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SUMMARY 

An analytic investigation of the flowfield produced by two-

dimensional, turbulent wall jets with and without a longitudinal free-

stream pressure gradient is presented. 

The investigation was conducted in two parts. In the first 

part, experimental data were analyzed, to establish semi-empirical 

relations for 

1. Velocity profile similarities 

2. Shear stress similarities 

3. Wall sublayer similarities, and 

h. Maximum shear stresses 

An analytic function for the velocity profiles in the jet and 

wake layers was obtained by least square fitting to experimental data. 

This analytic function was used in all subsequent data analysis to 

represent the experimental data with "nigh accuracy. 

The local shear stress data were calculated using the momentum 

equation, the continuity equation, experimental surface shear stresses, 

and the analytic function for the velocity profiles. Shear stress 

similarity relations for the wall, jet, and wake layers were then 

achieved by appropriately scaling the calculated shear stress results. 

The velocity and. shear profiles in the wall sublayer were 

obtained by using the mixing length theory which, as is shown, gives 

results that agree well with the experimental data. 
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A closed form expression for the maximum shear stress was derived 

from the turbulent energy equation assuming that the various turbulent 

quantities are related. The expression yields results which are in 

satisfactory agreement with the experimental data. 

In the second part, similarity and semi-empirical results, as 

established in the first part, were utilized to develop an overall 

solution for turbulent boundary layer and wall jet flows. A step-by-

step numerical solution of the partial differential equations was 

employed. Comparisons between the predicted and experimental data show 

encouraging agreement. 



CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The behavior of a jet blowing tangential to a solid surface is 

of great interest because of the applicability of such jets to film 

cooling (l), boundary layer control (B.L.C.) of ejectors as a means of 

substantially increasing the thrust augmentation (2) and B.L.C. of air­

craft. Applied in the area of B.L.C. of aircraft, the jet supplies 

additional energy to a boundary layer in an adverse pressure gradient 

thereby not only delaying or eliminating separation but also producing 

increased circulation about the lifting body. Both of these effects 

contribute measurably to increase lift for any angle of attack and free 

stream velocity. It is important, then, to become familiar with the 

controlling parameters involved in the problem and to be able to predict 

the increase in lift for any reasonable set of operating conditions. 

Accomplishment of this suggests analytic approaches to solution of the 

development of a two-dimensional wall jet introduced into an initial 

boundary layer with a free stream pressure gradient. 

A relatively large volume of literature pertaining to boundary 

layer control by means of external blowing; exists. A great deal of 

this documents various experimental investigations in which certain 

trends have been observed; some of these are fairly well understood 

and some are not. Theoretical analyses are found less frequently and 
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are often less than satisfactory. Basically, the boundary layer control 

problem requires theoretical methods capable of analyzing the jet-

boundary layer mixing in order to permit rational calculation of the 

optimum amount and distribution of blowing momentum needed to prevent 

separation of the boundary layer from an arbitrary airfoil. General 

basic methods of analysis are not found in the literature, mainly for 

the reason that there is as yet only incomplete understanding of the 

complicated interactions which occur when a jet is blown into a boundary 

layer tangentially to an arbitrarily curved surface, where it is influ­

enced by the external velocity and external pressure gradient. 

Wall jet flow is more complicated than most two-dimensional 

shear flows, incorporating as it does some features of a boundary layer 

and some features of jets and wakes. Any analytic approach must involve 

some impiricism and the best approach will be the one which makes maximum 

use of data and analytic methods for these and other related turbulent 

shear flows. There is already in existence in the literature much 

material of interest and usefulness regarding, or related to, the 

boundary layer control problem. However, a satisfactory method for 

analyzing turbulent wall jet flows with pressure gradients is not 

available. 

Literature Review 

This review, in an attempt to collect related systematic and 

chronological studies, includes experimental and theoretical works in 

which the wall jet is directed tangent to a flat downstream surface. 

The investigations in which no free stream was used are included along 
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with those In which a free stream existed with and without a strearawise 

pressure gradient. 

Experimental Investigations 

The earliest published experimental work on the two-dimensional 

wall ,jet with no main-stream flow was performed by Forthmann (3) as a 

supplement to his investigation of the plane free jet and partially-

expanding jet. Forthmann observed the apparent self-preserving nature 

of wall jet velocity profiles for short distances downstream of the jet 

slot. His data also indicated that the boundary layer thickness varies 

linearly with distance from the slot and that the maximum velocity 

varies inversely as the one half power of this distance. Further, he 

concluded from his data that the velocity in the wall layer (between 

the wall and velocity maximum) varies as the one seventh power of the 

height from the wall, an observation that is not substantiated by later 

experiments. 

The first effort to concentrate experimentally on the wall jet 

with no free-stream flow was implemented by Bakke (k) in 1957. In an 

attempt to verify the analytic results of Glauert (5)? Bakke measured 

velocity profiles to a distance of 20 slot widths from the point of 

injection for a Reynolds number based on slot height of approximately 

30,000. The data provided a record of jet thickness growth and maximum 

velocity decay with distance from the slot. Bakke found agreement in 

his work with the results of Ftfrthmann and Glauert and stated, "within 

the experimental range and accuracy the velocity profiles are similar 

and the rate of change of velocity and width of the jet can be expressed 

by simple power laws." Bakke's data was not sufficiently extensive to 
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reveal the variation of the growth and decay laws with Reynolds number 

based on slot height that Blauert had predicted. 

In I96I Patel and Newman (6) experimentally created the conditions 

necessary for the wall jet outer profiles (from the jet peak to the 

free stream) to remain similar. These "self-preserving" profiles were 

obtained by retarding the free-stream flow such that the ratio of local 

jet peak velocity to free-stream velocity was constant. They suggested 

that experimental evidence indicates that similarity exists in the outer 

layer and may extend to the outer region of the wall layer. It should 

be noted that evidence of an initial boundary layer did not appear in 

their data. Patel and Newman also measured wall jet profiles for zero 

pressure gradient cases. They found that for the zero pressure gradient 

cases the outer layer profiles demonstrated near similarity. They 

finally suggested that further profile detail is needed in the wall 

layer and that more complete skin friction measurements must be made 

for all wall jet cases. 

In 19635 Eskinazi and Kruka (7) investigated the zero pressure 

gradient cases for a wide range of initial velocity ratios and confirmed 

that the similarity expressions for the wall layer and the outer layer 

require different velocity and length scales. Based on the results of 

their investigations, they concurred with the earlier findings of 

Bradshaw and Gee (8) that the point of zero turbulent shear stress is 

not located at the jet peak and that the points of partition of the 

profile are still open to question. Kruka and Eskinazi also investigated 

skin friction with a flattened Preston tube. Their data does not agree 

well with either earlier or later results. 
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Erian and Eskinazi (9) extended the work of Kruka and Eskinazi 

in 1964 to include velocity profile and skin friction measurements for 

a wall jet in a moving stream with a pressure gradient. The tests were 

performed for one initial velocity ratio and no attempt was made to 

systematically vary pressure gradient; the results were therefore con­

siderably limited in scope. 

In I968, Kacker and Whitelaw (10) recognized the need for more 

data in the low velocity ratio range and performed their experiments 

for velocity ratios of 0.75 to 2.7^ to a distance of 150 slot widths 

downstream. The work was done with no pressure gradient applied to 

the wall jet. Kacker and Whitelaw noted in their work that the trends 

observed in previous investigations for skin friction seem to be con­

sistent; however, they still found sizeable differences in values 

measured. 

In 1969? Gartshore and Newman presented their own data for several 

wall jet cases as follows: 

1. A wall jet into still air. 

2. A self-preserving wall jet for nominal velocity ratios of 

1.3, 2.0 and 3-0. 

3. A non-self-preserving wall jet in adverse pressure gradient 

for nominal velocity ratios of 2.0 and k.0„ 

k. A wall jet in zero pressure gradient for nominal velocity 

ratios of 2.0, 3.0 and 4.0. 

They included over all growth and decay information for comparison with 

calculations based on their own analytical model; however, they did not 
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present profile detail or skin friction measurements. 

In 1971? Neale (12) presented an experimental study of various 

wall jet flows as follows: 

1. The wall jet injected into still air. 

2. The wall jet under a constant-pressure main-stream flow for 

nominal velocity ratios of 2.0, 3.0, k.O and 6.0. 

3. The wall jet subjected to an adverse pressure gradient imposed 

by a retarded main-stream flow with a substantially thickened initial 

boundary layer for nominal velocity ratio of 1.5, 2.075 and 2.92. 

k. The wall jet subjected to an adverse pressure gradient 

imposed by a retarded main-stream flow with a thickened and distorted 

initial boundary layer for nominal velocity ratio of 2.0 and 3.0. 

Neale's investigations proceeded systematically from the simple to the 

more complex wall jet flows. The studies of wall jets in still air and 

wall jets in constant pressure free streams establish the characteristics 

of simple wall jet flows. With the behavior of these comparatively 

uncomplicated flows known, Neale provided with studies of more complex 

wall jets in adverse pressure gradients. These adverse pressure-

gradient cases provide a study of wall jet flow in which the initial 

boundary layer momentum deficit is significant in comparison with the 

jet momentum excess. Evidence of this relatively large initial momentum 

deficit is present throughout his measured development of these wall 

jets. Neale made detailed velocity profile and local skin friction 

measurements for the case in which no main-stream flow was present; 

his studies were carried out for a wide range of slot Reynolds numbers. 

For the wall jets with main-stream flow, he investigated selected ratios 



7 

of free-stream velocity to jet nozzle velocity. In each of his studies 

measurements were performed at several streamwise distances from the 

point of jet injection. Neale demonstrated velocity profile similarity 

for all four series of wall jet test results. The measured growth of 

the half-velocity height and the decay of the jet peak velocity with 

distance from the jet slot agree qualitatively with theoretical predic­

tions and quantitatively with comparable measurements of others (ll), 

(6). The near wall profiles seemed to demonstrate similarity in the 

form of a single "law of the wall" for all measurements. The outer 

portion of the wall layer, however, does not conform to a simple 

expression of similarity. This outer region is influenced by the 

presence of local pressure gradients, by the local jet to free-stream 

velocity ratio and by the velocity deficit in the valley above it. 

Neale measured the friction data with a Preston tube for the wall jet 

in still air and his results agree closely with the data presented by 

Sigalla (13). His studies have provided a large body of experimental 

information concerning velocity profiles and wall jet development for 

the still air and free-stream cases with and without streamwise pressure 

gradient. Furthermore, the results shew a good measure of consistency 

and concurrence with other high quality wall jet data. 

In summary, Nealefs studies have provided detailed presentation 

of a systematic study of wall jets developing under streamwise pressure 

gradient. Of the few studies that have been implemented, most are 

narrow in scope while the rest are lacking in comprehensive detail. 

Nealefs experimental data were therefore utilized in the present study 

to establish semiempirical formula and similarity parameters. 
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Theoretical Investigations 

In 1956, Glauert (5) used a similarity approach to solve the 

flow due to a jet spreading out over a plane surface, either radially 

or in two dimensions. Based on physical reasoning in this simple type 

of flow, Glauert was the first to postulate that the entire flow field 

of the wall jet cannot conform to one overall similarity solution. He 

divided the flow into a wall layer and a jet layer on either side of 

maximum velocity and treated the two regions separately. 

In 1961, Carriere and Eichelbrenner (l*+) developed a more detailed 

calculation method. This method is incomplete, however, as certain 

empirical information about each flow is needed. A notable result of 

the analysis and experiments of Carriere and Eichelbrenner was the 

importance of velocity profiles with "both a maximum and a minimum, 

characterizing the initial boundary layer effect. High velocity, 

narrow jets appeared to require smaller momentum, as only the inner 

part of the original boundary layer must be accelerated to prevent 

separation. 

In 1965? Harris (15) conducted analytical work on the turbulent 

wall jet in a moving stream with arbitrary pressure gradient. Plis 

mathematical model consisted of a wall layer and a jet layer only, and 

further more, it was assumed in his analysis that slot velocity and 

slot height are very large compared to the free stream velocity and 

boundary layer thickness at the exit of the slot. In that case the 

momentum deficit of the upstream boundary layer at the slot lip is 

negligible and, thus, he could justify the assumption of no interference 

of external stream boundary layer on the flow development downstream. 
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In I967, Patanker and Spalding (l6) presented a solution for the 

wall jet problem using the finite difference technique and Prandtl's 

mixing length hypothesis. They expressed the eddy viscosity by 

eff P I 2 ( I ) a) 

where 1 is the mixing length given by 

0 < y * X y^/K : I = Ky (2a) 

X y,/K = y : £ = X y, (2b) 

where X and K are constants, y is the distance from the wall, and y. is 

a characteristic thickness of the layer. Calculations were provided for 

wall-jet flows, with various values of the constants K and X; comparisons 

were made with the experimental data of Myers, Schauer and Eutis (17)? 

and Schwartz and Cosart (18). The investigation showed that, the values 

K = 0.̂ 35? and X = 0.09 gave fairly good agreement with experimental 

velocity profiles and wall shear stresses. They indicated that better 

pairs of values could be found for predicting each of these quantities 

individually; but these "better pairs" were not identical. For example 

K = 0.6, and X = 0.075 fitted the velocity profile fairly well; but the 

pair, K = 0.5? X = O.0625, gave better predictions for the shear stress 

at the wall. It meant simply that the mixing-length hypothesis does 

not express the whole truth about turbulent boundary layers. 

In 1969? Gertshore and Newman (11) developed a method for 
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calculating the growth of a turbulent wall jet in streaming flow. The 

flow is assumed to be two-dimensional incompressible and over a plane, 

smooth wall. The method incorporates four integral momentum equations 

taken from the wall to various points in the flow. The wall layer is 

represented by a classical turbulent boundary layer power law profile. 

The calculation of the outer shearing stress is based on the large-eddy 

equilibrium hypothesis. The remaining empiricism in the method is based 

on measurements in selfpreserving wall jets. However, their analysis is 

restricted to a simple wall jet. 

In 1970, Verhoff (19) used a similarity solution approach to 

solve both plane turbulent wall jet and turbulent wall jet beneath a 

secondary uniform stream. He compared his solutions with experimental 

data and obtained excellent agreement over much of the profile for a 

wide range of velocity ratios and slots widths downstream of the jet 

slot. Verhoff attempted, however, to fit the complete velocity profile 

with his similarity solution and he did not meet with success in the 

outer region of the outer layer. 

In 1970, Hubbartt and Bangert (20) analyzed turbulent wall jets 

in adverse pressure gradients leading; to wall layer separation. The 

analyses utilize the integral momentum and mechanical energy equations 

with the wall jet divided into layers. In one limiting case the initial 

boundary layer is ignored (or rapidly consumed). In the other limit, 

the initial boundary layer is assumed to be separated forming a starting 

wake which persists downstream with the minimum velocity remaining zero. 

This uniquely specifies the allowable pressure gradient. They indicated 

that for a constant jet momentum, wall layer separation is relatively 
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insensitive to the jet to free-stream velocity ratio, the jet and wake 

layer dissipation rates, and the jet and wake layer profile shape factor. 

They also indicated that the jet and wake layer profile parameters, 

within the range predicted by similar flows have little effect on the 

wall jet growth and the influence of Reynolds number on the wall jet 

development is relatively small. In their analysis, they used several 

constant turbulent Reynolds numbers to define eddy viscosities in the 

various parts of the layer and adopted a simple power law for the wall 

layer. 

In 1970, Goradia (21) developed a mathematical model for the 

wall jet flow from preliminary experimental data. Goradia divided the 

flow model into an initial region, main regions, and an ordinary tur­

bulent boundary layer region. Furthennore he subdivided each region 

into various layers such as, wall layer, jet layer and wake layer, 

according to the characteristic of velocity profiles in the different 

layers; he derived integral equations for each region mentioned above 

and for the various layers in the specific region. Goradia obtained 

similarity functions for the various regions of flow from experimental 

data. These similarity expressions were checked against data published 

by others and the agreement was satisfactory. He also considered the 

initial region where the core flow exists and indicated that the length 

of the initial region is approximately 7 to 15 slot heights, depending 

upon pressure gradient and initial conditions at slot exit. 

Purpose of the Present Investigation 

The primary purpose of the present investigation is to study the 
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downstream development of wall jets with and without pressure gradient. 

This type of flow has not been studied in detail proceeding systemati­

cally from simple to complex. The present investigation contributes to 

the understanding in the following ways: 

1. Establishes similarity parameters for velocity profiles and 

shear stress profiles. 

2. Presents better agreement between theoretical prediction and 

experimental data in the wall sublayer. 

3. Establishes a semiempirical formula for maximum shear 

stresses. 

k. Develops a similarity approach using shear stresses coupled 

with wall sublayer analyses to refine and simplify the mathematical 

model in analysis of two dimensional turbulent wall jets. 
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CHAPTER II 

FUNDAMENTAL ASSUMPTIONS, EQUATIONS 

AND EXPERIMENTAL DATA 

General Equations 

The measurable quantities which are usually of interest for a 

gas in motion are its pressure P, density p, temperature T and velocity 

q. The equations governing these quantities are 

1. The equation of state 

f(P, p, T) = 0 (3) 

2. The equation of mass conservation 

Ifi 
3t + div (pq) = 0 (k) 

3. The equation of momentum conservation 

p T^ = pF - grad p - curl curl p,q 

+ T- grad (p, div q) 

+ grad (q • grad p.) - <T v p, 
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+ grad (ix curl q •- div q grad ^ (5) 

k. The equation of energy conservation 

TYF —» 
p g| = § - p div q + div (K grad T) (6) 

where E is the internal energy per unit mass, $ is the dissipation 

function, |JL is the coefficient of viscosity, K is the thermal conducti-
—» 

vity, and F the external force per unit mass. The underlying assumptions 

and implication of these equations are discussed by Lighthill (22), 

Thwaites, and others. A brief and illuminating discussion of their 

general applicability is contained in Liepmann and Roshko (23). As a 

consequence of their nonlinearity, the mathematical difficulties of 

solving the Navier-Stokes equations are severe, even for two-dimensional 

incompressible flow. In many cases, approximations of various kinds 

have been useful. Of these, the boundary layer concept, essentially the 

contribution of Prandtl, has proven to be immeasurably significant and 

fruitful. Under the boundary layer concept the Navier-Stokes and con­

tinuity equations reduce to the well-known boundary layer equation (2^); 

1. Momentum: 

du du dp , ^ dy /r7x 
2K P By dx ~~5y" 

and 
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F - 0 
3y 

(8) 

2. Continuity: 

*££ + i£H = o 
3x 3y (9) 

where p is expressed in terms of T and P by the thermal state equation 

and T is from the energy equation (for the data reduction in the sub­

sequent section T was determined from the experimental data and the 

final analysis was developed and applied for an incompressible flow 

because the change in T was small and the mathematical model could be 

simplified). 

Turbulent B. L. Equations 

Strictly speaking, the assumption of steady, two-dimensional 

motion is applicable only for laminar flow. In the more interesting 

turbulent case, turbulent fluctuation velocities of equal order of 

magnitude occur in all three coordinate directions. However, turbulent 

flows may be two-dimensional and time-independent in the mean. The 

turbulent boundary layer equations are indeterminant and must be comple­

mented by additional hypotheses or equations regarding the Reynolds 

stresses. This problem is not yet solved satisfactorily, and crude 

approximations with known shortcomings are still in use, for lack of 

anything better. The classical approaches, more or less in the order 

of sophistication, are 
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1. Integral techniques employing only the momentum integral to 

eliminate all values of the shear stresses except at the wall, 

2. Integral techniques employing the momentum integral and an 

integrated moment of the momentum equation which requires more shear 

stress detail but integrate this to obtain only one additional shear 

stress parameter which is evaluated experimentally, 

3. Differential technique which uses the differential momentum 

equation with a mixing length concept (usually empirical) or an eddy 

viscosity (usually empirical or related by an empirical turbulent 

Reynolds number) and, 

h. Differential techniques which attempt to close the momentum 

equation by using one or more approximate equations for turbulence 
~~2 

quantities (e.g., mixing length, puv, q , dissipation function). 

Bradshaw (25) lists three difficulties associated with developing 

analyses for complex turbulent boundary layers. First, the simple 

behavior of eddy viscosity and mixing length in simple thin shear layers 

is not maintained in more complicated cases like three-dimensional flow, 

multiple shear layers, and flows with significant extra rates of strain. 

In cases where the rate of strain changes rapidly (in the x or y dir­

ection) the Reynolds stress will respond slowly and not at once as 

implied by the eddy-viscosity formula. Second, there is no independent 

exact equation for eddy viscosity or mixing length analogous to the 

transport equations for Reynolds stress, therefore any independent eddy-

viscosity transport equation must be completely empirical. Third, any 

transport equation for the eddy viscosity or mixing length can be con­

verted into a transport equation for Reynolds stresses by substituting 
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for the velocity gradients, obtained by differentiating the time-average 

Navier-Stokes equations. Bradshaw indicated the need for more funda­

mental data on turbulence quantities before developing turbulent closure 

equations. 

In view of the shortage of fundamental turbulence data the present 

studies are directed toward extracting; additional empirical results from 

experimental m an flow data to establish, to the extent possible, semi-

empirical formula and similarities. The boundary layer equations are 

expressed as 

TT BU BU 
?U te + PV By" 

BP + Br. 
Bx By (10) 

M! + M = o 
Bx By 

(ID 

Equations (10) and (11) were integrated to determine the shear stress T 

from the experimental data. Subsequently these differential equations 

were used employing similarities in T, except at the wall where the 

mixing length approach was used, to establish a numerical differential 

technique. 

Experimental Data 

The experimental data obtained by Neale were analyzed. These 

data included 

1. Velocity profiles computed from measured total pressure and 

temperature profiles, 

2. Wall friction coefficients evaluated from preston tube measure-
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ments, and 

3. Total temperatures measured by a copper-constantan thermo­

couple probe. 

The wall jet flow is generated by introducing a two dimensional jet 

tangent to the test section floor immediately downstream of the boundary 

layer development section through a continuous slot (i.e., without 

spacers) running the full width of the test section. The .test section 

is constructed with clear plexiglas side wall to facilitate observation 

of visual flow studies and probe locations. Static pressure taps are 

located along the centerline of the precision flat ground aluminum 

plate floor and are also located offset 7.5 inches to the right and 

left of the centerline. The floor is 30 inches wide and 36 inches long. 

In the test section the developing wall jet flow may be subject to 

longitudinal pressure gradients. These pressure gradients are created 

by the controlled bleed of main-stream air through a perforated sheet 

metal ceiling. This ceiling is matched at its leading edge to the 

ceiling of a boundary layer development section and may be deformed 

along its length to achieve additional pressure variations beyond those 

provided by main-stream bleed alone. The pressure potential is generated 

by a valve attached immediately downstream of the test section. 

Experimental results from the following three series of tests 

have been analyzed in detail in the present study: 

a. Series II - the wall jet under a constant-pressure main­

stream flow. 

b. Series III - the wall jet subjected to an adverse pressure 

gradient imposed by a retarded mainstream flow with a substantially 
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thickened initial boundary layer. 

c. Series IV - the wall jet subjected to an adverse pressure 

gradient imposed by a retarded mainstream flow with a thickened and 

distorted initial boundary layer. 

Typical velocity profiles for each of these series are shown in Figures 

1(a) - (d). The various velocity ratios (initial jet-to-mainstream 

velocity ratio) and streamwise stations for which experimental data 

were obtained in Reference 12 and which were analyzed in the present 

study are tabulated in Table 1. 
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Table 1. Experimental Data 

SERIES I I I I I IV 

VR 2 . 0 3 .0 k.o 6.0 2 .07 2.92 1.97 2 . 0 3 .0 

52 52 52 52 125 125 125 56 125 

^ ^ ^ 65 197 197 196 92 I96 

X 97 97 97 97 286 286 287 125 287 

129 129 129 129 357 357 357 161 357 

l 6 l 161 161 161 1*62 k62 U63 196 

19J+ 19J+ 19J+ 19^ 55*+ 55^ 
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CHAPTER III 

DATA. ANALYSIS 

The experimental data is carefully and systematically analyzed 

in this chapter in order to establish results useful for evaluating 

and predicting wall-jet flow. The experimental data are first analyzed 

in detail to establish flow similarities and smooth out the experimental 

results. Analytical expressions for the velocity profiles are achieved 

and then used to represent the experimental data. The shear stresses 

are obtained from the mean flow data using the integrated momentum and 

continuity equations. Fairing of the experimental data for the stream-

wise velocity decay and evaluations of the consistency of the data are 

conducted considering the overall conservation of momentum. A semi-

empirical formula for maximum shear stresses is developed by employing 

the energy equation. The wall sublayer flow is analyzed in detail to 

demonstrate the applicability of the mixing length approach for this 

region. 

Velocity Profiles 

In order to simplify the analyses to obtain the shear stress pro­

files from the experimental data of reference (12) and, more importantly, 

to minimize errors due to data scatter, velocity profile similarities 

were first established from the experimental data. A total of 50 

velocity profiles covering the complete range of operating conditions 

were analyzed. The results, as discussed in the subsequent paragraphs, 
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showed that velocity-profile similarities did exist in all of the regions 

except in the inner region (near the wall) which, as is well known, 

involves more than one length scale. Each of the regions resemble pre­

viously well understood cases for simpler flows. The velocity profiles 

are subdivided into three regions - an inner layer, a jet layer, and 

a wake layer - as shown in Figure 2(a). Analytic expressions are 

obtained for each region having similar velocity profiles using least 

square fitting to the experimental data. The analysis of these layers 

is discussed in the following paragraphs. 

Inner Layer Velocity Profile 

The velocity profile from the wall to the point where 

U - U / U - tL = .8 was defined as the inner layer (see Figure 2). 

Velocity-profile similarity does not exist in this region as is evident 

from the results in Figures 3(a) - (i). Consequently a single function 

could not be used to represent the inner layer. Therefore, the experi­

mental velocity profiles in this region were replaced by curves faired 

smoothly through each set of data. Least square fitting was not employed 

since it was felt that analytic expressions in this complex region would 

improperly prejudice the results. 

Jet Layer Velocity Profile 

The velocity profile in the jet layer is expressed as 

U - U. 

u-db-VV 
m 3 

(12) 

where T). = (y - 6i)/&., 6i is the wall-jet thickness to U = (U + uJ/2, 
J 1" J 2" m 3' 
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and 6. is the jet layer length scale. Physically, 6. represents the 

jet-layer length scale for a linear velocity profile with the same 

values of U and IL and with a velocity gradient equal to the maximum 
m 3 

velocity gradient (see Figure 2(b)). It has been selected since it can 

be evaluated most accurately from experimental data. To determine 6. . 

the experimental data (U, y), in the region around the point of maximum 

velocity gradient, were represented by the polynomial function 

m 

(3-D 
. v 

3 
0=1 

U = £ A y^-1* (13) 

where m is the degree of the polynomial function. The least square 

technique was then employed to determine the coefficients A.. That is, 

expressing the error by 

n m 

- [ X K - Z v ^ ) ? <*> 
i=l j=l 

the values of A. were obtained by setting de/BA. = 0 for j = 1, 2, . . . 
J J 

m. This yields m simultaneous linear algebraic equations. The Gauss 

reduction technique was employed to solve the simultaneous linear equa­

tions governing the polynomial coefficients A.. The jet layer scale, 
«J 

defined as 

U - UQ 

was then evaluated using the velocity profile as represented by Eq. (13). 
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Once the jet layer length scale 6. was established for each jet-
J 

layer velocity profile, all the jet layer velocity profiles were 

expressible in a similarity form with velocity scale U - IL and length 

scale 6.. A similarity expression of the form 
J 

U - U 
u _ J = f (I)) (16) 
m 3 

where T| = (y - 6.1 )/6. was then sought. This jet layer was subdivided 
2 J 

into four regions to eliminate any ill behavior due to the two extrema 

and the inflection. Each region was represented by a fourteenth degree 

polynomial. These polynomials were then least square fitted (using an 

equation similar to Eq. (l4) to all the experimental velocity profile 

data for the jet layer. Typical results are shown in Figures 3(a) - (i). 

The single analytical curve accurately represents all of the experimental 

data. The root-mean-square error (RMS = J e ) is 0.00303 for all data. 

The velocity profile derived from the least square fitting to the data 

(i.e., the analytical curve of Figures 3(a) - (i)) is tabulated in 

Table 2. This analytic representation of the experimental data for the 

jet layer is used in all subsequent analyses of the data. Comparison 

of the analytic expression with the exponential and hyperbolic tangent 

profiles commonly used for jets are shewn on Figure k. 

Wake Layer Velocity Profile 

The velocity profile in the wake layer is expressed as 
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Table 2. Tabulation of Velocity Profile 
for Jet Layer 

•n f. •n fl 

.6 .993 - .075 .5755 

.575 .9959 - . 0 5 .5508 

•.55 .9875 - .025 .5257 

.525 .9752 .0 .5000 

.5 .960I* .015 .1*862 

.1*75 .9^37 .0** A616 

.^5 .9257 .065 .^369 

.1*25 .9065 .09 .1*119 

.1* .8860 .115 .3869 

.375 .86M* .n* .3622 

.35 .81*16 .165 .3382 

.325 .8179 .19 .31^9 

.3 .7950 .215 .2925 

.275 .7719 .2k .2707 

.25 .7^90 .265 .21*96 

.225 .7251 .29 .2290 

.2 .6999 .315 .2087 

.175 .671*2 .3k .1887 

.15 .61*89 .375 .1630 

.125 .621*1 .k .11*1*0 



Table 2. (Continued) 

ko 

•n f J •n fi 

.1 .5998 .U25 .1261 

M .109^ 

M5 .09^2 

.5 .0807 

.525 .0689 

.55 .0586 

.575 .6^98 

.6 .C4l8 

.625 .03^9 

.65 .0288 

.675 .023^ 

.7 .0186 

.725 .01^5 

.75 .0110 

.775 .0083 

.8 .0062 

.825 .0C48 

.85 .0039 

.875 .0031 

.9 .0023 

.95 .0001 

.975 .0 
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1+2 

U - U 

w-nf = W 
e 3 

(17) 

where 11 = y - 6j,/6w, 6̂  is the wall jet thickness for U = (U + U )/2, 

and 6w is the wake layer length scale which can be most accurately-

evaluated. The determination and physical significance of 6w is identical 

to that of 6. (see Figure 2(c)). Once the wake layer scale 6w was estab­

lished by a least square fit for each wake layer velocity profile, all 

the wake layer velocity profile were expressible in a similarity form 

with velocity scale U - IL and length scale 6w. A similarity expression 

of the form 

U 

U - U 

n£= W (18) 

where 71 = (y - 6̂ )/6 was sought. Typical results are shown in Figures 

5(a) - (e). 

The similarity results for the wake and jet layers were found 

to be similar to each other and, in fact, the analytical expression for 

the wake layer can be expressed as 

w =x- - v-v (19) 

This single analytical curve accurately represents all of the experi­

mental data. The actual differences between the experimental data and 

the least square fit is very small for the wake layer when it is recognized 
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that U - U„ in many cases was less than 20 percent of the edge 

velocity. 

This analytical curve (Table 2) was used in place of the experi­

mental data for all subsequent data analyses. It is felt that this is 

the most accurate representation possible. 

Velocity Decay 

The decay in the maximum velocity for Series II, III and IV are 

shown on Figures 6(a) - (3) (reproduced from Reference 12). The data 

is very consistent and the scatter is small. The combined influence of 

slot Reynolds number and initial velocity ratio is shown for Series II 

in Figure 6(a). The Reynolds number effect for these results is 

emphasized in Figure 6(b) by plotting jet peak velocity decay referenced 

from the mainstream velocity. Representative free-stream velocity 

retardation and jet peak velocity decay results for Series III and IV 

are given in Figure 6(c) for nominal initial velocity ratios of 2 and 

3. Figures 6(d) and 6(e) show the corresponding variations in the 

minimum to edge velocity ratios and in the minimum to maximum velocity 

ratios. 

For the present study a least square technique was employed to 

obtain polynomial functions for U , U , and IL which had been smoothly 

faired through the experimental data. These polynomial expressions were 

used in all subsequent analyses of the data. 
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Temperature Data 

Temperature Profile 

Figure 7 (reproduced from Reference 12) shows typical results 

for the nondimensional temperature profile through the wall jet for 

each of the major areas of investigation. A review of the tabulated 

data in Reference (12) reveals that for these experiments the total 

temperature remains essentially constant from the wall to the jet peak 

velocity. Near the jet peak the temperature begins to decay linearly 

with distance. The linear equation 

T
T I jjfr = - 0.588 y/6j + 1.12 (20) 

where Ty = Te for Series II and Ty = T~ for Series III and IV, is a 

good representation of this decay for all three sets of measurements 

(see Reference 12). 

In the present analyses, the temperature was considered constant 

from the wall to the jet peak and Eq. (20) was used from the jet peak to 

the shear layer edge for Series II and to U = LL for Series III and IV. 

The temperature was taken as constant from the point U = tL to edge 

for Series III and IV. Since the temperature differences were small, 

these assumptions were well within the accuracy of the study. A typical 

comparison between the analytical representation and the experimental 

data for Series III is shown in Figure 8. 

Temperature Decay 

Typical decays of the experimental jet peak temperature with 
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distance from the slot are illustrated in Figure 9 (reproduced from 

Reference 12). A least square technique was employed to obtain Uth-

degree polynomial functions for T.., Te, and 1L which had been smoothly 

faired through the experimental data. These polynomial functions were 

then used in all subsequent analyses of the data. 

Shear Stress 

Shear stress similarities were sought to represent the shear 

stress terms which appeared in the momentum equation. Application of 

such a shear similarity approach could not only simplify the partial 

differential equation (i.e., reduced the order of the partial differential 

equation) but also avoid the singularity (at T = 0) which appears in the 

eddy viscosity approach and minimize the requirements for fundamental 

turbulence data and/or turbulence equations. The shear stresses were 

first calculated from the integrated momentum and continuity equations 

using the least square curve fits for the experimental velocity and 

temperature data. These shear stress results were then analyzed for 

similarities. As in the case of the previously described velocity pro­

file similarities, the similarities for the shear stress profiles were 

obtained in the three subregions rather than for the complete shear 

stress profiles. 

Shear Stress Profiles 

An integral equation for evaluating shear stress was developed 

by integrating the momentum equation along with the continuity equation. 

Combining these equations and integrating gives 
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jp ^ py o ^ r»y 

r(y) = rv/ + ̂  y + ̂  J pu dy - u ̂  J pudy (21) 
o o 

Equation (21) is solved using the velocity and the temperature (required 

for evaluating the density p) profiles as discussed in previous para­

graphs, the experimental values of the skin friction TW, and the pressure 

P as determined from the edge velocity. The partial derivatives for 

the mass flow rate and the momentum were solved by a finite difference 

technique. In order to satisfy the integral momentum equation (i.e., 

to force T = 0 at the shear-layer outer edge), an iteration technique 

for correcting U was used. This correction was made to adjust for 

errors in the velocity decay and the shear layer thicknesses obtained 

from the experimental data. The correction for U was both positive and 

negative, was generally about ,k percent, and was never greater than 

0.75 percent. This is believed to be well within the accuracy of the 

experimental data. 

The shear stress distribution through the entire shear layer for 

a typical case is shown in Figure 10. An evaluation of many shear 

stress distributions such as the one shown in this figure revealed that 

the entire shear stress profile could be subdivided into an "inner 

shear layer", a "submerged shear layer", and an "outer shear layer" as 

depicted in Figure 10. With this subdivision, shear stress similarities 

were evident. Typical results from analyzing these three shear layers 

are presented in Figures 11, 12 and 13. The method of analyzing and gen­

eralizing the results are presented in the following section. 
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Shear Stress Similarities 

Inner Shear Layer. Shear stress distributions in the inner shear 

layer are plotted in Figures 11. The normalized shear stress parameter 

g, defined as 

g = ! 

rm - TW 
(22) 

is plotted against the normalized distance 0, defined as y/5-, where rm 

and 6-, are the shear stress and thickness at the inflection point of the 

velocity profile in the jet layer. An inspection of these results 

reveals that shear stress similarity appears to exist except in the 

narrow region close to the wall where the stress gradients "become 

smaller as U /U becomes smaller. (This region near the wall is later 

identified as the wall sublayer and then analyzed separately.) To 

explore the degree of similarity outside this narrow region close to 

the wall, a curve is faired through the data of Figure 11(a), (i.e., 

the data for the highest velocity ratio and without pressure gradients) 

and linearly extrapolated to g = 0 (the linear portion of the curve 

extends over 25 percent of the entire layer) as shown in Figure 11(a). 

Identifying a new normalized length scale (to exclude the region near 

the wall) as 

* y " yo 
(23) 

where y is the intercept for g = 0. This faired curve can be expressed 

as 
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g = 8(0!.) (2*0 

This function is tabulated in Table 3. The function g can now be tested 

as a possible similarity function for all of the data. g(0^) is shown 

on the remaining plots of Figures 11(a) - (f). In each case, the inter­

cept y is determined by linearly extrapolating the data to g = 0. 

The function g(0-,) accurately represents all of the shear stress 

results for the protion of the inner shear layer outside of the narrow 

region near the wall. An improved matching of a similarity parameter 

with the data could undoubtedly be achieved by employing a two parameter 

function (rahter than the single parameter y ) but this is viewed as 

impractical and unnecessary considering the accuracy of the results and 

the sensitivity of theorectical analyses to slight changes in the shear 

stress distribution. 

In summary, it is concluded that stress similarity does exist 

in the inner shear layer and this similarity can be represented by the 

function g(0,). 

The approximate locations for which U = U and T = 0 are also 
m 

indicated on Figures 11(a) - (f). For the higher velocity ratios the 

location for which T = 0 is substantially closer to the wall than the 

location for which U = U and, correspondingly, the location for which 

dU/dy = 0 . As expected the two locations move closer together as the 

velocity ratio decreases. The relative location of the maximum velocity 

in this layer also varies substantially with velocity ratio. This 

location varies from 0n « 0.5 as a maximum to about 0n » 0.15 as a 



Table 3 . Tabulation of Shear-Stress 
Similar i ty Functions 

Inner Shear Layer 

0! g 

0 0 

.1 .169 

.2 .338 

.3 -502 

.k .6U5 

M .707 

.5 .762 

.55 .812 
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.65 .890 

.70 .923 

.75 .950 

.80 .969 
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1.0 1.0 
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Shear Layer 
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-0 .50 0.981 - . 6 .978 

-0.U0 0 . 9 1 ^ - . 5 .930 

-0 .30 0.82U -.k .866 

-0 .20 0.720 - . 3 .788 

-0 .10 0.610 - . 2 .700 

0 0.50 - . 1 .602 

0 .10 0.397 0 .5 

0 .2 0.305 . 1 Aoo 

0.3 0.221+ .2 .308 

O.k 0.157 .3 .227 

0.5 O.ICk .U .157 

0.6 O.O63 .5 .100 

0 .7 0 .03^ .6 .055 

0 .8 0.016 .7 .022 

0 .9 0.006 .8 .003 

1.0 0 .85 0 
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minimum. It is surprising that stress similarity is apparently main­

tained over such a wide range of conditions. 

Submerged Shear Layer. The shear profile in the submerged shear 

layer is expressed as 

T - TV 
^ T 7 = g 2 ( 0 2 } (25) 
m 

where 0O = y - §i/§0 §JL. is the thickness to T = J(T + T 0) and §. is 
^ 2 ^ 2 m ^ j 

the submerged shear layer length scale, g. is defined by 
J 

5 J = 
T - T 0 

m 2 (26) 

The determination of §. is identical to that of 6. in velocity profile. 
J o 

Once the submerged shear layer length scale j*. was established for each 
J 

submerged shear layer profile, all the submerged shear layer profiles 

were expressible in a common form with shear scale T - T 0 and length 
WL C. 

scale g.. Typical results are shown in Figures 12(a) - (d). 

A similarity function gp(02) was obtained from all of the results 

for the submerged shear layer. The values of gp(0p) are also tabulated 

in Table 3. In addition, the function is shown on each plot of Figures 

12(a) - (d). The function gp(02) accurately represents all of the data. 

Outer Shear Layer. The shear profile in the outer shear layer 

is expressed as 

^ = g 3 ( 0 3 ; (27) 
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where 0„ = y - £,u/Qf> 5k *s the thickness to T = Tp/2 (T2 = T for 

Series II), and £ is the outer shear layer length scale. The deter­

mination of E is similar to that of |., that is E = Tp/dT/dy)y = §j,. 

Once the outer shear layer length scale £ was established for each 

outer shear layer profiles, all the outer shear layer profile were 

expressible in a common form with shear scale Tp f°r Series III and IV 

and T for Series II and length scale E . Typical results are shown 

in Figures 13(a) - (f). 

A similarity function go(0o) was also obtained from all of the 

results for the outer shear layer. The values are tabulated in Table 

3 and the function is shown on each plot of Figures 13(a) - (f). Again, 

the agreement between the similarity function and the data is excellent. 

Eddy Viscosity and Mixing Length 

The eddy viscosity and the mixing length distribution through the 

jet and wake layers are illustrated in Figures l^(a) - (b) for two 

extremes in the flow conditions. These results were evaluated from the 

computed shear stress and velocity gradient distributions. Both the 

eddy viscosities and the mixing lengths are normalized by their respective 

value at the point of maximum stress in the jet layer. The eddy viscosity 

and the mixing length are singular at the points of maximum and minimum 

velocity where the shear stresses are not zero. In a relatively broad 

region around these singularities both the eddy viscosity and mixing 

length vary markedly. In the regions of high velocity gradients the 

mixing length is essentially constant where as the eddy viscosity varies 

s ignificantly. 
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The use or evaluation of eddy viscosities or mixing lengths will 

not be persuaded any further because they vary substantially, they have 

singularities, and it appears prohibitively difficult to establish use­

ful analytical representations for them,, Instead, the use of shear 

stress similarities seems to offer a more promosing approach. 

Maximum Shear Stresses 

The shear stress distributions presented in Figures 11, 12, and 

13 were normalized using the maximum values of the shear stresses within 

the Jet and wake layers. Therefore, in order to explicitly define the 

shear stress distributions it is necessary to specify these maximum 

shear stresses. 

The hypothesis of an eddy viscosity which connects the turbulent 

shear stresses to the local mean velocity gradient has proven to be use­

ful for analyzing many practical turbulent shear flows particularly in 

the regions of high velocity gradients. Furthermore, the concept of an 

eddy Reynolds number for relating the eddy viscosity to the mean flow 

properties has received wide usage. Although there is no general 

relationship for the eddy Reynolds number even for simple shear flows, 

it has been useful, primarily because it varies over a relatively 

narrow range. Therefore, the maximum shear stresses in the jet and 

wake layers from the results of the present study have been reflected 

into an eddy viscosity defined as 

\= t "4 (28) 

3 tfe ^ / m 
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for the Jet layer and 

1 T2 
vT = — 5 - — (29) 

Tw P2 g / 2 

for the wake layer. These eddy viscosities have then been used to 

evaluate the corresponding turbulent Reynolds numbers defined as 

(U - U_) 6. 
RT = " 3 J (30) 
J 

for the jet layer and 

(U - U.J 5 
RT = V * (3D 
w T 

w 

for the wake layer. 

The values of the reciprocal of the turbulent Reynolds numbers 

(the reciprocal is directly proportional to v„) as computed from the 

experimental data are presented in Figures 15(a) - (c), and 16(a) - (b). 

Only those results which the author considered to be significant are 

included on these figures. Results which scattered or varied rapidly 

due to small shear stresses or due to data smoothing near the upstream 

and downstreams extremes have ben omitted. The results of Figures 15 

and 16 show that the turbulent Reynolds number varies substantially 

with both streamwise location for all three series and velocity ratio. 

The reciprocal of the turbulent Reynolds numbers for a two-dimensional 

jet exhausting into still air and a small deficit, two-dimensional wake 

(26) converted to the present definition) are 0.021 and 0.0̂ 9? respectively. 
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The lowest value for the wall jet, about 0.016, occurs at the highest 

velocity ratio (Figure 15(a); VR = 6). This is consistent with conclusions 

reported in the literature (26), (27), and (33) where it is argued that 

the eddy viscosity in the jet layer of a high velocity ratio wall jet 

is lower than that in a two-dimensional jet because of a damping effect 

due to the wall. The highest value for the reciprocal of the turbulent 

Reynolds number for the jet and wake layers of the wall jet exceeds that 

for the small deficit wake. Generally, however, most of the results 

fall between the extremes of a jet and a wake. 

As previously mentioned, there is to date no general relation­

ships between the turbulent Reynolds number and the mean flow properties. 

For the present case, in which only the turbulent Reynolds number 

corresponding to the maximum shear stress is of concern, it is possible 

to develop such a relationship from the turbulent energy equation follow­

ing the approach used by Bradshaw (27) for the turbulent wall boundary 

layer. This relationship is derived in the subsequent paragraphs. 

Following Bradshaw, various turbulence quantities are related in order 

to reduce the turbulent energy equation. Additional assumptions are 

then made to finally obtain an explicit relationship for the turbulent 

Reynolds number. This expression is then matched to and compared with 

the results of Figures 15. 

The turbulent energy equation for an incompressible mean flow, 

outside the viscous sublayer is 

2 
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where e ~ v (du./^x.) . Equation (32) can be regarded as an equation 
•*• J 

for the advection or rate of change of turbulent kinetic energy along 

a mean streamline through a point if all the other terms are known at 

that point, just as the boundary layer momentum equation, 

f du 5u 1 1 ST /00x 
u ^— + v r— = pu. — — + T— (33 J 
L 9x dy J K 1 dx By VJJ' 

can be regarded as an equation for the rate of change of mean flow 

momentum pu. Following Bradshaw, it is assumed that the various turbulent 

quantities are related to the turbulent shear stress as follows: 

^ = - uv = aq2 (3*0 

5(l?D3/fe-|(? + f) C35) 
3/2 

( |1| ) - Le (36) 

where a, L and G are functions of y/5 which depend on the shape of the 

shear stress profile, a and G are dimensionless. L is a dissipation 

length scale and is usually the most important of the three functions 

because over most of the boundary layer the dissipation is much larger 

than the advection or diffusion. 

Substitution of Equations (3^), (35) and (36) into Eq. (32), 

gives 
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T T / 

H B pa + 1 ^ oa _ 1 3U 2£ / T W I T I \ 3 ' 2 

2 3x 2 dy p dy ~ dy V p / \ ' p U 

J / 2 

P 
(37) 

Equation (37) is now applied at the maximum value of |T/P| where 

a * 
-af = ° (38) 

In addition, it is assumed that a is constant and G is negligible (or 

constant) in the region where |T/P| is a maximum and that local simil­

arity exists in the sense that at most 

a = a(y/6) (39) 

or 

• § | ) = o (Uo) 
y = value for which | x /p | i s max 

Hence, at the location for which | T / P | i s a maximum Equation (37) 

becomes 

3/2 

V ' p 1 j JLiI a i2u (kl) 
2a 3x p dy L KHr±J 
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Employing 

U - U 

1. ( JJ . I )«f«) , 1 - y/6, 0*2) 
m e 

2. y to represent the location for which |T/P| is a maximum 

U - U 
3. 6. , - ^—S. (43) 

dy ; ^ max 

*TT U - U 

5. u = ue + (u - u) f(^) (U5) 

and assuming that L = l/c &., Equation (̂ l) gives 
J 

U + (U - U ) f (71 ) 3 - (U - U ) 
e m e 'o g T. m ey 

2a dx = " p 6. 

C r 1 + :ili£!] (lv6) 
L f ( u

B - V J 

The shear stress can now be written in terms of the turbulent Reynolds 

number. Introducing the eddy viscosity as 

(U - U ) 6. 

RT 

the shear stress becomes 



<* 

T dU 
P By 

(U 
m V 
R, 

(«0 

Thus Eq. (U6) finally becomes 

dRn 
dx ~ RT L U - U 

m € 

d(U - U ) m e 
dx 

2a(Um - Ue) , c 

+ 6.[U +U - U ) f(TI )] V1 " 7 = ) J J e m e b J J RT 
0+9) 

Equation (U9) relates the advection, production, and dissipation 

of turbulent shear stresses. If one assumes local self-preservation then 

dR^/dx = 0 and Eq. (U9) becomes an algebraic expression for R_. Calcu-

lations using Eq. (U9) show that l/(U - U ) x d(U - U ) /dx is more 
m m 

than an order of magnitude greater than l/Rm x dR^/dx and, therefore, 

the latter may be neglected. In this case, Eq. (U9) becomes 

J\ « 

a(U - U ) C 
m e 

6.[U + (U - U ) f(T) )] 
j L e m e 0 J 

n d(U - U ) 
1 x m e 

(50) 

u - u 
m e 

dx + fi-jCU, + (UM - U J f(^)] 
m 

where the constants a and c must be determined from experimental data. 

Equation (50) has been shown (28) to accurately express the turbulent 

Reynolds numbers for the following two-dimensional shear flows: 

1. Jets exhausting into still air 

2. Jets exhausting into a coflowing stream 

3. Small deficit wakes 
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h. Shear layer between uniform coflowing streams with velocity 

ratios from 0 to «. 

The constants a and c in Eq. (50) have been determined by a 

least square fit of Eq. (50) to the results of Series II for a velocity 

ratio of 6. The values of a and c are 

a = 0.110 

c = 10.98 

These are reasonable values and are close to these obtained by Bradshaw 

for boundary layers (a = 0.15 and c « 11). The corresponding results 

from Eq. (50) are shown on Figure 15(a). In spite of the simplifications, 

this semiempirical equation accurately predicts the results from the 

data of Series I. 

The predictions of Eq. (50) for the jet layer results from the 

data of Series III and IV are shown on Figures 15(b) and 15(c). The 

predictions are reasonably good (especially for the higher velocity 

ratios) except for the cases in which the velocity differences are 

relatively small (i.e., x>200 with velocity ratios near 2.0). Even in 

these cases the trends are properly predicted. 

The comparison of Eq. (50) with the data of Figures 16(a) - (b) 

was less satisfactory and conclusive. Therefore, the best values that 

can be recommended at the present are the mean values included on these 

figures. 

The fact that the theory (Eq. (50)) accurately predicts the 
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trends of the computed data is better illustrated in Figure 17 where a 

single, consolidated plot with less of the data is presented. These 

results indicated the large differences in l/RT for the three Series 
J 

and the large variation in l/Rm with velocity ratio. This plot is not 

intended to imply however, that U /u is the significant parameter since 

clearly the initial B. L. and pressure gradient have an effect. 

Wall Sublayer 

In this section it is shown that, if the well-known mixing-length 

formula is regarded simply as a relationship between the velocity and the 

stress distributions in the wall region of a turbulent flow, then a 

truly universal distribution of mixing length is sufficient to describe 

the experimentally observed departures of the velocity distribution 

from the usual law of the wall. Comparisons are made with a wide range 

of the experimental wall jet data to demonstrate the general validity of 

the modified mixing-length model in describing the flow close to the 

wall. A rapid streamwise decay in the wall shear stress (due to a rapid 

decay in the wall-jet peak velocity) uniquely distinguishes the wall jet 

sublayer from that of an ordinary boundary layer. 

General Characteristics of Wall Sublayer 

Coles (29) analyzed the bulk: of available measurements of tur­

bulent boundary layers for low Reynolds number and zero pressure gradients. 

He determined the surface shear stress from the velocity profile by 

assuming that the velocity in the inner layer (y/6 <f 0.2) but outside 

the viscous sublayer (U y/v > ko) followed the usual logarithmic form 
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U+ =£.= | log y+ + c (51) 
T 

where y = U y/v, K = O.Ul and c = 5.0. Coles demonstrated that the 
T 

surface shear stress deduced from Eq. (51) "was within about 10 percent 

of that deduced from the momentum integral equation, at least in the 

case of the more reliable experiments. The modern derivation of the 
'mixing-length' formula, from which Eq. (51) follows by integration 

o 
when T/P = U = T /p? uses the assumption that the turbulent structure 

of the flow near the surface is unaffected by the flow further from the 

surface. The outer layer and outer boundary conditions affect the inner 

layer primarily via the shear stress gradient "dj/by in the inner layer, 

which is non-zero when the velocity and/or pressure are functions of 

x. In a constant-pressure boundary layer at Reo = 1000, the effect of 

br/by is to reduce the velocity gradient at y/6 = 0.1 by about 3 percent 

from that in a true constant-stress layer. 

Simpson (30) suggested that much larger changes in the logarith­

mic law occurred at low Reynolds numbers. He showed that his own velocity 

profiles, and those of Wieghardt, for 1000 < Reo < 6000 collapse together, 

except in the wall sublayer, when plotted as u/U versus y/6. Since 

— -l/8 
U /U = (TJC ) 2

 a Reo ' approximately, it follows that K varies as 
T ti J. 

-l/8 
Reo ' , decreasing to 0.33 at Reo = 1000; c also varies. There is 

therefore a direct contradiction between the analyses of Wieghardt's 

data by Coles (constant K) and by Simpson (variable K). Recently Cebeci 

and Mosinskis (31), following Simpson, used values of K and c varying 

with Reo as part of the input to a method of calculating turbulent 
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boundary layers and showed improved agreement with expermental data. 

On the other hand Herring and Mellor (3'-)J using a very similar calcu­

lation method, obtained improved agreement by letting the eddy viscosity 

in the outer layer depend on Reynolds number, leaving K and c unaltered. 

Huffman and Bradshaw (33) say that the boundary-layer data currently 

available are not accurate enough to check the validity of the logarith­

mic law at low Reynolds number. Nevertheless, the question is of some 

importance, if only because of the implications for the inner-layer 

analysis in other situations. They analyzed the data for flows in which 

Reynolds number effects on the inner layer are likely to be stronger 

than in a boundary layer, and thus easier to detect. The procedure 

+ 
adopted is to adjust K and the 'damping constant' A , which determines 

c, so as to optimize the agreement between the actual velocity profiles 

in the inner layer and those calculated from the mixing-length formula. 

The results show that c or its equivalent is Reynolds number dependent 

and that K appears to be a constant to good accuracy. It appears that 

even the variation of c is likely to be small in boundary layers unless 

the influence of the outer layer is extremely large. Cebeci (3̂ -) in a 

later and more detailed study also concluded that the Karman parameter 

+ 
K and the Van Driest parameter A in the inner eddy-viscosity formula 

are universal constants. 

Typical experimental wall-jet data matched to Eq. (51) at log y 

= 2.0 are shown on the semi-logarithm plot in Figures 18(a) - (d). 

Deviations from Coles' semi-logarithm plot (of particular importance is 

the region of log y from about 2 to 2.5) may be seen from these results. 

Both rapid decreases in the wall shear stresses and pressure gradient 
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account for these deviations. In order to explain such deviations and 

establish a theoretical basis for the wall sublayer, further investi­

gations are made in the next section using the modified mixing length 

formula along with the boundary layer equations. The results of this 

investigation agree quite well with the experimental data. 

Development of Theoretical Equation 

The assumption that the turbulent flow near a smooth solid 

surface (y/s < 0.2) depends only on U . y p, v, dP/dx and dU /dx leads 

via similarity arguments and dimensional analysis to 

U+ = f2 (y
+, TT, \) (52) 

where 

TT 
AT> d U 

V dP _y_ T 
> A — PU. 

3 dx 
U 
2 dx 

and f„ is a universal function of y , n, and X- Equation (52) in con­

junction with the momentum and continuity relations 

TT a u . a u d£ aT 
PU a^ + ^ ay"= - to + a7 (53) 

and 

4(Pu) - ^ ( P V ) (5*0 

yield an equation for the total (viscous plus turbulent) shear stress as 

a function of distance from the surface and a number of parameters. Using 

au.au
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Eqs. (52) and (5*0 to eliminate U and V in Eq. (53) and then integrating 

with respect to y gives after some manipulation 

+ 

T
+ = 1 + rry+ + \ [ U+2 dy+ (55) 

Jo 

where T = T/T . The total shear stress can also be related to the 

velocity gradient by 

T = 11 ^ - p u'v (56) 

where the first term is the molecular stress and the second term is the 

Reynolds stress. The Reynolds stress is related to the mean velocity 

distribution by the mixing-length theory. Thus equation (56) becomes 

or 

T+ = ^ + ( , + 5uJ)2 (57) 
By v By J 

where l> = Û t̂/v and I, is the mixing length. This can be taken as a 

definition of the 'mixing length' l>. The common assumption that I, is 

proportional to y can be justified by local equilibrium arguments within 

the inner layer but outside the viscous sublayer Eq. (57) has also been 

used in the viscous sublayer (which is not a local equilibrium region 

because significant turbulent energy transport normal to the surface 

occurs) but its status is simply that of a means of correlating data. 
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Van Driest (195&) showed that, for the simple case T = constant 

= T , experimental velocity profiles were well fitted throughout the 
w 

inner layer by the semi-empirical form 

C = Ky+{1 - exp [-r4^ y+A+]3 (58) 

+ + + 
which tends to i, = Ky for large y . 

+ / + 
For the present analysis, Eq. (57) is solved for dU /dy to give 

au+ (i + hC T
+ ) ^ - i 

+ ~ +? 
by 21 

Introducing Eqs. (52), (55) and (58) this becomes 

du" • -? ~ 2 

(59) 

* = F(y+3 f f2 <*/, rr, X, k, A) (6o) 

dy 

Equation (60) is an integral-differential equation for u . It 

can be solved numerically to obtain the velocity profile near the wall 

for given values of n, X, k, and A. The wall shear stress profile can 

then be determined from Equation (55). 

Considerable controversy, as discussed in the previous section, 

has existed concerning the effects of Reynolds number on the values of 

A and K. Authors have generally agreed tha,t A and K are independent of 

Reynolds number for boundary layers at Reynolds numbers (based on the 

momentum thickness) in excess of 6000. However, many authors have argued 

that A and K must be variables for lower Reynolds numbers, as previously 
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pointed out. Recently Bradshaw (33) and Cebeci (3̂ -) have more conclusively-

established that A and K are independent of Reynolds number even at'low 

Reynolds numbers. Consequently, A = 26 and K = O.Ul (the most commonly 

accepted values) have been used for the final results of this study. 

This assumption was also justified in the present study by comparisons 

•with the experimental data. The values of A and K were adjusted in 

attempting to improve the matching between the experimental data and 

theory. It was concluded that within the accuracy of the data the 

matching could not be improved by changing A and K from the values of 

26 and O.Ul. 

Typical theoretical results illustrating the effect of TT and X 

on the sublayer velocity profile are shown in Figures 19(a) - (b) for 

rr = X = 0; Coles' linear semilogarithm law of the wall is reproduced 

with y ~ h0. The linear semilogarithm law does not exist if TT or X 

are significantly different from zero. 

Comparisons of Theory with Experimental Data 

The boundary layer velocity profile measured in the wall jet 

facility (12) immediately upstream of the jet nozzle is compared with 

theoretical results computed from Equation (60) in Figure 20. This 

comparison of the theory with an ordinary boundary layer is included to 

illustrate the characteristics and quality of the experimental data for 

the classical case in which the linear semilogarithm region is expected 

to exist. As shown in Figure 20, the data is in excellent agreement with 

the linear portion of the theoretical curve for log y between about 2 

and 2.5. Above this range y/6 > 0.2 and the data rises systematically 
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above the linear "law of the wall". This, of course, corresponds to the 

boundary layer "wake region". Below this range the data also is above 

the predictions of Eq. (60) and, in fact, above the linear semilogarithm 

plot. Unfortunately, attempts to explain these differences by making 

turbulence and probe displacement corrections have not been successful 

(although these corrections do reduce the differences). In fact, 

Reference 12 points out that three different probes yielded the same 

results. It is clear from the results presented in Reference 12 as well 

as those presented later that this is a characteristic of all the wall 

jet data of Reference 12. As shown in Figure 21, it also exists in the 

classical data of Wieghardt (35). Much, but not all of the boundary 

layer data in Reference 35 demonstrates the same characteristic. Never­

theless the theory (Eq. (6o)) seems to be accepted and reasonably well 

established for these classical flows. In all the subsequent comparisons, 

therefore, the author has emphasized comparisons between the theory and 

the experiments only in the regions for which log y ^ 2.0 and has expected 

that the data for log y < 2.0 would consistently lie above the theory. 

The theoretical and experimental results for Series I are compared 

in Figures 22(a) - (c). Series I tests are for the pure wall jet with 

no free stream flow. Note that these results have not been included 

previously. They are included in this case because the rapid decay for 

the pure wall jet has the strongest effect on the wall sublayer and, 

therefore, provides a critical evaluation of the theory. These comparisons 

show that the experimental and theoretical results are in excellent agree­

ment even near the region of the maximum velocity. Applicability of the 
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theory over such a large portion of the wall layer is surprising. 

The theoretical and experimental results for Series II, III, and 

IV are compared in Figures 23, 2*+, and 25. For the higher velocity ratios 

(Figures 23(a) and 25(a)) the data again compares well with the theory 

over a surprisingly large portion of the wall layer. On the other hand, 

for the lower velocity ratios, the data, rises above the theory in the 

outer portion of the wall layer for which y/6m is greater than about 0.3 

to Q.k just as in the case of an ordinary boundary layer. In these cases 

the wall layer is approaching that for a boundary layer. The sublayer 

extends over a large portion of the wall layer in these cases since 6m 

is reduced relative to 6 for a boundary layer due to the retarding effect 

of the jet layer on the flow near the peak velocity. Over the range of 

log y between 2 and about 2.k the agreement between the theory and 

experiment is good in all cases. 

The results show the assigned values of A = 26 and K = .In are 

reasonable and give results which agree with the experimental data. 

Coles' law of the wall deviates from the experimental data if T/T varies 

substantially from 1.0 over the region in which the data and theory 

compare well. 

The distribution of T/T as computed for three of the relatively 

extreme cases considered in the previous figures where the theory and 

data agree is shown in Figure 26. T/T clearly differs substantially 

from unity in the region where the theory is apparently applicable. 
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CHAPTER IV 

ANALYTICAL SOLUTION 

A method for analyzing turbulent wall jets is developed and then 

tested against experimental results in this chapter. The technique is 

based upon the results and conclusions established from the analyses of 

the experimental data. In general, a wall-jet flow must asymptotically 

degenerate into an ordinary boundary-layer flow far downstream. There­

fore, the solution has been designed so that it is applicable for and, 

in fact, can degenerate into a boundary layer solution. It is emphasized, 

however, that the present study is primarily concerned with establishing 

the feasibility of the solution technique. Little effort is devoted to 

refining the technique or establishing an efficient numerical scheme. 

Basic Technique and Assumptions 

The wall-jet shear flow is considered to be subdivided into an 

"inner shear layer", a "submerged shear layer", and an "outer shear 

layer" as shown in Figure 10. The inner shear layer is further sub­

divided into the "wall sublayer" as considered in Chapter III and an 

"inner shear layer similarity zone". 

The velocity profile in the "wall sublayer" is given by Equation 

(60) and depends upon the wall shear stress, the wall shear stresses 

gradient and the pressure gradient as expressed by U , X, and TT. 
T 

The shear stress distribution is specified for the "inner shear 
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layer similarity zone". For the wall-,jet flows this could be given by 

the similarity function g, as tabulated in Table 3. As an alternative 

which provides the flexibility for adapting the procedure to a boundary-

layer flow, it is assumed that the similarity function can be represented 

by a cubic, that is 

6 

T - T. 

T - T 
m w 

+ a 

— = (1 + a + 2b) - (2a + 3b) £ 
6 

+ b ( f? (61) 

which satisfies the conditions 

(1) = 1, and g'(l) = 0 (62) 

The constants a and b are determined so that the shear stress and the 

shear stress gradient are continuous at the interface between the "wall 

sublayer" and this "inner shear layer similarity zone". They are to be 

evaluated from the wall sublayer equation for T/T (i.e., Eq. (55)) applied 

at the match point or interface. Letting 

p = y/6 at the match point, 

and 

T = T/T at the match point, 

T R ' = (T/T )' at the match point 

(63) 
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Equation (6l) then becomes 

6 
= 1 - T *

 (l - 33) + T * B 
P (1 - B) 3 P (1 - B ) 2 - K* p ( i - P)3 

(1 - S) 2 J 6 L P (1 - B) 3 P (1 - B) 2 J V 6 ' (1 - B) (1 - B)' 

# 
+ T, 

P (1 - B) 3 P (1 - B) 
*. — 1 1 ( X ) 
I /, „N2 J V 6 7 

(64) 

Results computed from Equation (6k) are compared with both wall jet and 

boundary layer data in Figures 27(a) - (b). The values of g for the 

wall jet are from typical data presented earlier. Those for Wieghardt's 

data were also obtained by integrating the momentum and continutiy 

equations using the experimental mean flow data. Those for Bradshaw's 

data are experimental values (36). The values obtained from Equ. (6k) 

are for matching at B = 0.2 6 /6 (the approximate outer limit of the 
• * • * 

boundary layer wall layer for which 6 = 6) and with T Q and rQ ' deter-
m B p 

mined directly from the data. The agreement between the cubic profile 

and the experimental distribution is reasonable good. In ann cases 

the cubic profile underestimates the stress in the outer portion of 

this shear layer. Undoubtedly, an improved analytical expression (or 

a numerical tabulation) could be obtained (this should involve a much 

more comprehensive study of boundary layer data). However, for the 

purposes of the present exploratory study the agreement is considered 

satisfactory. For all the subsequent results the match point is also 
taken to be at B = 0.2 6/6. 

m' 
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The shear stress distributions are also specified for the "sub­

merged shear layer" and the "outer shear layer". These are given by 

the similarity functions g2 (for the submerged shear layer) and g~ (for 

the outer shear layer) as tabulated in Table 3. These shear stress 

distributions are matched (in value and slope) at the interface between 

the two layers. 

The normalized shear stress functions g, gp, and g~ involve the 

shear stresses T , T and T 0» T is determined by evaluating U (as 
w m d. w T 

related to the wall layer velocity profile by Eq. (60)) simultaneously 

with the entire velocity profile as discussed subsequently T and jp 

are related to the mean flow via the eddy viscosities (Eq. (30) and (31) 

The eddy viscosities are in turn related to the mean flow properties 

via the turbulent Reynolds numbers R and R . R is evaluated from 
J ' w J 

the mean flow properties using Eq. (50). No explicit relationship was 

developed for R , however. Therefore, values of R have been deter-
w w 

mined directly from Figures 16 (a) and (b). 

Numerical Solution 

Numerical Notation and Specified Conditions 

The finite difference notation used in the numerical analysis 

from the axial station i to i + 1 is shown in the sketch on the next 

page. The outer edge of the wall sublayer is at j = 0. The outer 

edge of the entire shear layer (y = 6sL) where U = U is at j = N. 

The following boundary and flow conditions are specified: 

1. y/6 = p = 0.2 y/6m at j = 0, i + 1 

2. All conditions at i (i.e., U.. U , X., and TT. ) 
N ' i?

 T. 1 1 
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6sL 

1 I I I I / I I I I I I I I I I I 
Wall i i + i 

3. U = V = 0 at y = 0 

i + 1 

y i 

x 

k. T = f(y. .) for j = 0 . . . N (f = g for inner shear layer 

(Eq. (610), f = So for submerged shear layer (Table 3)? and f = g^ for 

outer shear layer (Table 3))» 

5. X.,, = \.,i (i.e., \ lags behind by h the station increment. 
l+l 1+2 

This eliminates a double interation) 

Solution for Wall Sublayer 

The velocity profile and the shear stress in the wall sublayer 

are computed by numerically solving Eqs. (55) and (6o) using linear 

steps. Since U and \ _ at station i + 1 are initially unknown, 
Ti+1 1 + 1 

they are first estimated. These first estimates are then used to deter­

mine the first approximation for U T i+ i 
(and hence \. i) simultaneously 

1+2 
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with U.,_ .in the entire outer layer. The detailed procedure for 

obtaining the first approximation is as follows: 

1. Assume that \ . , = \. 

2. Estimate U using 
Ti+1 

U 
r- T . 

U = U + 
T . , T T. L V 1 J 

1 + 1 1 

(65) 

3. Assume that 6 = 6 
m. . -. m. 

i+l I 

k. Estimate y. ,n using 
°i+l,o ^ 

y. 

P 6™ u 

m:L+l Ti+1 
i+l,o 

(66) 

5. Compute y. for y. = y 
i , o i ,o ' i+l^o using 

U 

+ 
y „• n = y A^I i ,o * i+l ,o U 

T i+i 

(67) 

6. Compute y. = y. ,, using 
i,o i+l, o ^3 

yi,o = yi+l,o =
 y+i,o A , (68) 

7. Compute V._^ using 
1+2 ,o 

i+i,o 

'y i ?o u + > d y _ 1*1+1,0 y ^ 
1 J 1"T"J_ 

o o 
h 
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i5° U+. dy+ -
(•jr-j-i+l,o „+ , + U.+1dy (69) 

JL, 

where integrals are evaluated numerically using Equation (60) for U . 

8. Using Eq. (6o) numerically compute 

< W \ i + 1 • f
2<yVo> (70) 

U. _ and U in Eq. (70) are considered as unknowns. They can 
1+1,0 T i + 1 

finally be evaluated using a solution for U . in the entire outer 

layer. 

Solution for Outer Layer 

The boundary conditions applied at j = 0 are U and V. 1 as 

given by Eq. (69) and (70). The detail procedure is as follows: 

1. Assume T..1 . = T. . where the values of j. . are given by 

the functions g, g and g . 

2. Solve the boundary layer equations (Eqs. (10) and (11)) 

using the finite difference form 

- P 

1 + 1 ' J ^ - (U. Ll . - U. . ) /h 
z i + l , j i , j " 

[" f | 2 dy + V . ^ 1 (iJ. _ - U. . . 
L J dx ^ i+2"5o J \ i , j + l i , j - l 

+ U - U ^ A k = - — + ^ 1 
i+1,0+1 i + l , j - l / ' ' dx By 

(71) 
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Equation (70) and (71) are N + 1 equations for N + 1 unknowns U. , 

. . . U.,, ._ _ and U . These equations are solved simultaneously by 
l+l,N-l T i + 1 

matrix inversion. 

With a first approximation for U , the entire procedure is 
Ti+1 

repeated again starting with the wall sublayer but using the new value 

of U and using \. ,-. = X. , I where 
Ti+1 1+1 1+^ 

(U - U ) 

Xi+4 - /U T 1 + 1 + UT, ,2 
i+1 

Ti 

(^V 1 ) 
h 

(72) 

Iteration is then continued until the solution converges. 

The boundary layer thickness is finally calculated by integrating 

the boundary layer equations to give 

A6 = 

_w 

JL 
u 

r 6 i &u A J. r 6 i ^u2 A J. i d p * 
^"- dy + *— dy + - — 6. 

o dx ^ Jo dx a o dx I L&k) . ( JSL \ . i d£ 
V * Vs^tf V * VB,+ # p * 

(73) 

where A6 = 6. , - 6.. An initial guess for A6 is necessary. Starting l+l l 

with the initial guess the calculations are iterated until the solution 

converges. 6. , is then computed using 6. -, = 6. + A6. 

Numerical Results 

The analysis was first tested for typical boundary-layer flows. 

This test was considered to be essential since in most cases a wall-

jet flow asymptatically approaches a boundary-layer flow. It is 

important, therefore, that a wall-jet analysis behave properly in this 

asymptatic limit. The analysis was then tested for typical wall-jet 
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flows. 

Results computed for Wieghardt's flat plate flow (35) are com­

pared with the experimental data in Figures 28 (a) - (c). The numerical 

calculations were started at x = 1.087 m using the experimental data 

for the initial velocity profile. However, the initial value of U 

was computed by fitting the experimental velocities near the wall to 

the wall sublayer equation. 

Results computed for Ludwieg and Tillmann's flow (35) with mild 

adverse pressure gradients are compared with the experimental data in 

Figures 29 (a) - (b). The numerical calculations are started at 

x = 1.282 m using the experimental data and again evaluating U at 
T 

this point so that the data were consistent with the wall sublayer 

equation. 

Results computed for two cases of wall-jet flows are compared 

with the experimental results in Figures 30 (a) - (d), and 31 (a) - (c). 

The calculations for Figures 30 (a) - (d) (Series II) were started at 

X = 52 while those of Figures 31 (a) - (c) (Series III) were started 

at X = 197. Again, in both cases the initial velocity profiles were 

specified by the experimental data and U was selected to be consistent 
T 

with the wall sublayer equation. 

As shown by the comparisons in Figures 28, 29, 30 and 31? the 

present method is reasonably successful in predicting the flow field 

produced by either a wall jet or a boundary layer. It is concluded 

that the similarity approach is quite plausible and encouraging. The 

differences between the analytically and experimental results are 

primarily attributed to the choice of the matching point at the interface 



A Experimental Data (35) 
U =1.280 m/sec 

130 

y 

(cm) 

2.< 

2.1+ 

2.0 

1.6 

1.2 

Theoretical Value 
U = 1.282 m/sec 

.k .6 .3 
u/u 
' 00 

(a) x = 1.237 m 

1.0 

Figure 28. Boundary Layer Velocity Profile 
for Wieghardt Flat Plate Flow; 
U = 33 m/sec 



/ \ Experimental Data (35) 
U = 1.26 m/sec 

Theoretical Value 
U =1.27 m/sec 

131 

y 

(cm) 

2.i 

2.1+ 

2.0 

1.6 

1.2 

1.0 

(b) x = lJ+37 m 

Figure 28. (Continued) 



^ Experimental Data (35) 
U = 1,2^0 ra/sec 

132 

Theoretical Value 
U = 1.261 m/sec 

y 
(cm) 

2.8 

2.1+ -

2.0 

1.6 

1.2 

.h •-

.k .6 .8 1.0 

u/u 
' CO 

(c) x = 1.687 m 

Figure 28. (Continued) 



& Experimental Data (35) 
U =1.02 m/sec 

133 

8.0 
Theoretical Value 
U = 1.06.1 m/sec 

y 

(cm) 

7.0 

6.0 

5.0 

U.O 

3.0 

2.0 

1.0 

.2 .k .6 .8 1.0 

u/u 

(a) x = 1.782 m; U = 30.7 m/sec 

Figure 29. Boundary Layer Velocity Profile 
for Ludwiegand Tillmann Mild 
Adverse Pressure Gradient 



/\ Experimental Data (35) 
U = 0.915 m/sec 
T 

13^ 

8.0 

Theoretical Value 
U =0.983 m/sec 

y 

(cm) 

7.0 

6.0 

5.0 

k.O 

3.0 

2.0 

1.0 

u/u 

(b) x = 2.282 m; U =-- 28.6 m/sec 

Figure 29. (Continued) 



135 

1.0 

. 9 * ~ A Experimental Data (12) 

U = 12.J+0U f t / s e c 
T 

.7 

Theoretical Value 

U = 12.553 ft/sec 
T 

.6 

y 
(IN) .5 

.k 

.2 

. 1 

1 I 
.2 ,h .6 

(a) X = 65 

1.0 

Figure 30. Wal l - Je t Ve loc i t y P r o f i l e 
Se r i e s I I ; VR = 3 



1.0 

136 

.9 
A Experimental Data (12) 

U = 11.823 ft/sec 

.7 

Theoretical Value 
U =12.12 ft/sec 
T 

y 

(IN) 

.6 

.5 

.k 

.3 

.2 

.1 

J I 
.k .6 .8 1.0 

U/Uj 

(b) X -.= 7!5 

Figure 30. (Continued) 



37 

1.0 

.9 

A Experimental Data (12) 
U = 11.21+3 f t / s e c 

T h e o r e t i c a l Value 
U = 11.581 f t / s e c 

.6 

y 

(IN) .5 

.J4 

.3 

.2 

.1 

J I 
.k .6 

u/uT 

(c) X = 85 

8 1.0 

Figure 30. (Continued) 



138 

1 . 0 

• 9 

.8 

.7 — 

.6 — 

.5 — 

.h — 

.3 — 

.2 
— 

. 1 

Experimental Data (12) 
U = 10.5^6 ft/sec 

Theoretical Value 
U = IO.987 ft/sec 

u/uT 
(a) x = 97 

Figure 30. (Continued) 



\3() 

y 

(IN) 

2.2 

2.0 

1.8 

1.6 

l.U 

1.2 

1.0 

.8 

.6 

.2 

/\ Experimental Data (12) 
U =7.77 ft/sec 

Theoretical Value 
U =7.63 ft/sec 
T ' 

J I 
.2 .h .6 .8 1.0 

U/Uj 

(a) X = 227 

Figure 31. Wall-Jet Velocity Profile Series III; VR = 2.92 
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between the "wall sublayer" and the "inner shear stress similarity 

zone" and the numerical solution. 

It is believed that a better matching condition would particularly 

improve the results for the Ludwieg and Tillmann flow (in this case the 

shear stress near the wall first rises and then decreases similar to 

that shown in Figure 29 (b)). 

For example, it is readily possible to allow the matching point 

to float by specifying that the shear stress at the interface be equal 

to that predicted using the Clauser relation for an eddy viscosity 

which uses the wall-layer displacement thickness as the length scale 

and the maximum wall-layer velocity as the velocity scale. For this 

condition, it is expected that the boundary layer results would be 

very similar to those predicted by the method of Reference (37). 

The numerical solution is relatively inefficient and as a 

result it was not reasonable to properly evaluate the step sizes and 

convergence (for the present calculations relatively large steps were 

used in the streamwise direction). 

In the authors opinion, considerable improvement can and should 

be made by refining the numerical solution and developing a more 

definitive matching technique. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Results from detailed analyses of experimental turbulent wall-

jet data yield the following conclusions: 

1. Similarity of velocity profiles in the jet and wake layers 

is observed when the velocities and lengths are appropriately scaled. 

This holds true even in the presence of a pressure gradient. 

2. Similarity of shear stress profiles in the inner, jet and 

wake layers is observed when the stresses and lengths are appropriately 

scaled. This holds true even in the presence of a pressure gradient. 

3. The wall sublayer velocities and shear stresses can be cal­

culated from the similarity form of the viscous sublayer equations. 

The velocity profile and the wall shear stress agree quite well with 

the experimental data. The results incidentally show that the viscous 

sublayer is more strongly affected by streamwise shear-stress gradients 

than is the rest of the inner layer. 

k. The turbulent energy equation can be converted into a 

differential equation for the maximum shear stress, along the line of 

maximum shear stress by defining three empirical functions relating 

the turbulent intensity, diffusion and dissipation to the shear stress 

profile. A resulting closed form expression for R agrees reasonably 

well with experimental data. 

5. A cubic profile for approximating the inner shear layer 
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stress distribution outside the wall sublayer was developed for wall 

jets and boundary layers. Although it is believed that a better 

similarity function can be developed, the cubic profile as an initial 

try agrees reasonably well with experimental data. This similarity 

approach provided a more general basis for predicting the turbulent 

flow. 

6. The shear-stress similarity approach for analyzing turbulent 

wall jets appears very promising. This approach not only can reduce 

the partial differential equation from second order to first order 

but also can avoid the singularity at zero shear stress which appears 

in the eddy viscosity approach. These advantages in conjunction with 

the preliminary finite-difference scheme used herein provide a reason­

ably successful method for the prediction of two-dimensional turbulent 

boundary layers and wall jets developing over a flat plate in constant 

or adverse pressure gradient. 

The results presented herein are sufficiently promising to 

warrant additional fundamental studies. In particular the following 

additional studies are recommended: 

1. Turbulent boundary layer data for a wide range in flow 

conditions should be analyzed in detail and compared with the present 

wall-jet results in order to establish an improved similarity function 

for the shear stress distribution in the porition of the inner shear 

layer outside the wall sublayer. This study should also consider the 

problem of matching this similarity function with the wall sublayer 

solution. 

2. Additional experiments and analyses should be made to 
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improve the method of predicting the maximum shear stresses in the jet 

and wake layers of wall jets. Experimental measurements of the 

turbulence quantities, including the Reynolds stresses, in the regions 

around these maximum stresses should be made. 

3. The numerical analysis for calculating the -wall-jet develop­

ment should.be refined. 

should.be
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