
Task-Aware Variations in Robot Motion

Michael J. Gielniak, C. Karen Liu, and Andrea L. Thomaz

Abstract— Social robots can benefit from motion variance
because non-repetitive gestures will be more natural and
intuitive for human partners. We introduce a new approach
for synthesizing variance, both with and without constraints,
using a stochastic process. Based on optimal control theory and
operational space control, our method can generate an infinite
number of variations in real-time that resemble the kinematic
and dynamic characteristics from the single input motion
sequence. We also introduce a stochastic method to generate
smooth but nondeterministic transitions between arbitrary
motion variants. Furthermore, we quantitatively evaluate task-
aware variance against random white torque noise, operational
space control, style-based inverse kinematics, and retargeted
human motion to prove that task-aware variance generates
human-like motion. Finally, we demonstrate the ability of
task-aware variance to maintain velocity and time-dependent
features that exist in the input motion.

I. INTRODUCTION

We are interested in the problem of motion generation
for social robots. When a robot is meant to interact with
human partners, as part of its functional goal, we would
like the robot’s motions to be natural and intuitive for the
human partner. Several works posit that human-like qualities
in robots will facilitate a more effective interaction [1], [2],
[3]. Thus we aim to create human-like motion in robots.

In this paper we address one aspect of human-like
motion—variance. Human motion is the result of a huge
number of variables (personality, age, gender, culture, envi-
ronment, intents, etc.). This makes repetitive motion highly
unlikely. Thus, for a social robot, the ability to easily
produce variants of its exemplar motions or gestures, will
be important for generating life-like and natural behavior.

The simplest way to generate variance is injecting white
noise into the joint angle trajectories for each degree-of-
freedom (DOF). However, applying this technique to robots
creates problems. The robot will appear to shake, and these
unsmooth trajectories may damage actuators. But we can fix
this by applying noise in the torque domain. Another problem
is that purposeful motion is disrupted by noise. This issue
requires algorithms that induce variations in motion, while
respecting the “task” the robot is performing.

We propose an algorithm, task-aware variance (TAV), that
generates, in real-time, an infinite number of motion variants
from a single robot motion trajectory. We define a task as a

M.J. Gielniak is with Department of Electrical & Computer Engineering,
Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, GA, 30332
USA (mgielniak3@mail.gatech.edu)

C.K. Liu and A.L. Thomaz are with the School of Interac-
tive Computing, Georgia Institute of Technology, 85 5th St. NE,
TSRB 317, Atlanta, GA, 30308 USA (karenliu@cc.gatech.edu,
athomaz@cc.gatech.edu)

set of kinematic constraints and a cost function that measures
motion execution (e.g. desirability of joint position, joint
velocity, torque usage). To enforce kinematic constraints we
employ operational space control (OSC), but OSC alone is
not sufficient to produce natural, varied motion. The key
insight of our task-aware variance formulation is that an
optimal control solution can be used to approximate space
curvature locally and the shape of the value function yields
insight into the control policy’s tolerance to perturbations.
Task-aware variance takes advantage of the optimal control
solution to select directions in the task space in which
injecting noise will minimally disrupt the task.

By combining OSC and TAV, we create variations that
are similar in dynamics while still respecting kinematic
constraints. For example, we demonstrate motion variance
in an “I don’t know” gesture created in the null space of
a cup holding task. Additionally, task-aware variance easily
handles other interesting constraints, like velocity and time
constraints. We exemplify this with variance in a synchro-
nized dance task and a motion-speech synchronization task.

In addition to demonstration results, we also evaluate the
quality of task-aware variants. We compare against motions
from random torque-space white noise, operational space
control, style-based inverse kinematics (SIK) and human
motion projected onto the robot architecture. The results
show task-aware variance is significantly more human-like
than two alternatives, and of similar ‘human-likeness’ to SIK.

II. RELATED WORK

Our work is related to the more general area of human-
like motion generation for robots. In some works, natural
variance arises from interaction with the environment and
preparatory action [4]. And there are many examples of
learning human-like motion control policies via demonstra-
tions [5], [6], or observation [7]. Our work focuses on
making motion more human-like through variability, and is
complementary to these works.

Motion variance can be produced by dependence upon
a database [8], [9]. Where, when the system commands a
specific motion, one from a set of pre-annotated gestures is
selected randomly. In most applications, there is a tradeoff
between the richness of variations and the size of dataset.

In general, unless environmental constraints (e.g., obsta-
cles) induce variability, robots have repetitive motion. When
motion variance is seen, it comes either via professional
animators or motion capture data (e.g., [10]), for which
generating new exemplars is costly.

The field of computer animation has explored creating
varied motion, for example, by building models of style from



human motion capture data for subsequent interpolation to
generate new motions [11]. Or, given an input sequence,
introducing random noise in the joint trajectories [12], [13].
These methods can be computed efficiently in real-time ap-
plications, but the results depend on careful parameter tuning
for the stochastic models. Additionally, these methods cannot
produce variations for purposeful motion, where constraints
must be preserved. Other techniques that rely upon direct
manipulation of trajectories are not applicable because they
require manual intervention, which affects online application
[14], [15], [16].

III. OVERVIEW

We develop an algorithm to produce variations of an input
motion while maintaining the robot’s task. Our approach
induces biased noise in the torque domain based on both
kinematic constraints and a cost function derived from the
input motion. Inspired by optimal control theory and OSC,
our algorithm first adds the biased torque to the optimal
control torques according to a defined cost function, and then
projects the “corrupted” torque to the null space of kinematic
constraints. The resultant torque preserves the characteristics
of the input motion encoded in the cost function and kine-
matic constraints, but stochastically produces motion that is
visually different from the input.

Given a sequence of poses qt, 0 ≤ t ≤ N that constitute
a motion, we construct a reference state trajectory x̄, and
its corresponding reference control trajectory ū. The state
trajectory consists of both qt and q̇t, while the control
trajectory ū consists of joint torques computed from an
inverse dynamics process. Kinematic constraints to be sat-
isfied C can also be specified. The core of our algorithm
computes a time-varying multivariate Gaussian N (0,Σt),
constraint projection matrices Pt, and a feedback control
policy, ∆ut = −Kt∆xt. The characteristics of the input mo-
tion are represented by the Gaussian and the feedback policy
(Sec. IV), while the kinematic constraints are preserved by
the projection matrices (Sec. V).

Variation for an input motion is generated online by
applying the following operations at each time step.

1) Draw random Gaussian sample: ∆xt ∼ N (0,Σt)
2) Compute the corresponding control force via the feed-

back control policy: ∆ut = −Kt∆xt
3) Project the control force to enforce kinematic con-

straints: ∆u∗t = Pt∆ut
4) Apply ūt + ∆u∗t as the current control force
Our approach can integrate with techniques that organize

multiple motions into graphs or state-machines. As a practi-
cal issue, we describe a method to generate nondeterministic
transitions between arbitrary motion sequences (Sec. VI).

IV. TASK-AWARE VARIANCE

Given an input reference state and control trajectory,
x̄t and ūt, respectively, t = 1 · · ·N , we formulate an
optimization that tracks the reference trajectory. x̄t ∈ <2n

contains the joint angles and velocity at frame t while ūt ∈
<m contains the joint torques. The task can be viewed as

minimizing the state and control deviation from the reference
trajectory, subject to discrete-time dynamic equations.

min
x,u

1
2
‖xN − x̄N‖2SN

+

N−1∑
t=0

1
2

(‖xt − x̄t‖2Qt
+ ‖ut − ūt‖2Rt

) (1)

subject to xt+1 = f(xt,ut)

where SN , Qt, and Rt are positive semidefinite matrices
that indicate the weight between different objective terms.
(Throughout, we use the shorthand ‖x‖2Y = xTYx.) We will
discuss how these matrices are determined shortly. For an
optimal control problem, it is convenient to define an optimal
value function, v(xt) measuring the minimal total cost of the
trajectory from state xt. It can be written recursively:

v(xt) = min
u

1
2

(‖xt− x̄t‖2Qt
+‖ut− ūt‖2Rt

)+v(xt+1) (2)

This function is the key to Bellman’s optimality principle.
If we can evaluate the value function, we can readily define
an optimal policy that maps a state to an optimal action:
Π : X → U(X).

While our work is not on optimal control, we use the
optimal value function to derive probabilistic models for
generating motion variance. Our key insight is that the shape
of this value function reveals information about the tolerance
of the control policy to perturbations. With this, we can
choose a perturbation that causes minimal disruption to the
task while inducing visible variation to the reference motion.

However, the optimal value function is usually very diffi-
cult to solve for a nonlinear problem. One exception is the
linear-quadratic-regulator (LQR) which has a linear dynamic
equation and a quadratic cost function. A common practice
in approximating a nonlinear dynamic tracking problem
is to linearize the dynamic equation around the reference
trajectory and substitute the variables with the deviation from
the reference, ∆x and ∆u. The original optimization can be
reformulated to:

min
∆x,∆u

1
2
‖∆xN‖2SN

+
N−1∑
t=0

1
2

(‖∆xt‖2Qt
+ ‖∆ut‖2Rt

) (3)

subject to ∆xt+1 = At∆xt + Bt∆ut

where At = ∂f
∂x |x̄t,ūt

and Bt = ∂f
∂u |x̄t,ūt

. The primary
reason to approximate our problem with a time-varying
LQR formulation is that the optimal value function can be
represented in quadratic form with time-varying Hessians.

v(∆xt) =
1
2
‖∆xt‖2St

(4)

where the Hessian matrix St is a symmetric matrix. At time
step t, the optimal value function is a quadratic function
centered at the minimal point x̄t. Therefore, the gradient
of the optimal value function at x̄t vanishes, while the



Hessian is symmetric, positive semidefinite, and measures
the curvatures along each direction in the state domain. A de-
viation from x̄t along a direction with high curvature causes
large penalty in the objective function and is considered
inconsistent with the task. For example, the perturbation in
the direction of the first eigenvector (the largest eigenvalue)
of the Hessian induces the largest total cost of tracking
the reference trajectory. We use this bias to induce more
noise in the dimensions consistent with the tracking task.
We draw random samples from a zero-mean Gaussian with
a time-varying covariance matrix defined as the inverse of
the Hessian: N (0,S−1

t ). The matrices St can be efficiently
computed by the Riccati equation, which exploits backward
recursive relations starting from the weight matrix at the last
frame SN . We omit the subscript t on A, B, Q, and R for
clarity (detailed derivation in [17]).

St = Q + ATSt+1A− (5)
ATSt+1B(R + BTSt+1B)−1BTSt+1A

The random sample, ∆xt, drawn from the Gaussian
N (0,S−1

t ) indicates deviation from the reference state tra-
jectory x̄t. Directly applying this “task-aware” deviation to
joint trajectories will cause vibration. Instead, our algorithm
induces noise in control space via the feedback control policy
derived from LQR: ∆ut = −Kt∆xt. In our discrete-time,
finite-horizon formulation, the feedback gain matrix Kt is a
m× 2n time-varying matrix computed in closed-form:

Kt = (R + BTSt+1B)−1BTSt+1A (6)

a) Singular Hessians: Occasionally, the Hessians of the
optimal value function become singular. In this case, we
apply singular value decomposition on the Hessian to obtain
a set of orthogonal eigenvectors E and eigenvalues σ1 · · ·σn
(because St is always symmetric). For each eigenvector
ei, we define a one-dimensional Gaussian with zero mean
and a variance inversely proportional to the correspond-
ing eigenvalue: Ni(0, 1

σi
). For those eigenvectors with zero

eigenvalue, we simply set the variance to a chosen maximal
value (e.g., the largest eigenvalue of the covariance matrix
in the entire sequence). The final sample ∆xt is a weighted
sum of eigenvectors: ∆xt =

∑
i wiei, where wi is a random

number drawn from Ni.
b) Determine weight matrices: The cost weight ma-

trices, SN , Qt Rt, can be selected manually based on
prior knowledge of the input motion and control. Intuitively,
when a joint or actuator is unimportant we would like to
assign a small value to the corresponding diagonal entry
in these matrices. Likewise, when two joints are moving
in synchrony, we might want to give them similar weights.
Q and R in theory can vary over time, but most practical
controllers hold Q and R fixed to simplify the design
process. Still, when the robot has a large number of DOFs,
tuning these weights manually can be difficult.

We propose a method to automatically determine the cost
weights based on coordination in the reference trajectory. We

apply Principal Component Analysis (PCA) on the reference
motion x̄ and on the reference control ū to obtain respective
sets of eigenvectors E and eigenvalues Σ (in diagonal matrix
form). The weight matrix for motion can be computed by
Q = EΣET . By multiplying ∆x on both sides of Q, we
effectively transform the ∆x into eigenspace, scaled by the
eigenvalues. As a result, Q preserves the coordination of
joints in the reference motion, scaled by their importance. R
can be computed in the same way. In our implementation,
we set SN equal to Q.

V. KINEMATIC CONSTRAINTS

In addition to maintaining characteristics of the input
motion, we also want variance that adheres to kinematic
constraints. To do this we use an approach first introduced
for controlling robots to achieve simultaneous tasks [18].

At each iteration, we define a projection matrix Pt that
maps the variation in torque, ∆ut, to the appropriate control
torque that does not interfere with the given kinematic
constraint. Suppose a constraint is specified to enforce a point
p on the hand to be at a fixed coordinate, we can express
the Jacobian of the constraint by Jt = ∂p

∂qt
. Intuitively, the

Jacobian maps the Cartesian force required to maintain p to
a joint torque: τ = JTt f . Following Khatib’s formulation, we
define a projection matrix Pt as follows:

Pt = I− JTt J̄Tt (7)

where J̄t is one of the many pseudo inverse matrices of J.
We use the “dynamically consistent generalized inverse”:

J̄Tt = ΛtJtM−1
t (8)

where Λt and Mt are the current inertia matrix in Cartesian
space and in joint space. When we apply the projection
matrix Pt to a torque vector, it removes the component
in the space spanned by the columns of J̄t, where the
variation will directly affect the satisfaction of the constraint.
Consequently, the final torque variation ∆u∗t = Pt∆ut
applied to the robot will maintain the kinematic constraints.
Our algorithm can achieve a variety of tasks by setting
kinematic constraints in Cartesian space or in joint space.
For example, holding a cup, or pointing at an object.

VI. NONDETERMINISTIC TRANSITIONS

In this section, we describe an algorithm that enables our
technique to transition between multiple motion sequences.
We demonstrate that it is possible to transition to the next
desired motion from a wide range of states. Further, to
make the transition reflect natural variance as well, we
stochastically select a transition-to pose online. We call it
nondeterministic transition because the transition motion to
the same sequence is different each time.

Once the next motion is selected, our algorithm selects
a transition-to pose x∗0 via a stochastic process, such that
the robot does not always predictably transition to the first
frame of the next motion. This can be viewed as a task-
aware deviation from the first frame of the next motion x̄0.



x0

x

∆x0

*x0

*x0

(a) (b) (c)

Fig. 1. (a): Setting the transition-to pose to x∗0 = x̄0 +∆x0, can generate
an awkward transition when x∗0 is further away from x than from x̄0. (b):
Poses with the same likelihood as x̄0 + ∆x0 form a hyper-ellipsoid. (c):
∆x0 defines a hypercube aligned with the eigenvectors of the covariance
matrix. We pick x∗0 as the corner that lies in the quadrant of x.

We reuse the Gaussian N (0,S−1
0 ) computed for the next

motion to get a random sample ∆x0. If we directly set the
transition-to pose to x∗0 = x̄0 + ∆x0, it could generate an
awkward transition when x∗0 is further away from the current
pose x than from x̄0 (Fig. 1 (a)).

To overcome this issue, we account for the current state
x when selecting the transition-to pose x∗0. Because ∆x0 is
drawn from a symmetric distribution, poses with the same
likelihood form a hyper-ellipsoid. To bias x∗0 toward the
x, we want to pick a state from this hyper-ellipsoid that
lies in the same quadrant in the coordinates defined by the
eigenvectors of the covariant matrix S−1

0 (Fig. 1 (b)). To
speed up computation, we use ∆x0 to define a hypercube
aligned with the eigenvectors. We pick x∗0 to be the corner
within the same quadrant as x (Fig. 1 (c)).

After determining the transition-to pose, we use a spline
interpolation and PID-tracking to move the robot to this
pose from the current pose. This works well because the
transition-to pose is both consistent with the next task and
biased toward the current pose.

VII. ALTERNATIVE APPROACHES FOR COMPARISON

In the remainder of this paper, we analyze results of TAV.
In order to do so, we consider three alternative algorithms.

A. Random White Torque Space Noise (RWTSN)

RWTSN is a naı̈ve variance approach that generates
smooth motion by allowing unbiased torque noise to alter
trajectories without intelligent shaping. Results show that
purposeful motion is distorted by this random noise.

B. Operational Space Control + RWTSN

In this approach, step two in Sec. III is replaced by ∆ut ∼
N (0, I), and steps three and four of the TAV algorithm
remain unchanged. For point constraints and partial posture
constraints, white noise torques projected into the null space
of the robot architecture creates one of two outcomes: task
disruption or lack of naturalness. This is particularly clear in
the video accompanying this paper. 1

1http://www.cc.gatech.edu/social-machines/projects

C. Style-based Inverse Kinematics

We implemented a basic form of style-based inverse
kinematics, in which human motion capture data is rep-
resented in a low dimensional space. Motion variants are
generated by learning probability density functions of the
data and interpolating in the low-dimensional space [19].
The disadvantages of SIK are that variance is limited by the
database and the variants generated may appear unnatural
when interpolating between drastically different exemplars.

VIII. RESEARCH PLATFORM

The platform for this research is an upper-torso humanoid
robot, Simon (Figure 2). Each arm has seven DOFs, three
at the shoulder, one at the elbow, and three at the wrist.
Each hand has four DOFs. The torso has two DOFs, with an
additional uncontrollable joint in the torso fore/aft direction.
It has three DOFs for the eyes, two per ear, and four for the
neck. The robot operates on a dedicated ethercat network
coupled with a real-time PC operating at 1kHz.

IX. ANALYSIS OF RESULTING MOTION

Our results demonstrate that the task-aware variance ap-
proach is able to produce variance in unconstrained gestures,
motions with physical task constraints, and is able to main-
tain time-dependent and velocity features of a task.

A. Variance in Unconstrained Gestures

In the unconstrained case, we demonstrate the capability
of our algorithm through two common social robot gestures:
waving and an “I don’t know” gesture. A task with no
constraint has Pt = I in step 3 of Sec. III.

To characterize TAV generated variation, we measure
variance from the original motion of 12 generated sequences:

1
K

1
N

K∑
i=1

(q̄− qi)T (q̄− qi) (9)

where qi is the trajectory of a particular DOF from variant
i, q̄ is the original motion, K is the number of variants, and
N is the number of time samples in the motion.

For this analysis, only the left arm DOFs are evaluated.
This is valid since we use a left hand waving gesture, and
the input “I don’t know” gesture is symmetric. Thus the left
arm is sufficient to characterize the output of a variance-
generating algorithm with these inputs. Table I shows that
variance is created in different DOFs for different motions.
This shows that TAV produces motions different from the
original, but it does not show that variants are different
from one another. To verify this, we recompute Equation
9, replacing the original motion with a variant from the set,
which gives Equation 10.

1
K2

1
N

K∑
i=1

K∑
j=1

(qj − qi)T (qj − qi) (10)

The results in Table II show that on average the variants
generated by TAV are different from each other, especially
in the “I don’t know” gesture.



TABLE I
VARIANCE FROM THE ORIGINAL MOTION (IN SQUARE DEGREES).

AVERAGES TAKEN OVER FIRST 12 TAV GENERATED MOTIONS.

DOF “Waving” “I don’t know”
shoulder X 364 974
shoulder Z 170 751
shoulder Y 1198 1238
elbow X 185 5993
wrist Y 649 5354
wrist X 664 1742
wrist Z 177 834

TABLE II
VARIANCE BETWEEN TAV-GENERATED VARIANTS (IN SQ. DEGREES).
AVERAGES TAKEN OVER THE FIRST 12 TAV GENERATED MOTIONS.

DOF “Waving” “I don’t know”
shoulder X 294 3740
shoulder Z 90 1078
shoulder Y 2143 2902
elbow X 1627 2846
wrist Y 704 643
wrist X 1470 235
wrist Z 510 202

TAV is capable of generating infinite variants of a motion
in the absence of constraints. The accompanying video shows
the original motions and three variants generated for both
the waving and “I don’t know” gestures. An example of the
range of variance produced is shown in Figure 2.

Fig. 2. “I don’t know” motion. Upper-left is original motion. Other three
are the inflection point in three variants generated by TAV.

B. Producing Variance with Constraints

We also demonstrate that our algorithm can preserve
kinematic constraints by applying both TAV and OSC. In
the example shown in the accompanying video, the robot’s
left hand is constrained with an orientation and position
constraint so that a cup of water will not spill.

To measure task-aware variance in the presence of con-
straints, we again adapt the standard formula for variance.
We analyze the DOFs on the left arm that hold the cup,
because the variance of these DOFs provides more insight
into how constraints affect the task space. We first apply

TABLE III
LEFT ARM JOINT ANGLE VARIANCE (IN SQ. DEGREES), FROM THE

CONSTRAINED ORIGINAL AND THE OTHER VARIANTS. AVERAGES USE

THE FIRST 12 TAV GENERATED MOTIONS FOR “I DON’T KNOW”.

DOF w.r.t. orig between variants
shoulder X 116 354
shoulder Z 271 133
shoulder Y 298 599
elbow X 581 846
wrist Y 560 1132
wrist X 22 189
wrist Z 44 124

Fig. 3. Representative poses of the two concatenated dancing input motions.

OSC to constrain the original motion and use it as the mean
to compute the variance (Eq. 9). Results are in Table III.

As expected, physical constraints reduce variance overall
(Table III). This is especially true closer to the constrained
DOF, which for the cup constraint is the wrist for the x
and y degrees-of-freedom. This effect is also evident in the
calculations that reference the other variants (i.e. the right-
hand side of Table III). However, note that average variance
between variants is still large for the left arm DOFs. The
video is the best example of these effects, but from our
analysis we can conclude that TAV produces variance in
constrained motion, if a null space for the constraints exists.

C. Maintains Velocity and Time-Dependent Task Features

If the task-aware variance technique creates variance from
an exemplar that is already human-like, naturalness is main-
tained due to the cost function in the optimal control solution.
This unique framework provides a simple way to maintain
time-dependent task features by modulating the cost function
weights. A time-dependent feature enforces an arbitrary
equation on joint position or velocity at a particular time.
For example, a time-dependent feature could enforce the
velocity of the left hand at frame 10. We demonstrate with
two examples: dancing and motion-speech synchronization.

1) Dancing: Although there are many ways to define the
task of dancing, we define it as moving the body rhythmically
to the same beat as the original motion. The specific task goal
is to maintain the same joint velocity as the input motion
at the moments when the joint velocity is zero. This is an
example of time-dependent and velocity features of a task.
As a result, our algorithm produces variants that synchronize
with the original dancing motion. Additionally, we make eye
gaze a part of the dancing task, a time-varying eye direction
constraint, that is enforced by OSC.



Fig. 4. Representative poses from the varied dancing produced by TAV.
These poses are taken at the time-dependent feature points during the task.

In our implementation, two input dance moves are con-
catenated together. In the first primitive motion, one arm
moves up as the other moves down and the robot turns to the
side. The other motion is a similar, but all DOFs move in the
opposite direction. Figure 3 shows two representative poses
from the primitives. When concatenated, they create a cyclic,
repetitive dance sequence. For our task, the features we want
to maintain are the zero velocity points, when one primitive
transitions to the other. This is time-dependent because it
occurs only twice during one cycle of the dance.

To handle time-dependent task features with TAV, the
penalty against violating all important features increases
closer to the point in time when those features must be
maintained. In the dancing task, synchronization of original
and variant motions can be achieved by introducing very high
weights for all DOFs zero velocity points. The reason that
TAV can preserve velocity and time-dependent task features
is because the optimal control policy accounts for the cost of
the entire trajectory; the cost of a future state will affect the
action of the current state. On the other hand, OSC does not
consider the long-term goal of the motion when enforcing
a constraint. If we set a constraint that enforces zero joint
velocity at a future frame, OSC will stop the joint motion
abruptly at that frame without anticipation.

The result shown in the accompanying video demonstrates
that the task-aware dancing changes velocity in sync with
the primitives from which it was generated. Results for TAV
are shown in simulation with the eye gaze constraint, and
on hardware without the eye gaze constraint. Contrast the
varied poses in Figure 4 against the input motions shown in
figure 3 to see the variance induced by TAV.

2) Timing of Gestures to Speech: As our second illus-
trating example, we chose one that is a common occurrence
for social robots: synchronizing speech to gesture. Although
there are many ways to define the task of synchronizing
motion to speech, we define the task as ensuring an em-
phasized word in a phrase is spoken at the same instant
in time as the zero velocity point in an accompanying
gesture. We demonstrate this with an “I don’t know” gesture.
Our goal is to prevent the added variance from disrupting
the synchronized points such that the same speech can be
synchronized with varying gestures.

For comparison, we implemented a basic version of style-
based inverse kinematics, a computer animation technique
which builds a low-dimensional model from human input
motions, and interpolates the space of motions to generate

new motions. The exemplars produced through this approach
are realistic because they are based on human input data.
However, interpolation does not guarantee that the task
features such as zero velocity points will align in different
exemplars unless preprocessing of the input data occurs to
warp the timing of all motions.

Similar to the dancing example, TAV can maintain the
synchronized gestures by setting high cost for deviation at
the moments of emphasized words. Unlike interpolation,
TAV only requires one representative exemplar in order to
create infinite variants, which removes the tedious process
of warping and aligning a database of motions.

The accompanying video shows speech and gesture syn-
chronized according to emphasized words. For example,
“I don’t know” versus “I don’t know”. With task-aware
variance, the gesture can be varied autonomously, but the
timing of the zero-velocity point still remains deterministic
and predictable, thereby allowing synchronization of speech
and varied motion simultaneously.

X. EVALUATION

In the previous section we characterized the types of
motion variance that TAV can produce. In this section we
want to prove that TAV produces resultant motions that are
as human-like as the input motion. In other words, that it
does not corrupt human-like characteristics of the motion.

A. Experimental Design

In order to prove that task-aware variance produces
human-like variants, we need an objective, comparative
evaluation against human motion. We collected a data set
of “waving” and “I don’t know” gestures from 24 different
humans with motion capture equipment. We then projected
each of these 48 motions onto the robot architecture using an
optimization that calculates Simon’s joint angle values as a
function of time from the 28 upper-body position constraints
collected from human motion capture markers and a similar
set of constraints positioned on the robot body. The optimal
mapping allows for proportional scaling the overall size of
Simon based on a human subject’s size. This procedure
creates a motion trajectory that the robot can execute [20].

This data set of 48 human motions projected onto the robot
hardware is the human-like data set, a ground truth for
human-like motion. We compare motions generated from our
technique and three alternative variance inducing algorithms,
yielding the following four test cases:
• Task-Aware Variance (TAV),
• Random white torque space noise (RWTSN),
• Operational space control+random torque noise. Ran-

dom torque noise is projected onto the robot body
after applying a two time-varying Cartesian end-effector
point constraints (one per hand) calculated from the
average of all the human motion-capture data.

• Style-based inverse kinematics (SIK). The implementa-
tion details for style-based IK can be found in [19].

For each of the four test cases we generate 20 variants
of both “waving” and “I don’t know” gestures (40 total).



Fig. 5. Average distance to nearest neighbor in human-like set. Techniques
described in Sec. VII. T-tests results for “wave” and “I don’t know” gestures.
TAV is statistically different from RWTSN and OSC in both cases. TAV and
SIK are not significantly different in this measure.

TABLE IV
AVG. DISTANCE OF RESULTANT MOTIONS FROM THE FOUR VARIANCE

TECHNIQUES TO ITS NEAREST NEIGHBOR IN THE HUMAN DATA.
RESULTS ARE AN AVERAGE OF 20 VARIANTS; VALUES ARE JOINT

ANGLES EUCLIDEAN DISTANCES IN RADIANS.

RWTSN OSC SIK TAV
Waving Mean 0.723 0.502 0.198 0.155
Waving (SD) (0.246) (0.176) (0.178) (0.074)
I don’t know Mean 0.628 0.424 0.217 0.151
I don’t know (SD) (0.254) (0.146) (0.142) (0.144)

We then use nearest-neighbor, with a Euclidean distance
metric in joint angle space, to find the minimum distance
between the technique-generated variant and a trajectory
in the human-like set. We assume that distance to a
human-like trajectory is a good metric for human-like
quality of a given motion. For this analysis, all techniques
were constrained to robot joint angle limits, i.e., torque noise
was not applied to any DOF which would force it to exceed
a joint angle limit. Additionally, certain DOFs (eyes, eyelids,
and ears) were excluded from the analysis because they are
not measurable with the motion capture equipment.

B. Task-Aware Variance Creates Human-like Motion
Table IV shows results for “waving” and “I don’t know”

gestures. The means are averages for all times during the
trajectory, for all DOFs, over all 20 motion variants. For the
style-based IK technique, cross validation was performed ten
times using random sets of 12 test exemplars and 12 training
exemplars. Table IV shows the cross validation averages.

Table IV shows that for two common social robot gestures,
OSC and random torque noise are less human-like than
task-aware variance and style-based IK. As shown in Figure
5, paired t-tests showed statistical significance between all
techniques (p<0.01), except TAV and SIK. This suggests
that TAV provides the variance benefits of a high-quality
technique like style-based IK, without all the preprocessing
steps necessary for model synthesis. Unlike SIK, which
requires dozens of input exemplars, TAV produces motion
without training a model, using one exemplar.

XI. CONCLUSION

We aim to create human-like motion in robots. In this pa-
per we address the problem of creating variability in gestures
for a robot. We present task-aware variance, an autonomous
algorithm capable of generating an infinite number of human-
like motion variants both with and without constraints, in
real-time using only one exemplar. We also demonstrate the
capability of task-aware variance to handle time-dependent
and velocity constraints such as synchronization. Finally, we
show that our technique creates more human-like motion
variants than two other algorithms.

REFERENCES

[1] M. Riley et al., “Methods for motion generation and interaction with
a humanoid robot: Case studies of dancing and catching.” AAAI and
CMU Workshop on Interactive Robotics and Entertainment, April
2000.

[2] S. Kopp and I. Wachsmuth, “A knowledge-based approach for lifelike
gesture animation.” in ECAI 2000 - Proceedings of the 14th European
Conference on Artificial Intelligence. IOS Press, 2000, pp. 663–667.

[3] J. Cassell, “Embodied conversational agents: Representation and in-
telligence in user interfaces.” AI Magazine., vol. 22, no. 4, pp. 67–84,
2001.

[4] L. Y. Chang, S. S. Srinivasa, and N. S. Pollard, “Planning pre-
grasp manipulation for transport tasks,” Proceedings of the IEEE
International Conference on Robotics and Automation, May 2010.

[5] J. Butterfield, O. C. Jenkins, D. Sobel, and J. Schwertfeger, “Modeling
aspects of Theory of Mind with Markov Random Fields,” International
Journal of Social Robotics, vol. 1, no. 1, pp. 41–51, Jan 2009.

[6] A. Billard and S. Schaal, “Robust learning of arm trajectories through
human demonstration,” in Proceedings 2001 IEEE/RSJ Intl. Conf.
Intelligent Robots and Systems, October 2001, pp. 734–739.

[7] L. D. O. C. Kulic, D. and Y. Nakamura, “Incremental learning of full
body motion primitives for humanoid robots,” IEEE-RAS International
Conference on Humanoid Robots, 2008.

[8] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Intl
Journal of Robotics Research, vol. 20, no. 5, p. 378400, 2001.

[9] K. J. Yamane, K. and J. Hodgins, “Synthesizing animations of human
manipulation tasks,” ACM Transactions on Graphics, vol. 23, no. 3,
pp. 532–539, 2004.

[10] T. Asfour and R. Dillmann, “Human-like motion of a humanoid
robot arm based on a closed-form solution of the inverse kinematics
problem,” IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS 2003), pp. 1407–1412, October 2003.

[11] W. Ma et al., “Modeling style and variation in human motion,” The
ACM SIGGRAPH / Eurographics Symposium on Computer Animation
(SCA 2010), 2010.

[12] K. Perlin, “Real time responsive animation with personality,” IEEE
Transactions on Visualization and Computer Graphics, vol. I, no. 1,
July 1995.

[13] A. Egges, T. Molet, and N. Magnenat-Thalmann, “Personalised real-
time idle motion synthesis,” in Pacific Graphics, 2004, pp. 121–130.

[14] Z. Popović and A. Witkin, “Physically based motion transformation,”
in SIGGRAPH, Aug. 1999, pp. 11–20.

[15] A. Witkin and Z. Popović, “Motion warping,” in SIGGRAPH, Aug.
1995.

[16] C. K. Liu, A. Hertzmann, and Z. Popović, “Learning physics-based
motion style with nonlinear inverse optimization,” ACM Trans. on
Graphics (SIGGRAPH), vol. 24, no. 3, pp. 1071–1081, July 2005.

[17] F. L. Lewis and V. L. Syrmos, Optimal Control. Wiley-Interscience,
1995.

[18] O. Khatib, “A unified approach for motion and force control of
robot manipulators: The operational space formulation,” Robotics and
Automation, IEEE Journal of, vol. 3, no. 1, pp. 43–53, Feb 1987.

[19] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-
based inverse kinematics,” ACM Trans. on Graphics (SIGGRAPH),
vol. 23, no. 3, pp. 522–531, July 2004.

[20] J. Yang et al., “Capturing and analyzing of human motion for design-
ing humanoid motion,” in International Conference on Information
Acquisition, June/July 2005, pp. 332–337.


