
Drayage Optimization in Truck/Rail Networks

A Thesis
Presented to

The Academic Faculty

by

Yetkin Ileri

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Industrial and Systems Engineering
Georgia Institute of Technology

November 2006

Drayage Optimization in Truck/Rail Networks

Approved by:

George L. Nemhauser
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Joel Sokol
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Alan L. Erera
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Özlem Ergun
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Erick D. Wikum
Schneider National, Inc.

Date Approved: November 20, 2006

ACKNOWLEDGEMENTS

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . x

I INTRODUCTION . 1

1.1 Introduction . 1

1.2 Drayage Operations . 2

1.3 Literature on Drayage Operations . 4

1.3.1 Strategic and Tactical Research Topics in Drayage Operations . . . 4

1.3.2 Related Routing Problems . 5

1.3.3 Related Literature on Drayage Optimization at Operational Level . 6

1.4 Uncertainty in Drayage Operations . 7

1.5 Literature on Routing With Uncertainty 8

1.6 Contributions . 11

II STATIC DAILY DRAYAGE PROBLEM 14

2.1 Introduction . 14

2.2 Modeling Daily Drayage Operations . 15

2.2.1 Drayage Orders . 15

2.2.2 Drivers . 17

2.2.3 Empty Trailers . 18

2.2.4 Feasible Route Assignments . 18

2.2.5 Objective . 19

2.2.6 Formulation . 21

2.3 Solution Method . 21

2.3.1 Enumerating Route Assignments 22

2.3.2 Generating Route Assignments . 30

2.4 Numerical Results . 33

2.5 Implementation Challenges . 36

iv

2.6 Conclusions . 38

III ONLINE DAILY DRAYAGE PROBLEM 39

3.1 Introduction . 39

3.2 Motivation . 39

3.3 Problem Description . 40

3.3.1 Simplifying the Daily Drayage Problem 40

3.3.2 Dynamic Addition of Orders . 41

3.3.3 Guaranteeing Feasibility . 41

3.3.4 A Dynamic Example . 41

3.4 Reoptimization as a Solution Methodology 42

3.4.1 Optimizing Snapshots . 43

3.4.2 Scheduling Policies . 44

3.5 Competitive Ratio . 47

3.6 A General Lower Bound for the Competitive Ratio 47

3.6.1 Overview of the Proof . 48

3.6.2 Proof . 48

3.7 Computational Experiments on Scheduling Policies 51

3.8 Adding Anticipation to Reoptimization . 52

3.9 Additional Computational Experiments . 54

3.10 A Priori Information on Potential Customer Locations 64

3.11 Conclusions and Future Directions . 65

IV DRAY COVERAGE PROBLEM WITH ONE CUSTOMER 66

4.1 Introduction . 66

4.2 Description . 67

4.3 A Finite-Horizon Markov Decision Process Formulation 68

4.4 Calculating Expected Values . 70

4.5 Deadheading or Waiting . 73

4.6 Computational Experiments . 79

4.7 A Near-Optimal Policy . 82

4.8 A Special Case With a Never Empty Location H 85

v

4.9 Extension to Two Customers . 87

4.9.1 An Extended Finite-Horizon Markov Decision Process Formulation 87

4.9.2 Optimal Decisions for N = 1, 2, 3 92

4.10 Generalizations . 93

4.11 Conclusions . 95

V CONCLUSIONS AND FUTURE DIRECTIONS 96

REFERENCES . 99

vi

LIST OF TABLES

Table 1 Drayage stop types . 16

Table 2 Admissible sequences for drayage orders 17

Table 3 Rules for adding extra stops to a route 19

Table 4 Orders in the example problem . 24

Table 5 Running times for St. Louis, |D| = 7 . 34

Table 6 The column generation-based method results for Northern California, |D|
= 17 . 35

Table 7 Number of column generation cycles for Northern California instances . . 36

Table 8 Solutions covering orders O1 and O2 . 49

Table 9 Online solutions for case 1 . 50

Table 10 Online solutions for case 2 . 50

Table 11 Percentage deviation of online algorithms compared to fair solution . . . 52

Table 12 Breakdown of customer locations with respect to recurrence 65

Table 13 Optimal actions in each region . 77

Table 14 m(pH , pL) values for various pH and pL combinations. 80

Table 15 (ne, no) pairs for (H, 0, 1) . 81

Table 16 (ne, no) pairs for (H, 0, 2) . 81

Table 17 Conclusions suggested by numerical results 82

Table 18 All possible actions . 88

Table 19 All possible events . 90

Table 20 Optimal decisions at various states when N = 3 with i, j ≥ 1. 93

vii

LIST OF FIGURES

Figure 1 Intermodal traffic from 1980 to 2005. 2

Figure 2 Example with three orders . 23

Figure 3 Search tree for driver group 1 . 25

Figure 4 The insertion of an order may reduce the time required to complete a route
assignment. 27

Figure 5 Order 3 is dynamically added to the problem. 42

Figure 6 Different scheduling policies for a sample route assignment. 46

Figure 7 Orders and locations for Ins1 and Ins2. 48

Figure 8 An example schedule for gap calculation. 53

Figure 9 Performance of policies on Data10. 55

Figure 10 Performance of policies on Data20. 56

Figure 11 Performance of policies on Data40. 56

Figure 12 Performance of Deadhead on Data10 for various values of g. 57

Figure 13 Performance of Deadhead on Data20 for various values of g. 58

Figure 14 Performance of Deadhead on Data40 for various values of g. 58

Figure 15 The reduction in average percent deviation for Data10. 59

Figure 16 The reduction in average percent deviation for Data20. 60

Figure 17 The reduction in average percent deviation for Data40. 60

Figure 18 The performance of various policies for Data10. 61

Figure 19 The performance of various policies for Data20. 62

Figure 20 The performance of various policies for Data40. 62

Figure 21 Performance of Coverage on Data10 for various values of Γ. 63

Figure 22 Performance of Coverage on Data20 for various values of Γ. 63

Figure 23 Performance of Coverage on Data40 for various values of Γ. 64

Figure 24 Driver’s movements on a location-time graph 68

Figure 25 Contours of ∆(pH , pL, 5). 77

Figure 26 Decision regions for (H, 0, 0), N = 5 and (H, 0, 1), N = 4 78

Figure 27 A solution given by the seesaw policy . 82

Figure 28 Constructing a new solution from the wait-and-seesaw policy’s solution . 83

viii

Figure 29 The transformations preserve feasibility of the solution and the number of
orders covered. 84

Figure 30 Markov states and transition probabilities 86

Figure 31 New problem setup with two customer locations compared to the original
problem setup. 88

Figure 32 The time horizon does not allow the driver to start with order 2 and then
to cover order 1. 95

ix

SUMMARY

Daily drayage operations involve moving loaded or empty equipment between customer

locations and rail ramps. Drayage orders are generally pickup and delivery requests with

time windows. The repositioning of empty equipment may also be required in order to

facilitate loaded movements. The drayage orders are satisfied by a heterogeneous fleet of

drivers. Driver routes must satisfy various operational constraints.

In the first part of the dissertation, our goal is to minimize the cost of daily drayage

operations in a region on a given day. We present an optimization methodology for finding

cost-effective schedules for regional daily drayage operations. The core of the formulation is a

set partitioning model whose columns represent routes. Routes are added to the formulation

by column generation. We present numerical results for real-world data which demonstrate

that our methodology produces low cost solutions in a reasonably short time.

The second part of the dissertation addresses minimizing total empty mileage when

driver capacity is not restrictive and new orders are added to the problem in an online

fashion. We present a lower bound for the worst case guarantee of any deterministic online

algorithm. We develop a solution methodology and provide results for the performance of

different scheduling policies and parameters in a simulated environment.

In the third part of the dissertation, we study a system with one rail ramp and one

customer location which is served by a single driver. The problem has discrete time periods

and at most one new order is released randomly each time period. The objective is to

maximize the expected number of orders covered. With this simple problem, we seek to

learn more about route planning for a single driver under uncertainty. We prove that

carrying out an order ready to be picked up at the driver’s current location is optimal for

the case with one customer location. We show that the structure of the optimal policies

is not simple and depends on various parameters. We devise a simple policy which yields

x

provably near-optimal results and identify a case for which that policy is optimal.

xi

CHAPTER I

INTRODUCTION

1.1 Introduction

Intermodal freight transportation refers to the transportation of freight in a container or

vehicle, using multiple modes of transportation (rail, ocean carrier, and truck), without any

handling of the freight itself when changing modes [48]. In truck/rail intermodal transporta-

tion, the freight is first loaded into a trailer or container which is moved from the shipper

to a nearby rail ramp by truck. Later, the freight is conveyed by rail to a ramp close to the

freight’s destination. Finally, the freight is delivered to the consignee by truck. Drayage

refers to the truck portion of truck/rail intermodal transportation. The word “drayage”

originates from “dray” which has been used to describe “a low, strong cart without fixed

sides, for carrying heavy loads” [15]. Historically, drays were wheeled vehicles usually pulled

by animals and used to transport heavy goods [47].

Railroads provide the most cost-efficient transportation on land and trucks provide flex-

ible pickup and delivery services and faster transportation. Truck/rail intermodal trans-

portation aims to combine the best features of both modes. Since the freight itself remains

sealed in a trailer or a container when the unit is transferred to another mode, the risk of

damage and handling cost and time are reduced.

The number of trailers and containers moved via truck/rail intermodal transportation

has been increasing steadily. The Association of American Railroads (AAR) reports that

rail intermodal traffic rose from from 3.1 million trailers and containers in 1980 to 11.7

million in 2005 [3]. The container and trailer intermodal traffic on U.S. railroads is given in

Figure 1. The container traffic seems to be the driving force in the increase of the intermodal

traffic.

Truck/rail intermodal transportation provides a cheaper way than truck alone for moving

freight over long distances. The rail part of an intermodal move needs to be long enough

1

Figure 1: Intermodal traffic from 1980 to 2005.

so that the savings of using rail outweigh the overhead of drayage and terminal cost at

both the origin and the destination. Although short compared to the rail portion, drayage

constitutes a significant component of the cost of truck/rail intermodal transportation.

Morlok and Spasovic [30] estimated that as much as 40% of the total cost of a 900 mile

movement is incurred in the drayage portion. Efficient management of drayage operations

stands out as an important issue in intermodal transportation. Because of drayage and

terminal costs, over-the-road transportation is cheaper than intermodal for short hauls.

Reduction in drayage cost will have a positive impact on the intermodal market share since

the breakeven haul length will become smaller.

1.2 Drayage Operations

In this thesis, we look at daily drayage operations from a carrier’s perspective. Daily drayage

operations in a region involve moving loaded containers and trailers between customer

locations and rail ramps within that region. A request for moving full equipment from a

shipper to a rail ramp or from a rail ramp to a consignee is referred to as a drayage order

or dray. A drayage order is called inbound if it originates at a rail ramp and outbound if

it originates at a shipper. Drayage orders may include intermediate stops between the rail

ramp and the customer location. The stop at a customer location has time windows given

by the operating hours of the location and the requirements of the drayage order. The latest

2

time for the delivery at a rail ramp is determined by the cut-off time of the train leaving

the rail ramp. The earliest time for a pick up at a rail ramp is determined by the available

time, i.e., the time when the equipment is removed from the rail and available for pickup.

Sometimes full equipment needs to be moved from one rail ramp to another rail ramp

by truck. Another type of drayage movement is the transportation of a full trailer from

a shipper location to a staging location, where the trailer is stored temporarily before

another driver delivers it to a rail ramp. Such drayage movements, which are not inbound

or outbound and take place within the region, are called staging movements. We will not

consider staging movements in this study.

Freight is moved in trailers and containers. The trailers are owned by the carrier.

Trailers and annually-leased containers are used freely by the carrier. Containers which are

not leased by the carrier must be taken back to the rail ramps from which they entered the

market once unloaded at the consignee location. Containers need to be put on chassis for

road transport. Typically, the railroads are responsible for ensuring chassis availability. In

this thesis, we limit the equipment type to trailers.

Empty trailers can be located at some customer locations, equipment yards and oper-

ating centers. There are two types of stops at a customer location–“live” stops and “drop-

and-hook” stops. In a live pickup, the driver picks up an empty trailer before arriving at

the shipper location and waits during loading at the shipper. Live stops are sometimes

called “stay-with” stops. In a drop-and-hook pickup, the driver drops an empty trailer and

picks up a pre-loaded trailer.

Relocation of empty trailers may be necessary to facilitate the movement of loaded

trailers. For instance, a driver has to pick up an empty trailer before going to a live pickup

at a shipper location following a delivery at a rail ramp. An empty trailer can be obtained

from any location with a trailer pool.

There are two types of drivers–company and third party. Company drivers work daily

shifts and start and end at their parking locations. Company drivers and third party drivers

have different cost structures. Company drivers are employed by the carrier and third party

drivers are hired on a job-by-job basis. Planning daily drayage operations involves creating

3

routes for company and third party drivers so that all drayage orders are covered. The

schedule must satisfy time windows of the stops, and the restrictions on the daily shifts of

the drivers.

1.3 Literature on Drayage Operations

A review of current literature and opportunities for operations research in intermodal trans-

portation is given in [29]. In that paper, research areas are categorized according to the

decision maker and the time horizon. The decision makers can be drayage, terminal, net-

work and intermodal operators and the time horizon of the problems are strategic, tactical

and operational. The daily dray planning problem described in this thesis can be classified

as an operational problem with drayage operator as the decision maker.

1.3.1 Strategic and Tactical Research Topics in Drayage Operations

The earlier works in drayage optimization are on the benefits of cooperation between drayage

companies. In [30] and [40], the impact of central planning on cost and service quality is

investigated. An integer programming model is solved to plan trailer and tractor movements

centrally. Estimated cost savings of 43% to 63% and improvements in service quality can

be achieved with centralized planning. A similar problem is addressed in [45].

The selection of rail ramps for intermodal orders is studied in [43]. Two heuristics

are tested for performance on 40 scenarios. The first heuristic chooses the origin and

the destination ramps for an order so that out-of-route miles are minimized. The second

heuristic minimizes total miles which include out-of-route miles and empty miles. The

scenarios for which one heuristic outperforms the other are identified.

In [23], the problem of ensuring chassis availability at rail ramps is studied. Due to

the flow of containerized freight, chassis shortage may occur in some ramps while chassis

availability is high at other ramps. Chassis can be transported by train (and by truck be-

tween ramps in the same region) to meet demand. Given the supply and demand for chassis

at each ramp over a number of periods, the objective is to find a minimim cost solution

for chassis redistribution. The problem is modeled as a time based network transportation

problem and a software system is built based on the model.

4

These examples of research in drayage operations are at the strategic or tactical level.

Before we move on to the literature on drayage at the operational level, we present an

overview of some routing and scheduling models that appear in the drayage literature.

1.3.2 Related Routing Problems

In the Vehicle Routing Problem with Time Windows (VRPTW), the goal is minimizing the

cost of servicing customers located around a central depot, where vehicle tours start and

end. The customer demand is known and it must be serviced by only one vehicle. The total

demand of the customers on a vehicle’s route cannot exceed the capacity of the vehicle.

Customers must be serviced within a time window, i.e., after the earliest service time and

before the service deadline.

The VRPTW is NP-hard and finding a feasible solution to the VRPTW with a fixed

fleet size is a NP-complete problem [36]. The exact solution methods for VRPTW are

based on column generation, Lagrangian relaxation or branch-and-cut. In [13], a column

generation based method is used for modeling VRPTW as a set partitioning problem.

The set of customers is partitioned into subsets, and each subset is serviced by a single

vehicle. Each column represents a route and the number of feasible routes can be very

large. So, initially the model is solved with a limited number of columns and a shortest

path subproblem with time window and capacity constraints is solved to identify routes that

can potentially improve the solution. In [24] and [26], a Lagrangian relaxation is used on

the requirement that all customers must be serviced. Then, the problem decomposes into

capacitated shortest path problems for each vehicle. A bundle method is used to find the

optimal Lagrange multipliers. In the branch-and-cut approach, the problem is formulated

as a mixed integer program (MIP). The linear programming relaxation of the model is

solved and if the solution is fractional, the model is resolved after the addition of valid

inequalities. Branching takes place when no more valid inequalities are added to the model.

A branch-and-cut procedure for the VRPTW is given in [4]. A 2-path cut for the VRPTW

is first used in [25], which is developed further in [11]. A comprehesive overview of the exact

and inexact solution methods for the VRPTW can be found in [12]. More recent surveys

5

of local search and metaheuristics for the VRPTW can be found in [8] and [9].

The Multiple Traveling Salesman Problem with Time Windows is a relaxation of the

VRPTW. Vehicle capacity is unrestricted. Variations of column generation approaches have

been used for this problem as well.

The Pickup and Delivery Problem with Time Windows (PDPTW) is a generalization

of the VRPTW. In the PDPTW, the customer demand is a transportation request from

a known origin to a known destination. The other attributes of the problem remain the

same. Each vehicle has a certain capacity, there are time windows at each stop, and the

fleet of vehicles use the same location as the base. The VRPTW is a special case wherein

all transportation requests originate at customer locations and end at the central depot.

A comprehensive review of the general pickup and delivery problem is presented in [37].

Colum generation is generally used for solving the PDPTW and similar problems in [49],

[16], and [38].

1.3.3 Related Literature on Drayage Optimization at Operational Level

An iterative solution procedure for solving the asymmetric multiple traveling salesman

problem with time window constraints (m-TSPTW) is described in [46]. The solution

method is developed with local truckload pickup and delivery problems in mind and designed

for problem instances which have a small number of tasks assigned to each server, which

is the case in drayage operations. Only pickup time windows are considered. So, when

an order is converted into a node by identifying its origin and destination, the node has a

single time window. The distance matrix for the nodes is asymmetric. The time windows are

discretized and at each iteration of the solution method, two versions of the problem, over-

constrained and under-constrained versions are solved. The solution to the over-constrained

problem provides a feasible solution, while the optimality gap provided by the two solutions

informs the decision maker whether to continue searching or to implement the best solution

found so far. A specific time window partitioning scheme is used to ensure that the cost of

solutions found are monotonically non-increasing.

In [22], container movements by trucks with time windows at origins and destinations are

6

modeled as an asymmetric m-TSPTW with a limit on the work shift of a driver. A two-phase

exact algorithm based on dynamic programming (DP) is used to find an optimal solution.

In the first phase, feasible routes are enumerated using DP and a set covering problem

is solved to find the best selection of routes. For larger problems, a hybrid methodology

consisting of DP with genetic algorithms is used. Both methods are compared with an

insertion heuristic.

An application of column generation for drayage can be found in [39], where empty

trailer repositioning to facilitate loaded movements is modeled using flexible orders. A

flexible order is a pickup and delivery request that specifies the origin or the destination,

but not both. Different from our assumptions on drayage operations, “live” and “drop-and-

hook” stops are allowed to be served by two drivers in this work. For instance, a driver can

bring an empty trailer to a shipper for a “live” pickup and then leave, while a second driver

arrives at the shipper later to pickup the loaded trailer. The model is a multi-resource

routing problem with flexible tasks and the solution method is a column generation-based

scheme with an insertion heuristic. The solution value of the set partitioning problem is

compared with a lower bound obtained by solving an assignment problem. Various column

generation schemes are tested on 20 instances from the Chicago area.

1.4 Uncertainty in Drayage Operations

An important part of daily drayage operations is uncertainty. New orders are called in

and some orders are cancelled or changed. The availability of drivers is also dynamic;

drivers may run into some mechanical problems or other obstacles which may make them

unavailable. Unexpected delays in transit and loading/unloading may require changes to

the original plan.

Dispatchers can follow a driver’s status via onboard communication systems. Dispatch-

ers do not give full day assignments to drivers. Instead, they plan 3-4 hours into the future,

so that the drivers know where to go next. As the day progresses, dispatchers update driver

assignments. Dispatchers try to balance the workload among company drivers, and make

7

sure that company drivers get enough tasks assigned before third party companies are uti-

lized. A fast decision support system which can handle the dynamic changes and account

for uncertainties can be very helpful to dispatchers in making suggestions and comparing

different solutions.

1.5 Literature on Routing With Uncertainty

In [27], a method for real-time dispatching of automobile service units with soft time win-

dows is presented. The underlying VRPTW is solved repeatedly by a highly tuned column

generation-based method. The convergence of the method is accelerated by dynamic pricing

control. Due to the nature of the problem, routes that cover a limited number of orders

are favored by optimal solutions. This fact enables the use of a set partitioning formulation

with column generation in a real-time environment.

A stochastic and dynamic model for the pickup and delivery problem is studied in [42].

The demand follows a Poisson process. The pickup and delivery locations are distributed

uniformly and are independent. The objective is to minimize the expected time in system

for demands. Three policies are compared and the nearest neighbor policy outperforms the

other policies.

A generic real-time multivehicle truckload pickup and delivery problem is studied in [50].

Various cost types such as cost of empty travel, delays and order rejections are included.

An MIP formulation is developed for the offline problem. Two of the policies are based on

reoptimization and outperform the local heuristic rules in simulation.

Probabilistic information on future customer demands is used in [6] for solving a dynamic

vehicle routing problem with time windows. In the Multiple Plan Approach (MPA), routing

plans that are compatible with current decisions are continously generated. At each event,

a list of plans and a distinguished plan is updated in MPA. The distinguished plan is chosen

according to a consensus function such that the plan selected has the most similar routing

to other plans in the list. The idea is based on a least commitment strategy, which is

used in the artificial intelligence community. In the Multiple Scenario Approach (MSA),

routing plans for multiple future scenarios are generated by sampling potential orders from

8

probability distributions. MSA and MPA are compared to a greedy approach and the best

performance is given by MSA in general. Both the consensus function and utilization of

stochastic information seem to be important in getting good solutions.

Anticipatory route selection is investigated in [44]. The problem setup is representative

of less-then-truckload operations. The goal is to construct a route with minimum expected

total cost between two given nodes while servicing random pickup requests at intermediate

nodes. The total cost is reduced by the reward gained from servicing customers. Each

customer node can have at most one reward, and the likelihood of a pickup request is

known as a function of time. The problem is modeled as a Markov decision process. The

optimal policy utilizes the stochastic information to choose the route that can accommodate

potential future pickups. The benefits of anticipation are demonstrated by comparing the

optimal anticipatory policy with a reactive policy that does not take into account potential

future orders.

In [41], the dynamic vehicle routing problem is simplified with the assumption that a

resource (container, vehicle, or driver) can serve only one task in one period. Under this

assumption, an adaptive, nonmyopic algorithm that involves iteratively solving sequences

of assignment problems is developed. The value of advance information is tested in this

study as well.

Random customer demands, travel times and user noncompliance in dynamic routing

and scheduling of truckload transportation are studied in [32]. The impact of each type of

uncertainty on the value of optimal myopic solutions is investigated separately. The problem

is modeled as a dynamic assignment problem in which all known orders are assigned to

drivers. The degree of dual variable utilization is controlled by the dual variable discounting

factor. When the discounting factor is 1.0, the solution of the model is an exact optimal

solution for covering known orders. When the discounting factor is 0, the solution of the

model is equivalent to the greedy solution. The simulation runs suggest that the most

robust value for dual discount factor is 0.75 for all three types of uncertainty. The results

also suggest that uncertainty reduces the value of exact optimal solutions in a dynamic

setting.

9

In [10], the home delivery problem is defined to model grocery delivery services. The

solution should specify which deliveries to accept or reject as well as the time slot for the

accepted deliveries while maximizing expected total profit. Delivery requests are revealed

dynamically to the decision maker and the probability distribution of the latest time to

request a delivery is known for each customer. An insertion heuristic with various criteria

is tested on randomly generated instances.

In [17], a dynamic dispatching system that handles random arrivals of customers, who

require a transport from a pickup location to a destination, is considered. The dispatching

system processes online traffic information dynamically to calculate shortest paths. An

assignment problem based resolution strategy gives the best performance. The cost matrix

of the assignment problem includes factors such as unattractiveness of a location.

In [18], the problem is vehicle routing with stochastic demand and customers and in [28],

the problem is vehicle routing with stochastic travel times. The two papers are similar in

the sense that a two-stage stochastic formulation with a simple recourse function is used in

both. More information on dynamic vehice routing and dispatching research can be found

in [19], [33], and [7].

The literature on routing problems can be grouped into two classes depending on avail-

ability of stochastic information on future changes. For problems that are dynamic with

no stochastic information, the solution approaches typically choose to reoptimize when new

information becomes available using exact optimization or heuristics. If stochastic informa-

tion on future changes is available, the solution methods try to take advantage of the extra

information in various ways. Due to the short time horizon in daily drayage operations and

high variability from day-to-day, we think an online model with no prior information on

future changes is more appropriate for our problem. Our solution method differs from other

methods of solving dynamic routing problems in trying to plan for future changes in the

absence of stochastic information. In order to gain more insights that can be useful in the

dynamic problem with multiple drivers, we study the theoretical properties of a stochastic

drayage problem with a single driver and one customer. The analysis for the problem with

a single driver and one customer location is similar to the analysis in [44], which models

10

less-than-truckload pickups instead of pickup and delivery requests.

1.6 Contributions

In the next chapter, we address the modeling of daily drayage operations with static data,

and provide a formulation which can be heuristically solved to near-optimality in reasonable

time. The model captures important aspects of daily drayage operations such as empty

relocation requirements. In the remainder of the thesis, we present and study two abstract

models of drayage operations with dynamic addition of new orders, in order to build a

foundation for larger and more comprehensive drayage models with uncertainty.

In Chapter 2, we study the Static Daily Drayage Problem. We present a column-

generation based formulation for the problem. We show that instances based on the real-

world data can be solved in reasonable time by caching calculations effectively. We devise

an enumeration-based solution method that can solve smaller instances and we convert the

enumeration-based method into a heuristic column generation-based method that can be

used to solve larger instances.

The details of the problem and the model are given in Section 2.2. Enumeration-based

and column generation-based solution methods and techniques used to improve running

time are described in Section 2.3. Numerical results using historical real-world data are

given in Section 2.4. A discussion of implementation challenges in Section 2.5 is followed

by the conclusions in Section 2.6.

In Chapter 3, we study our first model with uncertainty, namely the Online Daily

Drayage Problem. This chapter addresses minimizing total empty mileage when driver

capacity is not restrictive and new orders are added to the problem in an online fashion. We

present a lower bound for the worst case guarantee of any deterministic online algorithm. We

develop a solution methodology based on the solution of the Static Daily Drayage Problem

and provide results for the performance of different scheduling policies and parameters in a

simulated environment.

The introduction and the motivation for the Online Daily Drayage Problem are presented

in Sections 3.1 and 3.2, respectively. We describe the problem in detail in Section 3.3, which

11

includes the simplifying assumptions in Section 3.3.1, the online nature of the problem in

Section 3.3.2, feasibility issues in Section 3.3.3 and an example in Section 3.3.4. The first

solution methodology and scheduling policies are described in Section 3.4. In Section 3.5,

we define an ideal solution which we use to evaluate the performance of the solution method.

In Section 3.6, we prove a lower bound for the performance guarantee of any determinis-

tic online algorithm. The simulated performances of various scheduling policies are given

in Section 3.7. We modify the solution methodology to reward solutions which allow for

insertion of new orders into their schedule and introduce a new scheduling policy in Sec-

tion 3.8. The new computational results are given in Section 3.9. The assumption of no

prior knowledge of future orders is discussed in Section 3.10, followed by conclusions in

Section 3.11.

In Chapter 4, we study a system with one rail ramp and one customer location which

is served by a single driver. The problem has discrete time periods and at most one new

order is released randomly each time period. The objective is to maximize the expected

number of orders covered. With this simple problem, we seek to learn more about route

planning for a single driver. We prove that carrying out an order ready to be picked up

at the driver’s current location is optimal for the case with one customer location. We

show that the structure of the optimal policies is not simple. We devise a simple policy

which yields provably near-optimal results. We identify a case for which this simple policy

is optimal.

After the introduction and the description of the problem, we present a finite-horizon

Markov decision process formulation for the problem in Section 4.3. We explain our method

of calculating the optimal expected value and the observations we use to speed up the

calculations in Section 4.4. In Section 4.5, we analytically study conditions under which the

driver should wait or move to the other location when there are no orders in the system. We

give analytical answers up to five periods and show that the answer depends on parameter

values for five or more periods. The numerical calculations in Section 4.6 demonstrate that

the parameter and the probabilities determine optimal policies in a complicated way. We

present a provably near-optimal and simple-to-state policy in Section 4.7. In Section 4.8,

12

we show that the policy can be optimal in a special case. The extension to two customer

locations and other generalizations are given in Sections 4.9 and 4.10, respectively. The

conclusions for the chapter are given in Section 4.11. We present our conclusions for the

thesis and thoughts for future research directions in Chapter 5.

13

CHAPTER II

STATIC DAILY DRAYAGE PROBLEM

2.1 Introduction

In the Static Daily Drayage Problem, our goal is to minimize the cost of daily drayage

operations in a region on a given day. Drayage operations involve moving loaded and

empty equipment between rail ramps, shippers, consignees, and equipment drop lots. While

drayage equipment can include containers as well as trailers, only trailers are considered in

this study.

There are two general types of driver activities in the Static Daily Drayage Problem–

carrying out drayage orders and repositioning empty trailers. Drayage orders involve moving

loaded trailers and may contain requests for intermediate stops as well. The set of drayage

orders is given and all orders must be satisfied, i.e., order rejection is not allowed. Reposi-

tioning of empty trailers may be required depending on the sequence and the types of the

orders on a route. In some cases, a driver may have to pick up an empty trailer or drop

an empty trailer before carrying out an order. Since the need for repositioning an empty

trailer changes with the routing decisions, two routing plans covering the same set of orders

may have a different set of empty trailer repositioning activities.

The drayage orders are covered by a heterogeneous fleet which includes company drivers

and third party drivers. Driver routes must satisfy various operational constraints such as

maximum work hours. The cost of a route depends on the type of driver executing the

route. The cost of a driver may depend on various factors such as driver type, working

hours, mileage, detention and minimum daily cost.

The details of the Static Daily Drayage Problem and our model are explained in Sec-

tion 2.2. In Section 2.3, we present our solution methods. Numerical results for the per-

formance of the methods on real-world data are given in Section 2.4. Section 2.6 gives our

conclusions for this chapter.

14

2.2 Modeling Daily Drayage Operations

We create daily work schedules for a heterogeneous set of drivers so that all drayage orders

are satisfied. Each order is composed of a pre-determined sequence of stops with disjoint

time windows. The first stop of an order is a pickup and the last stop of an order is a

delivery. Let O denote the set of orders.

Each driver has a designated starting location and ending location. Other driver at-

tributes include maximum work hours, and earliest and latest start times. Drivers with the

same attributes are grouped together. Let D denote the set of driver groups, and let dj

denote the number of drivers in group j ∈ D. Grouping drivers helps reduce the symmetry

in the model.

A route describes a driver’s daily work schedule from start to finish. Each route as-

signment pairs a route with a driver group. Let R denote the set of all feasible route

assignments. Let Rj denote all feasible route assignments that can be carried out by driver

group j. Since each route assignment is carried out by a unique driver group, Rj partitions

R. Let Ri denote the set of route assignments that cover order i.

For each driver, a minimum daily cost is incurred regardless of the actual work carried

out by the driver. We normalize the cost of a route assignment by subtracting the minimum

daily cost, which is independent of the planning decisions. A plan is a collection of route

assignments such that all drayage orders are covered exactly once without violating driver

capacity. The cost of a plan is the total normalized cost of route assignments selected.

In the remainder of Section 2, we explain in detail various aspects of daily drayage

operations, leading up to presenting our model. These aspects include drayage orders,

drivers, trailer pools, constraints on route assignments, and costs.

2.2.1 Drayage Orders

A drayage order specifies a given sequence of stops. The stops are well defined; all of the

attributes of a stop including location and duration are given as part of the order description.

Stops may have multiple time windows.

The types of drayage stops are described in Table 1. “In tow pre-condition” describes

15

what equipment, if any, the driver must have in tow upon arrival at the stop location.

“In tow post-condition” describes what equipment, if any, the driver will have in tow after

completing the stop. “Empty” means an empty trailer, “Loaded” means a loaded trailer

and “None” means no trailer in tow.

Table 1: Drayage stop types
Type Description In Tow Condition

Pre Post

DE&PL Drop empty trailer & pick up preloaded trailer Empty Loaded
DL&PE Drop loaded trailer & pick up empty trailer Loaded Empty
PL W Live loading Empty Loaded
DL W Live unloading Loaded Empty

PE Pick up empty trailer None Empty
DE Drop empty trailer Empty None
PL Pick up loaded trailer None Loaded
DL Drop loaded trailer Loaded None

The first four stop types in Table 1 can be grouped into two general classes called drop-

and-hook and live. At a drop-and-hook stop (i.e., DE&PL or DL&PE), the driver drops

one trailer and hooks to another. Drop-and-hook stops occur at customer locations with

trailer pools. In general, the duration of a drop-and-hook stop is shorter than the duration

of a live stop. At a live stop (i.e., PL W or DL W), the driver must wait while the driver’s

trailer is loaded or unloaded. Live stops usually occur at customer locations without trailer

pools. We assume that rail ramps do not have trailer pools. Hence, only loaded trailers

are picked up or dropped at rail ramps. Pickup (or delivery) at a rail ramp is denoted by

PL (or DL). PE (pick up empty trailer) and DE (drop empty trailer) type stops can be

at customer locations with trailer pools or any other location (e.g., a drop yard) with a

trailer pool. At a drop-and-hook stop, the total number of trailers at the customer location

remains unchanged, since one trailer is left and one is removed.

A drayage order is composed of a sequence of stops. Admissible sequences are given

in Table 2. The first two types of orders are called inbound and the second two are called

outbound. Inbound (outbound) orders start at a rail ramp (customer location) and end at a

customer location (rail ramp). The last type of drayage order is an empty trailer relocation

request. Drayage orders typically have two stops (one for pickup and one for delivery), but

16

in some cases, also include one or more intermediate stops. For instance, a driver may have

to visit two locations to pick up freight. By necessity, all intermediate stops are live stops.

In Table 2, [X]∗ means stop type X can repeat 0 or more times.

Table 2: Admissible sequences for drayage orders
1: PL → [DL W]∗ → DL W
2: PL → [DL W]∗ → DL&PE
3: PL W → [PL W]∗ → DL
4: DE&PL → [PL W]∗ → DL
5: PE → DE

2.2.2 Drivers

All drivers with the same attributes are put in the same driver group. The attributes of a

driver in group j are:

1. Earliest starting time, tjs

2. Latest starting time, tjs′

3. Starting location, ljs

4. Ending location, lje

5. Maximum work hours, wj

6. Driver type, gj

7. Cost function, fj(.)

8. Minimum daily cost, µj

Drivers can be one of two types–company driver (CD) and third party (TP). Each type

can contain several driver groups. Minimum daily cost represents the fixed cost of having

a driver on duty, whether or not that driver actually drives. For company drivers, µj > 0

while for third parties, µj = 0 since company drivers are carrier employees and third party

drivers are paid on a job-by-job basis. The cost functions are explained in Section 2.2.5.

17

The starting location and the ending location of a driver is typically an operating center

where the driver parks his tractor overnight. If a company driver is covering at least one

order, then he has to start his route assignment between his earliest and latest starting

times. The earliest and the latest starting times for third party drivers are set to the

beginning of the time horizon and infinity, respectively, so that a third party driver can

start a route assignment any time of the day. The work hours start accumulating when a

driver leaves his starting location and stop when he parks at the ending location. For all

drivers, there is a limit on the total work hours.

For simplicity, we assume that drivers start and end the day without a trailer. However,

it is possible to relax this assumption by extending driver attributes to include starting and

required ending trailer state.

2.2.3 Empty Trailers

Trailers are shared by a number of operations besides drayage including over-the-road and

regional movements. In its current status, accurately modeling the trailer capacity requires

stepping outside the scope of drayage operations. Therefore, we chose to assume that empty

trailers are readily available at specified locations. Our model takes into account additional

time and distance required to pick up or drop empty trailers, but not limitations on trailer

availability.

2.2.4 Feasible Route Assignments

Each route is constructed for a specific driver group. Let D denote the set of driver groups.

Let r be a route assignment for driver group j, i.e. r ∈ Rj . Let τ r
s denote the starting time

and τ r
e denote the end time for the route. Then, the route must

• start at location ljs at time τ r
s ∈ [tjs, t

j
s′], and

• end at location lje at time τ r
e such that τ r

e − τ r
s ≤ wj .

In addition to the constraints for the starting time and work hours, the schedule of r must

also satisfy the time windows for the stops on the route.

18

A driver has to complete one order before starting another. In order to satisfy empty

trailer requirements, the driver may have to make extra stops which are not part of any

order. The driver may have to drop or pick up an empty trailer before executing the first

stop of an order or before parking at the ending location. For instance, if the driver has

no empty trailer and the next stop on the route is a DE&PL, the driver must pick up an

empty trailer (PE) before deadheading (i.e., driving with an empty trailer in tow) to the

next stop. Alternatively, if the driver has an empty trailer in tow and the next stop is a

pickup at a rail ramp, the driver must drop the empty trailer and bobtail (i.e., drive with

no trailer in tow) to the rail ramp. All possible cases are summarized in Table 3, where ℓ

denotes the location for the next stop.

Table 3: Rules for adding extra stops to a route
In Tow Next Stop Extra Stop Type

None DE&PL ⇒ PE at any pool location except ℓ
Empty DE&PL ⇒ -
None PL ⇒ -
Empty PL ⇒ DE at any pool location
None PL W ⇒ PE at any pool location except ℓ
Empty PL W ⇒ -
None PARK ⇒ -
Empty PARK ⇒ DE at any pool location

Although all stops of an order have pre-determined locations, the locations of extra

stops are flexible. Suppose that the next stop’s type is DE&PL. Then, ℓ must be a pool

location (refer to the discussion of drop-and-hook vs. live pickup in Section 2.2.1). Hence,

the extra stop can be at any trailer pool location except ℓ. If the next stop’s type is PL,

then location ℓ does not have a trailer pool and the driver can go to any trailer pool to

perform the extra stop. We assume that extra stops do not have time windows. In the

“Extra Stop Type” column of Table 3, we use “-” when an extra stop is not required.

2.2.5 Objective

The type of a driver determines that driver’s cost structure. The cost of route assignment

r for a company driver in group j is given by the formula

max
(
µj , h · (τ

r
e − τ r

s)
)
,

19

where h is the cost per hour for a company driver.

The cost of route assignment r for a third party driver from group j, denoted by urj , is

the sum of mileage, placement, detention and bobtail costs. Placement and detention costs

depend on the stops. Each stop of the type DE&PL, DE, DL&PE or DL W is considered

a placement and incurs a fixed cost. Let nr be the number of placements in r and pj

be the cost of each placement. The placement cost is given by u1
rj = nr · pj . Carriers’

mileage charges include an allowance to cover the time required to load and unload. When

drivers are detained longer than two hours, carriers charge an additional detention charge.

Detention cost is a non-decreasing function of stop duration. Let ∆j denote the cost of

detention per 15-minute period and δk denote the duration of stop k in minutes. If there

are Kr stops in r, the detention cost is given by

u2
rj =

Kr∑

k=1

ηk, where ηk =

0 if δk < 120,

∆j ·
⌊

δk−120
15 + 0.5

⌋
otherwise.

Let θj denote the cost per mile and mr denote the total mileage excluding the first and last

legs of the route. The mileage cost is given by u3
rj = mr · θj . In the last leg of the route,

the third party driver bobtails back to a designated end location. The cost for this leg is

calculated separately as bobtail cost. Let br denote the bobtail mileage. The bobtail cost

is given by

u4
rj =

0 if br < 50,

θj · br if 50 ≤ br < 100,

θj · br + pj if br ≥ 100.

The total cost for r is urj = u1
rj + u2

rj + u3
rj + u4

rj .

In summary, the cost function for driver group j is given by the formula:

fj(r) =

max
(
µj , h · (τ

r
e − τ r

s)
)

if gj = CD

urj if gj = TP.

For each route assignment r ∈ Rj , we define the normalized cost of the route assignment,

20

cr, to be cr = fj(r)− µj . Hence,

cr =

max
(
0, h · (τ r

e − τ r
s)− µj

)
if gj = CD

urj if gj = TP.

The objective is to minimize the total normalized cost.

2.2.6 Formulation

We formulate the following integer program with 0-1 variables for each feasible route as-

signment. The output of the model is a minimum cost plan.

DRAY AGE(O, D, R) : min
∑

r∈R

crxr (1)

∑

r∈Ri

xr = 1 ∀i ∈ O (2)

∑

r∈Rj

xr ≤ dj ∀j ∈ D (3)

xr ∈ {0, 1} (4)

The constraints (2) ensure that all orders are satisfied. The constraints (3) enforce capacity

for each driver group. Solutions to this model represent plans, where a route assignment r

is in the plan if and only if xr equals 1.

The main advantage of this formulation is that the complicated route feasibility con-

straints and cost functions are stated explicitly in the route assignments thereby avoiding

the need to include complex side constraints. The main disadvantage is that the number of

route assignments can be very large. However, it is not necessary to enumerate all of the

variables beforehand.

2.3 Solution Method

A branch-and-bound method is used to solve this integer programming formulation. At

the first stage, a subset of feasible routes is used to create an initial linear programming

(LP) relaxation of the model. The LP relaxation is solved to optimality and dual values

are obtained. The dual values are used to calculate the reduced costs for feasible route

assignments (columns) which are generated by a column generator. Columns with negative

21

reduced costs are collected for each driver group and are added to the formulation. After

adding the new columns to the model, the resultant LP relaxation is re-solved and new

dual values are obtained. This column generation cycle is repeated until no columns with

negative reduced cost can be found. Then, integrality constraints are enforced and the

integer programming model is solved by standard branch-and-bound techniques [31].

When the column generation is completed (i.e., no columns with negative reduced costs

are found), the objective value of the final LP relaxation is the same as the optimal value

of the LP relaxation with the full set of columns. On the other hand, the resulting solution

for the integer program may not be optimal, since columns are not generated at every node

of the branch-and-bound tree [5].

An alternative approach is to enumerate all of the columns up front and to solve the

resultant integer program. This approach guarantees an optimal solution. However, enu-

meration becomes impractical as the number of orders grows. Another possibility is to gen-

erate columns throughout the tree; implementing such an approach is problematic, though,

since commercial software such as CPLEX 9.0 does not support this option.

The description of our route enumeration algorithm is given in Section 2.3.1. In Sec-

tion 2.3.2, we modify the enumeration algorithm to obtain a column generation scheme.

2.3.1 Enumerating Route Assignments

For every driver group, a search tree for finding feasible route assignments is created. The

root node of the search tree corresponds to a dummy route covering no orders. The children

of the root node represent route assignments that cover single orders. Branching continues

by appending orders to the end of each route. Each node of the tree represents a unique

subsequence of orders. We check for the existence of a feasible route by carrying out the

orders in the given sequence, inserting extra PE or DE stops when necessary. We add

feasible routes to the route list and continue branching on feasible routes that do not cover

all orders. We prune the search tree at nodes corresponding to infeasible routes since any

route beginning with the same sequence of orders must also be infeasible.

Given a fixed sequence of orders sr, we check the feasibility of the route assignment r by

22

first inserting any necessary empty trailer relocation stops into the route (see Section 2.2.4)

and then searching for a feasible schedule that minimizes route duration. Whenever an

empty trailer needs to be picked up or dropped to be able to continue the route, we choose

the trailer pool that minimizes the time added to the route. Since we assume unlimited

capacity for trailer pools and no time windows for extra stops, the additional time is simply

the total time required for driving from the current stop to the pool location, picking up or

dropping an empty trailer and driving from the pool location to the next stop.

After selecting pool locations for extra stops, we schedule the route such that its dura-

tion, τ r
e −τ r

s , is minimized. If the assignment duration is more than wj , then the assignment

is infeasible. When gj = CD, minimizing route assignment duration allows us to choose

the schedule that minimizes cr for a fixed order sequence sr.

We now present a small example to illustrate our enumeration scheme. After the ex-

ample, we describe the elimination of dominated route assignments. We introduce the

precedence feasibility matrix we use to speed up the enumeration. Finally, we present

pseudocode for the enumeration-based method.

2.3.1.1 An Example

1:00

1:15

1:15

0:15

1:00

1:15
1:00

1:00

1:45

C3

C2

C1

D

P

R

Figure 2: Example with three orders. The transit times are given in HH:MM format.

We use the example problem in Figure 2 to illustrate the construction of a search tree.

The locations and the transit times are given in the figure. R denotes a rail ramp. None of

23

the customer locations (C1, C2, and C3) have trailer pools. Location D, a drop yard, has

the only trailer pool. The problem includes three orders, which are represented by directed

arcs. Details of these orders are given in Table 4. The duration for a PE or DE stop at

location D is 15 minutes. Let location P be the starting and ending location for driver

group 1. Drivers in this group start at 8:00 AM and can work at most 12 hours.

Table 4: Orders in the example problem
Order Stop Stop Type Location Time Win. Duration (HH:MM)

Order 1 Stop 1 PL W C1 - 1:30
Stop 2 DL R - 0:30

Order 2 Stop 1 PL R [8:00 AM, 11:00 AM] 0:30
Stop 2 DL W C2 - 1:30

Order 3 Stop 1 PL W C3 - 0:45
Stop 2 DL R - 0:30

Suppose that we start branching with order 1. We check for the existence of a feasible

route for r with sr = (1). The route for r starts at location P. In order to satisfy the in tow

pre-condition for order 1, the driver must first go to location D to pick up an empty trailer

(PE stop). After transporting order 1 from location A to the rail ramp, the driver leaves

the ramp and travels to the park location P. The minimum total duration of the route is

6 hours and 15 minutes, which is less than the maximum work hours. There are no time

windows for the stops of order 1. Therefore, r is feasible and we add it to the feasible route

assignments list. Suppose that we continue branching by appending order 2 after order 1.

The new route for q with sq = (1, 2) is the same as the route for r until the driver completes

order 1. The earliest time that the driver can complete order 1 is 12:30 PM, but the latest

pickup time for order 2 is 11:00 AM. Therefore, q is infeasible. We prune the search tree

at the node associated with sq = (1, 2), and backtrack to the parent node with sr = (1).

The search continues until all route assignments corresponding to the nodes of the tree are

evaluated or pruned.

For our small example, the search tree for driver group 1 is given in Figure 3. Pruned

nodes are outlined with dashed lines. Nodes corresponding to feasible route assignments are

outlined with solid lines. We showed that the node labeled with (1,2) is pruned because the

pickup time window of order 2 is violated. In most of the other pruned nodes, the maximum

24

1,3

321

3,1 3,21,2 2,1 2,3

2,1,3 2,3,1

Figure 3: Search tree for driver group 1

route duration is violated. The depth of the search tree is bounded by the number of orders,

which is 3 in this example. There are 5 feasible route assignments for group 1.

2.3.1.2 Dominated route assignments

We collect feasible route assignments for all driver groups into a single list and use this list

to create the integer programming model. In order to reduce the number of columns in the

model, dominated columns are deleted from the list.

Definition 1. Route assignment r dominates route assignment q if

• r and q cover the same set of orders,

• r and q belong to the same driver group, and

• cr < cq.

Eliminating dominated columns helps reduce memory usage and improves solution time.

Proposition 1. Let r, q ∈ Rα for some α ∈ D with r dominating q. Let OPT (O, D, R)

denote the optimum cost for DRAY AGE(O, D, R). Let R∗ denote the set of route assign-

ments in an optimal solution. Then, OPT (O, D, R∗) = OPT (O, D, R \ {q}).

Proof. Suppose for a contradiction that q ∈ R∗. Then, r /∈ R∗ since in a feasible solution

each order is covered exactly once. Consider a new solution R̃ = (R∗ ∪ {r}) \ {q}. The set

of constraints (2) is still satisfied by R̃ since q and r cover the same set of orders. In the

25

driver capacity constraint for group α, xr + xq remains equal to one. We have

OPT (O, D, R̃) = OPT (O, D, R∗) + cr − cq︸ ︷︷ ︸
<0

< OPT (O, D, R∗),

which contradicts the fact that R∗ is an optimal solution. Therefore, q /∈ R∗. If q /∈ R∗,

then we have R∗ ⊆ R \ {q}, which implies OPT (O, D, R \ {q}) = OPT (O, D, R∗).

2.3.1.3 The precedence feasibility matrix

The feasibility check is the most time-consuming part of the enumeration step. The prece-

dence feasibility matrix speeds up the enumeration process by allowing us to prune many

infeasible combinations.

Definition 2. For each driver group j, we define a precedence feasibility matrix F j, which

is a binary |O|× |O| matrix, where F j
ab denotes the entry in the ath row and the bth column.

F j
ab is 0 if order b cannot follow order a on any feasible route assignment for group j and

1 otherwise.

We initialize all entries of F j to 1 except for F j
aa, ∀a ∈ O (since an order cannot appear

on a route twice). We relax the empty relocation requirements and enumerate all routes

that cover two orders. We set F j
ab = 0 for routes r with sr = (a, b) that are infeasible even

under relaxed assumptions. This procedure creates a valid precedence feasibility matrix

under the assumption that transit times satisfy the triangle inequality. The precedence

feasibility matrix is not necessarily symmetric since, with time windows, the fact that one

order can precede another does not imply the reverse.

We relax the empty repositioning requirements for populating F j because inserting an

order between two orders may decrease the total time required to cover both orders in some

cases. This unlikely case is illustrated in Figure 4 with an example. Suppose that we are

considering route r with sr = (a, b) such that order a has a DL&PE which is followed by a

PL for order b. Now, the driver must drop the empty trailer before picking up order b at the

rail ramp. Route r may become infeasible if the closest trailer pool is too far away. Suppose

that we insert an order c that must be moved from a location close to the delivery location

of order a to the rail ramp from which order b originates. If the stop durations of order c do

26

not take much time, the insertion of order c may create a feasible route assignment from an

infeasible one. Though possible in theory, inserting such an order is not likely to improve

chances of feasibility, since live loading is typically time consuming.

Trailer pool

Order a

Order b Order b

Order a

DL&PE DL&PE

PL W

DL

PLPL

Order c

Figure 4: The insertion of an order may reduce the time required to complete a route
assignment. The dashed circles denote locations with a trailer pool.

The precedence feasibility matrix can be used for pairs of orders which do not appear

consecutively on a route. For example, consider a route assignment r ∈ Rj with order

sequence sr = (2, 1, 3). If the precedence feasibility matrix shows that order 3 cannot be

carried out after order 2 (i.e., F j
23 = 0), then r and all route assignments formed by append-

ing orders to the end of r must be infeasible. A more formal statement is in Proposition 2.

Proposition 2. Given r ∈ Rj for some j ∈ D with sr = (a1, a2, . . . , aK), r is infeasible if

there exists α and β where 1 ≤ α < β ≤ K, and F j
aαaβ

= 0.

Proof. For a contradiction, suppose that route r with sr = (a1, a2, . . . , aK) is feasible. If

we remove the repositioning requirements, the driver can simply skip empty repositioning

stops. Route r is still feasible because transit times satisfy triangle inequality. Similarly,

we can remove all of the orders of sr except aα and aβ while preserving feasibility. The

resultant route assignment with sr = (aα, aβ) is feasible which contradicts the way F j
aαaβ

is

initialized.

27

2.3.1.4 Pseudocode for The Enumeration-based Method

In this section, we provide the general framework for our implementation of the enumeration-

based algorithm. The pseudocode briefly describes the flow of our algorithm and how we

use the techniques described in Section 2.3.1. We omit the implementation details for the

sake of simplicity. Algorithm 1 outlines the depth first search (dfs) which uses cached

results for best pool choices, the precedence feasibility matrix and the route assignment

domination. We call the dfs algorithm for each driver group j with the corresponding

precedence feasibility matrix, F j . The pool cache, P , keeps the best pool choices. The

non-dominated route assignments for driver group j are in Rj . The algorithm is recursive.

We update the driver status (w), the sequence of orders (S) and the corresponding partial

route (r) after appending an order to the route assignment and recursively call Algorithm 1

with updated parameters.

28

Algorithm 1 dfs(S, F j , P, Rj , w, r)

1: for a ∈ O do

2: r′ ← r, w′ ← w
3: for s ∈ S do

4: if F j
sa = 0 then

5: Go to line 1
6: end if

7: end for

8: if An empty relocation is needed before moving order a then

9: Get the best trailer pool for w′ and a from P
10: if Adding the extra stop for the empty relocation is feasible then

11: Add the new stop to r′, update driver status w′

12: else

13: Go to line 1
14: end if

15: end if

16: for Each stop of order a do

17: if Adding the extra stop is feasible then

18: Add the new stop to r′, update driver status w′

19: else

20: Go to line 1
21: end if

22: end for

23: s′ ← (s, {a})
24: if An empty relocation is needed before going back to park location then

25: Get the best trailer pool for w′ and the park location from P
26: if Adding the extra stop for the empty relocation is feasible then

27: Add the new stop to r′, update driver status w′

28: else

29: Go to line 1
30: end if

31: end if

32: if Going back to park location is not feasible then

33: Go to line 1
34: else

35: r̄ ← r′, add the final parking stop to r̄
36: Calculate the cost for r̄
37: for Each route assignment q in Rj do

38: if r̄ dominates q then

39: Rj = Rj \ {q}
40: else

41: if q dominates r̄ then

42: Go to line 48
43: end if

44: end if

45: end for

46: Rj ← Rj ∪ {r̄}
47: end if

48: Recursively call dfs(s′, F j , P, Rj , w′, r′)
49: end for

29

Algorithm 2 enumerates the set of all feasible and non-dominated route assignments by

calling dfs, populates the corresponding IP instance and solves the instance with the help

of an IP solver.

Algorithm 2 enumeration(O, D, L)

1: INPUT: Set of orders, O, set of driver groups, D, set of locations, L
2: R← ∅
3: for c, d ∈ L do

4: Initialize Pcd

5: end for

6: for j ∈ D do

7: for a, b ∈ O do

8: Initialize F j
ab

9: end for

10: S ← ∅, Rj ← ∅
11: Call dfs(S, F j , P, Rj)
12: R← R ∪Rj

13: end for

14: Given R, O and D, create an instance of DRAY AGE(O, D, R)
15: Solve DRAY AGE(O, D, R) with an IP solver
16: OUTPUT: An optimal set of route assignments

2.3.2 Generating Route Assignments

In column generation, we seek route assignments that not only are feasible, but also have

negative reduced cost. Route assignment generation is implemented based on the enumera-

tion scheme described in Section 2.3.1. The search is carried out separately for each driver

group. When the number of new columns for a driver group reaches an upper limit, we

terminate the search for that particular driver group and start the search for the next driver

group. When there are no more driver groups left to search, all new columns are added to

the LP formulation and the next column generation cycle begins.

When the upper limit on the number of new columns is not binding, the column genera-

tion algorithm as described above may take as long as enumeration. To avoid long running

times, we use a labeling scheme for additional pruning. We keep a list of non-dominated

labels, denoted Li, for each order i. Initially, Li = ∅,∀i ∈ O. As we traverse the search

tree, we add a new label lr to Li for each feasible route assignment r, where i is the last

30

order covered by r. Each label lr keeps the earliest completion time, the reduced cost, and

the minimum duration for route r. We say lr dominates lq if lr is less than or equal to lq

componentwise. If lr is dominated by a label in Li, then we prune the search tree at the

node corresponding to r. Otherwise, we add lr to Li, remove dominated labels from Li and

continue traversing the search tree.

The labeling scheme as described above is inexact. An exact labeling scheme needs to

take into account the set of orders covered since we are solving a constrained “elementary”

shortest path problem (i.e., constrained shortest path problem with no cycles allowed). A

survey of constrained shortest path problems and methodology is given in [14]. We used

the column generation-based method with labeling to obtain solutions. Since the labeling

scheme may miss some route assignments which have negative reduced cost, we calculated

LP relaxation values separately in order to get valid lower bounds for our instances. To solve

the LP relaxation to optimality, we started by using the column generation scheme with

labeling. When no route assignments with negative reduced cost were found, we switched

to exact column generation by turning off the labeling scheme.

In Algorithm 3, the changes to dfs are highlighted in bold letters. In addition to the

set of parameters passed to Algorithm 1, dual variables (π), and label sets (Lj for driver

group j) are needed in Algorithm 3. The logic for the overall generation-based method is

outlined in Algorithm 4. The set of locations and the limit on the number of columns per

cycle are denoted by L and M , respectively, in Algorithm 4. The output of Algorithm 4 is

an optimal set of route assignments.

31

Algorithm 3 dfs(S, F j , P, Rj , w, π,Lj)

1: for a ∈ O do

2: The steps from 3 to 31 of Algorithm 1 are repeated here
3: if Going back to park location is not feasible then

4: Go to line 1
5: else

6: r̄ ← r′, add the final parking stop to r̄
7: Calculate the reduced cost for r̄ with π
8: Create a new label l for order a using r̄
9: if There is a label in Lj

a that dominates l then

10: Go to line 1

11: else

12: Remove the labels in Lj
a that are dominated by l

13: end if

14: if r̄ is not dominated by a route assignment in Rj then

15: if r̄ dominates a route assignment q in Rj then

16: Rj = Rj \ {q}
17: end if

18: if The reduced cost of r̄ is negative and |Rj | ≤ K − 1 then

19: Rj ← Rj ∪ {r̄}
20: end if

21: end if

22: end if

23: Recursively call dfs(s′, F j , P, Rj , w′, r′, π,Lj)
24: end for

32

Algorithm 4 generation(O, D, L, M)

1: R← ∅
2: for c, d ∈ L do

3: Initialize Pcd

4: end for

5: for j ∈ D do

6: for a, b ∈ O do

7: Initialize F j
ab

8: end for

9: end for

10: Given R, O and D, create an instance of DRAY AGE(O, D, R)
11: repeat

12: Solve the LP relaxation of DRAY AGE(O, D, R)
13: Save dual values to π
14: S ← ∅, Rnew ← ∅
15: for j ∈ D do

16: Rj ← ∅, Lj ← ∅,
17: Call dfs(S, F j , P, Rj , π,Lj , M

|D|)

18: Rnew ← Rnew ∪Rj
new

19: end for

20: Merge Rnew into R and let Q be the set of routes assignments in R that become
dominated

21: Add Rnew to the LP, remove Q from the LP, and resolve the relaxation of
DRAY AGE(O, D, R)

22: until Rnew = ∅
23: Enforce integrality constraints and solve DRAY AGE(O, D, R)

2.4 Numerical Results

In this section, we refer to the enumeration-based method as Enum, and the column generation-

based method with labeling as Colgen. We used our methods on data provided by Schneider

National Inc., which is the largest truckload carrier in North America. Schneider has de-

fined truck/rail regions, and manages daily truck/rail operations separately for each region.

The company dray drivers work exclusively in one region. Each region may have multiple

rail ramps.

We tested Enum and Colgen on a weekly data set from the St. Louis area. We used

CPLEX 9.0 callable libraries to solve the LP relaxation and the IP formulation [21]. Since

the number of orders was small (ranging from 5 to 28 per day), both Colgen and Enum

33

were included in the test. Colgen, which may produce suboptimal solutions, gave the same

solution as Enum for all seven days. So, we can conclude that at least for small problems,

doing column generation at the root node suffices.

The running times on a Sun-Fire-280R workstation for the two methods are given in

Table 5 . IP ∗ is the optimal solution value found by both methods. The “Cycles” column

reports the number of times column generation is called with new dual values in Colgen.

The “Rows” column reports the number of rows in the formulation of each instance. R0

denotes the initial set of variables for Colgen. R′ is the final set of columns for Colgen. R̂

is the set of all non-dominated feasible route assignments found by Enum. The “Gen” and

“Enum” columns respectively report running times in seconds for the Colgen and Enum.

Table 5: Running times for St. Louis, |D| = 7

Day |O| IP ∗ Cycles Rows |R0| |R′| |R̂| Gen Enum

1 28 4098.90 5 37 161 2474 6823 1.49 9.95
2 24 2538.24 4 31 113 732 1181 0.24 0.37
3 14 454.83 3 21 69 292 452 0.13 0.15
4 11 338.56 2 18 60 908 1614 0.67 3.49
5 11 986.69 2 21 74 76 79 0.03 0.05
6 8 3183.91 1 12 20 20 25 0.05 0.06
7 5 742.98 2 11 22 24 26 0.04 0.04

We also ran Colgen for monthly data from the Northern California region. The results

are summarized in Table 6. LP ∗ denotes the optimal LP relaxation value we obtained as

described in Section 2.3.2. IP ′ is the optimal solution value when integrality is enforced.

IP ′ gives an upper bound on the objective value because column generation is inexact and

is performed only at the root node of the branch-and-bound tree. “Gap” refers to the gap

percentage between LP ∗ and IP ′. The running times for solving IP ′ were obtained on a

Sun-Fire-280R machine and are given in the last column in seconds.

The Northern California region has a much higher volume than St. Louis, with about

60 orders per day on average. The number of rail ramps in the region is 3. About 24%

of the orders have live delivery stops (DL W) at their destinations and about 22% of the

orders have live pickup stops (PL W) at their origins. About 54% of the orders are inbound,

and the rest of the orders are outbound. We grouped the 30 company drivers who work in

34

Table 6: The column generation-based method results for Northern California, |D| = 17
Day |O| LP ∗ IP ′ Gap Rows |R0| |R′| Time

1 81 3038.40 3041.54 0.10% 100 1046 62926 76.02
2 84 2651.30 2652.03 0.03% 105 1053 68593 34.41
3 10 0.00 0.00 0.00% 29 162 162 0.46
4 9 0.00 0.00 0.00% 27 117 117 0.41
5 96 4851.98 4854.59 0.05% 118 1230 158026 605.75
6 81 3521.72 3521.72 0.00% 100 986 55416 24.39
7 72 4717.73 4732.02 0.30% 92 832 16510 7.02
8 66 874.60 874.60 0.00% 88 782 41183 16.67
9 63 369.75 369.75 0.00% 86 817 21513 8.19
10 11 85.50 85.50 0.00% 29 162 162 0.41
11 12 75.75 75.75 0.00% 30 159 159 0.42
12 105 7113.28 7113.48 0.00% 128 1271 87918 103.63
13 94 5185.72 5237.31 0.99% 117 1085 79976 99.51
14 77 2519.73 2526.38 0.26% 96 939 68414 63.51
15 79 3061.97 3064.90 0.10% 99 887 25022 11.56
16 71 1744.18 1744.18 0.00% 96 904 69237 55.91
17 8 22.50 22.50 0.00% 28 120 120 0.41
18 16 59.25 59.25 0.00% 35 200 200 0.43
19 130 12301.74 12301.74 0.00% 152 1517 115362 125.43
20 71 1556.84 1557.59 0.05% 91 878 37452 14.09
21 70 2670.33 2670.33 0.00% 94 899 27717 11.02
22 92 8325.28 8325.28 0.00% 113 1086 8950 2.52
23 87 5819.89 5819.97 0.00% 106 965 40485 19.90
24 11 135.75 135.75 0.00% 30 112 112 0.36
25 6 24.75 24.75 0.00% 24 66 66 0.38
26 11 45.75 45.75 0.00% 29 171 171 0.44
27 117 9649.70 9677.78 0.00% 139 1385 108498 118.62
28 98 6273.63 6273.63 0.00% 118 1199 65040 41.40
29 98 6183.08 6188.38 0.09% 116 1142 58073 45.41
30 70 2886.02 2890.69 0.16% 92 819 14583 8.74
31 19 10.50 10.50 0.00% 37 253 253 0.40

the region into 16 driver groups, and all third party drivers into a single driver group. We

constructed R0 by adding all feasible route assignments which cover single orders. Since all

feasible route assignments pairing an order with a third party driver are feasible, and the

number of available third party drivers exceeds the number of orders on any day, the initial

set of columns was sufficiently large to guarantee a feasible solution for each instance.

All instances were solved in three minutes or less, with the exception of Day 5, which

required about 10 minutes to solve. In Table 7, instances are grouped by the number of

column generation cycles in Colgen. In a column generation cycle, the number of columns

35

added for each driver group was limited by 105

|D| .

Table 7: Number of column generation cycles for Northern California instances
Cycles Days

1 3, 4, 10, 11, 17, 18, 24, 25, 26, 31
4 1, 7
5 2, 6, 8, 9, 14, 19, 20, 21, 22, 23, 29
6 12, 13, 15, 16, 27, 28, 30
7 5

For most of the instances, the integer solution was obtained at the root node. Day 5

required the most branch-and-bound nodes (549) followed by Day 1 (147), Day 30 (84),

Day 29 (75), Day 14 (74) and Day 23 (20). The gap between the upper and lower bounds is

very small, and zero in many cases (i.e., the solution is optimal). Although Colgen uses an

inexact labeling scheme and only generates columns at the root node, it gives good quality

solutions in terms of cost.

2.5 Implementation Challenges

In this section, we briefly discuss some of the challenges in implementing a real-time decision

support system for drayage dispatchers. With the advances in communication technologies

and geographic information systems, dispatchers can now make operational decisions using

computerized order and driver information, which is updated throughout the day. The

availability of real-time data creates the potential for a decision support system for dis-

patchers. A decision support system can evaluate many routing and scheduling options in

real-time and suggest feasible and cost-effective options to dispatchers.

Dispatchers work in operating centers and manage dray drivers individually. Drayage

drivers and dispatchers can communicate in real time with the help of mobile data termi-

nals in vehicles, which send and receive information from the servers in operating centers.

The driver can inform the dispatcher about events such as delivery completions, delays at

customer locations or equipment failures. The dispatcher can access the information using

a computer terminal at the operating center, and can send information back to the driver

regarding the next order.

Dispatchers need to stay ahead of the drivers’ progress so that drivers always know their

36

next tasks. In drayage operations, staying ahead of a driver typically means having a plan

for what the driver is going to do in the next three or four hours. Dispatchers may modify

order-driver assignments and driver schedules in order to handle operational uncertainties.

For instance, when a driver is delayed at a customer location, the dispatcher may assign

the driver’s next planned task to another available driver.

A real-time decision support system for dispatchers should

• collect reliable and up-to-date data,

• generate good solutions in real-time and

• have a powerful user interface.

The accuracy of driving time and loading/unloading time estimates is crucial in determining

the feasibility of a route. A driving time estimator behind the decision support system can

provide estimates that depend on the day of the week, or the time of the day for better

accuracy. The loading/unloading durations are more likely to vary than driving times. In

order to improve accuracy, the driver can communicate a new estimate for the stop duration

to the dispatcher after arriving at a pickup or a delivery location. Then, the dispatcher

can input the new estimate into the decision support system to get an updated solution.

The system should also keep track of the history of drivers over a sufficient number of

days, so that the planned daily schedules satisfy hours-of-service restrictions. Driving time

estimates, driver histories and order attributes are likely to be kept in different ways and

formats, so an additional challenge is combining different data sources in a coherent way.

The data used by the decision support system and the dispatcher must be synchronized

with the data source. Synchronization is especially important for the order data, which can

change at any time.

Besides reliable and up-to-date information, the response time and the flexibility of

the user interface are major factors in usability. The user interface should be flexible and

provide the dispatcher with multiple solutions and allow the dispatcher to change the input

or customize the suggested solution. For instance, the dispatcher should be able to override

estimated time of availability for drivers. The user interface should allow the dispatcher

37

to specify preferences or restrictions on the routes, so that the decision support system

suggests solutions that are more acceptable for the dispatcher. The presentation of suggested

solutions should include the right level of detail in order to facilitate the comparison and

evaluation of different solutions, and should avoid overwhelming the decision maker with

too much information. The user interface should allow the dispatcher to edit the suggested

solution, and to search for an alternative solution. The dispatcher may prefer to insert

additional waiting time to account for potential delay at a future stop, may change the

trailer pools used for an empty trailer relocation, or may desire a solution that does not

assign an order to a particular driver. Another possibility is that the dispatcher may

input some routes manually into the system and ask for a recommendation for covering the

remaining orders with available drivers.

The decision support system should respond to a query within seconds to be used in

real-time. Given the need for a flexible interface, the optimization routines used behind the

decision support system should be able handle different changes to the data and provide

good solutions in a very short time. Parallel computation may be useful in generating

multiple solutions concurrently.

2.6 Conclusions

We have shown that a column generation-based approach succeeds in modeling and solving

the daily drayage problem, which is a complex real-world problem. We were able to improve

the running time of our method through very simple but effective techniques such as the

use of precedence feasibility matrices.

We can also use our model to get the next best plan by adding a cut to the formulation

of the form
∑

(xr : r ∈ R∗) ≤ |R∗| − 1, where R∗ is the set of route assignments in the

current optimal solution. This infeasible path constraint and stronger versions can be found

in [1]. Possible future challenges include limiting capacity for trailer pools which will make

the current greedy method for choosing extra stop locations suboptimal and will increase

the number of non-dominated route assignments substantially.

38

CHAPTER III

ONLINE DAILY DRAYAGE PROBLEM

3.1 Introduction

Our goal is to gain insights by studying simpler problems before attempting to solve a more

general model of the daily drayage problem with uncertainty. Real-world drayage operations

include many sources of uncertainty. Customers may call in same day orders. Orders may

be canceled. A driver may arrive at a customer location to find out that the trailer is not

ready to be picked up yet. Picking up and delivering loads and driving between locations

may take longer than expected. In this thesis, we consider only the dynamic addition of

new orders.

We discuss two problems derived from daily drayage operations with orders called in on

the same day. The first problem is the Online Daily Drayage Problem, which we study in

this chapter. The second problem is the Dray Coverage Problem with one customer location

which we study in Chapter 4.

In the Online Daily Drayage Problem, there are multiple drivers, and the objective is

to minimize the total deadhead mileage while covering all the orders. We do not assume

any prior knowledge about future orders and the input data change dynamically in an

online fashion. In order to guarantee feasibility, we assume unlimited capacity and allow

the addition of new orders which can be covered by an available driver.

3.2 Motivation

In the Online Daily Drayage Problem, our focus is on covering drayage orders with a set

of routes that have high overall utilization, where utilization is the percentage of mileage

accumulated while moving loaded trailers. By assuming unlimited capacity, we avoid the

question of whether an order is going to be covered or not. Since all orders are to be

carried out, the total mileage driven with loaded trailers is fixed for all solutions. Although

39

individual drivers may have low utilization, the overall utilization is maximized.

In any snapshot of the system, drivers can be busy or idle at various locations. Since

there are multiple drivers with possibly different attributes, the online problem includes

not only sequencing and scheduling aspects, but also an assignment aspect. We think that

relocation of idle drivers with respect to potential orders and to locations of other drivers

is also crucial in creating robust online solutions. By studying the Online Daily Drayage

Problem, we hope to gain insights into creating efficient routes when the driver capacity is

not a limiting factor.

In Section 3.3, we describe the Online Daily Drayage Problem in detail. We first simplify

the daily drayage problem to focus on the dynamic addition of orders and then we introduce

the dynamic aspects of the Online Daily Drayage Problem.

3.3 Problem Description

In Section 3.3.1, we describe the Simplified Daily Drayage Problem. The addition of dy-

namic orders to the Simplified Daily Drayage Problem is described in Section 3.3.2. The

feasibility assumptions in Section 3.3.3 complete the description of the Online Daily Drayage

Problem. In Section 3.3.4, we give an example of an online instance.

3.3.1 Simplifying the Daily Drayage Problem

In the Simplified Daily Drayage Problem, the core of the problem is the same as the Static

Daily Drayage Problem. We are given a set of drayage orders that need to be satisfied by

a set of route assignments.

We assume that there is only one rail ramp. Dray orders are pickup and delivery requests

which have exactly one stop at the rail ramp and one stop at a customer location. If the

pickup is at the rail ramp, we say the order is inbound. Otherwise, the order is outbound.

Stops do not have time windows. Pickup and delivery durations depend only on the location.

The pickup stop is always a PL (pickup preloaded trailer) and the delivery stop is always a

DL (drop trailer). Therefore, no empty relocation movements are needed in the simplified

problem.

40

All drivers are available at the beginning of the time horizon at the same park location

and need to be back at the park location by the end of the time horizon. A route assignment

describes a driver’s daily shift which starts and ends at the park location. The cost of a route

assignment is the total deadhead mileage. We are given the distances between locations and

we assume constant speed for all drivers. The goal is to cover all orders while minimizing

the total deadhead cost.

We consider a driver busy from the time he starts to deadhead to pick up an order to

the time the driver delivers the order. We do not allow preemption, that is, a busy driver

can become available only after delivering his current order.

3.3.2 Dynamic Addition of Orders

When dynamic addition of new orders is allowed, the Simplified Daily Drayage Problem

becomes the Online Daily Drayage Problem. In the online problem, we start with an

initial set of orders, and new orders may be released at any time until the end of the time

horizon. The release times of future orders are unknown. The number of future orders is

also unknown. We only learn the details of an order when that particular order is released.

3.3.3 Guaranteeing Feasibility

In order to guarantee feasibility, we assume that the number of available drivers is unlimited,

and the release time for any order is early enough such that a fresh driver can start from

the park location when the order is released, carry out the order and return to the park

location by time T .

3.3.4 A Dynamic Example

A simple example of an online instance is given in Figure 5. The rail ramp is the square,

the park location is the triangle and customer locations are the circles. The arrows denote

orders. The figure includes two snapshots of the system at times 0 and t.

At time 0, we only know about orders 1 and 2. Drivers are idle at the park location.

The tentative route assignment for a driver is to carry out order 1 and then order 2 before

41

Time 0

P

C1

O1

O2

P

C2

C3

C1

R
O3

O2

C2

O1

Time t

R

Figure 5: Order 3 is dynamically added to the problem.

returning to the park location. The tentative stop sequence can be written as

P → R(PL O1)→ C1(DL O1)→ R(PL O2)→ C2(DL O2)→ P.

At time t, order 3 is released, and we learn about the customer location C3 along with the

pickup and delivery information for order 3. The driver is busy at time t moving order

1. We modify the remainder of the tentative route assignment to cover order 3 after the

delivery of order 1. The new sequence of stops taking place after time t can be written as

C1(DL O1)→ C3(PL O3)→ R(DL O3)→ R(PL O2)→ C2(DL O2)→ P.

The modified route assignment is carried out unless a new order is released.

3.4 Reoptimization as a Solution Methodology

Since the cost only depends on the deadhead mileage, the cost of a route assignment is the

same for all feasible schedules when the sequence of orders on the route assignment is fixed.

We experimented with an online solution methodology in which the Online Daily Drayage

Problem is repeatedly solved to optimality over the set of uncovered orders without regard

to the dynamic nature of the problem. Whenever a new order is released, the current sta-

tus of drivers is updated. Idle drivers make up the currently available capacity and busy

drivers are included as future capacity. Since any feasible scheduling of the routing solution

has the same cost value, we experimented with different scheduling policies to test their

impact on the online solution quality. The steps of a solution methodology with scheduling

42

policy π are summarized in Algorithm 5. Algorithm 5 returns a plan for the remainder of

the time horizon and covers all known orders. Every time a new order is released, we call

Algorithm 5 to update the solution.

Algorithm 5 Online Solution Generator

1: INPUT: Updated set of drivers and orders, scheduling policy π.
2: Route assignment selection: Find an optimal solution which covers known orders.
3: Scheduling: Schedule each route assignment in the optimal solution according to policy

π.
4: OUTPUT: Return the routing solution and the schedules.

In Section 3.4.1, we describe how route assignments are selected in step 2 of Algorithm 5.

In Section 3.4.2, we explain the scheduling policies used in step 3 of Algorithm 5.

3.4.1 Optimizing Snapshots

Whenever a new order is released, we take a snapshot of the system and find a new optimal

routing solution so that all known orders are covered. Drivers who finished their daily shift

and parked at the park location are taken out of the problem. Busy drivers are considered

to be available in the future after the completion of their deliveries.

Let t denote the time of the snapshot. We modify the model in Section 2.2.6, since

we have to pay special attention to drivers away from their park location at time t. In

constructing a plan for the remainder of the time horizon, we must make sure that all

drivers return to their park locations by time T , even if they are not assigned new orders.

As in the Static Daily Drayage Problem, drivers with the same attributes are grouped

together and each route assignment is constructed for a specific driver group. In the model,

B denotes the set of driver groups with drivers who are away from their park locations at

time t. In other words, the drivers who started their shift before t are in a driver group

in B. Let h be the group of drivers who are at the park location and did not start their

shifts by t. The set of all driver groups, denoted by D, is given by D = {h} ∪ B. The set

of orders not picked up by time t is denoted by O. As in Section 2.2, Ri denotes the set

of route assignments which cover order i. The set of feasible route assignments for driver

group j which cover at least one order is denoted by Rj , where j ∈ D. The set of all feasible

43

route assignments which cover at least one order is given by R =
⋃

j∈D

Rj . For each b ∈ B,

qb denotes the route assignment which has only deadheading from the current location of

drivers in group b to the park location. The set of route assignments which do not cover any

order is denoted by Q =
⋃

b∈B

{qb}. The cost function c : R∪Q 7→ ℜ gives the total deadhead

cost for a given route assignment. The variable xr is 1 if r ∈ R is selected and 0 otherwise.

The variable yb denotes the number of drivers in some group b ∈ B, who deadhead directly

to the park location. The number of drivers in group j is given by dj for j ∈ D.

min
∑

j∈D

∑

r∈Rj

c(r)xr +
∑

b∈B

c(rb)yb (5)

∑

r∈Ri

xr = 1, ∀i ∈ O (6)

∑

r∈Rb

xr + yb = db, ∀b ∈ B (7)

∑

r∈Rh

xr ≤ dh, (8)

xr ∈ {0, 1}, yb integer (9)

The constraints (6) guarantee that all orders in O are covered. The constraints (7)

ensure that all drivers away from their park locations complete their shifts by the end of

the time horizon. The constraint (8) ensures that the number of drivers who start their

shift after time t do not exceed the available number.

In our computational experiments, we solved the model by enumerating R ∪ Q and

solving the resultant IP with CPLEX. In solving each online instance, the sizes of R and Q

get smaller and enumeration becomes easier as t increases.

3.4.2 Scheduling Policies

We experimented with four policies, Earliest, Latest, Weighted, and Deadhead. Given

route assignment r at time t, let n be the number of stops in r. Let tπi denote the start time

of the activity (loading, unloading, parking) at stop i under scheduling policy π. Let e,ℓ,w,

and d denote respectively Earliest, Latest, Weighted, and Deadhead policies. The stop

44

duration at stop i is given by γi, i = 1, . . . , n and the transit time from stop i to stop i + 1

is given by δi, i = 1, . . . , n− 1.

• Earliest policy schedules the stops as early as possible.

te1 = t, te2 = te1 + δ1 + γ1, . . . , t
e

n = te1 + δn−1 + γn−1.

• Latest policy schedules the stops as late as possible.

tℓn = T − γn, tℓn−1 = tℓn − δn−1 − γn−1, . . . , t
ℓ
1 = tℓ2 − δ1 − γ1.

• Weighted policy schedules the next stop to be between the earliest and the latest

feasible times according to parameter θ ∈ (0, 1) if the next stop is not a delivery. The

driver does not wait between the pickup and the delivery of an order. For i = 1, . . . , n,

let θi = θ if stop i is a pickup or is parking at end of the day and let θi = 1 if stop i

is a delivery.

tw1 = θ1t + (1− θ1)t
ℓ
1, tw2 = θ2(t

w

1 + δ1 + γ1) + (1− θ2)t
ℓ
2, . . . ,

twn = θn−1(t
w

n−1 + δn−1 + γn−1) + (1− θn−1)t
ℓ
n.

• Deadhead policy uses the earliest schedule for the activities preceding the longest

deadhead and uses the latest schedule for the remainder of the route assignment.

i∗ = argmin
i=1,...,n−1

i+1 is a pickup

δi, tdi = tei for 1 ≤ i ≤ i∗ − 1, tdi = tℓi for i∗ ≤ i ≤ n.

In Figure 3.4.2, a sample route is scheduled with the four different policies. Shaded

boxes denote the time spent deadheading. Boxes with order names denote the time spent

from the pickup until the completion of the order. At time t, the driver is at the rail ramp.

The route assignment covers order 1, order 2 and then order 3. In earliest, the whole slack

in the schedule is at the end. The motivation for the earliest policy is to carry out known

orders as soon as possible so that more new orders can be covered by the driver before

the time horizon constraint becomes active. In latest, the whole slack in the schedule is

at the beginning. The motivation for the latest policy is to delay processing of known

45

orders so that route assignments are made with more information. The policy weighted,

takes the middle ground and is parameterized by θ. The policy earliest is equivalent to

weighted with θ = 1, and the policy latest is equivalent to weighted with θ = 0. In the

deadhead policy, the driver has more information and more flexibility before committing

to the most expensive part of his assignment since all the slack in the schedule is placed

before the longest deadhead.

Order 1

Order 2

Order 3

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

����
����
����
����
����

����
����
����
����
������

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

latest

t T

Order 3Order 2Order 1deadhead

earliest

Order 1 Order 2 Order 3

Order 1 Order 2 Order 3

Order 1 Order 2 Order 3

weighted

Time

Policies

Figure 6: Different scheduling policies for a sample route assignment. Shaded boxes denote
deadheading. Boxes with order names denote the time spent starting from the pickup until
the completion of the order.

In Section 3.5, we define the perfect information solution and the fair solution. We use

the fair solution to evaluate the performance of our solution methodology under different

scheduling policies. In Section 3.6, we prove a bound on the performance guarantee of any

deterministic online algorithm for the online daily drayage problem. We present numerical

results in Section 3.7.

46

3.5 Competitive Ratio

For each instance of the Online Daily Drayage Problem, one can find a perfect information

solution at the end of the time horizon, as if all orders were known in advance. In a perfect

information solution, there is no uncertainty, but still no order can be picked up before its

release time.

The competitive ratio of an online algorithm is a measure of the worst-case performance

of the algorithm compared to the perfect information solution.

Definition 3 (Competitive Algorithm [20]). Let I denote the set of instances for online

problem P , and A denote an online deterministic algorithm for P . Let A(i) be the total

cost for instance i when solved by algorithm A, and OPT (i) be the total cost for an optimal

perfect information solution for instance i. Algorithm A is called c-competitive if

A(i) ≤ c ·OPT (i), ∀i ∈ I.

The competitive ratio of A is the infimum over all c for which A is c-competitive.

The perfect information solution can dispatch a driver to pick up an order before the

order is released. In our solution methodology, we do not consider tactical relocation of idle

drivers to potential pickup locations. Therefore, we introduce the concept of a fair solution.

In the fair solution, the problem is again solved as if all the orders were known in advance.

However, the start of a driver’s deadhead to pick up an order cannot be earlier than the

order’s release time.

3.6 A General Lower Bound for the Competitive Ratio

In this section, we show that all deterministic competitive online algorithms for the Online

Daily Drayage Problem must have a competitive ratio greater than 2.0641. However, we do

not know whether a constant competitive ratio exists independent of the data.

Theorem 1. Any deterministic, competitive and online algorithm for the Online Daily

Drayage Problem must have a competitive ratio greater than 2.0641.

We provide an overview of the proof in Section 3.6.1 and the complete proof in Sec-

tion 3.6.2.

47

3.6.1 Overview of the Proof

The proof is inspired by an analogous result in [2]. We create two online problem instances,

Ins1 and Ins2, such that both instances have the same pair of orders, O1 and O2, at time 0.

We choose O1 and O2 such that in any solution given by a r-competitive deterministic

algorithm, a single driver moves O1 and then O2, where r = 2.0641. If the algorithm

chooses to move O2 “early”, then we show that the online algorithm has made an early

commitment in the case of Ins1. Otherwise, we show that the online algorithm is too

“late” and is forced to use two drivers to cover all of the orders in Ins2. In either case,

there is an instance for which the algorithm is not r-competitive.

3.6.2 Proof

The orders of the online instances Ins1 and Ins2 are in Figure 7. In Figure 7, the rail

ramp is the square, the park location is the triangle and customer locations are the circles.

The arrows denote orders. Ins1 has orders {O1, O2, O3} where O3 is released at T1. Ins2

has orders {O1, O2, O4} where O4 is released at T2. Only orders O1 and O2 are known in

advance. Total stop duration for order i is denoted by di. The time horizon is T .

O1

O2

O3

O4

di = 1, ∀i = 1, 2, 3, d4 = 2, T = 13, T1 = 8.4679, T2 = 10

α2 = 1.5321 α3 = 0.8794

1

Figure 7: Orders and locations for Ins1 and Ins2.

Suppose that we have an r-competitive online algorithm ALG. We first prove that ALG

48

initially chooses to dispatch a single driver to move O1 and then O2. Suppose that no

new orders are released. Then, there are three solutions which are listed in Table 8. Since

the speed is constant, we use deadheading time instead of deadheading distance in cost

calculations. The route [1, 2] is the optimal offline solution. Any r-competitive online

Table 8: Solutions covering orders O1 and O2

Solution Cost Completion Times

[1, 2] 2 + α3 = 2.8794 2 + 2α2 + 2α3 + d1 + d2

= 8.823 ≤ T

[2, 1] 2 + 2α2 + α3 = 5.9436 2 + 4α2 + 2α3 + d1 + d2

= 11.8872 ≤ T

[1], [2] (2 + α2 + α3) + (2 + α2)

algorithm must choose route [1, 2] because

c(1) + c(2)

c(1, 2)
≥

c(2, 1)

c(1, 2)
≥ 2.06418 > r,

where c(s1, . . . , sn) is the cost of route [s1, . . . , sn].

Let t denote the scheduled pickup time for O2 in the initial solution given by ALG. The

earliest and the latest times for picking up O2 are 5.2909 and 10, respectively, since

5.2909 = 1 + α2 + 2α3 + d1 ≤ t ≤ T − 1− α2 − d2 = 10.

First, we show that the competitive ratio of ALG for Ins1 is greater than r if t < T1. For

the case t ≥ T1, we show that the competitive ratio of ALG for Ins2 is greater than r.

Therefore, we conclude that the competitive ratio of any deterministic online algorithm

must be greater than r.

Case 1: 5.2909 ≤ t < T1 and Ins1

Route [1, 2] is in progress, and a new order, O3, is released at time T1. Since T1 > t, the

driver must have already started to carry out order 2. Possible online solutions are given

in Table 9.

The best online solution value is 7.2909 since route [1, 2, 3] is infeasible. The best offline

solution is [2, 1, 3] with cost 2 + α2 = 3.5321 and completion time max{1 + 3α2 + α3 + d1 +

d2, T1}+ d3 + α2 + α3 + 1 = 12.8872 ≤ T . We have

c(1, 2) + c(3)

c(2, 1, 3)
≥ 2.064182 > r,

49

Table 9: Online solutions for case 1
Solution Cost Completion Times

[1, 2, 3] 2 + α2 + 2α3 2 + 4α2 + 4α3 + d1 + d2 + d3

= 14.646 > T

[1, 2], [3] (2 + α3) + (2 + α2 + α3) max{1 + α2 + α3, T1}+
= 7.2909 α2 + α3 + 1 + d3 = 12.8794 ≤ T

which contradicts that ALG is r-competitive for case 1.

Case 2: 10 ≥ t ≥ T1 and Ins2

Route [1, 2] is in progress and a new order, O4, is released at time T2. The latest pickup

time for O1 is T − 1− 2α2 − 2α3 − d1 − d2 = 5.177. Therefore, by time T2, the driver must

have already picked up order 1, otherwise route [1, 2] becomes infeasible. Possible online

solutions are given in Table 10. The best online solution value is c(1, 2) + c(4). The best

Table 10: Online solutions for case 2
Solution Cost Completion Times

[1, 2, 4] 1 + α3 max{T1 + α2 + d2, T2}+ d4 + 1
= 14 > T

[1, 2], [4] (2 + α3) + (1) = 3.8794 [1, 2]: feasible since T1 ≤ tl
[4] : max{2, T2 + 1}+ d4 = 13 ≤ T

[1, 4, 2] 2 + 2α2 + α3 + 1
[1, 4], [2] (1 + α2 + α3) + (2 + α2)
[1], [2, 4] (2 + α2 + α3) + (1 + α2)
[1], [4, 2] (2 + α2 + α3)+

(1 + 1 + α2 + 1)

offline solution is [1, 2, 4] with cost 1 + α3 = 1.8794, and completion time max{1 + 2α2 +

2α3 + d1 + d2, T2}+ d4 + 1 = 13 ≤ T . We do not have to consider the completion times for

the last four solutions since each has a cost higher than c(1, 2) + c(4). We have

c(1, 2) + c(4)

c(1, 2, 4)
≥ 2.064169 > r,

which contradicts that ALG is r-competitive for case 2.

Combining cases 1 and 2, we can conclude that ALG cannot be r-competitive, which

completes the proof. The proof is valid even if preemption is permitted while a driver is

deadheading to pick up his next order.

We have assigned α2 and α3 values that approximately maximize the lower bound. Let

50

r1(α2, α3), r2(α2, α3), and r3(α2, α3) be defined as

r1(α2, α3) =
c(2, 1)

c(1, 2)
= 1 +

2α2

2 + α3
,

r2(α2, α3) =
c(1, 2) + c(3)

c(2, 1, 3)
= 1 +

2 + 2α3

2 + α2
,

r3(α2, α3) =
c(1, 2) + c(4)

c(1, 2, 4)
= 1 +

2

1 + α3
.

These functions of α2 and α3 correspond to the ratios we calculate in the proof. The best

lower bound we can prove while using the same line of argument and only adjusting the

parameters is given by r∗ = max
α2,α3≥0

min{r1(α2, α3), r2(α2, α3), r3(α2, α3)}. The maximum

can only be achieved if all three ratios are equal. Then, the only positive real root of the

polynomial a3 + 3a2 − 3 = 0 should be chosen as the value of α3, which is approximately

0.8794. The value for α2 is chosen to be (1 + α3)
2 − 2, which is approximately 1.5321.

3.7 Computational Experiments on Scheduling Policies

We generated 20 instances with 20 orders known in advance. Each instance has a different

set of initial orders. The speed of the trucks is assumed to be 60 miles per hour so that

miles and minutes can be used interchangeably. For each instance, there is a single rail ramp

at the center of a 150×150 mile square region. In each instance, 10 additional orders are

added dynamically. The release time of a dynamic order is uniformly distributed over the

first 10 hours. Orders are equally likely to be inbound or outbound. The customer stops of

orders are generated uniformly over the square region. A randomly generated order may be

infeasible, i.e., it cannot be covered by a driver who leaves the park location at the release

time of the order, since the attributes of an order are drawn randomly from distributions.

An infeasible order is discarded and a replacement is generated until the target number of

dynamic orders is achieved. The time horizon is 12 hours. The park location is generated

uniformly over the square region with a maximum distance of 30 miles from the rail ramp.

The stop duration at the ramp is 30 minutes and the stop duration at a customer location

is uniformly distributed between 30 and 210 minutes.

51

We compared the online solutions given by Earliest, Latest, Weighted, and Deadhead

with the fair solution. We used Algorithm 6 to carry out the simulation. Let T denote the

end of the time horizon, and t denote the simulation clock in Algorithm 6.

Algorithm 6 Simulation for the Online Daily Drayage Problem

1: Initialize the status of drivers and orders, let t← 0.
2: Find a solution for covering all known orders by calling Algorithm 5.
3: New Event: Randomly generate a new order release event; let te ≥ t denote the release

time.
4: If te ≥ T , then discard the new order event, let te ← T .
5: Execution: Carry out the routing decisions according to the chosen schedule until te.
6: System Update: Update the status of drivers and orders, t← te.
7: If te = T , end simulation. Else, go back to step 2.

We calculated the fair and perfect information solutions for each instance, and compared

them with the online algorithm’s solutions. The results are given in Table 11.

Table 11: Percentage deviation of online algorithms compared to fair solution
Earliest Latest Weighted with θ = 0.5 Deadhead

Average 17.03% 20.24% 18.96 % 14.36%
Std. Dev. 8.70% 9.62% 10.22% 8.51%
Best 4.72% 4.48% 4.02% 1.70%
Worst 34.30% 39.29% 39.29% 29.74%

There does not seem to be substantial differences among the scheduling policies, al-

though Deadhead seems to perform better on average with a smaller variance.

3.8 Adding Anticipation to Reoptimization

In the original methodology, route assignments are selected such that the total cost to

cover all known orders is minimized. In the new methodology, we change the cost function

used in the route assignment selection to favor route assignments that can potentially cover

additional orders. The modified cost of a route assignment is the total cost minus a reward

for the slack in the schedule.

The gap length is a parameter which is an estimate for the time needed to carry out

an order. For instance, given the schedule in Figure 8, if we take the gap length to be 100

52

minutes, the number of gaps is given by

⌊
50

100

⌋
+

⌊
120

100

⌋
+

⌊
60

100

⌋
= 0 + 1 + 0 = 1.

The reward is linear in the number of gaps.

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

t T

Busy

6012050

Busy

Figure 8: An example schedule for gap calculation.

More formally, let g denote the gap length, and let µ denote the reward per gap. Let

p(r) be the scheduling policy used for route assignment r and let nr denote the number of

stops in route assignment r. The start time for the activity in stop i is denoted by t
p(r)
i for

i = 1, . . . , nr. Let t
p(r)
0 = t and t

p(r)
nr+1 = T and δ0 = γ0 = γnr+1 = 0 for all r. The number

of gaps in the schedule of r, denoted ηr, is given by

ηr =

nr∑

i=0

⌊
t
p(r)
i+1 − t

p(r)
i − δi − γi

g

⌋
.

We replace c() in (5) with c′() such that c′ : R ∪Q 7→ ℜ and c′(r) = c(r)− ηrµ.

We experimented with a new scheduling policy denoted coverage. In coverage, a route

assignment which covers at least one gap can be scheduled according to earliest, latest,

or deadhead policy. Given a set of route assignments which has at least one gap, coverage

policy chooses one of the three schedules for each route assignment. The goal is to maximize

the duration for which there is at least one idle driver who can potentially cover new orders.

For route assignments with no gaps, the default schedule is determined by deadhead policy.

We run Algorithm 5 with the modified cost to find a routing solution denoted by R∗.

We use one of earliest, latest and deadhead policies as the default scheduling policy

in calculating ηr for the modified cost c′(). Let R∗
1 be the set of route assignments in R∗

which has at least one gap. We choose κ and mark maximal number time values denoted

by τ1, τ2, . . . , τK , such that τ1 = t, τ2 = τ1 + κ, τ3 = τ2 + κ, . . . , τK = τK−1 + κ ≤ T , and

τK + κ > T . The coefficient απ
rk is 1 if there is a gap in the schedule of route assignment

53

r under policy π which includes time τk, i.e., there exists i′ ∈ {0, 1, . . . , nr} such that

tπi′+1 − tπi′ − δi′ − γi′ ≥ g and ti′+1 ≥ τk ≥ ti′ + δi′ + γi′ . The decision variable xπ
r is 1 if

the route assignment r is scheduled with respect to policy π ∈ {e, ℓ, d}. When the model

is solved to optimality, the decision variable yk is 1 only if time tk is not in a gap of any

selected schedule, since the objective is to minimize the sum of all yk’s. The parameter Γ

denotes the minimum number of drivers idle at one time to assume that a time mark is

covered.

min
K∑

k=1

yk (10)

xd

r + xe

r + xℓ
r = 1, ∀r ∈ R∗ (11)

∑

r∈R∗

(
αd

rkx
d

r + αe

rkx
e

r + αℓ
rkx

ℓ
r

)
+ yk ≥ Γ, k = 1, . . . , K (12)

xd

r , x
e

r, x
ℓ
r ∈ {0, 1}, r ∈ R∗ (13)

For route assignments with at least one gap, the schedules are selected according to

the solution of (10)-(13). The route assignments in R∗ \R∗
1 are scheduled according to the

default policy.

In Section 3.9, we present computational results with the modified cost function and

the additional policy.

3.9 Additional Computational Experiments

We created three data sets as in Section 3.7. In the first data set, Data10, 20 orders are

known in advance and 10 new orders are dynamically released. In the second data set,

Data20, the same number of orders is known in advance, but the number of dynamic orders

is increased to 20. In the last data set, Data40, the number of dynamic orders is 40. Each

data set has 20 instances. For each instance, we measure the performance of an algorithm

with the average percentage deviation of the algorithm’s solution value from the value of a

fair solution. In all of the figures in Section 3.9, we present the average performance for a

dataset instead of reporting individual performances on each instance.

54

The effect of µ on the performance of various scheduling policies is tested for Data10,

Data20 and Data40 and the results are plotted in Figures 9, 10 and 11. We take g to be 150

minutes in all cases. When µ = 0, the solution methodology is equivalent to the method

described in Section 3.4. In the figures, D, E and L stand for deadhead, earliest and

latest respectively.

 10

 15

 20

 25

 30

 35

 40

 45

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

D
E
L

Figure 9: Performance of policies on Data10.

Deadhead still seems to be the best scheduling policy whereas latest seems to perform

the worst on average. Earliest and deadhead policies perform close to each other for

Data10 and Data20, and deadhead stands out as the best policy for Data40. As the degree

of dynamism in the data increases, the best µ value tends to increase as well. For Data10,

increasing µ does not improve performance in general. For Data20, the values of µ between

3 and 10 seem to give better results than the original solution methodology with µ = 0

under earliest and deadhead policies. The best performance for Data40 seems to be

obtained by deadhead policy with 10 ≤ µ ≤ 15.

In Figures 12, 13 and 14, we present numerical results for the effect of g on the per-

formance of deadhead. For Data10, g values between 150 and 300 do not change the

performance for values of µ that produce good results. This result is expected since the

55

 15

 20

 25

 30

 35

 40

 45

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

D
E
L

Figure 10: Performance of policies on Data20.

 15

 20

 25

 30

 35

 40

 45

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

D
E
L

Figure 11: Performance of policies on Data40.

performace gain by rewarding gaps is very limited for the case with 10 dynamic orders.

For Data20, as µ increases, g = 300 seems to perform better than our initial selection of

g = 150. The behavior for Data20 suggests that rewarding bigger gaps generously rather

56

than giving smaller rewards to more routes that have smaller gaps should be preferred for

this data set. The results for Data40 suggest that there is a trade-off between choosing big

gaps with big rewards and small gaps with small rewards for more dynamic data sets. For

smaller values of µ, algorithms with smaller values of g perform better and for larger values

of µ, algorithms with larger values of g perform better.

 10

 15

 20

 25

 30

 35

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

100
150
200
250
300

Figure 12: Performance of Deadhead on Data10 for various values of g.

57

 15

 20

 25

 30

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

100
150
200
250
300

Figure 13: Performance of Deadhead on Data20 for various values of g.

 15

 20

 25

 30

 35

 35 30 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

100
150
200
250
300

Figure 14: Performance of Deadhead on Data40 for various values of g.

58

Another way to calculate ηr is to count the idle-time blocks that are large enough. The

original method of calculating ηr is finding the total number of gaps that can fit inside

idle-time blocks. More precisely,

ηr =

nr∑

i=0

ωr
t , where ωr

t =

1 if t
p(r)
i+1 − t

p(r)
i − δi − γi ≥ g,

0 otherwise.

In Figures 15,16 and 17, we evaluate the performance of the new ηr calculation method

by plotting the reduction in the average percentage deviation. The positive values indicate

improvement gained by switching to the new ηr formula. The scheduling policy is deadhead.

-1

 0

 1

 2

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

100
150
200
250
300

Figure 15: The reduction in average percent deviation for Data10.

In most cases, the performance gain is below 1%, and the new formula for ηr does not

always improve performace. Among different values of g, the most consistent improvement

is obtained for g = 200.

59

-2

-1

 0

 1

 2

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

100
150
200
250
300

Figure 16: The reduction in average percent deviation for Data20.

-3

-2

-1

 0

 1

 2

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

100
150
200
250
300

Figure 17: The reduction in average percent deviation for Data40.

60

In Figures 18, 19 and 20, we compare earliest, latest, deadhead to the new policy

coverage. In coverage, the default scheduling policy is in effect before the rescheduling of

the selected routes. In the figures, the performance of coverage with earliest, latest,

deadhead as the default scheduling policy is labeled by CE, CL, and CD respectively. The

new ηr formula is used , κ equals 30, Γ is 1 and g is taken to be 200 minutes.

 10

 15

 20

 25

 30

 35

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

CD
CE
CL
D
E
L

Figure 18: The performance of various policies for Data10.

The rescheduling of selected routs seems to improve the solution by a small margin in

some cases. The performance of coverage is mostly determined by the default scheduling

policy.

61

 15

 20

 25

 30

 35

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

CD
CE
CL
D
E
L

Figure 19: The performance of various policies for Data20.

 15

 20

 25

 30

 35

 40

 35 30 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

CD
CE
CL

D
E
L

Figure 20: The performance of various policies for Data40.

62

We present the effect of Γ on the performance of coverage in Figures 21, 22 and 23.

The new ηr formula is used with g = 200 and κ = 30. The default policy is deadheading.

 14

 15

 16

 17

 18

 19

 20

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

1
2
3
4

Figure 21: Performance of Coverage on Data10 for various values of Γ.

 16

 17

 18

 19

 20

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

1
2
3
4

Figure 22: Performance of Coverage on Data20 for various values of Γ.

63

 15

 20

 25

 30

 25 20 15 10 7.5 5 4 3 2 1 0

P
er

ce
nt

ag
e

D
ev

ia
tio

n

Reward per Gap, µ

1
2
3
4

Figure 23: Performance of Coverage on Data40 for various values of Γ.

The performance does seem to vary in some cases (e.g., µ = 15 in Data10, 0 ≤ µ ≤ 5 in

Data20), but it is hard to draw general conclusions about the best value for Γ.

3.10 A Priori Information on Potential Customer Loca-

tions

In order to assess the validity of the assumption that we do not know any future potential

customer locations until orders are released at those locations, we collected statistics on the

Northern California data. The statistics are summarized in Table 12. The locations are

grouped into buckets by the number of days they appear in orders. The first column reports

the range of the buckets. For instance, the first row holds the statistics for the bucket of

locations that appear in orders on 21 or more days. The second column reports how many

locations fall into that particular bucket. The percentage of the locations in a bucket is in

the third column. The volume of a location (i.e., the number of orders originating at or

destined to a location in the bucket) is in the fourth column. The last column reports the

percentage of the volume.

The numbers show that about 15.6% of the volume is related to a small set of locations.

64

Table 12: Breakdown of customer locations with respect to recurrence
Buckets Locations Volume

28-21 4 1.6% 309 15.6%
20-16 10 4.0% 402 20.2%
15-11 17 6.9% 355 17.8%
10-6 42 16.9% 484 24.3%
5-1 175 70.6% 439 22.21%

On the other hand, a significant portion of the volume is related to locations that appear at

most five days. For future models, starting with some known potential customer locations

is a possible generalization that seems to be the case for actual drayage operations. The

additional information can be used to develop techniques that relocate idle drivers more

effectively.

3.11 Conclusions and Future Directions

We modeled the dynamic addition of new orders into the Daily Drayage Problem after

removing some of the complexities of the Static Daily Drayage Problem. In order to solve the

resultant Online Daily Drayage Problem, we first used myopic optimization-based routing

with various scheduling policies. Among the scheduling policies, Deadhead performed best

on average and seemed to be robust. We modified the optimization-based method by

rewarding the route assignments with more slack in their schedules. By increasing the

reward to select route assignments which are more likely to allow order insertions, the

online cost was reduced in most cases. As the reward increased beyond a certain value, the

cost of lower utilization outweighed any potential gain.

In the Online Daily Drayage Problem, the objective is to minimize total deadhead cost.

Alternative objective functions, such as maximizing the number of orders covered, can be

used instead. We assumed that all drivers can be routed dynamically, but in reality, the

route assignments for third party drivers are static. In a problem with static and dynamic

routes, an additional question is which orders should be covered by static routes.

65

CHAPTER IV

DRAY COVERAGE PROBLEM WITH ONE CUSTOMER

4.1 Introduction

An important question for drayage operations is when (and for how long) the processing of

an order should be delayed so that more information is available before a driver is committed

to an order. Another issue is the relocation of idle drivers. We expect the time and the

destination of a driver’s relocation to have a significant impact on the solution when the

percentage of unknown orders is high. We hope to gain some insights into how to relocate

drivers in general and when to delay processing of orders by isolating a driver.

In this chapter, we define and study the Dray Coverage Problem with one customer.

This problem includes a single driver. New orders are released randomly into the system.

The goal is to maximize the expected number of orders covered by the single driver within

a given time horizon.

By restricting our problem to a single driver, we focus on sequencing and scheduling

orders on one route. The assignment of drivers to orders is no longer an issue. Instead, we

need to select which orders are to be covered. Since the objective is to cover as many orders

as possible, the solution still favors routes with high utilization.

In Section 4.2, we describe the Dray Coverage Problem with one customer. A Markov

Decision Process model for the problem is given in Section 4.3. In Section 4.4, we describe

the method for calculating the expected value of an optimal policy and show that there

is an optimal policy in which an order at the driver’s current location is never delayed.

We study relocate-or-wait decisions in Section 4.5. We present computational results and

observations about optimal policies for different parameters in Section 4.6. We show that a

heuristic policy, called the seesaw policy, covers one order less than an optimal policy in the

worst case in Section 4.7. In Section 4.8, we present a special case in which the seesaw policy

is optimal. We extend the Markov Decision Process model to the case with three locations

66

and provide some computational results in Section 4.9. We generalize an observation for

the Dray Coverage Problem with one customer in Section 4.10. Our conclusions are in

Section 4.11.

4.2 Description

The Dray Coverage Problem with one customer has the same simplifying assumptions as

given in Section 3.3.1. The goal here is to maximize the number of orders covered by a

single driver. In this special case with one customer, one location is the rail ramp and the

other is a customer location. All future orders either originate from or are sent to the only

customer location.

Let N be the number of periods in the time horizon. We assume that moving an order

or deadheading takes one period. In each period, at most one additional order is released

to the system. Let H denote the rail ramp, and L denote the customer location. The new

order originates at H with probability pH , or at L with probability pL. The probability

that no new order is added to the system at a particular time period is 1 − pH − pL. We

assume pH ≥ pL, but if an order is more likely to originate at a customer location, we can

pick H to be the customer location and the analysis remains the same. The driver has

three choices–moving an order, deadheading to the other location or waiting at the current

location.

In each period, there is a random event which potentially adds a new order to the

system. A scenario is an ordered list of N event outcomes which describe all external

future changes to the system. Given a fixed scenario, the problem becomes deterministic,

and the movements of the driver can be plotted on a location-time graph as in Figure 24.

A horizontal dashed line represents waiting, whereas a diagonal dashed line represents

deadheading. A diagonal solid line corresponds to moving an order. For instance, the

driver first waits at H, then moves an order to L, deadheads back to H in the following

period and finally moves another order to L.

67

H

L

0 1 2 3 4
T

Figure 24: Driver’s movements on a location-time graph

4.3 A Finite-Horizon Markov Decision Process Formula-

tion

The problem can now be formulated as a finite-horizon Markov decision process [34]. In

the formulation, the time index t denotes the number of periods left, hence the time index

is initially N and decreases by one after each period until t = 0.

• Decision Epochs: At the beginning of each period, a decision has to be made which

determines the driver’s task for the period. The periods are indexed in descending

order starting from N for the immmediate period to 1 for the final period. The time

horizon is finite.

• States: The location of the driver and the number of orders ready to be picked up

at locations H and L determine the state of the system. If the driver is at location

α and there are i orders at location H and j orders at location L, the state of the

system, s, is given by s = (α, i, j). The set of all states, S, is given by

S = {(α, i, j) : α ∈ {L, H}, and i, j ∈ Z0
+}.

Since there is no limit on the number of orders at a location, |S| is infinite. In

Section 4.4, we show that we can treat S as a finite set.

• Actions: In general, there are three possible actions at each decision epoch–moving

an order, waiting at the current location and deadheading to the other location, which

are respectively denoted by {M, W, D}. The set of actions is defined for each state

s and is denoted by As. Let S0 = {(H, 0, j) : j ∈ Z0
+} ∪ {(L, i, 0) : i ∈ Z0

+} and

S1 = S \ S0. In words, S0 is the set of states in which there are no orders at the

driver’s current location. Therefore, moving an order is not a possible action for a

68

state in S0. Thus,

As =

{W, D} ∀s ∈ S0,

{M, W, D} ∀s ∈ S1.

• Rewards: The number of orders covered is the total reward. The reward depends on

both the given state and the action chosen. A reward of 1 is earned for moving an order

to its destination (M), while zero reward is earned for waiting (W) or deadheading

(D). For t = N, . . . , 1,

rt(s, a) =

1 if s ∈ S1, a = M

0 otherwise

The reward at the end of the time horizon is zero, therefore r0(s, .) = 0, ∀s ∈ S.

• Transition Probabilities: Transition probabilities do not change over time.

For t = N, . . . , 1 and (H, i, j) ∈ S1,

pt(s
′|(H, i, j), M) =

pH if s′ = (L, i, j),

pL if s′ = (L, i− 1, j + 1),

1− pH − pL if s′ = (L, i− 1, j),

0 otherwise.

For t = N, . . . , 1 and (L, i, j) ∈ S1,

pt(s
′|(L, i, j), M) =

pH if s′ = (H, i + 1, j − 1),

pL if s′ = (H, i, j),

1− pH − pL if s′ = (H, i, j − 1),

0 otherwise.

69

For t = N, . . . , 1 and (α, i, j) ∈ S,

pt(s
′|(α, i, j), D) =

pH if s′ = (α′, i + 1, j), α′ 6= α,

pL if s′ = (α′, i, j + 1), α′ 6= α,

1− pH − pL if s′ = (α′, i, j), α′ 6= α,

0 otherwise,

pt(s
′|(α, i, j), W) =

pH if s′ = (α, i + 1, j),

pL if s′ = (α, i, j + 1),

1− pH − pL if s′ = (α, i, j),

0 otherwise.

The objective is to maximize the expected total reward, i.e., maximize the expected number

of orders covered. A decision rule outputs an action given the current state. In an instance

with N periods, a policy is a sequence of N decision rules. A policy can use different

decision rules at different time periods. Our goal is to find an optimal or a good policy for

the problem. An optimal policy may depend on a number of parameters.

4.4 Calculating Expected Values

Given a state s, we calculate vN (s), the optimal expected reward for N periods starting in

state s, with the optimality equations

vn(s) = max
a∈As

{
rn(s, a) +

∑

s′∈S

pn(s′|s, a)vn−1(s
′)

}
, 1 ≤ n ≤ N, (14)

and the boundary condition v0(s) = r0(s, .) = 0, ∀s ∈ S. We solve the equations recursively

by substituting vn−1(s
′) values when evaluating vn(s). A formal algorithm for solving

these equations is given in [34], which is called the backward induction algorithm. For our

problem, the backward induction algorithm can be written as in Algorithm 7.

We use several observations to speed up the calculations. Before stating the observations,

we introduce some notation. Consider s = (α, x, y) and let vt(s) be the maximum expected

number of orders covered when the system is in state s with t periods left. For t ≥ 1, we

define va
t (s) as

va
t (s) = rt(s, a) +

∑

s′∈S

pt(s
′|s, a)vt−1(s

′), a ∈ As.

70

Algorithm 7 Backward Induction Algorithm

1: Set n← 0 and v0(s) = r0(s, .) = 0, ∀s ∈ S.
2: Set n← n + 1 and compute vn(s) for each s ∈ S by

vn(s) = max
a∈As

{
rn(s, a) +

∑

s′∈S

pn(s′|s, a)vn−1(s
′)

}
.

3: If n = N , stop. Otherwise, return to 2.

Finally, let p′ = 1− pH − pL.

Since moving an order and deadheading take one period each, at most ⌊N
2 ⌋ orders that

do no originate at the driver’s current location can be covered. For the orders originating

at the driver’s current location, the limit increases by one since the driver does not have to

deadhead to pick up the first order. Observation 1 shows that we may treat S as a finite

set.

Observation 1. For N ≥ 1 and i, j ≥ 0,

vN (H, i, j) = vN (H, min{i,

⌊
N

2

⌋
+ 1}, min{j,

⌊
N

2

⌋
}),

vN (L, i, j) = vN (L,min{i,

⌊
N

2

⌋
}, min{j,

⌊
N

2

⌋
+ 1}).

Observation 2 states that an additional order at H or L cannot increase the expected

value more than one.

Observation 2. For N ≥ n ≥ 1, α ∈ {H, L} and i, j ≥ 0,

1 ≥ vn(α, i + 1, j)− vn(α, i, j), and 1 ≥ vn(α, i, j + 1)− vn(α, i, j).

Observation 3 shows that if there are no orders at either location, the expected value of

having the driver at H is equal to the the expected value of having the driver at L. When

there are no orders in the system, the only question is whether the driver should be at L or

at H in the beginning of the next period. If the optimal location for the next period is the

same as the driver’s current location, he can just wait. Otherwise, he can deadhead to the

optimal location. Therefore, the current location of the driver does not change the optimal

expected value when there are no orders in the system.

71

Observation 3. vN (H, 0, 0) = vN (L, 0, 0),∀N ≥ 1.

Proposition 3 states that when there is an order at the driver’s current location, i.e.,

s ∈ S1, there is an optimal solution in which the driver carries out such an order in the next

period.

Proposition 3. For 1 ≤ n ≤ N and s1 ∈ S1, vM
n (s1) ≥ max{vD

n (s1), v
W
n (s1)}.

Proof. Suppose N = 1. Then vM
1 (s1) = r1(s1, M) +

∑
s′∈S p1(s

′|s1, M) · 0 = 1, vD
1 (s1) =

r1(s1, D) +
∑

s′∈S p1(s
′|s1, D) · 0 = 0, and vW

1 (s1) = r1(s1, W) +
∑

s′∈S p1(s
′|s1, W) · 0 = 0.

So, the proposition holds for N = 1. If N = 2, vM
2 (s1) = 1+

∑
s′∈S p1(s

′|s1, M) · v1(s
′) ≥ 1.

For other actions, we have vD
2 (s1) = 0 +

∑
s′∈S p1(s

′|s1, D)v1(s
′) ≤ 1 and vW

2 (s1) = 0 +

∑
s′∈S p1(s

′|s1, W)v1(s
′) ≤ 1 since v1(s

′) ≤ 1, ∀s′ ∈ S. The proposition holds for N = 2 as

well. Suppose the proposition is true for N ≥ 2 and s1 = (H, i, j) where i ≥ 1. For N + 1,

we have

vW
N+1(H, i, j) = pHvN (H, i + 1, j) + pLvN (H, i, j + 1) + p′vN (H, i, j)

= pHvM
N (H, i + 1, j) + pLvM

N (H, i, j + 1) + p′vM
N (H, i, j) (by induction)

= 1 + p2
HvN−1(L, i + 1, j) + 2pHpLvN−1(L, i, j + 1) + p2

LvN−1(L, i− 1, j + 2)

+ 2pHp′vN−1(L, i, j) + 2pLp′vN−1(L, i− 1, j + 1) + p′2vN−1(L, i− 1, j).

When we calculate a lower bound for vM
N+1(H, i, j), we get

vM
N+1(H, i, j) = 1 + pHvN (L, i, j) + pLvN (L, i− 1, j + 1) + p′vN (L, i− 1, j)

≥ 1 + pHvW
N (L, i, j) + pLvW

N (L, i− 1, j + 1) + p′vW
N (L, i− 1, j)

= 1 + p2
HvN−1(L, i + 1, j) + 2pHpLvN−1(L, i, j + 1) + p2

LvN−1(L, i− 1, j + 2)

+ 2pHp′vN−1(L, i, j) + 2pLp′vN−1(L, i− 1, j + 1) + p′2vN−1(L, i− 1, j)

= vW
N+1(H, i, j).

72

If we compare vM
N+1(H, i, j) and vD

N+1(H, i, j), we have

vM
N+1(H, i, j)− vD

N+1(H, i, j) = 1 + pH(vN (L, i, j)− vN (L, i + 1, j))

+ pL(vN (L, i, j + 1)− vN (L, i + 1, j + 1))

+ p′(vN (L, i, j)− vN (L, i + 1, j))

≥ 1− pH − pL − p′ = 0 (by Observation 2).

Therefore, we have vM
N+1(H, i, j) ≥ max{vD

N+1(H, i, j), vW
N+1(H, i, j)}. The case for s1 =

(L, i, j) can be proven analogously.

For 1 ≤ n ≤ N , i ≥ 1 and j ≥ 0, the optimality equations (14) can be rewritten as

vn(H, i, j) = 1 + pHvn−1(L, i, j) + pLvn−1(L, i− 1, j + 1) + p′vn−1(L, i− 1, j),

vn(L, j, i) = 1 + pHvn−1(H, j + 1, i− 1) + pLvn−1(H, j, i) + p′vn−1(H, j, i− 1),

vn(H, 0, j) = max

pHvn−1(H, 1, j) + pLvn−1(H, 0, j + 1) + p′vn−1(H, 0, j),

pHvn−1(L, 1, j) + pLvn−1(L, 0, j + 1) + p′vn−1(L, 0, j)

,

vn(L, j, 0) = max

pHvn−1(L, j + 1, 0) + pLvn−1(L, j, 1) + p′vn−1(L, j, 0),

pHvn−1(H, j + 1, 0) + pLvn−1(H, j, 1) + p′vn−1(H, j, 0)

,

by using Proposition 3. We now know that M is the best action if s ∈ S1. We are interested

in finding which decisions maximize vN (s) if s ∈ S0. We are particularly interested in

vN (H, 0, 0), which is the maximum expected number of orders covered when there are no

orders in the system. In Section 4.5, we analytically study the optimal action when there

are no orders at the driver’s current location from N = 1 to N = 5. For larger values of N ,

we numerically compute optimal actions for some values of pH and pL in Section 4.6.

4.5 Deadheading or Waiting

In this section, we study vN (s) for N ≤ 5 and s0 ∈ S0 as a function of pH and pL. We

consider three general cases within S0:

1. The system is empty.

73

2. The driver is at H with no orders at H and at least one order at L.

3. The driver is at L with no orders at L and at least one order at H.

We are interested in optimal actions for the three cases. Given such a small problem

with one customer and a single driver, we expected to find simple descriptions of optimal

policies. This is indeed the case for N = 1, 2, 3. However, starting with states (H, 0, 1) when

N = 4 and (H, 0, 0) when N = 5, optimal policies show dependence on probabilities for

higher values of N . We study the optimal actions analytically up to N = 5 in this section.

Numerical study of optimal actions for higher values of N are given in Section 4.6.

We use A∗
N (s0) to denote the set of optimal actions for state s0 with N periods left, so

A∗
N (s0) = {a ∈ As0

: vN (s0) = va
N (s0)}. By solving the optimality equations (14) up to

N = 3, we get

• For N = 1, v1(s0) = 0 and A∗
1(s0) = {D, W}.

• For N = 2 and i ≥ 1,

v2(H, 0, 0) = pH , A∗
2(H, 0, 0) = {W}, v2(L, 0, 0) = pH , A∗

2(L, 0, 0) = {D},

v2(H, 0, i) = 1, A∗
2(H, 0, i) = {D}, v2(L, i, 0) = 1, A∗

2(L, i, 0) = {D}.

• For N = 3 and i ≥ 1,

v3(H, 0, 0) = 2pH + pL − p2
H , A∗

3(H, 0, 0) = {D, W},

v3(H, 0, i) = 1 + 2pH − p2
H , A∗

3(H, 0, i) = {D},

v3(L, 0, 0) = 2pH + pL − p2
H , A∗

3(L, 0, 0) = {D, W},

v3(L, i, 0) = 1 + 2pL − p2
L, A∗

3(L, i, 0) = {D}.

We have vN (H, 0, i) = vN (H, 0, 1) and vN (L, i, 0) = vN (L, 1, 0)for i ≥ 1 due to Observa-

tion 1. Let d0 be a decision rule such that d0(s0) =
3⋂

N=1

A∗
N (s0) for s0 ∈ S0 and d0(s1) = M

74

for s1 ∈ S1. Then,

d0(α, x, y) =

M (α, x, y) ∈ S1,

D α = L, x ≥ 0, y = 0,

W α = H, x = 0, y = 0,

D α = H, x = 0, y ≥ 1.

For N = 1, 2, 3, the policy π0 = {d0, d0, d0} is optimal by the construction of d0. The policy

π0 uses the same decision rule at each decision epoch and does not depend on pH or pL. In

words, the optimal policy is to move an order if there is any at the current location, relocate

to H if the system is empty and deadhead to the other location if there is an order at the

other location but not at the current location. Although π0 seems somewhat intuitive, it

does not necessarily yield the optimal value for larger values of N . The optimal action for

v4(H, 0, 1) depends on pH and pL.

v4(H, 0, 1) =

1 + 3pH + 2pL − p2
LpH − 3p2

H + p3
H + p2

HpL − p2
L if g(pL, pH) ≥ 0,

1 + 3pH − p2
H if g(pL, pH) < 0,

A∗
4(H, 0, 1) =

D if g(pL, pH) ≥ 0,

W if g(pL, pH) < 0,

where g(a, b) = −2b2− a2− ba2 + b3 + 2a + b2a. The optimal action for v5(H, 0, 0) depends

on pH and pL as well.

vD
5 (H, 0, 0) = −p2

H + 4pH − p2
L − 2p3

H + 3pL + p4
H ,

vW
5 (H, 0, 0) =

−pHp3
L − p2

H + 4pH − p2
L + pHp2

L − 2p3
H if g(pL, pH) ≥ 0,

+3pL + p4
H + p3

HpL − p2
HpL

p3
L − p2

H + 4pH − 3p2
L + pHp2

L − 2p3
H if g(pL, pH) < 0.

+3pL + p4
H − p2

Hp2
L + p2

HpL

Let f(a, b) = −a2 + 2a − ba + b2a − b2 and y′ be the only real root of the equation

b3 + b− 1 = 0. Let R denote the set of feasible values for pH and pL, i.e., R = {(pL, pH) :

pL + pH ≤ 1, pH ≥ pL ≥ 0}. We partition R into RW , RD and RE such that

• vW
5 (H, 0, 0) > vD

5 (H, 0, 0) if (pL, pH) ∈ RW ,

75

• vW
5 (H, 0, 0) = vD

5 (H, 0, 0) if (pL, pH) ∈ RE ,

• vW
5 (H, 0, 0) < vD

5 (H, 0, 0) if (pL, pH) ∈ RD.

For the probability values in RW and RD, the optimal actions are waiting and deadheading

respectively. For values in RE , the optimal action can be either waiting or deadheading.

By studying vW
5 (H, 0, 0) and vD

5 (H, 0, 0), which are polynomials of pH and pL, we can say

that

RW = {(pL, pH) ∈ R : pL 6= 0, f(pL, pH) < 0},

RE = {(pL, pH) ∈ R : pL = pH}
⋃
{(pL, pH) ∈ R : f(pL, pH) = 0}

⋃
{(pL, pH) ∈ R : pL = 0, pH > 0}

⋃
{(pL, pH) ∈ R : 0.5 ≤ pH ≤ y′ ≈ 0.6823, pL = 1− pH},

RD = R \ (RW ∪RE).

For v5(L, 0, 0), by Observation 3, we conclude that

v5(L, 0, 0) = v5(H, 0, 0), A∗
5(L, 0, 0) =

{D}, (pL, pH) ∈ RW ,

{D, W}, (pL, pH) ∈ RE ,

{W}, (pL, pH) ∈ RD.

Let ∆(pH , pL, N) denote the difference between expected values of deadheading and

waiting in the first time period given pH , pL, N , and the initial state (H, 0, 0), i.e, ∆(pH , pL, N) =

vD
N (H, 0, 0)− vW

N (H, 0, 0). Then,

∆(pH , pL, 5) =

pHp3
L − pHp2

L − p3
HpL + p2

HpL if g(pL, pH) ≥ 0,

−p3
L + 2p2

L − pHp2
L + p2

Hp2
L − p2

HpL if g(pL, pH) < 0.

The contours of ∆(pH , pL, 5) are given in Figure 25. The maximum of ∆(pH , pL, 5) is

attained around (pL, pH) = (0.2067, 0.5238) and the minimum of ∆(pH , pL, 5) is attained

around (pL, pH) = (0.1480, 0.8520). The maximum and the minimum values are respectively

around 0.009 and -0.07. On the contour that partially lies on the pH = pL line, ∆(pH , pL, 5)

is zero.

76

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
L

p H

−0.13
−0.11

−0.09

−0.07

−0.05

−0.03

−0.01

0

0

0

0.0025

0.0050

0.0075

0.0092

Figure 25: Contours of ∆(pH , pL, 5).

In Figure 26, all possible values of pH and pL are partitioned into three regions. The

optimal actions for (H, 0, 0) when N = 5 and for (H, 0, 1) when N = 4 in each region is

given in Table 13. Region A is RW , region B is {(pL, pH) ∈ RD : g(pL, pH) < 0} and region

C is {(pL, pH) ∈ RD : g(pL, pH) > 0}.

Table 13: Optimal actions in each region
Region (H, 0, 0), N = 5 (H, 0, 1), N = 4

A W W
B D W
C D D

The optimal actions for the remaining states in S0 when N = 4 or 5 can be summarized

as

77

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
L

p H

A

B

C

Figure 26: Decision regions for (H, 0, 0), N = 5 and (H, 0, 1), N = 4 .

• For N = 4 and i ≥ 2,

v4(H, 0, 0) = −p2
L + 2pL − p2

H + 3pH , A∗
4(H, 0, 0) = {W},

v4(H, 0, i) = 2− p2
H + 2pH , A∗

4(H, 0, i) = {D},

v4(L, 0, 0) = v4(H, 0, 0), A∗
4(L, 0, 0) = {D},

v4(L, 1, 0) = 1 + p3
H − p2

L + 2pL − 3p2
H + 3pH , A∗

4(L, 1, 0) = {D},

v4(L, i, 0) = 2− p2
L + 2pL, A∗

4(L, i, 0) = {D}.

78

• For N = 5 and i ≥ 2,

v5(H, 0, 1) = 1− 2p3
H − 3p2

L + 3pL − p2
H + p3

L A∗
5(H, 0, 1) = {D},

+ 4pH + p4
H ,

v5(H, 0, i) = 2− 2p3
H − p2

H + 4pH + p4
H , A∗

5(H, 0, i) = {D},

v5(L, 1, 0) = 1 + 2pLpH + 4p3
H + 3pL − 6p2

H − pLp2
H A∗

5(L, 1, 0) = {D},

− p3
L + 4pH + 2p2

Lp2
H − p4

H − 3p2
LpH ,

v5(L, i, 0) = 2− p2
L + 4pL − 2p3

L + p4
L, A∗

5(L, i, 0) = {D}.

The actions chosen by policy π0 is optimal for these remaining states in S0.

We showed that there are states for which the optimal action depends on pH and pL

when N = 4, 5. When the system is empty with five periods left, the intuitive decision of

relocating the driver to location H is not optimal for some values of pH and pL although

pH ≥ pL. Unexpected rules for optimal actions are not limited to the case of the empty

system. When the driver is at location H and the only order in the system is at location

L, the optimal action could waiting or deadheading depending on pH , pL and N . The rules

determining the optimal actions become harder to find analytically as N increases. We

study the optimal actions for higher values of N numerically in Section 4.6.

4.6 Computational Experiments

We know that for s ∈ S1, moving an order is an optimal action for the first decision

epoch regardless of N, pH and pL. Hence, we evaluated vN (H, 0, 0), vN (L, 1, 0), vN (L, 2, 0),

vN (H, 0, 1), and vN (H, 0, 2) for various values of pH , pL and N .

1. In general, vN (H, 0, 0) was optimized with policies which start with waiting at H

for the first period. For some (pH , pL) pairs, there was an odd number m(pH , pL)

such that for all odd N between 5 and m(pH , pL), the optimal policies started with

deadheading in the first period. We showed that N must be at least 5 in order to have

optimal policies starting with a deadhead and presented the conditions on (pH , pL)

which determine the initial optimal action for (H, 0, 0), N = 5 in Section 4.5. In

79

Table 14, m(pH , pL) values for various pH and pL combinations are listed. Blank

entries correspond to infeasible (pH , pL) pairs (e.g. pL > pH), whereas X means

waiting was the optimal action for all (H, 0, 0), N = 1, . . . , 100 for the corresponding

(pH , pL) pair.

Table 14: m(pH , pL) values for various pH and pL combinations.
pL\pH 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 11 5 X X X X X X X
0.10 X 9 5 5 X X X X X
0.15 23 9 5 X X X X X
0.20 X 15 7 5 X X X
0.25 37 11 7 5 X
0.30 X 21 9 5 X
0.35 59 13 7
0.40 X 25 X
0.45 85
0.50 X

We observed that having ∆(pH , pL, N) > 0 for some N , implied ∆(pH , pL, 5) > 0. We

also noted that for all (pH , pL) pairs such that ∆(pH , pL, N) > 0,

∆(pH , pL, 5) ≥ ∆(pH , pL, 7) ≥ · · · ≥ ∆(pH , pL, m(pH , pL)).

2. Waiting and deadheading are the only two possible actions for vN (H, 0, i), i = 1, 2.

There were two threshold values no and ne such that for every odd N < no and for

every even N < ne, deadheading was the optimal action for the first period. For all

odd N ≥ no and for all even N ≥ ne, waiting was the optimal action for the first

period. The threshold values no and ne depended on pH , pL and i. Both ne and no

increased with i while no was always greater than ne. In Table 15, (ne, no) pairs are

listed for a number of pH and pL combinations when i = 1. In Table 16, (ne, no) pairs

are listed for a number of pH and pL combinations when i = 2. In both tables, X

means there was no N ≤ 100 for which the optimal action switched from D to W .

Blank entries correspond to infeasible (pH , pL) values.

3. Deadheading was the optimal action for the first period for vN (L, i, 0), N = 1, . . . , 100,

and i = 1, 2.

80

Table 15: (ne, no) pairs for (H, 0, 1)
pL\pH 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 10,X 6,X 4,11 4,9 4,9 4,7 4,7 4,7 4,7
0.10 X,X 8,X 6,17 4,11 4,11 4,9 4,9 4,7 4,7
0.15 16,X 8,23 6,15 4,11 4,11 4,9 4,7
0.20 X,X 10,39 6,19 6,15 4,11 4,9 4,9
0.25 20,X 8,29 6,17 4,13 4,11
0.30 X,X 14,47 8,23 6,17 4,13
0.35 26,X 10,35 8,21
0.40 X,X 18,65 10,31
0.45 54,X
0.50 X,X

Table 16: (ne, no) pairs for (H, 0, 2)
pL\pH 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 18,X 10,X 8,19 6,13 6,11 6,11 6,11 6,9 6,9
0.10 X,X 14,X 10,27 8,17 6,13 6,13 6,11 6,11 6,9
0.15 28,X 12,45 10,21 8,17 6,15 6,13 6,11
0.20 X,X 18,X 12,29 8,21 8,17 6,15 6,13
0.25 34,X 16,41 10,25 8,19 8,17
0.30 X,X 22,67 14,35 10,25 8,19
0.35 44,X 20,51 14,33
0.40 X,X 36,93 22,47
0.45 X,X
0.50 X,X

We observed that optimal actions continue to depend on pH , pL and N for N > 5.

An unforeseen result was the effect of the parity of N on optimal actions. For instance,

the optimal action in an empty system was to relocate to H whenever N was even and

depended on pH and pL only for some odd N values. The optimal actions for wait-or-

deadhead decisions at H show even more interesting behavior. We summarize our numerical

conclusions in Table 17. Although, we do not have proof whether any of the conclusions

in Table 17 are true in general, we have not encountered any case which contradicts the

conclusions.

For the wait-or-deadhead situation with no orders at the driver’s current location and

at least one order at the other location, the optimal action seems to be deadheading to H

if the driver is at L. For the other case where the driver is at H, i.e., (H, 0, i) with i ≥ 1,

the optimal action is deadheading for smaller values of N and waiting for larger values of

81

Table 17: Conclusions suggested by numerical results
State Optimal Action

(H, 0, 0) : Wait at H if N is even
(H, 0, 0) : Wait at H or deadhead to L depending on (pH , pL) if N is odd
(H, 0, 0) : Wait at H for large enough odd values of N regardless of (pH , pL)
(L, i, 0), i ≥ 1 : Deadhead to H
(H, 0, i),i ≥ 1 : Deadhead to L if N is small, and otherwise wait at H

N . The threshold value of N , for which the optimal action changes from deadheading to

waiting, not only depends on values of pH and pL but also on i and the parity of N . For

fixed pH , pL and i, the threshold value for odd values of N is higher than the threshold

value for even values of N . When pH , pL and the parity of N are fixed, the threshold value

increases as the number of orders at the other location increases.

4.7 A Near-Optimal Policy

Since the optimal policies depend heavily on N, pH , pL and the initial state, we searched for

a simpler policy which would give good solutions. In this section, we study the properties

of a near-optimal policy, which we call the seesaw policy.

At each time period, the seesaw policy follows the same simple decision rule–never wait.

If an order is available for delivery, then move it; otherwise deadhead. What the seesaw

policy might look like on the location-time graph is in Figure 27. The policy is simple and

does not depend on the probability distribution, the initial state or the number of time

periods remaining.

Figure 27: A solution given by the seesaw policy

More formally, let d1 denote the decision rule used by the seesaw policy, denoted by π1,

82

in each decision epoch. Then,

d1(s) =

M s ∈ S1,

D s ∈ S0.
and π1 = {d1, d1, . . . , d1}.

Theorem 2. The difference between the expected number of orders covered under the seesaw

policy and the optimal policy is at most one.

We show that Theorem 2 is true by first studying the deterministic case. We compare

the seesaw policy with another policy that we call the wait-and-seesaw policy, denoted π2.

In the wait-and-seesaw policy, the driver waits in the first time period, and then follows the

seesaw policy, i.e., π2 = {W, d1, d1, . . . , d1}.

Proposition 4. For a fixed scenario of events, the number of orders covered by the seesaw

policy is not less than the number of orders covered by the wait-and-seesaw policy minus

one.

Proof. Given a solution under the wait-and-seesaw policy, one can construct a new solution

as in Figure 28. The selected portion of the original solution is repeated with one period

delay. Since, in the new solution, no orders are carried out until period two, the remainder

is still feasible.

New Solution

Original Solution

Figure 28: Constructing a new solution from the wait-and-seesaw policy’s solution

The new solution covers one less order if an order is carried out in the last period in the

original solution, which is represented by a dotted line in Figure 28. Otherwise, the solution

covers the same number of orders. The new solution is dominated by the seesaw policy’s

solution which follows the same path in the location-time graph and carries out orders as

soon as possible.

83

Proposition 5. For a fixed scenario of events, either the seesaw policy or the wait-and-

seesaw policy covers the optimal number of orders.

Proof. For a fixed scenario, an optimal solution can be described by a sequence of wait,

deadhead and move actions. Suppose that we picked an optimal solution. In our proof, we

transform the optimal solution into a form comparable to the solutions given by the seesaw

and the wait-and-seesaw policies. The transformations are summarized in Figure 29.

⇒

⇒

⇒

Figure 29: The transformations preserve feasibility of the solution and the number of
orders covered.

In an optimal solution, if a wait decision follows deadheading, we can get a new solution

by swapping the waiting and deadheading actions. The new solution is still feasible and

covers the same number of orders as the original. The same is true if moving an order is

followed by waiting. If we keep replacing D, W with W, D and M, W with W, M until none

remain in the solution, the resultant solution has a number of W ’s followed by D’s and

M ’s. Moreover, we can replace all consecutive wait decisions with consecutive deadhead

decisions. Hence, if the number of W ’s is even, we end up with a solution that follows the

same path on the location-time graph as the solution of the seesaw policy. If the number

of W ’s is odd, the final solution has only one W in the beginning, followed by M ’s and

D’s. Either way, the final solution covers the optimal number of orders and is dominated

by either the seesaw policy’s solution or the wait-and-seesaw policy’s solution.

By combining Propositions 4 and 5 that are related to the deterministic case, we can

argue that Theorem 2 is true because one plus the number of orders covered by the seesaw

84

policy is greater than or equal to the maximum number of orders covered in each scenario.

4.8 A Special Case With a Never Empty Location H

Since there is always an order at H, we can denote the states as (α, ., j) where α is the

driver’s location and j is the number of order at location L. Let pL be the probability that

a new order is released at L at any time period.

Theorem 3. The seesaw policy is optimal if there is always an order at H.

Proof. When there is at least one order at the current location, under the seesaw policy

the order is carried out, which we know is optimal. The state (L, ., 0) is the only state in

which there is no order at the current location. Under the seesaw policy, the driver should

deadhead to H. So, if we can show that deadheading is optimal, then the proof is complete.

For N = 1, vD
1 (L, ., 0)d = vW

1 (L, ., 0) = 0 and for N = 2, vD
2 (L, ., 0)d − vW

2 (L, ., 0) = 1− pL,

so we may assume N ≥ 3. We have

vD
N (L, ., 0)− vW

N (L, ., 0) = 1 + (1− pL)2vN−2(L, ., 0) + 2(1− pL)pLvN−2(L, ., 1)

+ p2
LvN−2(L, ., 2)− (1− pL)vN−1(L, ., 0)− pLvN−1(L, ., 1).

Since 2vN−2(L, ., 1) ≥ vN−2(L, ., 1) + vN−2(L, ., 0), we can rewrite the right hand side and

change the equality to inequality as

vD
N (L, ., 0)− vW

N (L, ., 0) ≥ 1 + (1− pL)2vN−2(L, ., 0) + (1− pL)pLvN−2(L, ., 0)

+ (1− pL)pLvN−2(L, ., 1) + p2
LvN−2(L, ., 1)

− (1− pL)vN−1(L, ., 0)− pLvN−1(L, ., 1).

After collecting the terms, we get

vD
N (L, ., 0)− vW

N (L, ., 0) ≥ 1 + (1− pL)vN−2(L, .0) + pLvN−2(L, ., 1)

− (1− pL)vN−1(L, ., 0)− pLvN−1(L, ., 1).

85

Since vN−2(s)− vN−1(s) ≥ −1,

vD
N (L, ., 0)− vW

N (L, ., 0) ≥ 1 + (1− pL)
(
vN−2(L, .0)− vN−1(L, .0)

)

+ pL

(
vN−1(L, .0)− vN−1(L, .1)

)
,

≥ 1− (1− pL)− pL = 0.

Therefore, deadheading to H is optimal for (L, ., 0), and hence the seesaw policy is optimal.

Alternatively, pick a scenario and suppose waiting is strictly better than deadheading.

Pick an optimal solution starting with waiting and remove the first and last time periods to

obtain route r that starts at L and spans N − 2 periods. In the worst case, route r covers

one less order than the optimal value. We can construct a new solution in which the driver

initially deadheads to H, moves an order from H to L and then follows route r. Since the

driver does not move any order originating from L until the third period, the new solution

is feasible and covers at least the optimal number of orders. This contradicts the fact that

waiting is strictly better than deadheading for the given scenario.

Under the seesaw policy, the driver is back in the same location every two periods.

Suppose the driver is initially at H and the time horizon is infinite. By looking at the system

every two periods, it is possible to define a Markov chain. The definition and properties of

Markov chains can be found in [35]. The states and the transition probabilities are given

in Figure 30.

...H,0 H,1 H,2

p2
L

(1 − pL)2

(1 − pL)2 (1 − pL)2

2pL(1 − pL)

p2
L

2pL(1 − pL)

pL

1 − pL

Figure 30: Markov states and transition probabilities

86

The probability transition matrix P is given as

P =

1− pL pL

(1− pL)2 2pL(1− pL) p2
L

. . .
. . .

. . .

.

We need to solve Π = Π · P for Π in order to find the stationary distribution. We get

Π0 =
1− 2pL

1− pL

, Πk =
p2k−1

L

(1− pL)2k
·Π0,∀k ≥ 1.

The stationary distribution exists if

(
pL

1− pL

)2

< 1⇒ pL < 0.5.

The average coverage for two periods is

1 + (1−Π0) · 1 + Π0 · pL = 1 +
pL

1− pL

+
pL − 2p2

L

1− pL

= 1 + 2pL.

4.9 Extension to Two Customers

In this problem, we add a second customer location, denoted by K, to the problem. Orders

that originate at H must be delivered to either K or L, and vice versa. Recall that H

represents the rail ramp. Since all drayage orders either originate or end at the rail ramp,

we require that all orders must be either picked up at H or delivered to H in the case with

two customers. Without loss of generality, we may assume that new orders are more likely

to originate at K than L. To be consistent with the two location case, we assume that a

new order is more likely to appear at H than all other locations combined. The change

in the location layout and the order types are in Figure 31. Bold arrows in Figure 31

represent possible origin-destination pairs for orders. moving an order or deadheading from

one location to another takes one period.

4.9.1 An Extended Finite-Horizon Markov Decision Process Formulation

The finite-horizon Markov decision process formulation can be extended to the case with

two customer locations.

87

H L
H L

K

Figure 31: New problem setup with two customer locations compared to the original
problem setup.

• Decision Epochs: At the beginning of each period, a decision has to be made which

determines the driver’s task for the period. The periods are indexed in descending

order starting from N for the immmediate period to 1 for the final period. The time

horizon is finite.

• States: Let nℓ and nk denote the number of orders whose destinations are location L

and location K, respectively. The total number of orders ready to be picked up at H

is equal to the sum of nℓ and nk. Let nL and nK denote the number of orders whose

origins are location L and location K, respectively. Recall that the destination of all

orders originating at locations L and K is location H. If the driver is at location α,

the state of the system, s, is given by s = (α, nℓ, nk, nL, nK). The set of all states, S,

is given by

S = {(α, nℓ, nk, nL, nK) : α ∈ {L, H, K}, and nℓ, nk, nL, nK ∈ Z0
+}.

• Actions: Overall, there are seven possible actions which are listed in Table 18. For

Table 18: All possible actions
Action Description

W Wait at current location
Dh Deadhead to H
Dk Deadhead to K
Dℓ Deadhead to L
Mh Move order to H
Mk Move order to K
Mℓ Move order to L

α ∈ {K, H, L}, let Sα
0 denote the set of states in which the driver is at location α,

88

and there are no orders originating from location α. Let Sδ
1 denote the set of states

in which there is at least one order originating from the driver’s current location to

location H if δ = h, to location L if δ = ℓ, and to location K if δ = k. The set of

actions is defined for each state s and is denoted by As.

As =

{W, Dℓ, Dk} ∀s ∈ SH
0 ,

{W, Dh, Dk} ∀s ∈ SL
0 ,

{W, Dℓ, Dh} ∀s ∈ SK
0 ,

{Mh, W, Dh, Dk} ∀s ∈ Sh
1 with s = (L, nℓ, nk, nL, nK),

{Mh, W, Dh, Dℓ} ∀s ∈ Sh
1 with s = (K, nℓ, nk, nL, nK),

{Mℓ, W, Dh, Dℓ} ∀s ∈ Sℓ
1 \ Sk

1 ,

{Mk, W, Dh, Dk} ∀s ∈ Sk
1 \ Sℓ

1,

{Mℓ, Mk, W, Dℓ, Dk} ∀s ∈ Sk
1 ∩ Sℓ

1.

• Rewards: The number of orders covered is the reward. The reward at the end of

the time horizon is zero, i.e., r0(s, .) = 0, ∀s ∈ S. The reward at the decision epochs

depends on the given state and the action chosen. A reward of 1 is gained for moving

an order to its destination (Mℓ, Mk, Mh) and zero reward is given for waiting (W) or

deadheading (Dℓ, Dk, Dh). For t = N, . . . , 1,

rt(s, a) =

1 if s ∈ Sh
1 , a = Mh

1 if s ∈ Sℓ
1 \ Sk

1 , a = Mℓ

1 if s ∈ Sk
1 \ Sℓ

1, a = Mk

1 if s ∈ Sk
1 ∩ Sℓ

1, a ∈ {Mk, Mℓ}

0 otherwise.

• Transition Probabilities: Transition probabilities do not change over time. The

probability distribution of a new order is given in Table 19.

89

Table 19: All possible events
Probability Origin Destination

pℓ H L
pk H K
pK K H
pL L H
p′ = 1− pℓ − pk − pK − pL No new order

For t = N, . . . , 1 and s = (H, nℓ, nk, nL, nK) ∈ Sk
1 ,

pt(s
′|s, Mk) =

pℓ if s′ = (K, nℓ + 1, nk − 1, nL , nK),

pk if s′ = (K, nℓ , nk , nL , nK),

pL if s′ = (K, nℓ , nk − 1, nL + 1, nK),

pK if s′ = (K, nℓ , nk − 1, nL , nK + 1),

p′ if s′ = (K, nℓ , nk − 1, nL , nK),

0 otherwise.

For t = N, . . . , 1 and s = (H, nℓ, nk, nL, nK) ∈ Sℓ
1,

pt(s
′|s, Mℓ) =

pℓ if s′ = (L, nℓ , nk , nL , nK),

pk if s′ = (L, nℓ − 1, nk + 1, nL , nK),

pL if s′ = (L, nℓ − 1, nk , nL + 1, nK),

pK if s′ = (L, nℓ − 1, nk , nL , nK + 1),

p′ if s′ = (L, nℓ − 1, nk , nL , nK),

0 otherwise.

For t = N, . . . , 1 and s = (L, nℓ, nk, nL, nK) ∈ Sh
1 ∩ SL,

pt(s
′|s, Mh) =

pℓ if s′ = (H, nℓ + 1, nk , nL − 1, nK),

pk if s′ = (H, nℓ , nk + 1, nL − 1, nK),

pL if s′ = (H, nℓ , nk , nL , nK),

pK if s′ = (H, nℓ , nk , nL − 1, nK + 1),

p′ if s′ = (H, nℓ , nk , nL − 1, nK),

0 otherwise.

90

For t = N, . . . , 1 and s = (K, nℓ, nk, nL, nK) ∈ Sh
1 ∩ SK ,

pt(s
′|s, Mh) =

pℓ if s′ = (H, nℓ + 1, nk , nL , nK − 1),

pk if s′ = (H, nℓ , nk + 1, nL , nK − 1),

pL if s′ = (H, nℓ , nk , nL + 1, nK − 1),

pK if s′ = (H, nℓ , nk , nL , nK),

p′ if s′ = (H, nℓ , nk , nL , nK − 1),

0 otherwise.

For t = N, . . . , 1 and s = (α, nℓ, nk, nL, nK) ∈ S0,

pt(s
′|s, W) =

pℓ if s′ = (α, nℓ + 1, nk , nL , nK),

pk if s′ = (α, nℓ , nk + 1, nL , nK),

pL if s′ = (α, nℓ , nk , nL + 1, nK),

pK if s′ = (α, nℓ , nk , nL , nK + 1),

p′ if s′ = (α, nℓ , nk , nL , nK),

0 otherwise.

For t = N, . . . , 1 and s = (α, nℓ, nk, nL, nK) ∈ S0 \ SL
0 ,

pt(s
′|s, Dℓ) =

pℓ if s′ = (L, nℓ + 1, nk , nL , nK),

pk if s′ = (L, nℓ , nk + 1, nL , nK),

pL if s′ = (L, nℓ , nk , nL + 1, nK),

pK if s′ = (L, nℓ , nk , nL , nK + 1),

p′ if s′ = (L, nℓ , nk , nL , nK),

0 otherwise.

For t = N, . . . , 1 and s = (α, nℓ, nk, nL, nK) ∈ S0 \ SK
0 ,

pt(s
′|s, Dk) =

pℓ if s′ = (K, nℓ + 1, nk , nL , nK),

pk if s′ = (K, nℓ , nk + 1, nL , nK),

pL if s′ = (K, nℓ , nk , nL + 1, nK),

pK if s′ = (K, nℓ , nk , nL , nK + 1),

p′ if s′ = (K, nℓ , nk , nL , nK),

0 otherwise.

91

For t = N, . . . , 1 and s = (α, nℓ, nk, nL, nK) ∈ S0 \ SH
0 ,

pt(s
′|s, Dh) =

pℓ if s′ = (H, nℓ + 1, nk , nL , nK),

pk if s′ = (H, nℓ , nk + 1, nL , nK),

pL if s′ = (H, nℓ , nk , nL + 1, nK),

pK if s′ = (H, nℓ , nk , nL , nK + 1),

p′ if s′ = (H, nℓ , nk , nL , nK),

0 otherwise.

• Assumptions: We assume that pℓ + pk ≥ max {pL, pK} and pK ≥ pL.

The objective is to maximize the expected total reward, i.e., to maximize the expected

number of orders covered.

4.9.2 Optimal Decisions for N = 1, 2, 3

For N = 1, 2, the value function calculations are straightforward. The optimal decisions for

N = 2 can be summarized as

• if there is one order at the driver’s current location, move the order,

• else if there is more than one order at the driver’s current location, move the order

whose destination is more likely to have an order in the next period,

• else if there is an order at another location, deadhead to that location,

• otherwise relocate to H.

For N = 3, location K is the optimal relocation point when there are no orders in the

system. When the driver is at K or L with only one order originating at H and destined to

L, the choice between relocating to K or H depends on the probabilities. If (pK − pL)(1−

pk)−(pL−p2
L) ≥ 0, the optimal action is to relocate to K, otherwise to H. As expected, for

large enough pL values, the optimal relocation point is H, since the driver is more likely to

have an order ready at L after two periods spent deadheading to H and moving the already

released order from H to L. If the probability of having a new order at K is more than a

certain threshold, the optimal relocation point is K. As the probability of having a new

92

order with origin H and destination K increases, the expression’s value changes in favor of

relocating to H. The decisions for N = 3 are summarized in Table 20. The problem with

Table 20: Optimal decisions at various states when N = 3 with i, j ≥ 1.

(H, 0, 0, 0, 0) Dk

(H, 0, 0, 0, 1) Dk

(H, 0, 0, 1, 0) Dl

(H, 0, 0, 1, 1) Dk/Dl

(H, 0, i, ,) Mk

(H, i, 0, ,) Ml

(H, i, j, 0, 0) Mk

(H, i, j, 0, 1) Mk

(H, i, j, 1, 0) Ml

(H, i, j, 1, 1) Mk/Ml

(K, 0, 0, 0, 0) W
(K, 1, 0, 0, 0) Dh or W
(K, , , , i) Mh

(K, 0, , 1, 0) Dl

(K, , 1, 0, 0) Dh

(K, 1, , 1, 0) Dh/Dl

(L, 0, 0, 0, 0) Dk

(L, 1, 0, 0, 0) Dh or Dk

(L, , , i,) Mh

(L, , 0, 0, 1) Dk

(L, , 1, 0, 0) Dh

(L, , 1, 0, 1) Dh/Dk

one customer location is a special case of the problem with two customers with pL set to 0.

Hence, all of the results of the case with one customer carry over. The addition of a new

customer begins to have non-trivial affects on the optimal actions as early as N = 3. For

the Dray Coverage Problem with One Customer, both H and L are equally good choices for

relocation in an empty system when N = 3. When there is an additional customer location

K with a higher probability of having a new order than L, the optimal relocation point

changes to K. The dependence of optimal actions on parameter values starts to appear at

N = 3 for states (L, 1, 0, 0, 0) and (K, 1, 0, 0, 0).

4.10 Generalizations

Consider the Dray Coverage Problem with one customer and with continuous time horizon

and the additional requirement that the driver must start and end at a park location. If we

93

assume that total stop duration of any order is constant, we can generalize Proposition 3,

which states moving an order immediately is optimal if the order is available at the driver’s

current location.

At time t, given when and where the driver will be available next, an order is feasible if

the driver can move the order and deadhead to the park location by time T .

Proposition 6. At time t, if the driver is idle at the origin of a feasible order, say order

i, which is ready for pickup (i.e., released before time t) and the total stop duration of any

order is the same, then there is an optimal solution in which the driver starts to move order

i at time t.

Proof. Suppose that there is an optimal schedule s′, where the driver does not pick up order

i at time t. Such a schedule must cover at least one feasible order since order i is feasible.

Let o be the first order covered in s′ and to be the completion time of order o.

If order o has the same origin and destination pair as order i, then one can get a new

schedule by replacing the first order with order i. The new schedule can start at time t. The

activities following the first order can start at their original times in s′. The new schedule

covers the same number of orders.

If order o goes in the opposite way, there has to be a deadhead to the destination of order

i in the beginning of s′. We construct a new schedule, which starts with order i and covers

the optimal number of orders, in two steps. First, we replace the deadhead in s′ with order

i. The new schedule can again start at time t. The activities following order i until the

pickup of order o are scheduled as early as possible. Therefore, the pickup of order o is at

most delayed by the total stop duration of order i. As the second step of the construction,

we replace order o with a deadhead to the origin of order i. Since the total stop duration

of any order is the same, the deadhead to the origin of order i can be completed before to.

The activities following order o can start at their original times in the new schedule.

Proposition 6 is not true for the general case with multiple customer locations. Consider

the example in Figure 32. Let the stop duration at any location be half an hour. Suppose

that the driver is idle at the rail ramp at time T − 6.5. By moving order 2 and then order

94

1, the driver can be back at the park location by T − 0.5. However, if the driver starts by

delivering order 1 which is ready for pickup at the rail ramp, there is not enough time to

move order 2. In this example, it is strictly better not to move order 1 right away although

order 1 is ready for pickup at the driver’s current location.

O1O2

1 hour 1 hour 1 hour

Figure 32: The time horizon does not allow the driver to start with order 2 and then to
cover order 1.

It is possible to modify the finite-horizon Markov Decision Process model in Section 4.3

to handle more general cases. If the driver is required to be back at a park location, we

can introduce a new state representing the parked driver and extend transition probabilities

accordingly. If the stop durations of orders are different, the state space can be extended

to differentiate orders with different durations.

4.11 Conclusions

Although the Dray Coverage Problem with one customer is a very simplified problem, the

structure of the optimal policies depends on various parameters and is sometimes counter-

intuitive. We believe the-end-of-day effect is the reason for the complex behavior of optimal

policies. Although it is not possible to give a simple description of an optimal policy for all

parameter values, the difference between the optimal expected value and the expected value

of the seesaw policy is at most one. The seesaw policy is easy to state and does not depend

on parameters. In addition, the seesaw policy is optimal if there is always an order at H.

In the case with two customer locations, we observe that the optimal policy’s dependency

on parameters starts at N = 3. For the case with two locations, it is optimal to pick up

an order available at the driver’s current location, but the result does not generalize to the

cases with three or more locations.

95

CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have addressed issues in modeling and optimizing daily drayage operations.

In Chapter 2, our emphasis was on capturing the complicated aspects of real-world drayage

operations in our model and finding a solution method that would yield optimal or near-

optimal results. In Chapters 3 and 4, we defined and studied two abstract daily drayage

problems with uncertainty. Our goal was to gain insights into managing drayage operations

when dynamic addition of orders was allowed.

In Chapter 2, we were able to model the Static Daily Drayage Problem with complicated

cost functions and constraints using a column generation-based approach. The solution

methods used simple preprocessing techniques such as dominance among route assignments

and the precedence feasibility matrix to improve running times. The generation-based

method was able to solve the instances that were created from historical data within one

percent of the optimal value in a reasonable time.

We believe the reason for the small integrality gap and fast convergence of the solution

method is the fact that the number of orders on a feasible drayage route is typically limited

by 3 or 4 due to the duration of drays relative to duration of driver shifts. Solving instances

with larger set of orders may require additional tuning of the solution method. The model

can be extended to include staging movements and movements with containers by defin-

ing new types of drayage orders. The biggest challenge is limiting capacity at equipment

pools. Modeling trailer capacity is inherently difficult because trailers used in intermodal

transportation are shared with other over-the-road and regional networks.

Another future direction for the Static Daily Drayage Problem is to extend the time

horizon to weeks or months. Tactical questions such as “What should be the driver capac-

ity?” and “What is the best mix of company and third party drivers?” can be addressed.

Additional complexities can be modeled over a longer time horizon. For instance, when

96

solving a daily problem, the maximum daily work hours for a driver is determined by his

or her driving history and hours-of-service restrictions. With a longer time horizon, the

model can use company drivers more effectively by including hours-of-service restrictions

that span multiple days. Another complexity that can be modeled is storage cost at rail

ramps. Keeping equipment at the rail ramp for more than a certain number of days results

in holding cost.

In the remainder of the thesis, we incorporated some uncertainty, namely the dynamic

addition of drayage orders, into the problem. In Chapter 3, we defined the Online Daily

Drayage Problem in which there is no prior knowledge about future orders and the objective

is minimizing total deadhead mileage. We made some assumptions to simplify the problem

and to guarantee that all orders were feasible.

We have shown that the competitive ratio for any deterministic online algorithm must

be greater than 2.0641. However we do not know whether this is a tight bound, i.e., whether

a deterministic online algorithm with competitive ratio of 2.0641 exists. The initial solution

methodology we developed repeatedly solves a myopic problem whenever a new order is

released. The methodology has two major steps–selection of routes that cover known orders

and scheduling of the selected routes. We later modified the solution methodology to reward

routes with gaps in their schedules. We evaluated the performance of online algorithms by

comparing their solution values with the value of the fair solution. We have seen that the

performance of various scheduling policies can be improved by rewarding routes that can

potentially cover additional future orders. Among the scheduling policies that schedule each

route individually, deadhead has performed the best on average. With the coverage policy,

we were able to improve the performance of deadhead by rescheduling the selected routes,

so that gaps in the schedules covered more of the time horizon.

A potentially promising technique for improving online algorithms is to anticipate the

origin of dynamic orders and to relocate idle drivers accordingly. With strategic relocation

of idle drivers in an online algorithm, the online solution can outperform the fair solution.

Under the assumption that we do not have any prior knowledge of future orders, it is very

challenging to come up with a good strategy for relocating idle drivers. Since each relocation

97

is a deadhead and increases the cost of the route, a poorly chosen relocation decision can

easily ruin the objective value of a solution. Our initial attempts in using strategic relocation

performed poorly. In our methodology, we have solved integer programs to find the best

selection of routes. The impact of selecting the best routing solution instead of a good

heuristic routing solution on the overall performance of an online algorithm is another issue

worth investigating.

In Chapter 4, we studied Dray Coverage Problem with One Customer, where a single

driver moves orders, which either originate at the rail ramp or at the customer, and the

objective is to maximize the expected number of orders covered. Our goal was to gain

insights about wait-or-deadhead decisions and when (and for how long) an order should be

delayed. We have shown that moving an order originating at the driver’s current location

is optimal when there is one customer location. This is not necessarily true for the case

with two customers. When there are no orders at the driver’s current location, the optimal

action has turned out to depend on many parameters although the problem setup is very

simple. We have shown that a heuristic policy guarantees a solution value of the maximum

expected number of orders covered less one for any starting state and any set of parameters.

We have observed that the complicated dependence of the optimal action on parameters

and the initial state continued for the case with two customers.

The Markov Decision Process model can be extended to account for the duration dif-

ference between moving an order and deadheading. We do not know whether a heuristic

with a performance guarantee exists for the case with two customers. Studying the optimal

policies for multiple drivers can provide additional insights.

98

REFERENCES

[1] Ascheuer, N., Fischetti, M., and Grötschel, M., “A polyhedral study of the
asymmetric traveling salesman problem with time windows,” Networks, vol. 36, pp. 69–
79, 2000.

[2] Ascheuer, N., Krumke, S. O., and Rambau, J., “The online transportation
problem: competitive scheduling of elevators.” Technical Report 98-34, Konrad-Zuse-
Zentrum fur Informationstechnik Berlin, 1998.

[3] Association of American Railroads, “Rail intermodal transportation,” July
2006. http://www.aar.org/GetFile.asp?File ID=143.

[4] Bard, J. F., Kontoravdis, G., and Yu, G., “A branch-and-cut procedure for the
vehicle routing problem with time windows,” Transportation Science, vol. 36, pp. 250–
269, 2002.

[5] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P.,
and Vance, P. H., “Branch-and-price: column generation for solving huge integer
programs,” Operations Research, vol. 46, pp. 316–329, 1998.

[6] Bent, R. and Hentenryck, P., “Scenario based planning for partially dynamic
vehicle routing problems with stochastic customers,” Operations Research, vol. 53,
pp. 977–987, 2004.

[7] Bertsimas, D. J. and Simch-Levi, D., “A new generation of vehicle routing research:
robust algorithms, addressing uncertainty,” Operations Research, vol. 44, pp. 286–304,
1996.

[8] Bräysy, O. and Gendreau, M., “Vehicle routing problem with time windows, part
i: Route construction and local search algorithms,” Transportation Science, vol. 39,
pp. 104–118, 2005.

[9] Bräysy, O. and Gendreau, M., “Vehicle routing problem with time windows, part
ii: Metaheuristics,” Transportation Science, vol. 39, pp. 119–139, 2005.

[10] Campbell, A. and Savelsbergh, M., “Decision support for consumer direct grocery
initiatives,” Transportation Science, vol. 39, pp. 313–327, 2005.

[11] Cook, W. and Rich, J. L., “A parallel cutting plane algorithm for the vehicle routing
problem with time windows.” Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, 1999.

[12] Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M., and Soumis,

F., The Vehicle Routing Problem, ch. The VRP with Time Windows, pp. 157–193.
Monographs on Discrete Mathematics and its Applications, SIAM, 2001.

99

[13] Desrochers, M., Desrosiers, J., and Solomon, M., “A new optimization algo-
rithm for the vehicle routing problem with time windows,” Operations Research, vol. 40,
pp. 342–354, 1992.

[14] Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F., Network Routing,
ch. Time Constrained Routing and Scheduling, pp. 35–139. Elsevier Science, 1995.

[15] Dictionary.com, “dray,” September 2006. Dictionary.com Unabridged (v 1.0.1).
Based on the Random House Unabridged Dictionary, c© Random House, Inc. 2006.
http://dictionary.reference.com/browse/dray.

[16] Dumas, Y., Desrosiers, J., and Soumis, F., “The pickup and delivery problem with
time windows,” European Journal of Operational Research, vol. 54, pp. 7–22, 1991.

[17] Fleischmann, B., Gnutzmann, S., and Sandvoss, E., “Dynamic vehicle routing
based on online traffic information,” Transportation Science, vol. 38, pp. 420–433, 2004.

[18] Gendreau, M., Laporte, G., and Seguin, R., “An exact algorithm for the vehi-
cle routing problem with stochastic demand and customers,” Transportation Science,
vol. 29, pp. 143–155, 1995.

[19] Gendreau, M. and Potvin, J., Fleet Management and Logistics, ch. Dynamic vehicle
routing and dispatching, pp. 115–126. Kluwer, 1998.

[20] Grötschel, M., Krumke, S. O., and Rambau, J., Online Optimization of Large
Scale Systems: State of the Art. Springer, 2001.

[21] ILOG, Inc., ILOG CPLEX 9.0 User’s Manual, 2003.

[22] Jula, H., Dessouky, M., Ioannou, P., and Chassiakos, A., “Container move-
ment by trucks in metropolitan networks: modeling and optimization,” Transportation
Research Part E, pp. 235–259, 2005.

[23] Justice, E., Optimization of chassis reallocation in doublestack container transporta-
tion systems. PhD dissertation, University of Arkansas, 1996.

[24] Kohl, N., Exact methods for time constrained routing and related scheduling problems.
PhD dissertation, Technical University of Denmark, 1995.

[25] Kohl, N., Desrosiers, J., Madsen, O., Solomon, M., and Soumis, F., “2-path
cuts for the vehicle routing problem with time windows,” Transportation Science,
vol. 33, pp. 101–116, 1999.

[26] Kohl, N. and Madsen, O., “An optimization algorithm for the vehice routing prob-
lem with time windows based on lagrangian relaxation,” Operations Research, vol. 45,
pp. 395–406, 1997.

[27] Krumke, S., Rambau, J., and Torres, L., “Real-time dispatching of guided
and unguided automobile service units with soft wime windows,” in Algorithms -
ESA 2002, vol. 2461 of Lecture notes in computer science, pp. 637–648, Springer
Berlin/Heidelberg, 2002.

[28] Laporte, G., Louveaux, F., and Mercure, H., “The vehicle routing problem with
stochastic travel times,” Transportation Science, vol. 26, pp. 161–170, 1992.

100

[29] Macharis, C. and Bontekoning, Y. M., “Opportunities for OR in intermodal
freight transport research: A review,” European Journal of Operational Research,
vol. 153, pp. 400–416, 2004.

[30] Morlok, E. K. and Spasovic, L. N., “Redesigning rail-truck intermodal drayage op-
erations for enhanced service and cost performance,” Transportation Research Forum,
vol. 34, pp. 16–31, 1994.

[31] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial Optimization.
John Wiley & Sons, Inc., 1999.

[32] Powell, W. B., Towns, M. T., and Marar, A., “On the value of optimal my-
opic solutions for dynamic routing and scheduling problems in the presence of user
noncompliance,” Transportation Science, vol. 34, pp. 67–85, 2000.

[33] Psaraftis, H. N., “Dynamic vehicle routing: Status and prospects,” Annals of Op-
erations Research, vol. 61, pp. 143–164, 1995.

[34] Puterman, M., Markov Decision Process: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, Inc., 1994.

[35] Ross, S., Stochastic Processes. John Wiley and Sons, Inc., second ed., 1996.

[36] Savelsbergh, M., “Local searchin routing problems with time windows,” Annals of
Operations Research, vol. 4, pp. 285–305, 1985.

[37] Savelsbergh, M. and Sol, M., “The general pickup and delivery problem,” Trans-
portation Science, vol. 29, pp. 17–29, 1995.

[38] Savelsbergh, M. and Sol, M., “Drive: Dynamic routing of independent vehicles,”
Operations Research, vol. 46, pp. 474–490, 1998.

[39] Smilowitz, K., “Multi-resource routing with flexible tasks: an application in drayage
operations,” IIE Transactions, vol. 38, pp. 555–568, July 2006.

[40] Spasovic, L. N., Planning intermodal drayage network operations. PhD dissertation,
University of Pennsylvania, 1990.

[41] Spivey, M. Z. and Powell, W. B., “The dynamic assignment problem,” Trans-
portation Science, vol. 38, pp. 399–419, 2004.

[42] Swihart, M. R. and Papastavrou, J., “A stochastic and dynamic model for the
single-vehicle pick-up and delivery problem,” European Journal of Operational Re-
search, vol. 114, pp. 447–464, 1999.

[43] Taylor, G., Broadstreet, F., Meinert, T., and Usher, J., “An analysis of
intermodal ramp selection methods,” Transportation Research Part E, vol. 38, pp. 117–
134, 2002.

[44] Thomas, B. and White III, C., “Anticipatory route selection,” Transportation Re-
search Part E, vol. 38, pp. 473–487, 2004.

[45] Walker, W., “Network economies of scale in short haul truckload operations,” Jour-
nal of Transportation Economics and Policy, vol. 26, pp. 3–17, 1992.

101

[46] Wang, X. and Reagan, A., “Local truckload pickup and delivery with hard time
window constraints,” Transportation Research Part B, vol. 36, pp. 97–112, 2002.

[47] Wikipedia.com, “Dray,” August 2006. http://en.wikipedia.org/wiki/Dray.

[48] Wikipedia.com, “Intermodal freight transportation,” August 2006.
http://en.wikipedia.org/wiki/Intermodal freight transport.

[49] Xu, H., Chen, Z.-L., Rajagopal, S., and Arunapuram, S., “Solving a practical
pickup and delivery problem,” Transportation Science, vol. 37, pp. 347–364, 2003.

[50] Yang, J., Jaillet, P., and Mahmassani, H., “Real-time multivehicle truckload
pickup and delivery problems,” Transportation Science, vol. 38, pp. 135–148, 2004.

102

