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SUMMARY 

 

Several methods are presented for improving upon the traditional analytic 

“circular” method for constructing a flux-surface aligned curvilinear coordinate system 

representation of equilibrium plasma geometry and magnetic fields, and the most 

accurate Asymmetric Miller method is applied to calculations of poloidal asymmetries in 

plasma density, velocity, and electric potential. Techniques for developing an 

orthogonalized coordinate system from a general curvilinear representation of plasma 

flux surfaces and for representing the poloidal component of the magnetic field in the 

orthogonalized curvilinear system are developed generally, in order to be applied to four 

plasma flux-surface models. The formalism for approximating flux surfaces originally 

presented by Miller [1] is extended to include poloidal asymmetries between the upper 

and lower plasma hemispheres, and is subsequently shown to be more accurate at fitting 

the shapes of flux surfaces calculated using EFIT than both the traditional “circular” 

model and two alternative curvilinear models of comparable complexity based on Fourier 

expansions of major radius, vertical position, and minor radius.  Applying the coordinate 

system orthogonalization technique to these four models allows for calculations of the 

poloidal magnetic field which, upon comparison to a calculation of the poloidal field 

performed in a Cartesian system using the experimentally based EFIT prediction for the 

Grad-Shafranov equilibrium, demonstrates that the asymmetric “Miller” model is also 

superior to other methods at representing the poloidal magnetic field. A system of 

equations developed by representing the poloidal variations of velocity, density, and 

electric potential using O(1) Fourier expansions in the flux-surface averaged neoclassical 

plasma continuity and momentum balances is solved using several variations of both the 

“Miller” and “circular” curvilinear models to set geometric scale factors, illustrating the 

effects that these improvements in geometric modeling have on tokamak fluid theory 

calculations.  
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CHAPTER 1 

INTRODUCTION 

 

This work was initially motivated by the recognition that the agreement of 

neoclassical fluid plasma rotation theory with experimental observations of fluid rotation 

velocities depended on how well the geometry of the computational model corresponded 

with the magnetic geometry of the experiment [2], [3], in particular as regards the 

representation of poloidal asymmetries in the magnetic geometry of the model and the 

capability of the calculation model to predict poloidal asymmetries in densities, rotation 

velocities, etc.  However, the resulting investigation has broader implications for fluid 

transport and rotation models for tokamak plasmas. 

The theoretical basis for tokamak plasma computations is the solution, in some 

approximation, of the Boltzmann transport equation for the distribution in space and 

velocity of one or more ion species and the electrons in the presence of electric and 

magnetic fields, which fields can be determined by solving the Maxwell electromagnetic 

equations in the presence of these distributions of plasma ions and electrons plus currents 

flowing in external magnets plus any externally produced electromagnetic fields.  By 

taking velocity moments of the Boltzmann equations for the distribution functions, these 

equation can be replaced by a set of velocity-independent equations for moments 

(density, mass velocity, energy, etc.) with "transport" coefficients that must be evaluated 

by making approximate solutions of the Boltzmann equations.  The resulting moment 

equations are the "fluid" equations involving generalized spatial gradient operators that 

depend on the choice of geometric model.   

It can be shown, e.g. [4], that the leading order force balance requires that the 

magnetic fields and currents in the plasma lie on isobaric "flux surfaces" and that the 

largest mass flows are parallel to the magnetic field lines, that the next largest mass flows 

are perpendicular to the magnetic field lines but within the flux surfaces, and that the 

smallest mass flows are normal to the isobaric flux surfaces.  In order to exploit these 

differences of magnitudes of mass velocities and of variations in other quantities in the 
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subsequent development, it is convenient to use the parallel and perpendicular directions 

within the flux surface and the normal direction to the flux surface to define a flux-

surface aligned computational geometry for the fluid equations.  Because the magnetic 

field lines do not cross the flux surfaces, these surfaces can be defined by the value of the 

flux function 𝜓 representing the magnetic flux contained within the surfaces.  The flux 

surface coordinates can be related to Cartesian coordinates by equating the force balance 

equations written in both systems to obtain the Grad-Shafranov equation.  

The generalized spatial gradient operators for the flux-surface aligned curvilinear 

coordinates are determined by the way that flux surface shape and position vary with 

(𝜌, 𝜃), the plasma parameters used to define the flux-surface. Setting this variation by 

directly fitting the Grad-Shafranov solutions for 𝜓 using splines allows for a direct 

calculation of poloidal magnetic field, and gives the most accurate forms for the plasma 

moment equations. The complexity of this calculation leads to the development of 

simpler models to approximate the dependence of flux surface shape on (𝜌, 𝜃), where 

𝜌[𝜓] is the normalized radius.  Considered in this thesis are the “circular”, “Miller”, 

double and single Fourier expansion models, which will be used to approximate the 

geometry of the upper single-null divertor plasma of DIII-D shot # 149468, at 1905ms.  

Differences among these curvilinear models for the plasma geometry influence the 

directions in which the components of the velocity moment equation are evaluated 

throughout the plasma, and affect the flux-surface average of plasma parameters. When 

the relationships developed from the first two velocity moments of the Boltzmann 

equation are used to develop a method for predicting plasma asymmetries in potential, 

density, and rotation velocities, the curvilinear coordinate models affect the resulting 

calculations, indicating that application of simple yet accurate models for the plasma 

shape has potential to improve a broad range of calculations based on neoclassical fluid 

theory.  
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CHAPTER 2 

BASIC PLASMA THEORY 

 

The velocity moments of the Boltzmann Transport Equation (BTE) for a 

Maxwellian plasma species under the influence of external magnetic and electric fields 

are the "fluid" equations; the first two moments describe conservation of particles and 

conservation of momentum in the three coordinate directions [5].  The components of 

these equations can be related to measurable plasma quantities such as densities, electric 

potential, rotation velocities, etc.; these relationships involve approximate kinetic theory 

calculations for collision frequencies, interspecies frictional forces, viscosity coefficients, 

and approximations for the effects of external sources of particles and momentum.   

2.1. Continuity and Momentum Balance 

The first two moments of the BTE  

Continuity 

 0·
n

nV S
t

  
  

  
  (2.1) 

Momentum Balance 

 
1 1

·mnV M ne E V B F S
t

         
           

  (2.2) 

involve generalized spatial gradient operators that depend on the choice of geometric 

model.  In the momentum balance, 

1

F


 is friction, and 
1

S


 is any external source of 

momentum.  

In a steady-state system, the left of the continuity equation describes the 

divergence of the particle flux streaming through a volume, and can be expanded to 

represent the effects of spatial gradients in density and velocity separately. The term on 

the right is determined by any external or ionization particle sources.  
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In the momentum balance vector equation, the momentum stress tensor M  can 

be decomposed into kinetic terms dependent on the bulk motion of the plasma and 

thermodynamic terms represented by the pressure tensor (𝑃) [5].  

 M nmV V P
 

    (2.3) 

The divergence of the first term on the right of Eq. (2.3) is known as the 

convective derivative, and accounts for the inertial effects due to the rotation of the 

plasma at a mean velocity 𝑉⃗ . It can be separated into a term dependent on the streaming 

from the continuity equation, and a term dependent on the divergence of the velocity.  

 · · ·mnV V mV nV mn V V
             

            
        

  (2.4) 

The gradient of the pressure tensor can be written in terms of the anisotropic shear 

tensor (Π⃗⃡ ) and the isotropic pressure (𝑝). [5]  

 · ·P p     (2.5) 

Applying Eq. (2.5) to the momentum balance Eq. (2.2) in steady state yields the 

general form of the vector momentum balance equation used in this analysis. 

 
1 1

· ·mnV V p ne E V B F S
         

          
   

  (2.6) 

The first term of Eq. (2.6) accounts for the inertial effects present in a rotating 

plasma, and the second term represents the plasma viscous stress tensor, determined by 

the anisotropic pieces of the pressure tensor. The third term accounts for the forces due to 

the spatial gradient of isotropic pressure. The final three pieces describe body forces on a 

differential fluid volume: electromagnetic, frictional, and external momentum source 

effects, respectively. The above equations can be developed for the main deuterium ion 

species, the secondary carbon ion species, and for electrons.  
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2.2. Collision Frequencies 

The interspecies collision frequencies between separate plasma species and self-

collision frequencies between particles of the same species are necessary for calculations 

of the frictional effects and the parallel viscosity coefficients, respectively. For collisions 

between distributions of different species at the same temperature, the interspecies 

collision frequency for a moving distribution of species 𝑖 incident on a distribution of 

species 𝑗 can be computed from Fokker-Planck collision theory [6]. 

 
2 2

, ,

, 3/23/2 2

0

ln1

6 2

j i j i j i j

i j

i

n e e

m T






  
   (2.7) 

The Coloumb logarithm (ln[Λ]) is given by: [7]  

  
3 3

max 0

2 4

min

ln ln ln 12i

j i j

x T

x n e e


  
     

    

  (2.8) 

Where 0

2

j

max

j j

T
x

n e

 
  
 
 

 is the Debye length, and 
min 2

0 ,4

i j

i j th

e e
x

V 
  is the 90𝑜 impact 

parameter.  

Equation (2.7) can also be used to calculate the self-collision frequencies, if both 

species 𝑖 and 𝑗 are the same. In the plasma considered in this analysis, collision 

frequencies are generally ~102 − 103𝑠−1 [Figure 1]. 
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Figure 1: Interspecies and self-collision frequencies for DIII-D Shot # 149468, 1905ms.  

In this analysis, the deuterium and carbon ion species are assumed to be in 

thermal equilibrium, allowing their interspecies collision frequencies to be calculated 

using Eq. (2.7).  The electron and ion species temperature profiles are typically not equal, 

which implies that a more advanced form of Eq. (2.7) which differentiates between 

particle species is necessary to calculate ion-electron interspecies collision frequencies.  

However, because the ion-electron reduced mass (𝜇𝑖,𝑒) can be approximated as the 

electron mass, the electron-ion interspecies collisions can be neglected relative to the 

deuterium-carbon interspecies collisions in the frictional component of the momentum 

balance equation, making calculations of 𝜈𝑖,𝑒 unnecessary.   

2.3. Viscosity Formalism 

The viscous drag forces due to anisotropies in the pressure tensor significantly 

influence the plasma flows. The form of the anisotropic shear tensor used in this analysis 

was first derived by Braginskii in Cartesian coordinates [6]. This shear tensor was later 

generalized to orthogonal curvilinear flux-surface coordinates in a toroidally 

axisymmetric plasma [8]. An updated form of this generalized shear tensor is used in this 

analysis to calculate the viscous contributions to the poloidal and toroidal components of 

the momentum balance equation [Appendix A.3].  

In Braginskii’s original formulation, the magnitude of the viscous forces in a 

collisional plasma parallel to the field lines, perpendicular to the field lines, and 
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associated with the cyclotron gyration about the field lines were represented by parallel, 

perpendicular, and gyroviscous viscosity coefficients [9].   

 

0

1 2 12

3 4 3

0.96

3
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1
, 2

2

nT

nT

nT

 

  


  



 


 


  (2.9) 

In general, these viscosity coefficients differ in magnitude by factors of the 

product of the ion self-collision time 
1




 
 

 
 and gyrofrequency   . Their product is 

order 
5 6110 0   in the central plasma of the shot considered in this analysis, so that 

the viscosity coefficients can be ordered as 2

0 3,4 0 1,2 0 ( )        .  

It has been shown that this original formalism for a collisional plasma can be 

extended to the strong rotation, collisionless plasma case [10].  This extension is 

implemented in this analysis by replacing the collisional parallel viscosity coefficient 0  

from Eq. (2.9) with a form valid in the Pfirsch-Schluter and banana-plateau regions, 

dependent on a collisionality interpolation function (𝑓𝑖).  

 
  

3/2

, 0 ,

0, 3/2
,, ,

ˆ

ˆ1 1 ˆ
2

i i th i i i i i
i i

i ii i i i

n mV qR n T
f

 


  




 

 
  (2.10) 

 
  

2

, 0
, ,3/2

,, ,

,
1

ˆ
ˆ

ˆ ˆ

i i

i i i i i

th ii i i i

qR
f

V


 

  
 

 
  (2.11) 

This form approximates the variation in parallel viscosity from the collisional 

regime through the plateau region into the collisionless regime for species 𝑖. It is 

dependent on the ion self-collision frequency (𝜈𝑖,𝑖) [Eq. (2.7)], the safety factor (𝑞) [Eq. 

(3.39)], the ratio of minor to major radius (𝜀 =
𝑟0

𝑅0
), and the most probable thermal 

velocity (𝑉𝑡ℎ,𝑖 = √2𝑇𝑖 𝑚𝑖⁄ ).  The forms of the viscosity coefficient and collisionality 

interpolation function have been modified from those used in prior analyses [2] in order 

to isolate the poloidal dependence into the interpolation function 𝑓𝑖.  The ion self-
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collision frequency can be computed from Fokkker-Planck collision theory using Eq. 

(2.7); both 𝑞 and 𝜀 are dependent on the magnetic field and plasma flux-surface structure. 

Braginskii’s form for the gyroviscous viscosity coefficient is independent of the 

plasma collisionality, allowing it to be applied in its unmodified form in all collision 

regimes.  

 
3, 4,

1
,

2

i i i i
i i

i i

n T n T
  

 
  (2.12) 

The components of the pressure tensor dependent on 𝜂0 typically dominate the 

viscosity calculation because of the 𝑂(10−6) difference between 𝜂0 and 𝜂3,4. However, 

the gyroviscosity becomes significant in damping toroidal rotation in toroidally 

axisymmetric plasmas, where the parallel component of the toroidal viscous stress 

vanishes identically when the flux-surface averaging operation is applied to the toroidal 

angular momentum balance [8]. The perpendicular viscosity is negligibly small in 

comparison to both the parallel and gyroviscous viscosity, and will be neglected.  

2.4. Electromagnetic, Friction, and External Source Effects 

The external forces on the right of the momentum balance equation (2.6) are due 

to electromagnetic effects, frictional forces between plasma ion species, and external 

sources of particles and momentum.  

The general expression for the electric field in terms of the electric potential 

distribution (Φ) and the magnetic vector potential (𝐴 ) is 

 
A

E
t


  
  


  (2.13) 

Because of the toroidal axisymmetry of a tokamak, the toroidal electric field is 

determined entirely by the inductive electric field A
A

E
t








 . Because the magnetic vector 

potential can be approximated by the plasma current 𝐽  (𝐴 ≅ 𝐽 ≅ 𝐽𝑒̂𝜙), the inductive 

contribution to the electric field is negligible in directions other than the toroidal. The 

field in these directions is determined only by the spatial gradient of the electric potential.  
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Deuterium is the primary ion species present in DIII-D shots (𝑛𝑑 ≅ 1019𝑚−3), 

with densities two orders of magnitude larger than the carbon impurities from wall 

sputtering (𝑛𝑐 ≅ 1017𝑚−3) [Figure 27]. In this analysis, carbon and deuterium are 

modeled as separate ion species, and the frictional force between them is predicted by a 

simple Lorentz friction model dependent on the interspecies collision frequency (𝜈𝑖,𝑗), 

calculated using Eq. (2.7).  

  , ,i j i i i j i jF n m V V     (2.14) 

Because 𝑚𝑒 ≅ 𝜇𝑖,𝑒 ≪ 𝑚𝑖, the contributions of ion-electron collisions to friction 

calculations using Eq.(2.14) are negligibly small in comparison to the ion-ion interspecies 

collisions.   

The electron density can be related to the ion charge density by requiring plasma 

charge neutrality, (𝑛𝑒𝑒𝑒 = 𝑛𝑐𝑒𝑐 + 𝑛𝑑𝑒𝑑). The net frictional contribution to the total 

momentum balance for the plasma, calculated by adding Eq. (2.14) for both species, 

vanishes, as it must. 

External momentum is added to the DIII-D core plasma through neutral beam 

injection, which makes significant momentum contributions only in the toroidal direction.  
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CHAPTER 3 

DEFINITION AND ORTHOGONALIZATION OF A GENERAL 

CURVILINEAR COORDINATE SYSTEM  

 

In an axisymmetric plasma, the Grad-Shafranov equation can be applied to 

determine the relationship between the steady-state magnetic flux function 𝜓, plasma 

pressure 𝑝[𝜓], and the flux-surface constant quantity (𝐹[𝜓] = 𝑅 𝐵𝜙) in a poloidal 

plasma cross-section.  Spatial gradients of the resulting 𝜓 distribution are used to define 

the magnetic field distribution, and can be used to develop a flux-surface aligned 

orthogonal curvilinear coordinate system, which simplifies calculations of the 

components of the continuity and momentum balance equation [Eqs. (2.1) and (2.6)]. 

3.1. Defining Flux Surfaces Using the Plasma Flux Function   . 

The poloidal and toroidal magnetic fluxes can be defined in terms of the magnetic 

field 𝐵⃗  and surfaces of constant poloidal angle (𝑆𝜃) and constant toroidal angle (𝑆𝜙) 

[11]. 

 

·d 2

·d

S

S

B S

B S










 

 

  

 





  (3.1) 

Flux surfaces are defined by toroidally-symmetric surfaces enclosing constant 

values of poloidal magnetic flux, which is often written in terms of the magnetic flux 

function (𝜓) [Eq. (3.1)]. A surface at constant toroidal angle (𝑆𝜙) will correspond to a 

poloidal cross-section of the flux surface, and is normal to all flux surfaces. The surfaces 

(𝑆𝜃) used to define poloidal magnetic flux are enclosed entirely within the flux-surface 

containing a fixed value of 𝜓, and encircle the tokamak toroidally. Because of 

axisymmetry, the 𝑆𝜃 surface is also perpendicular to the 𝑆𝜙 surface.   
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Figure 2: Locations of the S  and S  surfaces used to define poloidal and toroidal magnetic flux.  

The Grad-Shafranov equation can be used to determine the distribution of 𝜓 in a 

poloidal cross-section of the plasma (surface 𝑆𝜙). It can be derived from: 

Force Balance 

 J B p
 

    (3.2) 

Ampere’s Law 

 0B J
 

    (3.3) 

Solenoidal Law 

 · 0B


    (3.4) 

Equation (3.2) is a simplified version of the composite plasma momentum balance 

for all plasma species, where (𝐽 ) is the plasma current, (𝐵⃗ ) is the magnetic field, and (𝑝) 

is the plasma pressure [4]. Equations (3.3)-(3.4) are two of Maxwell’s equations. The 

resulting Grad-Shafranov equation takes the form [12]  

 2 2

02

dp d
·

d d

F
R R F

R




 

 
    
 

  (3.5) 

where 𝐵⃗  and 𝐽  can be expressed in terms of the flux function 𝜓[𝑅, 𝑍] and 𝐹[𝜓] = RBϕ 

by: 

 ˆ
1

ˆ
F

B e e
R R

 


      (3.6) 
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 


 



  
     

 
  (3.7) 

The DIII-D EFIT code is used to solve the system of differential equations Eq. 

(3.5) – Eq. (3.7), and return a 2D distributions of 𝜓 for a poloidal plasma slice of Shot 

149468 at 1905ms, in terms of major radius 𝑅 and vertical displacement 𝑍 [13]. 

Contours of 𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in the poloidal plane (surface 𝑆𝜙) can be used to 

determine the locations of flux surfaces within the last closed flux surface (LCFS). These 

flux surface contours can be used to define a transformation from (𝑅, 𝑍) coordinate space 

to a set of coordinate variables describing the value of the flux-function (𝜓) contour and 

the poloidal angle from the flux-surface center (𝜃). In this analysis, the normalized 

outboard-midplane (OMP) minor radius (𝜌[𝜓] =
𝑟0[𝜓]

𝑎 
) will be used to parameterize flux 

surfaces, and can be directly related to the value of the flux-function 𝜓 used to define the 

flux-surface contour. The variable 𝑎 will be used for the OBMP minor radius at the 

LCFS.  Distributions of 𝐹, 𝑝, and 𝜓 are functions of normalized minor radius (𝜌). 

 
Figure 3: Sample flux surfaces of 𝜓 = 𝑐𝑜𝑛𝑠𝑡. for DIII-D Shot# 149468, 1905ms. The coordinates 

 ,R Z   can be transformed to curvilinear coordinates  ,   related to position on flux-surfaces.  
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3.2. Representation of Magnetic Fields in Semi-Cartesian and Curvilinear 

Coordinate Systems 

Equation (3.6), which is the differential form of the definition for the flux 

function [Eq. (3.1)], can be applied in any coordinate system to calculate the magnitude 

and direction of the magnetic field from the magnetic flux-function (𝜓) distribution. 

Because the 𝜓 distribution is returned by EFIT as a function of 𝑅 and 𝑍, it is 

straightforward to represent the components of the magnetic field in a semi-Cartesian 

coordinate system with orthogonal unit vectors (𝑒̂𝑅 , 𝑒̂𝑍, 𝑒̂𝜙) [Figure 4, center] using 

gradients of 𝜓 with respect to both coordinate variables. However, if the 𝜓 distribution is 

first mapped to a flux-surface aligned curvilinear coordinate system with orthogonalized 

unit vectors (𝑒̂𝜌, 𝑒̂𝜃, 𝑒̂𝜙), [Figure 4, right] the poloidal magnetic field can be defined using 

only radial gradients of 𝜓.  

 
Figure 4: Three sets of normalized basis vectors. Cartesian ˆ ˆ ˆ( , , )x y ze e e  [left], semi-Cartesian 

ˆ ˆ ˆ( , , )R Ze e e  [center], and Orthogonalized Flux-surface Aligned (OFA) ˆ ˆ ˆ( , , )e e e    [right].  

For a flux surface in an axisymmetric plasma, a semi-Cartesian set of coordinate 

axes (𝑒̂𝑅 , 𝑒̂𝑍, 𝑒̂𝜙)  can be defined so that the (𝑒̂𝑅 , 𝑒̂𝑍) directions are fixed and orthogonal 

throughout any poloidal plasma cross-section. In order to develop this set of coordinate 

axes, the position vector 𝑠  in the global (𝑒̂𝑥, 𝑒̂𝑦, 𝑒̂𝑧)  bases [Figure 4, left] can be written 

in in terms of major radius (𝑅), vertical displacement (𝑍), and negative toroidal angle 

(−𝜙).  

      , , cos siˆ ˆn ˆ
x y zs R Z R e R e Z e  



       (3.8) 

From this position vector, the semi-Cartesian basis vectors can be developed by 

taking gradients of Eq. (3.8) with respect to (𝑅, 𝑍, −𝜙). 
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  (3.9) 

The radial 𝑒 𝑅 and vertical 𝑒 𝑍 basis vectors form a set of orthogonal unit vectors, 

invariant within each poloidal cross-section of constant 𝜙, equivalent to a two-

dimensional Cartesian coordinate system. The 𝑒 𝑅 basis vector is always directed towards 

increasing major radius 𝑅, perpendicular to the tokamak central axis. The 𝑒 𝑍 basis vector 

is always parallel to the central axis, in direction of increasing 𝑍, and aligned with the 

global unit vector 𝑒̂𝑧. The toroidal basis vector 𝑒 𝜙 is perpendicular to the other two, and 

directed opposite to the direction of increasing toroidal angle 𝜙 in order to form a right-

handed coordinate system; it is related to the toroidal unit vector 𝑒̂𝜙 by the toroidal scale 

factor ℎ𝜙 = 𝑅.  

Using the basis vectors from Eq. (3.9), the position vector 𝑠  from Eq. (3.8) can be 

rewritten in terms of 𝑅 and 𝑍 as: 

  ˆ ˆ
R Zs Re Z e



    (3.10) 

The distribution of 𝜓 calculated by EFIT as a solution to the Grad Shafranov equation is 

in terms of 𝑅 and 𝑍. Interpolating on this distribution to select contours of 𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

reveals the locations of flux surfaces [Figure 5, left]. Once these flux-surfaces are 

identified, any distribution in (𝑅, 𝑍) coordinates can be mapped to the flux-surface 

curvilinear coordinates (𝜌, 𝜃); for the 𝜓 distribution, a plot in terms of the curvilinear 

coordinates clearly shows the relationship between 𝜓 and 𝜌, and that 𝜓 is independent of 

𝜃 [Figure 5, right].  
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Figure 5: Flux function distribution  [ , ]R Z , with flux-surfaces determined by contours of 𝜓 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (left), DIII-D Shot # 149468, 1905ms.  The same flux-function distribution plotted in 

curvilinear coordinates  [ , ]    (right). (○→ 𝐿𝐶𝐹𝑆, △→ plasma center, □ → OBMP) 

Unlike the system of semi-Cartesian basis vectors from Eq. (3.9) which only vary 

with toroidal angle 𝜙, the coordinate axes in curvilinear (𝜌, 𝜃, −𝜙) coordinates are also 

dependent on the flux surfaces 𝜌 and poloidal angle 𝜃. These coordinate axes can be 

constructed so that the poloidal basis direction remains parallel to flux-surface contours 

in in a poloidal cross-section, and so that the radial basis direction remains perpendicular 

to flux-surface contours. This will be referred to as a curvilinear Orthogonalized Flux-

surface Aligned (OFA) coordinate system with unit vectors (𝑒̂𝜌
⊥, 𝑒̂𝜃

⊥, 𝑒̂𝜙
⊥), and scale 

factors (ℎ𝜌
⊥, ℎ𝜃

⊥, ℎ𝜙
⊥) to relate the changes in coordinates variables (𝜌, 𝜃, −𝜙) to distances 

in the global bases. The position vector 𝑠  in curvilinear coordinates can be parameterized 

in terms of normalized minor radius (𝜌), poloidal angle (𝜃), and negative toroidal angle 

(−𝜙), by utilizing Eq. (3.10) with values for 𝑅 and 𝑍 given as functions of 𝜌 and 𝜃. 

Equation (3.6) can be separated to give expressions for the magnitude of the 

components of the magnetic field in the toroidal and poloidal directions. The poloidal 

component of the magnetic field involves a spatial gradient of 𝜓.  
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The first piece of Eq. (3.11) gives the toroidal component of the magnetic field 

vector in terms of the distribution 𝐹[𝜓] and the major radius, directed along the 𝑒̂𝜙 unit 

vector. This calculation is straightforward in both semi-Cartesian and Orthogonalized 

Flux-surface Aligned (OFA) curvilinear coordinates, as it does not involve any spatial 

gradients. 

The second piece of Eq. (3.11) expresses the magnitude of the poloidal magnetic 

field in terms of the gradient of 𝜓, the major radius, and the toroidal unit vector. 

Mathematically equivalent expressions for the magnitude of the poloidal magnetic field 

can be developed by applying the gradient operator for both semi-Cartesian coordinates 

and curvilinear coordinates to Eq. (3.11). These gradients will depend on the scale factors 

ℎ𝑅, ℎ𝑍, and ℎ𝜙 for the semi-Cartesian system, and ℎ𝜌
⊥, ℎ𝜃

⊥, and ℎ𝜙
⊥  for the OFA 

curvilinear system. 
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  (3.13) 

Both general gradient expressions in Eq. (3.12) and Eq. (3.13) can be immediately 

simplified by the requirements of axisymmetry; the gradients with respect to toroidal 

angle are zero, because 𝜓 is not dependent on 𝜙. Because the 𝑒 𝑅 and 𝑒 𝑍 basis vectors in 

the semi-Cartesian (𝑅, 𝑍, 𝜙) coordinate system are identical to the unit vectors, the scale 

factors are ℎ𝑅 = ℎ𝑍 = 1 in Eq. (3.12). Then, substituting Eq. (3.12) into the second piece 

of Eq. (3.11) yields an expression for the magnitude of the poloidal magnetic field in 

terms of gradients of 𝜓 with respect to 𝑅 and 𝑍. 
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  (3.14) 

Because EFIT returns the 𝜓 distribution data in terms of 𝑅 and 𝑍, it is 

straightforward to apply a numeric method to calculate the gradients in Eq. (3.14). In this 

analysis, spline-fits of the 65 data-points from EFIT describing the 𝜓 distribution [Figure 

5, left] in both coordinate directions are used to approximate the gradients, a method 

which will be referred to as the Semi-Cartesian Spline (SS) method of calculating 𝐵𝜃. 

 

Figure 6: Poloidal magnetic field distribution B  (left), calculated using a Semi-cartesian Spline fit 

(SS fit) to determine gradients in Eq. (3.14). Toroidal magnetic field distribution B (right), 

calculated from Eq. (3.11). DIII-D Shot # 149468, 1905ms.   

By applying the gradient operator for curvilinear coordinates [Eq. (3.13)] in Eq. 

(3.11), a relationship between the poloidal magnetic field and the Orthogonal Flux-

surface Aligned (OFA) curvilinear local basis (𝑒̂𝜌
⊥, 𝑒̂𝜃

⊥, 𝑒̂𝜙
⊥) can be developed.  
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  (3.15) 
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Because the OFA coordinate system is defined so that 𝜓 is constant on flux surface 

contours, the gradient 𝜕𝜓 𝜕𝜃⁄ = 0. Thus, the final expression for the magnitude of 𝑅𝐵𝜃 

given in Eq. (3.15) is independent of the poloidal scale factor ℎ𝜃
⊥, determined only by the 

radial scale factor ℎ𝜌
⊥ and radial gradient of 𝜓 [4]. The vector 𝐵⃗ 𝜃 from Eq. (3.15) is 

confined to the poloidal cross-section plane 𝑆𝜙 and directed normal to the flux surfaces in 

the 𝑒̂𝜌
⊥ direction.   

Equation (3.15) allows the magnitude of the poloidal magnetic field to be 

determined in any Orthogonal Flux-surface Aligned (OFA) coordinate system with 

known scale factors.  It is useful to define expressions for “mean” values of magnetic 

fields components which are independent of poloidal angle, in terms of central major 

radius 𝑅0 and the radial gradient of average minor radius (
𝜕𝑟0

𝜕𝜌
). 
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  (3.16) 

The definitions for the poloidal dependence of the magnetic field components 

shown in Eq. (3.11) and Eq. (3.15) can be rewritten in terms of the quantities from Eq. 

(3.16). These definitions will be used through the remainder of this analysis. 
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  (3.17) 

3.3. General Flux-surface Aligned (GFA) Curvilinear Coordinate System 

Any method of representing values for 𝑅 and 𝑍 on flux surfaces in terms of a 

flux-surface dependent variable (normalized OBMP minor radius 𝜌), poloidally 

dependent variable (angle 𝜃), and toroidally dependent variable (angle 𝜙) can be used to 

develop a General Flux-surface Aligned (GFA) curvilinear coordinate system. The basis 

vectors, unit vectors, scale factors, and metric tensor for this system will be dependent on 

gradients of the position vector with respect to the coordinate variables 𝜌, 𝜃, and –𝜙 

[11], and the radial and poloidal coordinate axes may not be orthogonal.  The expressions 
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for GFA basis vectors, scale factors, and differential volume elements can be used as a 

basis for developing the Orthogonal Flux-surface Aligned (OFA) curvilinear coordinate 

system needed to calculate the poloidal component of the magnetic field [Eq. (3.15)].  

The covariant basis vectors (𝑒
→

𝜌
co, 𝑒

→

𝜃
co, 𝑒

→

𝜙
co) for the GFA curvilinear (𝜌, 𝜃, −𝜙) 

coordinates in an axisymmetric plasma can be calculated by the gradients with respect to 

𝜌 and 𝜃 of the semi-Cartesian representation for the plasma position vector 𝑠  

o

k

c

k

s
e







 
 

 
 [Eq. (3.10)]. Individual basis vectors components can be written in terms of 

the radial and poloidal gradients of 𝑅 and 𝑍, and the semi-Cartesian unit vectors. 
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The GFA covariant basis vectors given in Eq. (3.18) can be normalized to obtain 

unit vectors in these coordinate axes directions, with magnitudes given by the covariant 

scale factors.   
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  (3.20) 

The covariant scale factors relate the magnitudes of the basis vectors 𝑒
→

𝑘
co to differential 

changes in the curvilinear variables (𝜌, 𝜃, 𝜙). Thus, the differential area element in a 

plasma cross-section can be calculated by multiplying the cross-product of the radial and 

poloidal basis vectors by (𝑑𝜌 𝑑𝜃), and will be represented using the area scale-factor . 
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The covariant basis vectors from Eq. (3.18) can be used to calculate the covariant 

metric tensor 𝐺
↔

co, with elements given by (𝑔𝑘,𝑙
co = 𝑒

→

𝑘
co · 𝑒

→

𝑙
co).  
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The contravariant metric tensor 𝐺
↔

con is the inverse of the covariant metric tensor. [11] 
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Where the Jacobian determinant , referred to in this analysis as the Jacobian, is 

given by: 
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The Jacobian can be physically understood as the scale factor used to relate the volume 

element to the product of differential changes curvilinear variables, (𝑑𝜌 𝑑𝜃 𝑑𝜙). It can be 

calculated by the scalar triple product of the basis vectors in all coordinate directions, 

which is equivalent to taking the square root of the determinant of the covariant metric 

tensor [Eq. (3.22)].  

The contravariant metric tensor can be used to calculate the contravariant basis 

vectors (𝑒
→

con
𝑘 = 𝑔con

𝑘,𝑙 𝑒
→

𝑙
co), which have units of inverse distance. 
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The contravariant scale factors are the inverse of the normalization constants for these 

contravariant basis vectors.  
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This relationship between scale factors and basis vectors is opposite from covariant 

forms, where the covariant scale factors are the normalization constants for the covariant 

basis vectors, instead of their inverses. The contravariant unit vectors can be calculated 

by ˆ
k

k k
concon cone h e



 . 

This GFA system is not orthogonal in the plane described by the 𝑒
→

𝜌
𝑐𝑜 and 𝑒

→

𝜃
𝑐𝑜 

basis vectors, as indicated by the off-diagonal terms in the metric tensors [Eq. (3.22)-

(3.23)]. The covariant basis vectors form a parallelogram-shaped differential area 

element, with area d d  . The contravariant directions are perpendicular to each of the 

corresponding covariant directions, a property which will make the contravariant 

directions useful in defining orthogonal sets of coordinate axes.  
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Figure 7: Radial and Poloidal GFA covariant unit vectors  ê , scaled covariant basis vector 

 e d  , contravariant unit vectors  ê , and vectors in contravariant directions scaled by 

contravariant scale factors  ê h d    at flux-surface location  ,  .  

The differential length and volume elements in the coordinate directions relate to 

differential changes in the coordinate variables via the scale factors. The products of the 

basis vectors from Eq. (3.18) and the differential changes in curvilinear variables yield 

the differential length elements for general geometry. 
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  (3.27) 

An alternative representation of the radial differential length element uses the differential 

change in the magnetic flux parameter (𝑑𝜓), instead of the differential change in 

normalized radius (𝑑𝜌). 

 
1 1

d
d d d d

d

s s l
l




 
  

    

   
       

     
      

  (3.28) 

The two representations can be related: 

1

d ˆd d dˆ ˆl h e h e h e     


  




  
   

 
  



23 

 

The differential volume element  d  is the scalar triple product of the 

differential lengths [Eq. (3.27)] in all covariant coordinate directions. The differential 

volume element scales with the magnitude of the Jacobian [Eq. (3.24)].  

 d d ·d · d d d d d d d d dl e e e h             
     
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  (3.29) 

This General Flux-surface Aligned (GFA) system is semi-orthogonal; the toroidal 

basis vector is orthogonal to both the poloidal and radial basis vectors, and the poloidal 

basis vector aligns with flux surfaces. When integrated over the full range of poloidal and 

toroidal angles for a tokamak, the differential volume element in this general system 

returns the differential volume of an entire flux surface. Although the toroidal and 

poloidal basis vectors are parallel to the toroidal and poloidal components of the 

magnetic field, the radial basis vector is not perpendicular to flux surfaces. This prevents 

Eq. (3.15) from being used to relate the poloidal component of the magnetic field to the 

radial gradients of the flux function via these GFA scale factors, without first correcting 

the direction of the radial basis vector to develop an OFA coordinate system.  

3.4. Orthogonalized Flux-surface Aligned (OFA) coordinate system 

Because the radial basis vector for General Flux-surface Aligned (GFA) 

coordinates described in Section 3.3 is not constrained to be normal to flux surfaces, it 

cannot be directly used to calculate the magnetic field via the relations derived in Section 

3.2. However, this general system can be “orthogonalized” so that it retains the flux-

surface alignment, but has a covariant radial basis vector directed perpendicular to the 

flux-surfaces within the poloidal (𝜌, 𝜃) plane.  This method of determining coordinate 

axes will be referred to as Orthogonalized Flux-surface Aligned (OFA) coordinates and, 

as indicated by Eq. (3.15), the magnitude and direction of the poloidal component of the 

magnetic field can be directly related to the radial scale factor and unit-vectors of this 

system. 

The OFA poloidal and toroidal covariant basis vectors are identical to those from 

the GFA system, and the OFA covariant basis vector (𝑒 𝜌
⊥) is the GFA contravariant radial 

unit vector (𝑒̂𝜌) scaled by the GFA contravariant radial scale factor (ℎ𝜌).  
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Using Eqs. (3.25)-(3.26) the orthogonalized contravariant radial basis vector, unit 

vector, and scale factor can be represented in terms of gradients of 𝑅 and 𝑍. 
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  (3.31) 

The elements of the OFA covariant metric tensor can be calculated by 𝑔𝑘,𝑙
⊥ = 𝑒

→

𝑘
⊥ · 𝑒

→

𝑙
⊥, 
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and the contravariant metric tensor can be determined from the inverse of Eq. (3.32) 

𝐺
↔

⊥ = (𝐺
↔

⊥)
−1
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  (3.33) 

The Jacobians in both the orthogonalized and general coordinate systems are equivalent. 

 
, , ,h h h     

      (3.34) 

The lack of off-diagonal elements in Eqs. (3.32)-(3.33) indicates that these 

coordinate axes are orthogonal. Because they are identical, the poloidal and toroidal scale 
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factors for the OFA system will be represented using the general notation in the 

remainder of this analysis for simplicity (ℎ𝜃
⊥ → ℎ𝜃 , ℎ𝜙

⊥ → ℎ𝜙). 

When plotted against the GFA covariant basis vectors, it becomes clear how the 

OFA coordinate axes always remain orthogonal, with the OFA covariant basis vectors 

always perpendicular to the flux-surfaces [solid vectors, Figure 8]. In contrast, the GFA 

radial basis vectors are oriented in the direction of increasing 𝜌, while 𝜃 remains 

unchanged; for the CS system, this leads to GFA basis vectors directed away from the 

plasma center, instead of perpendicular to flux-surfaces [dashed vectors, Figure 8].   

 

Figure 8: Coordinate axes of the General Flux-surface Aligned (GFA) and Orthogonalized Flux-

surface Aligned (OFA) local basis, determined by a Curvilinear Spline (CS) fitting method [Section 

4.1]. Figure on right is an expanded view of the inset, showing coordinate axes orientations from 

the divertor region in greater detail.  

The OFA scale factors can be used in the expression for the magnitude of the 

poloidal magnetic field in Eq. (3.15) to represent the poloidal component of the magnetic 

field in terms of the gradient of the flux function in the curvilinear coordinate system 

(
𝜕𝜓

𝜕𝜌
). 
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3.5. Calculation of parameters dependent on magnetic field configuration 

The plasma safety factor, flux-surface averages of general plasma quantities, and 

the plasma gyrofrequency are dependent on the magnetic field, and are consequently 

influenced by the curvilinear coordinate system.  

Flux surfaces are defined so that the magnetic fields and differential lengths are 

related by [12]:  

 
d

d

l B

l B

 

 

   (3.36) 

The plasma safety factor is defined as the ratio of change in toroidal angle to 

poloidal angle for the magnetic field lines on a flux surface. A relationship between 

differential changes in angles can be obtained by writing the differential lengths in Eq. 

(3.36) in terms of differential angles using Eq. (3.27). 
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The flux-surface value of the safety factor can be obtained by integrating Eq. 

(3.37) over all poloidal angles to obtain the corresponding change in toroidal angle, and 

dividing the result by 2𝜋, the equivalent change in poloidal angle. The result describes 

the number of times that a particle on a flux surface orbits toroidally before completing 

one full poloidal rotation. 
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For circular coordinate system geometric coefficients, Eq. (3.38) reduces to the 

expression for the safety factor given by Stacey [4]. If the poloidal dependence of 𝐵𝜃 and 

𝐵𝜙 are expanded using Eq. (3.17) and the OFA scale factors, the safety factor expression 

becomes  
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The flux-surface safety-factor expression Eq. (3.39) is a measure of the stability 

of the plasma force-balance equilibrium; the plasma on flux surfaces with rational values 

of 𝑞 is unstable, and prone to magnetic-island formation. The safety factor tends towards 

one as 𝜌 → 0. This analysis considers only plasma on flux surfaces with 𝑞 < 2, within 

the unstable q=2 rational-surface region, and corresponding to 𝜌 ≤ 0.7.  

 

Figure 9: Safety factors calculated by EFIT (red dash) and those calculated using an Asymmetric 

Miller (AM) model [Section 4.4] to set scale factors and fields for Eq. (3.38) (black).  

The total volume of the region with thickness 𝑑𝑙𝜓 between flux surfaces with 

flux-functions 𝜓 and 𝜓 + 𝑑𝜓 can be expressed in terms of a poloidal integral and the 

differential change in 𝜌. This volume can be normalized by the change in poloidal 

magnetic flux parameter δψ, or the change in the normalized radius 𝛿𝜌. 
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The expression for   can be used in the definition of the flux-surface averaging 

(FSA) operator, notated using angle-brackets (〈… 〉). The FSA of a poloidally-dependent 

quantitity 𝐶 represents the average of this quantity over the volume element   , 

and can be expressed in toroidally axisymmetric geometry as: 
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The gyrofrequency Ω𝑖 for species 𝑖 describes the frequency at which particles 

spiral about magnetic field lines, and is generally defined as i
i

i

e
B

m



   [6]. Under the 

assumption that |𝐵𝜙
2 | ≫ |𝐵𝜃

2|, the general definition for the gyrofrequency in terms of the 

total magnetic field strength simplifies to 
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CHAPTER 4 

ANALYTIC MODELS FOR REPRESENTING FLUX-SURFACES 

 

In order to apply the formalism developed in the previous section to calculate 

geometric coefficients and formulate vector operations in Orthogonal Flux-surface 

Aligned (OFA) curvilinear systems, it is necessary to be able to calculate gradients of the 

flux-surface location vector Eq. (3.10) with respect to the curvilinear variables (𝜌, 𝜃, 𝜙).  

In addition to a method of approximating these gradients from EFIT-determined 𝜓 

distributions using spline fits of the tabulated spatial (𝜌, 𝜃) variations of 𝑅 and 𝑍 for flux 

surface contours (CS fitting method), analytic models of 𝑅[𝜌, 𝜃] and 𝑍[𝜌, 𝜃] in terms of 

radially-dependent fitting coefficients and trigonometric functions of 𝜃 can be used to 

develop simple analytic expressions for these gradients. These analytical methods include 

a Flux-surface conserving “Circular” model (FC), two models that represent flux surfaces 

in terms of Fourier expansions (DF and SF), and both symmetric and asymmetric 

variations of the “Miller” model (SM and AM).   

The following sections use Semi-Cartesian Spline (SS) calculations of flux 

surfaces and poloidal magnetic fields and an OFA coordinate system determined by a 

Curvilinear Spline (CS) method as a basis for comparing the flux surfaces and poloidal 

magnetic fields calculated using OFA coordinate systems based on representations of 

𝑅[𝜌, 𝜃] and 𝑍[𝜌, 𝜃] gradients in variations of the Circular, Fourier expanded, and Miller 

coordinate systems.  

4.1. Curvilinear Spline (CS) fitting method for comparison of flux-surface fitting 

models 

The most accurate method of representing the gradients of R and Z with respect to 

curvilinear variables 𝜌 and 𝜃 is to use the gradients of radial and poloidal spline fits 

through all available R and Z flux surface locations interpolated from the EFIT 𝜓 

distribution. This method will be referred to as the Curvilinear Spline (CS) fitting 

method, and allows for calculations of both the OFA and GFA sets of scale factors and 
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the poloidal magnetic field distribution from Eq. (3.35).  While the SS and CS flux 

surface locations are identical, the poloidal field distribution calculated using the SS 

model differs from the field distribution computed using the simpler and more accurate 

SS method [Eq. (3.14)]. Consequently, a complete plasma geometry described by the 

shared spline-fit interpolation of flux surfaces, the CS basis vectors, and the SS poloidal 

magnetic field distribution will be used as a basis for comparing equivalent plasma 

geometries obtained using the simpler fitting models.  

4.1.1. Using Spline fits to relate EFIT flux surfaces and OFA basis vectors to 

curvilinear variables 𝝆 and 𝜽  

Any location within the plasma has associated values for 𝑅, 𝑍, 𝜌 and 𝜃, which can 

all be related to each other in the semi-Cartesian representation of the Grad-Shafranov 

equilibrium (𝜓) distribution by using 2D spline-interpolation to find flux-surfaces of 

constant 𝜓 [Figure 5].  From the results of this 2D spline interpolation, two separate 

distributions of 𝑅[𝜌, 𝜃] and 𝑍[𝜌, 𝜃] can be determined from the single original 𝜓[𝑅, 𝑍] 

distribution.  Figure 10 shows these two distributions using 200 poloidal locations to 

represent each of 50 radial flux surfaces. 

 

Figure 10: Distributions of major radius ,[ ]R    (left) and vertical position ,[ ]Z    (right) relative 

to the flux-surface curvilinear coordinates ( , )  .  

Calculating the distributions R and Z [Figure 10] directly from EFIT is the most 

accurate method, and the “positional” error in the flux surface representations of all other 

fitting methods can be determined by how much they differ from these distributions. A 

metric of a model’s positional error in representing a flux surface can be calculated by  
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where 2 2

SS Rr Z   is calculated using the spline-interpolated distributions shown in 

Figure 10. The flux surface average of Eq. (4.1) is a measure of the accuracy of the 

curvilinear model at matching the flux-surface shape and position determined directly 

from 𝜓 contours.  However, because this metric depends only on minor radius, this 

positional error does not account for differences in the major radius 𝑅0 between models 

[Figure 3].   

A curvilinear model is necessary to evaluate the FSA of the denominator of Eq. 

(4.1), which requires that gradients (
𝜕𝑅

𝜕𝜌
,
𝜕𝑅

𝜕𝜃
,
𝜕𝑍

𝜕𝜌
,
𝜕𝑍

𝜕𝜃
) be calculated and used to evaluate the 

curvilinear formalism of Section 3.4.  Spline fits of the two distributions shown in Figure 

10 with respect to both 𝜌 and 𝜃 curvilinear variables can be used to determine these four 

gradients, which are then used to calculate covariant basis vectors [Eq. (3.18), Figure 8], 

scale factors [Eq. (3.20)], and evaluate all of the remaining GFA and OFA formalism 

discussed in the previous section.  This method of determining the OFA basis vectors and 

scale factors will be referred to as a Curvilinear Spline (CS) method, and shares the same 

flux-surface locations used to map the SS calculations of poloidal magnetic field to the 

plasma.  As a consequence of this, positional error [Eq. (4.1)] for the CS model is always 

zero.  

4.1.2. Curvilinear poloidal magnetic field error 

The scale factors calculated from the CS fits can be used to calculate the poloidal 

magnetic field distribution from Eq. (3.35). This calculation of the poloidal magnetic 

field is mathematically equivalent to the field calculated using Eq. (3.14), but performed 

in curvilinear coordinates instead of Semi-Cartesian coordinates. However, there are 

differences between the two 𝐵𝜃 distributions, due to error introduced by the spline-fitting 

methods used to determine gradients in both the Semi-Cartesian (SS) and Curvilinear 

(CS) systems [Figure 11]; this error can be quantified by a metric referred to as the “field 

error”.  
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Figure 11: The field error field  between CS and SS predictions of 𝐵𝜃 , normalized by flux-surface 

constant values of Semi-Cartesian Spline (SS) B , calculated by applying the FSA operation [Eq. 

(3.41)] to a field calculated using Eq. (3.14).  

Because the SS calculation [Eq. (3.14)] involves the least complex spline fits, its 

poloidal magnetic field distribution will be used as a reference from which the errors of 

all other models can be calculated.  Consequently, the field error and its flux surface 

average can be calculated by: 
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  (4.2) 

where 𝐵𝜃
𝑆𝑆 is the poloidal magnetic field calculated by using Eq. (3.14), and CS-OFA 

flux surfaces and scale factors are used to perform the FSA operation over the 

denominator.  Because representing the poloidal magnetic field correctly is essential to 

calculations of the viscous and electromagnetic terms of the momentum balance 

equations, the field error of Eq.(4.2) is directly related to the ability of a curvilinear 

model to be used to accurately formulate the plasma equations. 
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Averages of the field error over poloidal and radial sectors of the plasma can be 

used summarize the local variations in poloidal magnetic field in a more condensed form 

than full 2D topological error distributions.  In addition using the full flux-surface 

average, field errors can be defined over poloidal sectors of the plasma; considering the 

single-null upper divertor configuration of shot 149468, the partial FSA of errors over the 

lower plasma hemisphere  low

field  and the left and right portions of the upper plasma 

hemisphere (
upL

field  and 
upR

field ) will be considered separately in this analysis [Figure 12].   

 

Figure 12: Plasma sectors for error calculations. Upper right (upR), upper left (upL), and lower 

(low) regions. Inner and edge regions are seperated by the q=2, 𝜌 ≅ 0.7 flux surface.  

The poloidal angle of the divertor (108𝑜) will be used to separate the upper left 

and right errors; 
upR

field  is defined from (0 < 𝜃 < 1080), 
upL

field  over (108𝑜 < 𝜃 <

180𝑜), and 
low

field  from (180𝑜 < 𝜃 < 360𝑜).  In order to represent the field error 

localized to the plasma edge, field edge
 will be defined as the radial average of the flux-

surface averages of errors outside of the 𝑞 = 2 flux surface (0.7 < 𝜌 < 1).  A metric of 

the error over the inner plasma region  field in
 will be defined by the radial average of 
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error over 0.2 < 𝜌 < 0.7.  Because the value of 𝐵𝜃 in the denominator of Eq.(4.2) trends 

towards zero as 𝜌 → 0, field error calculations over the small region of plasma with 𝜌 <

0.2 becomes unreliable (central region of Figure 11), which is why this portion of the 

plasma is excluded from the calculation of inner plasma field error  field in
.   

Table 1: Curvilinear Spline (CS) model field errors [Eq. (4.2)] (%) in three inner plasma sectors 

(left columns), and averaged over the full inner and edge plasma regions [Figure 12]  

Model Type 

Upper Hemisphere 

Inner Error (%) 

Lower Hemisphere 

Inner Error (%) 
field in

 field edge

 upR

field in
 

upL

field in
 

low

field in
 

Curvilinear Spline 

(CS) 
0.224 0.207 0.215 0.22 1.75 

The field error for the CS plasma fit is generally less than 1%, although it 

increases to around 5% at a few points near the LCFS [Figure 11].   

4.1.3. General flux-surface fitting techniques 

All models considered in this analysis, including the CS model, depend on 

radially-dependent fitting parameters that can be adjusted in order to approximate the 

positions and locations of flux-surfaces.  The most common of these are the major radius 

(𝑅0) and the minor radius (𝑟0), which are both present in all but one version of Fourier 

fitting model. In the circular model, 𝑅0 can be approximated as a constant for all flux 

surfaces. In simple circular models and variations of the Miller model, the minor radius 

𝑟0 is modeled as linearly dependent on 𝜌.  In the case of the CS model, all 200 

interpolated values for R and Z on each flux surface shown in Figure 10 are used, making 

this by far the most complex model considered in this analysis.    

The most effective way of determining the radial dependence of all other fitting 

parameters which minimizes positional error is usually through a linear least-squares fit 

of the minor radius of the model being considered to the minor radius determined by 

spline-interpolated R and Z distributions [Figure 10], with the fitting parameters as 

degrees of freedom.  In this analysis, only models with up to ten fitting coefficients per 
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flux surface are considered, in order to compare the accuracy of models with 

approximately equivalent complexity.   

The fitting processes yields flux-surface dependent values for each fitting 

parameter, which often show irregularities near the extreme center and edge of the 

plasma, around 𝜌 = 0 and 𝜌 = 1. In order to smooth these fits and develop a purely 

analytic representation for the flux surface positions with respect to the curvilinear 

variables 𝜌 and 𝜃, a second least-squares routine is applied to the radial profiles of fitting 

coefficients to determine a piecewise polynomial fit of the radial dependence.  Separate 

radially dependent polynomial fits are used to represent the radial dependence of fitting 

coefficients for flux surfaces on various sides of the q=2 (𝜌 ≅ 0.7) flux-surface, although 

these polynomial fits are constrained so that the full profile and gradients are continuous 

across this surface.  The analytic representations for the radial gradients of these 

polynomials will used to develop analytic expressions for the curvilinear gradients of R 

and Z in some models.   

4.2. Circular Model for General and Orthogonalized Flux-surface Aligned 

Coordinates (C-GFA and C-OFA) 

The radial and poloidal variations in 𝑅 and 𝑍 can be simply represented in terms 

of 𝜌 and 𝜃 using a “circular” model for the poloidal variations in plasma shape. This type 

of method represents the position vector 𝑠 [𝜌, 𝜃] analytically using a central major radius 

(𝑅0) and a radially dependent minor radius (𝑟0) for each flux-surface, along with 

trigonometric functions of the poloidal angle 𝜃.  The minor radius can be modeled as 

increasing linearly with 𝜌 to an outer flux-surface with surface area approximately 

equivalent to the surface area of an elliptical torus with elongation determined from the 

EFIT LCFS (Edge flux-equivalent Circular (EC) model), or the elongations for all fitted 

EFIT flux surfaces can be used to set the radial dependence of the minor radius so that all 

circular model flux-surfaces have areas approximately equivalent to the corresponding 

EFIT surfaces (Flux-equivalent Circular (FC) model).  The gradients of the analytic 

expressions for the position vector can be used to determine basis vectors and scale 

factors for the GFA circular coordinate system, and show that this coordinate system is 

naturally orthogonal due to the lack of radial dependence in 𝑅0.  The errors in the 
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corresponding poloidal magnetic field distributions are used to compare the ability of the 

more accurate Flux-equivalent Circular (FC) model to represent the plasma against the 

very low errors attainable using the much more complex Curvilinear Spline (CS) method 

for representing the EFIT plasma geometry.  

The components of the circular model position vector Eq. (3.10) relative to the 

tokamak absolute origin in terms of 𝑅0 and 𝑟0 are  
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Where  0r   describes the minor radii of the circular tori representing flux 

surfaces. For the circular model, the central major radius 𝑅0 is set by the distance from 

the tokamak central axis to the central point between the LCFS on the inboard and 

outboard midplanes, and is constant for all flux surfaces throughout the plasma. The 

EFIT determined value of major radius is 𝑅0 = 1.623 𝑚.   

A circular model geometry can be constructed with a linearly increasing minor 

radius, so that the surface areas of the outer flux surface  2

0 04 r R  is approximately 

equivalent to the areas of the LCFS for an elliptical tori with an elongation 𝜅 and minor 

radii 𝑎𝜌 determined from the EFIT plasma LCFS [14] .  The radial dependence of the 

minor radius 𝑟0 can then be calculated in terms of the fixed plasma elongation 𝜅 and the 

minor radius 𝑎:  

  2

0

1
1

2
r a     (4.4) 

The most common variation of this Edge flux-equivalent Circular (EC) model uses an 

elongation determined by that of the EFIT LCFS, (𝜅 = 1.722). This elongation is the 

ratio of the maximum plasma height to the minor radius at the midplane of the LCFS, 

𝑎 = 0.569.  The effective circular minor radius at the outboard midplane for this Edge 

flux-equivalent Circular (EC) model is 𝑎̅ = 𝑟0|𝜌=1 = 0.801, and both the minor radius 

and its gradient can be represented in terms of this effective circular LCFS minor radius 

as:  
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If a radially dependent elongation is used to separately conserve surface area for 

each flux surface, then an expression for the radial gradient of minor radius in this Flux-

equivalent Circular (FC) system can be determined from Eq. (4.4), with 𝜅 modeled as a 

function of 𝜌. 
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The radial profile of elongation can be determined by averaging the distance from the 

midplane to the most extreme points in the upper and lower hemispheres for each flux 

surface, and normalizing by the corresponding minor radius 
   min max

2

Z Z

a

 


      
 .   

The minor radii at the plasma edge (𝑎̅) for both of these variations of the circular 

model will be larger than the true plasma minor radius at the OBMP LCFS (𝑎).  Because 

of the averaging process, the FC model has a slightly smaller LCFS minor radius than the 

EC model, as the elongation used throughout the EC model is the maximum elongation 

of the EFIT plasma. The EC model’s total plasma volume is larger than that of the FC 

model, and the true EFIT volume is smaller than that of both circular models 

 2 2

0 02 r R . The plasma effective minor radius (𝑎̅), LCFS surface area (𝕊), the full 

plasma volume (𝕍), the LCFS elongation (𝜅), and the averaged positional errors over the 

inner and edge plasma regions are shown in Table 2, comparing the accuracy of the FC 

and EC models for the upper single-null divertor plasma of Shot# 149468, at 1905ms.  
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Table 2: FC dimensions and positional errors. 15.962EFIT  .   

Model 𝑎̅ (𝑚) 𝕊 (𝑚2) 𝕍 (𝑚3) 𝜅𝐿𝐶𝐹𝑆 
position in

 

position edge

 

Edge flux-equivalent 

Circular (EC)  
0.801 51.335 20.564 1.722 22.57% 19.80% 

Flux-equivalent  

Circular (FC) 
0.776 49.74 19.306 1.648 9.32% 13.07% 

Interestingly, the positional error position  actually decreases with increasing 

minor radius for the EC model, while increasing for the FC model. The flux surfaces for 

the more accurate FC model are shown in Figure 13, illustrating how the error is caused 

primarily by the circular model’s inability to adjust to represent the plasma’s up-down 

asymmetries, which become especially significant towards the outer flux surfaces.   

 
Figure 13: Comparison of EFIT SS/CS flux-surfaces (RED) and Flux-equivalent Circular (FC) 

predictions of flux-surfaces (BLACK) [Eq. (4.3)], for Shot# 149468, 1905ms. 

The dashed EFIT flux surfaces in Figure 13 illustrate the Shafranov shift [15] in 

the central major radius 𝑅0 towards the outside, which the Circular model is unable to 
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account for.  This discrepancy, particularly noticeable in the offset between the inner 

EFIT and FC flux surfaces, does not influence the positional error calculations [Eq. (4.1)

], which are dependent only on minor radius.  Consequently, the positional errors 

reported in Table 2 slightly underestimate discrepancy between true and circular-model 

flux surfaces.  

By applying Eq. (3.18), the General Flux-surface Aligned (GFA) basis vectors 

and scale factors can be calculated for the circular model.  
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Because the major radius is independent of flux surface (
𝜕𝑅0

𝜕𝜌
= 0), the circular model 

minor radius and the area scale factor reduce to forms that are independent of poloidal 

angle. 
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Plotting the Flux-equivalent Circular set of General Flux-surface Aligned basis 

vectors (FC-GFA) calculated from Eq. (4.7) and scaled by (𝑑𝜌 = 0.1, 𝑑𝜃 = 0.16) at 

evenly-spaced poloidal positions on six flux surfaces ranging from the plasma center to 

edge shows how the orientation of the local curvilinear coordinate axes rotates with 

poloidal location [Figure 14]. Variations of the circular model are unique among general 

curvilinear systems because their Orthogonalized Flux-surface Aligned (OFA) basis 

vectors [Eq. (3.31)] are identical to their General Flux-surface Aligned (FC-GFA) basis 

vectors. The radial basis vectors change direction so that they are always directed away 

from the plasma center, which is also perpendicular to the flux-surfaces for the circular 

formalism.  
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Figure 14: The directions of FC-OFA and FC-GFA basis vectors are identical [Eq. (4.7)]. 

Magnification of inset shown on right.  

Applying the scale factors of Eq. (4.8) to the field definitions from Eq. (3.17), the 

components of the magnetic field for the circular coordinate system can be written in 

terms of 𝐵̅𝜃 and 𝐵̅𝜙:  
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where (𝜀 =
𝑟0

𝑅0
=

𝑎̅𝜌

𝑅0
). These are identical to the circular-model expressions for the 

components of the magnetic field given by Stacey [4].   

The effectiveness of the Flux-equivalent Circular (FC) at predicting a poloidal 

magnetic field distribution can be measured by the average of sector-dependent field-

error calculations [Eq. (4.2), Table 3] computed using poloidal fields of the form of Eq. 

(4.10).  The sector-averaged field errors for the Curvilinear Spline model are shown for 

comparison.  
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Table 3: Circular model field errors [Eq. (4.2)] (%) in three inner plasma sectors (left columns), and 

averaged over the full inner and edge plasma regions [Figure 12].   

Model Type 

Upper Hemisphere 

Inner Error (%) 

Lower Hemisphere 

Inner Error (%) 
field in

 
field edge

 

upR

field in
 

upL

field in
 

low

field in
 

Spline CS 0.22 0.21 0.21 0.22 1.75 

Circular 
EC 26.03 11.57 19.34 20.16 33.57 

FC 18.03 7.35 12.34 13.25 40.13 

The errors in the circular model predictions for the poloidal magnetic field 

distribution are two orders of magnitude greater than the error introduced by developing a 

curvilinear system by spline-fits of the EFIT data (CS model).  Interestingly, while the 

FC model decreased positional errors throughout the circular model as compared to the 

EC model, it actually results in a higher field error over the edge region. Plotting the FC 

model field error distribution shows how the majority of the error is introduced in the 

outer edge region, with a sharp increase in the region around the upper nulls in the 

poloidal magnetic field.   
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Figure 15: Distribution of poloidal magnetic field error field  (%) for the FC-OFA model [Eq. (4.2) 

and (4.8)]   

Because the representation of the poloidal magnetic field is essential to correctly 

formulating both the electromagnetic and the viscous contributions to the momentum 

balance equations [Eq. (2.6), Appendix A.3], and errors in the scale factors influence the 

flux-surface averaging operation [Eq. (3.41)], the size of the circular-model field errors 

are large enough to call into question the ability of this model to set poloidal fields and 

scale factors in the plasma equations over certain regions of the plasma.  

4.3. Single Fourier Expansion model (SF) for minor radius (r) 

Using a Fourier expansions to represent the poloidal variations in minor radius 

corresponding to each flux surface is a robust method of representing arbitrarily high 

order flux-surface structure, while retaining an analytic model that involves only simple 

trigonometric basis functions. However, while expanding this Single Fourier (SF) model 

to high enough order does allow for arbitrarily accurate representations of flux-surface 

shapes, it also requires the use of many more fitting coefficients than the two required for 

circular models.  Applying a fourth order (O(4)) expansion limits this model to ten fitting 

coefficients per flux-surface, and is the most complex geometry besides the CS model 

that will be considered in this analysis.  The poloidal magnetic field resulting from scale 
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factors calculated in this O(4) Single Fourier Orthogonalized Flux-surface Aligned (SF-

OFA) coordinate system can be compared against the CS fields predictions in order to 

assess the ability of the SF(4) model to represent flux-surfaces and the poloidal magnetic 

field.   

The Cartesian components of the position vector in SF coordinates are identical in 

form to the circular model representations, but apply a radially dependent central major 

radius and poloidally dependent minor radius.  
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The minor radius is represented by using a Fourier series expansion of order 𝑁 (O[N]), 

with radially dependent sine and cosine expansion coefficients (𝑟𝑠,𝑐).  

 

 

   

, ,

0

1 1

0 0

, 1 cos sin

1ˆ ,

N N
c n s n

n n

r r r n r n

r r r r

   

  

 

 
   

 

 
    

 

 
  (4.12) 

The representation for 𝑟[𝜌, 𝜃] in the first piece of Eq. (4.12) can be separated into 

an average, flux-surface dependent minor radius (𝑟0) and a smaller 𝑂(𝜖) term (𝑟̂). The 

expansion coefficients higher than 0th order are typically of order 𝜖 for a “D” shaped 

plasma such as the one considered in this analysis, where(𝜖 =
𝑎

𝑅0
= 0.3416 < 1) is a 

plasma constant with no radial dependence.  Finally, the minor radius 𝑟0 can be factored 

out of the full expression, and 𝑟̂ can be rewritten in terms of a poloidally dependent term 

𝑟̆ which is of order unity. This poloidally-dependent asymmetry term and its gradients are 

necessary for calculations of the scale factors in this system, and can all be written in 

terms of the normalized radially dependent Fourier asymmetries 𝑟̃𝑠,𝑐.  
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If 𝑟̆ → 0 and 
𝜕𝑅0

𝜕𝜌
→ 0 the SF formalism reduces to the circular model.  

It is straightforward to apply a least-squares method to constrain the SF model 

flux surfaces to match as closely as possible with the EFIT surfaces. The SF model is 

linear with respect to the asymmetries, which are the fitting coefficients for this model.  

Increasing the expansion from zeroth to 4th order drops the positional error throughout the 

plasma by about an order of magnitude [Table 4].   

Table 4: Positional Errors (%) and number of fitting coefficients per. flux surface of three 

expansion orders of the Single Fourier (SF) model.  

Model 
coefN

surface
 position in

 position edge
 

Single Fourier O(0) (SF0) 2 8.92 11.59 

Single Fourier O(2) (SF2) 6 1.67 4.55 

Single Fourier O(4)   (SF) 10 0.38 1.61 

A 0th order SF expansion fitted using the above technique yields a more advanced 

variation of the circular model with a non-orthogonal GFA system due to the Shafranov 

shift, and a minor radius which is not linearly dependent on 𝜌.  These changes further 

decrease the positional error from the Flux-equivalent Circular (FC) model.  The highest 

order O(4) SF expansion considered here involves ten fitting coefficients (𝑅0, 𝑟0, 𝑟𝑠,1,

𝑟𝑐,1, 𝑟𝑠,2, 𝑟𝑐,2, 𝑟𝑠,3, 𝑟𝑐,3, 𝑟𝑠,4, 𝑟𝑐,4); while increasing the order to this model does 

significantly decrease the positional error, flux-surface representations in the edge region 

does show a “wavy” behavior characteristic of Fourier series fits.  This model’s ability to 

be expanded to arbitrarily high orders may be an advantage if an extremely accurate 

representation of flux surfaces is necessary enough to justify calculating values for even 

more fitting coefficients. 
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Figure 16: Comparison of the shapes of CS flux surfaces from EFIT (red dashed contours) with 

three orders of Single Fourier (SF) model flux surfaces (solid bold black contours).  

The gradients of the poloidally-dependent components of the position vector 

given in Eq. (4.11), are necessary for calculation of the SF basis vectors and geometric 

coefficients. In terms of gradients of the poloidally-dependent minor radius [Eq. (4.12)], 

these are: 
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where the gradients of the minor radius from Eq. (4.12) can be written in terms of the 

gradients of 𝑟0 and 𝑟
︶

 shown in Eq. (4.13). 
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After applying the expressions for gradients of R and Z given in Eq. (4.14) to Eq. 

(3.20) and simplifying, the SF-GFA radial, poloidal, and toroidal scale factors can be 

expressed in terms of the major and minor radii.  
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The area scale factor can be simplified to: 
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Following the methods of Section 3.4, values for these scale factors can be 

directly calculated, and used to determine the SF-OFA radial scale factor and basis 

vectors.  These OFA and GFA systems of curvilinear basis vectors are not identical, 

unlike the circular model systems [Appendix C.1].   
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Figure 17: Field error field  for B  predictions using scale factors for an O(4) SF-OFA coordinate 

system [Eqs. (3.35), (3.20), (3.31), and (4.19)]. 

The error in the poloidal magnetic field calculated using the SF(4)-OFA 

coordinate system is around 1% for the inner plasma, and increases by an order of 

magnitude in the outside edge [Figure 17].  As with the positional error, even the 0th 

order SF expansion, with complexity comparable to the FC model, has a slightly lower 

positional error for the inner plasma, and a much lower error in the edge plasma.  Despite 

the larger number of fitting coefficients, applying the 4th order SF expansion method 

produces a huge decrease in field error from the ~13% inner-plasma FC error [Table 5].   

Table 5: Comparison of Single Fourier Magnetic field errors [Eq. (4.2)] (%) in three inner plasma 

sectors (left columns), and averaged over the full inner and edge plasma regions [Figure 12]. 

Model Type 

Upper Hemisphere 

Inner Error (%) 

Lower Hemisphere 

Inner Error (%) 
field in

 
field edge

 upR

field in
 

upL

field in
 

low

field in
 

Spline CS 0.22 0.21 0.21 0.22 1.75 

Fourier 

SF(0) 14.06 9.17 10.79 11.49 29.79 

SF(2) 5.24 2.52 3.35 3.77 19.16 

SF(4) 1.37 0.91 0.96 1.07 9.68 
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4.4. Double Fourier Expansion model (DF) for R and Z 

An alternative to the Single Fourier (SF) technique of expanding the minor radius 

using one Fourier expansion is to double the number of expansions, separately 

representing the poloidal variations in R and Z.  Other analysis have applied this Double 

Fourier (DF) model [11]; it offers a greater degree of flexibility over the SF 

representation, although this is offset by an increases in complexity.  Scale factors for an 

O(2) Double Fourier Orthogonalized Flux-surface Aligned (DF(2)-OFA) curvilinear 

system can be used to calculate a poloidal magnetic field distribution and poloidal field 

errors, which show that the DF system is less accurate than a Single-Fourier (SF) model 

of equivalent complexity at representing the EFIT data.  

The Fourier-series representations for the semi-Cartesian components of the 

position vector [Eq. (3.10)] are: 
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  (4.18) 

where 𝑅0 = 𝑅𝑐,0, 𝑍𝑠,𝑐,𝑖 = 𝜖 𝑍̃𝑠,𝑐,𝑖, and 𝑅𝑠,𝑐,𝑖 = 𝜖 𝑅̃𝑠,𝑐,𝑖. The coordinate system is chosen 

so that 𝑍0 = 𝑍0
𝑐 = 0.   

A DF model will have half the expansion order of the SF model with an 

equivalent number of fitting parameters; consequently, an O(2) DF model with nine 

fitting coefficients (𝑅0, 𝑅𝑠,1, 𝑅𝑐,1, 𝑍𝑠,1, 𝑍𝑐,1, 𝑅𝑠,2, 𝑅𝑐,2, 𝑍𝑠,2, 𝑍𝑐,2) is comparable in 

complexity to the O(4) SF model with ten fitting coefficients analyzed in Section 4.3.  

Despite this increase in complexity, the flexibility of this DF model to describe a wide 

variety of flux-surface shapes, including surfaces which do not enclose the central major 

radius location (𝑅0), could potentially make it desirable for representing the structure of 

magnetic islands.  As for the SF formalism, a linear least-squares method can be used to 
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determine the asymmetries which minimize the differences from EFIT in the DF 

predictions for R and Z.   

Table 6: Averaged flux-surface positional error (%) number of expansion coefficients per. flux 

surface for two Double Fourier (DF) models. 

Model 
coefN

surface
 position in

 
position edge

 

Double Fourier O[1] (DF1) 5 4.5% 6.4% 

Double Fourier O[2]   (DF) 9 4.4% 5.8% 

As the expansion order is increased, the ability of the DF model to represent the 

up-down plasma asymmetries improves slightly; both 0th and 1st order expansions have 

about half the positional error as the Flux-equivalent Circular (FC) model, although 

neither approach the accuracy of the O(2) and O(4) SF models of equivalent complexity.  

The changes in flux surface shapes as the expansion order is increased is illustrated in 

Figure 18, which compares the flux-surfaces for O(1) and O(2) DF expansions.   

 
Figure 18: Comparison of EFIT flux surfaces (red dashes) with flux surface predictions for two 

orders of DF expansions [Eq. (4.18)] fitted to EFIT contours (circles, bold line). 

The gradients of the components of the position vector defined in Eq. (4.18), in terms of 

the normalized asymmetries, are:  
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  (4.19) 

These definitions can be used to calculate the directions of the Double Fourier 

General Flux-surface Aligned (DF-GFA) basis vectors according to Eq. (3.18)., and the 

general scale factors and area scale factor can be computed by Eq. (3.20) and Eq. (4.18). 

Similarly to the SF model basis vectors, the radial basis vectors in the DF GFA 

coordinate system are not perpendicular to flux surfaces, and consequently do not match 

the DF-OFA basis vectors [Appendix C.1].  Using Eq. (3.35), (3.31), and (3.20), the 

poloidal magnetic field can be expressed in terms of curvilinear gradients of 𝑅 and 𝑍.  
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  (4.20) 

It is straightforward to apply the calculations of Section 3.4 and Eq. (4.20) for the 

poloidal magnetic field to determine the field error [Eq. (4.2)] throughout the DF model 

for the plasma geometry.   
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Figure 19: Field error field  for B  predictions using O[2] DF-OFA scale factors [Eqs. (3.35), (3.20)

, (3.31), and (4.19)].  

Field errors throughout the DF plasma model are nearly half the size of the FC 

errors, but still much greater than errors for SF models of equivalent complexity.  

Table 7: Comparison of Double Fourier Magnetic field errors [Eq. (4.2)] (%) in three inner plasma 

sectors (left columns), and averaged over the full inner and edge plasma regions [ Figure 12]. 

Model Type 

Upper Hemisphere 

Inner Error (%) 

Lower Hemisphere 

Inner Error (%) 
field in

 
field edge

 upR

field in
 

upL

field in
 

low

field in
 

Spline CS 0.22 0.21 0.21 0.22 1.75 

Fourier 
DF(1) 8.00 6.13 6.12 6.70 19.70 

DF(2) 6.43 5.93 5.55 5.90 15.01 

 

4.5. Symmetric and Asymmetric Miller models (SM and AM) 

A plasma model introduced by Miller [1] allows for a more accurate 

representation than the circular model of the elongated “D” shape of a plasma cross-

section. This formalism represents the semi-Cartesian (𝑅, 𝑍) coordinates of plasma flux 

surfaces in terms of the plasma elongation 𝜅 and triangularity 𝛿. The relationship 
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between these semi-Cartesian coordinates and the curvilinear (𝜌, 𝜃𝑚) coordinates is non-

linear, requiring iterative methods to be used to fit this model to the EFIT-determined 

flux-surface shapes. This flux-surface fit can be improved if the Symmetric Miller (SM) 

model is extended to use separate values of elongation (𝜅) and triangularity (𝛿) to 

account for asymmetries between the upper and lower hemispheres [14]. This extension 

results in four fitting coefficients to represent each flux surface (𝜅𝑢𝑝, 𝛿𝑢𝑝, 𝜅𝑙𝑜𝑤, 𝛿𝑙𝑜𝑤), 

and will be referred to as the Asymmetric Miller (AM) model. After developing Miller 

Orthogonalized Flux-surface Aligned (M-OFA) coordinates from the Miller General 

Flux-surface Aligned (M-GFA) coordinates, approximations for the plasma poloidal 

magnetic field show great improvements over both the circular and Fourier expansion 

models’ predictions for 𝐵𝜃.  

The Miller major radius and elongation can be computed by 
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  (4.21) 

Where  0r a  ,    , sinm mx       , and 
1Sin mx  .  The directions of 𝜉 and 

the Miller-model angle 𝜃𝑚, relative to the true poloidal angle 𝜃 are shown in Figure 20. 

The angle 𝜉 is used to form a right triangle with a hypotenuse equal to the minor radius 𝑟0 

and a horizontal side equal to the difference (𝑅 − 𝑅0). The angle 𝜃𝑚 is used similarly, 

along with the elongation 𝜅, to form a triangle with a height of distance 𝑍, and 

hypotenuse of length (𝜅 𝑟0).  



53 

 

 

Figure 20: Geometric relationship of 𝑅, 𝑍, and 𝜃 with Miller parameters 0R , 𝑎, x , 𝜅, 𝜉, and m .  

In Miller’s original Symmetric Miller (SM) formulation of this model, two fitting 

parameters - elongation (𝜅) and triangularity (𝛿) - were used to parameterize each 

complete flux surface. However, flux surfaces can often be better represented by using 

separate values of these two parameters to describe the upper and lower plasma 

hemispheres. Because the expressions in Eq. (4.21) are independent of the values of 𝜅 

and 𝛿 on the midplane where 𝜃𝑚 = 𝜃 = [0, 𝜋], the extension of this model to a piecewise 

poloidally constant Asymmetric Miller (AM) model for 𝛿 and 𝜅, discontinuous at the 

midplane, still returns a representation of the 𝑅 and 𝑍 components of the position vector 

which is continuous with respect to 𝜌 and 𝜃𝑚, while adding the ability to represent up-

down plasma asymmetries.  

In order to apply a least-squares method to determine the fitted values of 𝜅 and 𝑥𝛿 

which correspond to Miller flux surfaces in best agreement with the EFIT data for 𝑅 and 

𝑍, the two expressions in Eq. (4.21) can be rearranged to solve for the flux-surface values 

of 𝑥𝛿 and 𝜅 in terms of of 𝜃𝑚. 
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  (4.22) 

The expressions in Eq. (4.22) can be computed from EFIT data for (𝑅 − 𝑅0) and 

(𝑍) on flux surfaces [Figure 10], using the true poloidal angle as an initial guess for 𝜃𝑚. 

When determining Symmetric Miller (SM) fits for radially dependent 𝜅 and 𝑥𝛿, all 

poloidal angles are considered together, and 𝑁𝜃 is equal to the number of points used to 

represent locations on each EFIT 𝜓 contour. To determine Asymmetric Miller (AM) fits, 

𝜅 and 𝑥𝛿 must be determined separately for upper and lower hemispheres. This requires 

that the summations of Eq. (4.22) be performed over the range (1 < 𝑛 < 𝑁𝜃 2⁄ ) to 

determine 𝜅𝑢𝑝 and 𝑥𝛿,𝑢𝑝, and over (𝑁𝜃 2⁄ + 1 < 𝑛 < 𝑁𝜃) to determine 𝜅𝑙𝑜𝑤 and 𝑥𝛿,𝑙𝑜𝑤. 

Subsequently, the value of 𝜃𝑚 can be updated from the 𝜅 and 𝛿 fit-parameters, by using a 

nonlinear Newton’s method to solve: 
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  (4.23) 

for 𝜃𝑚, where 𝑅, 𝑅0, and 𝑍 are determined from EFIT contours. By converging Eqs. 

(4.22)-(4.23) separately on for the upper and lower plasma hemispheres on each flux-

surface, converged fitted values of (𝜅𝑢𝑝, 𝑥𝛿,𝑢𝑝) and (𝜅𝑙𝑜𝑤, 𝑥𝛿,𝑙𝑜𝑤) can be determined 

which yield the best AM fit for the EFIT flux surface contours.  
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Figure 21: Radial dependence of Miller plasma elongation 𝜅 (left axes) and modified triangularity 

x  (right axes), for Symmetric Miller (solid line) and Asymmetric Miller upper and lower (dotted 

and dashed) hemispheres of Shot# 149468, 1905ms.  

The radial profiles of converged values for 𝜅 and 𝑥𝛿 coefficients are subsequently 

fitted using 4th order polynomials, so that their radial gradients can be calculated 

analytically. Separate polynomial fits are used for 𝜌 < 0.7 and 𝜌 > 0.7, although the 

radial profiles and gradients are constrained to be continuous at 𝜌 = 0.7. The LCFS 

values of the resulting radial profiles for upper plasma elongation and lower plasma 

triangularity shown in Figure 21 match well with the EFIT values of 𝜅𝐸𝐹𝐼𝑇 = 1.722 and 

𝛿𝑙𝑜𝑤
𝐸𝐹𝐼𝑇 = 0.303. Interestingly, the LCFS value of upper triangularity is noticeably smaller 

than the EFIT-predicted value of 𝛿𝑢𝑝
𝐸𝐹𝐼𝑇 = 0.630, suggesting a difference between 

methods of determining this parameter. 

Table 8: Positional Errors (%) and number of fitting coefficients per. flux surface for the Symmetric 

Miller (SM) and the Asymmetric Miller (AM) models.  

Model 
coefN

surface
 

position in

 

position edge
 

Symmetric Miller (SM) 4 0.91 1.44 

Asymmetric Miller (AM) 6 0.32 0.43 

The flux surface agreement for both variations of the Miller model is almost two 

orders of magnitude better than the agreement between the FC model and spline-fit flux 

surfaces presented in Section 4.2 [Table 2], and both models appropriately account for 

the Shafranov shift. The averages of AM positional error are around a third of the SM 
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error; the difference is especially notable when comparing flux surface agreement in the 

edge plasma regions, as seen in Figure 22.  

  

Figure 22: Symmetric Miller (left, black) and Asymmetric Miller (right, black) predictions for flux 

surfaces Eq. (4.21), compared to EFIT SS flux surfaces (red dashed). 

The gradients of the components of the position vector 𝑠 [𝜌, 𝜃𝑚] given in Eq. 

(4.21) can be represented analytically in terms of 𝜅, 𝑥𝛿, 𝑅0, and 𝑎. 
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  (4.24) 

The poloidal area scale factor for Miller General Flux-surface Aligned (M-GFA) 

coordinates can be derived by applying the definitions of Eq. (4.24) to the calculations 

developed in Section 3.3. 
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The area scale factor Eq. (4.25) can subsequently be used in the calculations of Section 

3.4 to yield the orthogonalized scale factors from the M-OFA coordinate system.  

The final forms of the M-OFA scale factors in terms of 𝜅, 𝑥𝛿, 𝑎, and 𝑅0 profiles 

and poloidally dependent 𝜉 and 𝜃𝑚 angles are:  
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  (4.26) 

In the limit of 𝜅 → 1, 𝛿 → 0, and 
𝜕𝑅0

𝜕𝜌
→ 0, the above expressions reduce to the circular 

model form, with 𝑎̅ = 𝑎.  

Unlike the circular model, the M-GFA and M-OFA coordinate systems are not 

equivalent, especially in the plasma edge. Plotting the Asymmetric Miller Orthogonalized 

Flux-surface Aligned (AM-OFA) covariant basis vectors weighted by 𝑑𝜌 = 0.1, 𝑑𝜃 =

0.16 for (0 ≤ 𝜃𝑚 < 2𝜋) on six evenly spaced flux surfaces with (0 < 𝜌 < 1) [Figure 

23] illustrates how these basis vectors always describe orthogonalized coordinate 

directions. The coordinate system orientation changes based on poloidal position so that 

the poloidal basis vectors remain parallel to flux-surface contours (poloidally-directed 

bold arrows), and the radial basis vectors remain perpendicular to flux-surface contours 

(radially-directed bold arrows). In contrast, the AM-GFA covariant radial basis vectors 

are oriented outward along contours of constant 𝜃𝑚, which have no physical significance 

in the plasma. These radial covariant basis vectors (dashed arrows) often show significant 

variations from the flux-surface normal directions, especially in the plasma edge.  
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Figure 23: Comparison of AM-GFA basis vectors (narrow arrows) with AM-OFA basis vectors 

(bold arrows) [Eq. (4.26)] on sample AM flux surfaces. Magnification of inset shown on right. 

In Asymmetric Miller coordinates, the magnitude of the components of the 

magnetic field can be computed by applying the orthogonalized scale factors in in Eq. 

(3.17). 
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  (4.27) 

The expressions of Eq. (4.27) allow the components of the magnetic field to be 

calculated analytically directly from the fitted values for 𝜅 and 𝛿 determined using Eqs. 

(4.22)-(4.23).  The distribution of field errors in the AM model predictions for 𝐵𝜃 are 

shown in Figure 24.  
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Figure 24: Field error field  for B  predictions using AM-OFA scale factors [Eq. (4.27)].  

When compared to the semi-Cartesian calculation of the poloidal magnetic field, 

the average inner plasma field errors for the Miller models are at or below 1% [Figure 9].  

The Asymmetric Miller (AM) model has errors comparable to the Curvilinear Spline 

field errors, while requiring over 60 times fewer fitting coefficients to represent a flux 

surface.   

Table 9: Comparison of Miller poloidal magnetic field errors [Eq. (4.2)] (%) in three inner plasma 

sectors (left columns), and averaged over the full  inner and edge plasma regions [Figure 12].  

Model Type 

Upper Hemisphere 

Inner Error (%) 

Lower Hemisphere 

Inner Error (%) 
field in

 
field edge

 upR

field in
 

upL

field in
 

low

field in
 

Spline CS 0.22 0.21 0.21 0.22 1.75 

Miller 
SM 1.46 0.59 1.01 1.07 4.54 

AM 0.87 0.28 0.36 0.50 3.89 
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4.6. Summary of analytic curvilinear coordinate models 

The effectiveness of the most accurate variations of each class of curvilinear 

geometry models methods can be compared based on their accuracy at representing the 

true plasma flux surfaces and poloidal magnetic field over flux surfaces.  The Flux-

equivalent Circular model is significantly less accurate than the O(2) Double and O(4) 

Single Fourier expansion methods; the most accurate models are the Asymmetric Miller 

and Curvilinear Spline fits.  Evaluating fitting methods based on a performance 

parameter Γ which accounts for the benefits of simplicity clearly illustrates the 

superiority of the Asymmetric Miller fitting method at representing variations in poloidal 

magnetic field for plasma, especially within the 𝑞 = 2 rational flux surface.   

Comparing the radial variations in FSA of positional and field errors for the Flux-

equivalent Circular, Single Fourier, Double Fourier, Asymmetric Miller, and Curvilinear 

Spline models illustrates how well these four classes of fitting techniques perform as a 

function of minor radius [Figure 25].  The effectiveness of all models generally decreases 

towards the plasma edge, and the poloidal magnetic field error field  increases much 

more rapidly than positional error position . The Flux-equivalent Circular (FC) model is 

the least accurate method in both classes, with up to ~100% field error at the plasma 

edge.   

Both the Single Fourier and Asymmetric Miller methods are around an order of 

magnitude better than the Double Fourier method towards the plasma center.  However, 

whereas the AM positional error is almost independent of radial location for 𝜌 < 0.9, the 

SF positional and magnetic field error increase exponentially from the plasma center to 

DF-comparable errors in the edge.  The Curvilinear Spline method shares flux-surface 

position with the reference Semi-Cartesian Spline surfaces, and consequently has no 

positional error.  Its poloidal field error is the smallest of all models, although it is 

comparable to the AM field error at several locations.   
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Figure 25: Flux surface averages of positional error position  [red, Eq. (4.1)] and poloidal field 

error field  [black, Eq. (4.2)] for CS, FC, AM, DF, and SF coordinate system models. 

A performance parameter can be defined to evaluate models based on a balance of 

their accuracy and their simplicity.  

 
 

1

field

coefN



    (4.28) 

Larger values of   indicate more effective plasma models.  Because the 

agreement of many models is significantly different between the plasma center and edge, 

this performance parameter will be evaluated separately for inner  in  and edge  edge  

plasma, based on the inner and outer averaged field errors [Eq. (4.2)].   
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Table 10: Comparison of sector dependent field errors, number of fitting coefficients p er flux 

surface, and both inner and outer performance parameters for the most effective geometry models of 

each class considered in this analysis.   

Model Type 

Upper Hemisphere 

Inner Error (%) 

Lower Hemisphere 

Inner Error (%) fit

su

N

rface
 in  edge  

upR

field in
 upL

field in
 low

field in
 

Curvilinear 

Spline (CS) 
0.224 0.207 0.215 400 1.2 0.14 

Flux-equivalent 

Circular (FC) 
18.0 7.35 12.3 2 3.8 1.25 

O(4) Single 

Fourier (SF) 
1.37 0.91 0.96 10 9.3 1.03 

O(2) Double 

Fourier (DF) 
6.42 5.93 5.55 9 1.9 0.74 

Asymmetric 

Miller (AM) 
0.867 0.283 0.362 6 33 4.29 

It is interesting to note the relative ineffectiveness of the Double Fourier method, 

due to the large number of fitting coefficients outweighing the relatively low fitting 

accuracy.  In contrast, the O(4) Single Fourier model performs much better than the Flux-

equivalent Circular model, indicating that the disadvantage of increasing the number of 

fitting coefficients from the O(1) SF model (which is a variation of the circular model) is 

more than compensated for by the increase in accuracy.  This suggests that higher orders 

of the SF model would be the best choice if a plasma model with accuracy higher than 

that of the Asymmetric Miller model is required.  

Overall, the Asymmetric Miller model is shown to be the most effective method 

for calculating the plasma poloidal magnetic field from the plasma geometry.  It is the 

only model besides a Curvilinear Spline fit with averaged field error below 1% for all 

sectors of the inner plasma, and its performance parameter is an order of magnitude 

larger than all others.  This analysis indicates that the Asymmetric Miller model is the 
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best method of representing the inner plasma; it will be applied in the remainder of this 

analysis to formulate the plasma equations.    
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CHAPTER 5 

FORMULATING CONTINUITY AND MOMENTUM BALANCE 

EQUATIONS IN CURVILINEAR COORDINATE SYSTEM  

 

The basic continuity and momentum balance equations undergo significant 

simplification when formulated in a curvilinear coordinate system. Plasma flow between 

flux surfaces is very small in comparison to movement on the surfaces, which allows the 

radial momentum balance to be reduced to the balance of pressure and electromagnetic 

effects [Eq. (5.3)].  Although all the original terms of the poloidal momentum balance 

equation must still be evaluated [Eq. (5.5)], axisymmetry and the lack of a significant 

radial magnetic field simplify the pressure and electromagnetic contributions in the 

toroidal angular momentum balance [Eq. (5.8)].  The flux-surface average of the toroidal 

angular momentum balance reduces to a gyroviscous drag torque balanced with 

electromagnetic, frictional, and external momentum torques [Eq. (5.7)].  

The quantities comprising the plasma equations can be separated into three 

classifications: those dependent on the plasma geometry, asymmetries describing the 

poloidal variation of plasma properties, and mean values of all plasma properties.  

Distributions for the geometry-dependent quantities (scale factors and magnetic fields) 

throughout the plasma can determined completely from EFIT data using the methods 

described in Section 0.  The plasma asymmetries can all be expressed in terms of the 

poloidal variations in density, velocity, and electric potential.  Setting all the mean values 

for plasma properties from experimental measurements, allows the plasma equations to 

be applied to solve for the poloidal variations in plasma properties.   

5.1. Equations formulated for curvilinear coordinates 

In curvilinear coordinates, expanding Eq. (2.1) and applying the FSA operation 

yields the continuity equation for a flux surface in a toroidally symmetric plasma. 
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The second term in Eq. (5.1) vanishes in the FSA operation, and the remaining form of 

the FSA of the continuity equation in a general orthogonal curvilinear system relates the 

particle source and the radial particle flux Γ = 𝑛𝑉𝑟. 
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In curvilinear coordinates, the plasma flow is very small across flux surfaces – the 

radial direction in flux surface aligned coordinates. Thus, in the radial component of the 

momentum balance equation, the inertial, viscous, and frictional terms are negligibly 

small in comparison to the pressure and electromagnetic contributions. The radial balance 

reduces to the FSA of a balance between the outward pressure force, and the inward-

directed electromagnetic force comprised of the radial electric field and the magnetic 

pinch. 
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  (5.3) 

In the poloidal direction, the FSA of the momentum balance equation becomes 

[Appendix A]: 
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  (5.4) 

The second elements in both the inertial and viscous pieces vanish in the FSA operation. 

In the ordering 𝑓𝑟 ≪ 𝑓𝑝 < 1, the ,r   tensor element has no dependence on parallel 

viscosity, and is negligible in comparison to Π𝑟,𝑟
0  and Π𝜃,𝜃

0  [8]. Additionally, there is no 

significant external source of poloidal momentum in the plasma core. The simplified 

form of the FSA of the poloidal momentum balance then becomes 
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  (5.5) 

The cross-product of the momentum balance equation with the tokamak major 

radius returns the toroidal angular momentum balance, describing torque about the 

tokamak central axis [Appendix A].  
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  (5.6) 

The first term in the inertial component is dependent on the radial velocity, and 

can be neglected, while the second term vanishes in the FSA operation. Because the 

second term in the viscous component vanishes in the FSA operation, the remaining Π𝑟,𝜙 

component of the viscosity tensor determines the viscous contribution to the toroidal 

angular momentum balance. Because the parallel viscosity contribution to this term 

vanishes in the ordering 𝑓𝑟 ≪ 𝑓𝑝 ≪ 1, the gyroviscosity Π𝑟,𝜙
3,4

becomes the dominant 

viscous force in Eq. (5.6). The pressure gradient in the toroidal direction vanishes by 

axisymmetry, and the remaining, simplified form of the equation becomes: 
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  (5.7) 

If the toroidal angular momentum balance equation is weighted by any poloidally 

dependent function before the FSA operation is applied, the poloidally-dependent portion 

of the inertial term and the parallel viscosity do not vanish.  Forms of Eq. (5.6) weighted 

by the Fourier basis functions 𝑔[𝜃] = 𝑆𝑖𝑛[𝜃], 𝐶𝑜𝑠[𝜃], will be applied to calculate 

poloidal asymmetries in the toroidal component of velocity, and take the form: 
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5.2. Relating unknown poloidal variations in plasma properties to asymmetries in 

density, velocity, and electric potential. 

In the plasma equations, the curvilinear representation for the distributions of all 

plasma properties can be simplified by separation of variables into a poloidally dependent 

“asymmetry” contribution, and a radially dependent “mean” value describing the 

averaged behavior on a flux surface.  The poloidal variations in plasma density, 

components of velocity, and electric potential can be expanded using low order Fourier 

series, which introduces a Sine and Cosine Fourier asymmetry for each of these variables. 

Poloidal variations in plasma collision frequencies, gyrofrequencies, and viscosity 

coefficients can be expressed in terms of these asymmetries and geometric scale factors.   

A general poloidally dependent quantity 𝑥[𝜌, 𝜃] can be separated into radially and 

poloidally dependent contributions.  

      ,x x x      (5.9) 

The first part of the right of Eq. (5.9) will be referred to as the mean value of 

quantity 𝑥 at flux surface 𝜌, and is a radially dependent quantity describing how plasma 

parameters change between flux surfaces.  The second piece is purely poloidally 

dependent, and represents how plasma parameters vary within flux surfaces.  Using a 

technique similar to that applied to represent minor radius in the SF model, the 

poloidally-dependent portion of Eq. (5.9) can be represented in the form:  
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In this analysis, the poloidal variations in density (𝑛), electric potential (Φ), and both 

poloidal and toroidal velocities (𝑉𝜃, 𝑉𝜙) throughout the plasma equations described in 

Section 5.1 are expanded in this manner to first order.  
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  (5.11) 

Temperature and radial velocity in these equations are assumed to have no poloidal 

variation, and are approximated using only flux-surface dependent mean values.  
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The poloidal dependence of both isotropic pressure (𝑝 = 𝑛𝑇) and collision frequency (𝜈) 

can be expressed in terms of the density asymmetry. 
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The poloidal dependence of the gyrofrequency can separated from the mean-value of 

gyrofrequency, and is the same as the poloidal variation of toroidal magnetic field [Eq. 

(3.42)]. 
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with 
i

i

i

e B

m


  . Consequently, the poloidal dependence of the gyroviscous viscosity 

coefficients can be written in terms the radially dependent mean viscosity coefficients 

𝜂̅𝑖
3,4

, where the poloidal dependence is the combination of the poloidal variations in the 

density and the poloidal dependence of the toroidal scale factor.   
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and 4,
i

i
i

i

n T



 . The plasma considered in this analysis is predominantly in a 

“collisionless” regime, where, 𝜈̂𝑖,𝑖 ≪ 1 [Figure 1]. Thus, the poloidal dependence of the 

collisionality interpolation function can be well approximated by the square of the density 

variations [Appendix B].   
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This allows the poloidal dependence of the parallel viscosity coefficient can then be 

written as:  
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5.3. Determining radially dependent plasma properties from experimental 

measurements 

In order to develop a system of equations that can be used to solve for the poloidal 

asymmetries, mean values for densities, velocities, temperatures, particle and momentum 

sources, and the electric field must be determined.  Measurements are available for the 

radial variations of poloidal and toroidal velocity, density, and temperature for this shot, 

and the ONETWO code can be used to set particle and momentum sources.  From these 

measurements and calculations, the mean electric potential (Φ̅) can be initialized using 

the FSA of the continuity equations for both species Eq. (5.2), and the radial velocity (𝑉̅𝑟) 

can be calculated using the FSA of the composite radial momentum balance equation Eq. 

(5.3).   
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For Shot 149468 at 1905 ms, measurements of the carbon and deuterium mean 

velocity profiles [Figure 26], and mean densities for carbon, deuterium and electrons 

[Figure 27] are taken from experiment [16].   

 
Figure 26: Measurements of Toroidal Velocities (left) and Poloidal Velocities (right) for Deuterium 

(red) and Carbon (black) in Shot 149468 at 1905 ms.  

In addition, the ONETWO code is used to calculate radial profiles of toroidal torque from 

neutral-beam injection for deuterium (𝑅 ∙ 𝑆𝑑
1), and radial profiles for deuterium particle 

sources from the beam and the wall (𝑆𝑑
0) [Figure 27] [17]. External carbon sources of 

torque and particles are assumed to be negligible in the central plasma considered in this 

analysis.   

 
Figure 27: Density measurements for Deuterium, Carbon, and Electrons (left) and ONETWO 

calculations of external particle and momentum sources for Deuterium (right). Black profiles 

plotted against left axes, red profiles plotted against right axes.   

The flux-surface-averaged continuity equation [Eq. (5.2)] relates the radial 

velocity to the density and particle sources. Assuming that the radial particle velocity has 
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no poloidal dependence [Eq. (5.12)], the continuity equation can be formatted into a 

differential equation in 𝑉̅𝑟. 
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In the shot considered in this analysis, the only significant particle source for the 

central plasma (𝜌 < 0.7) is from deuterium, sourced to the plasma by neutral-beam 

injection. The profile for deuterium 𝑉̅𝑟 can be determined by solving Eq.(5.19) using an 

integrating factor [Eq. (5.20)]. 
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The radial profile for 
𝜕Φ̅

𝜕𝜌
 is directly calculated from the composite radial 

momentum balance, constructed by adding Eq. (5.3) for both deuterium and carbon. After 

expanding the electric potential using Eq. (5.11), the gradient of the mean potential can 

be factored out of the FSA operation. 
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Equation (5.21) can be used to directly solve for the radial gradient of electric 

potential; i.e., the radial electrostatic field. The mean potential profile can be calculated 

by using a Simpson’s-rule numeric integration, with potential on the plasma boundary 

constrained to zero.  
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CHAPTER 6 

CALCULATION METHODOLOGY AND RESULTS  

 

The plasma equations of Section 5.1, applicable throughout the central tokamak 

plasma within the 𝑞 = 2 rational surface (𝜌 < 0.7), are used to construct a model to 

predict poloidal asymmetries in electric potential, density, and poloidal and toroidal 

components of velocity.  A MATLAB [18] fitting program designed to automatically 

calculate from EFIT output files the formalism needed to analytically represent scale 

factors and magnetic field distributions for any of the plasma models discussed in Section 

0 is applied to fit the Asymmetric Miller geometry, and to fit experimental and 

ONETWO radial profiles and gradients of plasma mean-values.  A separate Mathematica 

[19] program is applied which automates the process of deriving of a set of coupled 

nonlinear equations from the basic plasma continuity and momentum balance equations 

introduced in Section 0, using the techniques described in Section 0.  Mathematica writes 

the results of this derivation into text files, which are parsed using Python [20] into 

Fortran 90 [21] subroutines designed to calculate all coefficients for the set of nonlinear 

equations from the fitted data outputted by the MATLAB fitting-program.  Finally, a 

Fortran code which utilizes both these Mathematica-generated subroutines and MATLAB 

generated input files of fitted data solves the coupled set of nonlinear plasma equations 

for the plasma asymmetries, using an iterative matrix-inversion technique.  

These asymmetries describe the poloidal-variation of density, potential, and 

velocity in the plasma core necessary to satisfy the Fourier moments of the continuity and 

momentum balance equations.  Performing the above-described analysis with scale 

factors set using the circular model significantly modifies the final predictions for plasma 

asymmetries.  Additionally, although it may be simpler to calculate and apply only the 

non-orthogonal GFA covariant or contravariant scale factors rather than determine the 

OFA model values, analyses performed with these modifications to the AM scale factors 

changes the plasma equations and influences the resulting asymmetry predictions – 
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emphasizing the importance of proper application of the orthogonalization techniques 

outlined in Section 0.  

6.1. MATLAB fitting-program for setting geometry and mean plasma 

parameters from experiment, ONETWO, and EFIT 

Fitting of the Asymmetric Miller Orthogonalized Flux-surface Aligned (AM-

OFA) model, determined in Section 4.6 to be the most effective method of representing 

the EFIT-determined plasma geometry, is performed using a MATLAB fitting program.  

The radial-profile fitting functions are also applied to fit radial profiles and determine 

gradients of experimental measurements and ONETWO outputs.  

MATLAB routines calculate polynomial fits for radial profiles of the geometric 

quantities necessary to analytically represent the Asymmetric Miller model.  From the 

Semi-Cartesian data returned by EFIT, 2D splines are used to determine contours of 

constant 𝜓, and from the positions of these contours determine 𝜓, 𝐹, and 𝑅0.  The radial 

profiles for upper and lower triangularities and elongations for an Asymmetric Miller-

model fit are then calculated the nonlinear convergence methods described in Section 4.5, 

and all resulting radial profiles are fitted using radially-dependent polynomials. Radial 

gradients through 3nd order are calculated at 50 radial locations, and resulting fits are 

written to text files to be used as inputs by the Fortran solution code. 

These same MATLAB routines are applied to fit radial profiles and gradients to 

the experimentally measured mean-values of electron and ion temperatures, electron and 

ion densities, both the poloidal and the toroidal components of velocity for ions, and 

external deuterium momentum and particle sources [Figure 26, Figure 27].  The resulting 

fits of profiles and radial gradients through 2nd order are also written to input text files for 

the Fortran code.  

Other plasma constants used in the Fortran calculations are determined from the 

MATLAB fits of EFIT output, or taken directly from the DIII-D database. The minor 

radius at the last-closed flux-surface  0.570 ma  is obtained from the MATLAB fit. The 

toroidal inductance variable VLOOP, used to set the toroidal electric field, and the 

plasma volume  315.962 m  are taken directly from the DIII-D database.  
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6.2. Mathematica automated-derivation of a system of fourteen plasma 

asymmetry equations 

The resulting plasma equations can be formulated into a coupled set of partial 

differential equations relating plasma density, velocities, and electric potential.  

Separation of variables is applied to reduce a subset of these 2D (r,theta) PDEs to a set of 

poloidally dependent ODEs at each of 50 radial locations.  Representing the poloidal 

variations using Fourier series expansions, weighting the resulting equations by the 

Fourier basis functions (sin𝑛𝜃 , cos 𝑛𝜃), and taking the flux surface average to make use 

of orthogonality further reduces the set of ODEs to a coupled set of fourteen nonlinear 

equations relating the first order plasma asymmetries (Φs,c, 𝑛𝑠,𝑐, 𝑉𝑝
𝑠,𝑐, 𝑉𝑡

𝑠,𝑐) for both 

Deuterium and Carbon species.  

A combination of Mathematica scripts are used to construct the bulk of the 

analytic formalism described in Sections 0, 0, 0, and Appendix A, and apply it to develop 

the set of plasma equations relating asymmetries within Mathematica. After expanding all 

the calculus-dependent portions of Equations (2.1)-(2.2) in terms of scale-factors, and 

substituting in the viscosity formalism outlined in Appendix A.3, the resulting partial 

differential equations are formatted entirely in terms of quantities with both radial and 

poloidal dependence, and their gradients in both radial and poloidal curvilinear 

directions.  Applying separation of variables allows these PDEs to be reduced to 

poloidally-dependent ODEs, where values for all radial dependent terms are known. The 

expansions for the poloidal dependence of plasma variables [Eq. (5.11)] and other 

quantities that share these poloidal variations [Eqs. (5.13)-(5.18)] are inserted into the 

Mathematica equations, introducing fourteen unknown plasma asymmetries.  Weighting 

the resulting equations by the Fourier basis functions (sin 𝑛𝜃 , cos 𝑛𝜃) and taking the flux 

surface average to make use of orthogonality further reduces these ODEs to an 

overdetermined coupled set of nonlinear equations relating the fourteen first order plasma 

asymmetries (Φs,c, 𝑛𝑠,𝑐, 𝑉𝑝
𝑠,𝑐, 𝑉𝑡

𝑠,𝑐) for both Deuterium and Carbon species.   

In order to manipulate these complex equations into forms that can be solved, 

each is fully expanded in Mathematica to collect and isolate all terms dependent on the 

variable asymmetries.  The multipliers on these asymmetries are the FSA of quantities 
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comprised of known scale factors, magnetic fields, Fourier basis functions, and mean 

plasma quantities. This allows Mathematica to rewrite the plasma equations as the sum of 

terms comprised of only the fourteen asymmetries and flux-surface-averaged coefficients. 

The definitions for each of these coefficients, in terms of the scale factors and mean-

values of measured or fitted plasma parameters, are stored separately. The resulting forms 

of the asymmetry equations are split apart to collect all terms that are nonlinear with 

respect to the asymmetries or independent of asymmetries into a nonlinear nonlinear 

source (𝐪⃗⃗ [𝐱⃗ ]). The final result is a linear system of fourteen equations (𝐀⃗⃡  ) with fourteen 

unknown asymmetries (𝐱⃗ ). 
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A x = q x

x
  (6.1) 

This system of equations, constructed from the Fourier moments of the continuity 

equation and toroidal momentum balance for Deuterium and Carbon (8 equations) and 

the Fourier moments of the poloidal momentum balance for Deuterium, Carbon, and 

Electrons (6 equations), is written by Mathematica into output files, along with the 

definitions of the poloidally-dependent coefficients.  

Python is used to parse Mathematica-generated output files containing the re-

formatted plasma equations into Fortran 90 subroutines. The formatted Mathematica 

equations are written to several output text files in the general structure of Fortran 

subroutines.  Python parsing routines generate Fortran compliant subroutines from these 

output files. When incorporated into the full Fortran calculation code, these 

Mathematica/Python-generated subroutines compute the poloidally dependent 

coefficients for the plasma equations, perform the flux-surface averaging operation on 

these coefficients and other poloidally-dependent plasma parameters, solve differential 

equations constructed from the continuity and radial momentum balance equations for 

radial velocity and electric potential, solve the nonlinear set of plasma moment equations, 

and writes values of all radially and poloidally dependent Fortran variables and gradients 

to output files. This method of coupling the strengths of these languages allows changes 

in even the early stages of the analytic derivation portion of this analysis to be quickly 
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converted into Fortran and applied to the asymmetry calculations, while minimizing the 

possibility of human error during the derivation and coding process.  

6.3. Fortran 90 solution code to calculate plasma asymmetries 

The set of nonlinear equations developed in Mathematica is linearized, solved for 

asymmetries, and iterated until these asymmetries satisfy the set of plasma equations 

throughout the plasma using a Fortran solution code, and input files containing data fitted 

by MATLAB. These radially-dependent profiles of plasma asymmetries can be used to 

reconstruct the 2D variations of plasma potential, densities, and velocities.   

The main Fortran input file contains the values of plasma constants, and the file-

paths for the input files containing radial profiles of plasma parameters and gradients 

constructed by MATLAB. This input file contains options to allow the user to change 

which set of basis-vectors are used in the plasma equations, modify the forms of the 

plasma equations being used in the calculation, and set the convergence criteria for the 

iterative methods applied to solve the system of plasma moment equations. It also 

contains additional options to allow the particle and momentum sources to be 

approximated using the neutral-beam powers, as an approximation for profiles calculated 

using ONETWO.  

The Fortran computation code sets all possible radial profiles of plasma 

parameters and geometric quantities from input files containing MATLAB fits, and 

calculates 2D distributions plasma parameters and geometric quantities dependent on 

these fits. It sets temperature profiles for both ion species from the read-in ion 

temperature profile, and sets the deuterium density profile and gradients 𝑛̅𝑑𝑒𝑢𝑡 using 

𝑛̅𝑒𝑙𝑒𝑐, 𝑛̅𝑐𝑎𝑟𝑏, and charge neutrality. These temperatures and densities are subsequently 

used to compute the pressure profiles (𝑝̅ = 𝑛̅ 𝑇̅) for both ion species. The most-probable 

thermal velocity 𝑉̅𝑡ℎ = √
2𝑘𝑇̅

𝑚
 is also calculated for both ion species from the temperature 

profiles, and used in conjunction with the densities and temperatures to determine the 

mean-values for the collision frequencies (𝜈̅) using Eq. (2.7), the collisionality 

interpolation function (𝑓)̅ from Eq. (5.17), and parallel and gyroviscous drag coefficients 
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(𝜂̅0, 𝜂̅3,4) using Eqs. (5.18) and (5.16). Radial-profiles for the mean-values of the 

magnetic fields are computed from the fits of 𝐹 and 
𝜕𝜓

𝜕𝜌
 [Eq. (3.16)].  

Two-dimensional distributions of geometric scale factors, magnetic fields, and 

gyrofrequencies are determined from the radially dependent parameters. Although the 

default execution mode for the Fortran code implements the AM-OFA model for 

geometry, the execution mode can be switched to use the FC model, or to use only the 

AM-GFA covariant or contravariant scale factors to set the Miller geometry. This portion 

of the calculation could be easily extended to include any of the other geometric models 

discussed in Section IV. The scale factors are used to calculate distributions for the 

components of the magnetic field using Eq. (3.17), field-curvature ratios [Eq. (3.37)], 

gyrofrequencies [Eq. (3.42)], particle sources [Eq. ], and inductive electric field [Eq. ].   

After all of these experimentally-based plasma distributions are set in the Fortran 

code, the coefficients used to define the matrix-form of the system of fourteen plasma 

moment equations [Eq. (6.1)] are calculated and flux-surface averaged (FSA), and both 

the deuterium continuity [Eq. (5.19)] and the composite radial momentum balance [Eq. 

(5.21)] ordinary differential equations are solved numerically to determine radial profiles 

and gradients for both the radial component of velocity (𝑉̅𝑟) and mean electric potential 

(Φ̅). The flux-surface averages of the definitions for poloidally-dependent coefficients 

set from the Mathematica outputs are calculated numerically using a Simpson’s rule 

poloidal integration. Fortran subroutines generated from Mathematica-formatted 

equations are used for all of these calculations, including the solutions to the differential 

equations for 𝑉̅𝑟 and Φ̅. When these profiles are initially calculated, the asymmetries in 

the composite radial momentum balance and deuterium continuity equations are set to 

zero. After these asymmetries are solved for, these two profiles will updated, and this 

updating process will be iterated until the final profiles of 𝑉̅𝑟 and Φ̅ become consistent 

with the calculated asymmetries [Appendix C.2].  

Finally, the set of core Fortran subroutines generated by Mathematica calls a 

LAPACK routine to solve the linearized system of moment equations for asymmetries 

[Eq. (6.1)]. The resulting asymmetries are used to update the nonlinear source 𝑞 [𝑥 ] in the 
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system of plasma equations, and this process is iterated until the nonlinear system of 

equations constructed from the flux-surface averaged Fourier moments of the plasma 

equations converges for all fourteen asymmetries on all flux surfaces within the 𝑞 = 2 

rational surface, around 𝜌 < 0.7.  Because this analysis does not consider sources of 

carbon impurities from the edge, no attempt is made to solve for plasma asymmetries in 

the edge region, with > 2 (𝜌 > 0.7).  

After the outer iteration between the subroutine used to compute asymmetries and 

that which calculates 𝑉̅𝑟 and Φ̅ profiles converges, the resulting plasma parameters satisfy 

a total of sixteen plasma equations. Normalized residuals for these equations converge to 

less than 10−4 for all fourteen Fourier moment equation used to calculate the 

asymmetries, and for both the composite radial momentum balance and the deuterium 

continuity equation. Most residuals are much smaller, closer to the limits of double 

precision computing at ~10−15 − 10−10, as shown in Figure 28. 

 

Figure 28: The system of sixteen plasma equations is converged at each radial location within the 

𝑞 = 2 flux surface (𝜌 = 0.7) until all normalized residuals are less than 0.01% 

6.4. Results, and analysis of the effects of modifications to the geometry model 

The Fortran code calculates radial profiles for radial velocity, electric potential, 

converged asymmetries for potential, density, and velocities, and 2D distributions of 

several other plasma quantities. The default method of execution uses orthogonalized 

asymmetric Miller (AM-OFA) scale factors to formulate the plasma equations, however, 
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to illustrate the effects of the geometry model on the results, comparative calculations of 

all quantities are performed using a Flux-surface equivalent Circular (FC) model. 

Additionally, the effects of using only covariant or only contravariant scale factors on the 

Miller-model results are shown.  

Changes to the scale factors have the immediate effect of modifying the plasma 

differential volume element, which influences the calculations of the flux-surface 

volumes    [Eq. (3.40)]. The FC model flux surfaces volumes are too large 

throughout the plasma, especially towards the plasma edge. The flux surfaces computed 

using the AM-GFA covariant scale factors and those calculated using AM-GFA 

contravariant scale factors have flux surfaces with volumes larger and smaller than the 

default AM-OFA flux surfaces.  As expected considering its low positional error, the 

AM-OFA flux-surface volumes match very well with those calculated from EFIT using 

spline fits.   

 
Figure 29: Flux-surface volume  d   comparisons between plasma models. [Eq. (3.40)]  

The volume changes of Figure 29 are consistent with the definitions for covariant 

and contravariant basis vectors shown in Figure 7; covariant scale factors are the edges of 

the parallelepiped volume element, and the volume element of a covariant-covariant 

system will be the product of the edges. This product will be larger than the true volume 
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determined by the cross-product of the covariant basis vectors, just as the product of the 

two vectors scaled by the smaller contravariant scale factors will be smaller than the true 

volume. 

The accuracy of the geometric models at representing the plasma volume can be 

checked against a Monte-Carlo volume calculation, which samples 108 positions within a 

Cartesian box containing the model plasma.  The Monte-Carlo calculations match the 

volume obtained by integrating the differential volume elements for the FC and AM-OFA 

systems over the full range of toroidal, poloidal, and radial locations [Table 11]. The AM 

model volume calculated by integration while using only covariant scale factors is too 

large for agreement, at 18.240 𝑚3, and the volume using only contravariant scale factors 

is too small, at 14.430 𝑚3 – both of these discrepancies show how failure to correctly 

perform the Orthogonalization methods leads to differential volume elements which do 

not correctly integrate to the full plasma volume.  

Table 11: Comparison of Monte-Carlo calculated plasma volumes with volumes obtained by 

integrating differential volume elements over the full variable phase space.   

Model 
Integrated 

Volume 

Monte-Carlo 

Volume 

EFIT 15.962 - 

Flux-equivalent Circular (FC) 19.306 19.308 ± 0.006 

Asymmetric Miller Orthogonal Flux Surface 

Aligned (AM-OFA) 
16.009 16.005 ± 0.005 

Covariant Asymmetric Miller General Flux-

Surface Aligned (Con. AM-GFA) 
18.240 16.005 ± 0.005 

Contravariant Asymmetric Miller General 

Flux-Surface Aligned (Co. AM-GFA) 
14.430 16.005 ± 0.005 

 

In all geometry models, the asymmetries in plasma properties have only quadratic 

effects on the radial profiles for electric potential and radial deuterium velocity calculated 

from the radial ion momentum balance and deuterium continuity equations [Appendix 

C.2]. Consequently, the final 𝑉𝑟 and Φ profiles calculated using the orthogonalized 

Asymmetric Miller (AM-OFA) geometry are only slightly different from profiles 
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resulting from the FC formulated equations. [Figure 30]. The difference from using only 

covariant or only contravariant AM scale factors is even smaller. 

 
Figure 30: Electric Potential (left) and Radial Velocity (right) profiles, calculated using four 

separate geometric models. Default AM-OFA profiles shown as solid black lines.  

The potential asymmetries calculated from the system of Fourier moment 

equations described in the previous section are very small, on the order of 10−4 − 10−3. 

They show a noticeable shift in radial profile around the 𝜌 = 0.3 flux surface, which is 

reflected in all the other calculated asymmetry profiles. A significant difference in the 

sine asymmetry profiles results from applying the FC model, instead of the AM model. 

 
Figure 31: Electric Potential (Φ) Asymmetries, Cosine (LEFT) and Sine (RIGHT), calculated using 

four separate geometric models. Default AM-OFA profiles shown as solid black lines.  

The density asymmetries are shaped similarly to the potential asymmetries, but 

are approximately an order of magnitude larger. The asymmetries in the Carbon density 

are two orders of magnitude larger than the Deuterium density asymmetries, especially 

farther away from the plasma center [Figure 32]. The AM density asymmetries are much 
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more pronounced than those calculated using the FC model, differing by over 30% for 

𝜌 > 0.5 in all but the deuterium sine asymmetries. While the covariant and contravariant 

AM asymmetries are noticeable, they are relatively small, with differences from AM-

OFA remaining less than ~5%.  

 
Figure 32: Density (𝑛) Asymmetries, Cosine (LEFT) and Sine (RIGHT), for Deuterium (TOP) and 

Carbon (BOTTOM), calculated using four separate geometric models. Default AM -OFA profiles 

shown as solid black lines. 

The asymmetries in poloidal velocity [Figure 33] differ between species, and are 

affected by the geometry model. Carbon 𝑉𝜃 asymmetries are over an order of magnitude 

larger than those for Deuterium, and are smaller when calculated using the FC model 

than when computed using variations of the AM model.  In the Deuterium poloidal 

velocity asymmetries, applying only AM covariant scale factors or using the FC model 

can more than double the magnitudes of the asymmetries throughout most of the plasma.  

 



83 

 

 

Figure 33: Poloidal velocity  V  asymmetries, cosine (left) and sine (right), for Deuterium (top) 

and Carbon (bottom), calculated using four separate geometric models. Default AM-OFA profiles 

shown as solid black lines. 

Toroidal velocity asymmetries show less variation between geometric models 

than poloidal velocity asymmetries. The most significant differences are between the 

AM-OFA and FC-OFA sine asymmetries. As the variations from the orthogonalized AM 

model caused by using only covariant or contravariant scale factors are small, ~1%.  
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Figure 34: Toroidal velocity  V

 asymmetries, cosine (left) and sine (right), for Deuterium (top) 

and Carbon (bottom), calculated using four separate geometric models. Default AM-OFA profiles 

shown as solid black lines. 

The asymmetries can be used to reconstruct distributions of the poloidal and 

radial variations in plasma quantities over the plasma cross-section. The small deuterium 

asymmetries cause the deuterium distributions to be largely symmetric about the plasma 

center, as can be seen in the deuterium density distribution [Figure 35, left]. However, the 

carbon density distribution is noticeably peaked towards the divertor region [Figure 35, 

right].   
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Figure 35: Predicted Deuterium and Carbon density distributions using the AM-OFA geometry 

model.  

The Carbon poloidal and toroidal velocity distributions also show the effects of 

the large carbon asymmetries, generally requiring increased carbon velocities in the lower 

plasma hemisphere, corresponding to predictions for the region of lower density carbon 

[Figure 36]. Predictions for Carbon 𝑉𝜙 show an especially large up-down asymmetry near 

the plasma core, in the region 0.1 < 𝜌 < 0.4.  

  

Figure 36: Predicted Carbon Poloidal (left) and Toroidal (right) Velocity distributions, using the 

AM-OFA geometry model.  
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Recent analyses have applied similar calculations of plasma asymmetries to 

predict components of poloidal and toroidal velocities from the flux-surface averaged 

toroidal and poloidal momentum balance equations [22].  In addition, traditional 1D 

neoclassical calculations have not been able to explain recent measurements of poloidal 

density, velocity, and radial electric field asymmetries in the plasma edge of the Alacator 

C-mod tokamak [23], suggesting that the extension of the 2D asymmetry calculation 

methods presented here may be helpful.   
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CHAPTER 7 

CONCLUSIONS 

 

From radial measurements of flux surface averaged plasma density, velocity, and 

external source and a Grad-Shafranov calculation of the variations in the magnetic field 

structure across a plasma cross-section, neoclassical rotation theory can be used to predict 

poloidal variations in plasma properties on flux surfaces.  Fourier moments of the 

continuity equation and components of the momentum balance equations for Carbon and 

Deuterium in a realistic up-down asymmetric plasma can be used to calculate the poloidal 

variations in distributions of densities, velocities, and electric potential adhering to low-

order Fourier expansions.  Use of a realistic orthogonalized curvilinear coordinate system 

to represent the plasma geometry significantly influences these poloidal variations, as 

compared to the results obtained in identical analysis using the circular model.   

In order to apply a curvilinear flux surface aligned model to calculate gradient 

operators in plasma equations formulated relative to flux-surfaces, it is important to use a 

system of orthogonalized basis vectors and scale factors developed from the general 

curvilinear system in order to correctly perform volume integrals. This is an additional 

complication that arises when the curvilinear system under consideration deviates from a 

toroidally symmetric circular-model, which does not require orthogonalization. 

The Asymmetric Miller Orthogonalized Flux-surface Aligned Coordinate system 

is significantly more accurate than several alternative methods of equivalent complexity 

at representing the shape of EFIT-determined flux surfaces, while also requiring the 

smallest number of fitting coefficients. Although these alternative curvilinear systems are 

uniquely suited to modeling irregularly shaped plasmas and can be expanded to arbitrary 

accuracy at the price of a large increase in complexity, there are few practical situations 

in which the error in a model’s representation of the poloidal magnetic field in the central 

plasma must be reduced below the ~0.8% attainable using the Asymmetric Miller model. 
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These calculations of poloidal asymmetries can be applied to update many 

calculations which rely on approximations for variations of the plasma properties on flux 

surfaces. More work needs to be done in order to expand this analysis to apply in the 

plasma edge region, extend the viscosity representation to include the effects of toroidal 

axisymmetry, and consider the effects of applying higher order Fourier expansions to 

represent the poloidal asymmetries in plasma properties. Accounting for radial gradients 

in the plasma asymmetries may also influence the calculation, although the increased 

complexity of the system of asymmetry equations resulting from this modification may 

require that the convergence method be updated to apply a nonlinear Newton’s method.  
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APPENDIX A INERTIAL TERMS AND ELEMENTS OF THE 

VISCOSITY TENSOR 

 

The Jacobian in orthogonalized curvilinear coordinates is h h h     

A.1 Expansion of Continuity Streaming Term in OFA Geometry 

In the Continuity Equation, expanding the vector operations in the streaming term yields 

1
·

pr nV h hnV h h
nV

  

 

   
   
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  (A.1) 

A.2 Expansion of Momentum and Torque Inertial Terms in OFA Geometry 

Poloidal Momentum Balance: 
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  (A.2) 

Toroidal Angular Momentum Balance: 

 
2 2

· ·
rV V nh h V V nh hm

Rê nmV V
      


 

     
         

  (A.3) 

A.3 Elements of the Viscosity Tensor in OFA Geometry 

The elements of the stress tensor can be decomposed into parallel  0

,  , perpendicular 

 12

,  , and gyroviscous  34

,   components: 

 

0 12 34

, , , ,

0 1 2 3 4

0 , 1 , 2 , 3 , 4 ,W W W W W

       

             

   

   
  (A.4) 

These tensor elements can be written in terms of viscosity coefficients  0 1 2 3 4, , , ,      

and elements of the traceless rate-of-strain tensor for plasma under the influence of a 

strong external magnetic field  , ,rB B B B 

 
 

 
.  
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The elements of the traceless rate-of-strain tensor are 
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Where ,   is the Kronecker delta function, , ,    is the antisymmetric unit tensor, and 

the elements of the general rate-of-strain tensor ,W   can be defined in terms of the 

velocity and unit vectors for the GFA coordinate system: 
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  (A.6) 

The magnetic field ratios in a tokamak can be ordered as 
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Because rV V V   , the radial component of velocity can be neglected in this 
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the elements of the viscous stress tensor shown in Table 12 can be developed.  
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Table 12: Elements of the Viscosity Tensor, with 
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A.4 Expansion of Momentum and Torque Viscous Terms in OFA Geometry 

Poloidal Momentum Balance: 
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  (A.9) 

Toroidal Angular Momentum Balance: 
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APPENDIX B SIMPLIFICATION OF THE PFIRSCH-SCHLUTER 

VISCOSITY INTERPOLATION FUNCTION FOR LOW 

COLLISIONALITY PLASMA 

 

In order to represent the poloidal dependence in the parallel viscosity coefficient, 

the poloidal dependence in the Pfirsch-Schluter – banana plateau viscosity interpolation 

formula must be isolated. Applying Eqs. (5.14) and (5.10) to expand the poloidal 

dependence of the drag frequency in Eq. (2.11) in terms of 𝑛̆𝒾, and assuming that 𝜀 and 𝑞 

are flux-surface dependent values, the viscosity interpolation function can be rearranged 

to the form 
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  (B.1) 

which, after dividing through top and bottom by (𝜀−3 2⁄  𝜈̂𝑖,𝑖
2), becomes 
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  (B.2) 

The poloidal dependence of Eq. (B.2) is isolated to the 𝑛̆𝒾 terms. With some 

rearranging, the poloidal dependence can be separated from the radially-dependent 

portion and written as a product of series expansions, using an inverse binomial 

expansion.  
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where 
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and f  is defined in Eq. (5.17). This form is valid for regimes where 𝜈̂𝑖,𝑖 ≲ 1.  

 

Figure 37: Normalized collision frequencies  ̂  for Shot# 149468 at 1905 ms. 

The plasma considered in this analysis is predominantly in a “collisionless” 

regime, where, 𝜈̂𝑖,𝑖 ≪ 1 [Figure 37]. Consequently, 𝑔̆𝑖,1 → 𝑔̆𝑖,3 2⁄ → 0, and the poloidal 

dependence of the parallel viscosity reduces to the square of the density variations.  

 
2

i i if f n   (B.5) 
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APPENDIX C FIGURES  

 

C.1 Curvilinear Model Basis Vector Orientations 

 

Figure 38: Basis vectors determined by analytic expressions for gradients of a position vector with 

poloidal variations in both major radius (𝑅) and vertical displacement (𝑍) represented using 2nd 

order Fourier expansions. Requires nine coefficients to be fitted from the Semi-Cartesian 𝜓 

distribution 

 

Figure 39: Basis vectors determined by analytic expressions for gradients of a position vector with 

poloidal variations in minor radius (𝑟) represented using a 4 th order Fourier expansion. Requires ten 

coefficients to be fitted from the Semi-Cartesian 𝜓 distribution 

 



96 

 

C.2 Effects of Asymmetries on Radial Velocities and Electric Potential 

Calculations 

 

Figure 40: Percent difference in   and rV  profiles calculated while neglecting asymmetries in 

Eq.(5.19) and Eq.(5.21), as compared to calculations which include asymmetries.   

C.3 Calculations of 2D distributions of plasma properties, using the 

Orthogonalized Asymmetric Miller geometry model 

  

Figure 41: Poloidal (left) and Toroidal (right) Components of the Magnetic Field 

 ˆ ˆB B e B e        
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Figure 42: Sources of Deuterium particles (left) and toroidal momentum (right), from neutral beam 

injection.   

  

Figure 43: Distributions for Electric Potential    (left) and radial component of the Electric Field 
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Figure 44: Poloidal (left) and toroidal (right) components of the Deuterium velocity vector 
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