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Introduction
Currently, over 95% of deaf children are born to hearing parents, many of whom do not

learn sign language. Lack of communication between deaf children and their parents can lead to
language deprivation syndrome (LDS), where the child does not develop important language
skills such as short-term memory and basic communication abilities. The CopyCat project aims
to address the learning gap that stems from LDS by designing a video game that accepts videos
of deaf children signing simple phrases and employs computer vision models to recognize the
phrases being signed and verify that they are correct. The task of American Sign Language
recognition (ASLR) fits into the broader field of human activity recognition (HAR), which
focuses on predicting and comprehending sensor readings from a movement or pattern generated
by humans. A key problem in HAR is selecting features that are representative of different
patterns, where features are hand, face, and body pose elements such as fingertips or eyes that
help to distinguish signed phrases. A tool that helps to select features characteristic of individual
words is crucial for developing a robust HAR framework, especially when distinguishing
commonly confused signs such as “in” (right hand moves into left hand) and “above” (right hand
hovers over left hand).

Elan is a powerful visualization tool that has been utilized in past sign language
visualization tasks, so it was applied to the construction of a feature selection tool for HAR tasks.
This feature selection tool displays log likelihoods for each feature based on models and
Gaussians passed into the framework as well as the video itself to find where feature selection
issues are occurring. An example of this is the signed words “in” and “above” being confused
since they are very similar in their motion; the visualization tool can help to find a certain
feature, such as the nondominant hand’s fingertips, that allows those two signed words to be
distinguished.

The ELAN tool can be generalized to other HAR tasks since feature selection is key for
locating distinct characteristic patterns for recognition. However, the focus of this thesis is to
develop functionality for the ELAN tool to improve feature selection for the CopyCat project, as
visualization of the features being used in the models will allow for better manual feature
selection as well as easier implementation of alternative feature selection methods and metrics.



Literature Review
This study investigates possible diagnostic tools for sign language recognition and

verification models, especially those used for visualization and annotation of sign language. The
overall goal is to use these findings to design a plugin for troubleshooting the CopyCat project’s
current issues as well as select the best features at each step based on algorithmic analysis. Since
modeling sign language videos employs aspects of both computer vision and speech recognition,
metrics from both fields should be used in conjunction during their analysis.

Sign Language Annotation Tools
Currently, three outstanding platforms used in sign language annotation are Elan,

SignStream, and Noldus Observer, all of which have individual benefits. Elan hosts
functionalities including enabling the creation of tiers and annotation levels for different hands,
features, or however else the researcher wants to segment data. Elan also allows the researcher to
display a side panel of statistics which can be configured programmatically. Lastly and most
importantly, Elan provides the researcher with the ability to edit the source code, which means
that a plugin could be designed to incorporate even more features than the ones listed [3].
SignStream was designed in the late 1990s for the specific purpose of making sign language
annotation easier on a project for applying computer vision to the task of sign language video
annotation. A major advantage of SignStream is the abundance of features that correspond
directly to the task at hand, such as the ability to separate out all occurrences of a certain sign.
However, one key issue is that this system is only supported on MacOS, whereas the vast
majority of CopyCat is built on a Linux system [7]. Noldus Observer XT is a tool designed for
integrating and analyzing multiple data streams and supports extensive annotation of videos [4].
Despite being designed for research, though, Noldus Observer XT requires payment and does not
have open source code, which makes it less malleable in the case that more features are needed.
Based on the barriers to entry for SignStream and Noldus Observer XT, the best tool for this
analysis is Elan.

Forced Alignment
Forced alignment is an example of a metric widely used in the field of speech

recognition, alongside more basic ones such as accuracy and loss. It is a common method
utilized in speech recognition used “for aligning orthographic transcriptions to audio
recordings;” an example implementation can be found in the Kaldi toolkit. In the scope of this
project, forced alignment can be used to locate the sign boundaries within each video and
compare them to the phrase segmentation that the models are outputting [1]. In his Master’s
Thesis, Benovic compares three forced alignment approaches: HMM-GMM, deep learning, and
hybrid. The HMM-GMM approach utilizes hidden Markov models and Gaussian mixture
models, where hidden Markov models are a mathematical representation of probabilistic
time-series data, and Gaussian mixture models are combinations of discrete and continuous



probability density functions. Benovic found that the hybrid approach worked best, and briefly
discussed how factors such as accent and gender were not controlled during his analysis [1, 4, 6].
His work was based on creating an application for developing forced alignment tools for
YouTube videos, but it focused too greatly on building the codebase and application surrounding
rather than the forced alignment analysis itself. Factors of accent, gender, fluency, and age might
need to be considered as well. In comparison to other application-based papers in this literature
review, Benovic’s work was neither very theoretical, nor was it describing a mature framework,
which caused the thesis to lack information about why functions were included as opposed to
how they were constructed.

Complex Model Visualization
Further exploration into approaches for implementing hybrid models such as

HMM-GMM and HMM-DNN show the need for a model topology visualization element to this
tool [8]. Swietojanski et al. examine how HMM-GMM and HMM-DNN methods of automatic
speech recognition on a dataset of TED Talks work in a complementary manner. The
HMM-GMM model is designed similarly to that of Benovic’s Master’s Thesis, but the
HMM-DNN model uses a deep neural network to estimate the likelihoods of context-dependent
parameters in the hidden Markov model [1]. The final system in Swietojanski et al. uses a form
of model averaging which is more complex in structure than an HMM-GMM by itself, which
introduces the need for model visualization. Tensorflow Graph Visualizer, used as an
accompaniment to the open source machine learning framework from Google called Tensorflow,
demonstrates a powerful yet relatively simple framework for visualizing data flow through
different machine learning architectures [9]. This framework applies graph construction
techniques including building directed graphs in a hierarchical way to represent deep learning
models, which will be useful for displaying model architecture through annotations in Elan.

HAR Task Analysis
It is difficult to determine which elements of speech recognition and computer vision

analysis should be applied to the task of sign language recognition. By analyzing the different
angles from which we can view the task of sign language recognition, we can understand the
most relevant features. Hiremath and Ploetz examine various HAR tasks and objective measures
of their complexity. Although calculating the complexity of a HAR task does not have a direct
connection with feature selection, metrics such as linear separability of features can help in
determining correlated features, and techniques such as k-means clustering or computing the
minimum spanning tree among data points can give an idea of which features are most relevant.
Overall, Ploetz and Hiremath conducted a thorough analysis of the problem they were tackling,
and their methods are relevant to the task of sign language recognition [5]. Cisotto et al’s work,
in contrast, looks at the issue of feature selection for gesture recognition problems directly. Their
work depicts an algorithm called consensus clustering, which consists of using two separate



clustering algorithms, followed by the use of a “consensus” filtering and more clustering. The
paper does a sufficient job of both describing how the algorithm works and why the different
steps were chosen. While the study’s chosen data, EEG and EMG waves, are not very similar to
the features for sign language video processing at first glance, they can all be fashioned as
two-dimensional time-series data waves, where EEG and EMG data uses electric signals and
sign language data uses X and Y coordinates of keypoints on the hands and face. One aspect that
is slightly unclear in this paper, though, is the significance of the different uses of cross
validation, as there is both an inner and outer iteration. A similar approach to the one described
in Cisotto et al’s paper is used in this project since feature selection is a key indicator of
performance of the models and can improve performance of models, so it is a type of metric. In
their paper, they discuss how selecting fewer features for gesture recognition tasks would
significantly “minimize data traffic over a communication network;” similarly, reducing the
feature set for sign language video analysis would improve real time verification, which is the
end goal [2].

Based on the literature in both sign language visualization tools and activity recognition
metric calculation algorithms, the task of designing a diagnostic tool for the task of sign language
recognition is not only possible but can contribute to existing tools. Cisotto et al. states that the
pipeline constructed for feature selection did not perform as well as hoped for due to lack of data,
and Ploetz and Hiremath’s paper only attempts to quantify the complexity of two HAR task
classes. This means that creating a diagnostic tool would not only help the CopyCat project itself
but also other activity recognition frameworks and can possibly be generalized to other activity
recognition problems [2, 5].



Design
The design of this human activity recognition (HAR) analysis framework has two

requirements: displaying CopyCat data in ELAN and investigating if this improves model
performance.

Annotation and Feature Viewers
The first requirement for the design of the HAR analysis app was to ensure that necessary

functionality is included. The first component is converting a file containing state boundary and
transition information to annotations in ELAN, or the “Annotation Viewer.” Figure 1 shows how
the state and word boundaries for CopyCat are displayed when words are loaded in different tiers
and states are loaded as annotations on their respective tiers. States are labelled with the letter “s”
and their order number; for example, the fourth state for the word “blue” in the phrase “alligator
above blue wagon” is shown on the fifth tier with the label “s4” in Figure 1.

Figure 1. Word and State Boundaries displayed in the Annotation Viewer.

In Figure 2, the timeseries viewer is shown with its “Feature Viewer” functionality;
essentially, features values as well as other metrics can be plotted alongside the video and its
models’ states. In order to test this on CopyCat, numerous scripts were written in order to
convert the feature data into log-likelihoods of those features occurring based on the models.
Given a feature x at state s, a log likelihood for that feature occurring is shown in Equation 1,
where and are the mean and standard deviation of that feature for the given state. These logµ

𝑠
σ

𝑠
likelihoods were plotted for the words “in” and “above” across every feature for all videos.
Features were then ranked based on which feature had the highest difference in median of log



likelihood across all videos. The results of this feature selection process are shown in the results
section of this paper.

𝑙𝑙
𝑥
 = 𝑙𝑜𝑔( 𝑒𝑥𝑝(−𝑥2)

2π
)

Equation 1. Log likelihood of a feature occurring given model parameters.

Figure 2. Timeseries Display for Three Example Features.

With these elements, the HAR analysis plugin provides useful insights for tasks such as
sign language recognition - as CopyCat works with - or other timeseries analysis tasks such as
heart rate tracking or signal processing.



Results
In order to show how feature selection worked, the CopyCat project’s recognition system

was tested twice - once with previous feature sets, and once with a feature set selected based off
of visualizations from the ELAN tool.

Recognition System
Experiments were run on the CopyCat recognition system, which records a video of a

user and recognizes what the user is signing in ASL. A standard experiment takes in numerous
parameters relating to how the data is processed and what kind of model should be run. The
recognition system was set up as follows for the two experiments.

First, the recognition system employed MediaPipe for pose estimation, extracting raw
body pose features such as left and right eye position [6]. Many of these features were dropped
based on what is specified in a separate configuration file; this file specifically was altered
during the feature selection experiments described later on. After this, a hidden Markov model
(HMM) was trained for each word, with each model containing a left-to-right topology of 14
states with no skip transitions and 10 Gaussian mixtures approximating the distribution at each
state for each feature. The training commenced with a flat initialization of all parameters,
followed by five iterations of Baum-Welch re-estimation. After the Baum-Welch re-estimation,
Viterbi Decoding was used to determine the HMMs that produced the highest likelihood given
observed feature values.

Data from three different users was passed in with the dataset for each user containing
around 350 videos. In order to test the trained HMMs for each experiment, three-fold
cross-validation was utilized, where one of the three users was left out during each fold. This
dataset was collected from users that previously volunteered their time to be recorded using the
Azure Kinect and will remain anonymous. The dataset is publicly available here:
https://github.com/Accessible-Technology-in-Sign/copycat-data-chi

Figure 3. MediaPipe Pose Estimation.

https://github.com/Accessible-Technology-in-Sign/copycat-data-chi


Experiments
To determine the best feature set to distinguish “in” and “above,” the log likelihood of a

feature occurring at any given time given the trained model from the first experiment were
computed for every feature and plotted for all phrases containing the words “in” or “above.”
After that, the median log likelihood was stored for each feature for the words “in” and “above.”
Then, the differences in median log likelihood between words “in” and “above” were computed
for each feature.  Appendix A shows the ranked derived features as described. Based on the
rankings, it is evident that features related to the change in motion of the right hand have low
log-likelihood differences indicating increased confusion between the two words, so these were
removed; Appendix B shows the old feature list as well as the edited feature list. The second
experiment was run to test whether the newly selected features improved the correct
classification of the word “in.”

Experiment 1 Experiment 2

Classification Accuracy of “in” .552 .554

Misclassified Proportion of “in”
as “above”

.211 .149

Table 1. Classification Accuracy of “in” versus Confusion of “in” with “above”.

Conclusions
Based on the results of the feature selection experiments, the accuracy of recognition of

“in” in words did not significantly increase, but the misclassification of “in” as “above” did
decrease from 21% to 15% misclassification. These experiments show the capacity of this tool to
be utilized in the future for feature selection. This tool also gives users the ability to visualize the
boundaries of a hidden Markov model’s states, which means that users can tell if certain states of
a word’s model are more important in distinguishing that word than other states so that they can
assign a greater weight to that state in the model. This idea, known as state boosting, should be
explored to improve the performance of HMMs for the task of sign language recognition

This project has contributed to the visualization of data in the field of human activity
recognition, allowing for timeseries data and model/state data to be mapped out in the ELAN
tool, given that they are in the correct format. For formatting tools and the general project setup,
all of the code utilized is available at the following public source repository:
https://github.com/ishanchadha01/CopyCat-HTK.

https://github.com/ishanchadha01/CopyCat-HTK
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Appendix A

Derived Feature Names Difference in Medians between Log
Likelihood for “in” and “above”

delta thumb left to nose y 2.8029862

delta hand left to nose y 2.7684686

delta handtip left to nose y 2.66457228

delta wrist left to nose y 2.48273314

delta elbow left to nose y 1.91186298

delta wrist right to nose y 1.60134778

delta handtip right to nose x 1.39228694

delta thumb right to nose x 1.32882823

delta hand right to nose y 1.19749331

delta handtip left y 1.11814567

delta thumb left to nose x 1.03648656

delta hand right to nose x 1.03452863

delta elbow right y 0.93705755

delta thumb left x 0.79280365

delta wrist right to nose x 0.77067687

delta elbow left y 0.75620695

delta thumb right y 0.63472446

delta wrist left to nose x 0.63152984

delta hand left to nose x 0.60202106

delta thumb right to nose y 0.55113822

delta wrist left x 0.51854211

delta thumb right x 0.48515404

delta elbow right x 0.48310083

delta hand right y 0.42080042

delta handtip right y 0.41539807

delta hand right x 0.34979547

delta handtip left x 0.32121592



delta hand left x 0.31749068

delta thumb left y 0.27441119

delta handtip right x 0.12586787

delta elbow right to nose x 0.12421918

delta elbow right to nose y 0.10361924

delta wrist right x 0.10127393

delta handtip left to nose x 0.08124838

delta wrist right y 0.07963044

delta hand left y 0.07863644

delta elbow left to nose x 0.04614015

delta elbow left x 0.04035305

delta wrist left y 0.03840295

delta handtip right to nose y 0.02056878



Appendix B

Old Base
Features

New Base
Features

Right Shoulder X Delta Right Shoulder X Right Shoulder X Delta Left Shoulder X

Right Shoulder Y Delta Right Shoulder Y Right Shoulder Y Delta Left Shoulder Y

Right Elbow X Delta Right Elbow X Right Elbow X Delta Left Elbow X

Right Elbow Y Delta Right Elbow Y Right Elbow Y Delta Left Elbow Y

Right Wrist X Delta Right Wrist X Right Wrist X Delta Left Wrist X

Right Wrist Y Delta Right Wrist Y Right Wrist Y Delta Left Wrist Y

Right Pinky X Delta Right Pinky X Right Pinky X Delta Left Pinky X

Right Pinky Y Delta Right Pinky Y Right Pinky Y Delta Left Pinky Y

Right Index X Delta Right Index X Right Index X Delta Left Index X

Right Index Y Delta Right Index Y Right Index Y Delta Left Index Y

Right Thumb X Delta Right Thumb X Right Thumb X Delta Left Thumb X

Right Thumb Y Delta Right Thumb Y Right Thumb Y Delta Left Thumb Y

Left Shoulder X Delta Left Shoulder X Left Shoulder X Delta Horizontal Hand
Distance

Left Shoulder Y Delta Left Shoulder Y Left Shoulder Y Delta Vertical Hand
Distance

Left Elbow X Delta Left Elbow X Left Elbow X

Left Elbow Y Delta Left Elbow Y Left Elbow Y

Left Wrist X Delta Left Wrist X Left Wrist X

Left Wrist Y Delta Left Wrist Y Left Wrist Y

Left Pinky X Delta Left Pinky X Left Pinky X

Left Pinky Y Delta Left Pinky Y Left Pinky Y

Left Index X Delta Left Index X Left Index X



Left Index Y Delta Left Index Y Left Index Y

Left Thumb X Delta Left Thumb X Left Thumb X

Left Thumb Y Delta Left Thumb Y Left Thumb Y

Horizontal Hand
Distance

Delta Horizontal Hand
Distance

Horizontal Hand
Distance

Vertical Hand
Distance

Delta Vertical Hand
Distance

Vertical Hand
Distance


