

to entrainment in granular systems. Traditional continuum models that derive 

averaged bed force values currently do not address the contributions of force 

chains to the flow substrate, and thus may under-predict bed forces locally. 

However, flow models that employ grain scales may be able to resolve these 

localized forces [Mangeney et al., 2007; Rattanadit et al., 2009; Reddy and 

Kumaran, 2010; Rycroft et al., 2009].  

Force chain processes at the beds of granular flows likely contribute to the 

mechanism of entrainment through either physically ejecting grains due to the 

localized forces, as seen in our experiments, or by modifying bed conditions. 

Schuerch et al. [2011] used a combination of estimated maximum flow depths 

with elevation changes to evaluate the effect of flow depth on the probability of 

erosion in debris flows. The work shows that substantial erosion is more likely 

with increased flow depth, but also that a wide range of outcomes is possible at 

any given flow depth. For most debris flows, flow depth is largest at the front of 

the flow, and flow depth influences forces acting on the channel bed by way of 
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three mechanisms: (1) increased basal shear stresses, (2) the impact stresses of 

coarse particles in the flow front, and (3) hydraulic pressure at the flow front 

[Schuerch et al., 2011]. Iverson et al. [2011] observed a positive correlation 

between water content of the substrate and scour depth for large scale 

experimental debris flows, and Schuerch et al. [2011] noted that coarse debris 

flow fronts have very low fluid pressures. The influences on the bed physics of 

fluid interactions within granular flows are beyond the scope of this work, 

however low pore pressures at flow fronts may allow granular processes such as 

force chains to operate more effectively. Although not evaluated in these 

experiments, the propagation of force chains into the subsurface below and in 

front of the flow may also aid entrainment by modifying pore pressure in those 

substrates that are at or near liquid saturation.  

If a force chain is oriented obliquely to the bed it contacts, which was 

commonly observed in our experiments, then the force transmitted to the 

substrate by that chain contains normal and shear components. Interestingly, in 

our experiments the shear bed force components derived from force chains 

carried the same order of magnitude as the normal bed force components for the 

chain inclinations observed. This further supports the assertion that force chains 

in granular flows may contribute to the shearing mechanism necessary to ʻpluckʼ 

substrate material, initiate entrainment, and potentially alter flow momentum. This 

is not to say, however, that force chain dynamics are the only mechanism 

contributing to substrate entrainment in natural in granular flows. 
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Similarity in threshold behavior for substrate entrainment for unrelated 

systems occurs because entrainment thresholds depend on entrainment inducing 

bed forces themselves, and not on the agent producing the forces. Granular flow 

and fluvial flow systems may both exhibit critical threshold phenomena for 

substrate entrainment [Ancey et al., 2008; Arulanandan and Perry, 1983; Garcia 

and Parker, 1991; Frey and Church, 2011; McDougall and Hungr, 2005; 

Sarmiento and Falcon, 2006]. It is unclear whether the basal shear stresses in 

granular flows are analogous to a critical shear stress for fluvial or other fluid 

entrainment processes, as other effects such as grain impacts or water content 

are likely relevant [Schuerch et al., 2011; Iverson et al., 2011]. Previous work 

showed the similarities between granular and fluvial bed load systems [Frey and 

Church, 2011; McDougall and Hungr, 2005], suggesting that comparable physics 

may dominate each of these regimes. Force chains may supply a viable 

mechanism capable of producing shear forces necessary for entrainment in 

granular systems. 

 Our experiments also indicate significant propagation of bed forces into the 

flow substrate, which is also a result of dynamic force chain processes. Although 

limited due to edge effects of the experimental apparatus domain, our data 

suggest that bed forces applied during force chain contact with the bed can 

propagate on the same length scales as force chains within the flow body. It is 

important to note that the limited domain size in our erodible bed experiments 

resulted in near-crystalline particle arrangements in the bed. Examination of 
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static granular systems has shown that increases in disorder correlate to 

decreases in force propagation [Geng et al., 2003]. However, Geng et al. [2003] 

also reported that long-range force correlation for anisotropies in granular 

systems are caused by shearing motion. For force chains contacting the bed 

near the flow front, our experiments demonstrate that the bed forces may 

propagate ahead of the flow front and affect the substrate particles before the 

flow body reaches their proximity. This may potentially influence pore pressures 

in front of the flow in the case of wet substrates. Because force chains can cause 

significant perturbations to the forces at the bed, this work suggests that sub-grid 

models (varied spatial resolution) may be necessary when applying continuum 

models to granular flow erosion problems. Furthermore, our results imply that 

discrete-element computations may be particularly useful in examining force 

chain processes in geophysical flows [Schwaiger and Higman, 2007; Aharonov 

and Sparks, 2004]. 

 The low contact stiffness of the material we employed in our experiments 

relative to natural material raises questions concerning the applicability of our 

results to natural systems in terms of force chain stability due to an expected 

reduction in contact times for stiffer particles. Campbell [2003] showed that force 

chain stability in confined systems is dependent on confining pressure, restitution 

coefficient, and chain length. From this description, force chain stability in 

confined systems results from a balance of confining pressure and loading on the 

constituent particles within the chain. With the approach of Campbell [2003] force 
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chains with ʻunloadedʼ contacts are unstable because one end of the chain is 

unconfined. 

 However, force transmission via force chains does not require that the 

chains remain stable for long periods of time. Indeed, our experiments reveal 

significant force propagation through chains that persist for at most the duration 

of one high-speed video frame (1/200 sec). Because our temporal resolution is 

1/200 sec, we cannot definitively say that force chains captured in our images 

persist even for that long. Our data clearly indicate that force chains provide 

localized forces to the substrate, but we can use the granular time scales 

presented by Sun et al. [2010] to better illustrate why this occurs. Three granular 

time scales are defined: tm – microscopic time scale, tc – macroscopic time scale, 

and tR – Rayleigh (mesoscopic) time scale. The microscopic time scale  

€ 

tm =
d
P
ρ

(1)  

 denotes the time for particle displacement (with density (ρ)) over the distance of 

a particle diameter (d) subjected to local pressure (P), which is the typical time 

scale of particle rearrangement. The macroscopic time scale  

€ 

tc =
1
γ

(2)  

is linked to the contact lifetimes during the particle rearrangements occurring 

during a flow with shear rate (γ). The Rayleigh (mesoscopic) time scale  

€ 

tR =
πd

0.163ν + 0.877
ρ
G

(3)  
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is the time for a Rayleigh wave to propagate along a particle surface with 

Poissonʼs ratio (ν) and shear modulus (G). The mesoscopic time scale 

represents the time for an elastic wave to propagate through a particle contact, 

i.e. force propagation. 

 Calculating these characteristic timescales for the disks in our experiments, 

and assuming a force chain consisting of 10 disks we find: tm = 6.52 x10-3 s, tc = 

6.25 x10-2 s, and 10*tR = 5.85 x10-3 s. Table 3 presents the parameter values 

used in the time scale calculations. Force propagation occurs over a shorter time 

period than the lifetime of particle contact or particle rearrangement, which 

indicates that the force chains effectively instantaneously transmit forces relative 

to other flow processes. This also illustrates that contact times do not scale with 

particle stiffness in dense granular flows, alternative to the trends observed in 

systems dominated by binary collisions. 

 

Table 3. Parameter values used for granular time scale calculations 
Time scale tm = 6.52 x10-4 s tc = 6.25 x10-2 s tR = 5.85 x10-4 s 

Parameter d ρ P γ G ν 

Value 0.006 1180 1000 16 1.3 x106 0.5 

Units m kg m-3 Pa s-1 Pa n/a 
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4.1 Photoelastic Experiments Conclusions 

 

 Photoelastic experiments provide quantitative evidence of dynamic force 

chain activity in gravity-driven granular flows, and reveal the significance force 

chain activity carries for conditions at the flow substrate. This work demonstrates 

that force chains, regardless of their stability, transmit high magnitude localized 

forces to the substrate of dense granular flows. Our experiments provide a 

dataset to validate discrete-element granular flow models both qualitatively and 

quantitatively. Inter-particle force and bed-force data provide constraints on force 

magnitudes, and images obtained from the experiments reveal geometric 

information in both spatial and temporal domains. Future experiments of this type 

may increase scale sizes for the experimental systems, which would be 

especially useful for the erodible bed case. A larger erodible bed section may 

eliminate the observed edge effects and allow for more amorphous substrate 

particle arrangements. Polydispersity within the granular media and addition of 

fluids into the system are planned to strengthen experimental applicability to 

natural systems.  
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PART 2. COMPUTATIONAL MODEL 
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CHAPTER 5. DISCRETE ELEMENT NUMERICAL METHODS 
 
 
 

Our model for this work utilized the Multiphase Flow with Interphase 

eXchanges – Discrete Element Model (MFIX-DEM) open source code, a product 

of the National Energy Technology Laboratory [Garg et al., 2010]. The open 

source MFIX–DEM code can be used for discrete element method, continuum 

discrete method, and two-fluid method simulations from a single source code; 

however the current work focuses on purely granular systems and therefore uses 

only the discrete element portion of the code base. In the MFIX–DEM code the 

solid phase is represented by individual particles and the collisions are directly 

resolved using the soft-sphere approach of Cundall and Strack [1979], which is 

based on a spring-dashpot model. The soft-sphere approach is appropriate here 

since it relaxes the binary collision assumption of the hard-sphere approach and 

thus allows for multiple particle contacts. Additionally, the soft-sphere approach is 

advantageous in that the required time-step is dependant on contact stiffness 

and independent of packing fraction [Garg et al., 2010]. 

In the DEM approach, the mth solid phase is represented by Nm disk-

shaped particles with each particle having diameter Dm, thickness hm, and 

density ρm. Since the current work is concerned with monodisperse granular 

flows only one solid phase is considered. We note that as we are comparing our 

calculations to 2D experiments the particles we considered were truly disk shape 

and not spheres, and the numerical approach was modified accordingly. The N 
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particles occupy a Lagrangian reference frame at time t by {Xi(t), Vi(t), ωi(t), Di, ρi, 

i = 1,...,N}, where Xi(t) represents the ith particleʼs position, Vi(t) and ωi(t) express 

linear and angular velocities, Di symbolizes diameter, hi defines disk thickness, 

and ρi denotes density. The mass mi and moment of inertia Ii of the ith particle 

are, respectively: 

€ 

mi = ρi
πDi

2hi
4

(1)

Ii =
miDi

2

8
(2)

 

The ith particleʼs position, linear and angular velocities progress according to 

Newtonʼs laws by: 

€ 

dXi(t)
dt

=Vi(t) (3)

mi
dVi(t)
dt

=FT
i =mi g +Fi∈k

d (t) +Fi
c (t) (4)

Ii
dω i(t)
dt

=Ti (5)

 

with FT
i as the net sum of all forces acting on the ith particle, g as the acceleration 

due to gravity, Fd

€ 

i ∈ k
 as the total drag force on ith particle residing in kth cell, Fc

i
 as 

the net contact force due to contact with other particles or system boundaries, 

and Ti as the sum of all torques acting on the ith particle. Because this study does 

not consider any carrier phase (fluid or gas) we neglect drag forces following the 

independent tests in the experiments from Estep and Dufek [2012] that showed 

interparticle and body forces are much greater than drag forces caused by the 

ambient atmosphere as well as wall friction at system boundaries. 

Particle contact forces have most often been described by an elastic 
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spring and a viscous dashpot model in parallel, depicted in Figure 11, whose 

equation for motion is shown in the normal direction by the following expressions 

[Ji and Shen, 2006; Malone and Xu, 2008]: 

€ 

F c = F e +F v (6)
Fe = knδ

α (7)
Fv =ηuδ β (8)

 

where m is particle mass, δ is overlap between particles (or deformation), η is the 

damping coefficient, kn is normal contact stiffness, Fe is the elastic (spring) force, 

Fv is the viscous (dashpot) force, u is the relative velocity of the two particles 

moving towards each other, and the values of α and β vary based on the contact 

model employed. The above denotes the Hertz contact model when α = 3/2, β = 

1/4 [Tsuji et al., 1993], which we adopt in this work for two primary reasons: (1) 

This model has been shown to be a reasonable approximation for granular flows 

[Ji and Shen, 2006; Brewster et al., 2008; Malone and Xu, 2008], and (2) We can 

calculate the contact stiffness for the photoelastic disks a function of deformation 

using the Herztian contact model from the materialʼs Youngʼs modulus, Poisson 

ratio, and the disk radius, all properties we can measure independently [Coste 

and Giles, 1999; Campbell, 2006; Brewster et al., 2008; Garg et al., 2010; Estep 

and Dufek, 2012]. 
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Figure 11. Schematic shows a spring-dashpot soft sphere contact model for two 
particles, i and j. The spring (elastic) force component is controlled by the contact 
stiffness parameter k in equations 7,9 and 10, while the dashpot (viscous) force 
component depends on the damping coefficient η in equations 8 and 11. 
 
 
 

Using the Hertzian contact theory and assuming a monodisperse grain 

population, the normal and tangential contact stiffnesses between contacting 

particles i and j can be calculated as follows: 

€ 

kn,ij =
2
3

E r
1−σ2( )

δn,ij
1
2 (9)

kt ,ij =
4
3

E r
2 −σ( ) σ +1( )

δn,ij
1
2 (10)

 

with E denoting the Youngʼs modulus, r corresponding to disk radius, and σ 

representing the Poisson ratio.  

While stiffness constants describe the elastic properties of simulated 

particles, the dissipative properties depend on the coefficient of restitution, which 

is simply the ratio of speeds after and before a collision [Massey et al., 2006]. A 
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relationship between the damping coefficient η and coefficient of restitution e can 

be found using the following relationship [Ting et al., 1989]: 

€ 

η =
2(ln e) mkn
(lne)2 +π 2

(11)  

Values used for the coefficients of restitution for particle-particle and particle-wall 

contacts originate from experimental trials of free falling particles impacting the 

designated material while being recorded by a high-speed camera. Particle 

velocities were calculated by dividing particle displacement by elapsed time for 

sequential images of the frames surrounding the captured impacts. The 

coefficients of restitution for particle-particle and particle-wall contacts were 

measured as 0.355 ± 0.121 and 0.473 ± 0.091, respectively. Error values 

represent one standard deviation for the cumulative data about the mean.  

 For validation of the numerical model compared to the experimental data, 

we ran 222 total simulations using 3 substrate inclinations and 10 values of 

contact stiffness. We collected simulated data consistent in form with the 

experimental data. To extract relevant information we first assigned a point in the 

substrate as a reference position, and searched for active particles within a 

designated radius of the reference position. Next, forces experienced by the 

active particle(s) within the designated radius were recorded for the duration of 

the flow simulation; and exported as a file containing the particle id, time-step, 

component velocities, and component forces (where component refers to the x- 

and y-components using an x-y 2D Cartesian coordinate system). The resulting 
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dataset was filtered such that each particle id – time-step pairing was unique, and 

force magnitudes were computed for each pairing. From the experiments, the 

mean peak (force chain) bed force, the time-averaged value of the measured 

localized bed force magnitudes, was obtained from analyzing the fringe factor of 

the chain member contacting the substrate. Peak forces in the simulation data 

were identified and correspond to force chain transmitted near-bed forces.  

Flow height bed forces were calculated for the simulated flows with the 

same method used in the experimental analysis. Time-averaged flow height bed 

forces were estimated from the height of the flow normal to the force chain-

substrate contact point to generate a point of comparison with those forces we 

would predict from a depth-averaged perspective. Depth-averaged continuum 

models often calculate normal bed stresses by assuming that vertical stresses 

are dominated by weight of the flow immediately above the bed. The flow height 

bed force we report here is used to compare the results to depth-average 

continuum models as a base line. 

Simulations of sand grains and rocks flowing down an incline were also 

conducted using our discrete element model. The sand and rock flow simulations 

used the same system configuration as the simulated experiments, and only 

differed in the physical properties input for the active flow particles. Cole and 

Peters [2008] conducted experiments that provided constraints on the values for 

sand and rock grain contact stiffnesses and densities, which we use in our 

simulations. The sand and rock flow simulations were conducted to provide a 
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comparison between the materials used in previous experiments [Estep and 

Dufek, 2012] and natural materials.  

 Although previous work showed qualitative agreement between 2D and 3D 

granular simulation results [Alonso-Marroquín et al., 2009], contributions from 3D 

structure, as well as polydispersity, irregular terrain, and pore fluids cannot be 

assumed. While not evaluated in this work, the propagation of force chains into 

the subsurface below and in front of the flow may modify pore pressures in those 

substrates that are at or near liquid saturation. Irregular terrain also likely 

influences force chain evolution and the impact forces these chains impose on 

substrates; for instance bumpy topography may exacerbate chain forces, 

resulting in particle fragmentation within the flow body [Davies and McSaveny, 

2009; De Blasio, 2011].  
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CHAPTER 6. DISCRETE ELEMENT METHOD NUMERICAL RESULTS 
 
 
 

Results from the analog experiments of Estep and Dufek [2012] are 

compared to the discrete element simulations results previously described, in 

consistent forms so that the data are comparable. Further results present 

numerical performance in a broader context by showing peak forces as a function 

of the value of contact stiffness. The remaining results explore force probability 

distributions as a function of contact stiffness, and finally test for characteristic 

periodicities of peak forces.  

Experimental bed-force time series were presented in Figure 6 of Part 1 

for each inclination of the rigid bed experiments. The data, a summation of 

localized (force chain) and flow height bed forces, focus on the bed forces within 

an approximately 0.012 m length section on the ramp surface over the duration of 

each flow. These time series show bed forces at one position on the substrate as 

the flow passes. Time series of bed forces from simulation data are presented in 

Figures 12, 13, and 14 which correspond to 10, 20, and 30-degree substrate 

inclinations, respectively. These simulation time series contain information 

specific to interparticle forces and do not include the flow-height baseline 

observed in the experimental bed force time series (Figure 6). External file Media 

3 shows a simulated monodisperse flow animation. 
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Figure 12. Bed force time series from simulations with a 10-degree ramp 
inclination. Contact stiffness values (k) of 1378 N/m, 3000 N/m, and 50000 N/m 
correspond to the top, middle, and bottom times series, respectively. Green solid 
lines and blue solid lines indicate the location of data collection as Position 1 and 
Position 2, respectively. Position 1 was 0.1 m down slope of the release gate and 
Position 2 was 0.2 m down slope of the release gate. The red horizontal dashed 
lines represent the mean peak forces from the photoelastic experiments with a 
10-degree ramp. 
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Figure 13. Bed force time series from simulations with a 20-degree ramp 
inclination. Contact stiffness values (k) of 1378 N/m, 3000 N/m, and 50000 N/m 
correspond to the top, middle, and bottom times series, respectively. Green solid 
lines and blue solid lines indicate the location of data collection as Position 1 and 
Position 2, respectively. Position 1 was 0.1 m down slope of the release gate and 
Position 2 was 0.2 m down slope of the release gate. The red horizontal dashed 
lines represent the mean peak forces from the photoelastic experiments with a 
20-degree ramp. 
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Figure 14. Bed force time series from simulations with a 30-degree ramp 
inclination. Contact stiffness values (k) of 1378 N/m, 3000 N/m, and 50000 N/m 
correspond to the top, middle, and bottom times series, respectively. Green solid 
lines and blue solid lines indicate the location of data collection as Position 1 and 
Position 2, respectively. Position 1 was 0.1 m down slope of the release gate and 
Position 2 was 0.2 m down slope of the release gate. The red horizontal dashed 
lines represent the mean peak forces from the photoelastic experiments with a 
30-degree ramp. 

 

 

Based on the magnitude of particle deformation observed in our 

experiments we calculated contact stiffness for the experimental disks to fall 

within a range of approximately 1300 to 2600 N/m. The range of values arises 

due to variations in measured particle deformation between the end-member 

fringe magnitudes observed in the experiments. We note that contact stiffness 

values presented here were calculated from physical measurements and are 
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independent of the numerical tests. Experimental data revealed that time-

averaged peak localized (force chain) bed forces relative to flow height bed 

forces was 435.62 ± 0.59 % for rigid bed conditions, compared to 396.29 ± 0.58 

% from simulation data. Peak (force chain) bed forces from the experiments 

averaged 0.0413 ± 0.0095 N, while flow height bed forces averaged 0.0104 ± 

0.0020 N. Simulation data provide peak (force chain) bed forces averaging 

0.0456 ± 0.0083 N, and flow height bed forces averaging 0.0105 ± 0.0036 N. 

Error values for the bed forces denote the mean absolute deviation. 
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Figure 15. Peak bed force sensitivity to the contact stiffness parameter (k, units 
N/m) in simulation data. Increases in contact stiffness (k) correspond to 
increases in peak bed forces for each inclination. The vertical lines indicate the 
bounds for k values, measured from the experiments. The horizontal red, blue, 
and green dashed lines represent mean peak forces from 10-degree, 20-degree, 
and 30-degree experimental data, respectively. Data points represent the 
simulated mean peak bed forces, and error bars show mean absolute deviation. 
Red inverted triangles, blue squares, and green triangles represent the 10-
degree, 20-degree, and 30-degree cases, respectively. The shaded yellow box 
covers the area on the plot consistent with experimental data; i.e. simulation data 
within this box agree with experimental data. 
 

 

Simulation data show particular sensitivity to the value used for contact 

stiffness. Figure 15 presents a comparison of peak bed forces to contact 

stiffness. The ranges for contact stiffnesses and peak bed forces derived from 
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experimental data is outlined. A ʻvalidation boxʼ is created by the overlap of these 

ranges, such that simulation data within the bounds of this box accurately 

reproduce the experimental results. We emphasize that the stiffness values 

bounds for experiments are in fact those determined from physical 

measurements. Figure 16 shows a probability distribution of bed forces for 

simulations using contact stiffness values consistent with experimental values. 

Figure 17 presents a probability distribution of bed forces for simulations using 

contact stiffness values consistent with experimental values, and adding a 

contact stiffness value higher than the measured values by a factor of ~2 (k = 

5000 N/m). Figure 18 reveals a probability distribution of bed forces for 

simulations using contact stiffness values consistent with experimental values, 

and adding a contact stiffness value higher than the measured values by more 

than an order of magnitude (k = 50000 N/m). Figures 16, 17, and 18 show that 

increases in contact stiffness correspond to increases in peak bed forces; and 

that larger excursions are less probable than smaller ones.  
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Figure 16. Probability distribution of peak bed forces using contact stiffness 
values consistent with experimental values. The vertical axis represents 
probability and the horizontal axis indicates peak bed forces normalized by the 
mean bed force. Red symbols, blue symbols, and green symbols represent 10-
degree, 20-degree, and 30-degree data, respectively. The legend in the shaded 
box refers to contact stiffness (N/m), while the red, blue, and green colored 
numbers directly below the shaded box indicate data from 10-degree, 20-degree, 
and 30-degree data, respectively. 
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Figure 17. Probability distribution of peak bed forces using contact stiffness 
values exceeding the experimental range by a factor of 2. The vertical axis 
represents probability and the horizontal axis indicates peak bed forces 
normalized by the mean bed force. Red symbols, blue symbols, and green 
symbols represent 10-degree, 20-degree, and 30-degree data, respectively. The 
legend in the shaded box refers to contact stiffness (N/m), while the red, blue, 
and green colored numbers directly below the shaded box indicate data from 10-
degree, 20-degree, and 30-degree data, respectively. 
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Figure 18. Probability distribution of peak bed forces from simulation data using 
contact stiffness values exceeding the experimental range by an order of 
magnitude. The vertical axis represents probability and the horizontal axis 
indicates peak bed forces normalized by the mean bed force. Red symbols, blue 
symbols, and green symbols represent 10-degree, 20-degree, and 30-degree 
data, respectively. The legend in the shaded box refers to contact stiffness (N/m), 
while the red, blue, and green colored numbers directly below the shaded box 
indicate data from 10-degree, 20-degree, and 30-degree data, respectively. 
 

 

Discrete element simulations of 2D sand grain and rock granular flows 

show bed force data in qualitative agreement with simulated experiments, but 

with more extreme localization magnitudes (Figure 19). Normalized by the force 

of a single particles gravitational acceleration (Fbed/Fparticle), simulated flow bed 

forces reached 876 and 686 for sand and rock flows, respectively, compared to 
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67 for experimental flows. Each of the (sand, rock, and experimental) simulated 

flows reached and maintained flow heights of roughly 10 particle diameters. 

Different physical parameters input in the model for sand and experimental 

particles were contact stiffness, particle diameter, and particle density, which are 

listed in Table 3. Spectral analysis of bed force time series data generated a 

noisy amplitude spectrum (Figure 20) that revealed no dominant frequencies. 

 

 
Figure 19. Bed force time series from simulated flows comparing results for 
natural material properties to experimental material properties. (A) sand grains, 
(B) rocks, and (C) photoelastic disks from experiments. ʻPosition 1ʼ and ʻPosition 
2ʼ indicate locations on the substrate down-slope of the release gate where bed 
force data was collected.  ʻFlow Ht Forceʼ refers to the expected bed force 
magnitude calculated from the height of the flow surface above the substrate. 
The y-axes (bed forces) are normalized by the gravitational acceleration of a 
single particle. The shaded box shows the values of particle diameter (Dia.) in 
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meters, mass in kilograms per cubic meter, and contact stiffness (k) in Newtons 
per meter used for each material. 
 

 

 
Figure 20. Amplitude spectrum of bed force time series data from a prolonged 
(30 sec) simulation of 20-degree incline granular flow. The physical properties of 
the experimental material were used for the particles in the simulation. The 
spectrum is displayed using a log-log scale with amplitude on the vertical axis 
and frequency on the horizontal axis. This spectrum shows noise and reveals no 
characteristic frequencies. 
 
 
 
Table 4. Physical parameters used for sand grain and experimental simulationsa 

Material d (m) ρ (kg m-3) k (N/m) Fparticle (N) 
Sand 0.003 2650 476000 0.000275 
Rock 0.1 2500 500000 0.2408 
Plastic 0.006 1180 1981 0.001040 
aThe variables listed represent a particleʼs: diameter (d), density (ρ), contact 
stiffness (k), and gravitational acceleration (Fparticle). 
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CHAPTER 7. DISCRETE ELEMENT MODEL SIMULATIONS DISCUSSION 
 
 
 

Results from our numerical simulations show strong agreement with the 

data from the experiments in Estep and Dufek [2012], which provides a 

reasonable validation to our DEM model. Our data show that discrete element 

simulations accurately reproduce the bed force excursions due to force chains 

that have been observed experimentally. The results imply that continuum 

models utilizing depth-averaging schemes for bed forces may transiently under-

predict the force chain transmitted localized bed forces. Further, because 

particles contacting the substrate are often spectators (they bear no significant 

load in the granular system), our work implies that the depth-averaged approach 

may also transiently over-predict bed forces as well. The significance of the bed 

force deviations observed relative to entrainment processes is unclear from our 

results. The short durations of the force chain transmitted bed forces may impede 

entrainment ability. Although previous studies have shown that contact 

timescales in dense shearing flows are not limiting to long-range force 

transmission [Sun et al., 2010; Estep and Dufek, 2012], further work is necessary 

to determine if the transmitted bed forces are legitimate entrainment mechanisms 

on natural spatial and temporal scales. Spectral analysis of a 30 second duration 

flow suggests that no characteristic frequencies are present in the resulting bed 

force time series data. This limited frequency analysis implies that the fluctuating 

bed forces imposed by force chain activity likely will not induce oscillatory motion 
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on bed particles that may enhance entrainment susceptibility (analogous to 

rocking a vehicle stuck in the mud to mobilize it). However, subsequent feedback 

between erosion, bed roughness evolution, and force chain evolution is not 

considered with the static bed used here. 

 Data show that simulation results are most sensitive to the contact 

stiffness input parameter. Increases in contact stiffness caused corresponding 

increases in peak bed forces universally. Linearity in the log-log plot of contact 

stiffness vs. peak bed forces suggests an exponential relationship, however this 

assertion is preliminary without a larger dataset. Numerical and experimental 

data agree strongly when using contact stiffness values in the range calculated 

from measured particle deformations in experiments and using the Hertzian 

contact model [Tsuji et al., 1993; Garg et al., 2010]. We note that stiffness values 

were not tuned to get good correspondence with experiments, rather the stiffness 

values that give the best correspondence with experiments are those who have 

realistic properties determined from independent physical measurements. These 

results further support validity of the Hertzian model for discrete element 

simulations, and suggest a higher degree of bed force localization due to force 

chains in natural flows (because natural materials, such as rock or sand, have 

much higher contact stiffness values). Simulations using physical properties of 

sand and rock indeed show more extreme bed force localization relative to 

simulations using the properties of soft plastic disks. 
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 Because previous studies have generated two opposing conclusions, the 

influence of contact stiffness values on the physical behavior of dynamic granular 

systems has been indeterminate. Campbell [2006] postulated that particle 

stiffness governs how particles ʻseeʼ each other mechanically and thus 

determines bulk elastic properties of granular materials. Sun et al. [2010] 

followed the sentiment of Campbell [2006], but added that stiffness determines 

the strength and stability of force chains. Further endorsement that contact 

stiffness significantly influences granular behavior was shown in Ji and Shen 

[2006], Moreno-Atanasio et al. [2007], Aranson et al. [2008], and Brewster et al. 

[2008]. Conversely, some studies have reported that changing the value of 

contact stiffness did not significantly alter physical dynamics of granular systems 

[Yuu et al., 1995; Milburn et al., 2005; Rycroft et al., 2009]. As the results of the 

current work show, we observe a distinct quantitative sensitivity on grain-scale 

behavior resulting from variations in the contact stiffness value. Additionally, 

qualitative macro-scale behavior modifications were observed due to variations in 

contact stiffness in our work. In the simulations, increases in the contact stiffness 

values coincided with more rigorous bouncing of particles at or near the surface 

of the granular assembly during delivery into the gated domain and also during 

the flow after the gate was raised. These quantitative and qualitative results imply 

that constraining appropriate values for contact stiffness in DEM simulations of 

natural systems is important for generating accurate physical behavior. The 

timescale exercise presented in Estep and Dufek [2012] further suggests that the 
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formation of long chains may be more likely in systems consisting of particles 

with high contact stiffnesses compared to low stiffness particles. This implication 

comes from the positive correlation of contact stiffness and magnitude difference 

between force propagation- and contact- time scales (i.e. for sand particles and 

photoelastic disks the force propagation timescale is ~10-5 s and ~10-4 s, 

respectively; compared to contact timescales ~10-2 s for each case). 

Our simulations of a sand and rock flows indicate that the fluctuating bed 

forces observed experimentally with soft plastic particles also occur with very stiff 

particles. These results further support the assertion that long-range force 

propagation is probable in naturally occurring dense granular flows, including 

those generated during dense volcanic flows. An interesting and obvious 

characteristic of the sand and rock flow simulation data is that the localized bed 

force magnitudes are much higher when compared to the experimental 

simulations. Because the system geometry and relative flow heights for each of 

the systems is consistent, the differences in contact stiffness and material density 

must explain the contrasting results observed in Figure 11. 

  

 

7.1 Discrete Element Method Simulations Conclusion 

  

 While simplified, the current work provides compelling evidence that bed 

force localizations due to force chains exist and suggests that these forces may 
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be important for entrainment of substrates during dense volcanic granular flows 

due to the magnitude of the excursions. Our results indicate that accurate 

prescription of values for contact stiffness in DEM granular flow simulations is 

very important in order to produce accurate bed conditions. This work also 

demonstrates that the discrete element approach is particularly useful for 

granular flows, because although force chains operate as mesoscale structures 

in length, they terminate (and thus transfer forces) at the particle scale. Although 

the contributions of 3-dimensional structure, polydispersity, fluids, and irregular 

terrain are untested here, these simulations provide a general foundation for 

continuing work towards implementation of more complicated system 

components. 
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PART 3. CONTINUED WORK 
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CHAPTER 8. BIDISPERSE GRANULAR POPULATIONS 

 

The methodology described in Parts 1 & 2 was implemented for granular 

systems composed of bidisperse populations. These analog and numerical 

experiments were designed to observe bed force behavior in systems composed 

of the bidisperse grain size ratio range of 1:1, 2:1, and 4:1 (each ratio denotes 

the number of small:large disks). Minor modifications to the physical laboratory 

apparatus and analog methods, detailed in the next section, were required to 

accommodate bidisperse analysis. Changes in the geometric properties of the 

analog apparatus and initial conditions for each bidisperse system, the only 

necessary changes to the computational model, were replicated in the numerical 

simulations. Results from bidisperse experiments resemble monodisperse 

analyses, and confirm that force chains cause significant bed force localization in 

mixed grain size populations. 

 

 

Chapter 8.1 Bidisperse Analog Experimental Modifications 

 

 The photoelastic apparatus for bidisperse experiments was essentially the 

same as the one used in the monodisperse investigation, except that the ramp 

incline was held at a constant angle of 32.5 degrees. An additional chamber was 

attached to the bottom of the apparatus, which facilitated the segregation of disks 
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by size. Flow particles fell into the added chamber after traversing the study area, 

so that the addition had no influence on flow properties. The added segregation 

chamber provided a way to initiate sequential runs consistently by allowing 

replicate introduction of the two disk sizes back into the apparatus. A Maxant 

Techline (STS21NFMX) X-ray illuminator was acquired for the bidisperse runs, 

resulting in a more consistent and brighter light source that enabled an increase 

to 600 frames per second for recording (compared to 200 fps for monodisperse 

runs). 

 Bidisperse populations with [small:large] size distributions of [1:1], [2:1], 

and [4:1] were used in the runs, in addition to a monodisperse system for control. 

A total of 16 experiments were conducted, 5 for each bidisperse system and 1 for 

the monodisperse system. Table 5 shows the disk counts used for each size ratio 

employed in the experiments, and the total body force for each bidisperse 

system. The absolute numbers of small and large disks were chosen on the 

basis of equitable hopper occupation between population size ratios (i.e. each 

population takes up approximately the same area prior to gate release). Vishay 

Precision Groupʼs PSM-4 Photostress photoelastic material, as in the 

monodisperse experiments, was used to fabricate 0.012 m diameter disks for the 

new mixed population runs.  
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Table 5. Bidisperse disk populations, flow body force, and number of runs  

Size ratio 

(Small:Large) 

Small Disks 

(0.006 m) 

Large Disks 

(0.012 m) 

Flow Body Force 

(N) 

# of Runs 

 

Mono 896 0 0.8614 1 

1:1 240 240 0.9686 5 

2:1 360 180 0.8995 5 

4:1 512 128 0.8858 5 

 

 

Chapter 8.2 Bidisperse Analog Experimental results 

 

 Analog photoelastic experiments using bidisperse granular systems 

exhibit bed force data consistent with the results in Part 1 both qualitatively and 

quantitatively. Bed force time series in Figure 21 show results for each mixed 

population as well as the monodisperse control system. Peak bed force 

magnitudes, normalized by expected bed forces due to flow height, increase for 

mixed populations relative to the monodisperse system. The peaks for mixed 

systems also appear to occur at a higher frequency, although this behavior is yet 

to be quantified. Comparisons of mean peak forces and maximum peak forces 

are displayed in Figure 22, which further illustrate that mixed population systems 

trend to larger peak bed forces relative to monodisperse systems. External files 
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Media 4 and Media 5 show an analog bidisperse experiment video clip and 

collage of analog bidisperse experiment force chain images, respectively. 

 

 
Figure 21. Bed force time series from bidisperse analog experiments show 
behavior consistent with monodisperse results. The y-axes are peak bed forces F 
(due to force chains) normalized by mean depth-averaged bed force Fh 
(expected due to flow height). Pos 1 and Pos 2; colored blue and red, 
respectively, indicate the recording positions located on the ramp down slope of 
the release gate, and Ex 1 and Ex 2 correspond to the expected bed force due to 
flow height. The panels distinguish between grain size distributions: mono – 
monodisperse, 1:1 – equal number of small and large disks, 2:1 – 2x small disks 
compared to large, 4:1 4x small disks compared to large.  
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Figure 22. Comparisons of analog bidisperse peak bed forces, which are 
normalized by total flow body force, between (small:large) population ratios 1:1 
(red), 2:1 (blue), and 4:1 (green) with monodisperse (black) systems show similar 
behavior for all populations. Error bars represent one standard deviation about 
the mean value. Flow Body Force for each system is listed in Table 5. 
 

 

Chapter 8.3 Bidisperse Numerical Experimental Modifications 

 

 The MFIX DEM code detailed in Part 2 was also utilized for the bidisperse 

simulations, which replicated the analog bidisperse experiments discussed 

above. Modifications to the particle generator subroutines were necessary to 

implement the mixed populations shown in Table 5. Adjustments were also made 

to the fixed ramp and release gate generator files to accommodate the 32.5-

degree inclination. Beyond the geometric adaptations above, the settings and 
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parameters used in previous simulations remained in place. The physical 

properties of, and contact model for particle-particle and particle-wall interactions 

are assumed appropriate for both large and small disks because they consist of 

the same material. To date, one simulation for each mixed and monodisperse 

system has been completed, and results are shown below. 

 

 

Chapter 8.4 Bidisperse Numerical Experimental Results 

 

Numerical experiments using bidisperse granular systems exhibit bed 

force data consistent with the analog experimental results both qualitatively and 

quantitatively. Bed force time series in Figure 23 show results for each mixed 

population as well as the monodisperse control system. Peak bed force 

magnitudes, normalized by expected bed forces due to flow height, increase for 

mixed populations relative to the monodisperse system. The peaks for 

monodisperse systems appear to occur at a higher frequency in these 

simulations, which is converse to the analog results, although this behavior is yet 

to be quantified. Comparisons of mean peak forces and maximum peak forces 

are displayed in Figure 24, which illustrate that simulated mixed and 

monodisperse population systems have similar peak bed forces. A bidisperse 

numerical simulation animation is shown the external file Media 6. 
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Figure 23. Bed force time series from bidisperse numerical experiments show 
behavior consistent with analog results. The y-axes are peak bed forces F (due 
to force chains) normalized by mean depth-averaged bed force Fh (expected due 
to flow height). Pos 1 and Pos 2; colored blue and red, respectively, indicate the 
recording positions located on the ramp down slope of the release gate, and Ex 
corresponds to the expected bed force due to flow height at Pos 1. The panels 
distinguish between grain size distributions: mono – monodisperse, 1:1 – equal 
number of small and large disks, 2:1 – 2x small disks compared to large, 4:1 4x 
small disks compared to large.  
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Figure 24. Comparisons of numerical bidisperse peak bed forces, which are 
normalized by total flow body force, between (small:large) population ratios 1:1 
(red), 2:1 (blue), and 4:1 (green) with monodisperse (black) systems show similar 
behavior for all populations. Error bars represent one standard deviation about 
the mean value. Flow Body Force for each system is listed in Table 5. 
 

 

 A corollary of this work, that force chains generate significant bed force 

excursions relative to the depth-averaged approximation, is well illustrated in 

Figure 25. For each of the mixed and monodisperse systems, peak forces reside 

well above the unity line for both analog and numerical experiments. The depth-

averaged bed forces shown in Figure 25 are derived solely from the flow height, 

which in these cases are the mean flow height for each respective flow. As 

compared to Figure 7, the bidisperse results show the same form as previous 

monodisperse analog results, with a slight increase in the peak values. 
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Figure 25. The relationship between peak bed forces and expected bed forces in 
bidisperse flows follows that observed for monodisperse flows, for both analog 
and numerical experiments. Marker styles distinguish between grain size 
distributions mono – monodisperse, 1:1 – equal number of large and small disks, 
2:1 – 2x small disks compared to large, 4:1 4x small disks compared to large. ʻAʼ 
(red) markers represent analog results, while ʻNʼ (blue) markers denote numerical 
results.  
 

 

Chapter 8.5 Bidisperse Experiments Discussion 

 

 Analog and numerical results for bidisperse systems exhibit consistent 

behavior in quantitative and qualitative perspectives. Additionally, the bed force 

characteristics discovered for monodisperse systems from earlier work translate 

directly into mixed systems. Some obvious differences between the 

monodisperse and bidisperse bed force behavior are visible, however, such as 
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increased peak forces in mixed systems and variable apparent peak frequencies 

across disk size distributions. Also the analog and numerical results, while 

similar, exhibit relatively shifted bed force magnitudes (slightly higher for analog 

on average). A potential explanation for the increased peak forces for bidisperse 

systems stems from the argument that the more complicated arrangements in 

mixed particle size systems permit more neighbors for any given grain. A result of 

increased neighbors may be increased communication (read: force transmission) 

via more convoluted force chains with extensive branching, relative to more 

straightforward networks occurring in monodisperse systems. 

A further potential contribution to these discrepancies lies in the difference 

in data collection for each experiment type. Analog data only exists for disks that 

ʻlight upʼ due to the birefringence induced by force chains. Conversely, numerical 

data exists for all flow particles within the defined radius of coverage about the 

substrate recording location. In essence, the analog peak data has a threshold 

filter via force chains while the numerical data does not. We could manually set a 

threshold on the numerical data to account for this and oblige better agreement, 

however this phenomena leads to a point mentioned in Chapter 7 – that depth-

averaged approaches also transiently over-predict observed bed forces.  

 Basically, we have shown that force chains generate bed forces that far 

exceed those expected from a continuum approach, even for mixed population 

granular systems. This work also suggests that, in the case of spectator particles 

at flow substrates, a continuum approach will also overestimate bed forces locally 
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on grain scales. So the real world picture for bed forces at granular flow 

substrates is wildly fluctuating bed forces that range from zero to order(s) above 

the ʻexpected.ʼ Still missing from this analysis are interstitial fluids and the 3rd 

dimension, which are commented on below. The final chapter (11) postulates 

about a constitutive relationship for treating this fluctuating behavior of granular 

flow bed forces. 
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CHAPTER 9. INTERSTITIAL FLUIDS IN GRANULAR ASSEMBLY 

 

We conducted analog experiments to investigate how interstitial fluids 

influence the development of force chains and the transmission of long-range 

forces to saturated flow substrates via force chains. Unfortunately, these 

endeavors proved fruitless. A density difference of only 5.9% between the fluid 

(water; 1000 kg/m3) and solid (photoelastic disks; 1061.5 kg/m3) proved too small 

for the system to achieve adequate interparticle forces to generate birefringence. 

Sufficient room and materials to construct an apparatus/system large enough to 

successfully produce birefringence in water-saturated conditions eludes us. 

Intuitively, one can speculate that pore pressures will reduce interparticle forces 

in a saturated granular system as in Terzaghiʼs relationship for effective stress in 

soil mechanics [Santamarina et al., 2001]: 

€ 

σ'=σ − u (12) 

where σʼ is effective stress, σ is total stress, and u is pore fluid pressure. This 

simple relationship assumes hydrostatic fluid pressure and a static solid skeleton, 

so applicability to dynamic granular systems with non-hydrostatic fluid pressures 

is questionable and of interest. This problem may be explored in further detail 

computationally, as a part of future work. 
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CHAPTER 10. THREE DIMENSIONAL NUMERICAL EXPERIMENTS 

 

The photoelastic technique used in this work is fundamentally restricted to 

2-dimensional analysis. Expansion of the force chain bed physics analysis into 3-

dimensions is of great interest, and is a process that must be approached 

computationally. The strong agreement exhibited between the analog and DEM 

numerical results detailed earlier suggests that our model is robust in terms of 

capturing the dynamics involved in force transmissions that cause bed forces to 

vigorously fluctuate. A probability distribution for a 3D simulation of a 4000 

particle 4:1 (small:large) bidisperse flow moving down a 3 meter x 0.1 meter 

ramp plane inclined at 31 degrees is shown in Figure 26. These data are un-

scaled, however they are encouraging and demonstrate a large dynamic range 

for bed forces in a simple, small 3D granular flow. Note that the mean recorded 

bed force for these data is 5.74e-4 N, the maximum-recorded bed force peak is 

1.26 N, and the maximum (initial) depth-averaged bed force for this flow is 0.26 

N. This information suggests the behavior established in our 2D experiments 

translates into 3 dimensions. The external file Media 7 shows an animation of the 

bed force evolution throughout the duration of flow motion as a series of transient 

spikes superimposed on the flow substrate plane. Clearly depicted are several 

localized bed forces with varied magnitudes, which qualitatively follow the 

behavior observed during previous work. These results show promise for the 
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further relaxation of system constraints, which steers in the direction of more 

realistic events. 

 

 

 
Figure 26. Probability plotted on the y-axis for un-scaled 3D bed force data (in N; 
x-axis) from a 4000 particle, 4:1 (small:large) bidisperse flow moving down a 3 
meter x 0.1 meter ramp plane inclined at 31 degrees. The mean bed force for 
these data is 5.74e-4 N, the maximum bed force peak is 1.26 N, and the 
maximum (initial) depth-averaged bed force for this flow is 0.26 N. 
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CHAPTER 11. FUTURE DIRECTION 

 

 This work has been quite successful in evaluating force chain contributions 

through analog and discrete element numerical investigations, however an 

evident task remains in the pursuit of a constitutive relationship to resolve these 

processes in continuum computational models. A statistical approach is likely 

most appropriate for this venture, centered on spatial and temporal probability 

functions for force magnitudes and frequencies, respectively. For instance, such 

probability functions may be used with Monte Carlo methods to replace the 

vertical stress term in the momentum equation of Denlinger and Iverson (2004): 

€ 

τzz(b) = ρh(g + dw /dt) (13)  

where τzz(b) is vertical stress at the flow base, ρ is flow density, h is flow height, g 

is acceleration due to gravity, and dw/dt is depth averaged vertical acceleration. 

The detailed form and function of how this approach can be implemented is a 

case for future work. 
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