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SUMMARY* 

Multiple studies have found an association between exposure to particulate matter (PM) 

and adverse health endpoints. One of the suggested mechanisms in which inhalable 

particles exert damage is by inducing the overproduction of reactive oxygen and nitrogen 

species (ROS/RNS). Hydrogen peroxide (H2O2) is one type of ROS that has been 

implicated in pathological disorders induced by PM exposure. It has also received 

increasing attention owing to its dominant role in cellular signaling, metabolic processes, 

and oxidative stress. However, its biological role upon exposure to PM remains unclear. 

Secondary organic aerosols (SOA) make up a substantial fraction of ambient fine PM and 

play a role in the proinflammatory effects of the particles. In this study, the contribution of 

H2O2 to intracellular ROS/RNS production upon exposure to water-soluble components of 

SOA generated from the photooxidation of naphthalene in the presence of NOx 

(naphthalene SOA samples) was investigated using a general oxidative stress indicator 

(carboxy-H2DCFDA) and a H2O2 scavenger (catalase).  

The intracellular ROS/RNS response with and without the addition of catalase to 

naphthalene SOA samples were measured, where the presence of catalase substantially 

suppressed ROS/RNS response. The H2O2 produced by water-soluble components in the 

                                                 

* This thesis is reproduced in part with permission from “Prominent Contribution of Hydrogen 

Peroxide to Intracellular Reactive Oxygen Species Generated upon Exposure to Naphthalene 

Secondary Organic Aerosols” by Fobang Liu, Maria G. Saavedra, Julie A. Champion, Kathy K. 

Griendling, and Nga L. Ng, Environmental Science & Technology Letters, 2020, 7 (3), 171-177. 

DOI: 10.1021/acs.estlett.9b00773. Copyright © 2020 American Chemical Society. 
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naphthalene SOA extracted in phosphate buffer solution (PBS) was quantified and ranged 

from 9.29 ± 0.37 to 12.31 ± 0.31 μM (H2O2[SOA]), corresponding to a H2O2 yield of 3.16 to 

4.20 ng/µg. The measured H2O2 was product of interactions between quinone compounds 

and peroxide compounds in naphthalene SOA and PBS. Additionally, cells exposed to 

naphthalene SOA samples produced H2O2 at a rate of 0.21  0.01 to 0.26  0.03 

pmol/min/104 cells (H2O2[cells]), which was associated with the mediation of immune 

responses and/or oxidative stress induced by naphthalene SOA exposure. These findings 

confirmed that H2O2 was the main ROS produced by cells exposed to naphthalene SOA 

and that it was the driver of naphthalene SOA-induced ROS/RNS response, although this 

contribution can vary depending on the specific SOA precursors and formation conditions.  

Findings in this study also showed that H2O2[SOA] can rapidly diffuse into the cells and 

contribute to the intracellular oxidation of carboxy-H2DCF to a greater extent than 

H2O2[cells]. This suggest that the diffusion of H2O2[SOA] into the cells represent one of the 

pathways in which exposure to naphthalene SOA leads to oxidative stress.  
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CHAPTER 1. INTRODUCTION 

1.1 Particulate matter and its effects on human health 

Exposure to particulate matter (PM) has been recognized as a dominant cause of multiple 

adverse health outcomes, including cardiovascular,1–3 respiratory,4–6 and neurological7–9 

diseases, among others.10 In the past decade, multiple epidemiological studies11–14 have 

found an association between PM exposure and human measures of mortality and mobility, 

while toxicological studies15–19 have demonstrated its deleterious effects on tissue injuries 

and health endpoints. Despite these efforts, the specific mechanisms in which particles 

exert damage are not yet well-understood.  

Multiple studies15,20–24 have attributed PM adverse health endpoints to the oxidant 

generating properties of the particles. These particles can induce the overproduction of 

reactive oxygen and nitrogen species (ROS/RNS) directly by the presence of redox-active 

PM components in biological systems20,23,25 or  indirectly through interactions between 

particles and host proteins.26,27 This overproduction of ROS/RNS can drive the 

uncontrolled oxidation of cellular constituents, affecting cell functionality and in some 

cases, causing cell death.24,28,29 However, ROS/RNS have a dual role in biological systems. 

Other than toxic metabolites, they are necessary for the activation of multiple regulatory 

and metabolic processes.30–32 

1.2 Significance of ROS/RNS in biological systems  

ROS/RNS are short-lived highly reactive molecules naturally formed as byproduct of 

numerous physiological processes.28 ROS include superoxide (O₂˙⁻), hydroxyl radicals 
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(·OH), hydrogen peroxide (H2O2), among others. RNS are commonly found as nitric oxide 

(NO·) and peroxynitrite (ONOO⁻).33 These ROS/RNS are necessary for the regulation of 

multiple physiological processes, including tissue repair responses, cell growth and 

proliferation, apoptosis, immune mechanisms, and others.30,32,34,35  

Among all ROS/RNS, H2O2 has received increasing attention owing to its dominant role 

in cellular signaling, metabolic processes, and oxidative stress.36–38 H2O2 is mainly 

produced by spontaneous or catalytic dismutation of superoxide anions (O2
-) generated by 

the mitochondrial respiratory chain,36,39 or by numerous enzymes,40 such as the 

nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase.41,42 This oxygen 

metabolite has been involved in the mediation of physiological and immune responses by 

promoting the chemical modification of multiple proteins and transcription factors across 

cell membranes.37,43 However, H2O2 has also been shown to facilitate cell proliferation and 

cell survival of cancer cells,44 which could have important implications during the 

progression of cancer diseases.45  

H2O2 can induce different cellular responses depending on its concentration.29 Low levels 

of H2O2  are known to activate metabolic processes37 and induce antioxidants in order to 

protect the cell from oxidative damage,38 whereas high levels of H2O2 stimulate the 

expression of pro-oxidants involved in cell cycle arrest or apoptosis,38,44 as well as the 

hyperactivation of inflammatory responses that can result in tissue damage and 

pathology.29,46 High levels of H2O2 in subcellular regions, such as the mitochondria, have 

also been associated to hypoxia, inflammation, apoptosis, autophagy, and DNA 

damage,36,47 which could severely affect cell viability and functionality.48 Additionally, 

H2O2 in the presence of transition metals, such as Fe2+ and Cu2+, can form damaging 
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concentrations of hydroxyl radical (OH-).49 OH- is highly reactive towards lipids, proteins 

and DNA, and can ultimately lead to oxidative stress.44  

H2O2 has also been implicated in pathological disorders induced by PM exposure, 

including the activation of the mitogen-activated protein kinase (MAPK) and pulmonary 

vasoconstriction in human pulmonary artery endothelial cells (HPAEC)50 and the 

mediation of DNA damage in human alveolar epithelial cells (A549) by forming OH- in 

the presence of PM water-soluble metals,51 among others.17,52 H2O2 directly transported by 

the particles was also shown to enhance inflammatory responses and ROS formation in rats 

exposed to H2O2-fine particle mixture, resulting in tissue injury and altered alveolar 

macrophage activity.53 These diverse pathological and physiological functions of  H2O2 

have motivated multiple efforts in the development of sensitive and selective fluorescent 

probes to study its complex behavior in living organisms.54–58 However, its biological role 

upon exposure to PM remains unclear. 

1.3 Use of H2DCF-DA to quantify intracellular ROS/RNS 

PM toxicity has been widely studied using the fluorescent dye 2’7-

dichlorodihydrofluorescein diacetate (H2DCF-DA).17,59–62 This probe was first synthetized 

to measure H2O2 in cell-free systems63,64 and some studies65–67 used it as a marker for 

intracellular H2O2 in cells exposed to PM.65–68 However, it was shown that the probe 

compound can be oxidized by other types of ROS and RNS, such as hydroxyl radical 

(·OH), nitrogen dioxide (·NO2), and peroxynitrite (ONOO-).69,70 Therefore, this probe is 

preferably used as a qualitative index of the overall oxidative status of cells64,71,72 and has 

been used to investigate PM-induced oxidative stress accordingly.59,60,73,74 Nevertheless, 
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the collective use of effective  H2O2 scavengers with this probe can elucidate the role of 

H2O2 in the oxidation of the probe compound,70 and therefore, its contribution to PM-

induced oxidative stress.  

1.4 PM components that induce the intracellular generation of ROS/RNS 

Ambient inhalable particles can transport redox-active compounds into biological systems 

that trigger the generation of ROS/RNS. Multiple studies23,25,51,75 have attributed PM 

toxicity to the presence of water-soluble metals in the particles, which catalyze oxidants 

formation through Fenton-like reactions.76  However, other studies20,22,77–80 have found that 

the major fraction of the PM,81–85 known as organic aerosols (OA), play an important role 

in the proinflammatory effects of the particles.  

OA is normally dominated by secondary organic aerosols (SOA), formed from the 

oxidation of gas-phase compounds followed by gas-particle partitioning.81–84,86 Previous 

studies found that SOA generated from the oxidation of the anthropogenic precursor, 

naphthalene, presented higher oxidative potential87,88 and induced greater intracellular 

ROS/RNS response, as measured with H2DCF-DA,79 than SOA from other common 

biogenic precursors. These effects were attributed to the presence of quinone compounds 

in naphthalene SOA, which offer redox active sites that serve as electron transfer 

intermediates.77 However, the lack of specificity between the types of ROS/RNS that drove 

this intracellular response represents a challenge in the understanding of how naphthalene 

SOA exerted damage. 
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1.5 Objective of this study 

In this study, the contribution of H2O2 to the intracellular ROS/RNS response induced by 

water-soluble components of naphthalene SOA formed in the presence of NOx was 

measured using carboxy-H2DCFDA and catalase as an effective H2O2 scavenger. 

Naphthalene was chosen as the SOA precursor due to its high oxidative potential and 

significant impact on cellular responses, as well as a representative of polycyclic aromatic 

hydrocarbon (PAH) compounds that have been found in ambient fine PM.89,90 HONO was 

used as the OH- precursor to oxidize naphthalene in order to prevent the addition of H2O2 

or ROOH compounds into the particles.  The amount of H2O2 in naphthalene SOA samples 

extracted in phosphate buffer solution (PBS) and produced by cells after exposure to 

naphthalene SOA were quantified using Amplex red, respectively. Finally, the total H2O2 

generated by cells during the complete exposure period was compared to the H2O2 

generated by naphthalene SOA samples to highlight that both H2O2 sources could have 

contributed to the intracellular ROS/RNS response.   
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CHAPTER 2. METHODS 

2.1 Laboratory Generated Naphthalene Aerosols  

Four SOA samples (a, b, c and d) were generated from the photooxidation of naphthalene 

in the presence of NOx in the Georgia Tech Environmental Chamber (GTEC) facility, 

which consists of two 12 m3 Teflon chambers suspended inside a temperature-controlled 

enclosure surrounded by UV lights.91 The four naphthalene photooxidation experiments 

were conducted at 22 oC and <5% RH. The experimental conditions were similar to those 

in Tuet et al.92 Briefly, ammonium sulfate ((NH4)2SO4) was used as seed aerosols. 

Naphthalene was introduced into the chamber by flowing pure air through a FEP tube 

containing solid naphthalene (99%, Sigma Aldrich) at 5 L min-1. Nitrous acid (HONO) was 

used as the hydroxyl radical (OH-) precursor to oxidize naphthalene. HONO was injected 

as described in Kautzman et al.93 Briefly, a solution of HONO was prepared by mixing 15 

mL of 1 wt % aqueous NaNO2 dropwise into 30 mL of 10 wt % H2SO4 in a glass bulb. 

Then, a stream of pure air was passed through the bulb, mobilizing HONO into the 

chamber. Turning on the UV lights marked the beginning of the experiment. O3, NO2, and 

NOx concentrations were measured using an O3 analyzer (Teledyne T400), a cavity 

attenuated phase shift (CAPS) NO2 monitor (Aerodyne), and a chemiluminescence NOx 

monitor (Teledyne 200EU), respectively. Naphthalene concentration was monitored using 

a gas chromatography-flame ionization detector (GC-FID, Agilent 7890A). Particle 

volume concentrations and size distributions were measured using a Scanning Mobility 

Particle Sizer (SMPS, TSI). Elemental ratios (O/C, H/C, and N/C) and average carbon 

oxidation state (OSc) of aerosols were characterized by a High Resolution Time-of-Flight 
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Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne) with data analysis toolkits 

SQUIRREL (v. 1.57) and PIKA (v. 1.16G). 94,95 Experimental conditions and bulk aerosol 

chemical composition measured by the HR-ToF-AMS are summarized in Table A-1.  

2.2 Filter Collection and Extraction 

Laboratory-generated aerosols were collected on Teflon filters (47 mm, 0.45 m pore size, 

Pall Laboratory). Filter collection was initiated after the aerosol volume concentration 

reached its maximum93 and lasted for approximately 1.5 h. The total aerosol mass collected 

was calculated by integrating the aerosol volume concentration data from the SMPS  over 

the sampling time and multiplying by the total volume of air collected, as described in Tuet 

et al.79 SMPS volume concentrations were converted to mass concentrations by assuming 

a density of 1.48 g cm-3 based on prior experiments.93 Blank filters containing seed aerosols 

and HONO only were also collected to account for background signals. The collected filter 

samples were stored in sterile petri dishes, sealed with parafilm, and stored at -20 °C. Prior 

to analysis, filters were extracted following established protocols74,79,87,96 where the filters 

were submerged in RPMI-1640 media (for exposure experiments) or phosphate buffer 

solution (PBS) (for quantification of H2O2 in naphthalene SOA samples only) and 

sonicated for 30 minutes using an Ultrasonic Cleanser (VWR International). Naphthalene 

SOA samples were filtered with 0.45 m PTFE syringe filters (FisherbrandTM) and the 

ones submerged in RPMI-1640 media were supplemented with 10 % Fetal Bovine Serum 

(FBS). 
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2.3 Determination of Intracellular ROS/RNS 

The intracellular ROS/RNS generated upon exposure to water-soluble components of 

naphthalene SOA (naphthalene SOA samples a, b, c, and d, respectively) extracted in 

RPMI-1640 medium were measured using the oxidation-sensitive fluorescent probe 5-

(and-6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA, 

Molecular Probes C-400). This compound becomes deacetylated by intracellular esterases 

and is better retained intracellularly due to its additional negative charges.97  The non-

fluorescent deacetylated compound is oxidized by the activity of ROS/RNS species, 

forming the fluorescent compound carboxy-DCF.  

The protocol followed was the one established in our previous studies.74,79,92 Briefly, a 96 

well-plate was pre-coated with 10 % Fetal Bovine Serum (FBS) dissolved in PBS. 

Immortalized murine alveolar macrophages MH-S (ATCC® CRL-2019™) cultured in 

RPMI-1640 (ATCC® 30-2001™) supplemented with 10% Fetal Bovine Serum (FBS), 1% 

penicillin-streptomycin, and 50 μM β-mercaptoethanol (BME) were seeded onto the pre-

coated plate at a density of 2 x 104 cells well-1 and incubated overnight. Then, cells were 

stained with carboxy-H2DCFDA by replacing the cell medium with the probe solution at a 

concentration of 10 M. After incubation for 40 minutes with the probe solution, cells were 

exposed to naphthalene SOA and control samples in triplicate for 24 h. The naphthalene 

SOA samples consisted on a set of 10 dilutions of naphthalene SOA extract in 

supplemented media to capture the specific dose-response region for each sample.74 The 

positive controls included H2O2 (200 M) and Lipopolysaccharide (LPS, 1g mL-1), and 

the negative control corresponded to non-stained cells exposed to only media (no 
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stimulants). After 24 h exposure, the medium was replaced with PBS and placed in a 

microplate reader (BioTek Synergy H4) to measure fluorescence intensity at 485 nm 

excitation and 525 nm emission.  

 

2.4 Catalase assay 

The catalase assay protocol was based on previous studies where catalase was used as an 

effective H2O2 scavenger98,99 but optimized in this study to ensure its functionality when 

using an adherent macrophage cell line (ATCC® CRL-2019™). The optimized protocol is 

shown in Figure 2-A. Briefly,  cells were plated and exposed to the probe (carboxy-

H2DCFDA, Molecular Probes C-400) following steps (1) to (3) of our intracellular 

ROS/RNS protocol.74 Step (4) involved replacing the ROS/RNS probe solution with four 

naphthalene SOA samples (a, b, c and d, respectively) containing 50 U mL-1 catalase. H2O2 

(200 M) was used as a positive control and not stained cells exposed to probe solution 

only corresponded to the negative control. Stained cells exposed to only supplemented 

media or catalase (50 U mL-1) were used to correct the background ROS/RNS signal.  After 

24 h of incubation, the medium was removed and replaced with phosphate buffer solution 

(PBS). Lastly, the plate was placed in a microplate reader (BioTek Synergy H4) to measure 

the fluorescence intensity at excitation of 485 nm and emission of 528 nm (5).  
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Figure 2-A. Optimized protocol for catalase assay. Cells were plated and exposed to 

naphthalene SOA samples containing 50 U mL-1 catalase following the methodology 

described in Tuet et al.74 Fluorescence intensity was measured after 24 h exposure 

with a microplate reader. Figure was modified from Tuet et al.74 

2.5 Amplex Red Assay  

Amplex red assay has been widely used to detect H2O2 activity in biological samples and 

enzymatic processes.100 In the presence of the enzyme horseradish peroxidase (HRP), the 

highly sensitive Amplex red reagent (10-acetyl-3, 7-dihydroxyphenoxazine) is oxidized by 

H2O2, forming a red-fluorescent compound.101  In this study, Amplex™ Red Hydrogen 

Peroxide kit (A22188, Molecular Probes) was used to determine the content of H2O2 

present in naphthalene SOA samples and produced by cells after 24 h exposure to 

naphthalene SOA samples.  

2.5.1 Quantification of H2O2 in naphthalene SOA samples 

The H2O2 concentration in the water-soluble fraction of naphthalene SOA extracted in PBS 

was quantified using Amplex red.  Firstly, 50 μL of naphthalene SOA extracted in PBS 
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were placed in a 96 well-plate. Then, 50 μL of working solution (100 M Amplex red 

reagent and 0.2 U mL-1 HRP diluted in 1X Reaction Buffer) were added to each extract. 

Fluorescence intensity was measured after 30 min incubation at an excitation of 530 nm 

and emission of 590. Measurements were corrected from background by subtracting the 

fluorescence signal from the control sample (0 M H2O2). H2O2 concentrations were 

calculated based on a calibration curve of H2O2 concentrations ranging from 0 to 10 M in 

PBS (Figure A-1). H2O2 standard curve concentrations were based on the amounts of H2O2  

quantified on extracts from ambient PM and SOA from different organic precursors.102 

Additionally, H2O2 was quantified in naphthalene SOA samples with the addition of 50 U 

mL-1 catalase.  

2.5.2 Quantification of H2O2 produced by cells  

Amplex red reagent remains outside the cell, reacting with H2O2 that diffuses from the cell 

into the medium. Therefore, it is a measure of extracellular H2O2. Briefly, cells were plated 

and exposed to naphthalene SOA samples for 24 h following the intracellular ROS/RNS 

assay (without the addition of carboxy-H2DCFDA). After exposure time, cell medium was 

replaced by 100 μL of working solution (PBS containing 50 μL of Amplex red and 0.1 U 

mL-1 HRP). The plate was incubated at 37 °C and 5% CO2 for 10 minutes and then, it was 

placed in a microplate reader to measure fluorescence intensity every 15 minutes over a 

period of 100 minute.16 Fluorescence values were corrected from background. The H2O2 

concentration was calculated based on a calibration curve of H2O2 concentrations ranging 

from 0 to 1 M in PBS (Figure A-1).  
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2.6 Statistical Analysis  

Exposure experiments were performed once. All results are shown as mean  SE of 

independent experiments performed in triplicate. Statistical significance of the data was 

calculated using the un-paired, two tailed t-test with confidence intervals of 90% and 95%, 

respectively.  
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CHAPTER 3. RESULTS AND DISCUSSION 

3.1 Design and Optimization of Catalase assay 

Previous studies have shown that cells treated with catalase can mitigate the effects of 

redox insults and effectively reduce ROS/RNS signal.98,99,103–107 However, there are 

substantial variations in the employed methodologies depending on cell lines used, time of 

treatment with catalase, fluorescent dyes, and stimulants tested. In order to ensure 

comparability with our optimized intracellular ROS/RNS assay,74 a protocol using catalase 

as a H2O2 scavenger was designed to evaluate its role in naphthalene SOA-induced 

ROS/RNS response. The parameters to optimize included time duration of treating the cells 

with catalase and catalase concentration. In previous studies, 105–107 cells were pretreated 

with catalase for a range 0.5 to 4  h before exposing them to stimulants. However, these 

studies used specific features to facilitate the intracellular access of the catalase, a 

macromolecule, to cellular and subcellular regions.107 In this study, the catalase was added 

to naphthalene SOA samples at a specific concentration and incubated for 24 h to ensure 

that there was sufficient time for the catalase to interact and/or be absorbed by the cells. 

The chosen time of exposure was based on the stability of catalase for 24  h at 37°C108,109 

and on the exposure time used in the intracellular ROS/RNS assay.74  

The catalase concentration was determined by exposing macrophage cells to positive 

controls (1 g mL-1 LPS and 200 M H2O2) with the addition of 0, 50, and 200 U mL-1 

catalase (Sigma-Aldrich, C-3515), which are concentrations that are generally used in prior 

studies.98,99 As shown in Figure 3-A, LPS and H2O2 induced a response of 1.5-fold 

compared to control cells. The addition of 50 and 200 U mL-1 catalase fairly decrease (p < 
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0.1) the ROS/RNS signal induced by LPS and H2O2 to control values. This confirmed that 

catalase removed the species that mediated the oxidation of the probe compound and that 

the protocol can be used to identify reactive species that drive ROS/RNS response. The 

difference in the response after treating the cells with 50 and 200 U mL-1 catalase was not 

significant (p = 0.9), therefore, the chosen concentration of catalase was 50 U mL-1.   

 

Figure 3-A. ROS/RNS response of cells exposed to positive controls (1 g mL-1 LPS, 

200 M H2O2) without (grey) and with (orange) the addition of catalase (50 and 200 

U mL-1). ROS/RNS was calculated using the fluorescent dye carboxy-H2DCFDA. 

Values represent the fold of change over control cells. Data are presented as mean ± 

SE of measurements carried out in triplicate. Statistically significant differences were 

determined with the t-test using a 90% confidence interval. *p = 0.08 and *p = 0.08, 

for LPS + cat 50 U mL-1 and LPS + cat 200 U mL-1, respectively. *p = 0.05 and *p = 

0.06 for H2O2 + cat 50 U mL-1 and H2O2 + cat 200 U mL-1, respectively.  
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3.2 Role of H2O2 in the oxidation of the probe compound 

3.2.1 Effect of catalase on the intracellular ROS/RNS response 

Intracellular ROS/RNS generation upon exposure to naphthalene SOA samples was 

measured using carboxy-H2DCFDA. Carboxy-H2DCF is better retained intracellularly 

than other probes due to its additional two charges97 and is oxidized by ROS/RNS species 

forming the fluorescent compound carboxy-DCF.110 Figure 3-B shows the ROS/RNS 

response with and without the addition of catalase. In samples without the addition of 

catalase, naphthalene SOA-induced ROS/RNS response exhibited a dose-dependent 

manner (Figure A-2A) similar to those reported in previous studies.79,92 Prior studies have 

shown that there is a correlation between ROS/RNS response and the degree of oxidation 

(photochemical aging) of aerosol samples.92 The four naphthalene SOA samples in this 

study had relatively lower carbon oxidation states and induced lower but still appreciable 

ROS/RNS response. Nevertheless, the ROS/RNS production observed in this study was 

comparable to the results in Tuet et al.92 for naphthalene SOA with similar oxidation state. 

The ROS/RNS response of the samples with the addition of catalase was significantly 

lower (*p < 0.05) than the ROS/RNS response without catalase (Figure 3-B). This suggests 

that catalase effectively removed the compounds that mediated ROS/RNS response. 

Catalase is a heme-containing enzyme that catalytically breaks down H2O2 into unreactive 

molecules of H2O and O2. It presents the highest affinity for H2O2, although it can oxidize 

other substrates but at significantly slower rates than the decomposition of H2O2.111,112 Prior 

studies have reported that catalase-containing media improves cell survival and supports 

cell growth in different cell lines through hormone-receptor interactions or cellular 
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absorption of catalase, which eliminates intracellular H2O2 toxicity.113–115 Similarly, 

multiple studies have found a decrease in intracellular ROS/RNS response after catalase 

addition,116–120 which is in accordance with the results in this study. These findings imply 

the role of H2O2 as the mediator of ROS/RNS signal. However, the probe compound can 

also be oxidized by other types of ROS/RNS that could have been produced by cells upon 

exposure to naphthalene SOA, such as hydroxyl radical (·OH), nitrogen dioxide (·NO2), 

and peroxynitrite (ONOO-).  

 

Figure 3-B. Intracellular ROS/RNS (measured as area under the dose-response curve, 

AUC74) induced by exposure to naphthalene SOA samples (a-d). Cells were exposed 

to naphthalene SOA samples only (red) and naphthalene SOA samples + 50 U mL-1 

catalase (blue) for 24 h.  ROS/RNS measurements were carried out in triplicate, 

generating 3 sets of response for each naphthalene SOA sample. Each set represents 

the response of cells to 10 dilutions of naphthalene SOA samples (Figure A-2) and was 

fitted with a dose-response curve as described in Tuet et al.74. Data in this figure 
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represent mean  SE estimated from 3 fitted dose-response curves for each 

measurement. Statistically significant differences were determined with the t-test 

using a 95% confidence interval (**p = 0.001, *p = 0.01, *p = 0.03 and *p = 0.04 for 

samples a, b, c and d, respectively). 

 

3.2.2 Investigating the oxidation of the probe compound by other ROS/RNS  

Cells normally generate ROS and RNS as part of metabolic processes or induced by 

exogenous factors. Superoxide (O2
-) can be formed under physiological processes, such as 

the mitochondrial respiration chain,30,121 or by redox cycling reactions driven by quinone 

compounds.122 O2
- directly generates H2O2 through the dismutation reaction that occurs 

either spontaneously or enzymatically by superoxide dismutases (SOD) [equation 1].123 

Nitric oxide (NO·) is also generated under physiological and pathological conditions, 

induced  by nitric oxide synthases (iNOS). This nitrogen metabolite can react with O2
- to 

form peroxynitrite (ONOO-) [equation 2]. ONOO- is in equilibrium with peroxynitrous acid 

(ONOOH) [equation 3] and both species are important oxidizing agents in vivo.124 

However, the protonation of ONOO- weakens the O-O bond and causes its rapid 

decomposition into ·OH and ·NO2 [equation 4].125
 

��
� + ���→  ����              [1] 

�� · + ��
� → �����         [2] 

����� ↔ �����            [3] 

����� → · OH +  · ���  [4] 
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The oxidation of H2DCF by these types of ROS and RNS has been extensively discussed 

in literature.64,126 For instance, H2DCF showed very low or no reactivity towards O2
-127 and 

its reaction with H2O2 is catalyzed by the intervention of biological substances.64,126,128 

·NO2 can efficiently convert H2DCF into DCF (k  1.7 x 107 M-1s-1)69. Similarly, ·OH 

reacts with H2DCF at a faster rate (k  1.3 x 1010 M-1 s-1) than its reaction with catalase and 

H2O2 (complex 1) (k  107 M-1 s-1).69,129 Therefore, both species should be able to oxidize 

H2DCF even in the presence of catalase. Due to the lack of response after catalase addition 

(Figure 3-B), it can be concluded that ·OH and ·NO2 did not contribute to the oxidation of 

carboxy-H2DCF upon exposure to naphthalene SOA. NO· does not readily oxidize 

H2DCF,126 but some of its derivatives can efficiently oxidize the probe, such as ONOO-.130 

The rate of reaction between O2
- and NO· (k  1010 M-1 s-1)124 [equation 2] is an order of 

magnitude faster that the enzymatic dismutation of O2
- driven by SOD (k  2 x 109 M-1 s-

1)131 [equation 1], but under physiological conditions  SOD levels (M) normally exceed 

NO· levels (nM), making H2O2 formation [equation 1] more important.125 Under 

pathological conditions induced by PM exposure, both NO· levels and SOD activity have 

been shown to increase.132–134 However, the presence of H2O2 in this study implies that 

SOD levels were higher than NO· levels and that the generation of ONOO-  was negligible.  

Other compounds that can oxidize H2DCF are organic peroxides (ROOH), such as tert-

butyl-hydroperoxide (tBOOH).135,136 Peroxide compounds were likely present in the 

naphthalene SOA samples used in this study93 and  can be decomposed by catalase.137 In 

order to investigate the selectivity of catalase towards decomposition of H2O2 and/or 

ROOH compounds, the ROS/RNS response of cells exposed to tBOOH was measured with 

and without the addition of catalase. The presence of catalase did not decrease the 
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ROS/RNS response induced by tBOOH, but significantly decreased (*p < 0.05) the 

ROS/RNS response induced by H2O2 to control values (Figure 3-C). This suggests that 

catalase specifically decomposed H2O2 in our system and confirms that the removal of 

H2O2 caused the inhibition of ROS/RNS response (Figure 3-B).  

 

Figure 3-C. ROS/RNS response by cells exposed to 50, 100, 200 and 400 μM tBOOH 

without (red) and with (blue) catalase. 200 μM H2O2 was used as a positive control. 

Values represent the fold increase in fluorescence over control cells. Data are 

presented as mean ± SE of measurements carried out in triplicate. Statistically 

significant differences were calculated with the t-test and corresponded to p = 0.38, p 

= 0.11, p = 0.38 and p = 0.92 for 50, 100, 200 and 400 μM tBOOH, respectively. ** 

indicates p < 0.01 for 200 μM H2O2. 

As shown in Figure 3-B, the ROS/RNS response expressed as area under the curve (AUC) 

for samples c was not totally suppressed after catalase addition. It should be noted that the 
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follow a dose-response relationship as in Figure A-2A and that the fitted curve was 

influenced by the dispersion of the data from measurements performed in triplicate. 

Furthermore, the AUC calculated for this sample was not statistically different from the 

other three samples (p = 0.20). This implies that the AUC calculated for samples c arose 

from experimental uncertainties and thus, is insignificant. Taken together, the significant 

inhibition of ROS/RNS signal after catalase addition in the four samples confirms the role 

of H2O2 as the main driver of the carboxy-DCF fluorescence induced by naphthalene SOA 

exposure.  However, previous studies102,138–140 have reported the presence of H2O2 in PM 

samples alone. The question remains as to whether both H2O2 in naphthalene SOA samples 

and generated by cells contributed to the measured carboxy-DCF fluorescence. And if so, 

how much was the contribution from each source? 

3.3 Sources of H2O2 that contributed to the oxidation of the probe compound 

3.3.1 H2O2 in naphthalene SOA samples 

The H2O2 concentration in the water-soluble fraction of naphthalene SOA extracted in PBS 

(H2O2[SOA]) was quantified using Amplex red. It should be noted that the four naphthalene 

photooxidation experiments were performed in the presence of NOx and under dry 

conditions. These conditions were selected to prevent the formation of ROOH compounds, 

making RO2 + NO the dominant reaction pathway, and to avoid the addition of H2O2 into 

the particles. The bulk chemical composition of the four samples, was very similar (Table 

A-1), as well as the quantified H2O2, which ranged slightly from 9.29 ± 0.37 to 12.31 ± 

0.31 µM, corresponding to a H2O2 yield of 3.16-4.20 ng/µg. The presence of H2O2 in 

naphthalene SOA samples was further confirmed by adding catalase to the samples, where 
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catalase completely decomposed the H2O2 in all naphthalene SOA samples as expected. 

H2O2[SOA] could be produced by interactions between different compounds in naphthalene 

SOA and the extraction solution (PBS). Both quinone compounds141 and organic 

peroxides93 have been detected in naphthalene SOA and both can produce H2O2 in 

aqueous-phase reactions.88,138,139,142–144 However, Kautzman et al.93 found that organic 

peroxides contributed to less than 30 % of the total SOA mass produced by the 

photooxidation of naphthalene in the presence of NOx. Furthermore, Tong et al.102 

attributed a H2O2 yield of 1.99 ± 0.33 ng/µg of naphthalene SOA in water to the presence 

of quinone compounds and their results were comparable to the H2O2 yield in this study 

(3.16-4.20 ng/µg). Therefore, it is likely that the H2O2[SOA] in this study mostly originated 

from quinoid redox cycling driven by quinone compounds.141 The generation of H2O2 by 

quinone compounds has been reported in multiple solvents145 and has been shown to be 

catalyzed by interactions between endogenous antioxidants and semiquinones in biological 

systems.102,146 This suggest that the quantified H2O2[SOA] could be produced in biological 

systems, which can disturb the cellular redox balance and lead to oxidative stress.147 It 

should be noted that H2O2[SOA] was quantified in naphthalene SOA extracted in PBS due to 

the fluorescence interference of RPMI-1640 media. Therefore, H2O2[SOA] could be different 

from the H2O2 produced by naphthalene SOA samples (naphthalene SOA extracted in 

RPMI-1640 media). Future studies are suggested to investigate the impact of extraction 

solvents on the generation of H2O2 in aerosol samples.148  

It is known that extracellular H2O2 can easily diffuse into cellular cytosols to promote redox 

signals through aquaporin (AQP) channels.149 Besides facilitating H2O2 intracellular 

signaling functions, these channels have also been implicated in the activation of cellular 
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immune responses.150–152 Previous studies153,154 found that AQP channels mediated the 

production of important proinflammatory cytokines upon stimuli, such as TNF- and IL-

1. These cytokines have been shown to be produced by macrophages exposed to PM 

samples containing quinone compounds.79,155 This suggests that in this study, exposure to 

naphthalene SOA increased AQP activity, facilitating the transport of H2O2 across the cell 

membrane. In order to investigate the diffusion of H2O2[SOA] into cells, cells were plated 

and stained with the probe following steps (1) to (3) of our intracellular ROS/RNS 

protocol.74 Step (4) involved replacing the ROS/RNS probe solution with naphthalene SOA 

samples extracted in PBS. H2O2 in stained cells exposed to naphthalene SOA was 

quantified every 15 minutes over 1 h exposure. At each time point, 50 µL of cellular 

medium (PBS) containing naphthalene SOA was transferred to a 96 well plate. 

Additionally, 50 µL of each naphthalene SOA sample without interaction of cells was 

added to an empty well to evaluate the rate of decomposition of H2O2[SOA]. Then, the 

reaction was started by adding 50 µL of Amplex red reagent to each well with the samples. 

After 30 minutes incubation at room temperature based on the Amplex red protocol 

(Invitrogen), fluorescence was measured. 
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Figure 3-D. Quantification of H2O2 in stained cells exposed to naphthalene SOA 

samples b (A) and d (B). “H2O2 in naphthalene SOA extracts without cells” 

corresponds to the potential decomposition of H2O2[SOA]. “H2O2 in stained cells 

exposed to naphthalene SOA” corresponds to the concentration of H2O2 in cell 

medium of cells stained with the ROS probe containing naphthalene SOA. H2O2 was 

quantified using Amplex red. Data are presented as mean ± SE of measurements 

carried out in triplicate. 
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As shown in Figure 3-D, H2O2[SOA] presented an 80% decrease in the presence of cells after 

1 h, while H2O2[SOA] without cells was stable over time. Hence, it was very likely that the 

H2O2[SOA] diffused into the cells and contributed to the intracellular oxidation of carboxy-

H2DCF. Note that the possibility of H2O2 decomposition on the surface of the cell or by 

interaction with other components produced by cells is not excluded in this study.  

 

3.3.2 H2O2 produced by cells  

The H2O2 produced by cells after being exposed to naphthalene SOA samples for 24 h 

(H2O2[cells]) was also measured using Amplex red (Figure 3-E). It should be noted that cells 

were first exposed to naphthalene SOA samples for 24 h, and then, the cell medium 

containing naphthalene SOA samples was replaced with the Amplex red working solution. 

Therefore, the quantified H2O2 corresponds to the H2O2 produced by the cell only after 

interacting with naphthalene SOA samples for 24 h. Intracellularly, H2O2 can be produced 

by the enzymatic oxidation of quinone compounds,122,141 which were likely present in the 

naphthalene SOA samples, and is also generated by cells to activate the transcription factor 

NF-B120,156,157 and its related cytokines TNF- and IL-6,158 which were both expressed 

by cells exposed to naphthalene SOA as shown in previous studies.159 In agreement with 

these findings, exposure to naphthalene SOA samples induced the production rates of H2O2 

ranging from 0.21  0.01 to 0.26  0.03 pmol/min/104 cells (Figure 3-E). The production 

rates were calculated from the H2O2 concentration measured at different time points after 

the 24 h exposure (Figure A-3). Assuming the capacity of cells to produce H2O2 is constant 

over time, the total amount of H2O2 produced by cells exposed to naphthalene SOA was 
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calculated by multiplying the rate of H2O2 produced by the exposure time (24 h). Results 

show that cells could have produced 3.02  0.01 to 3.74  0.03 μM H2O2 over the 24 h of 

exposure to naphthalene SOA. This H2O2 production could be associated to the mediation 

of adverse health outcomes and/or immune responses induced by exposure to naphthalene 

SOA. Future studies are warranted to investigate potential time variabilities in the 

capability of cells to produce H2O2 upon PM exposure to study the biological significance 

of the exposure time used in this study.  

 

Figure 3-D. H2O2 produced by cells after exposure to naphthalene SOA samples (a, 

b, c, d) or supplemented media (control) for 24 h. The amount of H2O2 produced was 

quantified using Amplex red. Data are presented as mean ± SE of measurements 

carried out in triplicate. Statistically significant differences calculated with the t-test 

corresponded to *p = 0.01, *p = 0.01, *p = 0.01 and *p = 0.02 for samples a, b, c and d 

compared to control, respectively. 
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3.3.3 H2O2 from naphthalene SOA samples and from cells were responsible for the 

carboxy-DCF fluorescence  

The quantification of H2O2 produced by cells (H2O2[cells]) and by naphthalene SOA samples 

interacting with the extraction solution (H2O2[SOA]) confirmed that both sources contributed 

to the oxidation of the probe compound (Figure 3-F). For instance, H2O2[cells] was found to 

range from 3.02  0.01 to 3.74  0.03 μM H2O2, which corresponds to a H2O2 yield of 

1.03-1.27 ng/µg. H2O2[SOA] (3.16-4.20 ng/µg) was also quantified in naphthalene SOA 

samples and was found to be higher than H2O2[cells]. Additionally, it was shown that 

H2O2[SOA] is stable over time and that it can rapidly diffuse into the cells. Therefore, 

H2O2[SOA] contributed to the intracellular oxidation of carboxy-H2DCF to a greater extent 

than H2O2[cells].  
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Figure 3-E. Sources of H2O2 responsible for carboxy-H2DCF fluorescence. H2O2[SOA] 

(blue) corresponded to the quantified H2O2 using Amplex red in the absence of cells. 

H2O2[cell] (orange) was estimated by multiplying the rate of H2O2 produced after 24 h 

exposure to naphthalene SOA samples (measured with Amplex red as well) by the 

entire exposure period (i.e., 24 h). Values represent mean ± SE of measurements 

carried out in triplicate. 
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CHAPTER 4. CONCLUSIONS, IMPLICATIONS AND FUTURE 

WORK 

In this study, the general oxidative stress marker carboxy-H2DCFDA was used to 

investigate the contribution of H2O2 to the intracellular generation of ROS/RNS induced 

by naphthalene SOA exposure. Despite the lack of specificity of carboxy-H2DCF,130 in this 

study it was shown that the collective use of catalase with this probe can elucidate the role 

of H2O2 in the mediation of naphthalene SOA-induced cellular responses. 

Results in this study showed that the ROS/RNS signal induced by exposure to naphthalene 

SOA was inhibited by the addition of catalase. Although the probe compound can be 

oxidized by multiple ROS/RNS,64 the selective role of catalase in removing H2O2 

confirmed that H2O2 was the main ROS present in our system that could oxidize carboxy-

H2DCF. Furthermore, it was demonstrated that cells exposed to naphthalene SOA samples 

produced H2O2 ranging from 0.21  0.01 to 0.26  0.03 pmol/min/104 cells. Altogether, 

these results showed that H2O2 was the main ROS generated by the cells upon exposure to 

naphthalene SOA. These findings contribute to the understanding of the types of ROS/RNS 

that are generated upon exposure to PM by showing that H2O2 was the mediator of cellular 

responses induced by naphthalene SOA. This knowledge can motivate future studies to 

consider different cellular pathways that directly generate H2O2 in order to understand local 

and systemic effects induced by exposure to naphthalene SOA. Although naphthalene was 

the only precursor investigated in this study, it is representative of PAH compounds, which 

have been found in inhalable ambient particles.89,90 In these terms, results in this study are 
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relevant for human daily exposure and imply that ambient PM with contents of PAHs could 

also induce cells to generate H2O2.  

It should be noted that experimental conditions in the generation of PM samples largely 

influence SOA composition and ROS yields, which can induce different cellular responses.  

For instance, the expected presence of acidic species and peroxides in naphthalene SOA 

formed in the absence of NOx
93 was shown to induce greater ROS/RNS response,74 which 

can include other ROS/RNS besides H2O2. Thus, the dominant role of H2O2 in the 

mediation of cellular responses found in this study is only applicable for naphthalene SOA 

formed in the presence of NOx and might not be generalized for other systems. Future 

studies investigating the contribution of H2O2 to the intracellular ROS/RNS response 

induced by different SOA systems and ambient PM samples are warranted. 

Results in this study also showed that H2O2 produced by cells (H2O2[cells]) and by 

naphthalene SOA samples interacting with the extraction solution (H2O2[SOA]) can both 

contribute to the intracellular oxidation of H2DCF. Overall, H2O2[SOA] (3.16-4.20 ng/µg) 

was found to be higher than H2O2[cells] (1.03-1.27 ng/µg). Additionally, it was shown that 

H2O2[SOA] is stable over time and that it can rapidly diffuse into the cells. Therefore, 

H2O2[SOA] contributed to the intracellular oxidation of carboxy-H2DCF to a greater extent 

than H2O2[cells]. This suggest that the diffusion of H2O2[SOA] into the cells represent one of 

the pathways in which exposure to naphthalene SOA leads to oxidative stress.  
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APPENDIX A.  

Table A- 1. Experimental conditions and elemental composition of naphthalene SOA 

formed in the presence of NOx 

Sample 
Naphthalene 

Relative 

humidity 

SOA 

massa  

Initial 

NO 

Initial 

NO2 
O:C 

ratio 

H:C 

ratio 

N:C 

ratio 
OSc 

ppb % µg m-3 ppb ppb 

a 222 < 5 % 213 229 392 0.30 0.96 0.010 -0.36 

b 321 < 5 % 430 245 471 0.28 0.97 0.009 -0.40 

c 450 < 5 % 596 225 333 0.29 0.98 0.009 -0.39 

d 550 < 5 % 492 236 401 0.25 0.98 0.007 -0.48 

a The total aerosol mass collected on filters was calculated by integrating the aerosol volume 
concentration data from the SMPS over the sampling period and multiplying by the total volume of 
air collected, as described in Tuet et al.159 SMPS volume concentrations were converted to mass 
concentrations by assuming a density of 1.48 g cm-3 based on prior experiments.93  
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Figure A- 1. Calibration curve for H2O2 (in PBS) for the quantification of H2O2 in 

naphthalene SOA samples (A) and released by cells (B) using Amplex red. 

Reactions containing Amplex red reagent, Horseradish peroxidase (HRP) and 

indicated amount of H2O2 were incubated for 10 to 30 minutes before measuring 

fluorescence intensity. Values were corrected for background by subtracting the 

fluorescence signal from the control sample (0 M H2O2). 
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Figure A-2. Dose-response curve of ROS/RNS produced by exposure to naphthalene 

SOA (samples a-d). Cells were exposed to naphthalene SOA extracts (A) and 

naphthalene SOA extracts + 50 U mL-1 catalase (B) for 24 h. ROS/RNS was calculated 

using carboxy-H2DCFDA. Values represent the fold of change over control cells. Data 

are presented as means ± SE of experiments carried out in triplicate. Every 10-

dilution data was fitted with a dose-response curve as described in74. AUC data 

represent means  SE estimated from 3 dose-response fitted curves on each 

experiment. 
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Figure A- 3. Quantification of H2O2 produced from cells. The cells were first exposed 

to naphthalene SOA for 24 h. Afterwards, the fluorescence signal was measured every 

15 minutes over 100 min using Amplex red. Cells were exposed to naphthalene SOA 

samples (orange) or supplemented media (grey) for 24 h. Values are presented as 

mean ± SE of experiments carried out in triplicate. H2O2 concentrations were 

calculated based on the calibration curves shown in Figure A-1. 
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