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SUMMARY

We analyze issues arising from demand management in decentralized decision-making

environments. We consider logistics systems and supply chains, where companies’ opera-

tions are handled with independent entities whose decisions affect the performance of the

overall system. In the first study, we focus on a logistics system in the sea cargo industry,

where demand is booked by independent sales agents, and the agents’ capacity limits and

sales incentives are determined by a central headquarters. We develop models for the central

headquarters to analyze and optimize capacity allocation and sales incentives to improve

the performance of the decentralized system. We use network flow problems to incorporate

agent behavior in our models, and we link these individual problems through an overall

optimization problem that determines the capacity limits. We prove a worst-case bound on

the decentralized system performance and show that the choice of sales incentive impacts

the performance. In the second study, we focus on supply chains in the automotive indus-

try, where decentralization occurs as a result of the non-direct sales channels of the auto

manufacturers. Auto manufacturers can affect their demand through sales promotions. We

use a game theoretical model to examine the impact of “retailer incentive” and “customer

rebate” promotions on the manufacturer’s pricing and the retailer’s ordering/sales decisions.

We consider several models to determine which promotion would benefit the manufacturer

under which market conditions. We find that the retailer incentives are preferred when

demand is known. On the other hand, when demand is highly uncertain the manufacturer

is better off with customer rebates. We extend this research by analyzing a competitive set-

ting with two manufacturers and two retailers, where the manufacturers’ promotions vary

between retailer incentives and customer rebates. We find an equilibrium outcome where

customer rebates reduce the competitor’s profits to zero. We observe in numerical examples

that the manufacturers are able to increase their sales and profits with retailer incentives,

although this can be at the expense of the retailers’ profits under some situations.

xi



CHAPTER I

INTRODUCTION

Many companies in different industries operate in decentralized systems where decision-

making authority is distributed among the members (agents) of the system instead of col-

lected into a single centralized body. Although in some cases decentralization may seem

impractical or inefficient, it is sometimes necessary because of the nature of industry and

operations. For example, manufacturers often find it useful to focus on the manufactur-

ing and supply side of the operations as their core competency while managing the sales of

their products through independent retailers who service and market to end consumers. The

management of decentralized systems is challenging because the individual members’ deci-

sions may be conflicting with each other, and their objectives may not be directly aligned

with that of the overall system. Designing effective decision support models that account

for the independent agent behaviors is of great importance since failing to incorporate those

may lead to very poor system performance. Optimization and game theory provide tools to

analyze and model decentralized systems. In this dissertation, we study decentralized prob-

lems in two application areas: sea cargo shipping and automotive industries. The research

problems in both areas were motivated from discussions with our industrial collaborators.

We integrate optimization with non-cooperative game theoretical tools to develop models

to optimize the performance of the decentralized system.

In the first part of this thesis (Chapter 2), we analyze a decentralized booking/reservation

system motivated by practices in some sea cargo companies. Seaborne shipping is the most

economical transportation mode for moving large volumes on long distances. Correspond-

ingly, the majority of the world trade volume is carried by ships. Both the world fleet and

the world’s seaborne trade have experienced continuous growth during the last few decades

Christiansen et al. [19] report that 5.625 million tons of goods were estimated to be moved

in 2002, representing a 33% increase during the last decade. In spite of its important role

1



on the world economy, sea cargo industry operations and problems have not been inves-

tigated by as many researchers as in other areas. The majority of the work done in this

area deals with the routing and scheduling of the ships (Christiansen et al. [19]). Besides

these operational problems, some carriers are also interested in implementing effective book-

ing/reservation policies in order to manage their demand in the best possible way to match

with their capacity. Some sea cargo carriers employ a distributed (decentralized) booking

control where the firm (central headquarters) assigns aggregate capacity limits and sales

incentives to the decentralized sales agents who then manage cargo bookings from their loca-

tions while sharing the system resources. The central headquarters does not directly control

the agents’ decisions but can influence them through system design and incentives, with the

objective of generating high system revenues. We model the firm’s problem to determine the

best capacity allocation to the agents such that system revenue is maximized. This model

incorporates self-optimizing agent behaviors, which we model using network flow problems.

In the special case of a single-route, we formulate the capacity allocation problem as a mixed

integer program incorporating the optimal agent behavior. For the NP-hard multiple-route

case, we propose several heuristics for the problem. Computational experiments show that

the heuristics perform reasonably well and that the decentralized system generally performs

worse when network capacity is tight. We prove that the decentralized system may perform

arbitrarily worse than the centralized system when the number of locations goes to infinity,

although the choice of sales incentive impacts the performance. We develop an upper bound

for the decentralized system that gives insight on the performance of the heuristics in large

systems.

In the second part of the thesis (Chapters 3 and 4), we analyze sales promotions by

manufacturers that use non-direct distribution channels to sell their products. The mar-

keting and economics literature is quite rich in analysis of sales promotions with particular

focus on empirical investigations of the effects of promotions on the consumers’ purchasing

behaviors and the firms’ profits. The motivation for our research comes from the automo-

tive (auto) industry. In the auto industry, production costs are largely fixed and therefore

maximizing revenue is the main objective. Sales promotions such as cash rebate, dealer

2



incentives, and low percent financing programs are frequently offered by the auto manufac-

turers to increase sales and revenues. The automotive research firm Edmunds.com reports

that the aggregate incentives offered by the auto manufacturers in the United States (U.S.)

market totaled $3.39 billion in April 2006. The sales promotions can be directed to the

end customers and/or retailers (dealers) in the distribution channels, and the promotional

choice may depend on demand characteristics faced by the manufacturers or the charac-

teristics of the manufacturers. We focus on “customer rebate” and “retailer incentive”

promotions, and we model the former as a per-unit payment from the manufacturer di-

rectly to the end customer and the latter as a lump-sum payment from the manufacturer to

the retailer. The main tradeoff is that customer rebates are given to every customer, while

the use of retailer incentives are controlled by the retailer. We study a game theoretical

model to examine the impact of these promotions on the manufacturer’s pricing and the

retailer’s ordering/sales decisions when the retailer can price discriminate. The auto dealers

do not generally announce fixed retail prices for their vehicles, but rather they negotiate

with the buyers and price discriminate accordingly. We consider several models with dif-

ferent demand characteristics and information asymmetry between the manufacturer and

the retailer, and determine which promotion would benefit the manufacturer under which

market conditions by characterizing the subgame-perfect Nash equilibrium decisions. When

demand is deterministic, we find that retailer incentives may increase the manufacturer’s

profits (and sales) while customer rebates do not unless they lead to market expansion. We

study several extensions with deterministic demand, and we analyze the sensitivity of our

qualitative results to the model assumptions. When the uncertainty in demand (“market

potential”) is high, we show that a customer rebate can be more profitable than the retailer

incentive for the manufacturer. We provide additional insights through numerical examples

and empirical analysis of data from domestic auto industry.

Chapter 3 considers a monopolist manufacturer and retailer, and ignores competition,

which may be an important factor driving the promotional decisions of the manufacturers.

For example, an employee discount program, which was introduced by General Motors in

June 2005, was followed by Ford and Chrysler the next month. In Chapter 4, we extend

3



the research on promotions in the auto industry to investigate the effects of competition on

the promotional decisions of the manufacturers. We analyze a setting with two competitive

manufacturers who sell their products at their exclusive retailers, who are also competi-

tors in the end market. Similar to the analysis in Chapter 3, we adopt a game theoretical

framework to model the interactions among the supply chain members, and we find the

subgame-perfect Nash equilibrium decisions. We analyze a benchmark case where there

are no promotions offered by the manufacturers, and we compare the equilibrium outcomes

with those in the cases where the manufacturers offer retailer incentives or customer re-

bates. We provide several observations using numerical examples. We find that the retailer

incentives can be effective in improving the manufacturers’ sales and profits, although they

can be detrimental to the retailers’ profits under some market conditions. We characterize

equilibrium decisions where the manufacturers can benefit most from the customer rebates.

Unlike the monopolistic setting, we find that customer rebates can be effective in increasing

sales and profits of a manufacturer while driving the competitor’s profits to zero even when

demand is deterministic.

We review the relevant literature in the corresponding chapters. We summarize our

findings and present future research directions in Chapter 5.
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CHAPTER II

CAPACITY ALLOCATION TO SALES AGENTS IN A

DECENTRALIZED LOGISTICS NETWORK

2.1 Introduction

2.1.1 Motivation

The optimization of logistics systems has resulted in many improvements such as reduced

costs, shorter lead-times, and better customer service. However, most optimization models

have been designed to be used by a centralized planner who makes system-wide decisions,

while many organizations actually operate in a decentralized manner with agents making

independent decisions. The individual agents may make locally optimal decisions for the

part of the system that they manage, but in situations where they share resources, their

decisions may have negative consequences for the overall organization.

In practice, many examples of decentralized systems exist due to several reasons. For

example, decentralized decision-making can provide responsiveness and flexibility in han-

dling uncertainty in environments such as military operations, where individual units may

be authorized to make independent decisions in real-time Lin et al. [55]. Legal barriers to

centralization may also exist: franchise laws in the U.S. prohibit auto manufacturers from

selling vehicles directly to consumers, leading to decentralized distribution through inde-

pendent dealerships. For some environments, centralization may be prohibitively expensive,

very complex, or the coordination may be too much of a burden. This is especially true for

large systems, which would require substantial computational power to store and process

large amounts of information for centralized decision-making.

Decentralized systems are sometimes less efficient in terms of the system-wide perfor-

mance. For example, in a decentralized supply chain, the entire system may incur a revenue

loss of 25% due to a phenomenon called “double marginalization” Spengler [73]. Simply

applying centralized optimization models to decentralized systems may not be appropriate,
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but it may be possible to design and optimize the system to achieve good performance. A

classic example in the economics literature that analyzes decentralized decision-making is

the class of problems called Principal-Agent, where the principal contracts with the agent

for performing certain acts. (For further details on Principal-Agent problems, see for ex-

ample Tirole [79] or Varian [82].) In Principal-Agent problems, the utility of the agent

may not be directly aligned with that of the principal, thus the principal designs incen-

tives or mechanisms to achieve the desired performance in the decentralized system. The

Principal-Agent framework can be applied to decentralized logistics systems by developing

optimization models that incorporate individual behaviors and by designing incentives or

mechanisms to improve the system performance.

The motivation for our study comes from a decentralized booking practice in some sea

cargo companies that transport containerized cargo and provide liner service. Liner is one

mode of shipping operation in which the companies provide service according to regular

schedules and fixed itineraries or service routes Christiansen et al. [19]. In systems we

study, a sales agent is located at each port on a network of service routes, and he handles

cargo bookings that originate from his port. The sales agent earns revenue according to

the incentive determined by the central headquarters, e.g., a fixed proportion of the total

revenue generated by the agent’s bookings. The central headquarters assigns aggregate

capacity to each sales agent for total bookings out of the agent’s port, where the firm’s

objective is to maximize total revenue. This decentralized booking practice can be thought

of as a Principal-Agent problem where the principal is the central headquarters and the

agents are the sales offices that book cargo. The mechanisms are capacity allocation and

sales incentives, where the performance is measured by total system revenue.

In this research, we develop models for the central headquarters to analyze and optimize

capacity allocation and sales incentives to improve the performance of the decentralized sys-

tem. We use network flow problems to incorporate agent behavior in our models, and we

link these individual problems through an overall optimization problem that determines the

capacity limits to the agents and maximizes system revenue. For the special case of a single

6



route, we formulate a comprehensive model including allocation decisions and agent behav-

ior to solve the problem, and in the NP-hard general case, we develop several heuristics

that consider agent behavior. We analyze the worst-case performance of the decentralized

system and develop an upper bound on the optimal revenue that provides insight on the

performance of the heuristics. Our computational results indicate that decentralized book-

ing control is generally worse when capacity is tight, and the heuristics perform reasonably

well and fast. The models that we develop can be used in rough-cut capacity allocation

planning and evaluating “what-if” scenarios for the system design. For example, the central

headquarters can use these models to determine allocation of capacity to agents, to choose

sales incentives, to evaluate investment in an expensive centralized booking system, or to

assess alternate designs of the network.

2.1.2 Literature Review

Research relevant to our work has been done in areas such as Principal-Agent analysis,

revenue management, sea cargo routing and scheduling, decentralized organizational design,

and network equilibria.

Principal-Agent problems are well-studied in the economics and operations management

literature. (See, for example, Corbett and De Groot [20], Iyer et al. [40], Tirole [79], and

Varian [82].) These problems arise in the field of non-cooperative game theory and include

applications to compensation of executives, contracting of workers, and management of

supply chains. Our work presents analysis of a Principal-Agent problem in a non-traditional

area, with agents booking cargo on a network of service routes.

Revenue management, which is a practice used in industries such as airline, car rental,

hotel and entertainment, is concerned with achieving maximum revenue from the sales of

perishable assets. The field of revenue management is relevant to the problem that we

study since price-differentiated cargo is transported using perishable ship capacity, and the

objective is to maximize revenue. For some examples of research in airline and air cargo

revenue management see Bertsimas and Popescu [7], Dror et al. [25], Glover et al. [35],

Karaesmen and van Ryzin [43], Kasiligam [44], and Kasilingam [45], or see McGill and van

7



Ryzin [56] for a review. More recently, there has been interest in applying revenue manage-

ment techniques in the sea cargo industry; Lee et al. [54] analyze a revenue management

problem where the carrier decides which demands to satisfy or postpone as they are re-

quested by contract and non-contract shipping customers. While most research in revenue

management takes a centralized perspective on booking control, we focus on a decentralized

system.

There is also a body of literature that relates specifically to sea cargo beyond the last

example, most of which deals with the routing and scheduling of ships or moving empty

containers to match supply and demand. (See Christiansen [19] for a review.) Different

than the research in this stream, we take the ship routes and schedules as given, and we

focus on maximizing revenue in a decentralized system.

Some research related to decentralized systems has been done in the allocation of shared

resources in multi-level organizations. The most relevant ones to our study include Burton

and Obel [14] and Gazis [30]. In both papers, the authors analyze a problem where a central

organizing body distributes the total capacity of common resources to sub-units who make

individual decisions regarding these resources. In the formulations, feasibility for each

resource is ensured with a constraint that limits its overall usage to the available capacity.

Although the problem that we study is similar in concept, our problem is complicated by the

fact that the sales agents receive aggregate capacity limits for multiple network resources.

An effective distribution of the common resources that achieves high revenue requires us to

know the agents’ booking decisions, which is difficult to characterize on the network.

A number of papers have studied the loss of efficiency (i.e., the loss in a decentralized

system compared to a centralized one) in the context of Nash equilibria or network mod-

els. The term “price of anarchy” was first used in Koutsoupias and Papadimitriou [49]

and Papadimitriou [65] to quantify the degree of loss in a restricted network. Some exam-

ples of research analyzing the price of anarchy in capacitated transportation networks and

competitive network environments include Correa et al. [22] and Johari and Tsitsiklis [42].

Perakis [67] generalizes the work in this stream by considering systems with non-separable,

asymmetric and nonlinear costs. The author finds that the loss due to decentralization can
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be unbounded in the worst case. Although the decentralized problem we study is different,

we show a similar worst-case result.

This chapter is organized as follows. We describe the problems that we address in

Section 2.2 with a focus on capacity allocation in the decentralized system. In Section 2.3,

we analyze a special case, present our heuristics and provide further theoretical analysis.

We present some observations from our computational study in Section 2.4 and conclude

with a summary of our findings in Section 3.4.

2.2 Models

In this section, we introduce some definitions, state our assumptions, and formulate the

problems that we analyze.

We are interested in networks that are composed of directed cycles (not necessarily

simple), which we call routes. A route is a sequence of ports that begins and ends at a

specific location in the network. We present an example in Figure 1 where the network

consists of a single route with revisitations that originates and terminates at Port 1. A leg

is identified by a pair of locations on a route that are visited consecutively by the asset, or

ship. Demand is in the form of Origin-Destination (O-D) pair requests. Ship capacity refers

to the number of containers a ship can carry on a particular route. Since liner operators

have regularly departing schedules (e.g., weekly) and we are interested in a system with

time-stationary parameters, thus we can view a snapshot of the network in time, with all

demand forecasts and capacities defined for the time period being studied. In practice, the

models we present can be solved in a rolling horizon, where reallocation of capacities to

the agents accounts for already confirmed bookings and new information about O-D pair

demand.  

Port 1 

 

Port 2 

 Port 3 

 
Port 4 

 
Port 7 

 

Port 5 

 
Port 6 

 

Port 8 

 Figure 1: A network with a single route and revisitations.
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Associated with each port on the network is a sales agent. In the problem we study, an

agent at a particular port only books freight leaving from that port; in practice that agent

has the most information about the booked cargo from his port and the feeder services into

and out of the port. Note that this is different than booking practices for most passenger

air travel, where travel agents can book demand to and from any location. The sales agent

optimizes his individual objective (independently of the other agents) based on the sales

incentive as determined by the central headquarters. Unless otherwise noted, we assume

that the sales incentive is based on total revenue, and we do not model sales effort or cost

as a function of the incentives. We use the term “agent” to represent the sales office at a

port and we assume that the sales office acts as one entity towards the common objective.

The central headquarters assigns capacity on a given ship and route to each agent on

that route; the capacity is an aggregate allocation that limits the total demand bookings

out of the agent’s port rather than a capacity limit for each leg or O-D pair. We assume that

the central headquarters has full information on prices and that O-D pair demand is known

by both sales agents and central headquarters. In practice, demand is often forecasted by

sales agents who give the information to central headquarters.

We assume there is no penalty associated with rejection of demand besides the lost

revenue. Since ship operating cost is largely fixed and does not depend on accepted demand,

we ignore this cost. We assume that customers are path indifferent, i.e., an O-D pair request

may be transported on any ship travelling between its origin and destination ports. We do

not allow transshipment and multiple loading/unloading of cargo. Finally, we assume that

each unit of demand is equal to one container of the same size.

We identify the following problems:

• Capacity Allocation Problem (CAP): CAP determines the optimal set of capacity

limits to allocate to each sales agent on each route. The central headquarters solves

CAP to maximize total revenue, while ensuring that the overall solution determined

from the agents’ booking decisions is feasible.

• Agent Problem (AP): AP determines the optimal set of accepted O-D pair demands
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for an agent. An individual sales agent solves AP to maximize his objective based on

the sales incentive, while guaranteeing that the number of accepted demands is within

his capacity limit as assigned by central headquarters.

• Central Problem (CP): CP determines the optimal set of O-D pair demands to

accept for the system to maximize total revenue, while ensuring overall feasibility.

Our focus is primarily on CAP. In order to model CAP, we need to understand an agent’s

behavior, therefore we analyze AP. In CP, all decisions regarding demand acceptance are

made in a centralized manner, therefore CP provides benchmark results for CAP.

Table 1 summarizes the main notation used in this chapter. For notational convenience,

the price per container for an O-D pair is the same regardless of the route chosen and the

type of cargo, and the capacity on each leg of a route is equal to the ship capacity on the

route.

We start by analyzing AP. An agent at port p receives the capacity limits ~ap and solves

his individual problem, which we call APp. We formulate APp as a minimum cost flow

problem following the representation in Ahuja et al. [1], and we construct the underlying

graph and choose the problem parameters according to our setting. (Minimum cost flow

problems are polynomially solvable and can be solved efficiently by specialized network flow

algorithms.)

The underlying graph consists of nodes corresponding to the O-D pairs (nk, k ∈ ODp),

routes (mr, r ∈ Rp) and a sink node (t) for feasibility. We denote the network for agent p

with Hp = (Np, Ap), where Np is the set of nodes and Ap is the set of arcs. The problem

parameters corresponding to the net supply at node i, (bi), the per unit cost of sending flow

on arc (i, j), (cij), and the upper bound on arc (i, j), (uij), are defined as follows:

Np = {t ∪ (
⋃

k∈ODp
nk) ∪ (

⋃
r∈Rp

mr)}
Ap = {(⋃k∈ODp,r∈RRk

(nk,mr)) ∪ (
⋃

k∈ODp
(nk, t)) ∪ (

⋃
r∈Rp

(mr, t))}

bi =





dk if i = nk

−∑
k∈ODp

dk if i = t

0 otherwise

; cij =




−pk if (i, j) = (nk,mr)

0 otherwise
;
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Table 1: Main notation for Chapter 2

P : Set of ports or agents
Rp : Set of routes that visit port p

(∪p∈P Rp = R, where R denotes the set of all routes)
ODp : Set of O-D pairs that originate at port p

(∪p∈P ODp = OD, where OD denotes the set of all O-D pairs)
ODp : Set of O-D pairs for port p ordered by non-increasing prices
OD : Set of all O-D pairs ordered by non-increasing prices

opk, dpk : Origin, destination ports of O-D pair k
RRk : Set of routes such that a directed path exists from opk to dpk

Lr : Set of legs on route r
(denoted as L if |R| = 1, where |R| is the cardinality of the set R)

LLr
k : Set of legs O-D pair k traverses on route r (denoted as LLk if |R| = 1)

Sr
l : Set of O-D pairs on route r using leg l ∈ Lr (denoted as Sl if |R| = 1)

capr : Ship capacity on route r (denoted as cap if |R| = 1)
pk : Price per unit demand shipped for O-D pair k
dk : Total amount of demand for O-D pair k

nvr
p : Number of times port p is visited on route r

ar
p : Capacity allocated to agent at port p on route r (denoted as ap if |R| = 1)

~ap : The vector of allocated capacities on all the routes of agent at port p,
where ~ap = (a1

p, a
2
p, .., a

|Rp|
p )

~a : The vector of allocated capacities of all agents,
where ~a = {~a1|~a2|...|~a|P |}

er
p : Unit vector for agent p with number of entries = |Rp|,

entry of 1 for route r and 0 otherwise
yr

k(~ap) : Number of demands accepted for O-D pair k on route r
when the agent at port p receives ~ap

yk : Number of demands accepted for O-D pair k
(defined for the special case of a single-route)

zp
k : Binary decision variables that equal one if the entire demand of

O-D pair k ∈ ODp is satisfied and zero otherwise
Zp(~ap) : The objective function value of AP corresponding to the agent at port p
Z+ : The set of positive integers
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uij =





ar
p if (i, j) = (mr, t)

dk otherwise.

The decision variables, xij , ∀(i, j) ∈ Ap denote the flow on arc (i, j). APp is then

formulated as follows:

(APp) Z∗p(~ap) = min
∑

(i,j)∈Ap

cijxij

subject to
∑

(i,j)∈Ap

xij −
∑

(j,i)∈Ap

xji = bi, ∀i ∈ Np

0 ≤ xij ≤ uij .

The first set of constraints satisfies the flow balance restrictions, and the second set of

constraints corresponds to the individual flow bounds. The objective is to maximize the

total revenue from accepted demand. From the optimal solution of APp, we obtain yr∗
k (~ap),

∀k ∈ ODp, ∀r ∈ RRk, using the following relation: yr∗
k (~ap) = x∗(nk,mr).

Given the AP models, we present a mathematical formulation for CAP, where the

decision variables are the capacity limits to allocate to each agent.

(CAP) max
~a∈Z+





∑

p∈P

Z∗p(~ap) s.t :
∑

p∈P

∑

k∈(ODp∩Sr
l )

yr∗
k (~ap) ≤ capr,∀r ∈ R, ∀l ∈ Lr



 .

The objective is to maximize the total revenue generated from the booking decisions of

all agents, while ensuring that the total accepted O-D pair demand on each leg is within

the capacity limits. We show in Lemma 1 that the multiple-route CAP is NP-hard, since a

special case of it is equivalent to the directed multi-commodity integral flow problem, which

is NP-hard (Garey and Johnson [29]). However, in general, CAP is not equivalent to a multi-

commodity flow problem, which assumes centralized control and does not incorporate the

behavior of the individual agents.

Lemma 1 The multiple-route CAP is NP-hard.

Proof. We consider the decision problem corresponding to the optimization problem

CAP. (CAP Decision Problem) INSTANCE: Given directed graph G = (N, A), capacity on
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each route, price and demand for each O-D pair and total revenue goal K. QUESTION: Is

there an assignment of route capacities to each agent, ~a = {~a1|~a2|...|~a|P |} where the capacity

is used independently by that agent to maximize his own revenue, Z∗p(~ap) =
∑

k∈ODp

pky
r∗
k (~ap)

where yr∗
k (~ap),∀k ∈ ODp, r ∈ RRk is the agent optimal solution, such that

∑
p∈P

Z∗p(~ap) ≥ K

and
∑
p∈P

∑
k∈(Sr

l ∩ODp)

yr∗
k (~ap) ≤ capr, ∀r ∈ R, l ∈ Lr?

Restrict to directed multi-commodity integral flow by allowing instances where each

agent has demand for only one O-D pair. In this case, for each capacity allocation assigned

to an independent agent p (~ap), the solution of the APp, consisting of the accepted OD

pair and the corresponding revenue is known exactly. Thus the decision of finding the

set of capacity allocations becomes a question of how to send flow (or commodities) such

that revenue achieves a goal and capacities are not violated. (Note that directed multi-

commodity integral flow problem is a generalization of directed 2-commodity integral flow

problem, which is NP-complete, see Garey and Johnson [29]).

The multiple-route CAP problem incorporates agent behavior through the individual

AP solutions for each set of capacity allocation. Suppose instead, that one formulated an

integer program without the AP solutions, where the decision variables are the capacity

limits allocated to each agent and the number of demands accepted; constraints limit the

bookings on each leg by ship capacity and each agent’s bookings by his capacity allocation.

Although the capacity limits are added as decision variables, the solution of this program is

equivalent to the CP solution, and it does not model actual agent behavior in a decentralized

system. In the decentralized system, a different approach is needed to incorporate agent

behavior, ensure feasibility and maximize revenue. If the agent behavior can be explicitly

characterized, then it would be possible to solve CAP in one comprehensive model that

directly incorporates agent decisions. We show that this is possible for the special case of a

single-route.

An alternative allocation scheme to aggregate capacity allocation on each route is leg-

based allocation, where each agent receives separate capacity limits on each of the legs he can

use. In this case, the feasibility of CAP is easily ensured in an integer programming model.

In spite of this modelling convenience, a leg-based allocation scheme may not be appealing
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in practice for large systems. For instance, consider the size of a typical network for a sea

cargo carrier operating in Intra-Asia (e.g., [63]). The sales agent in Hong Kong is located

on a port that is serviced by 8 different routes. The sales agent would require 52 leg-based

capacity limits or 41 O-D pair-based capacity limits compared to 8 aggregate capacity limits

out of Hong Kong. Some sea cargo companies prefer the simplicity of assigning aggregate

capacity despite the inefficiencies that may result. Moreover, assigning aggregate capacity

limits rather than leg-based or O-D pair-based limits may be better as a planning tool since

aggregate forecasts of demand are more accurate than forecasted demand for each O-D pair.

The last problem that we model is CP, where the central headquarters and the sales

agents act as a single unit and jointly determine the best set of demands to accept in order

to maximize the overall system revenue. We formulate CP as an integer multi-commodity

flow problem following the representation in Ahuja et al. [1], where the commodities are

the O-D pairs in our setting.

We construct the underlying network G = (N,A), which includes the set of arcs (Ar)

and nodes (Pr) corresponding to each route r ∈ R, a source (nk) and a sink node (tk) for

each O-D pair k. In order to model no multiple loading/unloading of cargo, we replicate

the nodes in the routes which are visited more than once. We denote the resulting set of

nodes with P ′
r. We denote the subgraphs for each O-D pair k with Gk = (Nk, Ak). We

summarize the arcs associated with each O-D pair k with Ok and Dk, where Ok is the set of

origin arcs, where Ok =
⋃

r∈RRk
{(nk, j) : j ∈ P ′

r,j = opk} and Dk is the set of destination

arcs, where Dk =
⋃

r∈RRk
{(j, tk) : j ∈ P ′

r,j = dpk}.
Then, G = (N,A), where

N = {(⋃r∈R P ′
r) ∪ (

⋃
k∈OD nk) ∪ (

⋃
k∈OD tk)}

A = {(⋃r∈R Ar) ∪ (
⋃

k∈OD(nk, tk)) ∪ (
⋃

k∈OD Ok) ∪ (
⋃

k∈OD Dk)}.
For each k ∈ OD, Gk = (Nk, Ak), where

Nk = {(⋃r∈R{i ∈ P ′
r : i is visited by O-D pair k}) ∪ nk ∪ tk}

Ak = {(⋃r∈R{(i, j) ∈ Ar : i, j ∈ Nk and (i, j) is traversed by O-D pair k }) ∪ (nk, tk) ∪
Ok ∪Dk}.

In Figure 2, we show an example network with two routes, which we use to construct
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the subgraph for the O-D pair with origin port 1 and destination port 7 in Figure 3. (The

subgraph is highlighted with solid arcs.)
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Figure 2: A network with two routes
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 Figure 3: Illustration of the subgraph constructed for O-D pair 1-7 in Figure 2

The problem parameters corresponding to the net supply at node i, (bi), the per unit

cost of flow for commodity k on arc (i, j), (ck
ij), and the upper bound on arc (i, j), (uij),

are as follows:

bk
i =





dk if i = nk

−dk if i = tk

0 otherwise

; ck
ij =




−pk if (i, j) ∈ Ok

0 otherwise
;

uij =





dk if (i, j) ∈ (Ok ∪Dk ∪ (nk, tk))

capr if (i, j) ∈ ⋃
r∈R Ar.

The decision variables are xk
ij ,∀k ∈ OD,∀(i, j) ∈ Ak, denoting the flow of O-D pair k

on arc (i, j). We formulate CP as follows:
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(CP) min
∑

(i,j)∈A

∑

k∈OD

ck
ijx

k
ij

subject to
∑

(i,j)∈Ak

xk
ij −

∑

(j,i)∈Ak

xk
ji = bk

i , ∀k ∈ OD, ∀i ∈ Nk

∑

k∈OD

xk
ij ≤ uij , ∀(i, j) ∈ A

0 ≤ xk
ij ≤ dk, integer,∀(i, j) ∈ A, k ∈ OD

The first set of constraints satisfies the flow balance restrictions. The second set of

constraints corresponds to the bundle constraints that restrict the total flow of all O-D

pairs on each arc with the capacity of the arc. The last set of constraints are individual

flow bounds. The objective is to maximize the total revenue from accepted demand.

2.3 Solution Approaches

2.3.1 Special Case: Single Route

In this section, we analyze capacity allocation in a decentralized network with a single-route,

and we show several results using the special structure of CAP. These results also give us

insight into the multiple-route problem and could also apply to other transportation areas,

such as the railroad industry.

Similar to the analysis in Section 2.2, we first model the Single-route Agent Problem

(SAP) to understand the behavior of the agents. Given an agent p, we call the agent’s

problem SAPp and show the formulation below.

(SAPp) max
yk∈Z+

{
∑

k∈ODp

pkyk s.t :
∑

k∈ODp

yk ≤ ap, yk ≤ dk , ∀k ∈ ODp

}
.

The objective function is to maximize the revenue of the agent. The first set of con-

straints ensures that the total number of demands accepted is limited by the agent’s capacity

allocation. The second set of constraints restricts the number of accepted bookings for each

O-D pair by the corresponding demand. SAPp is equivalent to a continuous knapsack prob-

lem with integer data, which is optimized by a greedy algorithm that accepts the O-D pair

demands in the order of non-increasing prices. This characterization of the agents’ optimal
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solutions allows us to directly model agent behavior in the single-route case, which we incor-

porate in a mixed integer linear program for the Single-route Capacity Allocation Problem

(SCAP).

To formulate SCAP, we order the O-D pairs of each agent from highest to lowest in

prices, and we obtain the set ODp, ∀p ∈ P . We use an index l(k) to denote the order of

O-D pair k in ODp, where l(k) = 1 denotes the O-D pair k with the highest price, and

l(k) = |ODp| denotes the O-D pair k with the lowest price in ODp. (Since O-D pair k is

exclusively serviced by one agent, l(k) uniquely identifies each O-D pair k.) We use the

binary decision variables zp
k (p ∈ P, k ∈ ODp) to incorporate the precedence relations among

O-D pairs of each agent. We formulate SCAP as follows:

(SCAP) max
∑

k∈OD

pkyk

subject to
∑

k∈Sl

yk ≤ cap for all l ∈ L,

dkz
p
k ≤ yk ≤ dk for all p∈P, k ∈ ODp : l(k)=1,

dkz
p
k ≤ yk ≤ dkz

p
k′ for all p∈P, k, k′∈ODp : l(k)= l(k′)+1, l(k)>1,

yk ≥ 0 for all k ∈ OD,

zp
k = {0, 1} for all p ∈ P, k ∈ ODp.

The first set of constraints ensures that leg capacities are not exceeded. The second

set of constraints ensures that the demands accepted for the O-D pairs satisfy each agent’s

optimal behavior as characterized by the SAP solution. We calculate the capacity limits to

agent p from the solution of SCAP as ap =
∑

k∈ODp

yk, ∀p ∈ P .

Finally, we model the Single-route Central Problem (SCP) as an integer program with

a constraint matrix that has the circular 1’s property in its columns. (See Appendix A.1)

for the formulation.) This is best seen when the matrix is formed with rows denoting the

legs (in the order that they are traversed according to the sequence of ports) and columns

with O-D pairs. Then, the matrix has an entry of 1 when the leg is traversed by the O-D

pair in the corresponding column. For a definition of the circular 1’s property and results

on complexity status of related problems, see Hochbaum and Tucker [38]. Since SCP is

equivalent to SCAP without the precedence constraints, SCAP is at least as difficult as
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SCP, the complexity status of which is unknown to the best of our knowledge.

2.3.2 Heuristics for Multiple-Route CAP

As mentioned in Section 2.2, the multiple-route CAP is NP-hard. Therefore, we focus on

developing efficient heuristics that incorporate agent behavior.

2.3.2.1 Marginal Revenue (MR) Heuristic

In this section, we describe the Marginal Revenue (MR) heuristic to solve CAP. Given

current allocated capacities, we build a feasible solution by successively assigning fixed

increments of capacity to the agent that brings the highest current additional revenue (or

highest marginal revenue) without violating system feasibility. The latter is determined by

finding the capacity used on each leg considering bookings by all agents. Although designing

an allocation mechanism based on marginal revenue is a simple idea, the revenue can be

quite close to that of the optimal CAP solution. We summarize the main steps of the MR

heuristic below and provide a formal description of the algorithm in Appendix A.2.

1. Initialize the capacity limits to all agents at zero.

2. For each agent p on each route r ∈ Rp, temporarily increase the agent’s capacity limit

on route r by a stepsize and solve APp.

3. Find the agent and route pair (pmax, rmax) that brings the largest increase in the

objective function value and satisfies overall system feasibility.

4. Increase the capacity limits to agent pmax by stepsize.

5. Repeat Steps 2-4 while there exists an agent whose capacity limit can feasibly be

increased on a route.

The most time consuming part of the algorithm is finding (pmax, rmax), since this requires

solving multiple APs for each new capacity increment and checking the feasibility of the

overall system. An upper bound on the total number of minimum cost flow problems solved

is max
p∈P

{|Rp|
∑

r∈Rp

(capr · nvr
p)

}
. The use of a scalar, nvr

p, is needed in order to capture the
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increased capacity resulting from multiple visitations to a port in a particular route. The

parameter stepsize, which is the size of the capacity increment in the allocation vector,

may be increased to reduce runtime, although this can result in a decrease in the solution

quality.

2.3.2.2 Priority O-D (POD) Based Allocation Heuristic

The Priority O-D (POD) based allocation heuristic is partly motivated by the single route

results in Section 2.3.1, where the optimal solution of AP is such that the agents satisfy

demands in a greedy fashion according to the ranked prices of the O-D pairs. Thus, for the

POD heuristic, we form OD by ordering the O-D pairs in the order of decreasing prices. We

allocate capacity to the agents according to this priority list, where allocation increments

are as large as possible without violating system feasibility. We summarize the main steps of

the POD heuristic below and provide a formal description of the algorithm in Appendix A.3.

1. Start with the O-D pair k that has the highest price and find a route r ∈ RRk that

may accommodate the largest amount of its demand.

2. Temporarily increase the allocation of the agent at the origin port of O-D pair k (opk)

on route r by the demand or the available capacity on that route, whichever is smaller.

3. Solve APopk
. Make the agent’s allocation increment permanent if the new allocation

does not violate the system feasibility. Go to Step 5 if O-D pair k is entirely booked.

4. Continue with r ∈ RRk, r 6= r and repeat Steps 2 and 3.

5. Continue with the next O-D pair in OD until all O-D pairs have been considered or

no capacity is remaining.

An alternative we consider to giving priority to the routes with higher allowable space

(Step 1) is to solve the linear relaxation of CP and use the dual variables corresponding

to the legs of the routes for ranking the routes. Neither of the two approaches to route

selection is outperformed by the other in our computational experiments. The runtime of
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Figure 4: Example illustrating O-D pair replacement

the algorithm is directly proportional to the total number of O-D pairs. For each O-D pair

k, at most |RRk| number of minimum cost flow problems are solved.

While agent behavior is greedy and relatively easy to characterize in the single-route

problem, this is not true in the multiple-route case. There may be several types of behaviors

where the agent uses capacity differently than as estimated in the POD heuristic. In

Figure 4, we illustrate a situation, which we call “O-D pair replacement”, where the agent

may use the (temporarily) allocated capacity in his own self interest and may cause system

infeasibility. In this case, “O-D pair replacement” is performed by agent at port 5. Legs

(7, 6) and (6, 1) are totally occupied (represented by bold arcs with heavy lines), and the

prices of O-D pairs 5-1 and 5-7 are such that p5-1 > p5-7. Note that O-D pair 5-1 needs

space on (7, 6) and (6, 1), but O-D pair 5-7 does not. Consequently, the POD heuristic does

not allocate any capacity to the agent when considering O-D pair 5-1, but may attempt to

allocate him capacity for O-D pair 5-7 in order to improve the current solution. However,

the agent can use this capacity for O-D pair 5-1 since p5-1 > p5-7. This violates capacity

limits on legs (7, 6) and (6, 1). POD avoids future O-D replacements by agent 5 by not

allocating him more space on this route. In the case of “O-D pair replacement”, we can

identify the behavior and do not increase the agent’s capacity limit so that feasibility is

maintained.

Other kinds of agent behaviors may also occur, such as “O-D pair swapping”, where the

agent may swap routes used for previously considered O-D pairs and book an O-D pair with

higher price using the new capacity; thus causing system infeasibility. This behavior is more

difficult to characterize since it may result in multiple swaps of O-D pairs among routes.

Therefore, we ensure the feasibility of the overall solution by solving AP in Step 3 of the

heuristic. In this step, if we detect that the optimal AP solution causes system infeasibility,
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we do not assign the capacity increment permanently to the agent.

The POD heuristic assigns capacities to the sales agents based on estimated agent

behavior according to the priority list of O-D pairs. In contrast, the MR heuristic does

not make any assumptions about the structure of agent behavior and solves a new AP

to capture behavior for each potential capacity allocation. The POD heuristic allocates as

much capacity as possible at each iteration of the algorithm, while the MR heuristic allocates

fixed capacity increments determined by the stepsize. We show in our computational

experiments that the POD heuristic is much faster than the MR heuristic with a small

stepsize.

2.3.2.3 Benchmark Heuristics

We analyze two simple heuristics, Equal Allocation (EA) and Conservative Allocation (CA),

which are easy to implement and can be solved very quickly. In general, we do not expect

that these heuristics perform well for CAP, but they provide another benchmark against

which to compare the MR and POD heuristics. The EA heuristic equally distributes ship

capacity on a route among the agents that can book demand on the route. The CA heuristic

accounts for the O-D pair prices by solving a minimum cost flow problem, where the total

capacity allocated to all agents on a route is restricted by the ship capacity. In contrast,

the sum of the capacity limits in the optimal CAP solution may be greater than the ship

capacity based on the agents’ booking decisions.

The benchmark heuristics guarantee system feasibility independently of how the agents

solve their own problems, although this is achieved at the expense of revenues. The MR

and POD heuristics achieve higher revenues by incorporating how agents use their allocated

capacities, thus accommodating higher total demand; however, they require more extensive

effort to ensure overall feasibility.

2.3.3 Further Analysis of CAP

2.3.3.1 Alternative Agent Incentives

In all the models described so far, we assume that the agents maximize total revenue

generated by their O-D pair bookings. This corresponds with the incentives that sales
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agents currently receive in some sea cargo companies, i.e., a proportion of the total revenue

generated by their bookings. The total revenue incentive might be disadvantageous from a

system perspective when O-D pairs occupying a high number of legs bring higher revenue.

We propose an alternative sales incentive, which we call revenue per leg (rev/leg). Under the

rev/leg incentive, an agent receives revenue for an O-D pair based on the route he chooses

to transport that demand, where one unit of demand accepted for O-D pair k on a route r

improves the agent’s revenue by pk/|LLr
k|. In particular, the formulation of APp is modified

by adjusting the problem parameters as follows:

cij =




−pk/|LLr

k| ∀(i, j) = (nk,mr), ∀k ∈ ODp

0 otherwise.

Consequently, the agent’s objective is to maximize the sum of the revenues generated per

leg rather than the total revenue, while the central headquarters’ objective is to maximize

total system revenue under both incentives.

In our computational analysis we show that simply changing the agents’ objectives

in this way can be effective in moving the decentralized solution towards the centralized

solution. One reason for its effectiveness is the following. If an O-D pair traverses over a

large number of legs, then it typically shares capacity with a large number of other O-D

pairs. The rev/leg incentive essentially penalizes O-D pairs that use a large number of legs,

and therefore, a large amount of system capacity.

In some systems it is possible that the price to transport cargo already incorporates the

number of legs traversed between its origin and destination ports. In that case, another

incentive may be appropriate, such as revenue/container-mile if the price is not based

on the distance the cargo is transported. Other incentives that may be appropriate in

some situations include: i) the total number of demands booked by a sales agent ii) a

proportion of the total system revenue. The latter aligns agent’s revenue functions with

the centralized system, although it may be difficult to implement since the agents may not

have full knowledge of demand in other locations.
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2.3.3.2 Theoretical Results for CAP

In this section we investigate the performance of the optimal decentralized system under

the total revenue and rev/leg incentives. We show through examples that the optimal

revenue of the decentralized system may be asymptotically worse than that of the centralized

system. This is consistent with theoretical results on the price of anarchy in other kinds of

decentralized networks (Perakis [67]). This theoretical result also has practical implications

as it indicates that investment in a centralized system may be cost effective. One interesting

result is that when the decentralized system performed poorly under one incentive, the other

incentive led it to achieve the optimal CP solution.

Theorem 1 As the number of ports goes to infinity, the revenue obtained by the optimal

CAP solution with the total revenue incentive may be arbitrarily worse than the revenue

obtained by the optimal CP solution.

To show the theoretical inefficiency of CAP, we focus on the special case of the single

route, SCAP. We construct an example with a network of one simple cycle. That is, port

visitations are in the form of {1, 2, 3, .., n, 1}, where n (the number of ports)≥ 3. We present

the formal proof of this theorem and other key results of this chapter in Appendix A.4.

Remark 1 For the example in Theorem 1, the revenue obtained by the optimal SCAP

solution with the rev/leg incentive is the same as the revenue obtained by the optimal SCP

solution.

Remark 1 shows that the rev/leg incentive achieves the best performance for the decen-

tralized system in the example. Unfortunately, this incentive does not always give a good

decentralized system outcome. The following is a result on the worst case performance of

the rev/leg incentive.

Theorem 2 As the number of ports goes to infinity, the revenue obtained by the optimal

CAP solution with the rev/leg incentive may be arbitrarily worse than the revenue obtained

by the optimal CP solution.
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To prove Theorem 2, we construct another example with a similar network structure as

in Theorem 1, but with different prices for O-D pairs.

Remark 2 For the example in Theorem 2, the revenue obtained by the optimal SCAP

solution with the total revenue incentive is the same as the revenue obtained by the optimal

SCP solution.

Theorems 1 and 2 indicate that even if the decentralized system operates optimally, its

performance may be very poor compared to the optimal centralized system, i.e., the price

of anarchy may be high. Remarks 1 and 2 show that one incentive may perform better

than another in a particular system, therefore careful choice of incentives is important to

improve the decentralized system performance.

2.3.3.3 Upper Bound on Performance of CAP

Since we use heuristics to solve CAP for large problem sizes, additional analysis is needed

to evaluate the performance of the heuristics. This is particularly important when the

heuristics perform badly compared to CP ; in that case, it is not clear if the gap between

the heuristic solution and the CP solution is due to the nature of the heuristics or the

inefficiency of the decentralized system. In the following, we introduce an upper bound on

the performance of CAP that can be efficiently computed when it is not practical to solve

CAP optimally for large problem sizes.

We compute the upper bound by solving the independent APs for all agents where the

agents’ capacity limits are obtained from the accepted demands in the optimal CP solution.

Lemma 2 The procedure outlined in Steps 1-4 below provides an upper bound on CAP.

1. Solve CP and obtain the solution vectors of accepted demand out of each port.

2. For each agent on each route, sum the accepted O-D pair demand originating from

the agent’s port in the CP solution, and let this be the agent’s capacity allocation on

that route.

3. Solve APp, ∀p ∈ P , with the agents’ capacity limits as found in Step 2.
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4. Sum the objective function values (total revenue) of the APs to obtain the upper bound

on the optimal CAP revenue.

Given capacity limits from the CP solution, the agents can achieve a greater revenue

by accepting O-D pairs with higher prices since overall system feasibility is not required.

Thus, the total revenue generated by all agents is guaranteed to be at least as high as the

objective function value of the CP solution. We also know that the CP solution is an upper

bound on the CAP solution; therefore the result holds.

Introducing an upper bound for CAP that is weaker than the CP solution may seem

ineffectual. However, we motivate this strategy by noting that the performance gap between

the CAP and CP solutions may relate to the performance gap between the upper bound

and CP solutions. For example, we intuitively expect CAP to perform badly compared

to CP when the CP solution accepts many short O-D pairs but the agents prefer longer

O-D pairs with higher prices. In this case, to ensure feasibility the CAP solution assigns

relatively small capacity limits to the agents, thus resulting in significantly smaller revenue

than the CP solution. As a result, the revenue generated in the computation of the upper

bound is significantly greater than the CP solution, since the agents receive capacity limits

from the CP solution and they accept longer O-D pairs with higher prices.

Further, when capacity is very large relative to demand, both CAP and the upper

bound find the CP solution. We conjecture that the gap between the upper bound and

the CP solution is similar to the gap between the CP and CAP solutions. This is further

supported by our numerical experiments. Consequently, the upper bound may give insight

on the performance of the heuristics when the optimal CAP solution is not known.

2.4 Computational Experiments

The goals in our computational study are twofold. The first is to test the decentralized

system performance under different sales incentives in order to understand factors that

influence its performance relative to the centralized system. The second is to examine the

performance of our heuristics.
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2.4.1 Data Generation

The network characteristics in our computational study are intended to be similar to the

industry practice of sea cargo logistics companies. These carriers provide service throughout

the globe on trade lanes/routes (e.g., Trans-Pacific, Trans-Atlantic, Asia-North America,

Asia-Europe, and Intra-Asia.), where each route is further divided into sub-routes. For

example, OOCL’s Trans-Pacific service area includes 11 routes visiting a total of 29 different

ports, and all routes are non-simple cycles with approximately 25% of the ports being

revisited in the port sequence [64].

In data generation, we first specify the number of ports and the number of routes. Next,

we randomly assign the ports to the routes and determine a port rotation (or sequence)

within each route, allowing ports to be visited multiple times. We limit the number of

revisitations to 1/3 of the total number of ports.

The price of an O-D pair is a uniform random variable taking values between 0 and

2000, and the demand of an O-D pair is a uniform integer random variable taking values

between 0 and Maxdemand. In our experiments, we choose the values for Maxdemand as

30, 100 and 500. We calculate the ship capacity on a route as a fraction (Capacity/demand

ratio) of the total demand for the most highly requested leg on the route. We choose the

values of Capacity/demand ratio as 0.3, 0.5, and 0.8, representing low, medium and high

capacity levels. In the computational experiments, we generate 30 random instances and

average over the iterations. We conduct all computational experiments on a computer with

a 2.66 GHz Intel processor and 1 Gb of memory. We implement the formulations for the

APs and CP using ILOG’s OPT Studio 3.7, and we use the callable component library

feature (C++ API) to access ILOG’s CPLEX 9.0 solver when solving CAP.

2.4.2 Enumerative Method

The optimal solution of CAP can be found by an enumerative algorithm that checks all

possible combinations of capacity limits for agents to find the set with the highest system

revenue. However, such an algorithm is impractical for reasonable problem sizes since

the number of possible combinations is very large. In an instance with |P | = 10, |R| =
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5, |Rp| = 2, capr = 1000, and nvr
p=1, ∀p ∈ P, ∀r ∈ R, the total number of combinations

is
∏

p∈P

(
∏

r∈Rp

(capr · nvr
p)) = 1060. Thus, to evaluate the heuristics, we solve the CAP to

optimality for small instances. The optimal CAP solution also gives us insight on the

performance of the upper bound that we introduced in Section 2.3.3.3, which we calculate

for all problems.

Note that for a given vector of allocated capacities, there may exist alternative optimal

solutions of APs. In such cases, system feasibility may be violated if the agents use capacity

differently than predicted. The solution methods that we propose for CAP are guaranteed

to contain a set of optimal AP solutions that constitutes a system feasible solution. In cases

where the optimal AP solution can uniquely be found, system feasibility is always ensured.

In practice, this can be achieved by the use of an optimization software throughout the

company that has the same deterministic solver engine [39]. Perturbing the O-D pair prices

such that it is less likely for multiple combinations of O-D pairs to have the same revenue

can also be effective in alleviating the existence of alternative optimal solutions.

2.4.3 Experimental Results

In Figure 5, we show the upper bound and the performance of various solution methods

for CAP as a percentage of the optimal CP revenue. In Figure 5(a), which is based on

small-sized instances, we see that both the optimal and heuristic decentralized system so-

lutions are able to achieve at least 88% of the optimal CP revenue. In the worst case,

the heuristics achieve 98% of their respective optimal decentralized system revenues in the

CAP solution. The upper bound also has a similar performance to that of the decentralized

optimal solution, performing the worst when capacity is tight.

In Figure 5(b), we analyze the performance of heuristics using larger-sized instances.

As expected, the MR and POD heuristics perform significantly better than the benchmark

heuristics. For example, the former achieve 80% of the centralized revenue under the tightest

capacity, while the latter attain no more than 43% in that case. Therefore, it is valuable

to improve performance by explicitly solving APs as in the MR and POD heuristics. The

MR heuristic with rev/leg incentive has the best performance of the heuristics (within 5%
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of the optimal CP revenue). For the large problems, the upper bound may be used as a

proxy for the performance of the decentralized optimal solution; note that the gap between

the upper bound and the optimal CP revenue as a function of capacity is about the same

in both graphs.

One observation that is common to Figures 5(a) and 5(b) is that the performance of

all heuristic solutions improves relative to the optimal CP solution with an increasing

Capacity/demand ratio. We can explain this observation as follows. As capacity becomes

tight compared to demand, the revenue loss for not accepting the most profitable demands

is more important since any loss may have a significant impact.

In Figure 6, we show examples on additional networks with different sizes. Note that,

the upper bound and the optimal CAP solution behave similarly relative to the optimal

CP solution, which is consistent with our conjecture in Section 2.3.3.3.

Two performance measures that are of interest to the cargo carriers are the service levels

of the system and the utilizations of the ships. We calculate the service level for each agent

as the ratio of total demand accepted by the agent to the total demand out of the agent’s

home port. In Figure 7(a), we depict the average service levels across all agents as a function

of Capacity/demand ratio. One interesting observation is that the MR heuristic solution

with the rev/leg incentive achieves higher service levels than the optimal CP solution. The

ship utilization on each route is equal to the average leg occupancy, which is defined as

the ratio of total flow on a leg to the route capacity. In Figure 7(b), we show the ship

utilizations averaged over all routes. We see that ship utilizations are significantly higher in

the optimal CP solutions compared to the MR heuristics because the CP solution is able

to use the ship capacities more efficiently without considering agent behavior.

The average runtimes of the algorithms for the decentralized system are given in Table 2

for the instances corresponding to Figure 5. In Table 2(a), which shows the small networks,

the runtimes of all algorithms increase as the Capacity/demand ratio increases. As we

expect, the enumerative algorithm that finds the optimal CAP solution increases at a much

faster rate than the runtimes of the heuristics. Table 2(b) shows the average runtimes of the

heuristics for the larger network. Since CAP is solved quarterly or weekly rather than in
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Figure 5: Decentralized system performance with increasing Capacity/demand ratio

30



Table 2: Runtimes of the algorithms in CPU seconds

(a) #Routes = 2, #Ports = 6,Maxdemand = 30

Capacity/demand ratio
0.3 0.5 0.8

CAP Optimal (total revenue) 7.04 50.59 509.49
CAP Optimal (rev/leg) 7.07 51.92 540.47

MR (total revenue)∗ 1.23 2.04 3.19
MR (rev/leg) 1.39 2.25 3.28

POD 0.12 0.14 0.17

(b) #Routes = 5, #Ports = 10,Maxdemand = 500

Capacity/demand ratio
0.3 0.5 0.8

MR (total revenue) 204.18 326.44 489.75
MR (rev/leg) 309.38 434.14 588.87

POD 0.65 0.81 0.95
∗stepsize = 1 for the MR heuristic

real-time, these runtimes are reasonable. Also note that the runtime of the POD heuristic

is significantly smaller than the MR heuristic, while its performance in these instances is

at most 10% worse than the latter. We may reduce the runtimes of the MR heuristics

by choosing larger stepsize values, although note that this can decrease the quality of the

solution. In the instances with medium capacity in Table 2(b), the MR heuristic with the

total revenue incentive achieves 93% of the centralized optimal revenue with a stepsize of

1, as compared to 87% with a stepsize of 10 and a runtime of 35 CPU seconds.
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Figure 6: Upper bound and optimal CAP solution versus optimal CP solution
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Figure 7: Average service level and ship utilization with increasing Capacity/demand
ratio

2.5 Concluding Remarks

In this chapter, we study a Principal-Agent problem on a network motivated by practices

in some sea cargo companies. In such companies, the central headquarters, acting as the

principal, assigns capacity limits and incentives to sales agents, and the sales agents indi-

vidually book O-D pair demands originating from their home port. This is an example of

a system that operates in a decentralized fashion, and it is sometimes less efficient than

a centralized system where all decisions are made by a central organizing body. However,

decentralized systems are desirable when centralization requires high investment and op-

erating costs. Our research focuses on managing the decentralized system efficiently by

developing optimization tools to determine the capacity limits and incentives for the sales

agents.

We formulate a capacity allocation problem for the central headquarters that determines

the capacity limits by explicitly incorporating agent behavior with network flow models. For

the special case of the single route, we show that the optimal agent behavior can be included

in a mixed integer program for the capacity allocation problem. In the general case of the

multiple-route, we show that the capacity allocation problem is NP-hard, and we develop

several heuristics that integrate agent behavior. We show an asymptotic result that the

decentralized system performance can be arbitrarily worse than the centralized system per-

formance. On the other hand, for more typical networks, we use computational experiments
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to show that the decentralized system performance can be close to the centralized system

performance, and its performance improves as capacity increases. We further show that the

choice of sales incentive is a factor that can improve the performance of the decentralized

system. Our models can be useful in rough-cut capacity planning and for the managers to

evaluate “what-if” scenarios.

There are several limitations to our work. First, we do not explicitly model the agents’

decisions in choosing sales effort. Therefore, the models are expected to be useful when the

effect of incentives on effort levels is limited. Next, we do not include competition among

agents or sea cargo companies. We also study a deterministic system as a first step towards

studying the more complex real system that is stochastic and dynamic.

Our work develops optimization models to manage a system with individual decision

makers. Analyzing decentralized decision-making is important since there are many sys-

tems in practice that operate in a decentralized manner, and most optimization models in

literature assume a centralized planner. It would be interesting to extend this research by

modelling the decentralized booking system in a stochastic setting, where capacity can be

re-allocated to the sales agents as demand bookings are realized.
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CHAPTER III

SALES PROMOTIONS IN A DECENTRALIZED SUPPLY CHAIN

3.1 Introduction

Much of supply chain management focuses on matching supply and demand through various

means such as production flexibility, lead-time management, and channel coordination.

In recent years, there has also been a particular focus on manipulating demand through

the use of dynamic pricing or promotions to achieve higher profits, e.g., Elmaghraby and

Keskinocak [26], Kim et al. [47], and Tang and Tang [76]. This is especially true in

industries such as automotive and airlines, where capacity is difficult and costly to adjust.

Our goal is to determine under what market conditions (such as demand uncertainty in

market potential and price sensitivity) offering customer rebates versus retailer incentives

or combined promotions are more profitable or lead to higher sales for the manufacturer.

This problem lies at the interface of marketing and operations management.

The main motivation for our research comes from the practices in the auto industry

and our discussions with a major auto manufacturer. The production and labor costs of

the American auto manufacturers are nearly fixed in part due to union costs, and hence,

they focus on increasing revenues, e.g., through the use of promotions. Jakobson [41] states

that “Detroit’s costs are roughly the same whether a plant is churning out as many cars

as it can or standing idle part of the time - so the Big Three produce more cars than their

market share justifies, creating gluts that force them to offer large cash incentives to move

the excess.” Busse et al. [15] mention the auto manufacturers’ rigid pricing strategy and

state that “Although retail demand for an automobile fluctuates due to changing economic

conditions, seasonality, and the stage of the model’s life cycle, manufacturers rarely vary

published retail and invoice prices of a particular model over the course of the model year.”

The authors also mention that the auto manufacturers use the “incentive promotions” as

an important market strategy tool to respond to fluctuating demand conditions.
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Promotions have been frequently used by manufacturers in different industries as a

means to increase sales, revenues and market share against competitors by increasing con-

sumers’ awareness about their brand, to reduce the inventories of the slow-moving items, or

to price discriminate. In the auto industry, different promotional programs such as customer

rebate, low percent financing, and employee pricing programs, are offered. In addition to

these direct-to-customer promotions, auto manufacturers sometimes offer incentives to the

retailers that are generally not publicized to the end customers. Retailer incentives may

encourage the dealers to advertise or negotiate with their customers to generate more sales.

As stated by Priddle and Zoia [68], promotions in the auto industry date back to 1912

with rebates offered by Henry Ford on Model Ts. Other developments include the intro-

duction of Chrysler’s rebate program (1975) and General Motors’ 0% financing program

(2001). Automobile manufacturers offered $56 billion in incentives to sell 16.6 million cars

and trucks in 2003 (Smith [71]) and the average rebate per model offered by the American

auto manufacturers was more than triple that of the Japanese auto manufacturers in 2004

(Henderson [37]). In fact, the American auto manufacturers are known to use frequent and

deep customer rebates or cashback, whereas the non-Americans, especially, Japanese, are

more inclined to offer incentives to their dealers. Figure 8, based on data sets provided by

R. L. Polk & Co. and a major market research firm, shows that the rebate percentages used

by the American auto manufacturers are higher and show an increasing trend compared to

the Japanese auto manufacturers who offer steadily lower rebates. The promotional choice

may depend on the demand characteristics faced by the manufacturers.

It is essential to know which promotion provides higher sales and profits under what

kind of market conditions. In this paper, we examine these questions by focusing on two

different promotions, namely, the retailer incentive and the customer rebate. In the former,

the manufacturer offers a (lump-sum) incentive to the retailer which can be used in a flexible

way by the dealer; in the latter, the manufacturer offers a per-unit customer rebate directly

to the end customers. Dealer incentives are offered in different forms by manufacturers, e.g.,

as lump-sum or per-unit incentive for each vehicle sold. Referring to lump-sum incentives

Edmunds.com president Jeremy Anwyl states “here is $100,000 for the dealer to use as he
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Figure 8: Total registrations and average rebate percentages of midsize models

sees fit” (Anwyl [4]). By contrast, in per-unit incentive scheme, the dealer usually receives

a higher payment for each additional vehicle sold beyond a quota set by the manufacturer.

The basic tradeoff is that customer rebates are given to every customer, while the retailer

controls the use of the retailer incentive and decides how much to give to each customer.

While customer rebates are widely publicized, dealer incentives are not. The retailers can

also offer their own promotions mostly in the form of customer rebates, but these are

generally offered locally and at smaller amounts; thus they are outside the scope of our

study.

This chapter is organized as follows. We provide a literature review in Section 3.2, fol-

lowed by our models, their analysis and comparisons in Section 3.3. We state our conclusions

in Section 3.4.

3.2 Literature Review

Several articles on promotions focus on their role as a price discriminating tool, considering

single or multiple firms selling directly to the end customers with no intermediary in be-

tween. (e.g., see Bester and Petrakis [8], Gerstner and Holthausen [34], Narasimhan [60].)

Gerstner and Hess [31] introduce channel issues by analyzing different types of promotions

(trade deals and rebates) in a single manufacturer and single retailer setting, where the

market has two customer segments with high and low reservation prices. They find that
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even when all consumers exercise their rebates and price discrimination does not occur, the

manufacturers may still find it profitable to offer rebates. Gerstner et al. [33] extend their

research by allowing competition between the retailers but only analyze customer rebates.

The retailer pass through rate (the percentage of a trade promotion passed through to

consumers) and forward buying (or stockpiling) are two issues stemming from the use of

promotions directed towards retailers. Tyagi [81] focuses on temporary price cuts given by

the manufacturer to retailers and shows conditions on the market demand function that

determines the retailer’s pass-through rate. Lal et al. [51] analyze the motivations for

manufacturers to offer promotions when the retailers forward buy and do not pass the price

discounts to the customers. Kim and Staelin [48] analyze manufacturer allowances (similar

to our lump-sum incentives) and retailer pass-through rates in a supply chain with two

manufacturers selling through two non-exclusive retailers. In their model, the lump-sum

payments are used by the retailers as price discounts for each unit of sales. They find that the

manufacturers give retailers side payments (allowances) even though they know the retailers

will pocket some portion of it. This finding is mainly a result of the competition among

the manufacturers. Side payments that are offered by manufacturers to promote their new

product introductions and to convince the retailers to carry their products are called slotting

allowances. Lariviere and Padmanabhan [53] analyze slotting allowances to promote new

product sales where the manufacturer has private information about demand. The authors

show that slotting allowances are only offered if the retailer faces a high opportunity cost

of stocking the product. Desai [24] compares slotting allowance and advertising efforts of

a manufacturer to promote new product sales, where the retailer faces uncertain demand.

The author shows that slotting allowances help the manufacturer more when the market is

highly competitive and the retailers have high stocking costs.

In recent years, there have been some extensions within the framework of supply chains

analyzing sales promotions as a tool for channel coordination including Gerstner and Hess

[32], Krishnan et al. [50], and Taylor [77]. Chen et al. [17] and Aydin and Porteus [6] analyze

the effects of rebates on the manufacturer’s and retailer’s profits in a 2-stage supply chain

with stochastic demand. Chen et al. [17] show that rebates always benefit the manufacturer

37



unless all of the buyers redeem their rebates; otherwise they do not necessarily increase the

manufacturer’s profits. Aydin and Porteus [6] compare per-unit retailer rebate and per-

unit customer rebate. The authors conclude that neither the manufacturer nor the retailer

always prefers one particular rebate to the other. Sohoni et al. [72] analyze the effects of

dealer incentives on sales variability and show that manufacturers may increase profits and

decrease sales variability by offering an appropriate stair-step dealer incentive when their

dealer is exclusive.

Motivated by practices in the auto industry, our work differs from the cited articles

in that the retailer can price discriminate rather than choose a fixed retail price for all

customers, which we believe captures the nature of sales by the auto dealers. We analyze

retailer incentives that are in the form of lump-sum amounts rather than a wholesale price

deduction, motivated by the practices of auto manufacturers who generally keep wholesale

prices constant for the model year and offer periodic incentives to the dealers.

Bruce et al. [12, 13] analyze trade promotions (wholesale discounts after a sales quan-

tity target) and cash rebates in the durable goods market, such as automobile, by explicitly

incorporating a durability measure for the manufacturer’s products to focus on the intertem-

poral effects of the promotions. In the former research, the authors find in a competitive

setting that the manufacturer of the more durable product benefits more from trade pro-

motions. In the latter research, they analyze cash rebates in a single manufacturer and

single retailer setting similar to ours. They find that as the durability of the manufacturer’s

products decreases, the manufacturer finds it more profitable to offer deeper cash rebates.

Our research differs from [12, 13] in several aspects. We focus on the effect of demand

uncertainty on the manufacturer’s choice of promotions, while they focus on the durability

of the manufacturers’ products. In their analysis, the wholesale price of the manufacturer

is contracted simultaneously with the promotions in a deterministic setting, while we allow

the wholesale price to be determined under uncertainty. Further, our work focuses on com-

paring the performances of the customer rebates and retailer incentives in the same model

setting where the retailer can price discriminate.

There is a large body of empirical research investigating how promotions work, focusing
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mostly on non-durables. See Blattberg et al. [10] for a review. Some empirical analysis in

durables, such as automobiles includes Busse et al. [15] and Pauwels et al. [66].

In our research, we focus mainly on the manufacturer’s wholesale price and promotion

decisions and their impact on profits and sales in a decentralized decision framework where

the retailer chooses the sales price (for each customer) and the sales quantity. We also

contribute to the economics literature by analyzing first-degree (perfect) price discrimina-

tion, where different prices may be given to every customer rather than just to segments of

customers, which has received little attention by researchers. To the best of our knowledge,

Spulber [74] and White and Walker [84] are only two that analyze perfect price discrimina-

tion in detail. Spulber [74] analyzes a model where a group of firms that do perfect price

discrimination select their output levels simultaneously. The author shows the existence

of a unique non-cooperative equilibrium in output levels. In this analysis the firms sell di-

rectly to the end customers and no sales promotions are considered. White and Walker [84]

analyze the case where there is a variable cost associated with perfect price discrimination.

The authors propose a model where perfect price discrimination is selectively practiced only

on one portion of the linear demand function, and they show that their model generates

higher profits compared to the perfect price discrimination practiced on the entire demand

function. Their setting is simplistic, and they analyze only one firm’s sales quantity deci-

sion, where the firm sells directly to the end customers, while we analyze sales quantity and

promotional decisions in two-stage supply chains.

3.3 Models

We consider a two-stage supply chain with a single manufacturer and a single retailer,

operating in a market where demand is characterized by a linear inverse demand function,

i.e., P (Q) = a− bQ, where a is the market potential, b is the price sensitivity and P (Q) is

the price when Q units of the product are sold. (Note that a
b is the maximum quantity that

may be sold when the price is zero. Since we are interested in changing a while keeping b

fixed, we denote a as the market potential for the rest of the paper.) The retailer (or dealer)

buys from the manufacturer at a unit wholesale price denoted by w, and has a reservation
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price, w + m, below which he would not be willing to sell. We assume that the retailer

can do perfect (first degree) price discrimination. While perfect price discrimination by the

retailer can be costly, we do not expect this cost to differ significantly from one customer to

another even when the customers differ in terms of their willingness to pay. Therefore, we

assume that the cost of price discrimination is constant for each unit of sale. This allows

us to absorb the price discrimination cost as part of the retailer’s reservation price.

Our setting is applicable to channels where the retailer is a franchisee selling one man-

ufacturer’s products exclusively, e.g., the auto industry. Linear demand models have been

used by major auto manufacturers in practice, e.g., Biller et al. [9]. In the auto industry,

manufacturers usually commit to a constant wholesale price. (Cachon and Lariviere [16]

mention that manufacturers hold wholesale prices constant even when capacity is scarce.)

Our model mimics the practice, where a retailer’s reservation price may depend on the car

invoice price (Scott Morton et al. [69], and Zettelmeyer et al. [86]). In our setting, the

reservation price of the retailer may be compensated by a combination of the sales price

(which should be at least w+m if there is no incentive) and the lump-sum incentive offered

by the manufacturer.

The auto dealers have the opportunity to negotiate individually with each customer

and collect information about the customer’s willingness to pay. Zettelmeyer et al. [85]

mention price discrimination as one reason for the retailers to negotiate the prices and

state that “Given the high price of a new car, it would not be surprising if the cost of

gaining information about a customer’s willingness to pay is, in comparison, small enough

to make the dealer’s effort to assess a customer’s valuation and negotiate individual prices

more profitable than posting a fixed price.” Goldberg [36] empirically finds that dealers can

achieve price discrimination through the car model, market-specific properties, and the type

of purchase transaction such as first-time purchase and trade-in. Scott Morton et al. [70]

add that individual characteristics of car buyers, such as income, education, and search

costs are significant factors that affect the dealers’ pricing of the cars. Price discrimination

through negotiations may also be observed during purchases and sales of houses or other

less expensive products through bidding over the internet.
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We assume that the manufacturer has ample capacity, and there is no cost to customers

associated with rebate redemptions. Since we are interested in comparing the performances

of different promotions, we also assume that the administrative cost of offering promotions

is zero. We analyze a single selling season; this can be thought of as snapshot in time

of a repeated process. Finally, we assume that the manufacturer and the retailer are risk

neutral, and both seek to maximize their own (expected) profits.

Table 3 summarizes our notation. Note that the manufacturer cannot make positive

profits unless she sells above cost, therefore she chooses w ≥ c. By the retailer’s reservation

price, P (0) ≥ w + m must hold, which together with w ≥ c, implies that a ≥ c + m.

Table 3: Notation for Chapter 3

aj : Market potential in demand state j = l, h (l =low, h =high)
bj : Price sensitivity of customers in demand state j = l, h

Qj
i : Retailer’s order/sales quantity in demand state j = l, h

when promotion type i ∈ (o, I, R, R′, C) is used (o =no promotion,
I =retailer incentive, R =customer rebate,
R′ =customer rebate leading to market expansion, C =combined)

P (Q) : Retail price when Q units are sold
ΠMj

i : Profit of the manufacturer under promotion i in demand state j
(ΠM

i when demand is deterministic)
ΠDj

i : Profit of the retailer under promotion i in demand state j
when manufacturer makes her w decision under uncertainty
(ΠD

i when demand is deterministic)
ΠSC

i : Profit of the supply chain under promotion i
c : Production cost of the manufacturer

wi : Wholesale price under promotion type i
wi + m : Reservation price of the retailer under promotion i

Kj : Lump-sum incentive given to the retailer in demand state j
Rj : Per unit customer rebate in demand state j

We analyze three demand settings. In Section 3.3.1, we present a deterministic model

where there is no uncertainty in the system parameters. (Deterministic demand models have

been commonly used in the literature to provide insights and for analytical tractability; see

for example, Choi [18] and Corbett and Karmarkar [21].) In Sections 3.3.2 and 3.3.3,

we introduce uncertainty (“high” with probability β and “low” with probability 1 − β)

to the market potential (a) and price sensitivity (b) parameters of the demand function,
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Figure 9: Demand functions for uncertain market settings

respectively. This type of uncertainty could correspond to scenario planning as is used by

many manufacturers in strategic level decisions. In Figure 9, we plot the demand functions

corresponding to uncertain market potential and uncertain price sensitivity. Introducing

uncertainty has the effect of an up or down shift in the demand function or a change in its

slope.

We formulate all models as Stackelberg games, where the manufacturer is the leader and

the retailer is the follower. We use backward induction to find the subgame-perfect Nash

equilibrium (SPNE). We find the optimal decisions for the manufacturer and the retailer

for each model and compare the promotions based on the manufacturer’s profit and total

sales. We also analyze the profits of the retailer and the supply chain, but our focus is on

the manufacturer’s choice of promotions. Our goal is to determine situations under which

one promotion type is better than another for the manufacturer.

3.3.1 Deterministic Demand Model

In this benchmark setting, demand is deterministic and is common knowledge to both

the manufacturer and the retailer. The sequence of decisions starts with the manufacturer

determining the wholesale price. Given the manufacturer’s decision, the retailer then decides

the order/sales quantity.

When the manufacturer offers customer rebate or retailer incentive, Figure 10 describes

how we would expect these promotions to affect the retailer’s decisions. In the case of

no promotion, the retailer has no incentive to sell at a price less than w + m, where the

corresponding order/sales quantity is Qo =
(

a−w−m
b

)+. The manufacturer’s purpose in

offering promotions is to induce the retailer to order more than Qo. If she offers customers
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Figure 10: The impact of retailer incentives and customer rebates on the retailer’s decisions
under deterministic demand

a per-unit rebate of R applied to each buyer’s price, this has the effect of shifting the demand

function up, i.e., P (Q)−R = a−bQ or P (Q) = (a+R)−bQ so that the y-axis is intersected

at a+R (Figure 10(a)). The total amount of rebate given to the end customers is the area of

ABCD. On the other hand, if the manufacturer offers a lump-sum incentive to the retailer,

this will have no effect on the shape of the demand function since end customers are not

made aware of this incentive, but will make the retailer move downward on the demand

function from E down to G as long as he receives the reservation price from the sales of

each additional unit (Figure 10(b)). In this case, the triangular area EFG represents the

total amount of the lump-sum incentive the retailer is going to use to increase sales, while

his reservation price is compensated by this incentive.

Case 0: (No-promotion) The retailer solves the problem in (P1) to decide how much

to order/sell to maximize his profit given the wholesale price decision of the manufacturer,

and finds that Qo =
(

a−w−m
b

)+ where (x)+ = max{0, x}. Note that, for the retailer to

satisfy his reservation price, P (Q) = a− bQ ≥ w + m, i.e., Q ≤ a−w−m
b .

(P1) ΠD
o = max

Q≥0

∫ Q

0
(a− bQ)dQ− wQ = (a− w)Q− bQ2

2

s.t. Q ≤ a− w −m

b

The manufacturer’s problem is to choose the optimal wholesale price that maximizes

her profit, i.e., max
w≥c

(w − c)Qo.

Case 1: (Retailer incentive) The manufacturer offers an incentive (K) to the retailer.
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In this case, the retailer chooses his order/sales quantity (QI) by solving the problem in

(P2), and the manufacturer determines the wholesale price and incentive value simultane-

ously by solving max
K≥0,w≥c

(w − c)QI −K.

(P2) ΠD
I = max

Q≥0
(a− w)Q− bQ2

2
+ K

s.t.
∫ Q

a−w−m
b

((w + m)− (a− bQ))dQ ≤ K

Note that, given the manufacturer’s decisions, (w,K), the retailer has the option of

not transferring the incentive to the end customers and choosing QI = a−w−m
b , where he

pockets all of K, and the price of the last unit sold is equal to his reservation price. However,

note also that the unconstrained maximizer of the retailer’s profit function
(
Q = a−w

b

)
is

greater than a−w−m
b , i.e., there is potential for the retailer to further increase his profits if

he agrees to sell some additional units below his reservation price. On the other hand, to sell

additional units beyond Q = a−w−m
b and still make his reservation price w +m, the retailer

must be compensated by the lump-sum incentive, which is ensured by the constraint. In

other words, being the first decision maker in this game, the manufacturer has the advantage

of choosing (w, K) to make the retailer voluntarily transfer some part of the incentive to

the end customers and increase sales. We also note that while any K ≥ 0 increases the

retailer’s profit, it results in higher sales only until
(
Q = a−w

b

)
, after which the retailer starts

to pocket the incentive. In equilibrium, the manufacturer finds the optimal incentive value

such that incentive is completely passed to the end customers and no pocketing occurs.

This model captures a dealer behavior observed in practice, where the auto dealers transfer

some part of the manufacturers’ incentives to the end users. This is investigated by Busse

et al. [15] among others. The turn-and-earn system for inventory allocation, and the fact

that dealers who sell a high volume may receive a better selection of vehicles, e.g., vehicles

with higher profit margin in the future, also motivate this behavior.

Case 2: (Customer rebate) The manufacturer gives the end customers a rebate, R,

for each unit purchased. Therefore, the purchasing power of the customers increases by R

and the inverse demand function is written as: P (Q) = a + R− bQ. The retailer’s and the

manufacturer’s problems are similar to the no-promotion case, where the retailer determines
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Table 4: The SPNE for the deterministic demand model with retailer incentive

a ≤ 2m + c a ≥ 2m + c

wI a−m a+c
2

QI
a−m−c

b
a−c
2b

K (a−m−c)2

2b
m2

2b

ΠM
I

(a−m−c)2

2b
(a−c)2−2m2

4b

ΠD
I

(a−m−c)m
b

(a−c)2+4m2

8b

ΠSC
I

(a−c)2−m2

2b
3(a−c)2

8b

order/sales quantity, and the manufacturer determines the rebate R and the wholesale price

w that maximize their own profits.

Theorem 3 When demand is deterministic, the SPNE corresponding to the cases where

the manufacturer offers no promotion, a lump-sum amount of incentive to the retailer, and

a per-unit rebate to the end customers are summarized as follows:

(i) No promotion: wo = a+c−m
2 ; Qo = a−m−c

2b ; ΠM
o = 1

b

(
a−m−c

2

)2; ΠD
o = (a−m−c)(a+3m−c)

8b ;

ΠSC
o = (a−m−c)(3a+m−3c)

8b .

(ii) Retailer incentive: see Table 4.

(iii) Customer rebate: wR − R = a+c−m
2 ; QR = a−m−c

2b ; ΠM
R = 1

b

(
a−m−c

2

)2; ΠD
R =

(a−m−c)(a+3m−c)
8b ; ΠSC

R = (a−m−c)(3a+m−3c)
8b .

We present the proof of this theorem and other key results of this chapter in Ap-

pendix B.1.

In Theorem 3(iii), we find wR−R = a+c−m
2 in equilibrium. Since for any given wholesale

price we can find another wholesale price and rebate pair (w, R) resulting in the same

profits, this is equivalent to the optimal wholesale price decision for the no-promotion case.

Moreover, the manufacturer’s sales and profit do not improve with the customer rebate

promotion. Bruce et al. [13] find a similar relation between w∗ and R∗, and show that the

manufacturer does not always find it profitable to give customer rebates, especially when

the administrative cost of rebate promotion is high. In our analysis, as a special case of

their model, the cost of rebates to the manufacturer is zero. The ineffectiveness of the

customer rebates in our setting is mainly a result of the retailer’s ability of perfect price
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discrimination which allows him to capture all the market surplus when the manufacturer

offers rebates directly to the end customers.

In our basic model, the effect of the rebates is limited by an additive function of the cash-

back amount, i.e., the market potential increases to a + R. However, in practice, rebates

may cause an additional increase in the market potential (market expansion) since they

are often advertised by the manufacturers and/or the retailers, which increase customer

awareness. For example, in the auto industry both the dealers and the auto manufacturers

use the newspapers and broadcasting for advertising. Since it is costly to advertise these

promotions, it is essential that the manufacturer finds the correct balance between the cost

of promoting and the revenue from the additional sales. We model this situation with a

market expansion factor (α) affecting market potential, and an advertising cost that is a

convex increasing function of this expansion factor (eα2). We observe that when rebates

lead to market expansion, neither of the promotions is always preferred to another by the

manufacturer. We present the complete analysis in Appendix B.2.

Using the results in Theorem 3, we compare the retailer incentive and the customer

rebate promotions with respect to two measures that might be of interest to the manufac-

turer, namely, total profit and quantity sold. The latter is related with the market share,

which is a particularly important measure in the auto industry. Although we focus on the

manufacturer’s promotional decisions, we also compare the retailer’s and the supply chain’s

profits under different promotions to better understand their impact on the entire chain.

Observation 1 When rebates do not lead to market expansion (i) offering customer rebates

is not effective in increasing the quantity sold and does not change the manufacturer’s or

retailer’s profits (ii) the retailer incentive is always better than the customer rebate and no

promotion in terms of total sales, the manufacturer’s profit, and the supply chain’s profit,

but not necessarily the retailer’s profit.

Observation 1(i) holds because when rebates do not lead to market expansion, for any

(w,R) combination, the manufacturer can choose a wholesale price w −R ≥ 0 and achieve

the same results as in no promotion. Observation 1(ii) is driven by the tradeoff in using

46



the promotion for every buyer (customer rebate) versus only for those who need it (retailer

incentive), as well as the retailer’s reservation price. Recall that, the retailer is not willing

to sell below his reservation price (w + m). By using the incentive to cover the difference

between the price that the customer pays and his reservation price (only for those customers

who cannot afford to pay his reservation price), the retailer is able to generate more sales

than the no-promotion case. Although the manufacturer obtains higher profits with higher

sales, the retailer’s profit does not always increase. For example, if the market potential

is already high (a ≥ 3.5m + c), when the manufacturer offers an incentive, she raises her

wholesale price at the same time, which in turn results in higher sales but lower profits

for the retailer. (Bruce et al. [13] make a similar observation regarding customer rebate,

i.e., the manufacturer offering a cash rebate increases her wholesale price more than the

rebate amount. Bruce et al. [12] analyze trade promotions with two manufacturers and two

retailers, and find that each retailer makes less profit when both manufacturers offer trade

promotions.) A modelling alternative is based on principal-agent framework, where the

manufacturer chooses the wholesale price and the retailer incentive such that the retailer’s

profit with the incentive is at least as high as his profit with no promotion. We present

the analysis of this model in Appendix B.3 and show that our qualitative insights are the

same as those in Observation 1. This model may have limited applicability in the auto

industry where the retailers do not have the flexibility to accept or reject each contract

in the case of promotions. Moreover, a dealer generally has a long-standing relationship

with the manufacturer, and a dealership does not easily switch from one manufacturer to

another.

The retailer’s reservation price can be related to his operational costs. However, if we

treat m only as a cost incurred for every unit sold, in the retailer incentive case, the entire

K is pocketed by the retailer, and therefore, the manufacturer does not offer any incentive.

As a result, the customer rebate and retailer incentive cases become identical to the no-

promotion case. Assuming the retailer’s reservation price is similar to what we observe for

customer behavior (willing to buy if price is below reservation price), as also mentioned in

several other studies in the automobile industry (Scott Morton et al. [69], and Zettelmeyer
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et al. [86]), we assume that the reservation price of the retailer does not only correspond to

an operational cost per-unit sold, but rather it is the lowest acceptable price for each unit

that the retailer is willing to sell.

We analyze the manufacturer’s promotional decisions in three other cases: 1) the retailer

sets a fixed retail price rather than price discriminating, 2) the retailer incentive is a per-unit

payment rather than a lump-sum amount, 3) the retailer has a specific pass-through rate

when offered an incentive. We present the analysis of each case in Appendices B.4, B.5, and

B.6, respectively. In the first case, we find that the manufacturer is always better off with the

retailer incentive than the customer rebate in terms of profit, but not necessarily in terms

of sales, which is different than our result for the price discrimination case. This also shows

the importance of modelling price discrimination since increased sales with incentives are

observed in the auto industry. In the second case, we find that the manufacturer is always

better off with a per-unit retailer incentive than a customer rebate (just as we found for

lump-sum incentive.) Moreover, when a ≥ 3m + c, the manufacturer’s profit is higher with

a per-unit incentive than a lump-sum incentive. Therefore, we expect that our insights

with lump-sum incentive would hold even more strongly for other incentive schemes that

depend on quantity. Finally, in the third case, we find that our qualitative results in the

comparison of promotions do not change, i.e., the manufacturer is better off with a retailer

incentive than a customer rebate as long as the pass-through rate is not zero; otherwise,

the manufacturer would not offer any incentive.

By Observation 1, we conclude that when the manufacturer and the retailer have the

same (and accurate) information about the market conditions and when rebates do not lead

to market expansion, the manufacturer always prefers the retailer incentive over customer

rebate. If this is the case, then why do the manufacturers offer customer rebates? In

practice, rebates are frequently used especially by the American auto manufacturers with

the goal of increasing market share. One reason for the use of rebates might be the increased

awareness and market potential. In addition, in practice, market demand is most likely

stochastic rather than deterministic. In such situations, the timing of the decisions, as well

as the information possessed at the time of the decisions become critical for the success
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Figure 11: Timeline of decisions (monopoly)

of promotions. In the next section, we show that demand uncertainty may explain the

American auto manufacturers’ choice of customer rebates over retailer incentives.

3.3.2 Uncertain Market Potential Model

In this section, we introduce uncertainty to the demand through the market potential by con-

sidering two demand states, high (h) and low (l), with respective probabilities β and 1− β,

β ∈ [0, 1]. Correspondingly, we represent the inverse demand functions as P (Qj) = aj−bQj ,

where j = l, h. Although this is a simplification of demand uncertainty in reality, it helps us

to capture the effects of uncertainty on the decisions of the retailer and the manufacturer.

In the auto industry, the dealers are closer to the end market and have more information

about the customers, therefore we assume that the retailer knows the demand state. In

addition, dealers do not have to report sales directly back to manufacturers, therefore man-

ufacturers may not have timely and accurate demand information. In recent years, it has

become possible for the manufacturers to buy demand information although there may be a

delay and transactions may be averaged. The manufacturers usually have a forecast based

on past sales, or they may estimate whether demand is high or low based on signals from

the market, web interest or economic indicators, which may include uncertainties.

In the presence of uncertainty, the manufacturer makes her decisions in two stages. In the

first stage, she determines the wholesale price; in the second stage, after the demand state

is revealed, she chooses to offer either a retailer incentive, customer rebate or no promotion.

As in the deterministic model, the retailer determines the optimal order/sales quantity given

the manufacturer’s decisions. We illustrate the timeline of decisions in Figure 11.

Similar to Section 3.3.1, we analyze three cases, i.e., the retailer incentive, customer
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Table 5: The SPNE for the uncertain market potential model with no promotion

ah − al ≤ al −m− c ah − al ≥ al −m− c

β ∈ [0, 1] β ≤ β β ≥ β

wo
a+c−m

2
ah−m+c

2

Ql
o

(1+β)al−βah−m−c
2b 0

Qh
o

(2−β)ah−(1−β)al−m−c
2b

ah−m−c
2b

ΠDl
o

(βah−(1+β)al+m+c)(βah−(1+β)al−3m+c)
8b 0

ΠDh
o

((β−2)ah+(1−β)al+m+c)((β−2)ah+(1−β)al−3m+c)
8b

(ah−m−c)(ah−c+3m)
8b

ΠM
o

(a−m−c)2

4b
β(ah−m−c)2

4b

rebate and no promotion, and then compare the results. The solution procedure for finding

the SPNE is again backward induction, starting with the retailer’s problem, which we

solve for both high and low demand states. Next, we solve the manufacturer’s problem of

determining the optimal promotion values for both high and low states. The final step in the

induction is to maximize the manufacturer’s expected profit, i.e., ΠM
i = βΠMh

i +(1−β)ΠMl
i

by choosing the optimal wholesale price, where ΠMj

i ; j = l, h is the manufacturer’s profit

in demand state j with promotion type i. We denote the expected market potential with

a = βah + (1− β)al.

Theorem 4 When the market potential is uncertain, the SPNE corresponding to the cases

where the manufacturer offers no promotion, a lump-sum amount of incentive to the retailer,

and a per-unit rebate to the end customers are summarized as follows:

(i) No promotion: see Table 5, where β = (al−m−c)2

(ah−al)2
.

(ii) Retailer incentive: see Table 6.

(iii) Customer rebate: wR −Rj = aj+c−m
2 ; Qj

R = aj−m−c
2b , j = l, h;

ΠM
R = β(ah−m−c)2+(1−β)(al−m−c)2

4b ; ΠDj

R = (aj−m−c)(aj+3m−c)
8b , j = l, h.

In the cases of no-promotion and retailer incentive, we obtain a unique equilibrium for

a given set of system parameters. In both cases, the feasible solutions that are candidates

for being the unique equilibrium are of two types: the wholesale price is either driven by

the expected market potential, a, (expectation driven wholesale price or solution) or only

by the high market potential, ah, (high-demand driven wholesale price or solution). In the
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Table 6: Dominating feasible solutions for the uncertain market potential demand model
with retailer incentive

Feasible Region (F.R.) Solution
ah ≤ 2m + c RI.2, RI.6

β ≤ 2m+c−al

ah−al RI.2, RI.3
al ≤ 2m + c 2m + c ≤ ah ≤ 2al − c β ≥ 2m+c−al

ah−al RI.1, RI.3
β ≤ 2m+c−al

ah−al RI.2, RI.3
ah ≥ 2al − c 2m+c−al

ah−al ≤ β ≤ al−c
ah−al RI.1, RI.3

β ≥ al−c
ah−al RI.3

2m + c ≤ ah ≤ 2al − 2m− c RI.5, RI.1
al ≥ 2m + c 2al − 2m− c ≤ ah ≤ 2al − c RI.4, RI.1

β ≤ al−c
ah−al RI.4, RI.1

ah ≥ 2al − c β ≥ al−c
ah−al RI.4

RI.1 RI.2 RI.3 RI.4

w∗ a+c
2 a−m ah+c

2

Ql∗ −βah+(1+β)al−c
2b

al−m−c
b 0

Qh∗ (2−β)ah−(1−β)al−c
2b

ah−m−c
b

ah−c
2b

Kl∗ m2

2b
(a−m−c)2

2b 0
Kh∗ m2

2b
(a−m−c)2

2b
m2

2b

ΠD∗
l

(βah−(1+β)al+c)2+4m2

8b
β2(ah−al)2

2b 0
+ 2m(al−m−c)

2b

ΠD∗
h

(a−2ah+c)2+4m2

8b
(ah−al)2(β−1)2

2b
(ah−c)2+4m2

8b

+ 2m(ah−m−c))
2b

ΠM∗ (al−c)2−2m2+β2(ah−al)2

4b
(a−m−c)2

2b
β((ah−c)2−2m2)

4b

+ 2β(c(al−ah)+ahal−(al)2)
4b

F.R: a ≥ 2m + c a ≤ 2m + c ah≥ 2m + c

β≤ al−c
ah−al al≤ 2m + c ah≥ 2al−m−c

RI.5 RI.6
w∗ al −m ah −m
Ql∗ 0 0
Qh∗ ah−al+m

b
ah−m−c

b

Kl∗ 0 0

Kh∗ m2

2b
(ah−m−c)2

2b

ΠD∗
l 0 0

ΠD∗
h

(ah−al+m)2+m2

2b
m(ah−m−c)

b

ΠM∗ β(al−m−c)(ah−al+m)
b

β(ah−m−c)2

2b

−βm2

2b

F.R: al≥ 2m + c ah≤ 2m+c
ah≤ 2al −m− c
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former, the manufacturer is able to make positive sales whether the realized demand is low

or high, whereas in the latter, she cannot generate any sales when the realized demand is

low. The manufacturer faces a tradeoff between the loss of profit she incurs in the following

two events. In the first event, she keeps the wholesale price “average” (by considering both

states) and sees a high demand, which happens with a probability of β. In the second

event, she keeps the wholesale price “high” (by only considering the high state) and sees

a low demand, which happens with a probability of 1 − β. Being a risk neutral decision

maker, the manufacturer chooses the event that brings highest expected profit. Intuitively,

we expect that the loss incurred in the former event would increase in β. For all expectation

driven solutions, we can show that the expected loss of profit in the former event increases

in ah and decreases in al. This suggests that the high-demand driven wholesale price brings

higher expected profit to the manufacturer when β and ah − al are “high”.

Observation 2 In the case of no-promotion, when the difference between high and low

market potentials is relatively “small” (i.e., ah − al ≤ al − m − c), or β is “low” (i.e.,

β ≤ β), the equilibrium for the manufacturer is driven by the expectation over the high and

low market potentials. Otherwise, the wholesale price depends on the high market potential,

but not on the low market potential. Finally, as the gap between ah and al increases, β

decreases. (See Figure 12 for an example.)
 

w depends on  

w depends 
on ah

β β

ΠM ΠM ΠM

β

 

Figure 12: No promotion equilibrium wholesale price with increasing ah (m = 5, b = 2, c =
15)

In Figure 13, we see that the manufacturer’s equilibrium behavior in the retailer incentive
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case is similar to the no-promotion case. In this example, two feasible solutions correspond-

ing to the system parameters are RI.4 (high-demand driven solution) and RI.1 (expectation

driven solution) in Table 6. When ah − al is “low”, RI.1 provides a higher profit for the

manufacturer. As we increase ah in Figures 13(b) and 13(c), when β ≥ β∗ = (al−c)2−2m2

(ah−al)2
,

RI.4 results in a higher profit for the manufacturer. Note also that β∗ decreases in (ah−al).

In Figure 14, we observe a behavior similar to that in Figure 13 when the gap between ah

and al is small, but al is very close to m + c, i.e., the manufacturer’s profit is very low in

case of low demand.

 

w depends on  

w depends 
on ah

β*

β β

β*
ΠM ΠM ΠM

RI.1
RI.1

RI.4

RI.1

RI.4

RI.4

β

 

Figure 13: Retailer incentive equilibrium wholesale price with increasing ah (m = 5, b =
2, c = 15)

 

ββ β

β*β* β*

ΠM ΠM ΠM

RI.2

RI.4

RI.4

RI.4

RI.2

w depends on  

w depends 
on ah RI.2

 

Figure 14: Retailer incentive equilibrium wholesale price with increasing ah (m = 20, b =
1, c = 30)

In Appendix B.7, we extend our analysis with uncertain market potential by adding a
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“medium” state. While this complicates the analytical tractability considerably, we show

from examples that our main insights obtained with two states and three states are similar,

i.e., when the probability of a high state is sufficiently high, the equilibrium decision moves

from being an expectation-driven solution to a solution only dependent on high demand.

Finally, we analyze the equilibrium in the customer rebate case stated in Theorem 4(iii).

Note that, although the manufacturer determines the wholesale price before knowing the

demand state, she has the opportunity to adjust it with a rebate according to the demand

state. This is obviously an advantage for the manufacturer and as we will see in Observa-

tion 3, depending on the system parameters, the manufacturer may be better off offering a

customer rebate instead of retailer incentive when there is demand uncertainty.

Next, we compare the promotions under uncertain market potential. From Theo-

rem 4(i)-(iii), we can show that offering no promotion is the least profitable option and

generates the lowest sales for the manufacturer. The comparison of the retailer incentive

and customer rebate promotions shows that unlike the deterministic demand case in Sec-

tion 3.3.1, when there is demand uncertainty neither the retailer incentive nor the customer

rebate has an absolute dominance over the other. Depending on system parameters, espe-

cially related to uncertainty, the manufacturer may find customer rebate or retailer incentive

more profitable.

Observation 3 When the market potential is uncertain and the uncertainty is “high”, i.e.,

when (ah − al) is “large” and β is in the “middle” of the range, offering a customer rebate

may be more profitable than a retailer incentive for the manufacturer. (See Figure 15 for

an example.)

In Figure 15, we continue with the example illustrated in Figure 13. We observe that

as (ah − al) increases, the β range (β1, β2) where the customer rebate is more profitable

than the retailer incentive shifts to the left approaching the origin. We analytically derive

this comparative static result for this example in Proposition 1. Note that β∗ denotes the

threshold value where the equilibrium switches from RI.1 to RI.4. When β1 ≤ β ≤ β∗,

customer rebate gives a higher profit than RI.1, and when β∗ ≤ β ≤ β2, customer rebate
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incentive

rebate

ββ β

ΠM ΠM ΠM

 

Figure 15: Comparison of retailer incentive and customer rebate with increasing ah (m =
5, b = 2, c = 15)

gives a higher profit than RI.4. Therefore (β1, β2) denotes the range where the manufacturer

is better off with a customer rebate. We also observe that (β1, β2) becomes smaller as

(ah − al) increases (Figure 15(c)). This suggests that uncertainty can be one reason for

auto manufacturers to offer rebates.

Proposition 1 When β1 ≤ β∗ ≤ β2, as ah increases and al decreases ((ah−al) increases),

β∗, β1, and β2 decrease. (β∗ = (al−c)2−2m2

(ah−al)2
, β1 = ah−al−2m−

√
(ah−al−2m)2+4m(3m+2c−2al)

2(ah−al)
,

and β2 = (al−m−c)2

(al−c)2+2m(ah−al−m)
)

In Figure 16, we plot the retailer’s profits for the example in Figure 15. We see that

when the market potential is uncertain and the realized demand state turns out to be

“low”, the retailer obtains higher profits with a customer rebate. If the realized demand

state turns out to be “high”, when β is “low”, the retailer’s profits are higher with a retailer

incentive; otherwise he obtains higher profits with a customer rebate. We can explain

this observation as follows. When β is “low”, the manufacturer’s wholesale price decision

is driven by expectation when she offers a retailer incentive, and as β decreases w also

decreases. After the manufacturer makes the wholesale price decision under uncertainty,

if the actual demand state turns out to be “high”, the retailer is able to generate higher

profits with a retailer incentive than a customer rebate because he is able to order/sell more

(with a lower wholesale price), and moreover receives an incentive (Kh) to further increase

his order/sales quantity under the “high” demand state.
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Figure 16: The retailer’s profit under retailer incentive and customer rebate with increas-
ing ah (m = 5, b = 2, c = 15)

Table 7: The SPNE for the uncertain price sensitivity model

(a) No Promotion

wo
a+c−m

2

Qj
o

a−m−c
2bj ; j = l, h

ΠDj
o ; j = l, h (a−m−c)(a+3m−c)

8bj

ΠM
o

(a−m−c)2

4

(
β
bh + (1−β)

bl

)

(b) Customer Rebate

wR −Rj a+c−m
2 ; j = l, h

Qj
R

a−m−c
2bj ; j = l, h

ΠDj

R ; j = l, h (a−m−c)(a+3m−c)
8bj

ΠM
R

(a−m−c)2

4

(
β
bh + (1−β)

bl

)

(c) Retailer Incentive

a ≤ 2m + c a ≥ 2m + c

wI a−m a+c
2

Qj
I ; j = l, h a−m−c

bh
a−c
2bh

Kj ; j = l, h (a−m−c)2

2bj
m2

2bj

ΠDj

I ; j = l, h (a−m−c)m
bj

(a−c)2+4m2

8bj

ΠM
I

(a−m−c)2

2

(
β
bh + (1−β)

bl

)
(a−c)2−2m2

4

(
β
bh + (1−β)

bl

)

3.3.3 Uncertain Price Sensitivity Model

In this section, we consider uncertainty in price sensitivity, i.e., P (Qj) = a− bjQj ; j = l, h,

where P (Qj) is the price when Qj units are sold with price sensitivity bj in state j = l, h.

We repeat the analysis in Section 3.3.2, and find the SPNE for the cases of no promotion,

retailer incentive, and customer rebate. (See Table 7 for the equilibrium solutions.)

We observe that when there is uncertainty in price sensitivity, offering customer rebate

is identical to offering no promotion from the manufacturer’s point of view. Moreover,

for any market condition, the manufacturer’s profit and the quantity sold is higher under
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retailer incentive compared to customer rebate or no promotion in both demand states. This

observation arises because the wholesale price decision is independent of price sensitivity

and therefore the manufacturer’s decisions are identical to the deterministic demand case.

3.3.4 Combined Promotions: Retailer Incentive and Customer Rebate

In practice, manufacturers sometimes choose to offer a combination of retailer incentive and

customer rebate. In this section, we aim to obtain insights on how effective it is to offer

both promotions at the same time. We summarize the equilibrium solutions in Table 8.

When demand is deterministic, the manufacturer’s profit and total sales when she offers

retailer incentive and customer rebate simultaneously are equal to her profit and total sales

when she offers retailer incentive alone. In Section 3.3.1 we have seen that the manufac-

turer’s profit remains the same when she offers a customer rebate instead of no promotion,

while she increases her profits by offering a retailer incentive. It is indeed expected that

combined promotions, being a hybrid of the customer rebate and the retailer incentive

promotions, will not do any better than the retailer incentive itself for the deterministic

demand case. With the same reasoning, we also expect that combining two promotions

will not improve the profits when there is uncertainty in price sensitivity, and confirm by

Table 8(b).

However, for the uncertain market potential model, we have observed situations where

customer rebate was performing better than the retailer incentive as well as situations

where the opposite holds. Clearly, by combining these promotions, the manufacturer is

expected to do at least as well as the case when she uses each promotion individually.

The question is whether the manufacturer is able to do strictly better when she offers both

promotions simultaneously. Our analysis of the equilibrium decisions shows that this is true,

i.e., the manufacturer’s total profit is higher if she offers two promotions (retailer incentive

and customer rebate) at the same time rather than offering any one of them individually.

Moreover, the combined promotions generate more sales than the retailer incentive, except

for some instances with ah ≥ al ≥ 2m+c or al ≤ 2m+c ≤ ah. Under all market conditions,

combined promotions generate more sales than the customer rebate alone.
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Table 8: The SPNE for the combined promotions

(a) Deterministic Demand Model

a ≤ 2m + c a ≥ 2m + c

wC −R a−m a+c
2

QC
a−m−c

b
a−c
2b

K (a−m−c)2

2b
m2

2b

ΠD
C

(a−m−c)m
b

(a−c)2+4m2

8b

ΠM
C

(a−m−c)2

2b
(a−c)2−2m2

4b

(b) Uncertain Price Sensitivity Model

a ≤ 2m + c a ≥ 2m + c

wC −Rj ; j = l, h a−m a+c
2

Qj
C ; j = l, h a−m−c

bj
a−c
2bj

Kj ; j = l, h (a−m−c)2

2bj
m2

2bj

ΠDj

C ; j = l, h (a−m−c)m
bj

(a−c)2+4m2

8bj

ΠM
C

(a−m−c)2

2

(
β
bh + (1−β)

bl

)
(a−c)2−2m2

4

(
β
bh + (1−β)

bl

)

(c) Uncertain Market Potential Model

ah ≥ al ≥ 2m + c al ≤ 2m + c ≤ ah al ≤ ah ≤ 2m + c

wC −Rl al+c
2 al −m al −m

wC −Rh ah+c
2

ah+c
2 ah −m

Ql
C

al−c
2b

al−m−c
b

al−m−c
b

Qh
C

ah−c
2b

ah−c
2b

ah−m−c
b

K l m2

2b
(al−m−c)2

2b
(al−m−c)2

2b

Kh m2

2b
m2

2b
(ah−m−c)2

2b

ΠDl
C

(al−c)2+4m2

8b
m(al−m−c)

b
(al−m−c)m

b

ΠDh
C

(ah−c)2+4m2

8b
(ah−c)2+4m2

8b
(ah−m−c)m

b

β
(

(ah−c)2

4b − m2

2b

)
β

(
(ah−c)2

4b − m2

2b

)
β (ah−m−c)2

2b

ΠM
C +(1− β)

(
(al−c)2

4b − m2

2b

)
+(1− β) (al−m−c)2

2b +(1− β) (al−m−c)2

2b
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Figure 17: Profit improvement by combined promotions with increasing ah (m = 5, b =
2, c = 15)

Continuing with the example in Figure 15, we show the improvement in the manufac-

turer’s profits when she offers combined promotions as opposed to offering each promotion

individually (Figure 17). In this case, the manufacturer is able to increase her profits by

as much as 18% by combining two promotions. The improvement in the manufacturer’s

profits decreases as the gap between the market potentials (ah − al) increases. We can

explain this behavior as follows. As (ah − al) increases, the manufacturer is better off with

a high-demand driven equilibrium, i.e., behaving as if she is in a deterministic setting with

a market potential of ah. We have seen that when demand is deterministic, the retailer

incentive is always better than the customer rebate. Therefore, we expect that the profit

increase achieved by combining the two promotions in an effectively deterministic setting is

not as high as the profit increase in a setting with uncertainty where both promotions may

improve the manufacturer’s profits.

3.4 Concluding Remarks

In this chapter, we analyze two different types of promotions, customer rebates and re-

tailer incentives, which are commonly used by manufacturers in the auto industry. We

consider several models with different demand characteristics to determine under which

market conditions one promotion is more effective than the other in terms of increasing the

manufacturer’s profits and sales. Our setting is a two stage supply chain with an uncapaci-

tated manufacturer and a retailer who can do perfect price discrimination in a market with

price sensitive demand.
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We show that when demand is deterministic and rebates do not lead to market expan-

sion, customer rebates are not effective in increasing the manufacturer’s sales and profits,

and the manufacturer is always better off with a retailer incentive. If the rebates lead to an

increase in the market potential possibly through advertising but at an additional cost, the

manufacturer may prefer the customer rebate over the retailer incentive when the increase

in the market potential is sufficient enough to cover the cost of promoting.

We show that when the market potential is uncertain, neither the retailer incentive nor

the customer rebate has an absolute dominance over the other. We observe that when the

uncertainty is high, the customer rebate performs better than the retailer incentive. On

the other hand, when the uncertainty is on the price sensitivity parameter of the demand

function, we obtain identical results to the deterministic setting where the profits and sales

generated with a retailer incentive are higher than those of a customer rebate. We also

show that offering combined promotions improves the manufacturer’s profits and sales only

if there is uncertainty in the market potential.

We have seen that uncertainty can be an important factor in determining whether to

offer a customer rebate or retailer incentive. We investigate whether our analytical findings

are in line with what we observe in practice, in particular, whether different promotions

offered by the American auto manufacturers (customer rebates based promotions) and the

Japanese auto manufacturers (retailer incentives based promotions) can be explained by

the variability of the demand that they observe. Since the actual demand data is not

available, we use sales as an approximation of demand and we take the variability of sales

to represent uncertainty in demand for this analysis unless described otherwise. We focus

on the following two questions: 1) Is there any statistical evidence for the rebates by the

American auto manufacturers being higher than those by the Japanese auto manufacturers?

2) Is the sales variability of the American vehicles higher than the Japanese vehicles?

We analyze three car segments: midsize, compact size and utility vehicle. In Figure 18,

we plot the rebate percentages for compact size and utility vehicle segments. A quick

inspection of the graphs shows that the rebate percentages used by the American auto
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(a) Compact size models

 

Total Registrations and Average Rebate Percentages (Utility) 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

Ju
n-

00

Aug
-0

0

Oct-
00

Dec
-0

0

Feb
-0

1

Apr
-0

1

Ju
n-

01

Aug
-0

1

Oct-
01

Dec
-0

1

Feb
-0

2

Apr
-0

2

Ju
n-

02

Aug
-0

2

Oct-
02

Dec
-0

2

Feb
-0

3

Apr
-0

3

Months

0%

1%

2%

3%

4%

5%

6%

7%

American (Registrations of 4 models) Japanese (Registrations of 3 models)
American (% Rebate of 4 models) Japanese (% Rebate of 3 models)

R
eb

at
e 

as
 a

 %
 

o
f 

th
e 

ve
h

ic
le

 c
o

st

 R
eg

is
tr

at
io

n
s

(b) Utility vehicle models

Figure 18: Total registrations and average rebate percentages of compact size and utility
vehicle models

manufacturers are higher than the Japanese auto manufacturers for all car segments in-

cluding the midsize segment displayed in Figure 8. We observe that the demand for cars is

highly seasonal with the peak seasons in late summer-early fall and late winter-early spring.

Table 9 summarizes the basic statistics related with the data sets for the compact, mid-

size, and utility vehicle segments. Although these values may help to test the hypotheses,

one should be careful using them because the registrations and the rebates are time series

data with possible autocorrelations and therefore may lack independence. In order to test

the variability differences, ideally we need to separate out the effects of uncertainty from

seasonality. For these reasons, instead of the actual registrations, we use the normalized

data where each data point is normalized with the total registrations in the corresponding
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month, and we then divide the normalized data points into non-overlapping batches and

take the batch means as the data points. (Batch means method is frequently used for the

estimation of mean and variances in simulation output analysis; e.g., see Alexopoulos et

al. [3].)

Table 9: Summary statistics

Total number of Registrations Rebate Percentages
Mean CoV∗ Mean % CoV

Segment U.S. Japan U.S. Japan U.S. Japan U.S. Japan
Midsize 48,574.58 66,942.86 0.18 0.13 6.24 0.33 0.48 0.85
Compact 35,977.94 42,078 0.20 0.16 9.48 0.50 0.33 0.86
Utility 52,459.75 18,729.42 0.29 0.17 2.87 1.02 0.57 0.64
∗CoV(Coefficient of variation) = standard deviation

mean

Our results suggest that the rebates by the American auto manufacturers are statisti-

cally significantly higher than the rebates by the Japanese auto manufacturers at the 95%

confidence level. We have weaker results for the variability differences; at 90% confidence

level, there is evidence that the sales variability of the American auto manufacturers is

higher than that of the Japanese auto manufacturers for the midsize and utility vehicle

segments, but not for the compact segment. As we mentioned before, we relate the vari-

ability in sales with the uncertainty in demand. Therefore, the higher variability in demand

by the American auto manufacturers could explain their choice of rebates as an important

promotion mechanism as our analytical results suggested that the rebates improve profits

and sales most when there is high uncertainty. However, it would be useful to further in-

vestigate the effect of rebates on the variability of demand. It might be the case that the

American auto manufacturers started using the rebates for some other reason, but then

as they offered high rebates in some periods and no rebates in others, they added more

variability to the demand that they see. Identifying if rebates cause variability or if rebates

are offered because of variability is very difficult and we leave this for future research.

Our work analytically compares different promotions used in the auto industry, which

is very important for the manufacturers. However, there are many further questions of

interest in this area. For example, it would be useful to add the sales effort decisions of
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the dealers into the analysis, since effort may play important role in increasing sales. Issues

of supply chain coordination in this setting could also be useful as well as the aspects of

customer behavior such as strategic buying.
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CHAPTER IV

SALES PROMOTIONS IN THE PRESENCE OF COMPETITION

4.1 Introduction

Promotions are widely used by manufacturers and retailers in varying degrees across differ-

ent industries. In some cases, companies offer promotions to increase sales, advertise new

products or to reduce their inventories; in others, promotions are used as strategic tools to

react to the competitors’ actions. As we have discussed in Chapter 3, the auto industry in

the U.S. is one example where promotions play an important role in the marketing strate-

gies of the companies. In this industry, it is commonly observed that promotions offered by

one manufacturer lead competitors to start or intensify their own promotions. For example,

General Motors introduced zero-percent financing option in September 2001, which was

quickly followed by similar promotions by Ford and Chrysler. More recently, in response to

increasing gasoline prices in the U.S., Ford started to offer an extra $1,000 cash rebate in

addition to rebates of up to $4,000 on certain models. Analysts expect a “new rebate war

among U.S. automakers” in 2007 and state that Ford’s new rebate program “could cause

some manufacturers to increase their incentives programs on select models in response to

Ford’s actions” [5].

Competition may impact the manufacturers’ promotion decisions. In Figure 19, we use

data sets from a major market research firm and plot the rebates offered by two American

auto manufacturers in the period June 2000-May 2003. The cross-correlation between the

two time series data is 0.87, and there is an increasing trend in rebate amounts for both man-

ufacturers. Although the correlation itself is not sufficient to claim that the manufacturers’

rebate promotions were closely affected by those of the competitor, there is also significant

anecdotal evidence for competitive effects of promotions, e.g., the employee discount pro-

gram was initiated by General Motors in June 2005, which increased the manufacturer’s

sales by 41% in that month, and it was matched by Chrysler and Ford the next month.
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Figure 19: Rebates by two competing American auto manufacturers in the U.S. market

In Chapter 3, we analyzed “customer rebate” and “retailer incentive” promotions in a

two-stage supply chain with a single manufacturer and single retailer and determined which

promotion would benefit the monopolistic manufacturer under which market conditions.

We modelled a customer rebate in the form of a per-unit payment from the manufacturer

to the end customer, and a retailer incentive in the form of lump-sum payment from the

manufacturer to the dealer; both forms are observed in practice. In this chapter, we extend

this research by analyzing a duopoly setting with two competitive manufacturers who sell

their products at their exclusive retailers, who are also competitors in the end market.

Our goal is to investigate the impact of competition on manufacturers’ promotion and

pricing decisions, retailers’ order/sales quantity decisions, as well as the profits of the firms.

One question is whether including competition will change which promotion is better for

a manufacturer. We are also interested in using our models to explain the manufacturers’

promotion choices observed in practice. We adopt a game theoretical framework to analyze

the problems.

This chapter is organized as follows. We review the relevant literature in Section 4.2. In

Section 4.3, we explain our assumptions, describe the competitive interactions in the supply

chains, and present our models. We summarize our results in Section 4.4.
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4.2 Literature Review

Sales promotions have been extensively studied in the marketing and economics literature

especially in non-durable goods industries with posted prices. (e.g., see Ailawadi and Nes-

lin [2], Blattberg et al. [10], Neslin and Stone [62] and Wansink and Deshpande [83].)

Different than these articles, we focus on industries where the sales price is negotiated. The

auto industry is a good example where consumption rates are low, prices are high and can

be negotiated with the customers.

Narasimhan [60] analyzes the role of coupons in achieving price discrimination in indus-

tries where the manufacturers sell directly to the buyers. In another stream of research,

promotions are analyzed in two-stage supply chains where manufacturers sell through re-

tailers. Gerstner and Hess [32], Khrishnan et al. [50], and Taylor [77] focus on the use of

promotions in channel coordination, where the latter two articles also consider retailers that

exert sales effort to influence demand. Ernst and Powell [27] analyze a setting where the

manufacturer can offer an incentive to increase the retailer’s service level and to capture ad-

ditional demand. We do not consider retailers’ sales effort or find mechanisms to coordinate

the channels. Our focus is on understanding how competition affects the manufacturers’

promotion decisions, where the manufacturers and their retailers operate in decentralized

supply chains similar to those in the auto industry.

Several studies analyze promotions in competitive supply chains, e.g., Lal et al. [52],

Narasimhan [61], and Steenkamp et al. [75]. Kim and Staelin [47] study a four-player

model where competition exists both at the manufacturers’ level and the retailers’ level

of the supply chain, similar to ours. However, since their model relates to the consumer

packaged goods industry, the retailers sell both manufacturers’ products at a fixed price,

which is different than our setting in the auto industry where the retailers operate exclusively

and negotiate prices. The authors only analyze promotions from the manufacturers to the

retailers where the promotions are in the form of side payments, corresponding to the lump-

sum incentives in our setting; in addition we also analyze rebates to customers. Gerstner et

al. [33] study the price discriminating role of a pull-discount promotion (customer rebate)

for a monopolist manufacturer where the competition is only among the retailers. The
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authors analyze a market with two customer segments, one with high and the other with

low willingness to pay for one unit of product. Benefiting from the pull-discount is costly

for the former, but free for the latter segment. In our analysis, we allow competition both

among the manufacturers and the retailers. We assume that customer rebates are redeemed

by all buyers without any cost, which is a common practice in the auto industry. Examples

of research that analyze competitive supply chains but do not consider promotions include

Choi [18], McGuire and Staelin [57], Moorthy [58], and Trivedi [80], where the authors

analyze the manufacturers’ channel structure decisions. We do not focus on the decisions

on channel structure since the auto manufacturers sell their products through exclusive

and independent dealers in the U.S. Our focus is on analyzing the promotional decisions

of the competing manufacturers and their effects on the entire supply chain. Boyaci and

Gallego [11] study a competitive setting similar to ours with two wholesalers supplying two

retailers in various scenarios with coordination or decentralization within each supply chain.

In their analysis, wholesalers and retailers compete on the basis of customer service where

the retailers charge similar prices, while we analyze retailers that price discriminate and

compete directly in sales quantity.

In the auto industry, analysis of promotions has attracted some attention from re-

searchers due to the economic significance of the industry and the auto manufacturers’

increased use of promotions in the recent years. Empirical studies have investigated diverse

issues such as price discrimination by auto dealers (Goldberg [36], Scott Morton et al. [70],

and Zettelmeyer et al. [86]), dealers’ pass-through rates of promotions to the car buyers

(Busse et al. [15] and Crafton and Hoffer [23]), the impact of new product introductions and

promotional incentives on firms’ profits (Pauwels et al. [66]), and the effects of promotions

on customer and dealer behaviors (Keskinocak et al. [46]). Bruce et al. [12, 13] analytically

study promotions offered by the durable goods manufacturers using game theoretical mod-

els and perform empirical studies with data from the auto industry. Bruce et al. [12] focus

on promotions from the manufacturers to the retailers (trade promotions), which are in the

form of wholesale price discounts based on the retailers’ sales levels. The authors consider

a channel structure that is similar to ours where two competing manufacturers sell their
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products exclusively through two competing retailers, although in their case the dealer sets

a fixed price and customer rebates are not analyzed. They incorporate the effects of a sec-

ondary market for the goods through a durability measure, and find that the manufacturer

with the more durable good benefits more from trade promotions. They also find that in

equilibrium, both manufacturers find it optimal to offer trade promotions to their retailers.

Bruce et al. [13] analyze cash rebates and the effect of the product’s durability on the

manufacturer’s decisions, but ignores competition. The authors show that lower durability

of a manufacturer’s products leads to higher cash rebates. In their analysis, the dealer sets

a fixed price and dealer incentives are not analyzed.

Our research differs from the cited articles in that the retailers price discriminate. This

is mainly motivated by the practices in the auto industry where the final purchase price of

a vehicle is negotiated between the dealer and the buyer. As a result, the dealer has the

opportunity to learn the customer’s willingness to pay and price discriminate accordingly.

Spulber [74] and White and Walker [84] analyze models with first-degree (perfect) price

discrimination, however neither considers manufacturers’ promotion decisions in two-stage

supply chains where competition exists both among the manufacturers and the retailers,

which is the focus of our study. In Chapter 3, we showed that price discrimination mat-

ters even in the monopolistic setting, therefore it is useful to include it in the analysis of

competing retailers, since price discrimination and competition are important in the auto

industry.

4.3 Models

We analyze promotion and sales decisions in a setting with two competing manufacturers

who sell their products through two independent retailers who are also competitors in

the end market. We differentiate the supply chains with the subscript i = 1, 2, and we

assume retailer i sells products of manufacturer i exclusively, which is commonly observed

in practice in the form of franchised dealerships of the auto manufacturers. In practice,

a dealer may own multiple dealerships or retail outlets although each outlet tends to be

operated by a separate management. Auto manufacturers generally keep their wholesale

68



prices constant for the model year and they offer incentives in order to respond to demand

changes. Therefore we assume that retailer i purchases from his manufacturer at a wholesale

price wi, which is determined by the manufacturer at the beginning of the model year or

selling period.

Below, we summarize further assumptions that are common with those in Chapter 3.

• There is a single selling period.

• Retailers can do perfect price discrimination.

• Retailer i has a reservation price wi + mi, below which he is not willing to sell.

• Manufacturers have ample capacity.

• There are no administrative and redemption costs associated with the promotions.

• All parameters are common knowledge and all parties seek to maximize their own

profits.

Next, we construct the basic demand model that incorporates competition. Since we

analyze price discriminating retailers, we use an inverse demand function that relates price to

each unit sold. Inverse demand functions are appropriately used to model the firms’ profits

when they can do perfect price discrimination (Spulber [74] and White and Walker [84]).

To model competition, we also need to incorporate the substitution effects between the

retailers’ products or sales. Most articles in the literature model competition by reflecting

the characteristic that a firm’s demand (or sales) is downward sloping in the firm’s own price,

and upward sloping in the competitor’s price as a result of substitution (Kim and Staelin [48]

and McGuire and Staelin [57]). However, these articles do not consider inverse demand

models and use demand functions that relate quantity to the fixed selling prices of the firms.

We combine characteristics from price discrimination models and competition/substitution

models to develop our demand model.

We assume demand is deterministic and has the form shown in Equation 1. The basic
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structure of the (inverse) demand function is linear, as used in some auto manufactur-

ers (Biller et al. [9]).

Pi(Qi, Qj) =





a− (bio + bic)Qi if Qi ≤ Qj

a− bioQi − bicQj otherwise
i, j ∈ {1, 2}, i 6= j. (1)

Pi(Qi, Qj) denotes the price retailer i receives when he sells Qi units and the competing

retailer sells Qj units. We denote the maximum price with a, which is the market potential

when sensitivity is fixed, and we assume that the retailers have identical market potentials.

We denote the effect of retailer i’s sales on his own price with bio (own price sensitivity),

and the effect of the competitor’s sales on retailer i’s price with bic (cross price sensitivity).

Our demand model incorporates the competitive nature of sales by capturing the following

behavior: as the sales/order quantity of one retailer increases, the price that he can receive

from each additional unit drops due to his own sales as well as the competitor’s sales, both

of which are affected by the price sensitivity parameters. (See Appendix C for further

discussion on demand model.)

The demand function of retailer 1 is shown in Figure 20 corresponding to the case where

he generates higher sales than his competitor. Retailer 1 is competing with retailer 2 on

the first segment of the demand function until his sales reach his competitor’s sales Q2, and

he is selling additional units beyond Q2 on the second segment of the demand function.

Retailer i is experiencing a faster decrease in the price that the customers are willing to pay

on the first segment of his demand function than that on the second segment. We expect

that retailer i’s own decisions will impact his demand more than his competitor’s decisions,

therefore we assume bio ≥ bic and bio ≥ bjc, i, j ∈ {1, 2}, i 6= j.

Table 10 summarizes our notation. Note that the manufacturers cannot make positive

profits unless they sell above their costs, therefore wi ≥ ci, i = 1, 2. It follows from the

retailers’ reservation prices that Pi(0, 0) = a ≥ wi +mi, which together with wi ≥ ci implies

that a ≥ mi + ci, i = 1, 2; otherwise either the manufacturer or the dealer would not sell

any units. Since the manufacturers do not sell below their costs and the retailers satisfy

their reservation prices, a′i = a − mi − ci represents the highest profit retailers can earn,

which can be interpreted as the “net” market potential. We can also denote b′i = bio + bic
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Figure 20: Demand function with competition

as the “total” price sensitivity of manufacturer i since the selling price is affected by both

bio and bic in the region where the retailers sell simultaneously. In the rest of the paper, we

denote the manufacturer or the retailer with higher sales quantity as the “market leader”.

Table 10: Notation for Chapter 4

a : Market potential
bio : Retailer i’s price sensitivity of own customers, i = 1, 2
bic : Retailer i’s competitor’s price sensitivity of customers affecting

retailer i’s price
Qk

i : Retailer i’s order/sales quantity under promotion type k ∈ (o, I, R)
(o =no promotion, I =retailer incentive, R =customer rebate)

Pi(Qi, Qj) : Retailer i’s price when the retailers sell Qi, Qj units respectively
(i, j ∈ {1, 2}, i 6= j)

ΠMi
k : Profit of manufacturer i under promotion k

ΠDi
k : Profit of retailer i under promotion k
wi : Wholesale price of manufacturer i

wi + mi : Reservation price of retailer i
ci : Production cost of manufacturer i

Ki : Lump-sum incentive given to retailer i by manufacturer i
Ri : Per unit customer rebate offered by manufacturer i
δi : The effect of manufacturer i’s rebate on the competitor’s market potential
A′ : Complement of set A including all elements in the set of real numbers

not in A

Figure 21 illustrates the interactions in the supply chains. The manufacturers move first

and simultaneously make their wholesale price and promotion decisions. Next, the retailers

observe the manufacturers’ decisions and simultaneously make their order/sales quantity

decisions. Thus, the simultaneous decision games are embedded in a Stackelberg framework

71



Wholesale price ��, 
incentive ��, rebate ��, or none

Manufacturer 1

Order (sales) quantities 
��

�,���, or ��
�

Wholesale price ��, 
incentive ��, rebate ��, or none

Manufacturer 2

Order (sales) quantities 
��

�,���, or ��
�

Retailer 1

Retailer 2

Figure 21: Timeline of decisions (competition)

with the manufacturers acting as the leaders and the retailers as the followers, where the

manufacturers consider the retailers’ responses while making their own decisions. Unlike

the newly introduced promotional programs such as employee discount programs and zero-

percent financing where manufacturers’ actions may represent leader-follower situations,

customer rebates and dealer incentives are more established types of promotions for which

it is reasonable to assume neither of the manufacturers acts as the first-mover or has higher

market power than the other. We are interested in the SPNE outcomes where none of the

firms has an incentive to deviate from their decisions, and we use backward induction to

find such equilibria.

We analyze four combinations of promotions. In Section 4.3.1, we present the base

model where no promotion is offered by the manufacturers. In Sections 4.3.2 and 4.3.3,

we analyze the cases where both manufacturers offer the same type of promotion: retailer

incentives Ki and customer rebates Ri, i = 1, 2, respectively. Finally, we analyze the

case where one manufacturer offers a retailer incentive while the other offers a customer

rebate. In each case, we formulate the optimization problems of the manufacturers and the

retailers, and we summarize the results from backward induction, which follows the timeline

in Figure 21. Given the manufacturers’ decisions, we solve the retailers’ problems and find

the equilibrium as a function of the manufacturers’ decisions. In the second step, we solve

the manufacturers’ problems by embedding the retailers’ best responses into the problem

formulations. We solve for the SPNE explicitly when possible and provide observations

through numerical examples otherwise.
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4.3.1 No Promotion

We first consider the case where the manufacturers do not offer any promotions, thus they

only make wholesale price decisions and the retailers set their order/sales quantities. The

models and results are as follows.

Step 1. The retailers’ order/sales quantity decisions: The retailers simultane-

ously decide how much to order/sell to maximize their own profits given the manufacturers’

wholesale price decisions. We show the formulations of the retailers’ problems for the case

where Q1 ≤ Q2. Symmetric formulations exist when Q1 ≥ Q2.

Retailer 1’s problem:

ΠD1
o = max

Q1≥0

∫ Q1

0
(a− (b1o + b1c)Q1)dQ1 − w1Q1

s.t. Q1 ≤ a− w1 −m1

b1o+b1c

Q1 ≤ Q2

Retailer 2’s problem:

ΠD2
o = max

Q2≥0

∫ Q1

0
(a− (b2o + b2c)Q2)dQ2 +

∫ Q2

Q1

(a− b2oQ2 − b2cQ1)dQ2 − w2Q2

s.t. Q2 ≤ a− w2 −m2

b2o
− b2c

b2o
Q1

Q2 ≥ Q1

Both retailers have the objective of maximizing their profits. The constraints imply

no products are sold below the reservation prices of the retailers, where P1(Q1, Q2) =

a − (b1o + b1c)Q1 ≥ w1 + m1 ⇒ Q1 ≤ a−w1−m1
b1o+b1c

, and P2(Q2, Q1) = a − b2oQ2 − b2cQ1 ≥
w2 + m2 ⇒ Q2 ≤ a−w2−m2

b2o
− b2c

b2o
Q1.

We find the retailers’ best responses to the manufacturers’ wholesale prices as follows.

(Note that, (x)+ = max{0, x}.)

Q∗
1(Q2, w1, w2) =





(
min

{
Q2,

a−w1−m1
b1o+b1c

})+
=

(
a−w1−m1
b1o+b1c

)+
if Q2 ≥ a−w1−m1

b1o+b1c

a−w1−m1
b1o

−Q2
b1c
b1o

otherwise

Q∗
2(Q1, w1, w2) =





(
min

{
Q1,

a−w2−m2
b2o+b2c

})+
=

(
a−w2−m2
b2o+b2c

)+
if Q1 ≥ a−w2−m2

b2o+b2c

a−w2−m2
b2o

−Q1
b2c
b2o

otherwise.
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Table 11: Retailers’ equilibrium under no promotion

a−w1−m1
b′1

≤ a−w2−m2
b′2

a−w2−m2
b′2

≤ a−w1−m1
b′1

Q∗
1

(
a−w1−m1

b′1

)+
(

a−w1−m1
b1o

− b1c
b1o

(
a−w2−m2

b′2

)+
)+

Q∗
2

(
a−w2−m2

b2o
− b2c

b2o

(
a−w1−m1

b′1

)+
)+ (

a−w2−m2
b′2

)+

The retailers’ equilibrium in response to the manufacturers’ wholesale prices (w1, w2) is

as shown in Table 11, where b′i = bio + bic, i = 1, 2.

Step 2. The manufacturers’ wholesale price decisions: The manufacturers si-

multaneously choose their wholesale prices to maximize their own profits anticipating the

best responses of the retailers.

ΠMi
o = max

wi≥ci

(wi − ci)Q∗
i , i = 1, 2

Theorem 5 When there is no promotion offered by the manufacturers, the SPNE is as

shown in Table 12, where a′i = a−mi − ci and b′i = bio + bic, i = 1, 2.

Table 12: The SPNE with no promotion

2b′1a
′
2 ≥ (b2c + 2b2o)a′1

SPNE.1 Feasible Region 1 (F.R.1)
w∗1

a+c1−m1
2

w∗2
2b′1(a−m2+c2)−b2ca′1

4b′1
Qo∗

1
a′1
2b′1

Qo∗
2

2b′1a′2−b2ca′1
4b2ob′1

ΠM∗
1

o
(a′1)2

4b′1

ΠM∗
2

o
(2b′1a′2−b2ca′1)2

16b2o(b′1)2

2b′2a
′
1 ≥ (b1c + 2b1o)a′2

SPNE.2 (F.R.2)

w∗1
2b′2(a−m1+c1)−b1ca′2

4b′2
w∗2

a+c2−m2
2

Qo∗
1

2b′2a′1−b1ca′2
4b1ob′2

Qo∗
2

a′2
2b′2

ΠM∗
1

o
(2b′2a′1−b1ca′2)2

16b1o(b′2)2

ΠM∗
2

o
(a′2)2

4b′2

Feasible Region SPNE
(1) F.R.1 ∩ F.R.2 SPNE.1, SPNE.2
(2) F.R.1 ∩ F.R.2′ SPNE.1
(3) F.R.1′ ∩ F.R.2 SPNE.2

Both equilibria can be observed in the region denoted by (1), whereas the supply chain
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members reach a unique equilibrium in the regions denoted by (2) and (3). (Note that

the entire space of feasible parameters is completely partitioned by the preceding feasible

regions, where the regions are determined a priori by the system parameters.) From Ta-

ble 12, when bic = 0, it trivially follows that manufacturer i achieves the monopoly profits

of ΠMi = (a′i)
2

4bio
(Chapter 3), where a′i = a−mi − ci, i = 1, 2. This may be seen in practice

when the manufacturer has a loyal customer base such as for certain luxury vehicles. In Ob-

servation 4, we compare the profits of a manufacturer in the monopolistic and competitive

settings.

Observation 4 When bic > 0, i = 1, 2, both manufacturers obtain lower profits when there

is competition than when they are monopolies. (See Equations 2 and 3 for SPNE.1; the

expressions are symmetric for SPNE.2.)

ΠSPNE.1
1 =

(a′1)
2

4b1
≤ (a′1)

2

4b1o
(2)

2b1a
′
2 − b2ca

′
1

2b1
≤ a′2 ⇒ ΠSPNE.1

2 =
(

2b1a
′
2 − b2ca

′
1

2b1

)2 1
4b2o

≤ (a′2)
2

4b2o
(3)

In Observation 5, we determine the market leader corresponding to the different SPNE.

Observation 5 When the supply chain members are in SPNE.1 (SPNE.2), manufacturer

2 (1) is the market leader in terms of sales, which follows by Equations 4 and 5.

Qo∗
2 (SPNE.1)−Qo∗

1 (SPNE.1) = 2b′1a
′
2 − (b2c + 2b2o)a′1 ≥ 0 (4)

Qo∗
1 (SPNE.2)−Qo∗

2 (SPNE.2) = 2b′2a
′
1 − (b1c + 2b1o)a′2 ≥ 0 (5)

In order to predict the outcome of the interactions between the supply chain members,

it is desirable to know when a unique equilibrium is achieved. In Observation 6, we iden-

tify some conditions where we observe unique equilibria and analyze the sensitivity of the

manufacturers’ profits to the system parameters.

Observation 6 When the manufacturers have identical net market potentials, i.e., a′1 =

a′2, and manufacturer 2’s total price sensitivity is lower than that of manufacturer 1, i.e.,

2b′2 ≤ b′1 + b1o, then SPNE.1 is the unique equilibrium, manufacturer 2 is the market leader,
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and ΠM∗
1

o ≤ ΠM∗
2

o . Manufacturer 2’s profit changes at a faster rate in response to changes in

b2o, m2, and c2 compared to the changes in b2c, m1, and c1, respectively, which implies that

the market leader’s profit is more sensitive to own parameters than those of the competitors.

All results are symmetric for SPNE.2, i.e., if 2b′1 ≤ b′2 + b2o, then SPNE.2 is the unique

equilibrium, manufacturer 1 is the market leader, and ΠM∗
2

o ≤ ΠM∗
1

o .

Table 13 shows the comparative statics for the manufacturers’ profits when SPNE.1 is

the unique equilibrium.

Table 13: The impact of parameters on the profits of the manufacturers. ↙ implies
decrease and ↗ implies increase with increasing values of the parameters.

b1o b1c b2o b2c m1 m2 c1 c2

ΠM∗
1

o ↙ ↙ - - ↙ - ↙ -
ΠM∗

2
o ↗ ↗ ↙ ↙ ↗ ↙ ↗ ↙

In the U.S., the sales of the American auto manufacturers show a declining trend while

the non-American auto manufacturers have increased their market shares in the recent

years [59]. We also find from our data sets that the new vehicle registrations of the compact

and midsize vehicles by the American auto manufacturers totaled 4.5M and 6M, respec-

tively, versus 5.2M and 7.4M by the Japanese auto manufacturers. Although this can be

due to several reasons, one empirical work shows that the American manufacturers face

higher price sensitivity in their demands for the compact and midsize car segments than

the Japanese auto manufacturers (Keskinocak et al. [46]). These findings are consistent

with Observation 6, which suggests that the manufacturer with lower total price sensitivity

is the market leader.

In Examples 1 and 2, we show that the manufacturers’ profits are complex functions of

all system parameters making it difficult to characterize general relationships that hold in

all cases. In Example 1, we show that the market leader (in sales quantity) can make less

profit than the competing manufacturer. This situation is more likely to happen when the

competitor’s production cost and the reservation price of his retailer is lower than those of

the market leader.
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Example 1 When a = 150, b1o = 3, b1c = 1, b2o = 1.5, b2c = 1, c1 = 2, c2 = 10,m1 =

5,m2 = 35, SPNE.1 is the unique equilibrium with the following decisions: w∗1 = 73.60, w∗2 =

53.56, Qo∗
1 = 17.88, Qo∗

2 = 29.04, where ΠM∗
1

o = 1278.06, ΠM∗
2

o = 1265.13.

In Example 2, we show that lower production cost and retailer’s reservation price do

not always guarantee higher profits for a manufacturer.

Example 2 When a = 50, b1o = 6, b1c = 1.5, b2o = 2, b2c = 1, c1 = 15, c2 = 20,m1 =

10,m2 = 15, SPNE.1 is the unique equilibrium with the following decisions: w∗1 = 27.50, w∗2 =

26.67, Qo∗
1 = 1.67, Qo∗

2 = 3.33, where ΠM∗
1

o = 20.83, ΠM∗
2

o = 22.22.

Although manufacturer 1’s production cost is lower, she sells less units than manufac-

turer 2 partly due to higher own and cross price sensitivities, and she ends up with lower

profit.

4.3.2 Retailer Incentive

In this section, we look at the case where manufacturer i offers a lump-sum incentive Ki

to retailer i, i = 1, 2. The incentives allow the retailers to sell to customers they would

not have been able to reach otherwise. The retailers want to satisfy their reservation prices

wi + mi from each unit sold, therefore there is no reason they should use any incentive for

buyers who are willing to pay at least wi +mi. For other customers, the retailer can use the

incentive to compensate for the difference between the price that the customer pays and

the retailer’s reservation price. Although the auto manufacturers do not have direct control

over the use of dealer incentives and the dealers determine whether to use the incentives

during sales or not, empirical studies show that dealers indeed pass-through some part of the

incentives to the end customers (Busse et al. [15]). Other reasons for the retailers’ voluntary

participation in transferring the incentives to customers include the turn-and-earn system

for inventory allocation and advantages in receiving a better selection of vehicles in the

future, which is facilitated by a high volume of sales by the dealers.

Similar to the analysis in Section 4.3.1, we identify two cases while formulating the

retailers’ problems, i.e., QI
1 ≤ QI

2 and QI
1 ≥ QI

2. However, we need to analyze additional
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cases to determine the total amount of incentives used by the retailers.

In Figure 22, we analyze the case QI
1 ≤ QI

2 where retailer 2 is market leader. Note that

retailer 2 uses the incentive only for those sales with prices below w2 +m2. In Figure 22(a),

he uses the incentive on the second segment of his demand function where he is generating

additional sales beyond his competitor’s sales, and uses the incentive for all units between

the points denoted by A-B. By contrast, in Figure 22(b), the retailer uses the incentive

on both segments of his demand function for all units between the points denoted by C-E.

Each of these situations implies a different constraint on the reservation price requirement

for retailer 2. On the other hand, since QI
1 ≤ QI

2, retailer 1 is selling entirely on the first

segment of his demand function where both retailers are capturing market share. Therefore,

he uses the incentive only on this segment, which is illustrated in Figure 22(c) between the

points denoted by F-G.
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A 
B 

(a) Retailer 2 uses K2 on the second seg-
ment of the demand function

 

���

 

��

C 

E 

D 

(b) Retailer 2 uses K2 on both segments
of the demand function

 

���

 

��

F 

G 

(c) Retailer 1 uses K1 on the first segment of
the demand function

Figure 22: Retailers’ demand functions when both manufacturers give incentives and
retailer 2 is the market leader.
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Below, we summarize all possible cases to consider, where the reservation price require-

ment leads to different optimization problems for the retailers depending on the manufac-

turers’ wholesale price decisions: (Note that Case 1.a and Case 1.b are illustrated in Figures

22(a) and 22(b), respectively.)

Case 1) QI
1 ≤ QI

2 Case 2) QI
1 ≥ QI

2

Case 1.a)∃ Q2 ≥ QI
1 : P2(Q2, Q

I
1) ≤ w2+m2 Case 2.a)∃ Q1 ≥ QI

2 : P1(Q1, Q
I
2) ≤ w1+m1

Case 1.b)∃ Q2 ≤ QI
1 : P2(Q2, Q

I
1) ≤ w2+m2 Case 2.b)∃ Q1 ≤ QI

2 : P1(Q1, Q
I
2) ≤ w1+m1

We provide the formulations of the retailers’ problems for Case 1.a and Case 1.b; the

analysis of the symmetrical cases is similar.

Case 1.a) Retailer 1’s problem

max
QI

1≥0

∫ QI
1

0
(a− (b1o + b1c)QI

1)dQI
1 − w1Q

I
1 + K1

s.t.
∫ QI

1

a−w1−m1
b1o+b1c

(w1 + m1 − (a− (b1o + b1c)QI
1))dQI

1 ≤ K1

QI
1 ≤ QI

2

Retailer 2’s problem

max
QI

2≥0

∫ QI
1

0
(a− (b2o + b2c)QI

2)dQI
2 +

∫ QI
2

QI
1

(a− b2oQ
I
2 − b2cQ

I
1)dQI

2 − w2Q
I
2 + K2

s.t.
∫ QI

2

a−w2−m2
b2o

− b2c
b2o

QI
1

(w2 + m2 − (a− b2cQ
I
1 − b2oQ

I
2))dQI

2 ≤ K2

QI
2 ≥ QI

1

In Case 1.b, the formulation of retailer 1’s problem and the objective function of retailer 2

remain the same as above. However, the constraints for retailer 2’s problem are modified

to reflect the retailer’s reservation price requirement as follows.

Case 1.b) Retailer 2’s constraints

∫ QI
1

a−w2−m2
b2o+b2c

(w2+m2−(a−(b2o+b2c)QI
2))dQI

2+
∫ QI

2

QI
1

(w2+m2−(a−b2cQ
I
1−b2cQ

I
2))dQI

2≤ K2

QI
2 ≥ QI

1

We state the best responses of the retailers to manufacturers’ wholesale price and in-

centive decisions for Case 1.a and Case 1.b in Equations 6-9.
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Case 1.a) QI∗
1 =

(
min

{
QI

2,
a−w1

b′1
,

a−w1−m1+
√

2K1b′1
b′1

})+

(6)

QI∗
2 =

(
max

{
QI

1, min

{
a−w2
b2o

− b2c
b2o

QI
1,

a−w2−m2−b2cQI
1+
√

2b2oK2

b2o

}})+

(7)

Case 1.b) QI∗
1 =

(
min

{
QI

2,
a−w1

b′1
,

a−w1−m1+
√

2K1b′1
b′1

})+

(8)

QI∗
2 =

(
max

{
QI

1, min

{
a−w2
b2o

− b2c
b2o

QI
1,

a−w2−m2
b2o

− b2c
b2o

QI
1 +

√
(b′2)2(2b2oK2+(QI

1)2b2cb′2+2b2c(w2+m2−a)QI
1)+(b2c(w2+m2−a)2b′2)

b2ob′2

}})+

(9)

Given the best responses of the retailers, manufacturer i’s problem is as follows:

ΠMi
I = max

wi≥ci,Ki≥0
(wi − ci)QI∗

i −Ki

In our analysis, we model competition at both stages of the supply chain: the retailers

observe the manufacturers’ decisions and compete in sales; the manufacturers determine

their wholesale prices and promotion amounts by predicting the retailers’ equilibrium, and

they compete in sales and profits. Competitive interactions at both stages complicate the

analytical characterization of the equilibria considerably. This is also mentioned by Boyaci

and Gallego [11], where the authors study a setting similar to ours in terms of supply chain

structure and the timeline of decisions. Although the authors derive analytical expressions

for the retailers’ equilibrium, they use numerical schemes to compute the wholesalers’ Nash

equilibrium decisions. In our analysis, we were able to analytically derive the SPNE for the

base model in the no-promotion case (Section 4.3.1), however, we resort to computational

methods to find the equilibria (if any exist) in the case of retailer incentives.

Fudenberg and Tirole [28] discuss one iterative method where players take turns to make

their decisions, and each player makes a decision that is a best response to the opponent’s

decision one iteration before. Unfortunately, there is no guarantee that this process will

converge; however, if it converges to a stable point, then it results in a Nash equilibrium. In

Table 14, we provide an algorithm that implements an iterative process that is similar to the

one discussed in Fudenberg and Tirole [28]. We iteratively search for the manufacturers’
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Table 14: Iterative procedure

Manufacturers’ equilibrium
1) Initialize the decisions of the manufacturers: wi = ci, Ki = 0, i = 1, 2.
2) Without loss of generality, start with manufacturer i = 2. Given the current decisions
of manufacturer 3− i, find the best response of manufacturer i by iterating over all
(wi,Ki) pairs and using the retailers’ equilibrium from steps 4-6. The best response of
manufacturer i is the (wi,Ki) pair that brings the highest profit. Update the values
of (wi,Ki) and repeat step 2 for manufacturer i = 1.
3) If the successive values of manufacturers’ profits do not differ more than a tolerance
level ε, stop.
Retailers’ equilibrium
4) Initialize the decisions of the retailers: Qj = 0; j = 1, 2
5) Without loss of generality, start with retailer j = 2. Given the current decisions of
retailer 3− j and the current decisions of the manufacturers (w1,K1, w2,K2), calculate
the best response of retailer j by using Equations 6-9. Update the value of Qj and
repeat step 5 for retailer j = 1.
6) If the successive values of retailers’ profits (or quantities) do not differ more than a
tolerance level ε, stop.

wholesale price and retailer incentive decisions, where we use the best responses of the

retailers in Equations 6-9 to find the retailers’ equilibrium.

Although the algorithm outlined in Table 14 does not guarantee convergence, in our

computational tests, we have always been able to achieve convergence. However, we have

also observed that the algorithm can converge to multiple equilibria depending on which

manufacturer takes the first turn in Step 2. We also note that multiple equilibria for the

retailers’ interactions are possible, although in our computational tests we have always

been able to achieve a unique stable point for the retailers’ equilibrium in response to

manufacturers’ decisions.

The iterative procedure helps us observe the manufacturers’ competitive actions in re-

sponse to each other. In Table 15, we give an example where one manufacturer’s higher

incentive triggers the other manufacturer to increase her own retailer incentive. In this

example, both manufacturers find it optimal to offer incentives in equilibrium, which sug-

gests that competition can be one reason for the manufacturers to offer incentives to their

retailers.
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Table 15: Best responses of the manufacturers towards equilibrium (a = 75, b1o = 3,
b1c = 2, b2o = 2, b2c = 1, c1 = 10, c2 = 10, m1 = 5, m2 = 5).

Iteration w1 K1 w2 K2

0 15 0 - -
1 15 0 41∗ 22∗

3 45∗ 10∗ 41 22
4 45∗ 10∗ 42∗ 25∗

It is interesting to investigate whether the incentives always increase the retailer’s profits

under competition. In Chapter 3, we showed in a monopolistic setting that the retailer earns

higher profit with the incentive only if the market potential is sufficiently low (a ≤ 3.5m+c),

while the manufacturer is always better off with the incentives than with no promotion. In

Example 3, we analyze the impact of the market potential on the manufacturers’ and the

retailers’ profits under competition, and observe a similar result to that in the monopolistic

setting.

Example 3 Table 16 compares the manufacturers’ and retailers’ profits and sales in the

no-promotion equilibrium versus the retailer incentive equilibrium, where the market poten-

tial takes “low” and “high” values. The manufacturers obtain higher sales and profits in

both cases when they offer incentives, whereas the retailers can achieve higher profits with

incentive only when a is “low”. Note also that the manufacturers’ wholesale prices are

higher with retailer incentives.

Table 16: Comparison of equilibria when no promotion is offered versus when both manu-
facturers offer retailer incentives, NP: No promotion, RI: Retailer incentive (b1o = 3, b1c = 2,
b2o = 2.5, b2c = 1, c1 = 12, c2 = 10, m1 = 6, m2 = 8).

w1 w2 K1 K2 Q1 Q2 ΠD1 ΠD2 ΠM1 ΠM2

NP 33.0 28.9 - - 4.2 7.6 69.3 140.7 88.2 142.9
a = 60 RI 36 32.7 3.6 12.8 4.8 9.0 61.2 126.0 111.6 191.4

NP 15.5 13.2 - - 0.7 1.3 5.4 12.3 2.5 4.0
a = 25 RI 18.5 16.9 3.6 8.5 1.3 2.3 7.9 18.24 4.9 7.3

In a competitive setting, Bruce et al. [12] study a different kind of dealer promotion
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that is in the form of wholesale price-cuts based on the retailer’s sales. Similar to Example

3, they also find that while the manufacturers are better off with trade promotions the

retailers are worse off when both manufacturers offer them.

Next question we analyze is how the retailer incentive affects the manufacturers’ sales

and profits when the incentive is offered by only one of the manufacturers. To answer

this question, we consider a scenario in Example 4 that mimics some characteristics in the

U.S. auto market. The American auto manufacturers are known to have higher production

costs ([78]), and it has also been found that they have higher price sensitivity in demand

than the non-American auto manufacturers (Keskinocak et al. [46]). In our example, we

assume manufacturer 1 has higher production cost and total price sensitivity compared to

manufacturer 2, and we fix the manufacturers’ wholesale prices at arbitrary values assuming

manufacturer 1 charges a higher wholesale price than manufacturer 2 as a result of higher

production cost. We compare three cases: (i) neither of the manufacturers offers any

promotion (Table 17(a)), (ii) only manufacturer 1 offers an incentive (Table 17(b)), (iii)

only manufacturer 2 offers an incentive (Table 17(c)). In Tables 17(b) and 17(c), we fix one

of the manufacturer’s incentive to zero and find the optimal value of the incentive offered

by the other manufacturer using the iterative procedure in Table 14.

Example 4 In Table 17(a), manufacturer 2 is the market leader and obtains higher profits

than manufacturer 1. In Table 17(b), the market leader does not offer any incentive but his

competitor does, then the market leader loses sales and profits while the competitor generates

additional sales and profits. In Table 17(c), the market leader is the only manufacturer

offering an incentive. The market leader further increases his sales and profits, although

the competitor’s sales and profits are not affected. The effects of incentives on the retailers’

profits are similar to those on the manufacturers’ profits across Tables 17(a)-17(c).

In Table 17(c), the market leader offers an incentive and encourages her retailer to

sell additional units to the customers who cannot afford the retailer’s reservation price.

As a result, the market leader expands her market. Manufacturer 1 does not provide

any incentive for her retailer to sell at prices lower than his reservation price; thus her
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Table 17: Effect of retailer incentives (w1 = 30, w2 = 20, a = 75, b1o = 3, b1c = 2, b2o = 2,
b2c = 1, c1 = 20, c2 = 10, m1 = 10, m2 = 10).

(a) No promotion

Q1 Q2 ΠD1 ΠD2 ΠM1 ΠM2

7 19 192.5 575.5 70 190

(b) K2 = 0

K∗
1 Q1 Q2 ΠD1 ΠD2 ΠM1 ΠM2

10 9 18 212.5 544.5 80 180

(c) K1 = 0

K∗
2 Q1 Q2 ΠD1 ΠD2 ΠM1 ΠM2

25 7 24 192.5 625.5 70 215

sales are restricted by the reservation price requirement and insensitive to his competitor’s

retailer incentive. Further, since retailer 1 makes his sales entirely on the first segment

of his demand function, the incentive given to retailer 2 does not worsen his situation.

Preceding observations suggest that the manufacturers with characteristics similar to those

of the American auto manufacturers can offer incentives to their dealers to improve their

profits and to compensate for their high wholesale prices and price sensitivities when their

competitor does not offer incentives.

4.3.3 Customer Rebate

In this section, we analyze the case where both manufacturers offer customer rebates. Re-

bates increase the purchasing power of the customers, thus increase the market potential, or

maximum price dealers may receive. However, as found in Keskinocak et al. [46], rebates of-

fered by one manufacturer may reduce the competitor’s sales and profits in a linear fashion.

We consider both effects by adjusting the demand function as shown in Equation 10.

Pi(Qi, Qj , Ri, Rj) =





(a+Ri−δjRj)−(bio+bic)Qi if Qi ≤ Qj

(a+Ri−δjRj)−bioQi−bicQj otherwise.
i, j ∈ {1, 2}, i 6= j.

(10)

While one manufacturer’s own rebates increase, her competitor’s rebates decrease the

customers’ willingness to pay, where 0 < δi ≤ 1 can be interpreted as the degree of sub-

stitution between the two manufacturers’ products. The decisions of the manufacturers

are w and R. The retailers’ equilibrium in response to the manufacturers’ decisions is

similar to that in the no-promotion equilibrium (Table 11), with a − wi −mi modified as
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a + Ri − δjRj − wi −mi, i, j ∈ {1, 2}, i 6= j.

We analytically characterize the SPNE in Proposition 2.

Proposition 2 When both manufacturers offer customer rebates, there exists a continuum

of equilibria with wi−Ri = ci, wj = a−mi−ci
δj

+ a−δiRi−mj+cj

2 , Rj = a−mi−ci
δj

, i, j ∈ {1, 2}, i 6=
j. When wi = ci, Ri = 0, there exists an equilibrium solution where manufacturer i obtains

zero profit while manufacturer j obtains monopoly profit, where wj = a−mi−ci
δj

+ a−mj+cj

2 ,

Rj = a−mi−ci
δj

.

See Appendix C for the proof. In the monopolistic setting the customer rebates are not

effective in increasing the manufacturer’s profits and sales when demand is deterministic

(Chapter 3). Proposition 2 shows that customer rebates can be highly effective when there

is competition.

In Table 18, we give examples of equilibria where one of the manufacturers offers high

rebates and generates monopoly profit while driving the competitor out of business. Note

that, in equilibrium any combination of wi, Ri such that wi −Ri = ci brings zero profit to

manufacturer i driving him out of business; however, the competing manufacturer’s (market

leader) sales and profits are sensitive to the individual values of wi and Ri. For example,

any Ri > 0 can hurt the market leader’s sales and profits as we demonstrate in Figure 23,

where w1 −R1 = c1 results in ΠM1 = 0 on all curves, but ΠM2 decreases as R1 increases.

Table 18: Equilibrium decisions and profits with customer rebates (a = 60, b1o = 3,
b1c = 2, b2o = 2.5, b2c = 1, c1 = 12, c2 = 10, m1 = 6, m2 = 8, δ1 = 0.5, δ2 = 0.5).

wi Ri Qi ΠDi ΠMi

Supply chain i = 1 117 84 7 115.5 147
SPNE 1 Supply chain i = 2 10 0 0 0 0

Supply chain i = 1 12 0 0 0 0
SPNE 2 Supply chain i = 2 115 84 8.4 155.4 176.4

Although one of the manufacturers can theoretically do very well by offering high cus-

tomer rebates, in practice it is more likely that the rebate amounts are limited by an upper

bound, e.g., the production cost. While we can identify the equilibrium decisions explicitly
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Figure 23: Continuum of equilibria with customer rebates

when there are no restrictions on the rebate values, when there are restrictions, the SPNE

is not equal to those characterized in Proposition 2. In the latter case, we use an iterative

procedure similar to the one outlined in Table 14 to find a stable point where none of the

firms would want to unilaterally deviate from.

We continue with the example in Table 18, but we restrict the rebate values by the

production costs for both manufacturers and show an equilibrium outcome in Table 19.

In this case, although manufacturer 1 is not driven completely out of the business under

rebates, she obtains lower sales and profits than those in the equilibrium of the no-promotion

case. The profits and sales of the market leader (manufacturer 2) are higher with the

customer rebate than no promotion.

Table 19: Equilibrium with customer rebates where R1 ≤ c1 and R2 ≤ c2, NP: No
promotion, CR: Customer rebate (a = 60, b1o = 3, b1c = 2, b2o = 2.5, b2c = 1, c1 = 12,
c2 = 10, m1 = 6, m2 = 8, δ1 = 0.5, δ2 = 0.5).

w1 w2 R1 R2 Q1 Q2 ΠM1 ΠM2

NP 33.0 28.9 - - 4.2 7.6 88.2 142.9
CR 30.5 39.1 0 10 3.7 7.7 68.5 146.6
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4.3.4 Retailer Incentive and Customer Rebate (Hybrid)

In practice, we can observe situations where manufacturers offer different types of promo-

tions. For example, as we also mentioned in Chapter 3, the American auto manufacturers

are well-known for their frequent and deep customer rebates, whereas the non-American,

especially Japanese, auto manufacturers seldom offer those and instead may give incen-

tives to their dealers. Manufacturers may have different characteristics; the American auto

manufacturers have higher production costs partly due to labor unions, and they sell to

customers who are more price sensitive to their products than those of the Japanese auto

manufacturers (Keskinocak et al. [46]).

One question is which promotion should the manufacturers choose in order to receive

high profits and sales. To answer this question, we analyze a scenario where we characterize

manufacturer 1 with low production cost and total price sensitivity and manufacturer 2

with high production cost and total price sensitivity; note the correspondence between the

former (latter) and the Japanese (American) auto manufacturers. Either manufacturer may

choose to offer a retailer incentive or a customer rebate, where the rebates are restricted by

the production costs of the manufacturers.

Table 20: Comparison of equilibria in different cases; manufacturer 1 has lower production
cost and total price sensitivity than manufacturer 2 (a = 75, b1o = 2, b1c = 1, b2o = 3,
b2c = 2, c1 = 10, c2 = 20, m1 = 10, m2 = 10, δ1 = 0.5, δ2 = 0.5).

w1 w2 K1 K2 R1 R2 Q1 Q2 ΠM1 ΠM2

Case 0 No promotion 35.3 42.5 - - - - 12.6 4.5 318.8 101.3
Case 1 Retailer incentive 39.8 47.5 25 10 - - 14.9 5.5 417.5 141.2
Case 2 Customer rebate 45.5 40 - - 10 0 12.8 4 325 80
Case 3 Hybrid (K1, R2) 40.2 42.4 25 - - 0 15.1 4.5 432.2 101.3
Case 4 Hybrid (R1, K2) 45 45 - 10 10 - 12.5 5 312.3 115

Table 20 shows the equilibrium decisions and the resulting sales and profits of the supply

chain members for the four combinations of promotions we have analyzed. In Figure 24,

we show the manufacturers’ profits. Manufacturer 1 consistently makes higher profits than

manufacturer 2 in all cases and obtains the highest profit when she offers a retailer incentive

while her competitor offers a customer rebate (Case 3). Manufacturer 1’s high profitability
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and market share are due to the advantages of low production cost and total price sensitivity

in demand. Manufacturer 2 is also better off with a retailer incentive but obtains the highest

profit in Case 2 when both manufacturers offer retailer incentives. Note that manufacturer 2

offers a retailer incentive in Cases 2 and 4, but obtains lower profit in the latter where

his competitor offers a customer rebate. This suggests that a customer rebate by one

manufacturer can have a significant impact on the competitor’s profits while a retailer

incentive has more impact within a supply chain than on the competitor. In other words,

the manufacturers are more vulnerable to their competitor’s customer rebates than their

retailer incentives.

Equilibrium profits in different cases
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Figure 24: Manufacturers’ profits under various equilibria where manufacturer 1 has lower
production cost and total price sensitivity than manufacturer 2

4.4 Conclusions

In this chapter, we analyze sales promotions in a competitive environment by considering

a duopoly setting. Our analysis extends the research in Chapter 3 where we studied sales

promotions in a monopolistic setting. We are motivated by the practices in the U.S. auto

industry where sales promotions play an important role in marketing and revenue manage-

ment strategies of auto manufacturers. Customer rebates and retailer incentives are two
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types of promotions commonly used by auto manufacturers to increase their sales and prof-

its when market demand is not strong. Customer rebates are per-unit payments from the

manufacturer to the end customers, which are used as instant discounts for all purchases.

On the other hand, retailer incentives are offered to dealers who have flexibility on whether

to transfer these payments to the purchase prices of the customers. One important char-

acteristic of our work is that we analyze a price discriminating retailer, which captures the

nature of sales based on negotiations between the dealers and the car buyers.

We analyze a competitive setting with two manufacturers who sell their products through

their exclusive but independent retailers. We model a single selling period where the retail-

ers make the order/sales quantity decisions upon observing the manufacturers’ wholesale

price and promotion decisions. We analyze several models with different promotion de-

cisions by the manufacturers. To understand competition under price discrimination, we

analyze a benchmark model with no promotion, which we also use to quantify the effect of

the promotions on the manufacturers’ and the retailers’ profits and sales. We use backward

induction and explicitly derive the expressions for the SPNE decisions. We find that under

certain market conditions two equilibria are possible, which determine the manufacturer (or

the retailer) which is the market leader in sales. We find that low production cost and price

sensitivity provide advantage to a manufacturer to achieve higher market share and profits.

This is also observed in practice where the American auto manufacturers with higher costs

and price sensitivities than the Japanese auto manufacturers obtain lower sales in compact

and midsize vehicle segments. We also find that manufacturers obtain lower profits when

there is competition than when they are monopolies. In another model, we analyze the case

where both manufacturers offer incentives to their retailers. We design an algorithm that

numerically converges to the equilibrium decisions in our computational tests, although no

convergence guarantee is provided. We observe that retailer incentives increase the manu-

facturers’ sales and profits, but they may reduce the retailers’ profits in some cases. We also

analyze the case where both manufacturers offer customer rebates. We find that customer

rebates can be effectively used by a manufacturer to drive the competitor’s profits to zero

while achieving high sales and profits. This implies that competition may be one reason
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why customer rebates are frequently offered in the auto industry. In the last model that

we study, we look at the case where one of the manufacturers offers a customer rebate and

the other a retailer incentive. We observe in numerical examples that the impact of the

customer rebates is more pronounced on the competitor’s profits and sales than the retailer

incentives. Our results suggest that the manufacturers with high cost and price sensitivities,

e.g., the American auto manufacturers, can improve their profits by offering incentives to

their retailers.

Our analysis has some limitations due to deterministic demand model and single-period

selling season. However, these simplifications enable us to focus on competition, which is an

important factor for the manufacturers’ decisions. We can extend our work in a multiple-

period model to investigate the effects of promotions on retailers’ sales over time periods

with different promotion offers. One extension area is to analyze other kinds of retailer

incentive promotions. For example, it is interesting to analyze cases where the competing

retailers receive incentives in different forms, such as per-unit versus lump-sum incentive.

90



CHAPTER V

CONCLUSIONS

In this thesis, we studied models to analyze and control decentralized systems focusing on

issues in demand and revenue management. Decentralized systems operate according to the

actions and interactions of the system members who are equipped with localized decision-

making responsibilities, whereas centralized systems operate in an integrated way with a

single decision maker making system-wide decisions. There are several reasons for companies

or systems to decentralize their operations. For example, implementation of centralization

may be uneconomical for large systems since it may require high investment to store and

process data. In organizations, decentralization facilitates better accountability for actions

by independent departments since the responsibilities for certain decisions are clearly iden-

tified. The companies can use this accountability to motivate the members by rewarding

good performance, which eventually adds to the overall system efficiency. Distributing the

decision-making power to individual members may lead to fast decision-making in real time

which might be desirable for highly dynamic environments. To realize such advantages,

it is essential to address problems and issues arising in decentralized operations. One im-

portant problem observed in some cases is the misalignment of members’ objectives in the

system, which can deteriorate the system performance unless effective mechanisms are de-

veloped to account for possible conflicts. Our focus is on developing models to optimize

such mechanisms to improve the performance of decentralized systems.

In the first part of the thesis (Chapter 2), we considered a decentralized booking system

in the sea cargo industry. The system is composed of a central headquarters and sales

agents; the former assigns capacity limits and incentives to the sales agents, and the latter

independently handles the accept/demand decisions for the incoming demand requests and

chooses the route to transport the accepted cargo. Each sales agent contributes to the

revenue of the overall system and receives revenue based on the sales incentive assigned by
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the central headquarters. We focused on the perspective of the central headquarters, who is

concerned with utilizing the available resources most efficiently while maximizing the total

revenue generated in the overall system. We modelled the central headquarters’ capacity

allocation problem and analyzed several sales incentives to improve the decentralized system

performance. We developed heuristic methods to solve the firm’s capacity allocation prob-

lem, which we proved to be NP-hard. When designing heuristic methods, we characterized

agent behaviors depending on the sales incentives determined by the central headquarters.

We conducted extensive computational experiments to test our heuristics for systems with

various sizes and characteristics, and we observed that the heuristics performed reasonably

well and fast. We proved a worst-case result for an extreme instance where the number of

locations goes to infinity, which shows that the decentralized system performance can be

arbitrarily worse than that of the centralized system. However, in our computational ex-

periments with practical instances, we observed that the decentralized system performance

can be quite close to that of the centralized system, and a revenue per leg sales incentive

improves the decentralized system performance.

Our research in Chapter 2 is limited by its deterministic nature and can be extended by

introducing stochasticity to the booking process. In practice, uncertainty is observed in the

demand requests as well as in other operational issues relevant to the sea cargo practices,

for example, demand requests with unknown destinations. In stochastic settings, models

would be developed to facilitate dynamic space exchanges between the sales agents to make

the capacity available to the agents with high demand and revenue expectations. It may be

possible to incorporate strategic gaming by agents, or information mechanisms that may

further improve the decentralized system performance. Future research also includes the

analysis of other decentralized systems that could benefit from the design of optimization

models to explicitly capture agent behavior and mechanism design.

In the second part of the thesis (Chapters 3 and 4), we analyzed sales promotions by

manufacturers in decentralized supply chains. In such environments, due to decentraliza-

tion and non-direct sales of products through retailers, the manufacturers have the option

of whether to direct their promotions to the end customers or to the retailers. Promotions
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in the former case are generally defined as customer rebates and in the latter case as retailer

incentives. The auto industry in the U.S. is one example where both types of promotions

are offered by the manufacturers. Specific characteristics of the auto market such as an

oversupply of vehicles, largely fixed production costs of manufacturers, and intense compe-

tition, contribute to the extensive use of promotions as an important marketing strategy

by the companies. To obtain high market shares and profits, the companies need to know

which type of promotions benefit them most under which type of market conditions, as

well as how their profits and sales are affected by the competitors’ promotions. We stud-

ied these problems in two separate works. In the first part, we analyzed a setting with

a single manufacturer and single retailer, and we focused on the effects of promotions on

the manufacturers’ sales and profits. We analyzed several cases where the manufacturer’s

promotional schemes varied from no promotion to simultaneous use of customer rebate and

retailer incentive. We analyzed a base model with deterministic demand and found that the

manufacturer is always better off with a retailer incentive than a customer rebate. In the

more general model with uncertain demand, we found that either of the promotions can be

more profitable and generate higher sales for the manufacturer than the other depending on

the degree of uncertainty. One observation is that the customer rebate performs better than

the retailer incentive when uncertainty in a market potential parameter of demand function

is high. In the second part, we extended the analysis of promotions by analyzing a setting

with two competing manufacturers and two exclusive retailers that are also competitors in

the end market. Although our models realistically capture the interactions in practice by

incorporating competition at two stages of the supply chains, this complicates the analyt-

ics considerably. Therefore, we resort to computational schemes to find the equilibria and

gain insights through numerical examples. One of our analytical finding is that unlike the

monopolistic setting, the customer rebates can be highly effective even leading monopoly

profits for one manufacturer and zero profit for the competitor.

There are several directions that our research in sales promotions can be extended. First,

the models in Chapters 3 and 4 are single-period models, which are useful to obtain insights

while focusing on price discriminating retailers and competition. One extension would be
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to analyze the manufacturers’ promotional decisions in a multi-period model, where the

secondary market of vehicles is incorporated into the analysis along with price discrimina-

tion. In such a model, it would be interesting to investigate the effects of promotions on

the secondary market and the profits of the manufacturers from new vehicles. Within a

multi-period framework, another extension can be to analyze the customers’ strategic be-

haviors reacting to the manufacturers’ promotions over multiple periods. It would be useful

to analyze retailer incentives with other forms, such as incentives dependent on sales levels.

Future research also includes analysis of promotions with a demand model that is sensitive

to the retailers’ effort levels.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 SCP Formulation

We use the decision variable yk to denote the number of containers accepted on O-D pair

k ∈ OD. SCP is formulated as follows:

(SCP) max
∑

k∈OD

pkyk

subject to
∑

k∈Sl

yk ≤ cap,∀l ∈ L

yk ≤ dk, integer, ∀k ∈ OD

A.2 MR Heuristic

We formally describe the algorithm in Table 21. In implementation, we store the optimal AP

solutions of all agents, based on their most recent allocated capacities in a solutions array.

Table 21: Marginal revenue (MR) heuristic

1. Initialize the allocation vectors at zero (ar
p = 0, ∀p ∈ P , ∀r ∈ Rp).

2. For all p ∈ P , r ∈ Rp do
solve APp(~ap + stepsize · er

p). Record the solutions in solutions array1.
3. Do begin

(pmax, rmax) = argmaxp∈P,r∈Rp{Z∗p(~ap + stepsize · er
p)− Z∗p(~ap) :∑

q∈P\{p}

∑
{k∈ODq∩Sr

l }
yr′∗

k (~aq) +
∑

{k∈ODp∩Sr
l }
yr′∗

k (~ap + stepsize · er
p) ≤ capr′ , ∀r′ ∈ R, l ∈ Lr′}

change = Z∗pmax
(~apmax + stepsize · ermax

pmax
)− Z∗pmax

(~apmax)
if change > 0 then begin

~apmax = ~apmax + stepsize · er
pmax

for all r ∈ Rpmax do begin
if (ar

pmax
+ stepsize ≤ capr · nvrmax

pmax
) then

solve APpmax(~apmax + stepsize · ermax
pmax

). Update solutions array for pmax.
end for

end if
end while (change > 0)
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A.3 POD Heuristic

In order to formally describe the algorithm in Table 22, we introduce the following notation:

rl denotes the booked capacity on leg l, dk denotes the remaining demand for O-D pair k,

wr
k denotes the available space on route r that may be devoted to booking of O-D pair k.

As defined in Table 1, OD denotes the ordered set of all O-D pairs with non-increasing

prices, where the first O-D pair has the highest price. For easy representation, we consider

the routes with no particular order in the description of the algorithm. See discussion on

the POD heuristic in Section 2.3.2.2 for the choice of the order of routes.

Table 22: Priority OD (POD) based allocation heuristic

1. Initialization: ar
p = 0, ∀p ∈ P , ∀r ∈ Rp; rl = 0, ∀l ∈ L; dk = dk, ∀k ∈ OD;

wr
k = capr, ∀r ∈ R, ∀k ∈ RRk

2. Starting with the first O-D pair in OD, for all k ∈ OD do begin
for all r ∈ RRk do begin

if (dk > 0) then begin
wr

k = min
l∈LLr

k

(capr − rl)

solve APopk
(~aopk

+ min(wr
k, dk) · er

opk
)

if (
∑

{m∈ODopk
∩Sr

l }
yr∗

m (~aopk
+ min(wr

k, dk) · er
opk

)+
∑

q∈P\{opk}

∑
{m∈ODq∩Sr

l }
yr∗

m (~aq) ≤ capr, ∀r ∈ R, l ∈ Lr) then begin

~aopk
= ~aopk

+ min(wr
k, dk) · er

opk

dk = dk −min(wr
k, dk)

rl = rl +
∑

{m∈ODopk
∩Sr

l }
yr∗

m (~aopk
),∀r ∈ R, l ∈ Lr

end if
end if

end for
end for.

A.4 Proofs of Theorems and Remarks

For each O-D pair k, let ij be an alternative index where i = opk and j = dpk. Parallel to

Table 1, ODi is the ordered set of O-D pairs of the agent at port i, representing the priority

list of the agent under the total revenue incentive. Let OD
′
i represent the priority list under

the rev/leg incentive. We let F ∗
SCAP(n) and F

∗
SCAP(n) denote the optimal revenue of the

SCAP solution with the total revenue and rev/leg incentive, respectively. We denote the
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optimal revenue of the SCP solution by F ∗
SCP(n).

Proof. (Theorem 1)

In the example with travel sequence {1, 2, 3, .., n, 1}, let cap = 1 and dij = 1 ∀i, j : 1 ≤
i < j ≤ n and ∀i 6= 1, j = 1. Assume no demand exists for the other O-D pairs. We let

0 < γ < p
n , 0 < ε < p

n , and we define the parameters as follows:

p1n = p; pn1 = p− ε;

pi(i+1) = p− ε, ∀i = 1, .., (n− 1);

pij = p− ε + γ(|LLij | − 1), ∀(i, j) s.t: |LLij | > 1, (i, j) 6= {(1, n), (n, 1)}.
In this example, we show that limn→∞

F ∗SCAP(n)
F ∗SCP(n) = 2p−ε

n(p−ε) = 0. First, note that: ODi =

{ODi1, ODin, ODi(n−1), .., ODi(i+1)}, ∀i : 1 < i ≤ (n − 1). Since capacity is 1, each agent

may at most receive an allocation of 1, which he will use to accept the highest priority

O-D pair of the agent, i.e., OD1n for agent 1, ODn1 for agent n, and ODi1 for the other

agents. However, since the highest priority O-D pairs of all agents except 1 and n share

at least one leg, these agents cannot be assigned a positive allocation at the same time in

a feasible solution. Therefore, the set of feasible solutions of SCAP with the total revenue

incentive is:

1. a1 = 1, an = 1, ai = 0, ∀i : 1 < i ≤ (n − 1). In this case, FSCAP(n) = 2p − ε with

accepted demand y1n = yn1 = 1 and yij = 0 for all other O-D pairs.

2. For each agent i : 2 ≤ i ≤ (n− 1), a feasible solution of the form ai = 1 with solution

yi1 = 1 and FSCAP(n) = pi1. The solution y21 = 1 and yij = 0, for all other O-D pairs

with objective value FSCAP(n) = p− ε + (n− 2)γ has the highest revenue in this set

of solutions.

Since γ < p
n < p

(n−2) ⇒ 2p − ε > p − ε + (n − 2)γ, the optimal solution value is

F ∗
SCAP(n) = 2p− ε corresponding to the solution in 1 above.

Next we show that F ∗
SCP(n) = n(p − ε), which corresponds to the optimal solution

y∗i(i+1) = 1,∀i : 1 ≤ i < n and y∗n1 = 1. For this instance, any accepted demand from

SCAP that is an O-D pair with more than one leg may be replaced by the 1-leg O-D

pairs occupying the same set of legs but with higher total revenue. This is possible in the

97



centralized system because there is no need to incorporate agent behavior. In a solution,

if ODij demand is accepted, we can improve this solution by rejecting ODij demand and

instead accepting the |LLij | 1-leg OD demands since p− ε+(|LLij |−1)γ < |LLij |(p− ε) for

any (i, j) : |LLij | > 1, (i, j) 6= (1, n). This is also true for (1, n) since (2p−ε) < n(p−ε). Since

any solution that accepts an ODij with |LLij | > 1 may be improved by such replacements,

F ∗
SCP(n) = n(p− ε). Therefore, we have that F ∗SCAP(n)

F ∗SCP(n) = 2p−ε
n(p−ε) , and the limit of this worst

case ratio approaches 0 as the number of ports grows.

Proof. (Remark 1)

In the example used for the proof of Theorem 1, OD
′
i = {ODi(i+1), ODi(i+2), .., ODin},

since pij

|LLij | , ∀i : 1 < i ≤ (n−1) is decreasing. Since shorter O-D pairs have higher priorities,

the optimal centralized solution that accepts all of the 1-leg O-D pairs is feasible for the

optimal decentralized problem and is the best that is possible for the decentralized problem.

So, we can conclude that under the rev/leg incentive, in this problem F
∗
SCAP(n) = F ∗

SCP(n).

Proof. (Theorem 2)

We use the same network as in the proof of Theorem 1. We let ε ≤ p
n , and we modify

the price parameters as follows:

p1i = (i− 1)p− (i− 2)ε, ∀i = 2, .., n;

pn1 = p;

pij = (j − i)( p
n)− (|LLij | − 1)ε, ∀(ij) : |LLij | ≥ 1 and j > i 6= 1;

pi1 = (n− (i− 1))( p
n)− (n− i)ε, ∀i = 2, .., (n− 1).

In this example,, we show that limn→∞
F
∗
SCAP(n)

F ∗SCP(n) = ( 3n−2
n

)p

np−(n−2)ε = 0. Note that the priority

lists of the agents for the rev/leg incentive are the same as those in the proof of Theorem 1

since pij

|LLij | is decreasing. If we give an allocation of 1 to each agent, each agent will satisfy

the demand for the O-D pair with the shortest travel.

With a similar argument as used for Remark 1, we may conclude that the optimal

SCAP solution is y∗i(i+1) = 1, ∀i : 0 ≤ i ≤ (n − 1) and y∗n1 = 1, and has objective value

F
∗
SCAP(n) = p12 +

n−1∑
i=2

pi(i+1) + pn1 = (3n−2
n )p.

We next show that SCP has the optimal solution y∗1n = y∗n1 = 1, y∗ij = 0 for all other

98



O-D pairs, with objective value F ∗
SCP(n) = p1n + pn1 = np − (n − 2)ε. This result follows

from Remarks 3 and 4.

Remark 3 In the optimal solution of SCP for this example, yn1 = 1 ⇒ y1n = 1.

Proof. Assume first that ODn1 is accepted, then we have to find the best way of using

capacity from 1 to n. In total, there are 2n−2 combinations, but due to the structure of

the price parameters we can consider a limited set. We first show that the best use of ship

capacity between all ports (i, j):1 < i < (n− 1), i < j ≤ n is to accept all of the 1-leg O-D

pairs between i and j. We prove this by induction. There is only one choice of demand or

path from port (n − 1) to n. Since there is only one unit of capacity, the choice of which

demand to accept is equivalent to finding the longest path where distance is determined by

the price of the O-D pairs. First assume that the best capacity use from (n − i) ≥ 2 to

n is to accept the i 1-leg O-D pairs. i.e., {OD(n−i)(n−i+1), OD(n−i+1)(n−i+2), .., OD(n−1),n}.
We need to show that the best path from n − i − 1 to n is to use the (i + 1) 1-leg O-D

pairs, i.e., {OD(n−i−1)(n−i), OD(n−i)(n−i+1), .., OD(n−1)n}. If we choose to go from n− i− 1

to n − i + j,∀j : 0 ≤ j ≤ i, then by the induction hypothesis, the best path to n from

n− i + j is to choose the (i− j) 1-leg O-D pairs between those two ports. The path from

n− i− 1 directly to n− i + j and from n− i + j in the best way to n has a total revenue of

(j +1) p
n − jε +(i− j)) p

n = (i +1) p
n − jε, which is maximized at j = 0. This means that the

best choice from n− i− 1 to n is to use all of the 1-leg O-D pairs between the two ports.

Now we find the best path from port 1 to port n. We consider a path that visits j. We

have shown that the best choice from j to n is to use all of the 1-leg O-D pairs between

the ports j and n. Then, the value of this path is (j − 1)p − (j − 2)ε + (n− j) p
n , which is

maximized at j = n. Therefore, yn1 = 1 ⇒ y1n = 1.

Remark 4 Any solution of SCP with yn1 = 0 can be improved by modifying the solution

so that yn1 = 1.

Proof. If yn1 = 0, then exactly one of ODj1, j = 2, .., n − 1 must have been accepted.

Otherwise we can accept ODn1 without violating feasibility. Consider the path from j
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directly to 1, which has a value of (n − j + 1) p
n − (n − j)ε. We can modify this path such

that it is composed of two partial paths: the first from j directly to n, and the second from n

to 1. The modified path has a value of (n−j) p
n+p, which is greater than (n−j+1) p

n−(n−j)ε;

therefore the SCP solution improves.

Based on Remarks 3 and 4, we have that limn→∞
F
∗
SCAP(n)

F ∗SCP(n) = ( 3n−2
n

)p

np−(n−2)ε = 0.

Proof. (Remark 2) The result can be proved with a similar argument to that used

for Remark 1.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proofs of key results

Proof of Theorem 3.

No Promotion : The results follow from the backward induction steps presented below.

Step 1. The retailer’s order quantity decision: Given w, find Q that maximizes

the retailer’s profit by solving problem (P1) in Section 3.3.1. ΠR
o is concave in Q (∂2ΠR

o (Q)
∂Q2 =

−b < 0). From first order conditions (FOC) we get Q = a−w
b . Considering the upper bound

on Q, we find the retailer’s best response to w as Qo = max
{
0,min

{
a−w

b , a−w−m
b

}}
=

(
a−w−m

b

)+.

Step 2. The manufacturer’s wholesale price decision: Given the best response of

the retailer to w, find w that maximizes the manufacturer’s profit by solving the following

problem.

ΠM
o = max

w≥c
(w − c)

(
a− w −m

b

)+

When a−w−m
b ≥ 0, the objective function is concave in w (∂2ΠM

o
∂w2 = −2

b < 0). It follows

from FOC and the lower bound on w that w∗ = max
{
c, min

{
a+c−m

2 , a−m
}}

= a+c−m
2 .

Therefore, wo = a+c−m
2 ; Qo = a−m−c

2b ; ΠM
o = 1

b

(
a−m−c

2

)2; ΠD
o = (a−m−c)(a+3m−c)

8b ; ΠSC
o =

(a−m−c)(3a+m−3c)
8b .

Retailer Incentive: The results follow from the backward induction steps presented

below.

Step 1. The retailer’s order quantity decision: Given w and K, find Q that

maximizes the retailer’s profit by solving the problem (P2) in Section 3.3.1. ΠR
I is con-

cave in Q (∂2ΠR

∂Q2 = −b). From FOC we get Q = a−w
b , and by considering the bound-

ary condition on Q enforced with the constraint, we find the retailer’s best response as

QI =
(
min

{
a−w

b , a−w−m+
√

2Kb
b

})+
.

Step 2. The manufacturer’s wholesale price and retailer incentive decision:
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Given the retailer’s best response, find w and K that maximizes the manufacturer’s profit:

ΠM
I = max

K≥0,w≥c
(w − c)

(
min

{
a− w

b
,
a− w −m +

√
2Kb

b

})+

−K

In order to solve the manufacturer’s problem, we proceed in two steps; first, we characterize

the optimal value for the retailer incentive, K∗, for a given w, and next, we find the optimal

wholesale price, by embedding K∗ in the manufacturer’s objective function and maximizing

it over w. In the first step, we obtain the expression in (11) for K∗.

K∗ =





min{ (w−c)2

2b , m2

2b } if K ≤ m2

2b and
√

2Kb ≥ w − (a−m) where w ≤ a

0 if K ≤ m2

2b and
√

2Kb ≤ w − (a−m) where w ≥ a−m

m2

2b if K ≥ m2

2b where w ≤ a.

(11)

Note that K∗ is identified under different cases which lead to different Q decisions.

Characterizing K∗ for a given w, in the second step, we find the optimal wholesale price,

wI , by embedding K∗ in the manufacturer’s objective function and maximizing it over w in

the subregions defined by the branching in Figure 25. (FS stands for “feasible solution”.)

FS.1 FS.2 FS.3 FS.4

FS.5

Figure 25: Decomposition of the feasible region for determining w in the deterministic
demand model with retailer incentive

To solve the manufacturer’s problem, we identify four cases and summarize the retailer’s

response in each case as follows:

Case 1) K ≤ m2

2b ;
√

2Kb ≥ w − (a−m); ⇒ Q∗ = a−w−m+
√

2Kb
b

Case 2) K ≥ m2

2b ; w ≤ a ⇒ Q∗ = a−w
b

Case 3) K ≥ m2

2b ; w ≥ a ⇒ Q∗ = 0
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Case 4) K ≤ m2

2b ;
√

2Kb ≤ w − (a−m); ⇒ Q∗ = 0

The manufacturer has the feasible solution of setting w = c and K = 0, and receiving

zero profit. Therefore, we can omit Cases 3 and 4, since they can not do any better than

resulting in a profit of zero for the manufacturer.

Case 1) K ≤ m2

2b ;
√

2Kb ≥ w − (a−m); ⇒ Q∗ = a−w−m+
√

2Kb
b . First we solve for K:

(P3) max
K

(w − c)(
a− w −m +

√
2Kb

b
)−K

s.t. 0 ≤ K ≤ m2

2b√
2Kb ≥ w − (a−m)

The objective function is concave in K, (∂2ΠM

∂K2 = −(w−c)
√

2

4
√

b
√

K3
≤ 0). From FOC, we obtain

the point K = (w−c)2

2b . We have two cases to consider: w ≥ a − m and w ≤ a − m.

In the first case, K∗ = max
{

(w−(a−m))2

2b ,min
{

(w−c)2

2b , m2

2b

}}
. Note that, the feasibility

condition for K ≤ m2

2b and
√

2Kb ≥ w − (a − m) to hold is w ≤ a. This condition and

our assumption a ≥ c + m imply that (w−(a−m))2

2b ≤ (w−c)2

2b and (w−(a−m))2

2b ≤ m2

2b . Hence,

K∗ = min
{

(w−c)2

2b , m2

2b

}
. When w ≤ a−m, the second constraint becomes inactive and we

have the same expression for K∗, i.e., K∗ = min
{

(w−c)2

2b , m2

2b

}
. Alternatively, by using the

assumption a ≥ c + m, we can show that K = (w−c)2

2b satisfies the second constraint, and

thus we can conclude that K∗ = min{ (w−c)2

2b , m2

2b }.
Next, we solve for optimal w. We need to consider the following cases: w ≤ c + m and

w ≥ c + m, where K∗ = (w−c)2

2b and K∗ = m2

2b respectively.

Case 1.a) w ≥ c + m

max
w

(w − c)(
a− w

b
)− m2

2b

s.t. m + c ≤ w ≤ a

w∗ = max{m + c,min{a, a+c
2 }} = max{m + c, a+c

2 }
Case 1.a.1) (FS.1) a ≥ 2m+ c ⇒ w∗ = max{m+ c, a+c

2 } = a+c
2 ; Q∗ = a−c

2b ; K∗ = m2

2b ;

ΠM = (a−c)2−2m2

4b .

Case 1.a.2) (FS.2) a ≤ 2m + c ⇒ w∗ = max{m + c, a+c
2 } = m + c; Q∗ = a−m−c

b ;

K∗ = m2

2b ; ΠM = m(2a−3m−2c)
2b .
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Case 1.b) w ≤ c + m

max
w

(w − c)(
a−m− c

b
)− (w − c)2

2b

s.t. c ≤ w ≤ m + c

w∗ = max{c,min{m + c, a−m}} = min{m + c, a−m}
Case 1.b.1) (FS.3) a ≥ 2m + c ⇒ w∗ = min{m + c, a −m} = m + c; Q∗ = a−m−c

b ;

K∗ = m2

2b ; ΠM = m(2a−3m−2c)
2b .

Case 1.b.2) (FS.4) a ≤ 2m + c ⇒ w∗ = min{m + c, a −m} = a −m; Q∗ = a−m−c
b ;

K∗ = (a−m−c)2

2b ; ΠM = (a−m−c)2

2b .

Case 2) K ≥ m2

2b ; w ≤ a ⇒ Q∗ = a−w
b . First, we solve for K:

max
K

(w − c)(
a− w

b
)−K

s.t. K ≥ m2

2b

K∗ = m2

2b . Next, we solve for w:

max
w

(w − c)(
a− w

b
)− m2

2b

s.t. c ≤ w ≤ a

w∗ = max{c,min{a, a+c
2 }} = a+c

2 ; Q∗ = a−c
2b ; K∗ = m2

2b ; ΠM = (a−c)2−2m2

4b . We denote

this feasible solution by FS.5.

We present all feasible solutions in Table 23. The SPNE in Table 4 (Section 3.3.1) is

the solution that is feasible in a region and has the highest profit. (In the last row of Table

23, the SPNE that dominates the feasible solution in the respective column is shown under

the title DS, standing for “dominating solution”.)

Customer Rebate: The retailer’s best response is Q∗
R =

(
a+R−w−m

b

)+, and the man-

ufacturer’s problem is as follows:

max
w≥c+R,R≥0

(w − c−R)
(

a + R− w −m

b

)+

We solve the manufacturer’s problem in a two-step procedure, where in the first step

we characterize the optimal rebate value given a wholesale price, and in the second step we

substitute the optimal rebate value back into the manufacturer’s profit function to solve for
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Table 23: All feasible solutions for the deterministic demand model with retailer incentive

FS.1 FS.5 FS.2 FS.3 FS.4
F.R: a ≥ 2m + c a ≥ m + c a ≤ 2m + c a ≥ 2m + c a ≤ 2m + c

w∗ a+c
2 m + c a−m

Q∗ a−c
2b

a−m−c
b

a−m−c
b

K∗ m2

2b
m2

2b
(a−m−c)2

2b

ΠM (a−c)2−2m2

4b
m(2a−2c−3m)

2b
(a−m−c)2

2b

DS: - FS.4 FS.1 -

the optimal wholesale price. We find R = w− a+c−m
2 . After back substitution, the objective

function becomes independent of w, and therefore any w,R satisfying wR − R = a+c−m
2 is

optimal.

Proof of Observation 1 Observation 1(i) is trivial since Qo = QR and ΠM
o = ΠM

R .

Observation 1(ii) follows from Table 24.

Table 24: Comparison of retailer incentive and customer rebate for the deterministic
demand model

a ≤ 2m + c a ≥ 2m + c

QI −QR
(a−m−c)

2b ≥ 0 m
2b ≥ 0

ΠM
I −ΠM

R
(a−m−c)2

4b ≥ 0 m(2a−2c−3m)
4b ≥ 0

ΠD
I −ΠD

R
(a−m−c)(5m+c−a)

8b ≥ 0 m(7m+2c−2a)
8b ≥ 0 for a ≤ 7

2m + c

ΠSC
I −ΠSC

R
(a−m−c)(a+3m−c)

8b ≥ 0 m(2a+m−2c)
8b ≥ 0

Proof of Theorem 4(i).

No Promotion

Retailer’s best response in “high” and “low” state is: Qj∗ =
(

aj−w−m
b

)+
; j = l, h.

Case 1) w ≤ al −m ⇒ Qh = ah−w−m
b ; Ql = al−w−m

b

Case 2) al −m ≤ w ≤ ah −m ⇒ Qh = ah−w−m
b ; Ql = 0

Case 3) w ≥ ah −m ⇒ Qh = 0; Ql = 0

Note that we can omit Case 3 since the manufacturer has the feasible solution of setting

w = c and receive zero profit. We analyze Cases 1 and 2 and find the manufacturer’s

optimal wholesale price in each case.

105



Case 1) w ≤ al −m ⇒ Qh = ah−w−m
b ; Ql = al−w−m

b

max β(w − c)Qh + (1− β)(w − c)Qm

s.t w ≤ al −m

w∗ = min{al −m, βah+(1−β)al−m+c
2 }

Case 1.a) (NP.1) β ≤ al−m−c
ah−al ⇒ w∗ = βah+(1−β)al−m+c

2 ; Qh = (2−β)ah−(1−β)al−m−c
2b ;

Ql = (1+β)al−βah−m−c
2b ; ΠM = (βah+(1−β)al−m−c)2

4b

Case 1.b) (NP.2) β ≥ al−m−c
ah−al ⇒ w∗ = al − m; Qh = ah−al

b ; Ql = ah−al

b ; ΠM =

β(al−m−c)(ah−al)
b

Case 2) al −m ≤ w ≤ ah −m ⇒ Qh = ah−w−m
b ; Ql = 0

max β(w − c)Qh

s.t al −m ≤ w ≤ ah −m

w∗ = max{al −m,min{ah −m, ah−m+c
2 }}

Case 2.a) (NP.3) ah − al ≤ al − m − c ⇒ w∗ = al − m; Qh = ah−al

b ; ΠM =

β(al−m−c)(ah−al)
b

Case 2.b) (NP.4) ah − al ≥ al − m − c ⇒ w∗ = ah−m+c
2 ; Qh = ah−m−c

2b ; ΠM =

β(ah−m−c)2

4b

We summarize the feasible solutions obtained in different regions in Table 25.

Table 25: All feasible solutions for the uncertain market potential model with no promotion

NP.1 NP.2 NP.3 NP.4

w∗ a−m+c
2 al −m ah−m+c

2

Ql∗ (1+β)al−βah−m−c
2b 0 0

Qh∗ (2−β)ah−(1−β)al−m−c
2b

ah−al

b
ah−m−c

2b

ΠM (a−m−c)2

4b
β(al−m−c)(ah−al)

b
β(ah−m−c)2

4b

F.R: β ≤ (al−m−c)
(ah−al)

β ≥ (al−m−c)
(ah−al)

2al ≥ ah + m + c 2al ≤ ah + m + c

Next, we show that the SPNE in Table 5 (Section 3.3.2) is the dominating solution in

the region it is feasible.
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• When al − m − c ≥ ah − al, it follows that β ≤ al−m−c
ah−al , and feasible solutions are

NP.3 and NP.1. The manufacturer chooses NP.1 since ΠM (NP.1) − ΠM (NP.3) =

(βah−(1+β)al+m+c)2

4b ≥ 0.

• When al − m − c ≤ ah − al, either β ≤ al−m−c
ah−al or β ≥ al−m−c

ah−al may hold. NP.4

is feasible in this region independent of the value of β. In addition to this, NP.1 is

feasible when β ≤ al−m−c
ah−al and NP.2 is feasible when β ≥ al−m−c

ah−al . Note the following:

ΠM (NP.4)−ΠM (NP.2) = β(ah−2al+m+c)2

4b ≥ 0.

ΠM (NP.1)−ΠM (NP.4) = (1−β)(β(ah−al)2−(al−m−c)2)
4b

In the second equality, when β ≤ (al−m−c)2

(ah−al)2
ΠM (NP.1) ≥ ΠM (NP.4); otherwise

ΠM (NP.4) ≥ ΠM (NP.1).

Proof of Proposition 1

Note that, a necessary condition for β1 to exist is (ah−al−2m)2+4m(3m+2c−2al) ≥ 0.

∂β∗
∂ah = 2(ah−al)(2m2−(al−c)2)

(ah−al)4
≤ 0, since al − c ≥ 2m ⇒ (al − c)2 ≥ 4m2 ≥ 2m2.

∂β∗
∂al = 2((al−c)(ah−c)−2m2)

(ah−al)3
≥ 0, since ah − c ≥ al − c ≥ 2m ⇒ (ah − c)(al − c) ≥ 2m2.

∂β1

∂ah = (ah−al−2m−A)(al−ah−A)
2A(ah−al)2

≤ 0, where A =
√

(ah − al − 2m)2 + 4m(3m + 2c− 2al).

The inequality follows since al ≥ 2m + c ⇒ 3m + 2c− 2al ≤ 0, (ah− al − 2m−A) ≥ 0, and

al − ah −A ≤ 0.

∂β1

∂al = m(3ah+al−8m−4c−A)
A(ah−al)2

≥ m(3ah+al−8m−4c−ah+al+2m)
A(ah−al)2

= m(2ah+2al−6m−4c)
A(ah−al)2

≥ 0, where

A =
√

(ah − al − 2m)2 + 4m(3m + 2c− 2al). The inequalities follow since al ≥ 2m + c ⇒
2al ≥ 3m + 2c, and A ≤ (ah − al − 2m).

∂β2

∂ah = −2m(al−m−c)2

((al−c)2+2m(ah−al−m))2
≤ 0.

∂β2

∂al = 2m(al−m−c)(2ah−3m−2c)
((al−c)2+2m(ah−al−m))2

≥ 0, since ah ≥ 2m + c ⇒ 2ah ≥ 3m + 2c.

B.2 Analysis of the model with market expansion

We model this situation with an increased market potential aD = (1 + α)a, α ≥ 0, when

the manufacturer offers a rebate R. In this case, the retailer’s best response to a given R,

w, and α is QR′ =
(

(1+α)a+R−w−m
b

)+
. The manufacturer’s problem is to find the optimal
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values for R and α to maximize profit as follows:

max
R≥0,α≥0,w≥c+R

(w − c−R)
(

(1 + α)a + R− w −m

b

)+

− eα2

When the manufacturer offers a customer rebate and the rebate leads to market expan-

sion, the SPNE is shown in Table 26.

Table 26: Equilibrium decisions when customer rebates expand market potential

a2 ≥ 4be or be ≤ a2 ≤ 2be a2 ≤ be or 2be ≤ a2 < 4be

wR′ −R a−m a2c+2be(m−c−a)
a2−4be

α (a−m−c)a
2be

(a−m−c)a
4be−a2

QR′
(a−m−c)a2

2b2e
(a−m−c)2e

4be−a2

ΠM
R′

(a−m−c)2a2

4b2e
(a−m−c)2e

4be−a2

ΠD
R′

a2(a−m−c)(a2(a−m−c)+4bem)
8b3e2

2e(a−m−c)(be(a+3m−c)−a2m)
(4be−a2)2

ΠSC
R′

a2(a−m−c)(a2(a−m−c)+2be(a+m−c))
8b3e2

e(a−m−c)(−a2(a+m−c)+2be(a+m−3c))
(4be−a2)2

In Table 27, we compare the manufacturer’s profits and sales with the retailer incentive

and the customer rebate in two feasible regions and see that the manufacturer can be better

off with alternate promotions depending on the system parameters.

Table 27: Comparison of retailer incentive and customer rebate for the deterministic
demand model when rebates lead to market expansion

Condition ΠM
I −ΠM

R′ QI −QR′

eb ≤ a2 ≤ 2be (2be−a2)(a−m−c)2

4b2e
≥ 0 (2be−a2)(a−m−c)

2b2e
≥ 0

a ≤ 2m + c 2be ≤ a2 ≤ 4be (2be−a2)(a−m−c)2

2b(4be−a2)
≤ 0 (2be−a2)(m+c−a)

b(a2−4be)
≤ 0

B.3 Analysis of the model where ΠD
I ≥ ΠD

o is enforced in the equilibrium

In the equilibrium where there is no promotion offered by the manufacturer, the retailer

receives a profit equal to ΠD
o = (a−m−c)(a+3m−c)

8b . We analyze the case where the manu-

facturer offers an incentive K to the retailer while making sure that the retailer receives

a profit at least as high as ΠD
o in equilibrium. From the analysis in Appendix B.1, the

retailer’s best response is as follows: Q∗ =
(
min

{
a−w

b , a−w−m+
√

2Kb
b

})+
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The Manufacturer’s Problem:

Case 1) K ≤ m2

2b ;
√

2Kb ≥ w − (a−m) ⇒ Q = a−w−m+
√

2Kb
b

(P4) max
w,K

(w − c)

(
a− w −m +

√
2Kb

b

)
−K

s.t.
(a− w)2 −m2 + 2m

√
2Kb

2b
≥ (a−m− c)(a + 3m− c)

8b√
2Kb ≥ w − (a−m)

K ≤ m2

2b

Note that the first constraint is to ensure that ΠD
I ≥ ΠD

o , i.e.,
∫ a−w−m+

√
2Kb

b
0 (a−bQ)dQ−

w
(

a−w−m+
√

2Kb
b

)
+ K ≥ (a−m−c)(a+3m−c)

8b .

Note the correspondence with the problem denoted by (P4) and the problem denoted by

(P3) in the proof of Theorem 3 (Appendix B.1). We can show that the equilibrium denoted

by FS.1 that is found in the proof of Theorem 3 satisfies the additional constraint in (P4)

when 4m+2c ≤ 2a ≤ 7m+2c. When a ≤ 2m+ c, the equilibrium denoted by FS.4 satisfies

the additional constraint, therefore, they are also optimal for (P4) for the specified regions.

(These solutions are the equilibrium solutions in Table 4.)

Case 2) K ≥ m2

2b ; w ≤ a ⇒ Q = a−w
b

max
w,K

(w − c)
(

a− w

b

)
−K

s.t.
(a− w)2

2b
+ K ≥ (a−m− c)(a + 3m− c)

8b

K ≥ m2

2b

c ≤ w ≤ a

Note that the first constraint is to ensure that ΠD
I ≥ ΠD

o , i.e.,
∫ a−w

b
0 (a − bQ)dQ −

w (a−w)
b + K ≥ (a−m−c)(a+3m−c)

8b . We follow a two step procedure to find w∗ and K∗, where

we characterize K∗, and embed this into the manufacturer’s objective function to find w∗.

K∗ = max
{

m2

2b , (a−m−c)(a+3m−c)
8b − (a−w)2

2b

}

Case 2.a) m2

2b ≥ (a−m−c)(a+3m−c)
8b − (a−w)2

2b ⇒ K = m2

2b
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max
w

(w − c)
(

a− w

b

)
− m2

2b

s.t. 4w2 − 8aw ≥ −3a2 − 7m2 + 2ma− 2ca− 2mc + c2

c ≤ w ≤ a

w∗ =





(a+c)2

2 if 2a ≤ 7m + 2c

a− 1
2

√
(a− c)2 + m(2a− 2c− 7m) if 2a ≥ 7m + 2c.

(12)

We find two feasible solutions which can be the equilibrium:

1. 2a ≤ 7m + 2c ⇒ w∗ = (a+c)2

2 ; K∗ = m2

2b ; Q∗ = a−c
2b ; ΠM = (a−c)2−2m2

4b ;

ΠD = (a−c)2+4m2

8b .

2. 2a ≤ 7m + 2c ⇒ w∗ = a− 1
2

√
(a− c)2 + m(2a− 2c− 7m); K∗ = m2

2b ;

Q∗ =
√

(a−c)2+m(2a−2c−7m)

2b ; ΠM = (a−c)(2
√

(a−c)2+m(2a−2c−7m)−(a−c))+m(−2a+2c+5m)

4b ;

ΠD = (a−m−c)(a+3m−c)
8b .

Case 2.b) m2

2b ≤ (a−m−c)(a+3m−c)
8b − (a−w)2

2b ⇒ K = (a−m−c)(a+3m−c)
8b − (a−w)2

2b

max
w

(w − c)
(

a− w

b

)
− (a−m− c)(a + 3m− c)

8b
+

(a− w)2

2b

s.t. 4w2 − 8aw ≤ −3a2 − 7m2 + 2ma− 2ca− 2mc + c2

c ≤ w ≤ a

We find one feasible solution which can be the equilibrium:

w∗ = a− 1
2

√
(a− c)2 + m(2a− 2c− 7m); K∗ = m2

2b ; Q∗ =
√

(a−c)2+m(2a−2c−7m)

2b ;

ΠM = (a−c)(2
√

(a−c)2+m(2a−2c−7m)−(a−c))+m(−2a+2c+5m)

4b ; ΠD = (a−m−c)(a+3m−c)
8b .

In Table 28, we summarize the equilibrium solutions for the retailer incentive case when

the manufacturer ensures that the retailer receives a profit with the incentive that is at least

as high as that of the no-promotion equilibrium.

We compare the retailer incentive equilibria with the no-promotion equilibrium stated

in Theorem 3(i). We show that when 2a ≥ 7m+2c sales and manufacturer’s profit increase,

while the retailer’s profit remain the same when the manufacturer offers an incentive.

First, we show that QI ≥ Qo.
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Table 28: The SPNE for the deterministic demand model with retailer incentive when the
manufacturer ensures the profit in the no-promotion equilibrium for the retailer

a ≤ 2m + c 4m + 2c ≤ 2a ≤ 7m + 2c 2a ≥ 7m + 2c

wI a−m a+c
2 a− 1

2

√
(a− c)2 + m(2a− 2c− 7m)

QI
a−m−c

b
a−c
2b

√
(a−c)2+m(2a−2c−7m)

2b

K (a−m−c)2

2b
m2

2b
m2

2b

ΠM
I

(a−m−c)2

2b
(a−c)2−2m2

4b

(a−c)(2
√

(a−c)2+m(2a−2c−7m)−(a−c))+m(−2a+2c+5m)

4b

ΠD
I

(a−m−c)m
b

(a−c)2+4m2

8b
(a−m−c)(a+3m−c)

8b

ΠSC
I

(a−c)2−m2

2b
3(a−c)2

8b

(a−c)(4
√

(a−c)2+m(2a−2c−7m)−(a−c))+m(−2a+2c+7m)

8b

QI =
√

(a−c)2+m(2a−2c−7m)

2b ≤ a−m−c
2b = Qo

⇔
√

((a− c)−m))2 ≤
√

(a− c)2 + m(2a− 2c− 7m)

⇔ ((a− c)−m)2 ≤ (a− c)2 + m(2a− 2c− 7m) ⇔ m(m− 2a + 2c) ≤ m(2a− 2c− 7m).

The result follows since 2a ≥ 7m + 2c ⇒ −4a + 4c + 8m ≤ 0.

Next, we show that ΠM
I ≥ ΠM

o

ΠM
I = (a−c)(2

√
(a−c)2+m(2a−2c−7m)−(a−c))+m(−2a+2c+5m)

4b

ΠM
o = (a−m−c)2

4b

ΠM
I −ΠM

o = −(a−c)2+2m2+(a−c)
√

(a−c)2+m(2a−2c−7m)

2b .

Note that, (a−c)
√

(a− c)2 + m(2a− 2c− 7m) ≥ (a−c)2, since 2a ≥ 7m+2c. Therefore

ΠM
I −ΠM

o ≥ 0.

B.4 Analysis of fixed retail price

The analysis with perfect price discrimination has the demand function of the form P (Q) =

a − bQ. We model the alternative case where the retailer sets a fixed price r instead of

charging a different price for each unit that is equal to the customer’s willingness to pay.

For a fair comparison of these models, we derive the following correspondence between the

demand functions: r = P (Q) = a−bQ ⇒ Q = a−r
b . Then, the retailer’s decision becomes to

find the optimal retail price instead. We make the same assumptions as in the base model

such as the retailer’s reservation price requirement, and analyze the no-promotion, retailer

incentive, and customer rebate cases with deterministic demand.

111



No Promotion

The Retailer’s Problem:

max
r

(r − w)
(

a− r

b

)

s.t. r ≥ w + m

r∗ = max
{
w + m, a+w

2

}

Case 1) w ≥ a− 2m ⇒ r∗ = w + m.

The Manufacturer’s Problem:

max
w

(w − c)
(

a− w −m

b

)

s.t. a−m ≥ w ≥ a− 2m

w ≥ c

w∗ = max
{
a− 2m,min

{
a−m+c

2 , a−m
}}

Case 1.a) a ≤ 3m + c

w∗ = a−m+c
2 ; r∗ = a+m+c

2 ; ΠM = (a−m−c)2

4b

Case 1.b) a ≥ 3m + c

w∗ = a− 2m; r∗ = a−m; ΠM = m(a−2m−c)
b

Case 2) w ≤ a− 2m ⇒ r∗ = a+w
2 .

The Manufacturer’s Problem:

max
w

(w − c)
(

a− w

2b

)

s.t. c ≤ w ≤ a− 2m

w∗ = min
{

a+c
2 , a− 2m

}

Case 2.a) a ≥ 4m + c

w∗ = a+c
2 ; r∗ = 3a+c

4 ; ΠM = (a−c)2

8b

Case 2.b) a− 2m ≤ a ≤ 4m + c

w∗ = a− 2m; r∗ = a−m; ΠM = m(a−2m−c)
b

The SPNE for the no-promotion case is summarized in Table 29. The SPNE for the

no-promotion case in perfect price discrimination setting is found in Section 3.3.1 as follows:

wo = a+c−m
2 ; Qo = a−m−c

2b ; ΠM
o = 1

b

(
a−m−c

2

)2; ΠD
o = (a−m−c)(a+3m−c)

8b ;

ΠSC
o = (a−m−c)(3a+m−3c)

8b .
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We can show that both the retailer and the manufacturer are strictly better off in terms

of profits and sales when the retailer has the ability to perfectly price discriminate versus

when he sets a fixed retail price, except when c + m ≤ a ≤ c + 3m, where the sales and the

manufacturer’s profit are identical in both models.

Table 29: The SPNE for the deterministic demand model with no promotion where the
retailer sets a fixed retail price

c + m ≤ a ≤ c + 3m c + 3m ≤ a ≤ c + 4m a ≥ c + 4m

wo
a+c−m

2 a− 2m a+c
2

ro
a+c+m

2 a−m 3a+c
4

Qo
a−m−c

2b
m
b

a−c
4b

ΠM
o

(a−m−c)2

4b
m(a−2m−c)

b
(a−c)2

8b

ΠD
o

m(a−m−c)
2b

m2

b
(a−c)2

16b

ΠSC
o

(a−m−c)(a+m−c)
4b

m(a−m−c)
b

3(a−c)2

16b

Retailer Incentive

The Retailer’s Problem:

max
r

(r − w)
(

a− r

b

)
+ K

s.t. (w + m− r)
(

a− r

b

)
≤ K

Case 1) w ≤ a− 2m ⇒ r∗ = a+w
2

The Manufacturer’s Problem:

max
w,K

(w − c)
(

a− w

2b

)
−K

s.t. c ≤ w ≤ a− 2m

w∗ = min{a+c
2 , a− 2m}; K∗ = 0

Case 1.a) a ≥ 4m + c

w∗ = a+c
2 ; r∗ = 3a+c

4 ; K∗ = 0; ΠM = (a−c)2

8b ; ΠD = (a−c)2

16b

Case 1.b) a− 2m ≤ a ≤ 4m + c

w∗ = a− 2m; r∗ = a−m; K∗ = 0; ΠM = m(a−2m−c)
b ; ΠD = m2

b

Case 2) w ≥ a− 2m ⇒ r∗ =
(

min

{
a+w

2 ,
a+w+m−

√
(a−w−m)2+4Kb

2

})+
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Case 2.a) a+w
2 ≥ a+w+m−

√
(a−w−m)2+4Kb

2 ≥ 0

max
K

(w − c)

(
a− w −m +

√
4Kb + (a− w −m)2

2b

)
−K

s.t.
a(w + m)

b
≥ K ≥ m2 − (a− w −m)2

4b

K∗ = max
{

m2−(a−w−m)2

4b ,min
{

(a−m−c)(2w+m−a−c)
4b , a(w+m)

b

}}

= max
{

m2−(a−w−m)2

4b , (a−m−c)(2w+m−a−c)
4b

}

Case 2.a.1) m2−(a−w−m)2

4b ≥ (a−m−c)(2w+m−a−c)
4b ⇒ (w − c)2 ≤ m2

K∗ = m2−(a−w−m)2

4b

max
w

(w − c)
(

a− w

2b

)
− m2 − (a− w −m)2

4b

s.t. a− 2m ≤ w

(w − c)2 ≤ m2

w ≥ c

w∗ = max{a− 2m,m + c}
Case 2.a.1.a a ≥ 3m + c

w∗ = a− 2m; K∗ = 0; ΠM = a(a−2m−c)
b

Case 2.a.1.b 2m + c ≤ a ≤ 3m + c

w∗ = m + c; K∗ = (3m−a+c)(a−m−c)
4b ; ΠM = (a−m−c)2

4b

Case 2.a.2) m2−(a−w−m)2

4b ≤ (a−m−c)(2w+m−a−c)
4b ⇒ (w − c)2 ≥ m2

K∗ = (a−m−c)(2w+m−a−c)
4b

max
w

(w − c)

(
a− w −m +

√
4K∗b + (a− w −m)2

2b

)
−K∗

s.t. a− 2m ≤ w

(w − c)2 ≥ m2

w ≥ c

Objective function becomes independent of w when K∗ = (a−m−c)(2w+m−a−c)
4b . Any

(w,K) pair that satisfies the following relations is optimal with profit ΠM = (a−m−c)2

4b :

K∗ = (a−m−c)(2w+m−a−c)
4b ; w ≥ a− 2m; (w − c)2 ≥ m2; w ≥ a+c−m

2 .
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Case 2.b) 0 ≤ a+w
2 ≤ a+w+m−

√
(a−w−m)2+4Kb

2

max
K

(w − c)
(

a− w

2b

)
−K

s.t. K ≤ m2 − (a− w −m)2

4b

Trivially, K∗ = 0.

max
w

(w − c)
(

a− w

2b

)

a− 2m ≤ w ≤ a

c ≤ w

w∗ = max{a+c
2 , a− 2m}

Case 2.b.1) a ≤ 4m + c

w∗ = a+c
2 ; r∗ = 3a+c

4 ; K∗ = 0; ΠM = (a−c)2

8b

Case 2.b.2) a ≥ 4m + c

w∗ = a− 2m; r∗ = a−m; K∗ = 0; ΠM = m(a−2m−c)
b

Summary of the SPNE:

• When a ≤ c + 3m, SPNE is the solution obtained in Case 2.b.1 (wI = a+c
2 ; K = 0;

rI = 3a+c
4 ; QI = a−c

4b ; ΠM
I = (a−c)2

8b ; ΠD
I = (a−c)2

16b ).

• When c + 3m ≤ a ≤ c + 4m, solution obtained in Case 2.a.2 or Case 2.b.1 can be the

unique equilibrium depending on the parameters, where ΠM
I = max

{
(a−c)2

8b , (a−m−c)2

4b

}

• When a ≥ c+4m, the solution obtained in Case 2.a.2 is the unique equilibrium, where

ΠM
I = (a−m−c)2

4b

For each region we can show that ΠM
I ≥ ΠM

o when the retailer uses fixed price. This is

identical to our result in the case of perfect price discrimination, where offering a retailer

incentive increases the manufacturer’s profits and sales. However, when the retailer sets a

fixed retail price, offering a retailer incentive does not always increase sales. (This result is

trivial to prove in cases that are not listed below.)

• When a ≤ c + 2m, ΠM
I = (a−c)2

8b ≥ (a−m−c)2

4b = ΠM
o follows since a − c ≤ 2m and

a− c ≤ 2a− 2c−m. Qo = a−m−c
2b ≥ QI = a−c

4b .
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• When c+2m ≤ a ≤ c+3m, (a−c)2

8b − (a−m−c)2

4b is decreasing in a, and takes its smallest

value when a = c + 3m. We show that (a−c)2

8b − (a−m−c)2

4b ≥ 0 when a = c + 3m.

• When a ≥ c + 4m, (a−m−c)2

4b − (a−c)2

8b is increasing in a, and takes its smallest value

when a = c + 4m. We show that (a−m−c)2

4b − (a−c)2

8b ≥ 0 when a = c + 4m.

B.5 Analysis of the deterministic demand model with per-unit retailer
incentive

Let k denote the per-unit payment given by the manufacturer to the retailer for each unit

of sale. We start the backward induction steps by solving the retailer’s problem:

ΠD
I = max

Q≥0

∫ Q

0
(a− bQ)dQ− (w − k)Q

s.t.
∫ Q

a−w−m
b

((w + m)− (a− bQ))dQ ≤ kQ

Q ≥ a−w−m
b

Q∗ =
(

min
{

a−w+k
b ,

a−w−m+k+
√

k2+2k(a−w−m)

b

})+

.

In the next step, we solve the manufacturer’s problem in a two step procedure similar

to our analysis for the case of lump-sum incentive.

Case 1) 0 ≤ a−w+k
b ≤ a−w−m+k+

√
k2+2k(a−w−m)

b ⇒ m2 ≤ k2 + 2k(a− w −m)

max
k

(w − c− k)
(

a− w + k

b

)

s.t. k ≥ (w − a)+

k2 + 2k(a− w −m)−m2 ≥ 0

k∗ = max
{

w − a+c
2 ,−a + w + m +

√
(a− w −m)2 + m2

}

Case 1.a) a ≥ 2m + c; (a−2m−c)2

4 ≥ (a− w −m)2 + m2 ⇒ k∗ = w − a+c
2

max
w

(a− c)2

4b

s.t. c + k∗ ≤ w ≤ a−m

(a− 2m− c)2

4
≥ (a− w −m)2 + m2

(k∗)2 + 2k∗(a− w −m)−m2 ≥ 0
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Note that when a ≥ 4m+ c, any w that satisfies a−m− 1
2

√
(a− c)(a− c− 4m) ≤ w ≤

a−m is a feasible solution with ΠM
I = (a−c)2

4b .

Case 1.b) a ≥ 2m + c; (a−2m−c)2

4 ≤ (a − w − m)2 + m2 ⇒ k∗ = −a + w + m +
√

(a− w −m)2 + m2

Case 1.c) a ≤ 2m + c ⇒ k∗ = −a + w + m +
√

(a− w −m)2 + m2

In Case 1.b and Case 1.c, c + k∗ ≤ w ⇔
√

(a− w −m)2 + m2 ≤ a −m − c. Note also

that c ≤ w ≤ a−m ⇒
√

(a−m− c)2 + m2 ≤ a−m− c, which is a contradiction. So there

are no feasible solutions obtained in these regions.

Case 2) a−w+k
b ≥ a−w−m+k+

√
k2+2k(a−w−m)

b ≥ 0 ⇒ m2 ≥ k2 + 2k(a− w −m)

max
k

(w − c− k)

(
a− w −m + k +

√
k2 + 2k(a− w −m)
b

)

s.t. k ≤ w − c

k2 + 2k(a− w −m)−m2 ≤ 0

k∗ = min
{

(w−c)2

2(a−m−c) ,−a + w + m +
√

(a− w −m)2 + m2
}

Case 2.a) (w−c)2

2(a−m−c) ≤ −a + w + m +
√

(a− w −m)2 + m2

max
w

(w − c− k∗)

(
a− w −m + k∗ +

√
(k∗)2 + 2k∗(a− w −m)
b

)

s.t. c + k∗ ≤ w ≤ a−m

(k∗)2 + 2k∗(a− w −m)−m2 ≤ 0
(w − c)2

2(a−m− c)
≤ −a + w + m +

√
(a− w −m)2 + m2

where k∗ = (w−c)2

2(a−m−c) .

The objective function can be simplified to: (w−c−k∗)
(

(a−w−m)+k∗+ (w−c)
2(a−m−c)

|w−2a+2m+c|
b

)
.

Note that w − 2a + 2m + c ≥ 0 conflicts with w ≤ a−m. Therefore, w − 2a + 2m + c ≤ 0.

max
w

(w − c)(−w + 2a− 2m− c)
2b

s.t. w ≤ a−m

(w − c)4

(2a− 2c− 2m)2
+

2(w − c)2(a− w −m)
(2a− 2m− 2c)

−m2 ≤ 0

(w − c)2

2(a−m− c)
≥ −a + w + m +

√
(a− w −m)2 + m2
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w∗ =





a−m if a ≤ 3m + c

a−m−
√

(a−m− c)(a + m− c) if a ≥ 3m + c
(13)

Case 2.a.1) a ≤ 3m + c ⇒ w∗ = a−m; k∗ = a−m−c
2 ; Q∗ = a−m−c

b ; ΠM
I = (a−m−c)2

2b

Case 2.a.2) a ≥ 3m + c ⇒ w∗ = a − m −
√

(a−m− c)(a + m− c); k∗ = a − c −
√

(a−m− c)(a + m− c); ΠM
I = (a−m−c)2−(a−m−c)(a+m−c)

2b

Case 2.b) (w−c)2

2(a−m−c) ≥ −a + w + m +
√

(a− w −m)2 + m2

max
k

(w − c− k∗)

(
a− w −m + k∗ +

√
(k∗)2 + 2k∗(a− w −m)
b

)

s.t. c + k∗ ≤ w ≤ a−m

(w − c)2

2(a−m− c)
≤ −a + w + m +

√
(a− w −m)2 + m2

where k∗ = −a + w + m +
√

(a− w −m)2 + m2.

Note that c + k∗ ≤ w ⇔
√

(a− w −m)2 + m2 ≤ a −m − c. Note also that c ≤ w ≤
a−m ⇒

√
(a−m− c)2 + m2 ≤ a−m− c, which is a contradiction. So there is no feasible

solution obtained in this region.

The SPNE solutions are summarized as follows:

• When a ≤ 3m + c, SPNE is the solution obtained in Case 2.a.1, where w∗ = a −m;

k∗ = a−m−c
2 ; Q∗ = a−m−c

b ; ΠM
I = (a−m−c)2

2b .

• When a ≥ 3m + c, SPNE is the solution obtained in Case 1.a, where a − m −
1
2

√
(a− c)(a− c− 4m) ≤ w∗ ≤ a−m; ΠM

I = (a−c)2

4b .

We can show that in each region, ΠM
I ≥ ΠM

o . Therefore, the manufacturer is always

better off with a per-unit retailer incentive. (Same result holds for a lump-sum incentive.)

Moreover, when a ≥ 3m + c, the manufacturer’s profit is higher with a per-unit incentive

than a lump-sum incentive.
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B.6 Analysis of the retailer incentive case in the deterministic demand
model with pass-through rate 0 < ρ ≤ 1

The Retailer’s Problem:

ΠR = max
Q≥0

∫ Q

0
(a− bQ)dQ− wQ

s.t.
∫ Q

a−w−m
b

((w + m)− (a− bQ))dQ ≤ ρK

Q ≥ a− w −m

b

Q∗ =
(
min

{
a−w

b , a−w−m+
√

2ρKb
b

})+
.

Case 1) K ≤ m2

2bρ ;
√

2ρKb ≥ w− (a−m); ⇒ Q∗ = a−w−m+
√

2ρKb
b . First we solve for K:

max
K

(w − c)(
a− w −m +

√
2ρKb

b
)−K

s.t. 0 ≤ K ≤ m2

2bρ√
2ρKb ≥ w − (a−m)

K∗ = min{ρ(w−c)2

2b , m2

2bρ}. Next, we solve for w. We need to consider the following cases:

w ≤ c + m
ρ and w ≥ c + m

ρ , where K∗ = ρ(w−c)2

2b and K∗ = m2

2bρ , respectively.

Case 1.a) w ≥ c + m
ρ

max
w

(w − c)(
a− w

b
)− m2

2bρ

s.t.
m

ρ
+ c ≤ w ≤ a

w∗ = max{m
ρ + c,min{a, a+c

2 }}
Case 1.a.1) ρa ≥ 2m + ρc ⇒ w∗ = a+c

2 ; Q∗ = a−c
2b ; K∗ = m2

2bρ ; ΠM = (a−c)2

4b − m2

2bρ .

Case 1.a.2) ρa ≤ 2m + ρc ⇒ w∗ = m
ρ + c; Q∗ =

a−m
ρ
−c

b ; K∗ = m2

2bρ ; ΠM =

(m+ρc)(ρa−m−ρc)
ρ2b

− m2

2bρ .

Case 1.b) w ≤ c + m
ρ

max
w

(w − c)(
a− (1− ρ)w −m− ρc)

b
)− ρ(w − c)2

2b

s.t. c ≤ w ≤ c +
m

ρ

w∗ = max{c,min{c + m
ρ , a−m−(ρ−1)c

2−ρ }}
Case 1.b.1) ρa ≥ 2m + ρc ⇒ w∗ = m

ρ + c; Q∗ =
a−m

ρ
−c

b ; K∗ = m2

2bρ ; ΠM =

(m+ρc)(ρa−m−ρc)
ρ2b

− m2

2bρ .
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Table 30: The SPNE for the deterministic demand model with retailer incentive when the
incentive pass-through rate is 0 < ρ ≤ 1

ρa ≤ 2m + ρc ρa ≥ 2m + ρc

wI
a−m−(ρ−1)c

2−ρ
a+c
2

QI
a−m−c
(2−ρ)b

a−c
2b

K ρ(a−m−c)2

(ρ−2)22b
m2

2bρ

ΠM
I

(a−m−c)2

2b(2−ρ)
(a−c)2

4b − m2

2bρ

ΠD
I

(a−m−c)((1−ρ)(a−c)−m(ρ−3))
b

ρ(a−c)2+4m2

8ρb

Case 1.b.2) ρa ≤ 2m + ρc ⇒ w∗ = a−m−(ρ−1)c
2−ρ ; Q∗ = a−m−c

(2−ρ)b ; K∗ = ρ(a−m−c)2

(ρ−2)22b
;

ΠM = (a−m−c)2

2b(2−ρ) .

Case 2) K ≤ m2

2bρ ; w ≤ a ⇒ Q∗ = a−w
b . We obtain the following solution:

w∗ = a+c
2 ; Q∗ = a−c

2b ; K∗ = m2

2bρ ; ΠM = (a−c)2

4b − m2

2bρ .

We summarize the SPNE in Table 30.

Note that, ΠM
R = (a−m−c)2

4b . We can show that the manufacturer is better off with the

retailer incentive than the customer rebate where the equilibrium for the latter is stated in

Theorem 3(iii).

ΠM
I −ΠM

R = m(−2ρc+2aρ−mρ−2m)
4bρ ≥ 0, when ρa ≥ 2m + ρc, since ρa ≥ 2m + ρc ⇒ 2aρ ≥

4m + 2ρc ≥ (2 + ρ)m + 2ρc.

ΠM
I −ΠM

R ≥ 0, when ρa ≤ 2m + ρc, since 0 < ρ ≤ 1.

B.7 Analysis of the no-promotion case, where demand can be in “high”,
“medium”, and “low” states with probabilities βh, βm, and 1− βh −
βm, respectively.

No Promotion

Retailer’s best response is as follows: Qj∗(w) =
(

aj−w−m
b

)+
; j = l, m, h.

Case 1) am −m ≤ w ≤ ah −m ⇒ Qh = ah−w−m
b ; Qm = 0; Ql = 0

Case 2) al −m ≤ w ≤ am −m ⇒ Qh = ah−w−m
b ; Qm = am−w−m

b ; Ql = 0

Case 3) w ≤ al −m ⇒ Qh = ah−w−m
b ; Qm = am−w−m

b ; Ql = al−w−m
b

Case 4) w ≥ ah −m ⇒ Qh = 0; Qm = 0; Ql = 0

Note that we can omit Case 4 since the manufacturer has the feasible solution of setting
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w = c and receive zero profit. We analyze the other cases and find the manufacturer’s

optimal wholesale price in each case.

Case 1) am −m ≤ w ≤ ah −m ⇒ Qh = ah−w−m
b ; Qm = 0; Ql = 0

max βh(w − c)Qh

s.t am −m ≤ w ≤ ah −m

w∗ = max
{

am −m,min
{

ah −m, ah−m+c
2

}}

Case 1.a) (FS.1) 2am ≤ ah + m + c ⇒ w∗ = ah−m+c
2 ; Qh = ah−m−c

2b ; Qm = Ql = 0;

ΠM = βh(ah−m−c)2

4b

Case 1.b) (FS.2) 2am ≥ ah + m + c ⇒ w∗ = am −m; Qh = ah−am

b ; Qm = Ql = 0;

ΠM = βh(am−m−c)(ah−am)
b

Case 2) al −m ≤ w ≤ am −m ⇒ Qh = ah−w−m
b ; Qm = am−w−m

b ; Ql = 0

max βh(w − c)Qh + βm(w − c)Qm

s.t al −m ≤ w ≤ am −m

w∗ = max
{

al −m,min
{

am −m, βh(ah−m+c)+βm(am−m+c)
2(βh+βm)

}}

Case 2.a) (FS.3) βh
βh+βm

≥ am−m−c
ah−am ⇒ w∗ = am − m; Qh = ah−am

b ; Qm = Ql = 0;

ΠM = β(am−m−c)(ah−am)
b

Case 2.b) βh
βh+βm

≥ am−m−c
ah−am

Case 2.b.1) (FS.4) 2(βh + βm)al ≥ βhah + βmam + (βh + βm)(m + c) ⇒ w∗ = al −m;

Qh = ah−al

b ; Qm = am−al

b ; Ql = 0; ΠM = (βh(ah−al)+βm(am−al))(al−m−c)
b

Case 2.b.2) (FS.5) 2(βh + βm)al ≤ βhah + βmam + (βh + βm)(m + c) ⇒
w∗ = βh(ah−m+c)+βm(am−m+c)

2(βh+βm) ; Qh = (βh+2βm)ah−βmam−(βh+βm)(c+m)
2(βh+βm)b ; Ql = 0;

Qm = (2βh+βm)am−βhah−(βh+βm)(c+m)
2(βh+βm)b ; ΠM = (βhah+βmam−(βh+βm)(m+c))2

4(βh+βm)b

Case 3) w ≤ al −m ⇒ Qh = ah−w−m
b ; Qm = am−w−m

b ; Ql = al−w−m
b

max βh(w − c)Qh + βm(w − c)Qm + (1− βh − βm)Ql

s.t w ≤ al −m

w∗ = min
{

al −m, βhah+βmam+(1−βh−βm)al−m+c)
2

}
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Table 31: The SPNE with no promotion when demand can be in “high”, “medium”, and
“low” states with probabilities βh, βm, and 1− βh − βm, respectively.

Feasible Region (F.R.) Solution

2(βh + βm)al ≥ FS.6

βhah + βmam + (βh + βm)(m + c)

2am ≥ (1 + βh + βm)al ≥ FS.5, FS.6

ah + m + c βhah + βmam + m + c

2(βh + βm)al ≤ (1 + βh + βm)al ≤ FS.5

βhah + βmam + (βh + βm)(m + c) βhah + βmam + m + c

2(βh + βm)al ≥ FS.1, FS.6

βhah + βmam + (βh + βm)(m + c)
βh

βh+βm
≤ (1 + βh + βm)al ≥ FS.1, FS.5, FS.6

am−m−c
ah−am βhah + βmam + m + c

2am ≤ 2(βh + βm)al ≤ (1 + βh + βm)al ≤ FS.1, FS.5

ah + m + c βhah + βmam + (βh + βm)(m + c) βhah + βmam + m + c

(1 + βh + βm)al ≥ FS.1, FS.6

βhah + βmam + m + c
βh

βh+βm
≥ (1 + βh + βm)al ≤ FS.1, FS.7

am−m−c
ah−am βhah + βmam + m + c

Case 3.a) (FS.6) (1+βh+βm) ≥ βhah+βmam+m+c ⇒ w∗ = βhah+βmam+(1−βh−βm)al−m+c
2 ;

Qh = (2−βh)ah−βmam−(1−βh−βm)al−m−c
2b ; Qm = −βhah+(2−βm)am+(1−βh−βm)al−m−c

2b ;

Ql = −βhah−βmam+(1+βh+βm)al−m−c
2b ; ΠM = (βhah+βmam+(1−βh−βm)al−m−c)2

4b

Case 3.b) (FS.7) (1 + βh + βm) ≤ βhah + βmam + m + c ⇒ w∗ = al −m; Qh = ah−al

b ;

Qm = am−al

b ; Ql = 0; ΠM = (βh(ah−al)+βm(am−al))(al−m−c)
b

We summarize the feasible solutions in Table 31. We give some examples to understand

the equilibrium behavior.

Example 5 We focus on the region where 2am ≥ ah + m + c, 2(βh + βm)al ≤ βhah +

βmam + (βh + βm)(m + c), and (1 + βh + βm)al ≥ βhah + βmam + m + c. In this region two

feasible solutions are FS.5 (driven only by the high and medium states) and FS.6 (driven

by all states).

In Figure 26(a), we fix βm at a feasible value in the specified region, and plot ΠM with

respect to βh within the limits that are enforced by the feasible region. We see that when

βh ≤ β∗, FS.6 is the equilibrium solution, whereas when βh ≥ β∗ FS.5 is the equilibrium.

This observation is similar to Observation 2, where for β values that are greater than a

threshold value, the manufacturer is better off by the solution which is driven only by the
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high demand state. In other words, the wholesale price does not depend on the low market

potential.

 

β* β*

ΠM ΠM

βh

w depends on  

w depends on  

w depends on  

w depends on  

βh

 

(a) With increasing ah

        

β* β** 

ΠM 

w depends on   

w depends on 

w depends on   

βh 

(b) No-promotion equilibrium wholesale price

Figure 26: No-promotion equilibrium wholesale price (m = 5, b = 2, c = 15)

Example 6 We focus on the region where 2am ≤ ah + m + c, βh
βh+βm

≤ am−m−c
ah−am , 2(βh +

βm)al ≤ βhah + βmam + (βh + βm)(m + c), and (1 + βh + βm)al ≥ βhah + βmam + m + c.

In this region three feasible solutions are FS.1 (driven only by the high state), FS.5 (driven

only by the high and medium states), and FS.6 (driven by all states).

In Figure 26(b), we see that as βh switches from the range βh ≤ β∗ to the range β∗ ≤
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βh ≤ β∗∗, and to the range βh ≥ β∗, the equilibrium switches from FS.6 to FS.5, and to

FS.1, respectively. The equilibrium behavior is similar to Observation 2, where as β gets

sufficiently large, the lower value if the market potential drops from the manufacturer’s

wholesale price decision.
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APPENDIX C

APPENDIX FOR CHAPTER 4

Demand Model with Competition: Consider the following demand models for two

competing firms:
Q1 = α− β1p1 + β2p2 (14)

Q2 = α− γ2p2 + γ1p1 (15)

Note that Q1 and Q2 denote sales quantities of firms 1 and 2, p1 and p2 are the prices set

by firms 1 and 2, β1 and β2 are own and cross price sensitivities of firm 1, γ2 and γ1 are own

and cross price sensitivities of firm 2, and α is the market size of each firm. Demand mod-

els in Equations 14 and 15 are commonly used in operations management literature (Kim

and Staelin [48] and McGuire and Staelin [57]), where the sales quantities are expressed as

functions of the prices, while our demand model in Equation 1 has the inverse representa-

tion relating the prices to each sales quantity. Although we cannot completely derive our

demand model from Equations 14 and 15, we can provide some intuitive explanation on the

correspondence between the two models.

We can assume that β1 ≥ β2 ≥ 0 and γ2 ≥ γ1 ≥ 0, which is similar to our assumptions

b1o ≥ b1c and b2o ≥ b2c (Section 4.3). We further assume that β1γ2−β2γ1 > 0. We consider

the first segment of our demand model, i.e., P1(Q1, Q2) = a− (b1o + b1c)Q1 corresponding

to the case where Q1 ≤ Q2.

When Q1 ≤ Q2 we use Equations 14 and 15 and derive the following expressions:

Q1 ≤ Q2 ⇒ ∃ ε ≥ 0 s.t : Q1 + ε = Q2

Q1 + ε = Q2 ⇒ −β1p1 + β2p2 + ε = −γ2p2 + γ1p1 ⇒ (β2 + γ2)p2 + ε = (β1 + γ1)p1 (16)

Q1 = α− β1p1 + β2p2 ⇒ p2 =
Q1 − α + β1p1

β2
(17)

Substituting Equation 17 into 16, we obtain the following:

(γ2β1 − β2γ1)
β2

p1 = −(β2 + γ2)
β2

Q1 +
(β2 + γ2)

β2
α− ε

⇒ p1 =
(

β2 + γ2

(γ2β1 − β2γ1)
α− ε′

)
−

(
β2

(γ2β1 − β2γ1)
+

γ2

(γ2β1 − β2γ1)

)
Q1 (18)
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In Equation 18, dependence of p1 on Q1 is similar to that in the expression P1(Q1, Q2) =

a − (b1o + b1c)Q1, where price is decreasing in sales quantity since β2

(γ2β1−β2γ1) ≥ 0 and

γ2

(γ2β1−β2γ1) ≥ 0. Given Pi(Qi, Qj) = a − (bio + bic)Qi when Qi ≤ Qj , we can derive the

expression in the second part of the demand function (Qi ≥ Qj) in Equation 1 as follows:

a− (bio + bic)Qj − bio(Qi −Qj) = a− bioQi − (bio + bic − bio)Qj = a− bioQi − bicQj .

Proof of Proposition 2

Proof. We show that the decisions of the manufacturers (w1 − R1 = c1 and w2 =

a−m1−c1
δ2

+ a−δ1R1−m2+c2
2 ; R2 = a−m1−c1

δ2
) are best responses to each other. The best response

of manufacturer 1 when w2 = a−m1−c1
δ2

+ a−δ1R1−m2+c2
2 and R2 = a−m1−c1

δ2
is w1 −R1 = c1,

which follows from the following inequalities:

a + R1 − δ2R2 ≥ P1(Q1, Q2) ≥ w1 + m1 ⇒ a−m1 − δ2R2 ≥ w1 − R1 ⇒ c1 ≥ w1 − R1.

We also know that w1 −R1 ≥ c1 in equilibrium, therefore w1 −R1 = c1.

To find the best response of manufacturer 2 when w1 − R1 = c1, we consider the cases

with Q1 ≤ Q2 and Q2 ≤ Q1. In each case, we formulate the problem of manufacturer 2,

and we find an upper bound on his profit. We show that the decisions w2 = a−m1−c1
δ2

+

a−δ1R1−m2+c2
2 and R2 = a−m1−c1

δ2
are feasible and result in a profit equal to the upper bound.

Case 1) 0 ≤ a−δ2R2−c1−m1
b1o+b1c

≤ a+R2−δ1R1−w2−m2
b2o+b2c

Q1 ≤ Q2; Q1 = a−δ2R2−c1−m1
b1o+b1c

; Q2 = a+R2−δ1R1−w2−m2
b2o

− b2c
b2o

(
a−δ2R2−c1−m1

b1o+b1c

)

Manufacturer 2’s problem:

max
w2,R2

(w2 − c2 −R2)
(

a + R2 − δ1R1 − w2 −m2

b2o
− b2c

b2o

(
a− δ2R2 −m1 − c1

b1o + b1c

))

s.t. c2 ≤ w2 −R2 ≤ a− δ1R1 −m2

w2 −R2

(
1 + δ2

b2o+b2c
b1o+b1c

)
≤

(
b2o+b2c
b1o+b1c

)
(c1 − a + m1) + (a− δ1R1 −m2)

R2 ≤ a−m1−c1
δ2

Note that an upper bound on the objective function value is (w2−c2−R2)
(

a+R2−δ1R1−w2−m2
b2o

)
.

Consider the following unconstrained problem: max
w2,R2

(w2−c2−R2)
(

a+R2−δ1R1−w2−m2
b2o

)
. We

can show that the optimal solution of this problem is w2 − R2 = a−δ1R1−m2+c2
2 , and the

objective function value is (a−δ1R1−m2−c2)2

4b2o
. Note also that the objective function value of

manufacturer 2’s problem evaluated at w2 = a−m1−c1
δ2

+ a−δ1R1−m2+c2
2 and R2 = a−m1−c1

δ2
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is equal to (a−δ1R1−m2−c2)2

4b2o
. Next, we show that these w2 and R2 decisions satisfy the

constraints in the manufacturer 2’s problem. All constraints evaluated at the preceding

values of w2 and R2 reduce to the inequality R1 ≤ a−m2−c2
δ1

, which holds by the feasibility

requirements in the formulation of the manufacturer 2’s problem.

Case 2) a−δ2R2−c1−m1
b1o+b1c

≥ a+R2−δ1R1−w2−m2
b2o+b2c

≥ 0

Q1 ≥ Q2; Q1 = a−δ2R2−c1−m1
b1o

− b1c
b1o

(
a+R2−δ1R1−w2−m2

b2o+b2c

)
; Q2 = a+R2−δ1R1−w2−m2

b2o+b2c

Manufacturer 2’s problem:

max
w2,R2

(w2 − c2 −R2)
(

a + R2 − δ1R1 − w2 −m2

b2o + b2c

)

s.t. c2 ≤ w2 −R2 ≤ a− δ1R1 −m2

w2 −R2

(
1 + δ2

b2o+b2c
b1o+b1c

)
≥

(
b2o+b2c
b1o+b1c

)
(c1 − a + m1) + (a− δ1R1 −m2)

R2 ≤ a−m1−c1
δ2

Consider the following unconstrained problem: max
w2,R2

(w2−c2−R2)
(

a+R2−δ1R1−w2−m2
b2o+b2c

)
.

We can show that the optimal solution of this problem is w2−R2 = a−δ1R1−m2+c2
2 , and the

objective function value is (a−δ1R1−m2−c2)2

4(b2o+b2c)
. Note that the feasible decisions w2 = a−m1−c1

δ2
+

a−δ1R1−m2+c2
2 and R2 = a−m1−c1

δ2
with an objective function value of (a−δ1R1−m2−c2)2

4b2o
dom-

inate any decision in Case 2, and consequently we can eliminate this case.
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