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SUMMARY

Coverage control constitutes a canonical multi-robot coordination strategy that allows a

collection of robots to distribute themselves over a domain to optimally survey the relevant

features of the environment. This thesis examines two different aspects of the coverage

problem. On the one hand, we investigate how coverage should be performed by a multi-

robot team with a heterogeneous sensor equipment in the presence of qualitatively different

types of events or features in a domain, which may evolve over time. On the other hand, we

explore the use of coverage control as an interaction modality between artists and multi-

robot systems for robotic swarms to be used in different forms of artistic expression.

In complex environments, a multi-robot team may need to simultaneously monitor mul-

tiple types of events or features throughout the domain of interest, which requires a mixture

of sensors too extensive to be mounted into every single robot. This thesis investigates how

to incorporate qualitatively different sensing modalities into the coverage formulation and

how different communication schemes among the robots affect the coverage performance

in such a scenario. In addition, having characterized the optimal spatial configurations

for the multi-robot team, this thesis presents a constraint-based approach that allows the

multi-robot team to cover different types of features whose locations evolve other time.

In contrast, the intersection of robotics and arts, which has been actively explored by

both robotics researchers and artists, motivates the work in the second part of this thesis.

In the context of swarm robotics in the arts, we investigate how the coverage paradigm,

which affords the control of the entire multi-robot team through the high-level specification

of density functions, can serve as an interaction modality for artists to effectively utilize

robotic swarms. In particular, we explore the use of coverage control to create emotionally

expressive swarm behaviors for robot theatre applications. Furthermore, the heterogeneous

coverage framework developed in this thesis is employed to interactively control desired

concentrations of color throughout a canvas for the purpose of artistic multi-robot painting.
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CHAPTER 1

INTRODUCTION

Swarm robotics deals with how to coordinate large teams of robots to produce collective

behaviors that go beyond the capabilities of the robots as individuals [1]. The operation of

such robotic systems relies on the individuals executing control rules based on information

obtained through local interactions, which altogether lead to a desired swarm behavior. This

affords multi-robot systems desirable features such as redundancy, increased spatial cov-

erage, flexible reconfigurability, or fusion of distributed sensors and actuators [2]; making

them particularly suitable for applications such as precision agriculture, search-and-rescue

operations, or environmental monitoring, among others [3]. In addition to these more con-

ventional applications, robotic swarms have been commercially deployed as robotic toys

[4] or to support performances in the entertainment industry [5].

Among the many decentralized control algorithms for multi-robot systems studied in

the literature (see [3] for a survey), coverage control constitutes an attractive coordination

strategy for many of the aforementioned applications, since it allows a collection of mobile

robots to spatially distribute themselves according to the relative importance of different

areas within a domain, typically defined by spatial fields and referred to as density func-

tions in the literature [6, 7]. In addition to affording an optimal spatial allocation of the

multi-robot team over a domain, the coverage approach enables an effective human-swarm

interaction modality where a human operator can control the behavior of the swarm as a

whole by specifying which areas of the domain it should roughly concentrate [8].

In the context of the coverage problem, this thesis deals with how to introduce hetero-

geneity in the problem formulation to reflect the capabilities of different robots in a natural

manner when their sensing modalities are qualitatively different. Heterogeneity in multi-

agent teams and its impact on their collective performance has been studied by researchers
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of many disciplines, from the biological sciences, where insect societies benefit from be-

havioral specialization [9, 10], to business and sports management [11, 12, 13, 14, 15],

where education and talent diversity, along with different cultural perspectives and expe-

riences, contribute to disseminate and share knowledge in the teams. In robotic swarms,

heterogeneous teams formed by robots that possess only a subset of the capabilities nec-

essary to accomplish the global task may enable tackling much more complex tasks with

presumably simpler, cheaper robots—as opposed to engineering robots with all the capa-

bilities bundled together [16, 17, 18]. As a result, heterogeneous approaches have been

proposed for a variety of multi-robot tasks including foraging [19], coverage [20, 21], col-

lision avoidance [22] and task allocation [23]. Inspired by the beneficial effects of hetero-

geneity on collective performance, Chapter 3 studies how to perform coverage when there

exist different types of events or features in the domain and the robots in the team have only

a subset of the necessary sensors to monitor them, a novel problem in the coverage control

literature.

The attractiveness of the coverage formulation, however, not only resides on its abil-

ity to achieve optimal surveillance of a domain in a distributed manner, but also on its

amenability to human-swarm interaction, i.e. the intervention of a human on the au-

tonomous operation of a robotic swarm to provide information inaccessible to the robotic

system or to convey changes pertaining mission objectives [24]. In the coverage prob-

lem, the collective behavior of the swarm can be controlled by only specifying the density

functions to be covered throughout the domain, which constitutes an intuitive, high-level

command to be produced by a human [8]. Changes in the goal specification of the cover-

age problem, however, imply using dynamic density functions to describe the importance

of the points on the domain. In Chapter 4, we introduce a constraint-based approach to the

coverage of time-varying density functions—for both the homogeneous and the heteroge-

neous cases—that can be executed in an exact, decentralized fashion without imposing any

conditions on the rate of change of the density functions.

2



Precisely, the amenability of coverage control as a modality for human-swarm interac-

tion somewhat motivated in part the second half of this thesis. The intersection of robotics

and arts has gain a lot of traction, with robots being consistently intertwined with multiple

forms of art [25, 26]. In particular, for the case of robotic swarms, their aforementioned

inherent properties (i.e. inexpensive platforms, flexible reconfigurability and increased spa-

tial coverage) have propelled their commercial deployment for theatrical effects in perfor-

mances [5, 27, 28]. This thesis explores the use of robotic swarms in artistic applications,

with coverage as the main interaction modality between the artist and the robotic system.

Using the framework developed in Chapter 3, in Chapter 5 the swarm is controlled by color

densities throughout a canvas to produce artistic paintings. This chapter, furthermore, dives

into the implications of using different levels of heterogeneity in the painting equipments

and their impact on the resulting paintings that the robot team creates. In contrast, coverage

is used with other standard multi-robot control strategies in Chapter 6 to produce expres-

sive behaviors for robotic swarms to convey emotion in artistic expositions. These chapters

thus illustrate how coverage can effectively serve as an abstraction for artists to control

the overall behavior of a robotic swarms for different artistic purposes, without concerning

themselves with low-level aspects of their control.

This thesis is organized as follows. In Chapter 3, we introduce heterogeneity in the

coverage problem formulation to reflect qualitatively different sensing capabilities among

the robots. Subsequently, Chapter 4 presents a constraint-based strategy for time-varying

density functions that affords optimal coverage in an exact and decentralized fashion. The

second part of the thesis moves onto the topic of swarm robotics and art, with coverage as

the overarching interaction modality between the human artist and the robotic swarm for the

two applications considered in this work, namely density-control painting and emotionally

expressive motion, in Chapters 5 and 6, respectively. Chapter 7 concludes this thesis by

outlining the main contributions and future work.
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CHAPTER 2

BACKGROUND

This thesis investigates how a multi-robot team can be controlled to monitor different types

of events over a domain, as well as how coverage can serve as an interaction modality be-

tween artists and robotic swarms for different forms of art expression. The objective of

this chapter is to outline some of the existing work related to coverage control, as well as

some literature on the intersection of robotics and arts. While each chapter in this thesis is

self-contained, the aim of this chapter is to detail the coverage framework used throughout

the thesis, as well as contextualize its findings. First, the formulation of coverage con-

trol used throughout this thesis is introduced. Variants of the coverage problem regarding

heterogeneous multi-robot teams as well as coverage with respect to time-varying scalar

fields are also included in this first half of the chapter, as they directly relate to the work

presented in Chapters 3 and 4, respectively. Then, we move on to a summary on some

of the existing work on the intersection of robotics and arts, with a focus on the types of

artistic expression explored in Chapters 5 and 6 of this thesis, namely artistic painting and

expressive movement.

2.1 Coverage Control

Coverage control concerns itself with the problem of distributing a collection of mobile

sensor nodes across a domain in such a way that relevant environmental features and events

are detected by at least one sensor node (with sufficiently high probability), e.g., [6, 29].

Different ways of encoding this have been proposed, including the construction of networks

with particularly effective topologies, e.g., triangulations [30, 31], deployment according

to spatial point processes with desired probability characteristics [32], and the partition of

the domain into useful regions of dominance, where each node is in charge of covering its
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own region [7].

In this thesis, we use the notion of optimal coverage developed by Cortés [6], which

adapts concepts from locational optimization used for facility placement and resource dis-

tribution in operations research [33, 34, 35, 36] and is also related to territorial behaviors in

observed in ecology [37, 38, 39] and cellular biology [40, 41, 42]. In particular, we consider

a scenario where a team of N planar robots with positions pi ∈ D ⊂ R2, i = 1, . . . , N , are

to cover a convex domain D. A common strategy [6, 43] is to assign to each of the agents

the surveillance of the points in the domain that are closest to it. If we let the position of

Robot i in the team be denoted by pi ∈ D, i ∈ {1, . . . , N} =: N , then Robot i has the

responsibility of covering the set

Vi(p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, j ∈ N}, (2.1)

where p is the combined positions of all the robots [pT
1 , . . . , p

T
N ]T and {V1(p), . . . , VN(p)}

constitutes a Voronoi partition of the domain D under the Euclidean metric [36].

Given a Voronoi partition of the domain into regions of dominance, one can now ask

how well the team is actually covering the area. This question is typically asked relative

to an underlying density function φ : D 7→ [0,∞), which captures the relative importance

of points in the domain, with φ(q) > φ(q̂) meaning that q is more important, has a higher

probability of being a place where an event will occur, or contains more relevant features

than point q̂, as discussed in [7]. If we furthermore assume that the sensing quality of each

robot is isotropic and degrades with distance, the quality the coverage obtained in region

Vi(p) can be encoded through the cost

hi(p) =

∫
Vi(p)

‖q − pi‖2φ(q) dq,

with a better coverage corresponding to a lower cost. Summing over all agents thus yields
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the so-called locational cost

H(p) =
∑
i∈N

hi(p) =
∑
i∈N

∫
Vi(p)

‖q − pi‖2 φ(q) dq, (2.2)

as described in [6] as a way of capturing the coverage performance.

A standard approach to minimize (2.2) is to let the individual robots move in a direction

of descent of the gradient in order to minimize it [6, 7, 44], that is,

ṗi = −γi(p)
∂H(p)

∂pi

T

, i ∈ N ,

for some positive, possibly state-dependent, gain γi(p), with the result that

dH(p)

dt
= −∂H(p)

∂p
Γ(p)

∂H(p)

∂p

T

= −

∥∥∥∥∥∂H(p)

∂p

T
∥∥∥∥∥

2

Γ(p)

,

where Γ(p) = diag(γ1(p), . . . , γN(p)) is a positive definite diagonal matrix. This descent

formulation has two highly desirable properties, as discussed in [6]. On the one hand, it

directly turnsH into a Lyapunov function, amenable to the application of LaSalle’s invari-

ance principle as a way of showing convergence to a stationary point. On the other hand,

the distributed nature of the team is encoded through a Delaunay adjacency relationship

[36]—Robots i and j only have to exchange information if they share a boundary in the

Voronoi tessellation (as long as Γ(p) does not introduce additional dependencies).

The gradient to H(p) can be computed by applying Leibniz integral rule [45], which

contains terms involving the derivative of the integrands as well as the domains over which

the integrals are defined. However, even though a small change in pi results in a corre-

sponding change to the boundary of the Voronoi cell Vi(p), the net contribution from this

change to the locational cost is offset by the corresponding changes to the locational cost

from the boundaries of the adjacent Voronoi cells, given that the density function, φ(q), is

common to all the agents and the total mass is conserved across D. As a result, the do-
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main terms in Leibniz rule cancel among neighbors and only the integrand terms must be

considered when computing the gradient [29, 45], given by

∂H(p)

∂pi
= 2

∫
Vi(p)

(pi − q)Tφ(q) dq.

It is possible to express this gradient in a more compact form by defining the mass and

center of mass associated with Robot i’s Voronoi cell as

mi(p) =

∫
Vi(p)

φ(q) dq, ci(p) =

∫
Vi(p)

qφ(q) dq

mi(p)
, (2.3)

which yields the gradient

∂H(p)

∂pi
= 2mi(p) (pi − ci(p))T . (2.4)

Moreover, by letting the gain be

γi(p) =
κ

2mi(p)
,

the scaled descent algorithm becomes the well-known Lloyd’s algorithm [43],

ṗi = −κ(pi − ci(p)), (2.5)

where κ > 0 is a proportional control gain. In fact, using LaSalle’s invariance principle,

Lloyd’s algorithm has been shown to asymptotically achieve a centroidal Voronoi tessel-

lation (CVT), i.e., a configuration where, asymptotically, pi = ci(p), which in turn is a

necessary condition for optimal coverage, as shown in [29]. Figure 2.1 shows two different

CVTs achieved by the same team of mobile robots in a domain according to two different

density functions, φ(q).

Many aspects of the coverage problem have been considered in the literature. Regard-
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(a) (b)

Figure 2.1: Centroidal Voronoi tessellations achieved in simulation by a team of 25
differential-drive mobile robots covering a rectangular domain according to the control
law in (2.5). In (a), the multi-robot team is tasked with covering the domain according
to a uniform density function, i.e. all the points in the domain have equal importance. A
bivariate Gaussian density function is used in (b) to represent a situation where the center
of the domain is more important than the areas near the borders, where higher values of
density are depicted through a darker shade of blue. In both situations, the Voronoi cells
are depicted through black lines.

ing the domain to be surveyed, authors have studied the coverage of non-convex [46], non-

Euclidean [47], time-varying [48, 49], cluttered [50, 51], and structured environments [52,

53]. The density to be monitored by the team within the domain has also been an object

of study, with a prominent focus on dealing with initially unknown density distributions, a

problem often tackled through a simultaneous estimation and coverage through a series of

control theory strategies [54] as well as statistical inference or learning [55, 56, 57, 58, 59,

60, 61]. With respect to the capabilities of the robots, authors have studied how to perform

coverage when the team presents different kinematic configurations [62], mixed ground-

aerial platforms [63], power constraints [21, 64] or sensor limitations [65, 66, 67, 68]. The

adaptability of the sensors’ performance to the environment has also been considered [69],

as well as the application of the coverage framework to purely visual strategies, where spe-

cific camera performance measures have to be incorporated to reflect the particular aspects

of position-fixed but reconfigurable orientations and focal parameters [69, 70], as well as

visual sensors mounted on mobile robots [71, 72, 73].
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Given that one of the pillars of this thesis is to investigate how coverage should be

performed by teams where the individual robots are equipped with qualitatively different

sensors—which constitutes the topic of Chapter 3—Section 2.1.1 presents a summary of

how different types of heterogeneity in multi-robot teams have been previously considered

in the formulation of the coverage problem. Furthermore, in relation to the framework

introduced in Chapter 4, Section 2.1.2 presents an overview of existing solutions for the

coverage of time-varying density functions.

2.1.1 Coverage Control With Heterogeneous Robot Teams

In many applications, individuals in a multi-robot team are rarely identical [74], as they

may be equipped with different sensor suites, have varying levels of available energy, or

the extent of wear and tear on the hardware may affect their performance. In the context

of the coverage problem, a number of approaches considering heterogeneous teams have

been proposed, focusing on sensor ranges or anisotropy [20, 75, 76], visibility limitations

[46, 77], robot footprints [78, 79], and motion or sensor performance [21, 64, 79, 80] as

the differentiating features among the robots. The heterogeneity among agents is usually

encoded through a set of weights w = {w1, . . . , wN} that result in a weighted Voronoi

partition, the so-called power diagram [81],

Pi(p, w) = {q ∈ D | ‖q − pi‖2 − w2
i ≤ ‖q − pj‖2 − w2

j , ∀j ∈ N}.

Furthermore, the set of weights, w, are incorporated into the locational cost through the

function that measures the distance between each robot and the points within its region of

dominance,

Hpower(p, w) =
∑
i∈N

∫
Pi(p,w)

(
‖q − pi‖2 − w2

i

)
φ(q) dq. (2.6)

This approach allows encoding many types of heterogeneity within the multi-robot

team. However, the locational cost in (2.6) is restricted to scenarios where the density
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function φ(q) is common to all the agents, that is, all the sensors measure the same types

of features. One of the questions pursued in this research is how to introduce heterogene-

ity into this formulation in a way that reflects the capabilities of the different robots in a

natural manner when the sensing modalities are qualitatively different, i.e., when there is

no longer a single density function φ(q) that represents the importance of the points in the

domain for all the robots in the team. In Chapter 3, we explicitly try to maintain some of

the structural advantages afforded by the formulation of the coverage problem through a

locational cost similar to the costs in (2.2) and (2.6), while capturing qualitatively different

sensing capabilities distributed across the robots.

2.1.2 Coverage of Time-Varying Density Functions

In some coverage applications, the importance of the points in the domain may evolve over

time due to, for example, the tracking of moving targets [29, 82] or new area objectives

specified by a human operator [8, 83]. In these cases, it may be advantageous to preserve

most of the structure of the coverage problem introduced in Section 2.1 and reflect the

dynamic nature of these goals by considering the density function to be time-varying, φ :

(q, t) ∈ D × R+ 7→ φ(q, t) ∈ R+, which results in the following locational cost,

Htv(p, t) =
N∑
i=1

∫
Vi(p)

‖q − pi‖2φ(q, t) dq, (2.7)

where the subscript tv denotes the fact that the density function, φ, is time-varying.

Past approaches to the time-varying coverage problem rely on limitations on the rate of

change of the density functions [29, 84, 85]. In particular, assuming the variation on the

density is quasi-static [29], the multi-robot team can minimize (2.7) by letting each robot

execute

ui = ċi(p, t)−
(
κ+

ṁi(p, t)

mi(p, t)

)
(pi − ci(p, t)), κ > 0. (2.8)

Analogously to the static case in (2.3), mi and ci represent the mass and center of mass,
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defined here with respect to the time-varying density, φ(q, t),

mi(p, t) =

∫
Vi(p)

φ(q, t) dq, ci(p, t) =

∫
Vi(p)

qφ(q, t) dq

mi(p, t)
. (2.9)

The time derivatives in (2.8) are computed as follows,

ṁi =

∫
Vi

φ̇(q, t)dq, ċi =
1

mi

(∫
Vi

qφ̇(q, t)dq −mici

)
,

where we have suppressed the dependencies mi, ci and their time derivatives on (p, t) and

the dependency of Vi on p for notational convenience.

Motivated by the assumptions needed for (2.8) to render a stable controller in the pres-

ence of rapidly changing density functions, the restrictions on the rate of change of the

density function φ(p, q) are lifted in [82], where the following control law is proposed to

minimize the time-varying locational cost in (2.7),

ui =
mici +Ri −mipi

2‖mici +Ri −mipi‖2

(
κmi‖ci − pi‖2 + Fi

)
, κ > 0, (2.10)

withmi and ci defined as in (2.9). The term Fi results from the fact that the density function,

φ(q, t), is time-varying and

Fi = (ci − pi)T
∫
Vi

(2q − ci − pi) φ̇(q, t) dq,

while Ri accounts to variations caused by the displacement of the boundaries between

Robot i and its neighbors,

Ri =
∑
j∈Ni

[
1

2

∫
∂Vij

φ(q)
∂q

∂pi
nq dq

(
cT
i ci − cT

j cj
)
−
∫
∂Vij

qφ(q)

(
∂q

∂pi
nq

)T

dq (ci − cj)

]
,

with ∂Vij denoting the Voronoi boundary between Robots i and j and nq, the outward

facing normal vector to such boundary at point q. The efficacy of the control law in (2.10)

11



is demonstrated in simulation and experiments in [82]. However, no analytical guarantees

are shown in [82] to guarantee that the controller ui does not blow up as the robots approach

a CVT.

The restrictiveness of the quasi-static approach in [29] and the lack of theoretical guar-

antees in [82] motivated a different approach in [83]. As illustrated in [83], considering

the time-varying version of the cost in (2.7), one can achieve a CVT, without imposing

conditions on the variation of φ(q, t), by setting

u =

(
I − ∂c

∂x

)−1(
κ(c(p, t)− x) +

∂c

∂t

)
, (2.11)

where u = [uT
1 , . . . , u

T
N ]T and c = [cT

1 , . . . , c
T
N ]T.

However, inverting the matrix I− ∂c
∂x

in (2.11) cannot be done in a decentralized fashion.

For this reason, in [83], the inverse is approximated by a truncated Neumann series as

(
I − ∂c

∂x

)−1

≈ I +
∂c

∂x

which allows each robot to evaluate its corresponding term based solely on information

about its Delaunay neighbors.

In Chapter 4, we propose a constraint-based approach to the time-varying coverage

problem that can be executed in an exact, decentralized fashion without imposing any con-

ditions on the rate of change of the density functions. In addition, the proposed constraint-

based strategy naturally lends itself composable with additional behaviors that could be

concurrently executed by the multi-robot team, e.g. energy saving, collision avoidance

[86].
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2.2 Robots and Arts

The intersection of robots and arts has become an active object of study as both researchers

and artists push the boundaries of the traditional conceptions of different forms of art [25,

26]. Robots have entered the realm of music, imitating human playing on preprogrammed

musical pieces [87, 88, 89], enhancing the playing abilities of human musicians [90] or in-

teractively playing or improvising alongside people [91, 92]. Dance has also been explored

in the robotic context, with authors making robotic agents imitate structured human dances

[93, 94], exploring the stylistic generation of dance patterns [95] and moving in real time

according to music [96, 97]. Movement and engaging interactions between humans and

robots has not been limited to dance, being also the object of study in the context of robot

theater [98, 99, 100, 101] and stage support for visual performances [5, 102]. Robots are

also capable of creating physical pieces of arts through artistic painting [103, 104] or by

becoming art exhibits by themselves [105, 106, 107, 108, 109, 110].

On a smaller scale, the artistic possibilities of robotic swarms have also been explored

in the context of choreographed or generated movements to music [5, 27, 111, 112], emo-

tionally expressive motions [113, 114, 115, 116], interactive music generation based on

the interactions between agents [117], or artistic paintings [118, 119, 120], among others.

In this thesis, we explore coverage as an interaction modality between human artists and

robotic swarms for two different artistic applications, namely interactive artistic painting,

developed in Chapter 5, and emotionally expressive movement for performance support

and robot theater, in Chapter 6. To this end, the remainder of this chapter provides a litera-

ture review on the topic of artistic robotic painting, as well as an overview on the expression

of emotion and affect in robotic systems.
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2.2.1 Artistic Robotic Painting

Advances in image processing and robotic control have opened up fascinating possibilities

for researchers and artists, paving the way for new forms of artistic painting. Further-

more, in contrast to some other expressions of robotic art, robotic painting creates tangible

pieces of art (paintings) which can be compared to other robot-created paintings—or even

to paintings created by human artists.

In the context of robotic painting, the focus has been primarily on robotic arms capable

of rendering input images provided to the robot setup. Monochromatic portraits, created as

pen-an-ink drawings have drawn a significant amount of attention [121, 122], with some se-

tups including additional control challenges such as drawing over arbitrary surfaces [123].

Some portrait setups, such as Paul the robot [104], reproduce face drawings of people based

on observation, thus enhancing the human experience by providing the possibility of pos-

ing for a portrait. Along the lines of single-stroke painting, robotic painting has also been

explored for the reproduction of handwritten characters [124, 125].

Realistic painting constitutes the preferred style in robotic painting literature, possi-

bly due to the direct benchmarking that it affords. Robot Artist [126] has been used for

the colorful reproduction of images, while ARTCYBE [127] has tackled realistic black

and white paintings, diving into specific difficult techniques such as faithful tone rendition

[128]. Other robotic applications on realistic painting have focused on the reproduction

of the entire human painting process [129], exploring diverse grasps of different brushes.

Realism has also favored exploring the use of Cartesian robots [130], in opposition to the

extended use of robotic arms.

Alternative aesthetic and painting styles have also been approached in non-photorealistic

robotic painting. The eDavid robot project [103] focused on simulating the entire human

painting process, affording the use of multiple types of brushes or pencils, as well as phys-

ical colors ranging from ink to oil paint. Busker Robot, on the other hand, focused on the

creation of watercolor painting, with changes in brush type, color dilution, etc. Later instal-
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lations of both robots focused on different non-photorealistic techniques based on different

types of strokes [131] and rendering techniques [132, 133]. The production of abstract

paintings with similar robotic arm setups remains mostly unexplored, with some excep-

tions such as JacksonBot, a robot where the motion of the human hand has been analyzed

to produce paintings in the style of Jason Pollock’s [134].

Finally, robotic painting has not being exclusively related to the use of physical paint

in the literature, with some authors exploring the use of quadrotors for single-stroke light

painting in the space [135].

Robotic Swarm Painting

The idea of swarm painting has been substantially investigated in the context of computer

generated paintings, where virtual painting agents move inspired by ant behaviors [136,

137, 138]. The creation of paintings with embodied robotic swarms, however, is lacking.

Furthermore, in the existing instances of robotic swarm painting, the generation paradigm

is analogous to those employed in simulation: the painting emerges as a result of the

agents movement according to some behavioral, preprogrammed controllers [118, 119].

The robotic swarm thus acts in a completely autonomous fashion once deployed, which

prevents any interactive influence of the human artist once the creation process has begun.

Even in such cases where the human artist participates in the creation of the painting along

with the multi-robot system [120], the role of the human artist has been limited to that of a

co-creator of the work of art, since they can add strokes to the painting but their actions do

not influence the operation of the multi-robot team.

2.2.2 Emotionally Expressive Robotics

As the integration of robots into domestic and public environments becomes a reality, there

arises a need for robots to communicate in a familiar, socially intelligent manner, rendering

their behavior recognizable to humans [139]. In order to effectively interact with a human, a
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robot must convey emotion [140] and intentionality [141], i.e. the human must believe that

the robot has beliefs, desires, and intentions [141]. In artistic applications, this requirement

becomes essential: robots must be able to convey artistic expression an emotion to the

audience, analogously to their human counterparts [142, 143].

Emotionally expressive interactions have been considered in the context of anthropo-

morphic robots [144], especially humanoids [99, 145, 146], and non-anthropomorphic

robots [27, 147, 148], with different strategies being considered for the conveyance of

emotional information. Laban Movement Analysis [149] has been adopted predominantly

in robotic systems to express emotion through acceleration patterns [150, 151, 152, 153,

154, 155]. Additional movement features such as speed, smoothness or distance to obsta-

cles have also been explored as ways to convey emotion [156]. Motor actions can also be

used in conjunction with verbal cues [156], facial expressions [141] or touch [139, 157] to

enhance the interaction between robots and humans. Lastly, the expressivity of the robotic

system may not only be a result of the individual actions of the robot and the human, but

also be influenced by the environment context [158].

Regarding robotic swarms, while its choreographed use to enhance stage performances

has become quite popular in the last years [5, 27, 111, 102], the study of expressive interac-

tions for this type of robotic systems remains sparse [114, 115, 116]. For these robotic plat-

forms, however, authors have not only been constrained to movement descriptors common

to individual robots (e.g. speed or smoothness), but have exploited the unique capabilities

of robotic swarms in terms of synchronization [114] or standard collective algorithms [115,

116].

Emotion Models

For expressive robotic platforms, an intrinsically related question to that of how to convey

emotions is that of which emotions should be conveyed. The question of which emotions

are intrinsic to the human species and, thus, represent the basis for all the other emotions to
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stem—possibly as a consequence of the cultural influence we experience in our respective

societies—is certainly not restricted to these robotic applications, but rather constitutes an

open question in the field of social psychology. As a consequence, authors have considered

different emotion models when studying emotionally expressive robotic systems.

A prevalent model in the emotionally expressive robotics literature, both for anthropo-

morphic (e.g. [159]) as well as for non-anthropomorphic robots (e.g. [147]) is based on

the so-called fundamental or basic emotions. Proposed by psychologists Ekman [160] and

Izard [161], among others, this model contemplates six fundamental emotions—happiness,

sadness, anger, fear, surprise and disgust, which are considered to be inherent to human

mentality and adaptive behavior, and to remain recognizable across cultures [160, 161,

162].

Mehrabian’s emotional model [163, 164] has also been used in the robotics litera-

ture to provide a basis for which emotion basis to consider, both with physical [156] as

well as for virtual agents [165]. The model, referred to as PAD emotional state model,

classifies emotions as a function of three numerical dimensions: pleasure, arousal and

dominance. The pleasure/displeasure scale—sometimes referred also as the valence of

an emotion—designates the intrinsic attractiveness or aversiveness of an event, object

or situation [166], and therefore characterizes its positive or negative connotation. The

term arousal scale refers the activation or deactivation associated with an emotion and the

dominance-submissiveness scale represents the preevalence of some emotions over others.

Finally, the P (pleasure/displeasure) and A (arousal/relaxation) scales of Mehrabian’s

PAD model constitute the base for the circumplex model of affect proposed by Russell

[167], which considers these dimensions orthogonal. Russell’s model has also been con-

sidered in the robotics literature, together with Ekman’s and Mehrabian’s emotion classifi-

cations, or by itself, e.g. [153].
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Abstract Emotional Descriptors

A robotic swarm is comprised of a high number of relatively simple robots capable of re-

configuring themselves in a surface (planar robots) or in a volume (aerial robots) according

to application objectives. However, the individual robots in a swarm typically have non-

anthropomorphic, non-reconfigurable bodies, which can pose limitations in their expressiv-

ity when trying to apply strategies developed for robots with anthropomorphic traits such

as faces, torsos or limbs. Given these limitations, this section outlines abstract shape and

motion descriptors associated with different emotions in the social psychology literature

[168].

Emotions can be attributed to kinematic features of abstract objects such as speed, ac-

celeration or smoothness of the motion. Indeed, average speed and movement time are

considered strong features in affect attribution [169, 170, 171, 172], especially with re-

spect to its arousal [170]: increased speed is associated with emotion with high arousal

(e.g. anger, happiness) [170] and smaller, slower movements are connected to low arousal

(e.g. fear or sadness) [170, 172, 173, 174]. Movement acceleration also affects the emotion

sensing, with acceleration being proportional to the perceived emotion arousal [171]. On

the other hand, the smoothness or angularity of the movement trace of an object is often re-

lated to emotion valence, with smoother movements evoking pleasant emotions[169, 171,

175, 176].

In addition, static features of an abstract object may also influence emotion attribution.

Similarly to the movement trace, the shape contour of an object also affects its emotive per-

ception [175, 177, 178]. Generally, rounded shape contours are related to positive emotions

and angular shapes, to negative ones—with the exception of sadness, a negative emotion

that is associated with rounded shapes [179]. The size of an object also affects its emotive

perception, with the surface area of a shape being directly entailing increased potency, i.e.

higher arousal [175].
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2.3 Conclusions

This chapter outlined the formulation of the coverage control problem used throughout

this thesis, based on the works of Cortés [6]. This coverage formulation serves as the

framework for the coverage of heterogeneous and density-functions, which constitute the

object of interest of Chapters 3 and 4. In this context, this chapter has also provided a review

of relevant work in the robotics literature related to different types of heterogeneity in the

problem of coverage, as well as how dynamic density functions have been approached in

the past.

The second part of this thesis deals with artistic robotic swarm applications based on

coverage control as the interaction modality between the swarm and the human artist. This

chapter outlined the body of work related to artistic robotic painting, including the sparse

work on painting with robotic swarms. Regarding emotionally expressive robotic swarms,

the chapter offered an overview of different strategies used to create emotionally expressive

interactions between humans and robots, as well as a brief summary of different emotion

models and emotion descriptors, both from the social psychology literature.
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CHAPTER 3

COVERAGE CONTROL WITH HETEROGENEOUS SENSING CAPABILITIES

The problem of coverage for multi-robot teams deals with the positioning of a team of

robots in a domain of interest such that the environmental features in the domain are mon-

itored by at least one of the robots in the team [6, 7, 44, 20]. Many aspects of the coverage

problem have been explored in the literature, including limitations on the robots’ motion

performance [21, 64], variations on the environmental features present in the domain [83],

or geometric characteristics of the sensor footprint [65, 66], among others. However, the

robots are often interchangeable in terms of the kind of features they monitor, i.e., all the

robots in the team are equipped with the same sensing modalities, thus being able to detect

the same events in the domain, even when differences arise between the robots in terms of

performance [20, 78].

In complex environments, a multi-robot team may need to simultaneously monitor mul-

tiple types of features (e.g. radiation, humidity, temperature [180]), which require a mixture

of sensing capabilities too extensive to be designed into a single robot [181]. As an alter-

native, each robot may be equipped with a subset of those sensors as long as, collectively,

the team has all the sensor modalities needed to monitor the collection of features in the

domain. However, in that case, the formulation of the coverage control algorithm needs to

account for the sensing capabilities of each of the robots in the team.

This chapter studies how to introduce heterogeneity into the coverage formulation in a

way that reflects the capabilities of the different robots in a natural manner when the sens-

ing modalities are qualitatively different. The chapter is organized as follows: Section 3.1

presents the heterogeneous coverage problem formulation that considers robots equipped

with qualitatively different sensors. Two different approaches to the heterogeneous cov-

erage problem are included in this chapter: Section 3.2 presents an approach where each
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robot calculates its individual density function by composing the functions associated with

its sensors, while, in Section 3.3, different domain partitions are established according to

the sensing modalities in the team. Both strategies are compared experimentally in Section

3.4. Section 3.5 concludes the chapter.

3.1 Problem Statement

The question of how well a team of N planar robots with positions pi ∈ D ⊂ R2, i =

1, . . . , N , is covering a convex domain D is typically asked relative to an underlying den-

sity function φ : D 7→ [0,∞), which captures the relative importance of points in the

domain, with φ(q) > φ(q̂) meaning that q is more important, has a higher probability of

being a place where an event will occur, or contains more relevant features than point q̂,

as discussed in [7]. In the homogeneous coverage problem from [6] (see Section 2.1 for

details), the quality of coverage is encoded through the locational cost,

Hhom(p) =
∑
i∈N

∫
Vi(p)

‖q − pi‖2 φ(q) dq,

where {V1(p), . . . , VN(p)} constitutes a Voronoi partition of the domain D under the Eu-

clidean metric as defined in (2.1). We use the subscript hom here to explicitly refer to the

fact that all the robots have the same sensing capabilities, i.e., the team is homogeneous.

This chapter pursues the question of how to introduce heterogeneity into this formula-

tion in a way that reflects the capabilities of the different robots in a natural manner when

the sensing modalities are qualitatively different. To this end, let S be a set of sensory

modalities, with each robot being equipped with a subset of these sensors, denoted by

s(i) ⊂ S, i ∈ N . Moreover, for each sensor j ∈ S, there is a corresponding density of

events or features in D that this particular sensor can detect. For example, a camera can

detect color variations associated with wilting crops on a farm field, while chemical gas

sensor arrays can be used to measure soil conditions [182, 183]. As a result, we no longer
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have a single density function, but rather a class of functions φj : D 7→ [0,∞), j ∈ S, with

φj(q) representing the importance of a point q ∈ D according to sensor j ∈ S [184, 185].

3.2 Heterogeneous Coverage

Given the class of density functions φj : D → [0,∞), j ∈ S, one can encode the hetero-

geneity among the sensing modalities by defining the density associated with point q as it

pertains to Robot i as a combination of the densities associated with its sensor suite [184],

φs(i)(q) =
⊕
j∈s(i)

φj(q), (3.1)

where ⊕ is an appropriately chosen composition operator. The choice of composition op-

erator reflects how the densities from the different sensors on the robot should be combined

in order to compute the overall density function. For example, one simple way to combine

the density functions is a direct summation,

⊕
j∈s(i)

φj(q) =
∑
j∈s(i)

φj(q),

where the relative importance of a point is reflected by the sum of its importance among

different sensors. Another possible composition is to pick the maximum density value

among the sensors on Robot i,

⊕
j∈s(i)

φj(q) = max
j∈s(i)

φj(q).

This choice would ensure that the density associated with a point corresponds to the highest

relative importance measured by its sensors.

In order to maintain the structural advantages afforded by the homogeneous formulation

in Section 3.1 (see Section 2.1 for more details), where each robot can measure the relative

position of its neighbors and has information about the density distribution to be covered,
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a direct usage of the locational cost with the agent-dependent density function in (3.1)

becomes,

HC(p) =
∑
i∈N

∫
Vi(p)

‖q − pi‖2φs(i)(q) dq. (3.2)

Note that, under this formulation, the original Voronoi partition as in (2.1) is employed,

Vi(p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, j ∈ N},

giving each individual robot the sole responsibility for its region of dominance. The reason

for this is twofold, namely (a) a desire to recover as much as possible from the homoge-

neous coverage control case in terms of the structure of the derivations, and (b) the fact that

coordination emerges explicitly from the regions of dominance—hence the subscript C.

However, in the heterogeneous case, it is no longer true that whichever area Robot i

does not cover outside of Vi(p) is automatically covered by the adjacent robots. Since the

robots may be equipped with different sensor suites, it may be necessary to let coverage

responsibilities encroach on other robots’ cells, i.e., we no longer have a strict partition of

the domain into regions of dominance. In the extreme case, if Robot i is the only robot

equipped with a particular sensor, and that sensor is needed to cover the whole domain (as

well as possible), it is necessary to define an additional cost over the whole domain. As

such, in order to let the agents embrace their domain objectives, denoted by the subscript

O, a different locational cost is needed,

HO(p) =
∑
i∈N

∫
D
‖q − pi‖2φs(i)(q) dq, (3.3)

where each integral measures how well Robot i is covering the entire domainD with respect

to its particular sensor configuration.

Armed with these two different locational costs, we let the heterogeneous locational
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cost be given by a convex combination of the costs in (3.2) and (3.3),

Hhet(p) = σHC(p) + (1− σ)HO(p)

= σ
∑
i∈N

∫
Vi(p)

‖q − pi‖2φs(i)(q) dq

+ (1− σ)
∑
i∈N

∫
D
‖q − pi‖2φs(i)(q) dq, (3.4)

where σ ∈ (0, 1] acts as a regularizer between the two competing objectives. We do not

let σ = 0 since, with this choice, no coordination among agents is present. The effect of

selecting different values of σ is further discussed in subsequent sections.

These changes in the locational cost, as compared to the homogeneous case, have sig-

nificant implications for how the gradient should be computed. In the following sections,

we untangle these implications and present a controller that achieves convergence to the

critical points of the heterogeneous locational cost in (3.4), which constitutes a necessary

condition for optimal, heterogeneous coverage.

3.2.1 Gradient Descent

If we were to obtain the gradient to the heterogeneous locational cost in (3.4), a descent

direction that achieves a local minimizer could be computed for the robots. To this end, we

compute the gradient toHhet by considering the two locational costsHC andHO separately,

starting with the former of the two.

Let Ni encode the Delaunay neighborhood of Robot i, i.e., the set of agents whose

Voronoi cells share a face with agent i’s Voronoi cell, as was done in [83]. We can now

break ∂HC/∂pi down into three terms, namely Robot i’s contribution, the contributions
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from robots in Ni, and the contributions from the remaining robots,

∂HC
∂pi

(p) =
∂

∂pi

(∫
Vi(p)

‖q − pi‖2φs(i)(q) dq

)
+

∂

∂pi

(∑
j∈Ni

∫
Vj(p)

‖q − pj‖2φs(j)(q) dq

)

+
∂

∂pi

 ∑
j /∈Ni∪{i}

∫
Vj(p)

‖q − pj‖2φs(j)(q) dq

 . (3.5)

We immediately note that the last term in the above expression does not depend on pi,

and as such, will be zero. For the remaining terms, we need to recall Leibniz integral rule:

Lemma 3.1 (Leibniz Integral Rule [45]). Let Ω(p) be a region that depends smoothly on

p such that the unit outward normal vector n(p) is uniquely defined almost everywhere on

the boundary ∂Ω(p). Let

F =

∫
Ω(p)

f(q) dq.

Then,

∂F

∂p
=

∫
∂Ω(p)

f(q)n(q)T∂q

∂p
dq,

where
∫
∂Ω(p)

denotes the line integral over the boundary of Ω(p).

This expression needs to be connected to the coordination locational cost in (3.2). As-

suming that Vi and Vj share a boundary, this boundary will be orthogonal to the line con-

necting the Voronoi cell generators, as is observed in [186]. In other words, for any point q

on this boundary,

(
q − pi + pj

2

)T

(pi − pj) = 0.
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Differentiating this with respect to pi yields

(pj − pi)T ∂q

∂pi
= (q − pi)T . (3.6)

As (pj − pi)/‖pj − pi‖ is the unit outward normal from Vi on this shared boundary, by

dividing (3.6) by ‖pj − pi‖ the term n(q)T ∂q
∂p

in the integrand of Lemma 3.1 is obtained.

Considering coverage control when mass conservation no longer holds is not new. For

example, [46] considers coverage control with visibility constraints and, analogously to

what was done in [46], we can calculate the gradient toHC by applying the Leibniz integral

rule to (3.5),

∂HC
∂pi

= 2mi (pi − ci)T

+
∑
j∈Ni

∫
∂Vij

‖q − pi‖2 (q − pi)T

‖pj − pi‖
φs(i)(q) dq

−
∑
j∈Ni

∫
∂Vij

‖q − pj‖2 (q − pi)T

‖pj − pi‖
φs(j)(q) dq, (3.7)

where we, for notational convenience, have suppressed the explicit dependence of p on

∂Vij—the boundary between Voronoi cells Vi and Vj—and where
∫
∂Vij

refers to the line

integral evaluated along this boundary. Moreover, mi and ci are the heterogeneous mass

and center of mass in Robot i’s Voronoi cell, given by

mi =

∫
Vi

φs(i)(q) dq, ci =

∫
Vi
qφs(i)(q) dq

mi

. (3.8)

From the definition of the Voronoi tessellation, all points on a boundary between cells

are equidistant from the seeds for those cells, i.e., for all q ∈ ∂Vij we have that ‖q − pi‖ =
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‖q − pj‖. Substituting ‖q − pj‖ by ‖q − pi‖ in (3.7) yields

∂HC
∂pi

= 2mi (pi − ci)T

+
∑
j∈Ni

(∫
∂Vij

(q − pi)T ‖q − pi‖2

‖pj − pi‖
φs(i)(q) dq

−
∫
∂Vij

(q − pi)T ‖q − pi‖2

‖pj − pi‖
φs(j)(q) dq

)
,

where the integral terms simplify to

∑
j∈Ni

∫
∂Vij

(q − pi)T ‖q − pi‖2

‖pj − pi‖
(
φs(i)(q)− φs(j)(q)

)
dq. (3.9)

From this, we directly see that the gradient of the coordination term differs from the one

obtained in the homogeneous case. Since the densities are no longer the same in adjacent

cells, the net increase over Vi(p) caused by a small movement in pi is not offset by the

changes in adjacent Voronoi cells. Note though that if the density functions are identical for

all robots, φs(i) = φs(j), i, j ∈ N , then the additional term cancels out and the homogeneous

gradient (2.4) from Section 2.1 is immediately recovered.

In order to get the gradient expression in a more compact form, we introduce the total

mass and center of mass (both interpreted in terms of line integrals) on the boundaries

between Voronoi cells using the following notation,

µij =

∫
∂Vij

‖q − pi‖2

‖pj − pi‖
φs(i)(q) dq, ρij =

∫
∂Vij

q
‖q − pi‖2

‖pj − pi‖
φs(i)(q) dq

µij
. (3.10)

Plugging these into (3.9) yields the derivative of (3.2) with respect to Robot i’s position

∂HC
∂pi

T

= 2mi(pi − ci) +
∑
j∈Ni

µij (ρij − pi)− µji (ρji − pi) . (3.11)
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The computation of ∂HO/∂pi is less involved as the area of integration is the entire

domain D, which does not depend on the position of the agents,

∂HO
∂pi

=
∂

∂pi

(∫
D
‖q − pi‖2φs(i)(q) dq

)
= 2Mi(pi − Ci)T.

Here Mi and Ci denote the mass and center of mass of the domain according to the density

function of agent i, i.e.,

Mi =

∫
D
φs(i)(q) dq, Ci =

∫
D qφs(i)(q) dq

Mi

. (3.12)

The gradient of the heterogeneous locational cost thus becomes

∂Hhet

∂pi

T

= σ
∂HC
∂pi

T

+ (1− σ)
∂HO
∂pi

T

= 2σmi(pi − ci) + σ
∑
j∈Ni

µij (ρij − pi)− µji (ρji − pi)

+ 2(1− σ)Mi(pi − Ci). (3.13)

Letting Robot i follow a negative gradient flow establishes the following heterogeneous

gradient descent theorem.

Theorem 3.2 (Heterogeneous Gradient Descent [184]). Let Robot i, with planar position

pi, evolve according to the control law ṗi = ui, where

ui =− 2κ (σmi(pi − ci) + (1− σ)Mi(pi − Ci))

− σκ
∑
j∈Ni

(µij (ρij − pi)− µji (ρji − pi)) . (3.14)

Then, as t → ∞, the robots will converge to a critical point of the heterogeneous location

cost in (3.4) under positive gain κ > 0.

Proof. From (3.13), we already know the form for the gradient. What remains to be shown

28



is that convergence to a critical point is indeed achieved.

Consider the total derivative of the locational cost

dHhet(p)

dt
=
∑
i∈N

∂Hhet

∂pi
ṗi = −κ

∥∥∥∥∂Hhet

∂p

T∥∥∥∥2

≤ 0.

For (3.26) to be zero, we need ∂Hhet

/
∂p = 0, in which case the control law becomes

ṗi = 0. By LaSalle’s invariance principle, the multi-robot system converges to the largest

invariant set contained in the set of all points such that dHhet(p)/dt = 0, which are the

critical points to the heterogeneous locational cost in (3.4).

Note that, unlike the homogeneous case, Centroidal Voronoi Tessellations (CVTs) are

no longer the only critical points to the locational cost. Indeed, as it will be observed

in Section 3.4, in some situations, placing the agents in a CVT may yield higher costs

than non-CVT configurations. Determining whether the achieved critical point is a local

minimizer to the locational cost is difficult to establish—this remains an open issue even in

the homogeneous case [45].

3.3 Communication Aware Heterogeneous Coverage

In this section, we investigate how the performance of the heterogeneous coverage algo-

rithm can be improved by letting the robots communicate about their sensing modalities.

By allowing Robot i to know which of its neighbors share some of its sensing modalities,

it can determine which robots it should share responsibility with when covering each of

the associated density functions, φj, j ∈ s(i), thus ensuring that no robot is tasked with

covering a region without the required sensing modalities.

Analogously to other multi-robot coverage problems [6, 20, 44, 83], we are on the

quest of defining a locational cost, Hcom(p), that quantifies the quality of the coverage as

a function of the positions of the robots in the team. For a sensing modality, j ∈ S , and

corresponding density, φj , the quality of coverage performed by Robot i, j ∈ s(i), can be
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(a) Regions of dominance with respect to Sensor 1.
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(b) Regions of dominance with respect to Sensor 2.

Figure 3.1: Regions of dominance for four neighboring robots with respect to Sensor 1,
(a), and Sensor 2, (b). In this example, the sensing performance in a point q ∈ D degrades
with the square of the distance to the robot: fj(dj(pi, q)) = ‖pi − q‖2, i ∈ {1, . . . , 4},
j ∈ {1, 2}. For each Sensor j, the resulting regions of dominance, V j

i , are Voronoi cells
generated by those robots equipped with the sensor.

encoded through the cost

hji (pi, V
j
i ) =

∫
V j
i

fj(dj(pi, q))φj(q) dq, (3.15)

where V j
i is the region of dominance of Robot i with respect to Sensor j, dj : D ×D 7→ R

measures the distance between robots and points in the domain, and fj : R 7→ R is a smooth

strictly increasing function that quantifies the degradation of the sensing performance with

distance [20, 36]. The subscript j in dj and fj indicates they may be sensor dependent.

Note that, for a system where the robots are equipped with different sensors, the region

that Robot i is responsible for with respect to sensor j, V j
i , can differ from the region to be

monitored with respect to sensor k, V k
i , j, k ∈ s(i), depending on the sensor equipments

of Robot i’s neighbors. An example of this for a four-robot, two-sensor scenario is shown

in Fig. 3.1, where we can observe that the regions of dominance for Sensor 1, V 1
i , differ

from those of Sensor 2, V 2
i , given that some robots are not equipped with those sensors

and, thus, ignored when computing the corresponding regions of dominance.

In order to calculate the cost in (3.15), we need to determine what are the regions of

dominance, V j
i . By letting the robots communicate about their sensor suites, Robot i can
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consider only the closest robots equipped with Sensor j (in terms of the distance function

dj) in order to calculate the boundaries of V j
i . If we denote asN j the set of robots equipped

with sensor j,

N j = {i ∈ N | j ∈ s(i)}, N = {1, . . . , N},

then the region of dominance of Robot i with respect to Sensor j ∈ s(i) can be defined as

a function of the positions of the robots according to the so-called nearest-neighbor rule

[187],

V j
i (p) = {q ∈ D | dj(pi, q) ≤ dj(pk, q), ∀k ∈ N j}.

The regions of dominance for Sensor j therefore correspond to the Voronoi partition gen-

erated by the robots in N j . Note that, if i is the only robot equipped with Sensor j, then

the robot is in charge of covering the whole domain: V j
i = D.

With the regions of dominance defined, we can calculate the cost given by (3.15) for all

the robots and all their sensors. With this information, the performance of the multi-robot

team can be encoded through the heterogeneous locational cost,

Hcom(p) =
∑
j∈S

∑
i∈N j

∫
V j
i (p)

fj(dj(pi, q))φj(q) dq, (3.16)

with a lower value of the cost corresponding to a better coverage of the domain.

The proposed heterogeneous locational cost has two significant advantages when com-

pared to the cost in [184]: On the one hand, the boundaries between the regions of domi-

nance, ∂V j
i , i ∈ N , are defined with respect to the same density function, φj, j ∈ S, so that

the cancellations that occur when applying Leibniz rule in the homogeneous case [6] will

also take place when calculating the gradient of (3.16). On the other hand, when covering

the density φj , a robot equipped with Sensor j will only relinquish the responsibility of an
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area in the domain to a neighboring robot if the latter is also equipped with Sensor j and can

perform a better coverage of such area (according to the functions dj and fj). This strategy

thus ensures that no robot is ever in charge of covering a density over an area without the

corresponding sensors and, as a result, there is no need to evaluate the performance of a

robot over the whole domain, as was done in Section 3.2.

3.3.1 Gradient Descent

Having defined a locational cost that evaluates the quality of the coverage performed by

the multi-robot team, we need to establish how the robots should move in the domain in

order to minimize it. A standard approach to minimize the cost is to let each robot move in

a direction of descent of the gradient, that is,

ṗi = −γi(p)
∂Hcom(p)T

∂pi
, i ∈ N ,

with γi(p) > 0 a gain for Robot i, which can depend on the position of the robots.

In order to calculate the derivative of the cost with respect to the position of Robot i,

we need only to consider the terms associated with the sensor equipment of Robot i, s(i),

∂Hcom

∂pi
=

∂

∂pi

∑
j∈s(i)

∑
k∈N j

∫
V j
k (p)

fj(dj(pk, q))φj(q)dq

 , (3.17)

given that the remainder terms in the first summation in (3.16) do not depend on pi. Sub-

sequently, for each sensor j ∈ s(i), we can break down the expression in (3.17) in terms

of the contribution of Robot i, its Delaunay neighbors with respect to such sensor,N j
i , and
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the rest of the robots in N j ,

∂Hcom

∂pi
=

∂

∂pi

∑
j∈s(i)

∫
V j
i (p)

fj(dj(pi, q))φj(q) dq

 (3.18)

+
∂

∂pi

∑
j∈s(i)

∑
k∈N j

i

∫
V j
k (p)

fj(dj(pk, q))φj(q) dq

 (3.19)

+
∂

∂pi

∑
j∈s(i)

∑
k∈N j

k 6∈N j
i ∪{i}

∫
V j
k (p)

fj(dj(pk, q))φj(q) dq

 , (3.20)

where the term (3.20) is zero since it does not depend on pi. Analogously to what was

done in Section 3.2.1, we need to apply Leibniz integral rule (Lemma 3.1) to calculate the

derivative of the first two terms.

The boundary of the region of dominance of Robot i with respect to sensor j, ∂V j
i (p),

depends on pi when a neighboring Robot k is also equipped with Sensor j, k ∈ N j
i . In this

case we can denote as ∂V j
ik(p) the boundary between Robots i and k, with the points on

that boundary satisfying the equality condition in the nearest-neighbor rule,

∂V j
ik(p) = {q ∈ D | dj(pi, q) = dj(pk, q), k ∈ N j

i }. (3.21)

Using this notation, we can write the derivative of (3.18) as

∑
j∈s(i)

∫
V j
i (p)

∂fj(dj(pi, q))

∂pi
φj(q) dq +

∑
j∈s(i)

∑
k∈N j

i

∫
∂V j

ik(p)

fj(dj(pi, q))φj(q)n
j
ik(q)

T ∂q

∂pi
dq,

(3.22)

where nik(q), q ∈ ∂V j
ik(p), denotes the unit outward normal vector on the boundary be-

tween Robots i and k. Similarly, the derivative in (3.19) becomes,

−
∑
j∈s(i)

∑
k∈N j

i

∫
∂V j

ik(p)

fj(dj(pk, q))φj(q)n
j
ik(q)

T ∂q

∂pi
dq, (3.23)
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since the integrand of (3.19) does not depend on pi and nik(q) = −nki(q),∀q ∈ ∂V j
ik(p).

The integral terms over the boundaries in (3.22) and (3.23) cancel because the points

on the boundary, q ∈ ∂V j
ik(p), satisfy the condition in (3.21) and therefore fj(dj(pi, q)) =

fj(dj(pk, q)). Thus, the gradient ofHcom(p) becomes,

∂Hcom

∂pi
=
∑
j∈s(i)

∫
V j
i (p)

∂fj(dj(pi, q))

∂pi
φj(q) dq. (3.24)

Letting Robot i follow a negative gradient descent establishes the following control law.

Theorem 3.3 (Communication Aware Heterogeneous Gradient Descent [185]). Let Robot

i, with planar position pi, evolve according to the control law ṗi = ui, where

ui = −κ
∑
j∈s(i)

∫
V j
i (p)

∂fj(dj(pi, q))

∂pi
φj(q) dq (3.25)

Then, as t → ∞, the robots will converge to a critical point of the heterogeneous location

cost in (3.16) under a positive gain κ > 0.

Proof. The form of the gradient is given in (3.24). Consider the locational costHcom(p) >

0 as a candidate function to prove convergence to a critical point. The total derivative of

the locational cost is,

dHcom(p)

dt
=
∑
i∈N

∂Hcom(p)

∂pi
ṗi = −κ

∥∥∥∥∥∂Hcom(p)

∂p

T
∥∥∥∥∥

2

≤ 0. (3.26)

The total derivative in (3.26) is zero if ∂Hcom(p)
/
∂p = 0, in which case the control law

becomes ṗi = 0. By LaSalle’s invariance principle, the positions of the multi-robot system,

p, will converge to the largest invariant set contained in the set of all points such that

dHcom/dt = 0, that is, the critical points to the heterogeneous locational cost in (3.16).

Note that, when the function dj is defined as the Euclidean distance and the degradation
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function, fj , takes the square of that distance as in [6, 184], that is,

fj(dj(pi, q)) = ‖pi − q‖2, ∀i ∈ N , j ∈ S,

then the control law in Theorem 3.3 becomes,

ṗi = 2
∑
j∈s(i)

mj
i (c

j
i − pi),

where mj
i and cji are defined as the heterogeneous mass and center of mass of Robot i with

respect to sensor j,

mj
i =

∫
V j
i (p)

φj(q) dq, cji =

∫
V j
i (p)

qφj(q) dq

mj
i

. (3.27)

Therefore, using the square of the Euclidean distance as the performance measure re-

sults in a controller that makes each robot move according to a weighted sum where each

summation term corresponds to performing a continuous-time Lloyd descent as in [6] over

the region of dominance corresponding to each of the sensors of the robot.

3.4 Experimental Results

The coverage control strategies for teams with heterogeneous sensing capabilities devel-

oped in this chapter were evaluated through a series of experiments. The performance of

the heterogeneous coverage framework introduced in Section 3.2, where each robot calcu-

lates its individual density function, is evaluated against a heterogeneous version of Lloyd’s

algorithm in Section 3.4.1. Furthermore, the influence of the regularizer between the two

competing objectives in Hhet in (3.4) as well as the effectiveness of the domain objectives

cost are showcased in this section. The performance of the control laws in Theorems 3.2

and 3.3—corresponding to descent laws onHhet andHcom, respectively—are compared in

Section 3.4.2 to show the effect of considering sensor-dependent partitions of the domain
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afforded by the communications about the sensor suites among the robots.

3.4.1 Heterogeneous Coverage

The heterogeneous coverage algorithm proposed in Section 3.2 was implemented on the

first version of the Robotarium [188], a remotely accessible swarm robotics testbed at the

Georgia Institute of Technology, whose arena serves as the region to be covered by the robot

team. The team was composed of six GRITSBots [189], which are miniature, differential-

drive robots. A webcam-based tracking system provides information about the position

and orientation of the different robots in the team. This information is fed to the control

algorithm, which produces velocity commands for the robots.

As the descent algorithm ultimately produces desired velocities ṗi, i ∈ N , an implicit

assumption behind this construction is that the robot dynamics can be expressed as (or at

least can execute) single integrator dynamics. But the differential-drive configuration does

not directly support single integrator dynamics and, as such, the control commands result-

ing from Theorem 3.2 must be converted into suitable, low level inputs for the GRITSBots.

To this end, let pi = (xi, yi)
T be the position of Robot i, and θi its orientation. Then, the

differential-drive configuration can be modeled using unicycle dynamics,

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi,

where vi and ωi are the translational and rotational velocities to be commanded to the

robot, respectively. Using a model similar to the one in [6], we can approximately convert

the single integrator dynamics into unicycle dynamics as follows,

vi = kv[cos θi sin θi]ṗi, ωi = kω arctan

(
[− sin(θi) cos(θi)]ṗi
[cos(θi) sin(θi)]ṗi

)
, (3.28)

with kv and kω positive gains.

To evaluate the control law in Theorem 3.2, its performance is compared to a baseline
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Table 3.1: Sensor modalities for the experiments comparing gradient descent onHhet with
a heterogeneous version of Lloyd’s algorithm.

Sensor modalities: S Robot sensors
Exp. 1 {1} s(i) = 1 ∀i ∈ N
Exp. 2 {1, . . . , 6} s(i) = i ∀i ∈ N
Exp. 3 {1, . . . , 6} s(i) = i ∀i ∈ N

Exp. 4 {1, . . . , 4}
s(1) = s(2) = 1

s(3) = 2, s(4) = 3

s(5) = s(6) = 4

controller. To this end, we compare it to a heterogeneous version of Lloyd’s algorithm,

whereby ṗi = −κ(pi − ci(p)), where ci is evaluated using the heterogeneous densities as

in (3.8). Given that the locational cost is an instantaneous measure, we moreover add a

temporal component by evaluating the total cost of the controllers

∫ tf

0

Hhet(p(t)) dt

under identical initial conditions.

The experiment consists of four different configurations both in terms of the sensor

suites assigned to the robots, s(i), i ∈ N , and the density functions associated with each

sensor type, φj , j ∈ S . The sensory capabilities of each robot are simulated using the

overhead camera, which provides each robot with the information that its sensors would

measure according to the corresponding density functions. Table 3.1 shows the sensor

modalities for each experiment. In the first experiment, all the robots have the same sensor,

therefore being in an equivalent configuration to the homogeneous case. Experiments 2 and

3 reflect situations where each robot has a unique sensor configuration, while in Experiment

4 some robots share sensor configurations.

Gaussian radial basis functions have been used in robotic networks to model sensors

whose noisy signals represent physical quantities, such as magnetic forces, heat, radio
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Table 3.2: Density parameters for the experiments comparing gradient descent on Hhet

with a heterogeneous version of Lloyd’s algorithm.

αi νi (cm)
Agent i 1 2 3 4 5 6

Exp. 1 βi = 1
0

0

Exp. 2 βi = i
0

0

Exp. 3 βi = 1
−40

0

−20

0

0

20

0

−20

20

0

40

0

Exp. 4 βi = 1
−30

0

−30

0

0

20

0

−20

30

0

30

0

signal, or chemical concentrations [190]. Following along these lines, for each sensor

j ∈ S, the corresponding density function is modeled as a bivariate normal distribution,

φj(q) =
βj

2π
√
|Σ|

exp

(
−1

2
(q − νj)TΣ−1(q − νj)

)
,

where νj is the mean of the density and Σ is the covariance matrix, which is kept con-

stant for all the sensors. βj serves as a scale factor that models the strength of the density

function. Table 3.2 indicates the density parameters used for each of the experiments, cor-

responding to the sensor modalities in Table 3.1. Note that the values for νj are measured

with respect to the center of the Robotarium arena used in these experiments, a 120 × 70

cm rectangle.

Table 3.3 presents a comparison of the total cost observed for the four sensor config-

urations, where both the heterogeneous version of Lloyd’s algorithm and the descent law

in Theorem 3.2 are executed for a total time of 2 minutes. Except for the first experiment,

which corresponds to the homogeneous case, the total cost for the proposed algorithm is

consistently smaller than the total cost attained by the heterogeneous Lloyd’s algorithm,
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Table 3.3: Comparison of the observed total cost comparing gradient descent onHhet with
a heterogeneous version of Lloyd’s algorithm.

Heterogeneous Lloyd’s Gradient Descent
Exp. 1 0.14 0.14
Exp. 2 1.68 1.08
Exp. 3 0.70 0.61
Exp. 4 0.67 0.53
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Time (s)

0.004

0.006

0.008

0.01

0.012

0.014

0.016
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h
e
t
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(t
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Gradient descent

Heterogeneous Lloyd's

Figure 3.2: Evolution of the cost Hhet(p(t)) with respect to time in Experiment 4. The
difference between the cost for heterogeneous Lloyd’s and the proposed gradient descent
in Theorem 3.2 arises from ignoring the boundary terms in (3.11) necessary to minimize
the heterogeneous cost. Note that the increase in cost around t = 40 is due to the fact
that the algorithm assumes single integrator dynamics while the actual robots are subject
to nonholonomic constraints.

which confirms that the control law in Theorem 3.2 is better suited for teams with hetero-

geneous sensing capabilities. The differences in performance between the two algorithms

are also depicted in Fig. 3.2, where the absence of the boundary terms makes the hetero-

geneous version of Lloyd’s algorithm converge to a configuration with a higher final cost,

showing that, for a heterogeneous cost, a CVT is not necessarily on its own a minimizer

for the cost function.
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(a) σ = 0.50 (b) σ = 0.70

(c) σ = 0.90

Figure 3.3: Effect of the regularizer term, σ, on the final configuration of the robot team
for the sensor configuration of Experiment 4. As specified in Table 3.2, Robots 1 and 2
share the same density function, as do Robots 5 and 6. We can observe how, as the value
of the regularizer decreases, the coordination between agents vanishes, making the robots
that share the same objectives crowd together.

Effect of the Regularizer, σ

A value of σ = 0.9 is used in all four experiments. The value given to the regularizer

σ is selected to favor the coordination component, HC , over the domain objectives. A

comparison of the effect of different regularizer values on the behavior of the robot team for

the sensor configuration of Experiment 4 is presented in Fig. 3.3, where we can observe that

lower values of σ tend to excessively favor the domain objectives term, HO, concentrating

the robots around their individual density functions and therefore reducing the coordinated

nature of the coverage algorithm.
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Effect of the Domain Objectives Cost,HO

A group of ten robots is used to illustrate the team behavior when σ = 1 in (3.14), that is,

when the control law is solely determined by the gradient of the coordination cost, HC . In

this case, the movement of a robot only depends on the values of its density function within

its Voronoi cell and boundaries. Consequently, the team may be deterred from adequately

covering an area associated with a particular density function, φj , if the robots equipped

with the associated sensor, j, are located in areas with low values of the density φj , and are

unable to move to higher density areas due to the position of their Delaunay neighbors, as

shown in Fig. 3.4b.

In Section 3.2, HO was introduced as an additional locational cost to palliate the lack

of coverage of areas outside each robot’s region of dominance when the team is equipped

with disjointed sets of sensors. The results from the convex combination of both locational

costs, HO and HC , are shown in Fig. 3.4a. This situation illustrates how the proposed

controller, thanks to the introduction of the domain objectives term, achieves a better spatial

configuration of the agents in the domain while each robot still coordinates with the other

members of the team.

3.4.2 Communication Aware Heterogeneous Coverage

The coverage performance of the two control laws for teams with heterogeneous sensing

capabilities presented in this chapter are compared in this section. Both controllers were

implemented on a team of ten GRITSBots [189] running in the Robotarium [191], where

the code is uploaded via web interface and the experimental data can be retrieved after the

experiment is finalized. On each iteration, the Robotarium interface provides information

about the position and orientation of the robots in the team and allows to specify the linear

and angular velocities to be executed by the robots.

An implicit assumption behind the controllers in both Theorems 3.2 and 3.3 is that

each robot can move according to single integrator dynamics, ṗi = ui,∀i ∈ N . Similarly
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(a) σ = 0.975 (b) σ = 1

Figure 3.4: A group of ten GRITSBots executing the control law in Theorem 3.2—gradient
descent on Hhet—with σ = 0.975, (a), versus a pure coordination algorithm, with σ = 1,
(b). An overhead projector is used to visualize relevant information in the robot arena.
For Robot i, the filled circle represents the center of mass of its Voronoi cell, ci, while the
centers of mass on the boundary, ρij, j ∈ Ni, are depicted using crosses at the boundaries
of the cells. For this experiment, each robot has a unique sensor configuration with only one
sensor. The location of the mean of the associated density function, φs(i) = φi, corresponds
to the empty circle labeled with the robot’s numerical identifier. Making σ = 1 implies the
sole consideration of the coordination term in the control law, which may result in some
robots staying in areas with low information density, as in (b). This situation is alleviated
by making σ < 1 in the control law and therefore involving the termHO, which allows the
robot team to attain a better spatial configuration in the domain, (a).

to what was done in Section 3.4.1, the control commands produced by (3.25) must be

converted into inputs executable by these differential drive robots, i.e., linear and angular

velocity commands (vi, ωi), ∀i ∈ N . To that end, we here convert the single integrator

dynamics produced by the two control laws into executable commands by the robots using

the model in (3.28).

In order to evaluate the performance of both algorithms, and therefore the impact of

introducing communications about sensor modalities, we define a baseline cost function

which captures the team’s performance when global information is available, that is, the

position and sensor equipment of all the robots. According to the nearest-neighbor rule

[187], a point in the domain is best covered with respect to φj when its coverage is assigned

to the closest robot equipped with sensor j, in which case the optimal coverage of the
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density φj is given by,

∫
D

min
i∈Sj

fj(dj(pi, q))φj(q) dq,

with Sj the set of all robots with sensor modality j,

Sj = {i ∈ N | j ∈ s(i)}, j ∈ S.

The performance of the team with respect to all the density functions, φj, j ∈ S, can be

therefore obtained by adding the cost pertaining to each of the sensors, i.e.,

HG =
∑
j∈S

∫
D

min
i∈Sj

fj(dj(pi, q))φj(q) dq, (3.29)

where G denotes the global performance of the team.

We use the cost in (3.29) as a baseline to compare the control laws Theorems 3.2 and

3.3, that is, the gradient descent flows that arise from considering the heterogeneous costs

without and with communications among the robots about their sensor suites. In order

to provide a fair assessment of their performance, the distance and degradation functions

assigned to all the sensors in this section are defined as,

fj(dj(pi, q)) = ‖pi − q‖2, ∀j ∈ S, i ∈ N ,

given that the square of the Euclidean distance is the only sensing performance measured

considered in Section 3.2.

The experiment consists on six different configurations of team sensors, S; robot sen-

sors, s(i), i ∈ N ; and of the corresponding densities, φj, j ∈ S. The sensing capabilities

of the robots are simulated based on the pose information provided by the tracking system,

from which the corresponding sensing information is provided to each robot. The sensor
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and density configurations used for each experiment are included in Table 3.4. Except for

a uniform density, U(D), used in Exp. 5, all the density functions are bivariate normal

distributions as used in [6, 44], where the covariance matrix, Σ, is kept constant for all the

experiments. The notation used in Table 3.4 indicates the location of the mean,

G(q, µ) =
1

2π
√
|Σ|

exp

(
−1

2
(q − µ)TΣ−1(q − µ)

)
.

The evolution of the global performance cost for the six experiments is shown in Fig. 3.5,

where, for all the cases, the critical point attained by the proposed controller corresponds

to a lower value of the performance measure in (3.29) with respect to the controller without

communications.

The final spatial configurations attained by both algorithms correspond to critical points

of their corresponding locational costs. Final allocations of the team for Experiments 2, 4

and 6, run under identical initial conditions, are compared in Fig. 3.6. In Experiment 2, the

team is in charge of covering two density functions, with half of the robots assigned to each

of them and no robot being in charge of both. Without communications (Fig. 3.6a), most of

the robots are located close to their area of higher density, with the exception of a pair that

establish a Voronoi boundary regardless of them not sharing any sensing capabilities. This

situation is not observed running the proposed algorithm, Fig. 3.6b, given that boundaries

are only established among robots equipped with the same sensors.

In Experiment 4, the team is divided in pairs to cover five different densities. As shown

in Fig. 3.6c, having no communications about their sensing capabilities again results in

two robots establishing a boundary with a neighbor without common sensors. Given that

the gradient points each of these robots perpendicularly to their boundary, the team settles

in this critical point. In contrast, the proposed algorithm (Fig. 3.6d), achieves a satisfactory

spatial configuration where the robots are located in areas of high interest according to

their sensors. In fact, the boundary of the regions of dominance for each pair crosses the
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Figure 3.5: Evolution of the global performance cost, HG, for the proposed gradient de-
scent algorithm in Theorem 3.2 and the controller without communications in Theorem
3.3. We can see how, throughout the six experiments, the cost attained by the proposed
controller is consistently equal or smaller than the one attained by the other controller. The
performance difference is particularly acute in the case of Experiment 5, where the con-
troller that does not consider communications converges to a critical point of its cost that
does not correspond to a good overall coverage of the domain.

corresponding density area in the middle, dividing the domain in two areas containing the

same mass. In Experiment 6, several robots are equipped with multiple sensing capabilities.

In this case, both algorithms successfully place the robots with shared sensors in between
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the regions of high density, while the robots equipped with only one sensor occupy more

dedicated positions with respect to their densities.

In general, defining the regions of dominance considering only those neighbors equipped

with common sensors constitutes a major advantage of the proposed algorithm. Under this

consideration, a robot can overcome locations populated by robots with which it does not

share coverage responsibilities and reach areas with higher values of the density functions

associated with its sensors, where it will coordinate with the corresponding robots in the

team.

3.5 Conclusions

This chapter introduced a coverage control framework for multi-robot teams equipped with

heterogeneous sensing capabilities, where a team of robots is tasked to monitor qualita-

tively different events in a domain. To this end, we consider a scenario where not all the

robots in the team are equipped with all the sensors required to survey the domain events,

but rather with a subset of them. Furthermore, the relative importance of the different

features within the domain may vary. As a result, we no longer have a common density

function that represents the importance of the points in the domain for all the robots, but

rather a family of density functions associated with the different events.

In order to encode the coverage performance of the multi-robot team, two different loca-

tional costs were proposed in this chapter. First, we considered a scenario where the robots

are unaware of the sensor suites of their neighbors and, thus, compute their individual den-

sity functions by composing the densities associated with their sensor suites. Under this

consideration, a locational cost balancing the coordination of the agents and the individual

objectives with respect to each robot’s density functions was introduced. Alternatively, we

envisioned a situation where the robots had information about the sensor modalities of their

neighbors. With this information flow, the regions of dominance of a robot were defined in-

dependently for each of its sensors as a function of its neighbors sensor equipments and we
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presented a new locational cost that evaluates the performance of the team when covering

the different density functions over such regions of dominance.

Gradient descent control laws that allow the multi-robot system to achieve a critical

point of each of the costs were derived and their performance evaluated through a series

of experiments on a team of differential-drive robots. The gradient descent flow on the

communication-free scheme was evaluated against a heterogeneous version of Lloyd’s al-

gorithm. In this case, the experiments suggested that the additional terms obtained due to

the heterogeneous nature of the performance metric resulted in overall better coverage than

a heterogeneous version of Lloyd’s algorithm for a number of different density configu-

rations. Furthermore, we conducted a series of experiments to illustrate the influence of

different regularizer values to balance the coordination between agents and their individual

interests. The two gradient descent strategies—with and without communications about

sensor suites—were compared through a series of experiments to highlight the importance

of communications in the second approach. The experiments suggest that incorporating

communications among the team members indeed improves the quality of coverage on the

heterogeneous sensing capabilities scenario, as the proposed algorithm achieved better val-

ues of the performance metric for a number of different density and sensor configurations.
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(a) Without communications, Exp. 2. (b) With communications, Exp. 2.

(c) Without communications, Exp. 4. (d) With communications, Exp. 4.

(e) Without communications, Exp. 6. (f) With communications, Exp. 6.

Figure 3.6: Final configurations of the multi-agent team for Experiments 2, 4 and 6. Figures
(a), (c) and (e) correspond to the coverage control algorithm in Theorem 3.2, while Figs.
(b), (d) and (e) illustrate the final spatial allocation of the team when running the algorithm
in Theorem 3.3, which includes communications, for the same sensor configurations and
initial conditions. The parts of the domain shaded with the different colors represent the
areas of highest density, with each color identifying a different sensing modality. Each
robot has a collection of symbols located to its right, which represents its sensor equipment
and is color coded according to the associated density functions. With respect to the speci-
fications in Table 3.4, the colors—blue, red, green, orange, and purple—correspond to the
numerical identifiers 1 to 5 in the sensor equipments.
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CHAPTER 4

COVERAGE CONTROL WITH TIME-VARYING DENSITY FUNCTIONS

Coverage control deals with the problem of distributing a collection of mobile robots in an

environment such that the surveillance of its features/events is optimized [6, 7, 44]. The

coverage performance of a team of robots over a domain D is typically quantified with

respect to a density function, φ : q ∈ D 7→ φ(q) ∈ [0,∞), that encodes the relative

importance of the points in such a domain. While many aspects of the coverage problem

have been considered in the literature, e.g. limitations on the robots’ motion [21, 64],

geometric variations on the sensors’ footprints [20, 65], or different sensing capabilities

[184, 185]; oftentimes the density functions φ considered are static and do not depend on

time.

However, in some coverage applications, the importance of the points in the domain

may evolve over time due to, for example, the tracking of moving targets [29, 82] or

new area objectives specified by a human operator [8, 83]. In these cases, it may be ad-

vantageous to preserve most of the structure of the coverage problem in [6] and reflect

the dynamic nature of these goals by considering the density function to be time-varying,

φ : (q, t) ∈ D × R+ 7→ φ(q, t) ∈ R+. Introducing this time dependence, however, has

implications on how to design distributed control laws that allow the robots to effectively

cover the density function. Past approaches to this problem rely on limitations on the rate

of change of the density functions [29, 84], lack formal guarantees on the stability of the

robots’ input [82] or introduce approximations [83] to produce a distributed controller that

optimizes the coverage performance over time.

In this chapter, we propose a constraint-based approach to the time-varying coverage

problem that can be executed in an exact, decentralized fashion without imposing any con-

ditions on the rate of change of the density functions [192]. In addition, this constraint-
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based strategy naturally lends itself composable with additional behaviors that could be

concurrently executed by the multi-robot team, e.g. energy saving, collision avoidance

[86].

This chapter is organized as follows: In Section 4.1, we recall the formulation of the

problem of multi-robot coverage (see Section 2.1 for a detailed explanation) and discuss

some of the existing strategies for time-varying coverage control. Section 4.2 introduces the

technical details of the constraint-based task execution framework. Using these results, the

proposed strategy for time-varying coverage control is presented in Section 4.3. This algo-

rithm is implemented on a real robotic platform and its performance is compared to other

approaches in Section 4.4. The equations needed for implementing the constraint-based

approach for time-varying coverage control in the heterogeneous scenario from Chapter 3

are included in Section 4.5. The conclusions of this chapter are presented in Section 4.6.

4.1 Time-Varying Density Functions

4.1.1 Homogeneous Coverage of Static Density Functions

The coverage control problem formulation in this thesis considers a team of N robots,

whose positions are denoted by pi ∈ Rd, i ∈ {1, . . . , N} := N , where d = 2 for planar

robots and d = 3 in the case of aerial robots. The objective of the coverage control problem

is to distribute this team of mobile robots in a domain D ⊂ Rd with respect to a density

function that encodes the relative importance of the points inD, φ : D → [0,∞). As shown

in Section 2.1, one natural choice is to make Robot i, i ∈ N , be in charge of covering the

points that are closest to it,

Vi(p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − xj‖, ∀j ∈ N},
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that is, its Voronoi cell. The quality of coverage of the multi-robot team can then be encoded

through the cost in [6],

H(p) =
N∑
i=1

∫
Vi(p)

‖pi − q‖2φ(q) dq, (4.1)

with a lower value of the cost corresponding to a better coverage. Let

ci(p) =

∫
Vi(p)

qφ(q) dq∫
Vi(p)

φ(q) dq

be the center of mass of the Voronoi cell of Robot i. A necessary condition for (4.1) to be

minimized is that the position of each robot corresponds to the center of mass of its Voronoi

cell [45], that is, the robots are in a centroidal Voronoi tessellation (CVT).

In order to approach the centroidal Voronoi tessellation, we can make the robots follow

a direction of descent of the type

p(k+1) = p(k) − αk
∂J

∂p
(p(k)),

where the superscript k denotes the time-step and J(p) is a function whose stationary points

are the centroidal Voronoi tessellations [45]. A natural choice for J is

J(p) =
N∑
i=1

1

2
‖pi − ci(p)‖2 =

n∑
i=1

Ji(p). (4.2)

Taking the derivative of Ji with respect to pi, one obtains,

∂Ji
∂pi

= (pi − ci(p))T
(
I − ∂ci(p)

∂pi

)
, (4.3)

where I is the identity matrix. Note that, even if ci(p) depends on the entire ensemble state

of the robotic swarm, p, Robot i only requires information about its Delaunay neighbors to
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compute it. Thus, the gradient in (4.3) can be calculated in a decentralized fashion.

4.1.2 Time-Varying Densities

The formulation of the coverage control problem in (4.1) considers a static density function,

φ(q), over the domain of interest, that is, the relative importance of the points does not

change over time. In situations where the importance of the points in the domain may vary

with time, however, the density function of the domain is time-variant. Considering a time-

varying density function φ : (q, t) ∈ D × R+ 7→ φ(q, t) ∈ R+, results in the following

locational cost,

H(p, t) =
N∑
i=1

∫
Vi(p)

‖q − pi‖2φ(q, t) dq. (4.4)

Section 2.1.2 of this thesis includes a detailed summary of control laws for multi-robot

teams to minimize the cost in (4.4), along with their limitations. In particular, recalling the

approach in [3, 83], considering the time-varying version of the cost in (4.2),

J(p, t) =
N∑
i=1

1

2
‖pi − ci(p, t)‖2 =

n∑
i=1

Ji(p, t), (4.5)

one can achieve a CVT, without imposing conditions on the variation of φ(q, t), by setting

u =

(
I − ∂c

∂p

)−1(
κ(c(p, t)− p) +

∂c

∂t

)
, (4.6)

where u = [uT
1 , . . . , u

T
N ]T and c = [cT

1 , . . . , c
T
N ]T.

However, inverting the matrix I− ∂c
∂p

in (4.6) cannot be done in a decentralized fashion.

For this reason, in [83], the inverse is approximated by a truncated Neumann series as

(
I − ∂c

∂p

)−1

≈ I +
∂c

∂p
(4.7)

which allows each robot to evaluate its corresponding term based solely on information

about its Delaunay neighbors. This chapter presents a decentralized solution to the time-
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varying coverage control problem which does not require us to make any such approxima-

tions. Next, we introduce some of the tools necessary to develop such an algorithm.

4.2 Constraint-Based Task Execution

This chapter uses the constraint-based task execution framework introduced in [86] to per-

form coverage control in the presence of time-varying density functions. Consequently,

this section introduces some of the tools required to develop the proposed algorithm which

will be presented in Section 4.3.

The execution of a task by a robot can be encoded using the following pointwise

minimum-energy constrained optimization problem,

min
u
‖u‖2 s.t. ctask(x, u) ≥ 0,

where u is the control effort expended by the robot, x is its state, and ctask symbolizes

a constraint function which ensures the execution of the task. Such a constraint-based

formulation is advantageous in terms of its suitability for long-term autonomy applications

as well as composability with other tasks that need to be performed [23, 193, 194, 195].

The initial formulation in this section considers constraints that do not explicitly depend on

time. Later in the section, the time-varying formulation is presented.

The feasibility of this task execution framework is ensured by the introduction of slack

variables in the constraint,

min
u,δ
‖u‖2 + |δ|2

s.t. ctask(x, u) ≥ −δ,
(4.8)

where δ is the slack variable and signifies the extent to which the task constraint can be

violated. An effective way of enforcing such constraints in a multi-robot system is to use

control barrier functions, which are introduced next.
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4.2.1 Control Barrier Functions

Consider a dynamical system in control affine form,

ẋ = f(x) + g(x)u,

where x ∈ Rn, u ∈ U ⊆ Rm, with f and g being Lipschitz continuous vector fields.

Consider a continuously differentiable function h : Rn → R, and define the safe set S as

its zero-superlevel set,

S = {x ∈ Rn | h(x) ≥ 0}. (4.9)

The function h is called a (zeroing) control barrier function (CBF) if the following condi-

tion is satisfied,

sup
u∈U
{Lfh(x) + Lgh(x)u+ α(h(x))} ≥ 0 ∀x ∈ Rn, (4.10)

where α is a locally Lipschitz extended classK function [196], and Lfh(x) and Lgh(x) de-

note the Lie derivatives of h in the directions f and g, respectively. The following theorem

from [196, 86] summarizes two important properties of zeroing CBFs.

Theorem 4.1. Given a dynamical system in control affine form ẋ = f(x) + g(x)u, where

x ∈ Rn and u ∈ Rm denote the state and the input, respectively, f and g are locally

Lipschitz, and a set S ⊂ Rn defined by a continuously differentiable function h as in (4.9),

any Lipschitz continuous controller u such that (4.10) holds renders the set S forward

invariant and asymptotically stable, i. e.,

x(0) ∈ S ⇒ x(t) ∈ S ∀t ≥ 0

x(0) /∈ S ⇒ x(t)→∈ S as t→∞,

where x(0) denotes the state x at time t = 0 and the notation x(t) →∈ S indicates that
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x(t) asymptotically approaches the set S.

Proof. See [86] and [196].

In this chapter, we encode the execution of the time-varying coverage control task via a

zeroing CBF-based constraint for each robot. Consequently, the zeroing CBFs themselves

explicitly depend on time. To this end, the definition of zeroing CBFs given in [196] is

extended for the time-varying case.

Definition 4.2 (Time-Varying CBFs [197]). Given a function h : Rn × R+ 7→ R, contin-

uously differentiable in both its arguments, consider a dynamical system in control affine

form ẋ = f(x) + g(x)u, where x ∈ Rn and u ∈ Rm denote system state and input, respec-

tively, f and g are locally Lipschitz, and the set S = {x ∈ Rn | h(x, t) ≥ 0}. The function

h is a time-varying zeroing CBF defined on Rn × R+, if there exists a locally Lipschitz

extended class K function α such that, ∀x ∈ Rn, ∀t ∈ R+,

sup
u∈U

{
∂h

∂t
+ Lfh(x, t) + Lgh(x, t)u+ α(h(x, t))

}
≥ 0. (4.11)

We now demonstrate how CBFs can be incorporated into the constrained optimization

problem (4.8) to accomplish the execution of robot tasks.

4.2.2 Minimum-Energy Gradient Descent

The execution of tasks which involve the minimization of a cost function J—such as the

coverage control task investigated in this thesis—can be achieved by generating a control

signal u(t) using the optimization problem

min
u
J(x), (4.12)

where x and u are coupled through the single integrator dynamics ẋ = u. In [86], we

show that solving (4.12) in order to synthesize u(t) is equivalent to solving the follow-
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ing constraint-based optimization problem, in the sense that they both achieve the goal of

minimizing the cost J ,

min
u,δ
‖u‖2 + |δ|2

s.t.
∂h

∂x
u ≥ −α(h(x))− δ

(4.13)

where δ ∈ R is the slack variable signifying the extent to which the task constraint can

be violated, α is an extended class K function, and h(x) = −J(x) is a zeroing CBF. The

zero-superlevel set of h is S = {x | h(x) ≥ 0} = {x | J(x) ≤ 0} = {x | J(x) = 0}, where

the last equality holds because the cost J(x) is a non-negative function.

The following proposition, proved in [86], establishes how the constraint-based opti-

mization problem given in (4.13), allows the accomplishment of the task encoded by J(x).

Proposition 4.3. The solution of the optimization problem (4.13), where h(x) = −J(x)

and α is an extended class K function, solves (4.12), driving the state x of the dynamical

system ẋ = u to a stationary point of the cost J .

In fact, for the special case when J is strictly convex and J(0) = 0, we have that

∂J

∂x
(x) 6= 0, ∀x 6= 0.

Consequently, using Theorem 4.1 we get x→∈ S, i. e. J(x(t))→ 0, as t→∞.

Using the above described formulation, this chapter encodes the problem of covering

a time-varying density function as a constraint-based optimization problem in Section 4.3.

But first, we discuss the conditions under which the optimization problem in (4.13) can be

solved in a decentralized fashion.

4.2.3 Decentralized Constraint-Based Control of Multi-Robot Systems

Assume that each robot in the multi-robot team is able to measure the relative positions

of a subset of the robot team as described by an undirected graph G = (V , E), where

V = {1, . . . , N} is the set of vertices of the graph, representing the robots, and E ⊆ V × V
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is the set of edges between the robots, encoding adjacency relationships. For example,

the adjacency relationships for the multi-robot coverage control task investigated in this

chapter is described by a Delaunay graph [6].

Let p = [pT
1 , . . . , p

T
N ]T ∈ RNd denote the ensemble state of the multi-robot team. As

the robots are solving a time-varying coverage control problem, we consider a time-varying

total cost J(p, t). Then, a general expression for this cost that leads to decentralized control

laws [3] is given by

J(p, t) =
N∑
i=1

∑
j∈Ni

Jij(‖pi − pj‖, t), (4.14)

whereNi is the neighborhood set of Robot i, and Jij : R+×R+ → R+, Jij(‖pi−pj‖, t) =

Jji(‖pj − pi‖, t) is a symmetric, pairwise cost between robots i and j. We assume that

Jij(p, t) ≥ 0, ∀(i, j) ∈ E , ∀p ∈ Rn, t ∈ R+, so that J(p, t) ≥ 0, ∀p ∈ Rn, t ∈ R+. It

should be noted that (4.5) can be written in the form of (4.14) as a consequence to the graph

topology induced by the Voronoi partition.

The following proposition outlines the optimization problems whose solutions lead to

a decentralized minimization of the cost J(p, t) in (4.14).

Proposition 4.4 (Constraint-driven decentralized time-varying task execution). Given the

time-varying pairwise cost function J defined in (4.14), a collection of N robots, obeying

single integrator dynamics, minimizes J in a decentralized fashion, if each robot executes

the control input, solution of the following optimization problem:

min
ui,δi
‖ui‖2 + |δi|2

s.t. − ∂Ji
∂pi

ui ≥ −α(−Ji(p)) +
∂Ji
∂t
− δi,

(4.15)

where Ji(p, t) =
∑

j∈Ni
Jij(‖pi − pj‖, t) and α is an extended class K function, α : p ∈

R 7→ α(p) ∈ R, superadditive for p < 0, i. e. α(p1 + p2) ≥ α(p1) + α(p2), ∀p1, p2 < 0.

Proof. Using (4.11) from Definition 4.2, the proof follows similar to [86].
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We are now ready to present a novel approach for executing decentralized approximation-

free coverage control under time-varying density functions using a team of robots.

4.3 An Exact and Decentralized Approach to Time-Varying Coverage

As described in Section 4.1, effective coverage of a domain can be achieved by driving

the robots to the stationary points of the time-varying cost functional J(p, t) given in (4.5),

which correspond to the CVT. To this end, we allow each Robot i to solve the optimization

problem presented in (4.15). Plugging in expressions for the partial derivatives of Ji(p, t)

as pertaining to the time-varying coverage control problem, (4.15) yields,

min
ui,δi
‖ui‖2 + |δi|2

s.t. − (pi − ci(p, t))T
(
I − ∂ci(p, t)

∂pi

)
ui

≥ −α(−Ji(p, t))− (pi − ci(p, t))T∂ci(p, t)

∂t
− δi,

(4.16)

which is both exact and decentralized. The form of the partial derivatives of ci(p, t) can be

found in [198],

∂ci(p, t)

∂pi
=
∑
j∈Ni

∫
∂Vij(p)

(q − ci(p, t))φ(q, t)(q − pi)T dq

mi(p, t)‖pj − pi‖
,

∂ci(p, t)

∂t
=

∫
Vi(p)

(q − ci(p))∂φ(q,t)
∂t

dq

mi(p, t)
,

with mi(p, t) =
∫
Vi
φ(q, t) dq the mass in the Voronoi cell of Robot i.

Proposition 4.5. Consider a team of N single-integrator robots, tasked with covering a

region as specified by a time-varying density function. Under u∗, solution of (4.16), where

α is a superlinear extended class K function, the robots achieve a CVT.

Proof. From Proposition 4.4, we know that executing u∗ will drive the robots towards

a stationary point of the cost function J . As discussed in Section 5.4 of [45], any search
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algorithm that attains the stationary points of the cost J , achieves a CVT configuration.

We further demonstrate that, under the assumption that the robots do not have actuator

limitations, the optimization problem presented in (4.16) can be reformulated to exclude

slack variables in the optimization problem.

Proposition 4.6. Consider a team of N single-integrator robots with no actuator con-

straints, i.e., U = Rm, tasked with covering a region as specified by a time-varying impor-

tance density function. Let each robot solve the following problem:

min
ui
‖ui‖2

s.t. − (pi − ci(p, t))T

(
I − ∂ci(p, t)

∂pi

)
ui

≥ −α(−Ji(p, t))− (pi − ci(p, t))T∂ci(p, t)

∂t
.

(4.17)

Under the control action generated by this optimization problem, the robots achieve a cen-

troidal Voronoi tessellation (CVT).

Proof. The total time derivative of the time-varying coverage cost function J(p, t) given in

(4.5) can be expressed as,

J̇ =
N∑
i=1

J̇i(p) =
N∑
i=1

(
∂Ji
∂pi

ui +
∂Ji
∂t

)

=
N∑
i=1

(pi − ci(p, t))T
(
I − ∂ci(p, t)

∂pi

)
ui −

N∑
i=1

(pi − ci(p, t))T∂ci(p, t)

∂t
.

Consequently, given the superadditivity property of α and summing over the constraints

corresponding to each Robot i ∈ N in the optimization problem (4.17), we get,

J̇(p, t) ≤ α(−J(p, t))

Let ᾱ(r) = −α(−r). Then, by the properties of extended class K functions, ᾱ is also an
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extended class K function. Thus,

J̇(p, t) ≤ −ᾱ(J(p, t)),

and thus, by applying the comparison lemma [199], one can observe that:

J(t) ≤ β(J(p0, 0), t),

with β a class KL function and p0 the configuration of the robots at time t = 0. Therefore,

J(p, t)→ 0 as t→∞, that is, the system converges to a CVT since J(p, t) = 0⇔ pi(t) =

ci(p, t),∀i ∈ N .

4.4 Simulations and Experimental Results

The performance of the proposed constraint-based approach is evaluated in simulation as

well as on a team of differential drive robots on the Robotarium [191], a remotely accessible

multi-robot testbed at the Georgia Institute of Technology. The experiment, uploaded via

web, is remotely executed on the Robotarium and the data is made available to the user

once the experiment is finalized. On each control iteration, the Robotarium provides the

poses of the robots involved in the experiment and allows the user to specify the linear and

angular velocities of each robot in the team.

The proposed constraint-based controller in (4.16) is compared in simulation with the

standard Lloyd’s algorithm [43], whereby ṗi = κ(ci(p)− pi), κ > 0,∀i ∈ N ; and with the

centralized strategy in (4.6) from Lee et al. [83] and its decentralized variant, which uses

the Neumann approximation in (4.7). In order to minimize the influence of the proportional

gain, the simulation parameter κ = 1 was chosen for all three controllers. In the case of

the proposed controller, the extended class K function was α(p) = p
1
3 . The simulations are

implemented on the Robotarium simulator with the objective of providing a realistic frame-
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work that considers robot dynamics and actuator bounds, thus providing a fair comparison

between the different algorithms.

As presented in Sections 4.1 and 4.3, the considered coverage control algorithms as-

sume that the robots move according to single integrator dynamics. However, the robots

considered in this section have a differential drive kinematic configuration, whose move-

ment is best described by the so-called unicycle dynamics,

ṗi = [vi cos θi, vi sin θi]
T, θ̇i = ωi,

where θi is the orientation of the robot. The control inputs vi and ωi are the linear and

angular velocities, which can be calculated using the near-identity diffeomorphism in [200].

We consider the following time-varying density function to be covered by a team of 6

differential drive robots over a time interval of 60 seconds,

φexp(q, t) = 1 + 103 1− sin (2π10−3t)

2
exp

(
−(qx + 0.2)2 − (qy + 0.1)2

0.4

)
+ 103 1− sin

(
2π10−3t− π

2

)
4

exp

(
−(qx − 0.6)2 − (qy − 0.2)2

0.1

)
.

(4.18)

In order to compare the performance of the different algorithms, one can compute the

integral of the cost J(p, t) over time [83], as a metric of how well the density function is

being tracked by the robot team,

∫ t

0

J(p(τ), τ)dτ.

As it can be observed in Fig. 4.1, considering the effects of the time-varying density

makes our approach and the controllers in [83] outperform Lloyd’s algorithm, which was

designed for the time-invariant case. However, while producing similar coverage of the

density function, some algorithms may require higher control efforts from the robots than

others. Therefore, we use the following metric to measure the amount of energy used by
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Figure 4.1: Evolution of the integral of the cost, J(p, t), over time for the proposed
constraint-based approach, Lloyd’s algorithm [43] as well as the centralized and decentral-
ized controllers in Lee et al. [83]. The final value of the cumulative cost for the proposed
algorithm is very similar (although slightly lower) to the controllers that consider the effects
of the time-varying densities by Lee et al. Ignoring the effects of a time-varying density
function causes an appreciable difference in the case of Lloyd’s algorithm. Inset highlights
differences in costs towards the end of the experiment.

Figure 4.2: Comparison of the cumulative control effort for the proposed constraint-based
approach, Lloyd’s algorithm [43] as well as the centralized and decentralized controllers
in [83]. While the performance of the algorithms in Lee et al. are similar to the proposed
approach in terms of the final cost (see Fig. 4.1), the control effort required for the team to
track the density functions is higher.

the robot team to cover the density function,

∫ t

0

‖u(τ)‖2
2dτ.
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Figure 4.3: Snapshots from the time-varying coverage control experiment deployed on a
multi-robot team operating on the Robotarium [191]. The time-varying density function is
depicted by projecting its contour plot onto the testbed. As seen, using the constraint-based
coverage algorithm, the robots track the centroids of their Voronoi cells, depicted as gray
circles.

Figure 4.2 shows the control effort expended by the robots when executing the different

algorithms considered. While the approaches from [83] produced similar cumulative costs

in Fig. 4.1, we can observe that the control effort demanded by these controllers is higher

than that of the proposed strategy in this chapter.

Figure 4.3 shows a series of snapshots of an experiment executed on the Robotarium.

Ten GRITSBots were deployed to cover the density function in (4.18) for a total duration of

2 minutes. We can observe how the robots effectively track the centroids of their Voronoi

cells as the density function changes over time. The evolution of the cost, J(p, t), for

this experiment is shown in Fig. 4.4, where the cost is kept close to zero. The temporary
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Figure 4.4: Evolution of the cost J(p, t) for the proposed minimum energy coverage al-
gorithm. The constraint-based approach drives the robots in a direction which reduces the
overall coverage cost considered in (4.5) to zero. The temporary increases in the cost can
be attributed to the fact that the robots have actuator constraints and thus cannot track ar-
bitrarily high velocities generated by the optimization program. As the robots reduce the
distance from the moving centroids of their Voronoi cells, the cost goes back towards zero.

increases in the cost around t = 19s and t = 85s are due to the actuator constraints of

the robots, which limit their ability to maintain a CVT during rapid changes of the density

function.

4.5 Time-Varying Coverage With Heterogeneous Sensing Capabilities

The constraint-based approach presented in this chapter was developed to accommodate a

time-varying density function, φ : (q, t) ∈ D×R+ 7→ φ(q, t) ∈ R+, into the homogeneous

version of the coverage control problem. Due to its generality, however, this approach

can be extended to the heterogeneous coverage scenario presented in Chapter 3, which

considers a set of sensory modalities, S, associated with a class of static density functions

φj : D 7→ [0,∞), j ∈ S , with φj(q) representing the importance of a point q ∈ D

according to sensor j ∈ S. This section outlines the equations needed to execute both

heterogeneous coverage approaches (see Sections 3.2 and 3.3 of this thesis for details)

when these sensor-dependent densities are time-varying, i.e. when φj : (q, t) ∈ D×R+ 7→

φj(q, t) ∈ R+, j ∈ S.
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4.5.1 Time-Varying Heterogeneous Coverage

The heterogeneous coverage control approach for qualitatively different sensing capabili-

ties presented in Section 3.2 encodes the performance of the multi-robot team, equipped

with sensory capabilities S according to the family of density functions φj(q, t), j ∈ S, as

the locational cost in (3.4),

Hhet(p, t) = σ
∑
i∈N

∫
Vi(p)

‖q − pi‖2φs(i)(q, t) dq + (1− σ)
∑
i∈N

∫
D
‖q − pi‖2φs(i)(q, t) dq,

(4.19)

where σ ∈ (0, 1] acts as a regularizer term and φs(i)(q, t) =
⊕

j∈s(i) φj(q, t) denotes the

composition of the density functions associated with the subset of sensors that Robot i is

equipped with, s(i) ⊂ S, i ∈ N .

According to Theorem 3.2, the following control law allows the multi-robot team to

asymptotically achieve a spatial configuration that corresponds to a critical point to the

locational cost (4.19),

ui = −2κ (σmi(pi − ci) + (1− σ)Mi(pi − Ci))+σκ
∑
j∈Ni

(µij (pi − ρij)− µji (pi − ρji)) ,

where mi(p, t) and ci(p, t) denote the mass and center of mass of the Voronoi cell Vi(p), as

defined in (3.8),

mi(p, t) =

∫
Vi(p)

φs(i)(q, t) dq, ci(p, t) =

∫
Vi(p)

qφs(i)(q, t) dq

mi

; (4.20)

Mi(t) and Ci(t) are the mass and center of mass over the whole domain, D, as in (3.12),

Mi(t) =

∫
D
φs(i)(q, t) dq, Ci(t) =

∫
D qφs(i)(q, t) dq

Mi

;

and µij(p, t) and ρij(p, t) represent the weighted mass and center of mass along the bound-
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ary between Robot i and its neighbor j, ∂Vij(p), as in (3.10),

µij(p, t) =

∫
∂Vij(p)

‖q − pi‖2

‖pj − pi‖
φs(i)(q, t) dq, (4.21)

ρij(p, t) =

∫
∂Vij(p)

q
‖q − pi‖2

‖pj − pi‖
φs(i)(q, t) dq

µij
. (4.22)

In Section 4.1.2, the cost J(p, t) was defined in terms of the minimizer of the cost

H(p, t). Analogously, for the heterogeneous case, one can define a cost Jhet(p, t) whose

minimizer is also the minimizer of (4.19),

Jhet(p, t) =
N∑
i=1

1

2κ2
‖ui‖2 =

n∑
i=1

Jhet,i(p, t).

In order to drive the robots to a stationary point of the time-varying cost, as in the ho-

mogeneous case, we let the robots solve the optimization problem in (4.15), this time with

respect to Jhet. To this end, we need the expressions for the partial derivatives of Jhet,i(p, t),

∂Jhet,i/∂pi and ∂Jhet,i/∂t. The remainder of this section presents the analytical form of this

partial derivatives.
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Computation of ∂Jhet,i/∂pi

The derivative of Jhet,i(p, t) with respect to pi takes the following form,

∂Jhet,i(p, t)

∂pi
=

1

κ2
uT
i

∂ui
∂pi

=
1

κ
uT
i

[
2σ

(
(pi − ci)

∂mi

∂pi
+mi

(
I − ∂ci

∂pi

))
(4.23)

+ 2(1− σ)

(
(pi − ci)

∂Mi

∂pi
+Mi

(
I − ∂Ci

∂pi

))
(4.24)

− σ
∑
j∈Ni

[
(pi − ρij)

∂µij
∂pi

+ µij

(
I − ∂ρij

∂pi

)

−(pi − ρij)
∂µji
∂pi

+ µij

(
I − ∂ρij

∂pi

)]]
, (4.25)

where, immediately, one can observe that ∂Mi(t)/∂pi = 0 and ∂Ci(t)/∂pi = 0 in (4.24).

The partial derivatives in (4.23) can be obtained applying Leibniz integral rule (Lemma

3.1) to the mass and center of mass in the Voronoi cell, as defined in (4.20),

∂mi(p, t)

∂pi
=
∑
j∈Ni

∫
∂Vij(p)

φs(i)(q, t)nij(q)
T ∂q

∂pi
dq,

∂ci(p, t)

∂pi
=

1

mi

∑
j∈Ni

∫
∂Vij(p)

(q − ci)φs(i)(q, t)nij(q)T ∂q

∂pi
dq,

where nij(q) denotes the outward facing normal at q. Using the equivalence from (3.6),

one can rewrite these two equations as,

∂mi(p, t)

∂pi
=
∑
j∈Ni

∫
∂Vij(p)

φs(i)(q, t)
(q − pi)T

‖pj − pi‖
dq (4.26)

∂ci(p, t)

∂pi
=

1

mi

∑
j∈Ni

∫
∂Vij(p)

(q − ci)φs(i)(q, t)
(q − pi)T

‖pj − pi‖
dq (4.27)

The computation of the partial derivatives of the mass and center of mass on the bound-

ary in (4.25), ∂µij/∂pi and ∂ρij/∂pi, is slightly more involved since both quantities (see
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(4.21) and (4.22)) are defined as line integrals in a two dimensional space, where the do-

main of integration depends on the configuration of the multi-robot team, ∂Vij(p), and,

thus, on the differentiation variable, pi. To this end, we recall the Leibniz integral rule on

the real line.

Lemma 4.7 (Leibniz Integral Rule [201]). Suppose that f and ∂f/∂s are continuous in

the rectangle R = {(s, q) : a ≤ s ≤ b, c ≤ q ≤ d} and suppose that u1(s), u2(s) are

continuously differentiable for a ≤ s ≤ b with the range of u1 and u2 in (c, d). Let

F (s) =

∫ u2(s)

u1(s)

f(s, q) dq,

then,

∂F (s)

∂s
= f(s, u2(s))

∂u2

∂s
− f(s, u1(s))

∂u1

∂s
+

∫ u2(s)

u1(s)

∂f

∂s
(s, q) dq. (4.28)

In order to apply Lemma 4.7 to the computation of ∂µij/∂pi and ∂ρij/∂pi, we need to

rewrite (4.21) and (4.22) in terms of the real variable, s. If we denote as v1
ij(p) and v2

ij(p)

the two endpoints of ∂Vij(p), the parametrization of the Voronoi boundary becomes

∂Vij(p, s) = v1
ij(p) + (v2

ij(p)− v1
ij(p))s, s ∈ [0, 1]. (4.29)

Denoting as ‖∂Vij(p)‖ the length of the Voronoi boundary, i.e. ‖∂Vij(p)‖ = ‖v2
ij(p) −

v1
ij(p)‖, the line integrals for µij(p, t) and ρij(p, t) can be alternatively rewritten as

µij(p, t) =

∫ 1

0

‖∂Vij(p, s)− pi‖2

‖pj − pi‖
φs(i) (∂Vij(p, s), t) ‖∂Vij(p)‖ ds, (4.30)

ρij(p, t) =
1

µij

∫ 1

0

q
‖∂Vij(p, s)− pi‖2

‖pj − pi‖
φs(i) (∂Vij(p, s), t) ‖∂Vij(p)‖ ds. (4.31)

What is left to fully characterize these integrals before differentiation is to have the

analytical expressions for the endpoints of the Voronoi boundary, v1
ij(p) and v2

ij(p). To this
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end, the line containing the segment ∂Vij(p) can be parameterized as,

lij(p) =
pi + pj

2
+ sijtij(p), sij ∈ R, (4.32)

where sij is the parameter and tij is the tangent vector to ∂Vij . Given that the outward

facing normal to ∂Vij(p) is given by nij = (pj − pi)/‖pj − pi‖, the tangent vector can be

written as

tij = (nij,y,−nij,x)T =

(
pj,y − pi,y
‖pj − pi‖

,−pj,x − pi,x
‖pj − pi‖

)T

.

In the general case where the boundary ∂Vij(p) is delimited by the Voronoi boundaries of

Robot i with Robots k and l, i.e.∂Vik(p) and ∂Vil(p), one can calculate the endpoints v1
ij(p)

and v2
ij(p) as the intersection of the corresponding lines given as in (4.32),

v1
ij(p) = lij ∩ lik =

pi + pj
2

+
〈pk − pi, pj − pi〉‖pj − pi‖
2 ((pj − pi)× (pk − pi))

tij(p),

v1
ij(p) = lij ∩ lil =

pi + pj
2

+
〈pl − pi, pj − pi〉‖pj − pi‖
2 ((pj − pi)× (pl − pi))

tij(p),

(4.33)

with pa × pT
b := pa,xpb,y − pa,ypb,x. Note that, while we do not explicitly include in this

document the expression of Voronoi boundary endpoints delimited by domain boundary

instead of neighboring robots’ Voronoi cells, these cases can be calculated in a similar

fashion.

Having the analytical expressions for v1
ij(p) and v2

ij(p), the integrals in (4.30) and (4.31),

are completely determined. We can now apply Lemma 4.7, where only the last summation

term in (4.28) applies since the limits of integration no longer depend on the position of the
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robots,

∂µij(p, t)

∂pi
=

∫ 1

0

∂

∂pi

(
‖∂Vij(p, s)− pi‖2

‖pj − pi‖
φs(i) (∂Vij(p, s), t) ‖∂Vij(p)‖

)
ds,

∂ρij(p, t)

∂pi
=

1

µij

∫ 1

0

q
∂

∂pi

(
‖∂Vij(p, s)− pi‖2

‖pj − pi‖
φs(i) (∂Vij(p, s), t) ‖∂Vij(p)‖

)
ds

− 1

µij
ρij
∂µij
∂pi

.

The analytical expressions for these derivatives can be calculated by directly plugging the

parameterized expression for the Voronoi boundary in (4.29) and its endpoints, as calcu-

lated in (4.33). The partial derivatives for ∂µji/∂pi and ∂ρji/∂pi can be computed in an

analogous fashion.

Having calculated all the partial derivatives needed in (4.23), (4.24) and (4.25), the

analytical expression of ∂Jhet/∂pi is fully determined.

Computation of ∂Jhet,i/∂t

In order to solve the optimization problem in (4.15), the following derivative is needed,

∂Jhet,i(p, t)

∂t
=

1

κ2
uT
i

∂ui
∂t

=
1

κ
uT
i

[
2σ

(
(pi − ci)

∂mi

∂t
−mi

∂ci
∂t

)
(4.34)

+ 2(1− σ)

(
(pi − ci)

∂Mi

∂t
−Mi

∂Ci
∂t

)
(4.35)

− σ
∑
j∈Ni

[
(pi − ρij)

∂µij
∂t
− µij

∂ρij
∂t
− (pi − ρij)

∂µji
∂t
− µij

∂ρij
∂t

]]
.

(4.36)

The computation of the partial derivatives involved in ∂Jhet,i/∂t, however, is less in-

volved than in the case of ∂Jhet,i/∂pi (detailed previously in this section), since none of the

domains of integration depend on t. The partial derivatives in (4.34), (4.35) and (4.36) take
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the following form,

∂mi(p, t)

∂t
=

∫
Vi(p)

∂φs(i)(q, t)

∂t
dq,

∂ci(p, t)

∂t
=

∫
Vi(p)

q
∂φs(i)(q, t)

∂t
dq

mi

− 1

mi

ci
∂mi

∂t
,

∂Mi(t)

∂t
=

∫
D

∂φs(i)(q, t)

∂t
dq,

∂Ci(t)

∂t
=

∫
D
q
∂φs(i)(q, t)

∂t
dq

Mi

− 1

Mi

Ci
∂Mi

∂t
,

∂µij(p, t)

∂t
=

∫
∂Vij(p)

‖q − pi‖2

‖pj − pi‖
∂φs(i)(q, t)

∂t
dq,

∂ρij(p, t)

∂t
=

∫
∂Vij(p)

q
‖q − pi‖2

‖pj − pi‖
∂φs(i)(q, t)

∂t
dq

µij
− 1

µij
ρij
∂mij

∂t
.

Armed with the partial derivatives in ∂Jhet,i/∂pi and ∂Jhet,i/∂t, we can directly use the

constraint-driven formulation in (4.15) and obtain a quadratic optimization problem similar

to the one in (4.16) to solve the time-varying heterogeneous coverage problem in (4.19).

4.5.2 Time-Varying Communication-Aware Heterogeneous Coverage

The coverage problem with heterogeneous sensing capabilities was approach differently in

Section 3.3, where the robots were allowed to communicate about their sensor suites to

improve the overall coverage performance. Having information about its neighbors implies

that Robot i can calculate its region of dominance with respect to Sensor j ∈ s(i) ⊂ S,

V j
i (p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, ∀k ∈ N j}, N j = {i ∈ N | j ∈ s(i)}.

With these sensor-dependent partitions of the domain, the performance of the multi-robot

team under the family of time-varying density functions φj(q, t), j ∈ S , can be encoded
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through the locational cost analogous to (3.16),

Hcom(p, t) =
∑
j∈S

∑
i∈N j

∫
V j
i (p)

‖q − pi‖2φj(q, t) dq. (4.37)

Note that, for simplicity, this section considers the degradation function for all sensors to

be the square of the Euclidean distance, i.e. dj(q1, q2) = ‖q1 − q2‖2,∀j ∈ S . Similar

calculations to the ones outlined in this section can be applied to the time-varying version

of the original communication-aware locational cost (3.16).

According to Theorem 3.3, the cost (4.37) can be minimized by letting Robot i, i ∈ N

execute the control law,

ui = 2
∑
j∈s(i)

mj
i (c

j
i − pi),

where mj
i (p, t) = and cji (p, t) are given by

mj
i (p, t) =

∫
V j
i (p)

φj(q, t) dq, cji (p, t) =

∫
V j
i (p)

qφj(q, t) dq

mj
i

.

Analogously to what was done for Hhet, we can define a cost Jcom(p, t) whose mini-

mizer is the minimizer of the corresponding locational cost, i.e. (4.37),

Jcom(p, t) =
N∑
i=1

1

2
‖ui‖2 =

n∑
i=1

Jcom,i(p, t).

In order to solve the optimization problem in (4.15), which asymptotically drives the robots

to a stationary point of Jcom(p, t), we need the expressions for the partial derivatives of

∂Jcom,i/∂pi and ∂Jcom,i/∂t.
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Computation of ∂Jcom,i/∂pi

The derivative of the contribution of Robot i, ∂Jcom,i(p, t), with respect to its position, pi,

becomes,

∂Jcom,i(p, t)

∂pi
= uT

i

∂ui
∂pi

= uT
i

[
2
∑
j∈s(i)

(cji − pi)
∂mj

i

∂pi
+mj

i

(
∂cji
∂pi
− I

)]
,

Similarly to (4.26) and (4.27), the derivatives of the mass and center of mass of Robot i

with respect to Sensor j can be written as

∂mj
i (p, t)

∂pi
=
∑
j∈Ni

∫
∂Vij(p)

φj(q, t)
(q − pi)T

‖pj − pi‖
dq

∂cji (p, t)

∂pi
=

1

mi

∑
j∈Ni

∫
∂Vij(p)

(q − ci)φj(q, t)
(q − pi)T

‖pj − pi‖
dq.

Computation of ∂Jcom,i/∂t

On the other hand, the derivative of ∂Jcom,i(p, t), with respect to time,

∂Jcom,i(p, t)

∂t
= uT

i

∂ui
∂t

= 2uT
i

∑
j∈s(i)

[
(cji − pi)

∂mj
i

∂t
+mj

i

∂cji
∂t

]
,

with

∂mj
i (p, t)

∂t
=

∫
Vi(p)

∂φj(q, t)

∂t
dq,

∂cji (p, t)

∂t
=

∫
Vi(p)

q
∂φj(q, t)

∂t
dq

mj
i

− 1

mj
i

ci
∂mj

i

∂t
.

With the partial derivatives ∂Jcom,i/∂pi and ∂Jcom,i/∂t completely defined, the con-

straint driven formulation in (4.15) can be used to obtain a quadratic optimization problem

similar to the one in (4.16). Thus, we obtain a decentralized controller to solve the time-
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varying heterogeneous coverage problem specified by the locational cost (4.37).

4.6 Conclusions

This chapter develops an exact and decentralized algorithm for the multi-robot time-varying

coverage control problem. In our approach, the coverage objective is encoded as a con-

straint in a minimum-energy optimization program executed by each robot. Slack vari-

ables encoded within the constraint ensure feasibility of the optimization program. The

performance of our algorithm is compared with other approaches to demonstrate how the

constraint-based method effectively covers a region with time-varying importance densi-

ties in a decentralized and approximation-free manner. The equations for the decentralized

algorithm to be applied to the heterogeneous coverage problem included in Chapter 3 are

also included in this chapter.
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CHAPTER 5

MULTI-ROBOT PAINTING THROUGH COLORED MOTION TRAILS

The intersection of robots and arts has become an active object of study as both researchers

and artists push the boundaries of the traditional conceptions of different forms of art (see

Section 2.2 for a literature review on robots and art). In the context of robotic painting,

the focus has been primarily on robotic arms capable of rendering input images according

to some aesthetic specifications [103, 202], or even reproducing scenes from the robot’s

surroundings—e.g. portraits [104] or inanimated objects [129]. The production of abstract

paintings with similar robotic arm setups remains mostly unexplored, with some exceptions

[134]. The idea of swarm painting has been primarily explored within computer generated

paintings, where virtual painting agents move inspired by ant behaviors [136, 137, 138].

Regarding physical robotic swarms, the creation of artistic paintings is scarce, with existing

examples relying on the use of preprogrammed controllers [118, 119], which hinder any

interactive influence of the human artist once the creation process has begun. While other

approaches to swarm painting [120] have consider the participation of the human artist on

the creation process, their role has been relegated to that of a co-creator of the work of art,

since they can add strokes to the painting but their actions do not influence the operation of

the multi-robot team.

In this chapter, we present a multi-robot painting system based on ground robots that

lay color trails as they move throughout a canvas, shown in Fig. 5.1. The novelty of this

approach lies in the fact that an external user—the artist—can influence the movement

of robots capable of painting specific colors, thus controlling the concentration of certain

pigments on different areas of the painting canvas. Inspired by [8], this human-swarm in-

teraction is formalized through the use of scalar fields—which we refer to as density func-

tions—associated with the different colors such that, the higher the color density specified
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Figure 5.1: A group of 12 robots generating a painting based on the densities specified by
a human user for 5 different color tones: cyan, blue, pink, orange and yellow. The robots
lay colored trails as they move throughout the canvas, distributing themselves according
to their individual painting capabilities. The painting arises as a result of the motion trails
integrating over time.

at a particular point, the more attracted the robots equipped with that color will be to that

location. Upon the specification of the color densities, the robots distribute themselves over

the canvas in a distributed fashion by executing a controller that optimally covers the den-

sity objectives specified by the operator based on the heterogeneous painting capabilities

of the robots in the team [184, 185]. Thus, the system provides the artist with a high-level

way to control the painting behavior of the swarm as a whole, agnostic to the total number

of robots in the team or the specific painting capabilities of each of them.

The remainder of the chapter is organized as follows: In Section 5.1, we recall the

problem of coverage control and its extension to heterogeneous robot capabilities as it

enables the human-swarm interaction modality used in this chapter. Section 5.2 elaborates

on the generation of color densities to be tracked by the multi-robot system along with the

color selection strategy adopted by each robot for its colored trail. A series of experiments
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conducted on a team of differential-drive robots is presented in Section 5.3, where different

painting compositions arise as a result of assigning different painting capabilities—both in

terms of paints given to the individual robots as well as total paint available—to the multi-

robot team. The effects of this heterogeneous resources on the final color distributions

observed on the paintings are discussed in Section 5.4. Section 5.5 concludes the chapter.

5.1 Density-Based Multi-Robot Control

The interactive multi-robot painting system presented in this chapter operates based on the

specification of desired concentration of different colors over the painting canvas. This

color preeminence is encoded through color density functions that the artist can set over

the domain to influence the trajectories of the robots and, thus, produce the desired coloring

effect. In this section, we recall the formulation of the coverage control problem as it serves

as the mathematical backbone for the human-swarm interaction modality considered in this

chapter.

5.1.1 Coverage Control

The coverage control problem deals with the question of how to distribute a team of N

robots with positions pi ∈ Rd, i ∈ {1, . . . , N} =: N , to optimally cover the environmental

features of a domain D ∈ Rd, d = 2 for ground robots (see Section 2.1 for a detailed

explanation of this problem formulation). The question of how well the team is covering a

domain is typically asked with respect to a density function, φ : D 7→ [0,∞), that encodes

the importance of the points in the domain. Denoting the aggregate positions of the robots

as p = [pT
1 , . . . , p

T
N ]T, the performance of the multi-robot team with respect to φ can then

be encoded through the locational cost in [6],

H(p) =
N∑
i=1

∫
Vi(p)

‖pi − q‖2φ(q) dq, (5.1)
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with a lower value of the cost corresponding to a better coverage. Vi(p) = {q ∈ D | ‖q −

pi‖ ≤ ‖q−pj‖, ∀j ∈ N} denotes the Voronoi cell of Robot i with respect to the Euclidean

distance.

A necessary condition for (5.1) to be minimized is that the position of each robot cor-

responds to the center of mass of its Voronoi cell [45], given by

ci(p) =

∫
Vi(p)

qφ(q) dq∫
Vi(p)

φ(q) dq
.

This spatial configuration, referred to as a centroidal Voronoi tessellation, can be achieved

by letting the multi-robot team execute the well-known Lloyd’s algorithm [43], whereby

ṗi = κ(ci(p)− pi). (5.2)

The power of the locational cost in (5.1) lies on its ability to influence which areas of

the domain the robots should concentrate by specifying a single density function, φ, irre-

spectively of the number of robots in the team. This makes coverage control an attractive

paradigm for human-swarm interaction, as introduced in [8], since a human operator can

influence the collective behavior of an arbitrarily large swarm by specifying a single den-

sity function. In this paper, however, we consider a scenario where a human operator can

specify multiple density functions associated with the different colors to be painted and,

thus, a controller encoding such color heterogeneity must be considered. The following

section recalls a formulation of the coverage problem for multi-robot teams with heteroge-

neous capabilities and a control law that allows the robots to optimally cover a number of

different densities.

5.1.2 Coverage With Heterogeneous Painting Capabilities

The human-swarm interaction modality considered in this chapter allows the artist to spec-

ify a set of density functions associated with different colors to produce desired concentra-
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tions of colors over the canvas. To this end, we recover the heterogeneous coverage control

formulation from Section 3.3. Let P be the set of paint colors and φj : D 7→ [0,∞), j ∈ P ,

the family of densities associated with the colors in P defined over the convex domain, D,

i.e. the painting canvas. In practical applications, the availability of paints given to each

individual robot may be limited due to payload limitations, resource depletion, or monetary

constraints. To this end, let Robot i, i ∈ N , be equipped with a subset of the paint colors,

π(i) ⊂ P , such that it can paint any of those colors individually or a color that results

from their combination. The specifics concerning the color mixing strategy executed by

the robots are described in detail in Section 5.2.

Analogously to (5.1), the quality of coverage performed by Robot i with respect to

Color j can be encoded through the locational cost

hji (p) =

∫
V j
i (p)

‖pi − q‖2φj(q) dq, (5.3)

where V j
i is the region of dominance of Robot i with respect to Color j, delimited by those

robots also capable of painting Color j. If we denote asN j the set of robots equipped with

Color j, N j = {i ∈ N | j ∈ π(i) ⊂ P}, then the region of dominance of Robot i with

respect to Color j ∈ π(i) is the Voronoi cell in the tessellation whose generators are the

robots in N j ,

V j
i (p) = {q ∈ D | ‖pi − q‖ ≤ ‖pk − q‖,∀k ∈ N j}.

Note that, if Robot i is the only robot equipped with Color j, then the robot is in charge of

covering the whole canvas, i.e. V j
i = D.

With the regions of dominance defined, we can now evaluate the cost in (5.3) and, thus,

recover the heterogeneous locational cost in (3.16), here instantiated with the square of the
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Euclidean distance as the degradation function,

Hcom(p) =
∑
j∈P

∑
i∈N j

∫
V j
i (p)

‖pi − q‖2φj(q) dq, (5.4)

with a lower value of the cost corresponding to a better coverage of the domain with respect

to the family of color density functions φj , j ∈ P .

According to Theorem 3.3, the cost in (5.4) can be minimized by letting each robot

follow a negative gradient,

ṗi = κ
∑
j∈π(i)

mj
i (p)(c

j
i (p)− pi), κ > 0 (5.5)

where mj
i (p) and cji (p) are, respectively, the heterogeneous mass and center of mass of

Robot i with respect to Color j, defined as in (3.27),

mj
i (p) =

∫
V j
i (p)

φj(q) dq, cji (p) =

∫
V j
i (p)

qφj(q) dq

mj
i

. (5.6)

Therefore, the controller that minimizes the heterogeneous locational cost in (5.4) makes

each robot move according to a weighted sum where each term corresponds with a continuous-

time Lloyd descent—analogous to (5.2)—over a particular color density φj , weighted by

the mass corresponding to that painting capability.

The controller in (5.5) thus enables an effective human-swarm interaction modality

for painting purposes where the artist only has to specify color density functions for the

desired color composition and the controller allows the robots in the team to distribute

themselves over the canvas according to their heterogeneous painting capabilities. Note

that, while other human-swarm interaction paradigms based on coverage control have con-

sidered time-varying densities to model the input provided by an external operator [8], in

the application considered in this chapter heterogeneous formulation of the coverage con-

trol problem, while considering static densities, suffices to model the information exchange
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between the artist and the multi-robot system.

5.2 From Coverage Control to Painting

In Section 5.1, we established a human-swarm interaction paradigm that allows the artist

to influence the team of robots so that they distribute themselves throughout the canvas

according to a desired distribution of color and their painting capabilities. But how is the

painting actually created? In this section, we present a strategy that allows each robot

to choose the proportion in which the colors available in its equipment should be mixed

in order to produce paintings that reflect, to the extent possible, the distributions of color

specified by the artist.

The multi-robot system considered in this chapter is conceived to create a painting by

means of each robot leaving a trail of color as it moves over a white canvas. While the

paintings presented in Section 5.3 do not use physical paint but, rather, projected trails

over the robot testbed, the objective of this section is to present a color model that both

allows the robots to produce a wide range of colors with minimal painting equipment and

that closely reflects how the color mixing would occur in a scenario where physical paint

were to be employed. To this end, in order to represent a realistic scenario where robots

lay physical paint over a canvas, we use the subtractive color mixing model (see [203]

for an extensive discussion in color mixing), which describes how dyes and inks are to be

combined over a white background to absorb different wavelengths of white light to create

different colors. In this model, the primary colors that act as a basis to generate all the other

color combinations are cyan, magenta and yellow (CMY).

The advantage of using a simple model like CMY is twofold. Firstly, one can specify

the desired presence of an arbitrary color in the canvas by defining in which proportion

these should mix at each point and, secondly, the multi-robot system as a collective can

generate a wide variety of colors being equipped with just cyan, magenta and yellow paint,

i.e. P = {C,M, Y } in the heterogeneous multi-robot control strategy in Section 5.1.2.
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The first aspect reduces the interaction complexity between the human and the multi-robot

system: the artist can specify a desired set of colors C throughout the canvas by defining the

CMY representation of each color β ∈ C as [βC , βM , βY ], βj ∈ [0, 1], j ∈ P , and its density

function over the canvas φβ(q), q ∈ D. Note that a color specified in the RGB color model

(red, green and blue), represented by the triple [βR, βG, βB], can be directly converted to

the CMY representation by subtracting the RGB values from 1, i.e. [βC , βM , βY ] = 1 −

[βR, βG, βB]. Given that the painting capabilities of the multi-robot system are given by

P = {C,M, Y }, the densities that the robots are to cover according to the heterogeneous

coverage formulation in Section 5.1.2 can be obtained as,

φj(q) =
⊕
β∈C

βjφβ(q), j ∈ P ,

where ⊕ is an appropriately chosen composition operator. The choice of composition op-

erator reflects how the densities associated with the different colors should be combined

in order to compute the overall density function associated with each CMY primary color.

For example, one way to combine the density functions is to compute the maximum value

at each point,

φj(q) = max
β∈C

βjφβ(q), j ∈ P .

The question remaining is how a robot should combine its available pigments in its color

trail to reflect the desired color density functions. The formulation of the heterogeneous

locational cost in (5.4) implies that Robot i is in charge of covering Color j within the

region dominance V j
i and of covering Color k within V k

i , j, k ∈ π(i) ⊂ P . However,

depending on the values of the densities φj and φk within these Voronoi cells, the ratio

between the corresponding coverage responsibilities may be unbalanced. In fact, such

responsibilities are reflected naturally through the heterogeneous mass, mj
i (p), defined in

(5.6). Let us denote as [αCi , αMi , αYi ], αji ∈ [0, 1], αCi +αMi +αYi = 1, the color proportion

in the CMY basis to be used by Robot i in its paint trail. Then, a color mixing strategy that
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reflects the coverage responsibilities of Robot i can be given by,

αji =
mj
i (p)∑

k∈π(i) M
k
i (p)

, j ∈ π(i) ⊂ P . (5.7)

Note that, when mj
i (p) = 0,∀j ∈ π(i) ⊂ P , the robot is not covering any density and,

thus, αji , j ∈ P , can be undefined.

Figure 5.2 illustrates the operation of this painting mechanism for three different density

color specifications. Firstly, the mechanism is simulated for a robot equipped with all three

colors—cyan (C), magenta (M) and yellow (Y)—in Figs. 5.2a, 5.2c and 5.2e. As seen,

the robot lays a cyan trail as it moves to optimally cover a single cyan density function in

Fig. 5.2a. In Fig. 5.2c, two different density functions are specified, one magenta and one

yellow, and the robot lays down a trail whose color is a combination of both paints. Finally,

in Fig. 5.2e, the robot is tasked to cover a density that is a combination of the CMY colors.

Since the robot is equipped with all three colors, the trail on the canvas exactly replicates

the colors desired by the user.

For the same input density specifications, Figs. 5.2b, 5.2d, and 5.2f illustrate the trails

generated by a team of 3 robots equipped with different subsets of the color capabilities. As

seen, the color of the individual robot trails evolve as a function of the robot’s equipment,

the equipments of its neighbors, and the specified input density functions.

5.3 Experimental Results With Projected Trails

The proposed multi-robot painting system is implemented on the Robotarium, a remotely

accessible swarm robotics testbed at the Georgia Institute of Technology [191]. The human-

swarm interaction paradigm for color density coverage presented in Section 5.1 and the trail

color mixing strategy from Section 5.2 are illustrated experimentally on a team of 12 dif-

ferential drive robots tasked to paint a set of user-defined color density functions over a

2.4×2m canvas. In order to study how the limited availability of painting resources affects
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(a)
Robot: (CMY)

Density: (β1 = (1, 0, 0)) (b)
Robots: (CMY), (CM), (Y)

Density: (β1 = (1, 0, 0))

(c)
Robot: (CMY)

Densities: β2 = (0, 1, 0), β3 = (0.0.1)
(d)

Robots: (CMY), (CM), (Y)
Densities: β2 = (0, 1, 0), β3 = (0.0.1)

(e)
Robot: (CMY)

Density: β4 = (0.3, 0.2, 0.2)
(f)

Robots: (CMY), (CM), (Y)
Density: β4 = (0.3, 0.2, 0.2)

Figure 5.2: Painting mechanism based on heterogeneous coverage control. Each subfigure
shows the color trails laid by the robots (left) as they move to optimally cover a user-
specified color density function (right) by executing the controller in (5.5). The symbols
located to the right of the robot indicate its painting capabilities. Figures (a), (c) and (e)
show the operation of the painting mechanism in Section 5.2 for a single robot equipped
with all three colors, i.e. cyan (C), magenta (M) and yellow (Y), thus capable of producing
all color combinations in the CMY basis. In (a), the robot lays a cyan trail according to the
density color specification β1. The robot equally mixes magenta and yellow in (c) according
to the color mixing strategy in (5.7), producing a color in between the two density color
specifications, β2 and β3. Finally, in (e), the robot exactly replicates the color specified
by β4. On the other hand, Figures (b), (d) and (f) depict the operation of the painting
mechanism with a team of 3 robots, where the Voronoi cells (color coded according to the
CMY basis) are shown on the density subfigures.

the resulting painting, for the same painting task, 9 different experimental setups in terms

of paint equipment assigned to the multi-robot team are considered. While no physical
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Table 5.1: Experimental parameters associated with the user-specified color density func-
tions.

β Color βC βM βY K µx µy σx σy Ax Ay fx fy

1 .0000 .0863 .5569 60 0 .8 .22 .22 1.1 0.1 1/40 0
2 .0000 .3529 .5569 40 0 .4 .22 .22 1.1 0.1 1/37 2/15
3 .0549 .5529 .3451 40 0 0 .22 .22 1.1 0.1 1/35 0
4 .4314 .3098 .1373 60 0 -.4 .22 .22 1.1 0.1 1/33 2/15
5 .9686 .0353 .0275 40 0 -.8 .22 .22 1.1 0.1 1/30 0
6 0 0 1 60 0.5 .3 .125 .125 0.1 0.1 1/5 1/5

paint is used in the experiments included in this chapter, the effectiveness of the proposed

painting system is illustrated by visualizing the robots’ motion trails over the canvas with

an overhead projector.

The experiment considers a scenario where the multi-robot team has to simultaneously

cover a total of six different color density functions over a time horizon of 300 seconds.

The color density functions are of the form,

φβ(q) =
K

2πσxσy
exp

(
−(qx − µ̄x)2 + (qy − µ̄y)2

2σ2
xσ

2
y

)
, (5.8)

with β ∈ {1, . . . , 6} = C, q = [qx, qy]
T ∈ D. The color associated with each density as

well as its parameters are specified in Table 5.1, and µ̄x and µ̄y are given by

µ̄x = µx − Ax sin(2 ∗ πfxt),

µ̄y = µy − Ay sin(2 ∗ πfyt).

Figure 5.3 illustrates the evolution of the painting for a specific equipment setup as the

robots move to cover these densities at t = 100s and t = 300s.

In order to evaluate how the heterogeneous painting capabilities of the multi-robot team
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(a) t = 100s (b) t = 300s

Figure 5.3: Evolution of the painting according to the density parameters in Table 5.1, for
the Setup 3 given as in Table 5.2. The robots distribute themselves over the domain in or-
der to track the density functions as they evolve through the canvas. The color distribution
of the color trails reflects the colors specified for the density functions within the painting
capabilities of the robots. Even though none of the robots is equipped with the complete
CMY equipment and, thus, cannot reproduce exactly the colors specified by the user, the
integration of the colors over time produce a result that is close to the user’s density speci-
fication.

affect the outcome of the painting process, the coverage of the color densities is evaluated

for 9 different equipment configurations. Table 5.2 outlines the color painting capabilities

available to each of the robots in the different experimental setups. The paintings which re-

sult from five of these configurations (the ones with an odd setup ID) are shown in Fig. 5.4.

For the purpose of benchmarking, a simulated painting is generated for painting setup 1,

i.e. with complete painting capabilities, under the same heterogeneous density coverage

control and color mixing strategies as in the robotic experiments (Fig. 5.4a). Given the

paintings in Figs. 5.4b to 5.4f, we can observe how the closest color distribution to the

simulated painting is achieved in Fig. 5.4b, which corresponds to the case where all the

robots have all the painting capabilities—i.e. the team is homogeneous—and, thus, can

reproduce any combination of colors in the CMY basis.

It is interesting to note the significant changes in the characteristics of the painting

for different equipment configurations of the robots. For equipment setups 3, 5, 7 and 9,
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Table 5.2: Paint equipment for the different experimental setups.

Setup Paint Equipment Heterogeneity
ID ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total Sunset 8-bit RGB

1
C × × × × × × × × × × × × 12

0 0M × × × × × × × × × × × × 12
Y × × × × × × × × × × × × 12

2
C × × × × × × × × × × × × 12

.2786 .2680M × × × × × × × × × × × × 12
Y × × × × × × × × × × × × 12

3
C × × × × × × × × 8

.3060 .2963M × × × × × × × × 8
Y × × × × × × × × 8

4
C × × × × × × × × × 9

.3340 .3121M × × × × × × × × × 9
C × × × × × × × × × 9

5
C × × × × × × × × × 9

.3921 .3783M × × × × × × × × × 9
Y × × × × × × × × × 9

6
C × × × × × × × × 8

.4488 .4398M × × × × × × × × 8
Y × × × × × × × × 8

7
C × × × × × × × × 8

.5686 .5498M × × × × × × × × 8
Y × × × × × × × × 8

8
C × × × × × × 6

.6904 .6835M × × × × × × 6
Y × × × × × × 6

9
C × × × × × × 6

.8148 .8004M × × × × × × 6
Y × × × × × × 6

where some robots—or all—are not equipped with all the color paints, the corresponding

paintings do not show as smooth color gradients as the one in Fig. 5.4b. However, the
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(a) Simulated painting, Setup 1 (b) Setup 1

(c) Setup 3 (d) Setup 5

(e) Setup 7 (f) Setup 9

Figure 5.4: Paintings generated for the densities in (5.8), with the team of 12 robots in
their final positions. Figure 5.4a corresponds to a simulated painting and it is used for
benchmarking. According to the painting equipment setups in Table 5.2 we can see how,
as the robots in the team are equipped with more painting capabilities, the color gradients
become smoother and more similar to the ideal outcome.
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distribution of color for these paint setups still qualitatively reflects the color specification

given by the densities in Table 5.1. Even in the extreme case of Equipment 9 (see Fig. 5.4f),

where none of the robots is equipped with all CMY paints—in fact, half of the robots only

have one paint and the other half have pairwise combinations—the robot team still renders

a painting that, while presenting colors with less smooth blending than the other setups, still

represents the color distribution specified by the densities in Table 5.1. For setups 3 and 7,

the team has the same total number of CMY painting capabilities but the distribution is dif-

ferent among the team members: in Setup 3 none of the robots are equipped with the three

colors, while in Setup 7 there are some individuals that can paint any CMY combination

and others can paint only one color. Observing the Figs. 5.4c and 5.4e, while the resulting

colors are less vibrant for the equipment in Setup 3, there seems to be a smoother blending

between them along with the vertical axis. Setup 7 produces a painting where overall the

colors are more faithful to the ideal outcome presented in Fig. 5.4a, but that also contain

stronger trails corresponding to the pure primary colors appear throughout the painting. If

we compare Figs. 5.4e and 5.4d we can see how, by adding a small amount of painting ca-

pabilities to the system, the color gradients are progressively smoothed. This observation

suggests to further analyze the variations that appear on the paintings as a function of the

heterogeneous equipment configurations of the different setups. This will be the focus of

the next section.

5.4 Discussion

The robotic painting system developed in this chapter generates illustrations via an inter-

action between the color density functions specified by the user and the different color

equipment present on the robots. In particular, the different equipments not only affect the

color trails left by the robots, but also affect their motion as they track the density func-

tions corresponding to their equipment. While Fig. 5.4 qualitatively demonstrates how the

nature of the painting varies with different equipment setups, this section presents a quanti-
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tative analysis of the variations among paintings resulting from different equipment setups.

We also analyze the reproducibility characteristics of the multi-robot painting system, by

investigating how paintings vary among different realizations using the same equipment

setups.

Let S denote the number of distinct equipment setups of the robots in the team—where

each unique configuration denotes a robot species. We denote sι ∈ [0, 1] as the probability

that a randomly chosen agent belongs to species ι, ι ∈ S = {1, . . . , S}, such that

S∑
ι=1

sι = 1, and s = [s1, . . . , sS]T.

For each equipment setup in Table 5.2, these probabilities can be calculated as a function

of how many agents are equipped with each subset of the paint colors.

We adopt the characterization developed in [204], and quantify the heterogeneity of a

multi-robot team as,

H(s) = E(s)Q(s), (5.9)

whereE(s) represents the complexity andQ(s), the disparity within the multi-robot system

for a given experimental setup, s. More specifically, E(s) can be modeled as the entropy

of the multi-agent system,

E(s) = −
S∑
ι=1

sι log(sι),

and Q(s) is the Rao’s Quadratic Entropy,

Q(s) =
S∑
ι=1

S∑
κ=1

sιsκδ(ι, κ)2, (5.10)

with δ : S × S 7→ R+ a metric distance between species of robots. More specifically, δ

represents the differences between the abilities of various species in the context of perform-

ing a particular task. For example, if we have three robots, one belonging to species s5

(π(s5) = {C}) and two belonging to species s8 (π(s8) = {C,M, Y }) and we have to paint
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only cyan, then the distance between agents should be zero, since all of them can perform

the same task. However, if the task were to paint a combination of yellow and magenta,

then the species s5 could not contribute to that task and, therefore, δ > 0.

Similar to [204], we formalize this idea by introducing a task space, represented by the

tuple (T, γ) where T denotes the set of tasks, and γ : T 7→ R+ represents an associated

weight function. In this chapter, the set of tasks T simply correspond to the different colors

specified by the user, as shown in Table 5.1. Consequently, a task tjβ ∈ T corresponds to the

component j, j ∈ {C,M, Y }, of color input β ∈ C. The corresponding weight functions

for the tasks are calculated as,

γ(tjβ) =
βj∑

β̃∈C

∑
k∈P

β̃k
.

With this task-space, the task-map, ω : S 7→ 2T , as defined in [204], directly relates the

different robot species with the CMY colors, i.e., if the color equipment of species ι is

denoted as π(ι), then it can execute tasks tjβ if j ∈ π(ι).

Having defined the task-space, (T, γ), and the task-map, ω, the distance between two

agents i and j can be calculated as in [204],

δ(T, γ, ω)(ι, κ) =

∑
t∈(ω(ι)∪ω(κ))\(ω(ι)∩ω(κ))

γ(t)∑
u∈(ω(ι)∪ω(κ))

γ(u)
.

This task-dependent distance metric between different robot species can then be used to

compute the disparity as shown in (5.10).

Having completely characterized the disparity, Q(s), and the complexity, E(s), of an

experimental setup under a specific painting task, one can compute the heterogeneity mea-

sure associated with them according to (5.9). To this end, the third column in Table 5.2

represents the heterogeneity measure of the different setups. The heterogeneity values

have been computed for the sunset-painting task from Table 5.1, as well as for a generic
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painting task that considers the whole 8-bit RGB color spectrum as objective colors to be

painted by the team. This latter task is introduced in this analysis with the purpose of serv-

ing as a baseline to evaluate the comprehensiveness of the proposed sunset painting task.

As it can be observed in Table 5.2, the heterogeneity values obtained for the sunset and

the 8-bit RGB tasks are quite similar and the relative ordering of the setups with respect

to the heterogeneity measure is the same, thus suggesting that the sunset task used in this

chapter requires a diverse enough set of painting objectives for all the equipment setups

proposed. Armed with this quantification of team heterogeneity, we now analyze how the

spatial characteristics of the painting differ as the equipment configurations change.

5.4.1 Color Distance

We first analyze the complex interplay between motion trails and equipment setups by com-

puting the spatial distance between the mean location of the desired input density function

specified by the user, and the resulting manifestation of the color in the painting. To this

end, we use the color distance metric introduced in [205] to characterize the distance from

the color obtained in every pixel of the resulting painting to each of the input colors speci-

fied in Table 5.1.

Let ρ(q) represent the 8-bit RGB vector value for a given pixel q in the painting. Then,

the color distance between two pixels qi and qj is given as,

dp(qi, qj) = 1−
[
1− 2

π
cos−1

(
ρ(qi) · ρ(qj)

‖ρ(qi)‖‖ρ(qj)‖

)][
1− ‖ρ(qi)− ρ(qj)‖√

3 · 2552

]
(5.11)

Using (5.11), we can compute the distance from the color of each pixel to each of the

input colors specified by the user (given in this chapter by Table 5.1). For a given pixel

in the painting q and input color β, these distances can be interpreted as a color-distance
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density function over the domain, denoted as ϕ

ϕ(q, β) = exp

(
−dp(q, β)

ς2

)
,

where, with an abuse of notation, dp(q, β) represents the color distance between the color

β and the color at pixel q. For the experiments conducted in this chapter, ς2 was chosen to

be 0.1.

Since we are interested in understanding the spatial characteristics of colors in the paint-

ing, we compute the center of mass of a particular color β in the painting,

Cβ =

∫
D qϕ(q, β) dq∫
D ϕ(q, β) dq

. (5.12)

The covariance ellipse for the color β at a pixel q is given as,

Vβ(q) =
√

(ϕ(q))(q − Cβ). (5.13)

For each of the input colors, Fig. 5.5 illustrates the extent to which the color center

of masses (computed by (5.12) and depicted by the square filled by the corresponding

color) are different from the mean locations of the input density functions (depicted by the

circle). For all the painting equipment setups in Fig. 5.5, as the heterogeneity of the team

increases, the mean of the input density function for each color and the resulting center

of mass become progressively more distant. This phenomenon is illustrated in Fig. 5.6,

where the mean distance between the input density and the resulting color center of mass

is plotted as a function of the heterogeneity of the equipment of the robots. For a given

painting P , this distance is computed as,

dc(P ) =

∑
β∈C ‖µβ − Cβ‖
|C|

, (5.14)
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(a) Simulated painting, Setup 1 (b) Setup 1

(c) Setup 3 (d) Setup 5

(e) Setup 7 (f) Setup 9

Figure 5.5: For each input color (given in Table 5.1): mean of the input density function
(circle), and center of mass of the resulting color according to (5.12). The dotted lines
depict the covariance ellipse according to (5.13). As seen the heterogeneity of the multi-
robot team (as defined in (5.9)) impacts how far the colors are painted from the location of
the input, as given by the user.

where C represents the set of input colors, and µβ represents the mean of the input density

function for color β. As seen, with increasing heterogeneity, the mean distance increases
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Figure 5.6: Average distance from mean density input to the resulting center of mass over
the input colors of the painting as a function of the heterogeneity among the robots (as
defined in (5.9)). As seen, with increasing sparsity of painting equipment on the robots
(signified by increasing heterogeneity), the mean distance increases, indicating that colors
get manifested farther away from where the user specifies them.

because lesser painting capabilities on the robots do not allow them to exactly reproduce

the input color distributions. However, even with highly heterogeneous setups, such as

Setups 7 or 9, the multi-robot team is still able to preserve highly distinguishable color

distributions throughout the canvas, which suggests that the coverage control paradigm

for multi-robot painting is quite robust to highly heterogeneous robot teams and resource

deprivation.

5.4.2 Chromospectroscopy

The second method we utilize to quantify the differences among the paintings as a function

of the heterogeneity in the robot team is using chromospectroscopy [206], which analyzes

the frequency of occurrence of a particular color over the canvas. To this end, the painting

is divided according to the sectors described in Table 5.3, which are closely related to the

areas of high incidence of the objective color densities in Table 5.1. A histogram represent-
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Table 5.3: Color sectors throughout the painting used for the chromospectroscopy analysis,
according to the density parameters specified in Table 5.1.

Sector ID Objective Color xmin[m] xmax[m] ymin[m] ymax[m]
1 Yellow -1.2 1.2 1 0.6
2 Orange -1.2 1.2 0.6 0.2
3 Pink -1.2 1.2 0.2 0.2
4 Blue -1.2 1.2 -0.2 -0.6
5 Cyan -1.2 1.2 -0.6 -1
6 Yellow Sun 0.3 0.7 0.5 0.1

ing the frequency of occurrence of each input color per sector is described in Fig. 5.7. For

the purposes of the chromospectroscopy analysis, the 8-bit RGB color map of the canvas

is converted into a 5-bit RGB color map, by reducing the resolution of the color map and

grouping very similar colors together, i.e., for an input color β ∈ [0, 255]3, the modified

color for the chromospectroscopy analysis in Fig. 5.7 is computed as β̄ = β
b
, with b = 23.

As seen in Fig. 5.7, the heterogeneity of the robot team significantly affects the resulting

color distribution within each sector. More specifically, as the heterogeneity of the team

increases, thus depriving the team of painting capabilities, the canvas presents more outlier

colors which are present outside the corresponding target sectors. This is apparent in highly

heterogeneous teams (Setup 9), where magenta-like colors appear in the top-most sector

and cyan appears in the central sector. The three central sectors show a high occurrence of

non-target colors. For slightly lesser heterogeneous teams, while the occurring colors often

do not correspond with the target colors in the sectors—e.g. green in Sector 4 of Setup 3—,

the colors seem consistent in their presence and correspond to limitations on the equipment

of the robots: in Setup 3, all robots are equipped with only two colors, thus no robot is able

to exactly replicate any target color with 3 CMY components by itself. In the case of teams

with low heterogeneity, e.g., Setup 1 and Setup 3, resulting colors are mostly consistent

with the input target colors. The presence of some colors which do not match the input
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(a) Simulated painting, Setup 1 (b) Setup 1

(c) Setup 3 (d) Setup 5

(e) Setup 7 (f) Setup 9

Figure 5.7: Chromospectroscopy by sectors on the canvas (as indicated in Table 5.3) for
each equipment configuration (as specified in Table 5.2). With increasing heterogeneity,
and consequently, sparser painting capabilities of the robots, colors distinctly different from
the target colors begin to appear in each sector. For teams with lower heterogeneity (Se-
tups 1-3), anomalous colors in the chromospectroscopy typically appear from neighboring
sectors only.

corresponds to colors belonging to the neighboring sectors. Some specific examples of this

include: (i) Setup 1: the presence of yellow in Sector 3, orange in Sector 2, and Blue in
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Sector 5, (ii) Setup 3: the presence of orange in Sector 1, and blue in Sector 5, (iii) Setup

5: magenta and cyan-like colors in Sector 4.

Indeed, as one could expect, the chromospectroscopy reveals that color distributions

become less precise as the differences in the painting capabilities of the robots become more

acute—observable as distinct paint streaks in Fig. 5.4 which stand out from the surrounding

colors. Nevertheless, the distribution of colors on each sector still matches the color density

inputs even for the case of highly heterogeneous teams, which suggests that the multi-robot

painting paradigm presented in this chapter is robust to limited painting capabilities on

the multi-robot team due to restrictions on the available paints, payload limitations on the

robotic platforms, or even the inherent resource depletion that may arise from the painting

activity.

5.4.3 Statistical Results

In order to understand if the statistics reported above remain consistent for multiple paint-

ings generated by the robotic painting system, we ran 10 different experiments for each of

the 9 equipment configurations described in Table 5.2. Figure 5.8 shows the average of the

paintings generated for each equipment, along with the color density averages, computed

using (5.12). Although averaging the 10 rounds seems to dampen the presence of outliers,

we can still observe how the distance between the objective color (represented by a circle)

and the resulting color distribution (square) generally increases as the team becomes more

heterogeneous. Furthermore, if we observe the color gradient along the vertical axis of the

painting, the blending of the colors becomes more uneven as the heterogeneity of the team

increases. This phenomenon becomes quite apparent if we compare the top row of Fig.

5.8—(a) to (c)—to the bottom row—(g) to (i).

Quantitatively, this distancing between objective and obtained color density distribution

is summarized in Fig. 5.9, which shows the mean distance between the input density and

the resulting colors. Analogously to the analysis in Fig. 5.6, which contained data for one
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(a) Setup 1 (b) Setup 2 (c) Setup 3

(d) Setup 4 (e) Setup 5 (f) Setup 6

(g) Setup 7 (h) Setup 8 (i) Setup 9

Figure 5.8: Averaged paintings over 10 trials. Mean of the input densities (circle), center
of mass of the resulting colors according to ϕ from (5.12) (square), and covariance ellipse
(dotted lines). The heterogeneity in the painting equipment of the robots has a significant
impact on the nature of the paintings.

run in the Robotarium for five out of the nine setups, the average distances shown in Fig.

5.9 show that the resulting color distributions tend to deviate from the objective ones as the

team becomes more heterogeneous.

The results observed in this statistical analysis, thus, support the observations carried

out in the analysis of the paintings obtained in the Robotarium. Therefore, the characteri-

zation of the painting outcome with respect to the resources of the team seems consistent

throughout different runs and independent of the initial spatial conditions of the team.
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Figure 5.9: Box plots of the average distance between mean density input to resulting center
of mass as computed in (5.14) for the 9 different equipment configurations. The results are
presented for 10 different experiments conducted for each equipment. As seen, the average
distance increases with increasing heterogeneity among the robots’ painting equipment.

5.5 Conclusions

This chapter presents a robotic swarm painting system based on mobile robots leaving

trails of paint as they move where a human user can influence the outcome of the painting

by specifying desired color densities over the canvas. The interaction between the human

artist and the painting is enabled by means of a heterogeneous coverage paradigm where

the robots distribute themselves over the domain according to the desired color outcomes

and their painting capabilities, which may be limited. A color mixing strategy is proposed

to allow each robot to adapt the color of its trail according to the color objectives specified

by the user, within the painting capabilities of each robot. The proposed multi-robot paint-

ing system is evaluated experimentally to assess how the proposed color mixing strategy

and the color equipments of the robots affect the resulting painted canvas. A series of ex-

periments are run for a set of objective density functions, where the painting capabilities

of the team are varied with the objective of studying how varying the painting equipment
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among the robots in the team affects the painting outcome. Analysis of the resulting paint-

ings suggests that, while higher heterogeneity results in bigger deviations with respect to

the user-specified density functions—as compared to homogeneous, i.e. fully equipped,

teams—the paintings produced by the control strategy in this chapter still achieve a distri-

bution of color over the canvas that closely resembles the input even when the team has

limited resources.
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CHAPTER 6

EMOTIONALLY EXPRESSIVE ROBOTIC SWARMS

Robots have progressively migrated from purely industrial environments to more social

settings where they interact with humans in quotidian activities such as education [207],

companionship [208, 209], or health care and therapy [210, 211]. In these scenarios, on

top of performing tasks related to the specific application, there may be a need for the

robots to effectively interact with people in an entertaining, engaging, or anthropomorphic

manner [144].

The need for enticing interactions between social robots and humans becomes espe-

cially pronounced in artistic applications. Robots have been progressively intertwined with

different forms of artistic expression, where they are used, among others, to interactively

create music [92], dance [93, 94, 95, 97], act in plays [99, 100, 101], support performances

[5], or be the object of art exhibits by themselves [106, 108, 109]. As in the traditional

expressions of these performing arts, where human artists instill expressive and emotional

content [142, 143], robots are required to convey artistic expression and emotion through

their actions.

While expressive interactions have been extensively studied in the context of perform-

ing arts, the focus has been primarily on anthropomorphic robots, especially humanoids

[99, 145, 146]. However, for faceless robots or robots with limited degrees of freedom

for which mimicking human movement is not an option, creating expressive behaviors can

pose increased difficulty [27, 147, 148]. We are interested in exploring the expressive

capabilities of a swarm of miniature mobile robots, for which the study of expressive in-

teractions is sparse [114, 115, 116]. This can be contrasted with more anthropomorphic

robots, for which there is already a preconceived understanding of emotive expressiveness.

This choice is driven in part by the increased prevalence of multi-robot applications and
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the envisioned, resulting large-scale human-robot teams [24, 212, 213]; and in part by the

expressive possibilities of the swarm as a collective in contrast to the robots as individuals.

While using teams of mobile robots to create artistic effects in performances is not some-

thing new [5, 111], our aim is to provide a framework to use these types of robotic teams in

performances without the need for a choreographer to specify the parameters of the robots’

movements, as in [27].

Social psychology has extensively studied which motion and shape descriptors are asso-

ciated with different fundamental emotions, e.g. [169, 170, 173, 179, 214]. In this chapter,

we study how such attributes can be incorporated into the movements of a swarm of mobile

robots to represent emotions. In particular, a series of swarm behaviors associated with the

so-called fundamental emotions are designed and evaluated in a user study in order to de-

termine if a human can identify the different fundamental emotions by observing the swarm

aggregate behavior and movement of the individual robots [113, 215].

The remainder of the chapter is organized as follows: In Section 6.1, we outline the

motion and shape characteristics psychologically linked to the different fundamental emo-

tions. The behaviors included in the user study, implemented on the swarm according to the

features described in the social psychology literature, are characterized in Section 6.2. The

procedure and results of the study conducted with human subjects are presented in Section

6.3, along with the discussion. An implementation of the proposed swarm behaviors on a

real robotic platform is presented in Section 6.4. Section 6.5 summarizes the main take-

aways on this study on expressive swarm behaviors. To conclude the chapter, Appendices

6.A and 6.B contain detailed explanations for the implementation of the different behaviors

and individual robot control.

6.1 Emotionally Expressive Movement

For robotic swarms to participate in artistic expositions and effectively convey emotional

content, the swarm’s behavior when depicting a particular emotion should be recognizable
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Figure 6.1: The GRITSBot, a 3cmx3cm miniature mobile differential drive robot. The
robotic swarm considered in this study is composed of 15 GRITSBots. The top view of
these robots is used in the simulations shown to the study participants when evaluating the
different swarm behaviors.

by the audience, thus producing the effect intended by the artist. However, the lack of an-

thropomorphism in a robotic swarm can pose a challenge when creating expressive motions

for human spectators. In this section, we present a summary of motion and shape features

that have been linked to different emotions in the social psychology literature, which will

serve as inspiration to create expressive behaviors for swarms of mobile robots.

In this study, we focus on the so-called fundamental emotions [214, 216]—i.e. hap-

piness, sadness, anger, fear, surprise and disgust—to produce a tractable set of emotion

behaviors to be executed by the robotic swarm. An emotion is considered fundamental or

basic if it is inherent to human mentality and adaptive behavior, and remains recognizable

across cultures [217]. In addition, fundamental emotions provide a basis for a wider range

of human emotions, which appear at the intersection of the basic emotions with varying

intensities [218].

The robotic system considered for this study is a swarm of miniature differential-drive

robots, the GRITSBots [189]. As shown in Fig. 6.1, the GRITSBots are faceless robots

that do not possess any anthropomorphic features. While Laban Movement Analysis [149]

has been used in robotic systems to convey emotional content through acceleration pat-
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terns [150, 151, 152, 154], when considering large robot swarms, the individual robots

may be limited in size and actuation capabilities, thereby restricting their ability to use

acceleration as their expressive means. For this reason, along with the characteristic non-

anthropomorphism of a swarm and the possibilities of its collective behavior, we draw in-

spiration from abstract shape and motion descriptors associated with different fundamental

emotions [168] to create different swarm behaviors.

Table 6.1 presents a summary of the shape, movement and size attributes of abstract

objects associated with some fundamental emotions and emotion valences. Among these

characterizations, those related to shape and size represent the impact of the form of an

object on its emotion attribution. In particular, angular shape contours are typically as-

sociated with emotions with a negative valence and high arousal1—i.e. anger, fear and

disgust—while round shape contours are linked to positive emotions (happiness and sur-

prise) or emotions with very low activation levels (sadness) [175, 179]. The size of a

particular object also affects its emotional perception, with bigger objects being typically

associated with larger emotion arousal (e.g. surprise) and smaller sizes with emotions with

low activation [168]. Table 6.1 also presents how the features of different movement pat-

terns are related to perceived emotions [170]. Analogously to shape contours, smoothness

of movement is related to the pleasantness of the motion, thus evoking emotions with pos-

itive valence [169], while an angular movement trace—interpreted as the trajectory taken

by the robot over time—is linked to negative emotions [170]. Speed of movement also

influences the emotion attribution, with higher peak velocities being identified with angry

states [170] and slower movements that integrate into smaller trajectories over time being

connected to fearful and sad emotional states [170, 173].

While the summary of features related to emotions in Table 6.1 provides a good starting

1In this context, the term valence designates the intrinsic attractiveness (positive valence) or aversiveness
(negative valence) of an event, object, or situation [166]. The valence of an emotion thus characterizes its
positive or negative connotation. Among the fundamental emotions, happiness and surprise have positive
valence, while the remaining four—sadness, fear, disgust and anger—are classified under negative valence
[167]. On the other hand, the term arousal refers the activation or deactivation associated with an emotion.
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Figure 6.2: The behavior of a robotic swarm depends on which interactions are consid-
ered between the robots, which information is exchanged through those interactions, and
how each robot acts on such information. Different interaction schemes and control laws
produce distinct swarm behaviors.

point for generating swarm behaviors for most fundamental emotions, literature on motion

characterizations of disgust is scarce. In order to get some intuition about which traits

the swarm behavior should portray when embodying this emotion, we direct our attention

towards characterizations associated with emotion valence. The shape and motion charac-

terizations of positive and negative emotion valences in the lower part of Table 6.1 serve as

a basis to design the swarm behavior associated with disgust.

The behavior of a robotic swarm depends on how the interactions are established be-

tween members of the swarm and what control commands are executed by the individuals

based on the information exchanged in those interactions, as illustrated in Fig. 6.2. While

the GRITSBots as individuals cannot change their shape, the collective behavior of the

swarm may embody the shape and size attributes included in Table 6.1. On the other hand,

the movement features in Table 6.1 can be depicted through the movement trace that each

individual robot executes as it progresses towards the collective shape. In the next sec-

tion, we describe how all these attributes are implemented in the controller of the robots to

produce the behaviors that embody the different fundamental emotions.
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6.2 Swarm Behavior Design

For our swarm of robots to be expressive, we need to decide which interactions a robot

should establish with the robots in its vicinity and its environment, and which control law

the robot should execute with the information obtained through those interactions to pro-

duce an appropriate swarm behavior. In this work, we draw inspiration from standard algo-

rithms for multi-robot teams, namely cyclic pursuit [219, 220, 221] and coverage control

[6, 8], to design the interactions and the control laws for the swarm. This section describes

how the shape and movement features described in Section 6.1 are incorporated into the

control laws of a swarm of 15 GRITSBots in order to create expressive behaviors.

6.2.1 Collective Behavior

The attributes presented in Section 6.1 characterize how the motion and shape of an ab-

stract object can convey emotion. Here we treat the GRITSBots as objects capable of

reconfiguring themselves on a stage in order to generate an expressive behavior.

Among the attributes presented in Table 6.1, it seems natural for those related to shape

and size to be depicted by the collective behavior of the swarm, given that the individual

robots can move within the planar environment but cannot change their individual shape.

To this end, the feature of roundness is incorporated into the behaviors of happiness, sur-

prise and sadness. Those behaviors are thus based on the robots following some kind of

circular contour, as illustrated in Figs. 6.3, 6.4 and 6.5, respectively. In the case of the

happiness behavior, a sinusoid is superimposed to the base shape of a circle, producing rip-

ples on the circle contour to embody the curvilinearity feature; and the corresponding size

attribute—big—is incorporated through the circle dimensions with respect to the domain.

As for the surprise emotion, the very big size attribute was included in the behavior by

making the radius of the circle grow with time, thus producing a sensation of increasing

size. Finally, the circular path dimension was reduced (small attribute) in the case of the

109



(a) t = 0 s (b) t = 1 s (c) t = 4 s

Figure 6.3: Sequence of snapshots of the happiness behavior. Each robot follows a point
that travels along a circular sinusoid, visually producing a circular shape with small ripples.
The trajectories of five robots have been plotted using solid lines. See the full video at
https://youtu.be/q FenI1DdRY.

(a) t = 0 s (b) t = 1 s (c) t = 4 s

Figure 6.4: Sequence of snapshots of the surprise behavior. The robots move along a circle
of expanding radius, thus creating a spiral effect. The trajectories of five robots have been
plotted using solid lines. See the full video at https://youtu.be/VYIJ5hBeOIU.

(a) t = 0 s (b) t = 2 s (c) t = 8 s

Figure 6.5: Sequence of snapshots of the sadness behavior. The robots move along a small
circle at a low speed. The trajectories of five robots have been plotted using solid lines. Af-
ter 8 seconds, each robot has only displaced approximately an eighth of the circumference.
See the full video at https://youtu.be/rfHZcFnRFg8.

110

https://youtu.be/q_FenI1DdRY
https://youtu.be/VYIJ5hBeOIU
https://youtu.be/rfHZcFnRFg8


(a) t = 0 s (b) t = 3 s (c) t = 15 s

Figure 6.6: Sequence of snapshots of the fear behavior. The robots spread out uniformly
over the domain. As it can be observed from the trajectories, they displace slowly with a
non-smooth, angular movement trace. See the full video at https://youtu.be/jz-
5INUd8wc.

(a) t = 0 s (b) t = 5 s (c) t = 12 s

Figure 6.7: Sequence of snapshots of the disgust behavior. The robots spread out slowly
towards the boundaries of the domain, with a trajectory with a non-smooth, angular trace.
See the full video at https://youtu.be/EprfuCsuuRM.

(a) t = 0 s (b) t = 2 s (c) t = 6 s

Figure 6.8: Sequence of snapshots of the anger behavior. The density function is defined
as a Gaussian at the center of the domain, causing the robots to concentrate around this
area. However, the fact that the robots move with high speed causes overshoots in their
positions, thus producing a significantly angular movement trace. See the full video at
https://youtu.be/kAGBrMkOtyY.

111

https://youtu.be/jz-5INUd8wc
https://youtu.be/jz-5INUd8wc
https://youtu.be/EprfuCsuuRM
https://youtu.be/kAGBrMkOtyY


sadness behavior, incorporating also the slowness attribute by making the robots follow the

contour at a very low speed.

The scarcity of shape characterizations for the other three emotions—fear, disgust and

anger—motivates a different approach for the design of the collective behavior of the

swarm. For these emotions, we choose to specify which areas of the domain the robots

should concentrate around. We do so by defining a density function, φ, that characterizes

the areas of the domain where we want the robots to group. In all three behaviors, the robots

are initially distributed at random positions within the domain to then spread according to

the particular density function selected. In the case of fear, the density function is uniform

across the domain, so that it makes the robots scatter as far as possible from their neigh-

bors, as shown in Fig. 6.6. For the disgust motion, Fig. 6.7, the density is chosen to be

high around the boundaries, making the robots move from the center towards the exterior

of the domain—the stage—, giving the sensation of animosity between robots. Finally, in

order to show anger, the robots are made to stay closer to the center of the domain. This

strategy, combined with the individual robot control that will be explained in Section 6.2.2,

is intended to give the sensation of a heated environment, a riot.

The control laws needed to achieve these behaviors are explained in detail in Appendix

6.A. In each of those laws, a robot in the swarm is treated as a point that can move om-

nidirectionally. However, the GRITSBots (see Fig. 6.1) are differential drive robots and,

thus, are unable to move perpendicularly to the direction of their wheels. This movement

restriction is used to our advantage in the individual control strategies described in Section

6.2.2, where we exploit the limitations on the planar movement of the differential drive

robots to implement the movement features in Table 6.1.

6.2.2 Individual Robot Control

The swarm behavior strategies and corresponding control laws introduced in Section 6.2.1

and detailed in Appendix 6.A treat each robot in the swarm as if it could move omnidirec-
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tionally. That is, if we denote by p ∈ R2 the position of a robot, then its movement could

be expressed using single integrator dynamics,

ṗ = u, (6.1)

with u ∈ R2 denoting the control action given by the chosen behavior. However, the differ-

ential drive configuration of the GRITSBot implies that it cannot execute single integrator

dynamics. Instead, the motion of a differential drive robot is described by the so-called

unicycle dynamics,

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω,

with p = (x, y)T being the robot’s Cartesian position and θ its orientation in the plane.

The control inputs, v and ω, correspond to the linear and angular velocities of the robot,

respectively, as shown in Fig. 6.2.

In order to convert the input u in (6.1) into the executable control commands in (6.2.2),

we use the near-identity diffeomorphism in [200]. The details of this transformation are

described in detail in Appendix 6.B. Using this transformation between the single integra-

tor and the unicycle dynamics, we get to tune two scalar parameters, l and K, that regulate

how smooth the movement trace of each robot is and how fast it travels when executing

a certain control input, respectively. Figure 6.9 illustrates the differences between directly

executing the single integrator dynamics in (6.1), and performing two different diffeomor-

phisms on the single integrator control value, u. We can observe how choosing a small

value for the diffeomorphism parameter l results in an angular movement trace, while a

smooth trajectory is observed when selecting a bigger value for this parameter.

Given the ability to regulate the angularity and the speed of the movement trace of a

robot, we are in a position to implement the movement features included in Table 6.1. The

smoothness feature of the happiness emotion is translated into a smooth and fast individ-

ual control. Analogous diffeomorphism parameters are chosen to show surprise, given the
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Figure 6.9: Effect of the diffeomorphism parameter, l, on the movement trace of an indi-
vidual robot. In all cases, the controller is following a particle that moves along the black
dashed line—the desired trajectory. The top figure illustrates how an agent capable of ex-
ecuting the single integrator dynamics in 6.1 follows closely the desired trajectory. The
other two trajectories, in blue, illustrate two different diffeomorphisms performed over the
control action of the single integrator. In the middle, a small value of l results in an angular
movement trace that follows quite closely the desired trajectory. In contrast, at the bottom,
a large value of l results on a very smooth movement trace, at the expense of following
more loosely the desired trajectory.

roundness and very big size attributes associated with this emotion. As for sadness, even

though it is a negative emotion, we focus on its specific characterizations provided in Ta-

ble 6.1 to characterize the motion as slow and smooth. We can observe how, indeed, the

trajectories depicted in Figs. 6.3, 6.4 and 6.5 are smooth given the choice of a large l in the

diffeomorphism. The speed of the robots is illustrated by the total distance covered in time:

while significant distances are traveled within 4 seconds for the behaviors of happiness and

surprise, the robots in the sadness behavior displace very little in 8 seconds.

Table 6.1 associates an angular movement trace with the emotions with negative va-

lence. Consequently, a controller that produces an angular movement trace, corresponding

to a small l in the diffeomorphism, is selected for the remaining emotions—fear, disgust
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Table 6.2: Motion and shape attributes selected for the behaviors associated with the fun-
damental emotions.

Emotion Swarm Behavior Robot Control

Happiness sinusoid over circle fast, smooth
Surprise expanding circle fast, smooth
Sadness small circle very slow, smooth
Fear uniform coverage slow, angular
Disgust coverage on boundaries slow, angular
Anger coverage on center fast, angular

and anger. The movement features presented in Table 6.1 for anger and fear are translated

into fast and slow control, respectively. Given the lack of characterization for the speed of

disgust, we opt to implement a slow motion. We can observe how, for Figs. 6.6 to 6.8,

the trajectory traces have sharp turns and angularities, specially in the case of the anger

behavior, which is accentuated by the proportional gain corresponding to a large velocity.

The swarm behavior selected for each of the emotions according to the shape character-

izations discussed in Section 6.2.1 and the diffeomorphism parameters in this section are

summarized in Table 6.2.

6.3 User Study

The behaviors described in Section 6.2 were implemented in simulation on a team of 15

differential drive robots, producing a video for each of the emotions. Snapshots generated

from each of the videos, along with the URL links, are included in Figs. 6.3 to 6.8.

6.3.1 Procedure

A user study was conducted to evaluate if the swarm interactions and individual robot con-

trol strategies selected in Section 6.2 produce expressive swarm behaviors that correspond

to the fundamental emotions. The hypothesis to test was the following,
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H1: Overall Classification. Participants will perform better than chance in identifying the

fundamental emotion each swarm behavior is intended to represent.

A total of 45 subjects (32 males and 13 females) participated in the study, with 29 of

them not having any academic or professional background in robotics. As for the age of the

participants, the distribution was as follows: 31.1% between 18 and 24 years old, 60.0%

between 25 and 34 years old, 6.7% between 35 and 44 years old, and 2.2% between 45 and

54 years old. After responding to the demographic questions, each subject was shown 6

videos, each of them corresponding to the behaviors designed for each of the fundamental

emotions. The videos were shown sequentially, one behavior at a time, and in a random

order. The human subjects were instructed to watch each video in full, after which they

were presented with a multiple choice (single answer) question to select the emotion that

best described the movement of the robots in the video, with the possible answers being the

6 fundamental emotions. The participants had no time limit when classifying the videos

and were allowed to rewatch them as many times as desired. Furthermore, at any point, the

participants were allowed to navigate to previous questions in the survey and modify their

answers, if desired, before submitting the survey responses.

6.3.2 Results and Discussion

The responses of the survey were collected and summarized in Table 6.3. The columns are

labeled signaled emotion and each of them contains the responses given to the video of the

behavior designed for a fundamental emotion. In the confusion matrix in Table 6.3, the

emotions are ordered counterclockwise from positive to negative valence according to the

circumplex model in Fig. 6.10.

The diagonal terms of the confusion matrix, boldfaced in Table 6.3, correspond to the

percentage of responses that identified the emotion in the video as the one intended by the

authors. For all the diagonal values, the percentage is much higher than the one given by

chance (16.67%), and in most cases—happiness, sadness, anger and surprise—this value
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happiness

surprise

anger
fear

disgust

sadness

arousal

valence

Figure 6.10: Representation of the survey responses in the valence-arousal plane. The lo-
cation of each emotion is represented with a color-coded cross according to the circumplex
model of affect [167, 222]. Next to each emotion, a sequence of color-coded circles repre-
sent how the human subjects identify each behavior, with the diameter of each circle being
proportional to the amount of responses given to the corresponding emotion. We can ob-
serve how, in general, the majority of users labels the behavior according to the signaled
emotion, with most variations occurring generally with those emotions closest in the plane.
In the cases of fear and disgust, while the relative majority of subjects still labels their be-
haviors according to the hypothesis, we observe a significant amount of confusion among
them, which may be due to the proximity of such emotions in terms of valence and arousal.

reaches the absolute majority (greater than 50%). In the cases of fear and disgust, while

the relative majority of the responses identified the emotion according to our hypothesis

(40% for both emotions), the values are lower than 50%. This can be potentially caused

by the proximity of such emotions in terms of valence and arousal, as illustrated in Fig.

6.10. A Pearson’s chi-squared test goodness of fit was performed for the responses given to

each swarm behavior, confirming that, at p < 0.0001, the frequency distributions for each

emotion differ significantly with respect to a uniform distribution where all the emotions

are considered equally likely to be chosen. Therefore, the assignment of an emotion to

each of the videos was not made at random by the participants, but rather the movement

and shape features incorporated in the swarm behaviors were effectively identified as the

intended emotions.
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0.00

25.00

50.00

75.00

100.00

Happiness Surprise Anger Fear Disgust Sadness

With Robotics Background No Robotics Background

Validation of Hypothesis (%) by Robotics Background

Figure 6.11: Percentage of subjects that identified each emotion in the video according
to the hypothesis, classified according the robotics background of the subjects. There is
no substantial difference between the responses given by the subjects that had experience
studying or researching in robotics and those who did not.

0.00

25.00

50.00

75.00

100.00

Happiness Surprise Anger Fear Disgust Sadness

Male Female

Validation of Hypothesis (%) by Gender

Figure 6.12: Percentage of subjects that successfully assigned the emotion to the corre-
sponding video, according to the hypothesis, according to the gender of the participants.
We can observe how the responses of the female subjects are consistently more aligned
with the hypothesized behavior for each of the videos.

Based on the demographic data collected, the validation of hypothesis H1 was not af-

fected significantly by the robotics background of the subjects. As shown in Fig. 6.11, for

the 4 emotions for which the majority of the aggregate responses in Table 6.3 aligned with
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the hypothesis—i.e. happiness, surprise, anger and sadness—all subjects, regardless of

their background in robotics, identified the emotions according to the hypothesis in more

than 50% of the cases. In fact, the Pearson’s chi-square test discards, at p < 0.01, the

random assignment of emotions from the responses of participants both with and without

robotics background. For the emotions of fear and disgust—those with the lowest accu-

racies in Table 6.3—the responses aligned better with hypothesis H1 for those subjects

without a robotics background, for which the Pearson’s chi-square test discards the fitting

of the data under a uniform distribution at a significance level of p < 0.01. While the

subjects with robotics background still validated hypothesis H1 for these two emotions,

the significance levels for the test are slightly higher (p < 0.05 for fear and p < 0.1 for

disgust), possibly due to the fact that there were only 16 subjects with robotics background.

In contrast, when performing an analysis by gender, the validation of hypothesis H1 was

consistently larger in the case of female subjects, as shown in Fig. 6.12. While the male

participants still validated hypothesis H1 for all emotions, the accuracy was higher among

the female subjects, being in 5 out of the 6 emotions higher than 50%. Only in the case

of fear the accuracy for the female participants was slightly under the majority threshold

(46.15%). As for the statistical significance of the responses, the frequency of distributions

for each emotion differs from a uniform distribution at p < 0.05 for the male participants

and at p < 0.01 for the female ones. Thus, while neither of the populations assign emotions

to the behaviors at random, the motion and shape characterizations selected for the swarm

behaviors were more clearly identified by the female participants in the study.

The methodology adopted in this work, however, poses certain limitations on the con-

clusiveness of the user study. Future inquiries on this matter may consider adopting a free-

choice format to select the emotion that best describes the swarm behavior in each video, as

opposed to the forced-choice question contemplated in this work, with the purpose of not

constricting the participants’ answers to only the target emotions. Furthermore, the inde-

pendence of the results obtained for each of the expressive behaviors could be boosted by
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preventing participants from changing their previous answers, as being able to modify them

may promote identification by comparison rather than independent association. Finally, the

conclusiveness of a subsequent study could be strenghthened with supplementary hypothe-

ses involving the identification of other emotional traits in the behaviors (e.g. perceived

valence or arousal), which would support the main hypotheses considered in this study.

In conclusion, the data collected in the user study supports hypothesis H1, thus confirm-

ing that the swarm behaviors and individual robot control paradigms designed in Section

6.2 effectively depict each of the fundamental emotions. Therefore, the behaviors consid-

ered in this study provide a collection of motion primitives for robotic swarms to convey

emotions in artistic expositions, whose trait effectuality could be further evaluated in sub-

sequent studies.

6.4 Robotic Implementation

The swarm behaviors proposed in Section 6.2 and simulated for the user study in Section

6.3 were implemented on a real robotic platform to evaluate their efficacy. Each behav-

ior was executed by a team of 12 GRITSBots X on the Robotarium, a remotely acces-

sible swarm robotics testbed at the Georgia Institute of Technology [191]. Similarly to

the GRITSBot (Fig. 6.1), the GRITSBot X has a differential-drive configuration, but with

a bigger size: a 10cm×10cm footprint. The robots move on the Robotarium arena, a

4.3m×3.6m surface. The setup is shown in Figs. 6.13 and 6.14.

The transition from the simulated behaviors in Section 6.2 and Appendices 6.A and

6.B to their implementation on a real robotic platform involved the tuning of the parame-

ters of the shapes and density functions associated with the behaviors, in accordance to the

changes in size of the individual robots as well as of the Robotarium arena. Furthermore,

the diffeomorphism parameters (l and K in Section 6.2.2), while still reflected the specifi-

cations in Table 6.2 qualitatively, were adjusted to accommodate the dynamics and actuator

limits of the GRITSBot X.
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(a)
Happiness

https://youtu.be/HQ6YkoADMBg. (b)
Surprise

https://youtu.be/xhPTQg4iLvM.

(c)
Sadness

https://youtu.be/i7cLP GcL54. (d)
Fear

https://youtu.be/6xqb-sQck6I.

(e)
Disgust

https://youtu.be/RgPyXVuprX8. (f)
Anger

https://youtu.be/VGlLPJGlwvo.

Figure 6.13: Snapshots of the swarm behaviors implemented on a team of 12 GRITSBot X,
taken in the Robotarium with an overhead camera that provides an analogous perspective
to the one used in the simulations (Figs. 6.3 to 6.8). The trajectories of four robots have
been plotted using solid lines. A link to the full video of each behavior is provided below
each snapshot.

The resulting robotic behaviors are illustrated in Figs. 6.13 and 6.14. Figure 6.13

presents a top view, analogous to the perspective used in the simulations (Figs. 6.3 to
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(a)
Happiness.

https://youtu.be/EeEyIGn2BV0. (b)
Surprise

https://youtu.be/hHMjYMv6Ojo.

(c)
Sadness

https://youtu.be/jFWMtu5oYEo. (d)
Fear

https://youtu.be/j72EXA14Scs.

(e)
Disgust

https://youtu.be/py cUXCkgZM. (f)
Anger

https://youtu.be/Thj5s1vQvYA.

Figure 6.14: Snapshots of the swarm behaviors implemented on a team of 12 GRITSBot X
in the Robotarium, from a perspective point of view. The snapshots, taken with a camera
located 1.70m over the Robotarium surface, provide a similar angle view to that of a human
spectator. A link to the full video is provided for each behavior.

6.8), with the purpose of showing the similarity between the simulated behaviors and the

real behaviors. As can be observed in the snapshots and linked videos, for most emotions

the simulated and real behavior do not present significant differences. The biggest con-

trast emerges for the anger emotion, where the actuator limits and safety constraints of the
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GRITSBot X prevent an exact replication of the simulated behavior, where very high peak

velocities were executed by some individuals. Nevertheless, the behavior still portrays its

characteristic features as described in Section 6.2. A perspective view of the experiments

taken at 1.70m over the Robotarium surface is presented in Fig. 6.14. Despite changing

the angle of view to that of an average person, the behaviors are still identifiable and highly

distinctive.

6.5 Conclusions

In this chapter, we investigated how motion and shape descriptors from social psychology

can be integrated into the control laws of a swarm of robots to express fundamental emo-

tions. Based on such descriptors, a series of swarm behaviors were developed, and their

effectiveness in depicting each of the fundamental emotions was analyzed in a user study.

The results of the survey showed that, for all the swarm behaviors created, the relative ma-

jority of the subjects classified each behavior with the corresponding emotion according to

the hypothesis, being this ratio over 50% for 4 of the 6 fundamental emotions.

Some confusion was observed in the classification of the behaviors of fear and disgust,

which can be attributed both to the similarity between both emotions in terms of valence and

arousal, as well as to the lack of descriptors existent in the literature for the disgust emotion,

which complicated the characterization of its associated swarm behavior. Further analysis

of the results showed that the robotics background of the participants had no influence on

the classification of the behaviors, while the responses of the female participants were more

aligned with the hypothesis in comparison to their male counterparts.

The proposed behaviors were implemented on a team of differential drive robots with

the objective of illustrating the feasibility of the proposed behaviors on real robotic plat-

forms. While some differences arose between the simulated and the physical implemen-

tation due to the dynamics of the robots, each behavior still displayed its characteristic

features. This suggests that the control laws proposed for the different emotions are poten-
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tially transferable to other ground robotic systems or even to aerial swarms.

In conclusion, the motion and shape descriptors extracted from social psychology af-

forded the development of distinct expressive swarm behaviors, identifiable by human ob-

servers under one of the fundamental emotions, thus providing a starting point for the

design of expressive behaviors for robotic swarms to be used in artistic expositions.

6.A Collective Swarm Behavior

In Section 6.2.1, a series of swarm behaviors were designed based on the movement and

shape attributes associated with the different fundamental emotions. This appendix in-

cludes the mathematical expressions of the control laws used to produce the different swarm

behaviors. Note that all the control laws included here treat each robot in the swarm as a

point that can move omnidirectionally according to single integrator dynamics as in (6.1).

The transformation from single integrator dynamics to unicycle dynamics is discussed in

detail in Appendix 6.B.

6.A.1 Happiness

The swarm movement selected for the happiness behavior consists of the robots following

the contour of a circle with a superimposed sinusoid. This shape is illustrated in Fig. 6.15a

and can be parameterized as

xh(θ) = (R + A sin(fθ)) cos θ,

yh(θ) = (R + A sin(fθ)) sin θ,

θ ∈ [0, 2π), (6.2)

where R is the radius of the main circle and A and f are the amplitude and frequency of

the superposed sinusoid, respectively. For the shape in Fig. 6.15a, the frequency of the

superimposed sinusoid is f = 6.
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(a) Happiness: The robots follow
points moving along a circle of ra-
dius R with a superposed sinusoid
of amplitude A.

(b) Surprise: The robots follow
points moving along a circle of
expanding radius. Two snap-
shots, corresponding to R(t) =
{Rmin, Rmax}, are shown here.

(c) Sadness: The robots follow
points that move slowly along the
contour of a small circle with re-
spect to the dimensions of the do-
main.

Figure 6.15: Shapes selected for the happiness, surprise and sadness swarm behaviors.
Each agent—here depicted as a red circle—follows a point (black circle) that moves along
the dashed trajectory. The go-to-go controller that makes each agent follow the correspond-
ing point is illustrated with blue arrows for 3 of the agents.

If we have a swarm of N robots, we can initially position Robot i according to

pi(0) = [xh(θi(0)), yh(θi(0))]T, i = 1, . . . , N,

with

θi(0) = 2πi/N. (6.3)

Then the team will depict the desired shape if each robot follows a point evolving along the

contour in (6.2),

ṗi = [xh(θi(t)), yh(θi(t))]
T − pi, (6.4)

with θi a function of time t ∈ R+,

θi(t) = atan2(sin(t+ θi(0)), cos(t+ θi(0))). (6.5)
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6.A.2 Surprise

In the case of the surprise emotion, each robot follows a point moving along a circle with

expanding radius, as in Fig. 6.15b. Such shape can be parameterized as,

xsur(θ, t) = R(t) cos θ,

ysur(θ, t) = R(t) sin θ,

θ ∈ [0, 2π),

with R(t) = mod(t, Rmax − Rmin) + Rmin, t ∈ R+, to create a radius that expands from

Rmin to Rmax.

Analogously to the procedure described in Section 6.A.1, in this case the robots can be

initially located at

pi(0) = [xsur(θi(0), 0), ysur(θi(0), 0)]T, i = 1, . . . , N,

with θi(0) given by (6.3). The controller for each robot is then given by,

ṗi = [xsur(θi(t), 0), ysur(θi(t), 0)]T − pi, (6.6)

with θi(t) as in (6.5).

6.A.3 Sadness

For the case of the sadness emotion, the robots move along a circle of small dimension as

compared to the domain. The strategy is analogous to the ones in (6.4) and (6.6), with the

parameterization of the contour given by,

xsad(θ) = R cos θ,

ysad(θ) = R sin θ,

θ ∈ [0, 2π), R > 0.
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(a) Anger: the Gaussian den-
sity makes the robots concentrate
around the center of the domain.
This choice, along with the selec-
tion of a large proportional gain
in the diffeomorphism in (6.10),
makes the robots stay in each
other’s vicinity and react to each
others movement, producing a jar-
ring movement trace.

(b) Disgust: the density func-
tion presents high values along the
boundaries of the domain. This
choice allows the team to spread
along the boundary, giving the
sensation of animosity between
robots.

(c) Fear: the density function is
chosen to be uniform across the
domain. With this choice, the
robots scatter evenly over the do-
main from their initial positions.

Figure 6.16: Density functions associated to represent the emotions of anger (a), disgust (b)
and fear (c). The higher the density (darker color), the higher the concentration of robots
will be in that area. The red circles represent the position of the agents once the control law
in (6.7) has converged.

6.A.4 Anger, Fear and Disgust

For the remaining emotions—anger, disgust and fear—the swarm coordination is based on

the coverage control strategy, which allows the user to define which areas the robots should

concentrate around.

If we denote by D the domain of the robots, the areas where we want to position the

robots can be specified by defining a density function, φ : D 7→ [0,∞), that assigns higher

values to those areas where we desire the robots to concentrate around. We can make

the robots distribute themselves according to this density function by implementing the

coverage control strategy detailed at Section 2.1, i.e.

ṗi = κ(ci(p)− pi), (6.7)

where p = [pT
1 , . . . , p

T
N ]N denotes the aggregate positions of the robots and κ > 0 is a
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proportional gain. In the controller in (6.7), ci(p) denotes the center of mass of the Voronoi

cell of Robot i,

ci(p) =

∫
Vi(p)

qφ(q) dq∫
Vi(p)

φ(q) dq
,

with the Voronoi cell being characterized as,

Vi(p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, j ∈ {1, . . . , N}, j 6= i}.

Fig. 6.16 shows the densities selected for each of the emotions, where the red circles

represent the positions of the robots in the domain upon convergence, achieved by running

the controller in (6.7).

6.B Individual Robot Control

The swarm behaviors described in Appendix 6.A assume that each robot in the swarm can

move omnidirectionally according to

ṗi = ui, (6.8)

with pi = (xi, yi)
T ∈ R2 the Cartesian position of Robot i in the plane and ui = (uix, uiy)

T ∈

R2 the desired velocity. However, the GRITSBot (Fig. 6.1) has a differential-drive con-

figuration and cannot move omnidirectionally as its motion is constrained in the direction

perpendicular to its wheels. Instead, its motion can be expressed as unicycle dynamics,

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, (6.9)

with θi the orientation of Robot i and (vi, ωi)
T the linear and angular velocities executable

by the robot, as shown in Fig. 6.17.
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Figure 6.17: Parameters involved in the near-identity diffeomorphism in (6.10), used to
transform the single integrator dynamics in (6.8) into unicycle dynamics (6.9), executable
by the GRITSBots. The pose of the robot is determined by its position, p = (x, y)T, and its
orientation, θ. The single integrator control, u, is applied to a point p̃ located at a distance
l in front of the robot. The linear and angular velocities, v and ω, that allow the robot to
track p̃ are obtained applying the near-identity diffeomorphism in (6.10).

In this study, the single integrator dynamics in (6.8) are converted into unicycle dynam-

ics, as in (6.9), using a near-identity diffeomorphism [200],

vi
ωi

 = K

 cos θi sin θi

−sin θi
l

cos θi
l


ux
uy

 , K, l > 0. (6.10)

A graphical representation of this transformation is included in Fig. 6.17: the input u =

(ux, uy)
T is applied to a point located at a distance of l in front of the robot, p̃, which can

move according to the single integrator dynamics in (6.8). The effect of the parameter l in

the movement of the robot is illustrated in Fig. 6.9. The parameter K acts as a proportional

gain.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Robotic swarms, with their inherent features such as redundancy, increased spatial cover-

age, and reduced price, constitute coveted robotic systems for applications such as envi-

ronmental monitoring, search and rescue or precision agriculture. Furthermore, the spatial

reconfigurability that these platforms offer has become especially attractive for entertain-

ers, which have commercially deployed robotic swarms in performances and exhibitions.

However, controlling the robotic swarm as a whole can pose technical challenges for hu-

man operators, which may be unable to simultaneously deal with tens or hundreds of robots.

Coverage control provides an effective swarm robotics control strategy where the task to

be performed by the team can be modeled as a density function over the domain where the

robots move.

This thesis explored two fundamental aspects of the coverage control problem. The first

part of the thesis, Chapters 3 and 4, dived into the distributed coordination of the multi-

robot team under different scenarios concerning the density functions over the domain. In

particular, this thesis investigated how the control of the robotic swarm should be performed

when the robots, equipped with different sensors—i.e. being a heterogeneous team in terms

of sensing capabilities, are tasked with covering different types of events over the domain,

possibly time-varying. In contrast, the second part of the thesis, Chapters 5 and 6, focused

on the use of coverage control as an interaction strategy for humans to control robotic

swarms for different types of artistic expositions, namely artistic painting and expressive

motion.

In Chapter 3, we introduced heterogeneity in the coverage problem formulation to re-

flect qualitatively different sensing modalities among the robots. In contrast to previous

approaches to introducing heterogeneity in the coverage control problem, which consid-

131



ered differences among the robots but maintained the relative importance of the points in

the domain common to all the agents, our problem formulation considered different density

functions that could be detected by the different types of sensors of the team. The chapter

presented two different approaches to this problem, with varying levels of information ex-

change among the robots in the team, and developed distributed control laws to optimize

the coverage of the different events in the domain. Based on the results presented in this

thesis, possible extensions on the topic of heterogeneous coverage could involve contem-

plating limitations on the individual robotic platforms—e.g. restrictions on computational

power or payload—which could potentially hinder the simultaneous surveillance of mul-

tiple events and, in consequence, impact the collective performance of the team. Along

these lines, other issues to consider within this framework could involve optimizing sensor

equipment allocation within the team as a function of the domain events or considering se-

quencing among the robots’ monitoring activities with respect to different events in order

to reflect different progress or needs about information gathering in the environment.

The topic of coverage of time-varying density functions was the object of study of

Chapter 4. Although this was not a first stab at this problem in the literature, this thesis

presented an exact and decentralized constraint-based solution to this problem. While the

approach was developed in detail for the case of time-varying density functions in the ho-

mogeneous coverage control case (i.e. the relative importance of each point in the domain,

while subject to change over time, is common to all the agents in the team), the general-

ity of the formulation afforded its extension to the two heterogeneous coverage strategies

from Chapter 3. The constraint-based approach presented in Chapter 4, therefore, seems to

smoothly accomodate the introduction of time-varying density functions on other instan-

tiations of the coverage problem, as long as the performance of the multi-robot system is

adequately characterized by a locational cost and its corresponding critical points. Fur-

thermore, as explained in Chapter 4, the attractiveness of this approach also relies on its

composability with other tasks to be executed concurrently by the multi-robot team. Some
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extensions of this work could involve studying the limitations of the constraint-based ap-

proach for different instantiations of the coverage problem, as well as the effects of task

addition through other constraints on the performance of the original task—i.e. how would

the concurrent execution of other tasks affect the coverage performance of the team.

The second part of the thesis focused on exploring coverage as an interaction paradigm

between artists and robotic swarms for different forms of artistic expression. In particular,

the heterogeneous coverage formulation from Chapter 3 was used in Chapter 5 as an inter-

action paradigm between artists and multi-robot systems to produce artistic paintings based

on the specification of desired color densities over the domain. This chapter explored not

only the ability of coverage control to provide an effective interaction modality, but also

the implications that different levels of heterogeneity within the team have in the resulting

painting. In Chapter 6, the homogeneous coverage control strategy developed by Cortés,

along with another standard multi-robot control algorithm (i.e. cyclic pursuit), were used

as a basis to create emotionally expressive behaviors for swarms to be used in artistic ex-

positions. Taking advantage of the collective behaviors provided by these swarm control

strategies, as well as of the types of trajectories individual robots can execute, a series of

swarm behaviors associated with the different fundamental emotions were developed in

this chapter, and evaluated through a user study.

The developments in this thesis lead to many possible connections between robotic

swarms and different forms of art. The proposed solutions for artistic painting and ex-

pressive motion constitute specific instantiations of robot swarms being used for such ap-

plications, with many other swarm control algorithms (e.g. consensus/dissensus, flock-

ing, formation control) and interaction modalities among the robots (e.g. distance-based,

pheromone-based) yet to be evaluated for the same purposes. Furthermore, an interesting

extension of the work presented in this thesis—and within the context of swarm robotics

and arts in general—would entail evaluating the preferred human-swarm interaction modal-

ities for human artists to interact with the robots. Regarding the use of coverage control for
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artistic applications, one could continue regarding density functions as a way to command

the artist’s intent to the swarm, as in the artistic painting scenario in Chapter 5 or the expres-

sive swarm behaviors in Chapter 6. However, a particular work of art could also be seen as

the generator of the densities to be covered by the robots, being the swarm movement the

result of this robot-art interaction: e.g. the robots could move according to densities gener-

ated from music progressions or poetry structures. Nevertheless, the intersection of swarm

robotics and arts remains mostly unexplored, with endless possibilities to be developed in

this realm.
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