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certain perturbations, the open-loop model is unstable. For this reason 
it cannot be used to model high frequency uncertainty. 
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Stability Margin Optimization via 
Interpolation and Conformal Mappings 

Juan C. Cockbum, Yariv Sidar, and Allen R. Tannenbaum 

Abstruct- Many interesting problems of robust stabilization can be 
solved using the complex function theoretic approach of [l]. This method 
is based on the construction of a conformal mapping which reduces the 
original robust stabilization problem to a Nevanlinna-Pick interpolation 
problem. The main difficulty of this approach lies in the construction the 
conformal mapping. Here we present a new numerical algorithm to con- 
struct such conformal mappings. Then we demonstrate its effectiveness 
in the synthesis of optimal gain-phase margin controllers. 

I. INTRODUCTION 

Many problems of robust stabilization and sensitivity minimization 
can be studied using classical complex function theory and conformal 
mappings [2], [l]. The basic idea is to reduce them to an interpolation 
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Fig. 1. A standard unity feedback system 

problem of the Nevanlinna-Pick type via conformal mappings. This 
method has been successfully applied to solve many interesting robust 
stabilization problems (e.g., see [3]-[5] and references therein). It has 
been limited, however, to applications where the conformal mapping 
can be found in closed form. In fact, the main difficulty with this 
approach is precisely the construction of such conformal maps. In 
this note we present a new numerical algorithm [6] that can be used 
effectively to construct such conformal mappings. The algorithm that 
we present here was developed by Marshall and Morrow (M&M) to 
study the generation of curves with prescribed harmonic measures and 
is based on elementary conformal mappings. For other applications 
of numerical conformal mapping to control problems, see [7].  This 
paper is organized as follows: in Section I1 we discuss the problem 
of robust stabilization of certain class of linear time-invariant (LTI) 
systems and present a short review of the function theoretic approach 
of [l]. In Section 111 we present the main result of this paper, namely, 
a detailed description of the new conformal mapping algorithm. In 
Section IV we discuss the gain-phase margin problem, which is one 
of the simplest robust stabilization problem for which no closed form 
for the conformal mapping is known. In Section V we use the new 
algorithm to solve the gain-phase margin problem. Finally in Section 
VI we draw some general conclusions. Our notation is standard; C 
denotes the complex plane and RRH” the set of real rational proper 
stable transfer functions. D. H, and C+ denote the open unit disk, 
open right-half plane, and open upper-half plane, respectively, and 
H := { s  E C : Re s 2 0) U { x} is the extended closed right-half 
plane. 

11. ROBUST STABILIZATION PROBLEMS AND INTERPOLATION 

Consider the standard unity feedback system of Fig. 1 where 9 is 
a given parameterized family of scalar, LTI plants, k is a parameter 
vector taking values in some compact uncertainty set K ,  and C (  s) 
the controller to be designed. We identify an arbitrary element 
P,(s) E ph as the nominal plant. Let po(s) have nonminimum- 
phase zeros {<, E H : i = 1. . . . . n c }  and unstable poles {A, E H : 
j = 1. . . . . n n } .  Furthermore, assume that all the plants P(  s) E 
have the same number of unstable poles. The general stability margin 
optimization problem can be stated as follows: Given a family of LTI 
plants Pk, design a (real rational proper) controller C ( s )  such that 
for every k E K the closed-loop system is internally stable and 
certain stability margin is maximized. Here stability margin is any 
suitable measure of the “size” of the smallest perturbation k E K 
that destabilizes the system and the optimal controller will be the one 
that maximizes the size of the perturbation k among all stabilizing 
controllers. In its full generality the above problem is still open. 
In many problems of practical interest, however, the uncertainty set 
K C C can be modeled as a simply connected domain, and it can 
be reduced to an interpolation problem via conformal mappings [ l ] .  
Let s = [ I  + PC]-’ .  P E denote the usual sensitivity function 
with So corresponding to the nominal plant Po. To establish the 
relation between stability and interpolation consider the problem of 
nominal stabilization, e.g., PA = {Po} .  Then we have the following 
theorem. 
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Fig. 2. Commutative diagram 

Theorem 1 (Nominal Stability [8]): The nominal unity feedback 

a) 
b) There are no pole-zero cancellations in H when the product 

The above theorem implies that nominal stability is equivalent to a 
Lagrange interpolation problem: Find a real-rational, proper, analytic 
function So : H + C such that i) the zeros of S,(s)contain 
{ i rJ } 7 and ii) the zeros of S, ( s )  - 1 contain { Cz } r' . Note that 
a) in Theorem 1 imposes the analyticity condition on So while b) 
gives rise to the interpolation conditions. This interpolation problem 
is always solvable, and it is the presence of uncertainty that makes 
this stabilization problem nontrivial. To see this, consider the family 
of plants 

system is internally stable iff 
1 + p0(s)c(s) # o for all .s E H. 

Po(s)C(s) is formed. 

Pk = k P o ( s )  : k E K c C simply connected. {O. x} p K }  

From condition a) in Theorem 1 we have that 1 + PC' # 0. VP E 9, 
Vs E H iff [1 + P,C][k - ( k  - 1)S,] # 0.Vk E K, V.5 E H. 
Equivalently 1 + Po( 5 )C'( s) # 0. Vs E H and 

( 1 )  
k 

k - 1  
So(,\) # - . V k  E K.VS E H. 

This last equation means that S, : H -+ G, where G := C \ { k / (  k - 
1) : k E K}. The conformal mapping 0s : C \ K 4 G given by 
0 ,  ( 3 j = :/( 2 - 1 j ,  induced by S, establishes the relation between 
the uncertainty, K,  and the range of So ,  G. 

Remark 1: We can as well formulate the stabilization problem 
in terms of the complementary sensitivity T = 1 - S .  In that 
case, the reader can verify that the mapping from C \ K to G is 

The application of condition b) in Theorem 1 to Pk together with 
( 1) lead to the following formulation of the stabilization problem. 

Problem 1 (General Stability Margin Problem [l]): Given G a 
simply connected domain, with (0, 1)C G. Find a function 
So E 'R%= such that the interpolation conditions are satisfied 
and S, : H --t G. To reduce the general stability margin 
problem to an Nevanlinna-Pick interpolation problem we construct 
a conformal mapping 0 : G -+ D as shown in Fig. 2. The 
existence of this mapping is guaranteed by the Riemann Mapping 
Theorem (see Section 111). One! we have constructed 0 ,  we can 
obtain S, = 0- l  o So ,  where So is the solution to the following 
Nevanlinna-Pick problem: Find a function S, E R'H" such that 

O T ( 2 )  = l / ( l -  2 ) .  

i )  
i t ' )  the zeros of S o ( s )  - 0 ( l )  contain {(2}1' (2) 
i i i )  \lSollx < 1. 

the zeros of S, (s )  - H(0) contain { ir,l}ry.n 

The commutative diagram indicates that if there exists So E RRY 
that solves the above interpolation problem, then So = 0-'  o So 
solves the general stability margin problem. 

Remark2: The conformal mapping 0 can be made unique by 
choosing H(0) = 0 and H ( 1 )  a positive real. There is no guarantee 
that So = 0-'  o S,, be real-rational. If 0 is real, however, e.g., 
H(3) = H( :), then so is S,. The rationality of So is handled 
~ 

by standard approximation procedures [9]. Necessary and sufficient 
conditions for the solution of the general stability margin problem 
are given by the following theorem of [ l ]  

Theorem 2: The general stability margin problem is solvable iff 
I S ( l ) l  < aopt, where 

The key steps in the solution of problem 1 are: 1) the computation 
of the invariant ooptr which only depends on the nonminimum 
phase zeros and unstable poles of Po (s)  and 2) the computation of 
IS(  1) 1, which depends only on the uncertainty set K and requires the 
construction of the conformal mapping H : G + D. In this paper we 
address the problem of constructing the mapping 0.  The computation 
of is a standard problem in Nevanlinna-Pick theory. 

111. CONSTRUCTION OF THE CONFORMAL 
EQUIVALENCE NEW ALGORITHM 

Conformal mappings are essentially analytic functions with an- 
alytic inverse. The existence of such mappings between simply 
connected domains is a consequence of the classical Riemann Map- 
ping Theorem [lo] which says that any simply connected domain 
G c C, which is not the whole complex plane, can be conformally 
mapped onto the open unit disk D. Such conformal mappings are 
called Riemann mappings. This theorem is an existence result, and 
its proofs are not constructive. Since in general it is not possible to 
find a closed form expression for such Riemann mappings, a practical 
approach is to devise computational algorithms to approximate these 
mappings. (In the sequel, domain refers to a simply connected domain 
that is not the whole complex plane.) 

Suppose that 0 : G + D is the Riemann mapping, from a 
given domain G to the disk, that we want to approximate. There are 
two classical approaches to construct numerical approximations to H : 
1) osculation methods and 2) Schwarz-Christoffel transformations. 
Osculation methods generate a sequence of functions { fk}? such 
that as n ---t x, 0, := f V l  o f n  - 0. . . o fl 4 0. Unfortunately, these 
methods suffer from slow convergence [l I]. The Schwarz-Christoffel 
transformations (SCT) are based on an integral representation of the 
Riemann mapping from a polygonal domain to the canonical domain. 
In practice, methods based on the SCT are limited to polygonal 
regions with a few sides (no more than 20) [12]. In the context of 
robust stabilization, G will be a region bounded by Jordan arcs. The 
new algorithm that we present here can handle, without difficulty, 
arbitrary bounded regions approximated by hundreds of straight line 
segments. To illustrate the basic idea of the M&M algorithm, consider 
the upper half plane C+ with a polygonal slit (a cut) described by 
the straight segments joining O,-lcLxo. ~ $ 1 .  . . . 1 ~ 1  as shown in Fig 3. 
We want to map this slit onto the real line. The cornerstone of the 
M&M algorithm is the map f : C+ -+ C+ 

11' = f(;) = ( 2  - a)"(, + 1 - a)'-" : if E (0.1) (4) 

which takes the points a and a - 1 in the --plane to the origin of 
the w-plane and the origin of the ;-plane to the point y with 
-, E (1/2,1)  as illustrated in Fig. 3. 

This mapping "zips" the real line segments [a-1, 01 and [0, U ]  

into a straight segment of length y at an angle r7a and maps C+ onto 
itself. Of primary interest for us is the inverse map 2 = f - ' ( w ) .  
We can see that f - I  : C+ --t C +  "unzips" the straight segment 
back into the real line. Applying this mapping consecutively for each 
straight segment in the slit, with appropriate parameter a, we will 
be able to pull back the slit onto the real line. A clever combination 
of the unzipping maps, linear fractional transformations, and other 
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I -plan? w -plane 

- -A-- -: --m +ns 

Fig 3 "Unzipping" action of mapping : = f - l ( u ) .  

elementary mappings will allow us to construct the desired conformal 
mapping. 

Let dG, the boundary of G, be described by a set of S points, 
icl . w 2 .  . . . . U I S ,  numbered counter-clockwise, with 1%- even. Fur- 
thermore, assume that "kinks" can only occur at odd indexed points, 
except at the first point all. The M&M algorithm proceeds as follows. 

M&M Algorithm: Input: { wz};" C 3G; Output: 8 .  
1) Map the complement of the circular arc through w 1 .  ~ 1 2 .  u13 to 

the upper-half plane. 
2) "Unzip" the curve from u l g  to u1.v-1 onto the real axis. 
3) Map the remaining circular sector to the open unit disk. 
To describe the details of the M&M algorithm we need to introduce 

some notation. Given a set of points {'u12}F c dG, denote by 
wi"' the image of the kth point [ i l k  after a sequence of conformal 
transformations ~3~ o . . . o vo. 

Step I: Approximate the original curve segment between w 1  and 
u9 with a circular arc and map the complement of this arc to C+. 
This can be accomplished by 

After this mapping, the points wj0'; . . . tu?) will lie on the real axis 
and wy). . . . . w!$) on C+. 

Step 2: Pull the curve from wy) to w$?,  , onto the real axis. To 
do this, first approximate the curve through ul$22z, U-'&,, u'!,f2, 

with a circular arc and map it to a straight segment with w$),, as a 
fixed point (note that w$y2t = 0) using 

map the circular sector to C+ using 

Finally, map C +  onto D via 

where Q = 11 o t ' . ~ / ~ - ~  o . . . o ilo. This particular choice of H2 and 
:j2 ensures that O(0) = 0 and H(1) is positive real. The mapping 
< l . ~ / ~ - ~  = y o p completes the construction. 

The approximate Riemann mapping, 6 : G -+ D, is given 
by the composition of the -'b7/2 elementary maps 0 = I + ~ . ~ - / ~ - ~  o 

i,,v/2-2 0. . . o c . " ~ .  It is characterized by the parameters ( U ' I  . ~ ' 2 .  u 1 . j  ), 

{((I,. b,. c,  )}F/2-2, and ( a 1 .  ,Jl . &. H I .  H2 ). The computation of 
these parameters takes approximately O( .\-2 ), an order of magnitude 
less than SCT methods. (An interesting problem would be a precise 
analysis of the sensitivity of the algorithm to the number of points 
u : ~ .  . . . . L C . ~ .  To the best of our knowledge such analysis has not 
been realized yet.) 

Once we have found the parameters, the forward map H : G + D 
can be evaluated. The only transformations that cannot be obtained 
explicitly are the functions {fL-1(z)}F'2-2 which must be computed 
numerically. This can be done by solving the nonlinear equation 
is = fL( U ] ) .  1' fixed using any appropriate numerical method. In 
particular, if we use Newton's method, we will have 

To guarantee the convergence of (1 3) we choose U ' ( " )  appropriately 
according to the location of the point r with respect to the straight 
segment from zero to yZeJTfl7.  

The computation of the inverse map 0-'  : D + G is straight- 
forward. (An optimized FORTRAN 77 package that implements the 
above algorithm has been written by M&M and can be obtained 
directly from the authors of [13].) 

IUS$, - h  
l 4 L  I 

IV. THE GAIN-PHASE PHASE MARGIN PROBLEM 
e ,  =?, < 1 . ? z  = apz(1 - a z ) l - - O t .  (7) 

The gain-phase margin [14], [6] is a measure of robustness 
against simultaneous gain and phase perturbations. In our setting this 
corresponds to families of plants where Then map this straight segment (through the points 0, 9-l (~'i:~, ), 

and g-1(u~i2rt)) onto the real axis via f F 1 ( w ) ,  where 

The composition of the two above maps, v l t  = f Z p 1  o g;' completes 
the ith iteration. This procedure is repeated j ~ / 2 - 2  times until dl 
the points from ul.v-3 to u ' . ~ - ~  have been pulled onto the real line. 
(Note that at the i"' iteration we must have a'&, . . . . ,J& dl 
real, wit2z = 0 and uli$21. . . . . U I : ~  all on C + . )  

U ' 1  . U1,Y-I , 

The controller that robustly stabilizes this family will achieve a 
generalized gain margin of ti = fi and generalized phase margin 
of 9 = (p2 - q1)/2. The classical gain and phase margins are 
obtained by setting (L = 1/11 and -GI = $ 2 ,  respectively. The 

step 3: Map the semi-infinite circular sector formed by domain G for the gain-phase margin problem the image of C \ K 
( .V/2 -2  j ( .v/2 - 2 j and ll,(.'-/2-2) , onto D, To do this first under the mapping O . S ( X )  1 (see Fig. 4). 
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0 35, 

Fig. 4. Set G of the gain-phase margin problem. 

Remark 3: The gain and phase margin problems are limiting cases 
of the gain-phase margin problem. In fact 

IU 
1 . l  s in(q2)  

as ti -+ l .G  + C \ ( - x .  - - 2 J 2 1 - c o s ( q 2 )  
1 l h ( - p ~ )  .x) 12 + 5 1 -  cos(-q1) 

Moreover, it can be shown that for the gain margin and phase 
margin problems 

The optimal stability margin occurs when ( O ( l ) (  = nopl ,  and we can 
use (15) to obtain the optimal gain margin, N U p t ,  and phase margin, 
;c>l , t  in terms of o,, , ,~.  In the gain-phase margin problem, however, the 
condition IO( 1)(  = nop t  does not define a unique optimal gain-phase 
margin pair ( ~ . p ) , ? , ~ .  In fact ( K ~ ~ ~ ~ ~ .  0) and ( I ,  ?.,,+) both achieve 
IO(  1)1 = This is illustrated in Fig. 5 where we have plotted the 
gain-phase pairs corresponding to a fixed value of nopt .  This extra 
freedom can be used to choose the optimal gain-phase margin most 
convenient to our applications. For example, define a gain-phase ratio 
,j(li.p) as: , ~ ( K . G )  = (1 - K - ' ) $  and set Jo1,t = t J ( t i o p t . ; o p t ) .  

Then, the optimal gain-phase margin ( t i .  p)o,,t is determined by the 
intersection of the curves , j( t i .  p) = , j o p t  and ( S ( l ) (  = nupt.  Thus, 
we can define the optimal gain-phase margin as follows. 

Dejinition 1: Let :L,r,f := ,j( tiupf. qopt)  be the optimal gain-phase 
ratio where , d ( K .  p) is a suitable gain-phase ratio function. The 
optimal gain-phase margin is the pair (ti.  . j ) , , t  such that . j (  t ; .  p) = 
. L P t  and l O ( l ) l  = ( I o p f .  

Fig. 5. Defining the optimal gain-phzce margin 

V. EXAMPLES 

- 3 ) '  We want to compute the optimal 

gain-phase margin and a strictly proper controller that maximizes 
such margin. In addition we want the closed loop to reject step 
disturbances. The unstable zeros and poles of Po are 3 = { 5 }  and 
p = 1.3,  respectively. We have also interpolation conditions at the 
boundary: one at s = x (strictly proper compensator) and one at 
s = 0 (integral action), thus S , (a , )  = b, ,  where a = [O. 1 . 3 . 3 . x ] ,  
b = [O. 0.0.1.1].  From a and b we compute n O p t  = 1/6.  For this 
value of n<,,,+ we have iiopt = 1.4 (2.9 dB) and pOpt = 0.3349 rad. 
(19.1 degrees), The combined optimal gain-phase margin is (1.12 dB, 
8.52 deg.),,,,. It is computed via binary search. The next step is to 
find C = Po-'[S;' - 11, where S,, = H-'(S). Due to interpolation 
conditions at the boundary cannot be achieved, so we settle 
for a suboptimal solution with ($ < nop t .  Let o = 1/8.4. We first 
find S, by solving a NP problem with data a = [O. 1.3.5.  x], 
b = [O. 0.0.8.4-'.8.4-']. A solution (not unique) is 

( s  + l ) ( s  - .5) 
Let PO(S) = (ss - 

1 
8.4 

5 '  + 125.5.7.' - 513.OsZ - 388.5s 
S"(S) = - x 

s' + 20.50s'' + 73.38,s' + 67.80s + 13.72' 

We then compute S,, ( j.i ) = H -  I ( S( j, ) ) and recover S,, ( s ) using 
the GKL rational approximation algorithm [15]. Finally we obtain 
the equation found at the bottom of the page. The high order of 
the controller is due to the shape of the gain-phase region G. This 
behavior is characteristic of uniform optimization methods where 
the order of the controller is intimately related to the performance 
specifications, in this case represented by G .  

VI. CONCLUSIONS 

Many problems of robust stabilization can be reduced to interpo- 
lation problems via conformal mappings. These conformal mappings 
are difficult to find analytically and must be constructed numerically. 
Here we have presented a new numerical algorithm to construct such 
conformal mappings. We have also demonstrated its application to 
the synthesis of optimal stability margin controllers, in particular, for 

-l.06r2s1" - 2.139e3.s" - 2 . 7 6 0 ~ 4 ~ "  - 1.967e3s'" - 1.022eG.sy - 3 . 3 2 1 ~ 6 . ~ ~  - 7.595rGs' 
C(s) = 

s ' ' ~  + 1.517e2s" + 3.107(.3s" + 1 . 0 3 8 e 4 ~ ~ ~  + 3.102e5s9 + 1.718d5sX + 6.444rG.s' 
-1.241eTsG - 1.123rTs' - 4.6701.6s' + l.4dlc6s3 + 2.858eG.s2 + 9 .692~5s  - 3.296~4 
+1.7S3c7s6 + 3.573~7s'  + 5.012c7s4 + 4.874e7s3 + 3 . 2 0 2 ~ 7 ~ '  + 1.288e'T.s + 2.3TlrG 
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the gain-phase margin problem. To apply this approach to more gen- 
era1 robust stabilization problems, a frequency dependent conformal 
mapping must be constructed. This problem as well as its extension 
to multivariable systems are subjects of ongoing research. 

Event-Averaged Maximum Likelihood Estimation 
and Mean-Field Theory in Multitarget Tracking 

Keith Kastella 
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Abstract-This paper presents a novel type of Kalman filter for track 
maintenance in multitarget tracking using thresholded sensor data at 
high targeUclutter densities and low detection levels. The filter is robust 
against tracking errors induced by crossing tracks, clutter, and missed 
detections, and the computational complexity of the filter scales well 
with problem size. There are two key features that differentiate this 
approach from earlier work. First, to reduce computational load, the filter 
exploits techniques from statistical field theory to simplify measurement 
to track association by using a mean-field approximation to sum over 
associations. Second, to enhance tracking of close together targets, the 
filter explicitly models the error correlations that occur between such 
target pairs. These error correlations are caused by measurement to track 
association ambiguities that arise when target separations are comparable 
to sensor measurement errors. 

I. INTRODUCTION 

A typical multitarget tracking problem for a sensor such as a 
primary radar involves both clutter and ambiguous associations of 
measurements with tracks. Most algorithms approach this problem 
as one of statistical estimation [2], [3]. There are two subproblems 
that these algorithms attempt solve. First, it is not known which 
measurements are clutter and which are generated by targets. Second, 
the association of the target-originated returns with the tracks is 
unknown. Together, these subproblems constitute the “data asso- 
ciation problem.” These algorithms assume that the measurement 
to track association (MTA) must be estimated as part of the track 
estimation process. They proceed by computing an assignment cost 
or likelihood for some or all of the feasible MTA’s. The individual 
associated measurements or some set of averages over them are then 
used to update independent Kalman filters (one for each track) to 
form updated track estimates. As target and clutter densities increase, 
however, the probability of correctly associating a measurement with 
its originating track rapidly decreases [14]. This, in turn, leads to 
a persistent bias in the track estimate for closely spaced tracks [5] ,  
[IO], 1121. 

Another difficulty with multitarget tracking is that the number of 
possible measurement to track associations is large. With perfect 
detection and no false alarms, T targets will generate T !  possible 
MTA’s for a single scan. This is exacerbated when false alarms 
are present and detection is not perfect. In practice, it is possible 
to factorize the problem into collections of noninteracting clusters of 
targets. The relevant parameter T is then the number of targets in the 
largest typical such cluster. This can be large, especially if passive 
sensors providing no range data are used. 

To address these issues, we have developed a new approach to 
multitarget tracking based on event-averaged maximum likelihood 
estimation (EAMLE) [ 131. Unlike the conventional view that data 
association is central to multitarget tracking, EAMLE does not require 
computing the MTA likelihood to form track estimates. Since the 
sensor provides no information about the correct MTA, the average 
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