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SUMMARY

An analytic investigation of the flowfield produced by two-
dimensional, turbulent wall jets with and without a longitudinal free-
stream pressure gradient is presented.

The investigation was conducted in two parts. In the first
part, experimental data were analyzed to establish semi-empirical
relations for

1. Velocity profile similarities

2. Shear stress similarities

3. Wall sublayer similarities, and

L, Maximum shear stresses

An analytic funetion for the velocity profiles in the jet and
wake layers was obtained by least square fitting to experimental data.
This analytic function was used in all subseguent data analysis to
represent the experimental data with algh accuracy.

The local shear stress data were calculated using the momentum
equation, the continuity equation, experimental surface shear siresses,
and the analytic function for the velocity profiles, Shear stress
similarity relations for the wall, jel;, and wake layers were then
achieved by appropriately scaling the calculated shear stress results.

The velocity and shear profiles in the wall sublayer were

obtained by using the mixing length theory which, as is shown, gives

results that agree well with the experimental data,
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A closed form expression for the maximum shear stress was derived
from the turbulent energy equation assuming that the various turbulent
quantities are related. The expression yields results which are in
satisfactory agreement with the experimental data.

In the second part, similarity and semi-empirical results, as
established in the first part, were utilized to develop an overall
solution for turbulent boundary layer and wall Jet flows., A step-by-
step mumerical solution of the partial differential equations was

employed. Comparisons between the predicted and experimental data show

encouraging agreement.




CHAPTER 1

INTRCDUCTION AND LITERATURE REVIEW

Introduction

The behavior of a jet blowing tangential to a s0lid surface is
of great interest because of the applicability'of such jets to film
cooling (1), boundary layer control {(B,L.(.) of ejectors s&s & means of
substantially increasing the thrust augmentation (2) and B.L.C. of air-
craft. Applied in the ares of B.L.C. of alreraft, the jet supplies
additional energy %o a boundary layer 1in an adverse pressure gradient
thereby not only delaying or eliminating separation but also producing
increaged circulation about the lifting body. Both of these effects
contribute measurably to increase 1lift for any angle of attack and free
stream velocity. It is important, then, to become familiar with the
controlling parameters involved in the problem and to be able to predict
the increase in 1ift for any reasonable set of operating conditions.
Accomplishment of this suggests analytic approaches to solution of the
development of a two-dimensional wall Jjet introduced into an initial
boundary layer with a free stream pressure gradient.

A relatively large volume of literature pertaining to boundary
layer control by means of external blowing exists. A great deal of
this documents various experimental investigations in which certain

trends have been observed; some of these are fairly well understood

and some are not. Theoretical analyses are found less frequently and




are often less than satisfactory. Basically, the boundary layer control
problem requires theoretical methods capable of analyzing the jet-
boundary layer mixing in order to permit rational calculation of the
optimm amount and distribution of blowing momentum needed to prevent
separation of the boundary layer from an arbitrary airfoil. General
basic methods of analysis are not found in the literature, mainly for
the reagson that there is as yet only incomplete understanding of the
complicated interactions which occur when a Jet is blown into a boundary
layer tangentially to an arbltrarily curved surface, where it is influ-
enced by the external velocity and exiternal pressure gradient.

Wall Jet flow is more complicated than most two-dimensional
shear flows, incorporating as 1t does some features of a boundary layer
and some features of jets and wakes, Any analytic approach must imvolve
gome impiricism asnd the best approach will be the one which makes maximum
use of data and analytie methods for these and other related turbulent
shear flows. There is already in existence in the literature mueh
material of interest and usefulness regarding, or related to, the
boundary layer control problem., However, a satisfactory method for
anelyzing turbulent wall jet flows with pressure gradients is not

avallable,

Literature Review

This review, in an attempt to collect related systematic and
chronological studies, includes experimental and theoretical works in

which the wall jet iz directed tangent to a flat downstream surface.

The investigations in which no free stream was used are included along




with those in which a free stream exlsted with and without s& streamwise
pressure gradient.

Experimental Investigations

The earliest published experimental work on the two-dimensional
wall jet with no main-stream flow was performed by Forthmann (3) as a
supplement to his investigation of the plane free jet and partially
expanding jet. FOrthmann observed the apparent self-preserving nature
of wall jet velocity profiles for short distances downstream of the Jet
slot. His data also indicated that the boundary layer thickness varies
linearly with distance from the slot and that the maximum velocity
varies inversely as the one half power cof this distance. Further, he
concluded from his data that the velocity in the wall layer (between
the wall and velocity maximum) varies as the one seventh power of the
height from the wall, an obgervation that is not substantliated by later
experiments.

The first effort to concentrate experimentally on the wall jet
with no free-stream flow was implemented by Bakke (4) in 1957. In an
attempt to verify the analytic results of Glauvert (5), Bakke measured
velocity profiles to a distance of 20 slot widths from the point of
inJection for a Reynolds number based on slot height of approximately
30,000, The data provided a reccrd of jet thickness growth and maximum
velocity decay with distance from the slot. Bakke found agreement in
his work with the results of FSrthmann and Glauert and stated, "within
the experimental range and accuracy the velocity profiles are similar

and the rate of change of velocity and width of the Jet can be expressed

by simple power laws." Bakke's date was not sufficiently extensive to




reveal the variation of the growth and decay laws with Reynolds number
based on slot height that Blauert had predicted.

In 1961 Patel and Newman (6) experimentally created the conditions
necessary for the wall jet outer profiles {(from the jet peak to the
free stresm) to remain similar. These "self-preserving" profiles were
obtained by retarding the free-stream flow such that the ratio of loeal
jet peak velocity te free-stream velocity was constant. They suggested
that experimental evidence indicates that similarity exists in the outer
layer and may extend to the outer region of the wall layer. It should
be noted that evidence of an initial boundary layer did not appear in
their data. Patel and Newman also measured wall jet profiles for zero
pressure gradlent cases. They found that for the zero pressure gradient
cages the outer layer profiles demonstrated near similarity. They
finelly suggested that further profile detail is needed in the wall
layer and that more complete skin friction measurements must be made
for a1l wall jet cases.

In 1963, Eskinazi and Kruke (7) investigated the zero pressure
gradient cases for a wide range of initial velocity ratios and confirmed
that the gsimilarity expressions for the wall layer and the outer layer
require different velocity and length scales. Based on the results of
their investigations, they concurred with the earlier findings of
Bradshaw and Gee (8) that the point of zero turbulent shear stress is
not located at the jet peak and that the points of partition of the
profile are still open to question. XKruka and Eskinazi also investigated

skin friction with a flattened Preston tube., Thelr data does not agree

well with either earlier or later results.




Erien and Eskinazi (9) extended the work of Kruks end Eskinaezi
in 1964 to include velocity profile and skin friction measurements for
8 wall jet in a moving stream with a pressure gradient. The tests were
performed for one Initial velocity ratlo and no atiempt was made to
systematically vary pressure gradient; the results were therefore con-
siderably limited in scope.

In 1968, Kacker and Whitelaw (l0) recognized the need for more
data in the low veloclty ratlo range aﬁd performed their experiments
for velocity ratios of 0.75 to 2.74 to a distance of 150 slot widths
downstream. The work was done with no pressure gradient applied to
the wall Jet. Kacker and Whitelaw noted in their work that the trends
observed in previcus investigetions for skin friction seem to be con-
glstent; however, they still found sizeable differences in vélues
measured.

In.1969, Gartshore and Newman presented their own data for several
wall jet cases as follows:

1. A wall jet into gtill air,

2, A gelf-preserving wall jet for nominal wvelocity ratios of
1.3, 2.0 and 3.0,

3. A non-gelf-preserving wall jet in adverse pressure gradient
for nominal velocity ratios of 2.0 and 4.0.

L. A wall jet in zero pressure gradient for nominal velocity
ratios of 2.0, 3.0 and 4.0,

They included over all growth and decay information for comparison with

caleculations based on thelr own analytical model; however, they did not




present profile detall or skin friction measurements.

In 1971, Neale (12) presented an experimental study of various
wall Jet flows as follows:

1. The wall jet injected into still air.

2. The wall jet under a constant-pressure main-stream flow for
nominal velocity ratios of 2.0, 3.0, 4,0 and 6.0.

3. The wall jet subjected fo an adverse pressure gradlent imposed
by a retarded main-stream flow with a substantially thickened initial
boundary layer for nominel velocity ratio of 1.5, 2.07, and 2.%2.

4, The wall jet subjected to an adverse pressure gradient
imposed by a retarded main-stream flow with a thickened and distorted
initial boundary layer for nominal velocity ratio of 2.0 and 3,0.
Neale's investigations proceeded systematically from the simple to the
more complex wall jet flows., The studies of wall jets in still air and
wall jets in constant pressure free stresms establlish the characteristics
of simple wall jet flows. With the behavior of these comparatively
uncomplicated flows known, Neale provided with studies of more complex
wall Jets in adverse pressure gradients. These adveree pressure-
gradient cases provide a study of wall Jet flow in which the initial
boundary layer momentum deficit is significant in comparison with the
Jet momentum excess. Evidence of this relatively large initisl momentum
deficit is present throughout his measured development of these wall
Jets. Neale made detailed veloecity profile and local skin friection
measurements for the case in which no main-stream flow was present;

his atudies were carried out for a wide range of slot Reynolds numbers.

For the wall jets with main-stream flow, he investigated selected ratios




of free-stream velocity to jet nozzle velocity. In each of his studies
measurements were performed at severs) streamwise distances from the
point of jet injection. Neale demonstrated veloeclity profile similarity
for all four series of wall jet test results, The measured growth of
the half-velocity height and the decay of the jet peak veloclty with
distence from the jet slot agree qualitatively with theoretical predic~
tions and quantitatively with comparable measurements of others (11),
(6). The near wall profiles seemed to demonstrate similarity in the
form of a single "law of the wall" for all measurements. The outer
portion of the well lsyer, however, does not conform to a gsimple
expression of similarity. This outer region is Influenced by the
presence of local pressure gradients, by the local jet to free-gtream
velocity ratio and by the velocity deficit in the valley above it.
Neale measured the friction data with a Preston tube for the wall jet
in still air and his resulis agree closely with the data presented by
Sigells (13). His studies have provided a large body of experimental
information concerning velocity profiles and wall jet development for
the still air end free-stream cases wlth and without streamwlse pressure
gradient. Furthermore, the results show a good measure of conslstency
and concurrence with other high quality wall Jet data.

In summary, Neale's studies have provlided detailed presentation
of a systematic study of wall jets developing under streamwige pressure
gradient, Of the few studies that bhave been implemented, most are
narrow in scope while the rest ere lacking in comprehensive detall.

Neale's experimental data were therefore utilized in the present study

to eatablish gemiempirical formils and similarity parsmeters.




Theoretical Investigations

In 1956, Glauert (5) used a similarity approach to solve the
flow due to a jet spreading out cover a plane surface, either radially
or in two dimensions. Baszed on physical reasoning in this simple type
of flow, Glauvert was the first to postulate that the entire flow field
of the wall jet cannot conform to one overall similarity solution. He
divided the flow into a wall layer and a jet layer on either side of
maximum velocity and treated the two regions separately.

In 1961, Carriere and Eichelbrenner (14) developed a more detailed
calculation method. This method is incamplete, however, as certain
empirical information about each flow is needed. A notable result of
the analysis and experiments of Carriere and Eichelbrenner was the
importance of velocity profiles with Both a maximun and a minimum,
characterizing the initial boundary layer effect. High velocity,
narrow jets appeared teo require smaller momentum, as only the inner
part of the original boundary layer must be accelerated to prevent
separation.

In 1965, Harris (15) conducted analytical work on the turbulent
wall jet in a moving stream with arbitrary pressure gradient. His
mathematical model consisted of a wall layer and a jet layer only, and
further more, it was assumed in his analysis that slet velocity and
slot height are very large compared to the free stream veloclity and
boundary layer thickmess at the exit of the slot. 1In that case the
momentum deficit of the upstream boundary layer at the slot lip is

negligible and, thus, he could justify the assumption of no interference

of' external stream boundary layer on the flow development downstream.




In 1967, Patanker and Spalding (16) presented a solution for the
wall jet problem using the finite difference technique and Prandtl's

mixing length hypothesis. They expressed the eddy viscosity by

bers = p1° ( %;' ) (1)

where 1 is the mixing length given by
0<y51yL/K:L=Ky (28)
Ay K=y t=2y, (2b)

where A and K are constants, y 1Is the distance from the wall, and Yy is
a cheracteristic thickness of the layer. Calculetlions were provided for
wall-jet flows, with various values of the constants K and A3 comparisons
were made with the experimental data of Myers, Schauer and Butis (17),
and Schwartz and Cossrt (18). The investigation showed that, the values
K = 0.435, and A = 0.09 gave fairly good agreement with experimental
velocity profiles and wall shear stresses. They indicated that better
pdirs of values could be found for predicting each of these quantities
individually; but these "better pairs" were not identical. For example
K= 0.6, and A = 0.075 fitted the velocity profile fairly well; but the
pair, K = 0.5, A» = 0.0625, gave better predictions for the shear stress
at the wall. It meant simply that the mixing-length hypothesis does

not express the whole truth sbout turbulent boundary layers.

In 1969, Gertshore and Newman (11) developed a method for
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calceulating the growth of a turbulent wall jet in streaming flow. The
flow is assumed to be two-dimensional incompresgible and over a plane,
smooth wall, The method incorporates four integral momentum equatiors
taken from the wall to various points in the flow. The wall layer is
repregented by a classical turbulent boundary layer power law profile.
The calculation of the outer shearing stress is hased on the large-eddy
equilibrium hypothesis. The remaining empiricism in the methcod is based
on measurements in selfpreserving wall Jets. However, their analysis is
restricted to a simple wall jet.

In 1970, Verhoff (19) used a similarity solution approach to
solve both plane turbulent wall jet and turbulent wall jet beneath a
gsecondary uniform stream. He compared his solutions with experimental
data and obtained excellent agreement over much of the profile for a
wide range of velocity ratios and slots widths downstream of the jet
slot. Verhoff attempted, however, to fit the complete velocity profile
with his gimilarity solution and he did not meet with success in the
outer region of the outer layer.,

In 1970, Hubbartt and Bangert (20) analyzed turbulent wall jets
in adverse pressure gradients leading to wall layer separation. The
analyses utilize the integral momentum and mechanical energy equations
with the wall jet divided intec layers. In one limliting case the initial
boundary layer is ignored {or rapidly consumed). In the other limit,
the initial boundary layer 1is assumed to be separated forming a starting
wake which persists downstream with the minimum velocity remaining zero.

This uniquely specifies the allowable pressure gradient. They indicated

that for a constant jet momentum, wall layer separation is relatively




insensitive to the jet to free-stream velocity ratic, the jet and wake
layer dissipation rates, and the jet and weke layer profile shape factor.
They also indiecated that the Jet and weke layer profile parameters,
within the range predicted by similar flows have little effect on the
wall jet growth and the influence of Reymolds number on the wall jet
development 1s relatively amall., In thelr analysis, they used several
constant turbulent Reynolds mumbers to define eddy viscosities in the
various parts of the layer and adopted a simple power law for the wall
layer,

In 1970, Goradia (21) developed a mathematical model for the
wall jet flow from preliminary experimental data. Goradia dlvided the
flow model into an initial region, main regions, and an ordinary tur-
bulent boundary layer region. Furthermore he subdivided each region
into various layers such &s, wall layer, jet layer and wake layer,
according to the characteristic of velocity profiles in the dlfferent
layers; he derived integral equations for each region mentioned above
and for the various layers in the specific region, Goradie obtalned
gimilarity functions for the various regions of flow from experimental
date. These similarity expressions were checked against data published
by others and the agreement was satisfactory. He alsc considered the
Initial reglon where the core flow exists and indicated that the length
of the initial region is approximately 7 to 15 slot heights, depending

upon pressure gradient and initlal conditions at slot exit.

Purpose of the Present Investigation

The primary purpose of the present investigation is to study the




downstream development of wall jets with and without pressure gredient.
This type of flow has not been studied in deteil proceeding systemati-
cally from simple to complex. The present Investlgation contributes to
the understanding in the following ways:

1. Egtablishes simllarity parsmeters for velocity profiles and
shear stress profiles.

2. DPresents better agreement between theoretical prediction and
experimental dsts in the wall sublayer.

3, Establishes a semiempirical formula for maximum shear
stresses,

Y, Dévelops & similarity approach using shear streases coupled

with wall sublayer analyses to refine and simplify the mathematical

moedel in analysis of twe dimensional turbulent wall jets,




CHAPTER II

FUNDAMENTAL ASSWMPTIONS, EQUATIONS
AND EXPERIMENTAL DATA

General Eguations

The measurable quantities which are usually of interest for a
gas in motion are its pressure P, density p, temperature T and velocity
t-f. The equations governing these quantities are

1. The equation of state
£(P, p, T) = O (3)
2. The equation of mass consemti.on
204 atv (p3) = 0 ()
3. The equation of momentum conservation

el -
p%=pF-gra.dp-curlcurluq

+ % grad (u div q)

+gra.d(a'gra.dp.)-a€’2p.
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+ grad px curl q - div q grad p (5)

4. The equation of energy conservation

pgt—lﬂ-::i-pdivi'-l-div(l{grad'r) (6)
where E 1s the internal energy per unit mass, ¥ is the dissipation
function, w is the coefficient of viscosity, K is the thermsl conducti-
vity, and E the external force per unit mess, The underlying assumptions
and implication of these equations are discussed by Lighthill (22),
Thwaites, and others., A brief and illuminating discussion of their
general spplicability is contained in Liepmann and Roshko (23). As &
congequence of their nonlinearity, the mathematical difficulties of
golving the Navier-Stokes equations are severe, even for two-dimensionsal
incompressible flow. In many casee, approximations of varlous kinds
have been useful. Of these, the boundary layer concept, essentially the
contribution of Prandtl, has proven to be immeasursbly significant and
fruitful. Under the boundary layer concept the Navier-Stokes and con-
tinuity equations reduce to the well-known boundary layer equation (24);

1., Momentum:

au§P-

pu%+pv%=-g£~+wx {(7)
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P _
3y - 0 (8)
2, Continuity:
Sgu _ dpv _ '
7£? M- ° (9)

where p 1s expressed in terms of T and P by the thermal state equation
and T is from the energy equation (for the data reduction in the sub-
sequent section T was determined from the experimental data and the
final analysis was developed and spplied for sn lncompressible flow
because the cﬁange in T was small and the mathematical model could be

simplified).

Turbulent B. L. Equations

Strictly speaking, the assumption of steady, two-dimensional
motion is applicable only for laminar flow. In the more interesting
turbulent case, turbulent fluctuation veloclties of equal order of
maghitude occur in all three coordinate directions. However, turbulent
flows may be two-dimensional and time-independent in the mean., The
turbulent boundary layer equations are indeterminant and must be comple-
mented by additional hypotheses or equations regarding the Reynolds
stresses. This problem is not yet solved satisfactorily, and crude
approximations with known shortcomings are still in use, for lack of

anything better. The classical approaches, more or less in the order

of sophistication, are




1. Integral techniques employing only the momentum integral to
eliminate all values of the shear stresses except at the wall,

2. Integral techniques employing the momentum integral and an
integrated moment of the momentum equation which requires more shear
stress detail but integrate this to obtain only one additional shear
atress parameter which is evaluated experimentally,

3. Differentisl technique which uses the differential momentim
equation with e mixing length concept (usually empirical) or an eddy
vigcosity (usually empirical or related by an empirical turbulent
Reynolds number) and,

4. Differential techniques which attempt to close the momentum
equation by using one or more approximate equations for turbulence
quentities (e.g., mixing 1enéth, puv, ;5, dissipation function).

Bradshaw (25) lists three difficulties associated with developing
ahalyses for complex turbulent boundary layers. Flrst, the slmple
behavior of eddy viscosity end mixing length in simple thin shear layers
is not maintained in more complicated cases like three-dimensional flow,
multiple shear layers, and flows with significent extra rates of strain.
In cases where the rate of strain changes rapidly (in the x or y dir-
ection) the Reymolds stress will respond slowly and not at once as
implied by the eddy-viscosity formula. Second, there is no independent
exact equation for eddy viscosity or mixing length analogous to the
transport equations for Reymolds stress, therefore any independent eddy-
viscoslty transport equation must be completely empirical. Third, any

transport equation for the eddy viscosity or mixing length can be con-

verted into a transport equation for Reynolds stresses by substituting
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Cor the velocity gradients, obtained by differentiating the time-average
Navier-Stokes equations. Bradshew indicated the need for more funda-
mental data on turbulence guantities before developing turbulent closure
equations.

In view of the shortage of funcamental turbulence data the present
studies are directed toward extracting additional empirical results from
experimentalhﬂ,éﬁ!flow data to establish, to the extent possible, semi-
empirical formule and gsimilarities. The boundary layer equations are

expressed as

yU =18 3P _ ov

pUEJ_c-i-pvda;:"a_x-*-gf (10)
TR w

Equations (10) and (11) were integrated to determine the shear stress T
from the experimental data. Subseguently these differential equations
were used employing similarities in T, except at the wall where the

mixing length approach was used, to establish a numerical differential

technique,

Experimental Data

The experimental data obtained by Neale were analyzed. These
data included
1, Velocity profiles computed from measured total pressure and

temperature profiles,

2, Wall friction coefficients evaluated from preston tube messure-
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ments, and

3. Total temperatures measured by a copper-constanten thermo-
couple probe,
The wall jet flow is generated by introducing a two dimensional jet
tangent to the test section floor immedistely downstreem of the boundary
layer development section through a continuous slot (i.e., without
spacers ) running the full width of the test section. The test section
is constructed with clear plexiglas side wall to facilitate observation
of visual flow studies and probe locations. Stetlc pressure taps are
located along the centerline of the precigion flat ground aluminum
plate floor and are also located offset 7.5 inches to the right and
left of the centerline, The floor is 30 inches wide and 36 inches long,
In the test section the developing wall jet flow may be subject to
longitudinal pressure gradients., These pressure gradients are created
by the controlled bleed of main-stream air through a perforated sheet
metal ceiling. This ceiling is matched at its lemding edge to the
ceiling of a bhoundary leyer development sgection and may be deformed
along its length to achleve additional pressure variations beyond those
provided by maein-stream bleed alone. The pressure potential 1s generated
by a valve attached ilmmediately downstream of the test section.

Experimental results from the following three series of tests
have been analyzed in detail in the present study:

8., Series II - the wall jet under a constant-pressure msin-
stream flow.

b. BSeries IIT -~ the wall jet subjected to an adverse pressure

gradient imposed by a retarded mainstresm flow with a substantially
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'ﬁhickened initial boundary layer.

c. BSeriegs IV - the wall jet subjected to an adverse pregsure
gradlent imposed by a retarded mainstream flow with a thickened and
distorted initial boundary layer.

Typical velocity profiles for each of these series are shown in Figures
1(a) - (d). The various velocity ratios (initial jet-to-mainstream
velocity ratico) and streamwise stations for which experimental data

were obtalned in Reference 12 and which were a.na.lyzed in the present

study are tabulated in Table 1.
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Table 1. Experimental Data

SERIES 11 IIT v

VR 2.0 3.0 4.0 6.0 | 207 2.2 |1.97 2.0 3.0
52 22 52 52 125 123 125 56 125
65 65 65 65 | 197 197 |19 @ 1%
97 7 97 97 | 286 286 (287 125 287
129 129 129 129 357 357 357 61 357
161 161 161 161 L62 k&2 463 196
194 9% 194 19k [ 554 55k

Vi
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CHAPTER III
DATA ANALYSIS

The experimental data is carefully and systematically analyzed
in this chapter in order to establish results useful for evaluating
and predicting wall-jet flow. The experimental data are first analyzed
in detail to establish flow similarities and smooth out the experimental
regults. Analytical expressions for the velocity profiles are achieved
and then used to represent the experimental data. The shear stresses
are obtained from the mean flow data using the integrated nomentum and
conbinuity equations., Fairing of {the experimeﬁtal data for the stream~ -
wise velocity decay and evaluations of the consistency of the data are
conducted considering the overall conservation of momentum., A semi-
empirical formuls for maximum shear stresses is developed by employing
the energy equation, The wall sublayer flow is analyzed in detall to
demonstrate the applicability of the mixing length approach for this

region,

Velocity Profiles

In order to simplify the analyses to obtain the shear stress pro-
files from the experimental data of reference (12) and, more importantly,
to minimize errors due to data scatter, velccity profile similsrities
were first established from the experimental data. A total of 50

velocity profiles covering the complete range of operating conditions

were anelyzed. The results, as discussed in the subsequent paragraphs,
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showed that velocity-profile similarities did exist in all of the regions
except in the inner region (near the wall) which, as is well knownm,
involves more than one length scale, Each of the regiong resemble pre-
viously well understood cases for simpler flows, The velocity profiles
are subdivided into three regions - an inner layer, a jet layer, and

a wake layer - as shown in Figure 2(a). Analytic expressions are
obtained for each region having similar wvelocity profiles using least
square Titting to the experimental data. The analysis of these layers

iz discussed in’the following paragraphs.

Immer layer Veloelty Profile

The velocity profile from the wall to the point where .

U- U3/ U, - Uy = .8 was defined as the inner layer (see Figure 2).
Velocity-profile similarity does not exist in thils region as is evident
from the results in Figures 3(a) - (i}. Consequently a single function
could not be used to represent the inner layer., Therefore, the experi-
mental velocity proflles in this region were replaced by curves faired
smoothly through each set of data. Least square fitting was not employed
since it was felt that analytic expressions in this complex region would

improperly prejudice the results.

Jet Layer Veloeity Profile

The velocity profile in the jet layer is expressed as

U-U
g5, " 5y (12)

vhere 1|, = (y - e%)/aj, 6% is the wall-jet thickness to U= (U + U3)/2,
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and 4, is the jet layer length scele. FPhysically, Gj represents the

J
Jet-layer length scale for a linear veloclity profile with the same
values of U]11 and U3 and with a velocity gradient equal to the maximm
velocity gradient (see Figure 2(b)). It has been selected since it can
be evaluated most accurately from experimental data., To determine & 3
the experimental date (U, y), in the region around the point of maximum

velocity gradient, were represented by the polynomial function

m
U= Z AJ. y(‘j-]') (13)
=1

where m is the degree of the polynomial function. The least asquare
technique was then employed to determine the coefficlents AJ. That 1s,

expresaling the error by

n m
NSO B

the values of AJ were obtained by setting ae/aaj =0Q0for J=1,2, ...
m. This yields m simultaneous linear algebralc equations, The Gauss
reduction technique was employed to solve the simultaneous linear equa-
tions governing the polymomial coefficients A 4+ The jet layer scale,

defined as

.U =T

= - (15)
R - AL

was then evaluated using the velocity profile as represented by Eq. (13).
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Once the Jet layer length acale §, was established for each jJet-

J
layer veloclty proflle, all the jet layer velocity profilea were
expresgible in a simillarity form with velocity scale Uﬁ - 03 and length

scale Gj. A_similarity expression of the form

U-"u
i
T 5 (16)

where M= (y - 6%)/63 was then sought. This jet layer was subdivided
into four regions to eliminate any ill behavior due to the two extrema
and the inflection. Each region was represented by a fourteenth degree
polynomial. These polynomials were then least square fitted {using an
equetion similar to Eq. (14) to all the experimental velocity profile
data for the jet layer. Typical results are shown in Figures 3(a) -~ (1).
The single analytical curve accurately represents all of the experimental
date. The root-mean-square error (RMS =,/ ¢ ) is 0.00303 for all data.
The veloeity profile derived fram the least square fltting to the data
(i.e,, the analytical curve of Figures 3(a) - (i}) is tabulated in

Table 2, This analytic representation of the experimental data for the
Jet layer is used in all subsequent analyses of the data. Comparlson

of the analytic expression with the exponential and hyperbolic tangent
profiles commonly used for jets are shown on Figure 4.

Wake Layer Velocity Profile

The velocity profile in the wake layer is expressed as
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Table 2. Tabulation of Velocity Profile

for Jet Layer
11 £ m fa
-.6 .993 -.075 5755
-.575 « 9959 -.05 .5508
-.55 . 9875 -.025 .5257
-.525 . 9752 .0 .5000
-.5 . 9604 .015 4862
-.b475 <OM37 Ol 1616
-5 _ «R57 .065 L4369
-.k25 . 0065 .09 H119
-k .8860 115 .3869
-.375 .86kk Lk .3622
-.35 8416 .165 .3382
-.325 L8179 .19 3149
-.3 7950 .215 225
-.275 7719 .2k .2707
-.25 L7490 .265 2496
-.225 7251 .29 2290
-.2 6999 .315 2087
-.175 6742 .3k .1887
-.15 : 6489 375 .1630

-.125 | L6241, A Jkko
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Table 2. (Continued)

M £ i £
-.1 .599%8 k25 .1261
45 L1054
475 L09h2
5 .0807
.525 .0689
55 0586
575 .0kg8
.6 ,0u18
625 0349
.65 .0288
675 023k
7 0186
725 L0145
.75 .0110
75 .0083
.8 . 0062
.825 L0048
.85 .0039
875 .0031
.9 .0023
. 0001

975 .0
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U—:—_—E—} = £ (1,) (17)
where T =y - ah/sw, 8, i8 the wall jet thickness for U= (U_ + U3)/2,
and &w is the wake layer length scale which can be most accurately
evaluated. The determination and physical significance of dw is identical
to that of 63 (see Figure 2(c)). Once the wske layer scale &w was estab-
lished by a least square fit for each weake layer veloclty profile, all
the wake layer veloclty profile were expressible in a similarity form
with velocity scale Ué - U, and length scale §w. A similarity expression

3
of the form

U-u
F‘% = £ (1) (18)

where Tb,= (y - 6h)/6w was sought. Typlcal results are shown in Figures
5(a) - (e). |

The similarity results for the wake and jet layers were found
to be similar to each other and, in fact, the analytical expression for

the wake layer can be expressed as
£ (Ty) = 1. = £,(1) (19)

This single analytical curve accurately represents all of the experi-

nental dsta. The actual differences between the experimental data and

the least square fit is very small for the wake layer when it is recognized
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that Ué - U3 in many cases was less than 20 percent of the edge
velocity. .

This analytical curve (Table 2) was used in place of the experi-
mental data for all subsequent data analyses., It is felt that this is

the most accurate representation possible.

Velocity Decay

The decay in the maximum velocity for Series II, IIT and IV are
shovn on Figures 6(a) - (3) (reproduced from Reference 12). The data
is very consistent and the scatter is small. The combined influence of
glot Reynolds number and initial velocity ratio is shown for Series IT
in Figure 6(a}. The Reynolds number effect for these results is
emphasized in Figure 6(b) by plotting jet peak velocity decay referenced
from the mainstream velocity. Representative free«stream velocity
retardation and jet peak velocity decay results for Sepries III and IV
are given in Figure 6{(c) for nominal initial velocity ratios of 2 and
3. Pigures 6(d) and 6(e) show the corresponding variations in the
minimm to edge velocity ratios and in the minimum o maximm velocity
ratios.

For the ﬁresent study a least square technique was employed to
obtain polynomlal functions for Uﬁ, Ué, and Ué which had been smoothly
faired through the experimental data. These polynomial expressions were

used in all subsequent analyses of the data.
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Temperature Dats

Temperature Profile

Figure 7 (reproduced from Reference 12) shows typical results
for the nondimensional temperature profile through the wall Jet for
each of the major areas of investigation. A review of the tabulsated
data in Reference (12) reveals that for these experiments the total
temperature remains essentially constant from the wall to the jet peak
velocity. Near the jet peak the temperature begins to decay linesarly

with distance. The linear equation

T =

I =Ty _
T, - Ty 0.588 y/dj +1.12 (20)

where Ty = Te for Series II and Ty = T3 for Series IIT and IV, is a
good representdtion of this decay for all three sets of measurements
(see Reference 12).

In the present analyses, the tempersture was considered constant
from the wall to the jet peak and Eq. {20) was used from the jet peak to
the shear lsyer edge for Series II and to U = U3 for Series IIT and IV.
The temperature was taken as constant from the point U = Ué to edge
for Beries III and IV. Since the temperabture differences were sgmall,
these assumptions were well within the accuracy of the study. A typical
comparison between the analytical representation and the experimentsl

data for Series III is shown in Figure 8.

Temperature Decay

Typical decays of the experimentel jet peak temperature with
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distance from the slot are illustrated in Pigure 9 (reproduced from
Reference 12), A least square technique was employed to obtain 4th-
degree polynomial functions for T., Te, and T3 which had been smoothly
faired through the experimental data, These polyncmial functions were

then used in all subsequent analyses of the data,

Shear Stress

Shear stress simllarities were sought to represent the shear
stress terms which appeared in the momentum egquation. Application of
such a shear similarity approach could not only simplify the partial
differential equation (i.e., reduced the order of the partial differential
equation) but also avoid the singularity (at T = O0) which sppears in the
eddy viscosity approach and minimize the requirements for fundamental
turbulence data and/or turbulence equations. The shear stresses were
first calculated from the integrated momentum and continuity equations
using the least gquare curve fits for the experimental velocity and
temperature data. These shear stress results were then analyzed for
similarities. As in the case of the previously described velocity pro-
file similarities, the simllarities for the shear stress profiles were
obtained in the three subregions rather than for the complete shear
gtress profiles.

Shear Stress Profiles

An integral equation for evaluating shear stress was developed

by integrating the momentum equation along with the continuity equation.

Combining these equations and integrating gives
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T(y)=w+%y+%ﬂpu2dy~uj&_lzpudv (21)
FEquation (21) is solved using the velocity and the temperature (required
for evaluating the density p) profiles as discussed in previous para-
graphs, the experimental values of the skin frietion 1w, and the pressure
P ag determined from the edge wvelocity. The partial derivatives for
the mass flow rate and the momentum were solved by a finite difference
technique. In order to satisfy the integral momentum equation (i.e.,
to force T = O at the shear-layer outer edge), an iteration technique
for correcting qm wad used, This correction was made fo adjust for
errors in the velocity decay and the shear layer thicknesses obtained
from the experimentasl data. The correction for qm was both positive and
negative, was generally about .b percent, and was never greater than
0.75 percent. This is believed to be well within the accuracy of the

experimental data.

The shear stress distribution through the entire shear layer for
a typical case is shown in Figure 10. An evaluation of many shear
stress distributions such as the one shown in this figure revealed that
the entire shear stress profile could be subdivided into an "inner
shear layer", a "submerged shear layer", and an "outer shear layer” as
depicted in Figure 10. With this subdivision, shear stress similarities
were evident, Typical results from analyzing these three shear layers

are presented in Figures 11, 12 and 13. The method of analyzing and gen-

eralizing the regults are presented in the following section,
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Shear Stress Similsrities

Inner Shear layer., Shear streas distributions in the inner shear

layer are plotted in Figures 11, The normalized shear gtress parameter

g, defined as

=T =TV
&= T (22)
is plotted against the normelized distance ¢, defined as y/ﬁl where tm

and 6., are the shear stress and thickness at the inflection point of the

1
velocity profile in the jet layer. An inspection of these results
reveals that shear stress similarity appears to exist except in the
narrow region close to the wall where the stress gradients become
smaller as Um/Ue becomes smaller. (This region near the wall is later
identified as the wall sublayer and then analyzed separately.) To
explore the degree of similarity outside this narrow region close to
the wall, a curve is faired through the data of Figure 11l(a), (i.e.,
the data for the highest velocity ratio and without pressure gradients)
and linearly extrapolated to g = O (the linear portion of the curve
extends over 25 percent of the entire layer) as shown in Figure 11(a).
Identifying a new normaslized length scale (to exclude the region near

the wall) as

2 (23)

where yo is the intercept for g = 0. This faired curve can be expressed

as
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g = &(s;) (24)

This function ie tabulated in Table 3. The function g c¢an now be tested
as a possible similarity function for all of the data. g(¢l) is shown
on the remaining plots of Figures 11(a) - (f). In each case, the inter-
cept Y, is determined by linearly extrapolating the data to g = 0.

The function g(¢l) accurately represents all of the shear gtress
results for the protion of the inner shear layer outside of the narrow
region near the wall. An improved matching of a similarity parameter
with the data could undoubtedly be achieved by employing a two parameter
function (rahter than the single parameter yo) but this is viewed as
impractical and unnecessary considering the accuracy of the results and
the sensitivity of theorectical analyses fto slight changes in the shear
stress distribution.

In summary, it is concluded that stress similarity does exist
in the immer shear layer and this similarity can be represented by the
funetion g(Ql).

The approximate locations for which U= Uﬁ and v = O are also
indicated on Figures 11(a) - (f). For the higher velocity ratios the
location for which 1 = O is substantially closer to the wall than the
location for which U = qm and, correspondingly, the location for which
dU/dy = 0. As expected the two locationz move closer together as the
veloecity ratio decreases. The relative location of the maximum velocity

in this layer also varies substantially with wveleocity ratio. This

location varies from ¢1 ~ 0.5 ag a maximum to about ¢1 ~ 0.15 as a
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Table 3. Tabulation of Shear-Stress
Similearity Functions

Immer Shear Layer Submerged Outer Shear Layer
Shear Layer
21 8 ?5 8o 93 &3
0 0 -0.6 1.0 -7 1.0
.1 .169 -0,50 0.981 -6 978
2 .338 -0.40 0.914 -.5 .930
.3 .502 -0,30 0.824 -k .866
A 645 -0.20  0.720 -.3 .788
15 . 707 -0.10  0.610 -.2 .700
.5 762 0 0.50 -1 602
.55 812 0.10 0.397 0 .5
6 857 0.2 0.305 1 100
.65 .890 0.3 0.224 2 .308
.70 .23 0.4 0.157 3 227
N <950 0.5 0,104 R .157
.80 . 969 0.6 0.063 .5 .100
.90 990 0.7 0,034 .6 . 055
1.0 1.0 0.8 0.016 N 022
0.9 0.006 .8 .003
1,0 0 .85 0




minimum, It is surprising that stress similarity is apparently main-
tained over such a wide range of conditions.

Submerged Shesar lesyer. The shear profile in the submerged shear

layer is expressed as

T - T
2

;;—:—;£'= g, (9,) (25)

where ¢, = y - gé/gj, gé is the thickness to r = %{Tﬁ + T2) and EJ is

the submerged shear layer length scale. gj is defined by

g, = r——m (26)
J -5/3““%

The determination of gj is identical to that of §; in velocity profile,

J
'Once the submerged shear layer length scale gj was established for each
submerged shear layer profile, all the submerged shear layer profiles
were expressible in a common form with shear scale Ty = To and length
scale gj. Typical results are shown in Figures 12(a) -~ (d).

A similarity function g,(4,) was obtained from all of the results
for the submerged shear layer. The values of g2(¢2) are also tabulated
in Table 3. In addition, the function is shown on each plot of Figures
12(a) -~ {(d). The function g2(¢2) accurately represents all of the data.,

Outer Shear lLayer. The shear profile in the outer shesr layer

is expressed as

= 53(05) (27)
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where ¢, =y - £,/%, &, is the thickness to 7 = 7,/2 (1, = T, for
Series II)}, and gw is the outer shear layer length scale. The deter-
mination of § is similar to that of gj, that is § = TE/BT/ay)y = £ .
Once the cuter shear layer length scale gw was established for each
outer shear layer profiles, all the outer shear layer profile were
expressible in a common form with shear scale To for Series IIT and IV
and T for Series II and length scale gw. Typical results are shown
in Figures 13(a) - (f).

A gimilarity function g3(¢3) was also obtained from all of the
results for the outer shear layer. The values are tabulated in Table
3 and the function is shown on each plot of Figures 13(a)} -~ (f). Again,

the agreement between the similarity function and the data is excellent.

Eddy Viscosity and Mixing Length

The eddy viscosity and the mixing length distribution through the
jet and wake layers are illustrated in Figures 1i{a) - (b) for two
extremes in the flow conditicns, These results were evaluated from the
computed shear stress and velocity gradient distributiong. Both the
eddy viscosities and the mixing lengths are normalized by thelr respective
value at the point of maximum stress in the jet layer. The eddy viscosity
and the nixling length are singular at the points of maximm and minimum
velocity where the shear stresses are not zero. In a relatively broad
region around these singularities both the eddy viscosity and mixing
length vary markedly. In the regions of high velocity gradients the

mixing length is essentially constant where as the eddy viscosity variles

significantly.
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The uge or evaluation of eddy viacoalties or mixing lengths will
not be persuaded any further because they vary substantially, they have
singularities, and it appears prohibitively difficult to establish use-
ful analytical representations for them. Instead, the use of shear

atress similarities seems to offer a more promosing approach.

Maximum Shear Stresses

The shear stress distributions presented in Figures 11, 12, and
13 were normalized using the maximum values of the shear stresses within
the Jet and wake layers. Therefore, in order to explieitly define the
shear stress distributions it is necessary to specify these maxtimum
shear stresses,

The hypothesis of an eddy viscosity which connects the turbulent
shear stresses to the local mean velocity gradient has proven to be use-
ful for analyzing many practical turbulent shear flows particularly in
the regions of high velocity gradients. Furthermore, the concept of an
eddy Reynolds number for relating the eddy viscosity to the mean flow
properties has received wide usage. Although there is no general
relationship for the eddy Reynolds number even for simple shear flows,
it has been useful, primarily because it varies over a relatively
narrow range. Therefore, the maximum shear stresses in the Jet and
wake layers from the results of the present study have been reflected

into an eddy viscosity defined as

.
Z (28)

1
J P %%/ﬁ
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for the jet layer and

1 T2
Vo, = — (29)
T Pp Su
W 2 3 /2

for the wake layer. These eddy viscosities have then been used %o

evaluate the corresponding turbulent Reynolds numbers defined as

R, =—2_—3 (30)
3 T,
J
for the jet layer and
(T, -U,) 8
Ry = ———t (31)
W T
w

for the wake layer.

The values of the reciprocal of the turbulent Reynolds numbers
{the reciprocal is directly proportional to vT) as computed from the
experimental data are presented in Figures 15(a) - (¢}, and 16(a) - (b).
Only those results which the author considered to be gignificant are
included on these figures. Results which scattered or varied rapidly
due to small shear stresses or due to data smoothing near the upstreanm
and downstreams extremes have ben omitted. The results of Figures 15
and 16 show thaet the turbulent Reynolds number varies substantially
with both streamwise location for all three geries and veloclity ratio.
The reciprocal of the turbulent Reynolds numbers for a two-dimensional

Jet exhausting into still air and a small deficit, two-dimensionel wake

(26) converted to the present definition) are 0.021 and 0.049, respectively.
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The lowest value for the wall jet, about 0.016, occurs at the highest
velocity ratio (Figure 15(a); VR = 6), This is consistent with conclusions
reported in the literature (26), (27), and (33) where it is argued that
the eddy viscosity in the Jet layer of a high velocity ratio wall jJet

is lower than that in a two-dimensional jet becsuse of a damping effect
due to the wall. The highest value for the reciprocal of the turbulent
Reynolds number for the jet and wake layers of the wall Jet exceeds that
for the small deficit wake, Generally, however, most of the results

fall between the extremes of a jet and a wake.

As previously mentioned, there is toc date no general relation-
ships between the turbulent Reynolds numbex and the mean flow propertiles.
Por the present case, in which only the turbulent Reymolds number
corresponding to the maximum shear stress is of concern, it is possible
to develop such a relationship from the turbulent energy equation follow-
ing the approach used by Bradshaw (27) for the turbulent wall boundary
layer. This relationship is derived in the subsequent parasgraphs.
Pcllowing Bradshaw, various turbulence quantities are related in order
to reduce the turbulent energy equation. Additional assumptions are
then made to finally obtain an explicit relationship for the turbulent
Reynolds number. This expression is then matched to and compared with
the results of Figures 15.

The turbulent energy equation for an incompressible mean flow,

cutside the viscous subleyer is

(55 e
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where ¢ = v (Eﬁ;fbxj)e. Equation (32) can be regarded as an equation
for the advection or rate of change of turbulent kinetic energy along
a mean streamline through a point if all the other terms are known at

that point, just as the boundary layer momentum equation,

du du 1, a7
p[u-&'f'VS;]:pulE'l-g-y— (33)

can be regarded as an equation for the rate of change of mean flow
momentum pu. Following Bradshaw, it is assumed that the various turbulent

quantities are related to the turbulent shear stress ag follows:

G=-uvs= aq” (34)

3/2 o By
()T =3 (Ber) (35)
(51" - &3

where a, I and G are functions of y/& which depend on the shape of the
shear stress profile, a and G are dimensionless. L is a dissipation

length scale and is usuwally the most important of the three functions

because over most of the boundary layer the dissipation iz much larger
than the advection or diffusion.

Substitution of Equations (34), (35) and (36) into Eq. (32),

gives




3 L T 3/2
s st -H(E) (1)
s
- — (37)

[a )
1=

—P .

Tn addition, it is assumed that a is constant and G is negligible (or
constant) in the region where |r/p| is a maximum and that local simil-

arity exists in the sense that at most
a = aly/s) (39)

or

EH-o (ko)
y = value for which |r/p| is max
Hence, at the location for which |v/p| is a meximum Equation (37)

becomes

3/2
)

(1

o
]
-3

(41)

U _p_13V_
2a_5_:c£—pay L
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Employing

U - Ué
1. ( Um—_U; )*fﬂ) s = Y/5j (42)

2. y, to represent the loeation for which IT/pI i1s a maximum

u -U,
3. 8y = - Q_T_J__)h_ (43)
ay 118ax
U -U
oU n @
. — = - —— gy
oy y=y, GJ
5. U=TU + (U -U) (1) (45)

and assuming that L = 1/C 8y Equation (41) gives

U, + (Um-Ue) f(no)a%
28 A;x
C Ty )3/2
[1+ L) ] (u6)
I(u -u)
p " m e

(U, - U.)

%

o=

The shear stress can now be written in terms of the turbulent Reynolds
number., Introducing the eddy viscogity as
(Um - Ue) 8.

€ = RT (47)

the shear atress becomes




. 2
I.¢ &y __ EEQ,:_HEZ_ (48)
P oy Rp
Thus Eq. (46) finally becomes
EE.?.= R [ 2 d(Um ~ Ue)
dx T Uﬁ - Ué dx
2a(U - U) )
+ — 1- = (49)
6j[Ue W, - Ué) f(ﬂo)] ( ﬂf?i; ) ]

Equation (49) relates the advection, production, and dissipation
of turbulent shear stresses., If one assumes local self-preservation then
dRT/dx = 0 and Eq. (49) becomes an algebraic expression for Ry. Calcu-
lations using Eq. (49) show that 1/(U_ - U ) x aq_ - u_)?/ax 1s more
than an order of magnitude greater than l/RT x dRT/dx and, therefore,

the latter may be neglected. In this case, Eq. (49) becomes

a(U -U,))C
— 6. [u, + (U -U) £(n,))
JBp= T jd(um - U:) ) o)
+
T -0, dx 850U, + (U, - U ) £(T)]

where the constants a and ¢ must be determined from experimental data.
Equation (50) has been shown (28) to accurately express the turbulent
Reynolds numbers for the following two-dimensional shear flows:

1. Jets exhausting into still air

2, Jets exhausting into a coflowing stream

3. Small deficit wakes
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4, Shear layer between uniform coflowing streams with velocity
ratics from O %o .,

The constants a and c in Eq. (50) have been determined by a
least square fit of Egq. (50) to the results of Series II for a velocity

ratio of 6., The values of a and c are

a = 0,110

c = 10.98

Thege are reasonable values and are close to these obtained by Bradshaw
for boundary layers (a = 0.15 and ¢ s~ 11), The corresponding results
from Eq. (50) are shown on Figure 15{(a). In spite of the simplifications,
this semiempirical equation accurately predicts the results from the
data of Series I.

The predictions of Eq. {50) for the jet layer results from the
data of Series III and IV are shown on Figures lS(b) and 15(c). The
predictions are reasonably good (especially for the higher velocity
ratios ) except for the cases in which the velocity differences are
relatively small (i.e., x »200 with velocity ratios near 2.0). Even in
these cases the trends are properly predicted.

The comparison of Eq. (50) with the data of Figures 16{(a) - (b)
was less satisfactory and conclusive, Therefore, the best values that

can be recommended at the present are the mean values included on these

figures.
The fact that the theory (BEq. (50)) accurately predicts the
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trends of the computed data is better 1llustrated in Flgure 17 where s
single, consolidated plot with less of the data is presented. These
results indicated the large differences in l/RTJ for the three Series
and the large variation in l/RT. with velocity ratio. This plot is not
intended to imply however, thatJUe/Uﬁ is the significant parameter since

clearly the initial B. L. and pressure gradient have an effect.

Wall Sublayer

In this section it is shown that, if the well-known mixing-lengfh
formula is regarded simply as a relationship between the wvelocity and the
stress distributions in the wall region of a turbulent flow, thén a
truly universal distribution of mixing length is sufficient to describe
the experimentally observed departures of the velocity distribution
from the usval law of the wall. Comparisons are made with a wide range
of the experimental wall jet date to demonstrate the general validity of

the modified mixing-length model in describing the flow close to the

wall., A rapid streamwise decay in the wall shear stress (due to a rapid
decay in the wall-jet peak velocity) uniquely distinguishes the wall jet
sublayer from that of an ordinary boundary layer.

General Characteristics of Wall Sublayer

Coles (29) analyzed the bulk of available measurements of tur-
bulent boundary layers for low Reynolds number and zero pressure gradients.
He determined the surface shear stress from the velocity profile by

assuming that the velocity in the inner layer (y/5‘2'0.2) but outside

the viscous sublayer (UTy/v > 40) followed the usual logaritbmic form
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)
U = %L ==logy +c¢ (51)
T

el Lo

where y* = UTy/v, K= 0.4]1 and ¢ = 5.0, Coles demonstrated that the
surface shear stress deduced from Eq. (51) was within about 10 percent
of that deduced from the momentum integral equation, at least in the
case of the more reliable experiments. The modern derivation of the
‘mixing-length' formula, from which Eq. (51) follows by integration
when 7/p = UT2 = Tw/p, uses the assumption that the turbulent structure
of the flow near the surface is unaffected by the flow further from the
surface. The outer layer and outer boundary conditions affect the inner
layer primarily via the shear stress gradient 3r/dy in the inner layer,
which is non-zerc when the velocity and/or pressure are functions of

x. In a constant-pressure boundary layer at Reo = 1000, the effect of
31/dy is to reduce the velocity gradient at y/6 = 0.1 by about 3 percent
from that in a true constant-gstress layer.

Simpson (30) suggested that much larger changes in the logarith-
mic law occurred at low Reynolds numbers. He showed that his own velocity
profiles, and those of Wieghardt, for 1000 < Reo < 6000 collapse together,
except in the wall sublayer, when plotted as U/Ué versus y/6. Since

rs -
2 « Reo 1/8 approximately, it follows that K varies as

- 1
Reo-l/ , decreasing to 0.33 at Reo = 1000; ¢ also varies. There is
therefore a direct contradiction between the analyses of Wieghardt's
data by Coles (constant K) and by Simpson (variable K). Recently Cebeci

and Mosinskis (31), following Simpson, used values of K and ¢ varying

with Reo as part of the input to a method of calculating turbulent




boundary layers and showed improved agreement with experimental data.
On the other hand Herring and Mellor (32), using o very similar calcu-
lation method, obtained improved agreement by letting the eddy viscosity
in the outer layer depend on Reymnolds number, leaving K and ¢ unaltered.
Huffman and Bradshaw (33) say that the boundary-layer data currently
availsble are not accurate enough to check the vallidity of the logarith-
mic law at low Reynolds mmber. Nevertheless, the question is of some
importance, if only because of the implications for the inmer-layer
analysis in other situations. They analyzed the data for flows in which
Reymolds number effects on the imner layer are likely to be stronger
than in a boundary layer, and thus easier to detect., The procedure
adopted is to adjust K and the 'damping constant' Af, which determines
¢, 30 as to optimize the agreement between the actual veloclty profiles
in the inner layer and those calculated from the mixing-length formmla.
The results show that ¢ or its equivalent is Reynolds number dependent
and that K appears to be a constant to good accuracy. It appears that
even the variation of ¢ is likely to be small in boundary layers unless
the influence of the outer layer is extremely large. Cebeci (34) in s
later and more detailed study also concluded that the Karman parameter
K and the Van Driest paremeter A" in the inner eddy-viscosity formula
are universal constants.

Typical experimental wall-jet data matched to Eq. (51) at log y*
= 2,0 are shown on the semi-logaritim plot in Figures 18(a) - (4).
Deviations from Coles' semi-logarithm plot (of particular importance is

the region of log y* from about 2 to 2.5) may be seen from these results.

Both rapid decreases in the wall shear stresses and pressure gradient
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account for these deviations. In order to explain such deviations and
‘establish a theoretical basis for the wall sublayer, further investi~

gations are made in the next section using the modified mixing length

formula along with the boundary layer equations. The results of this

investigation agree quite well with the experimental data.

Development of Theoretical Equation

The assumption that the turbulent flow near a smooth solid
surface (y/s < 0.2) depends only on U ¥ ops v dP/dx and dU&/dx leads

via similarity arguments and dimensionasl analysis to

+ +
U =1, (¥, m ) (52)
where
L T . e
o 3 4ax ? T2 dx
pU u
T T

and f2 ig a universal function of y¢, n, and A. Equation (52) in con-

Junction with the momentum and continuity relations

W, W_ 4,
R (53)

and
= () + = (pV) = 0 (54)

yield an equation for the total (viscous plus turbulent) shear stress as

a function of distance from the surface and a number of parameters. Using
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Egs. (52) and (5%) to eliminate U and V in Eq. (53) and then integrating
with respect to y gives after some manipulation

+

oy
T+ -1+ ﬂy+ + 3 J U&Q +
o}

dy (55)

where 1 = 7/7,+ The total shear stress can also be related to the

velocity gradient by
T=ug_‘_;-pm | (56)

where the first term is the molecular stress and the second term 1s the
Reynolds stress, The Reynolds stress is related to the mesn velocity

distribution by the mixing-length theory., Thus equation (56) becomes

2
U 2 U
T=M%y—+p{, (%};—)
or
+ + 2
-r+=ai++(4,+9-"-'§ (57)
ay oy

where {T = Ué{/v and 4 is the mixing length., This can be taken as a
definition of the 'mixing length' L. The common assumption that &L is
proportional to y can be justified by loecal equilibrium arguments within
the inner layer but outside the viscous sublayer Eq. (57) has also been
used in the viscous sublayer (which is not a local equilibrium reglion

because significant turbulent energy transport normal to the surface

occurs ) but its status is simply that of a means of correlating date.,
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Van Driest (1956) showed that, for the simple case x = constant
= Tw+’ experimental veloclity profiles were well fitted throughout the

inner layer by the semi-empirical form
+ + 5+,
V=k{l-epl-r2y/a1] (58)

+ +
which tends to 4 = Ky~ for large y .

For the present analysis, Eq. (57) is solved for BU*/By+ to give

v

' _ @+ )

-1
(59)
ay-i- o L+?'

Introducing Eqs. (52), (55) and (58) this becomes
2
au’ Py, J‘V £, ay ., m A, Xk, A) (60)

Equation (60) iz an integral-differential equation for ut. T
can be solved numerically to obtain the velocity profile near the wall
for given values of m, A, k, and A, The wall shear stress profile can
then be determined from Equation (55).

| Considerable controversy, as discussed in the previous section,
has existed concerning the effects of Reynolds number on the values of
A and K., Authors have generally agreed that A and K are independent of
Reynolds number for boundary layers at Reynolds numbers {based on the

momentum thickness) in excess of 6000. However, many authors have argued

that A and K must be variables for lower Reynolds numbers, as previously
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pointed out. Recently Bradshaw (33) and Cebeci (34) have more conclusively
established that A and K are independent of Reynolds nmumber even at low
Reynolds numbers. Consequently, A = 26 and K = 0.41 (the most commonly
accepted values) have been used for the final results of this study.

This assumption was also justified in the present study by comparisons

with the experimental data. The values of A and K were adjusted in
attempting to Improve the matching between the experimental data and
theory. It was concluded that within the accuracy of the data the

matching could not be improved by changlng A and K from the values of

26 and 0.41.

Typical theorefical results illustrating the effect of mand A
on the sublayer velocity profile are shown in Figures 19(a) - (b) for
m= A = 0; Coles' linear semilogaritim law of the wall is reproduced
with y© 2 40. The linear semilogerithm law does not exist if 7 or )
are slgnificantly different from zero,

Comparisons of Theory with Experimental Data

The boundary layer velocity profile measured in the wall jet
facility (12) immediately upstream of the jet nozzle is compared with
theoretical results computed from Equation (60) in Figure 20. This
comparison of the theory with an ordinary boundary layer is Included to
illustrate the characteristics and quality of the experimental data for
the classical case in which the linear semilogaritlm region is expected
to exist. As shown in Pigure 20, the data is in excellent agreement with

the linear portion of the theoretical curve for log y+ between sbout 2

and 2,5, Above this range y/§ > 0.2 and the data rises systematically
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above the linear "law of the wall". This, of course, corresponds to the
boundary layer "wake region”. Below this range the data also is above
the predictions of Egq. (60) and, in fact, above the linear semilogarithm
plot, Unfortunately, atfempts to explain these differences by meking
turbulence and probe displacement corrections have not been successful
(although these corrections do reduce the differences). In fact,
Reference 12 points out that three different probes yielded the same
results, It is clear from the results presented in Reference 12 as well
as those presented later that this is a characteristic of all the wall
jet data of Reference 12, As shown in Figure 21, it alsc exists 1n the
classical data of Wieghardt (35). Much, but not all of the boundary
layer data in Reference 35 demonstrates the same characterigtic. Never-
the-less the theory (Eq. (60)) seems to be accepted and ressonably well
establigshed for these classical flows, In all the subsequent compaxrisons,
therefore, the author has emphasized comparisons between the theory and
the experiments only in the regions for which log y+ 2 2.0 and has expected
that the data for log y+ < 2,0 would consistently lie above the theory,
The theoretical and experimental results for Series I are compared
in Figures 22(a) - (c). Series I tests are for the pure wall jet with
ne free stream flow. Note that these results have not been included
previously, They are included in this case because the rapid decay for
the pure wall Jet has the strongest effect on the wall sublayer and,
therefore, provides a critical evaluation of the theory. These comparisons

show that the experimental and theoretical results are in excellent agree-

ment even near the region of the maximum velocity. Applicability of the
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theory over such a large portion of the wall layer is surprising,

The theoretical and experimental results for Series 1T, IIT, and
IV are compared in Figures 23, 24, and 25. TFor the higher velocity ratios
(Figures 23(a) and 25(a)) the data again compares well with the theory
over & surprisingly large portion of the wall layer. On the other hand,
for the lower velocity ratios, the data rises above the theory in the
ouber portion of the wall layer for which y/&m is greater than about 0.3
to 0.4 just as in the case of an ordinary boundary layer. In these cases
the wall layer is approaching that for a boundary layer. The sublayer
extends over a large portion of the wall layer in these cases since ém
is reduced relative to § for a boundary layer due to the retarding effect
of the jet layer on the flow near the pesak velocity. Owver the range of
log y* between 2 and about 2.4t the agreement between the theory and
experiment is good in all cases.

The results show the assigned values of A = 26 and K = .41 are
reagonable and give results which agree with the experimental data.
Coles' law of the wall deviates from the experimental data if T/Tw varies
substantially from 1.0 over the region in which the data and thecry
compare well.

The distribution of -r/qjwr as computed for three of the relatively
extreme caseg considered in the previous figures where the theory and

data agree is shown in Figure 26. T/Tw clearly differs substantially

from unity in the region where the theory is apparently applicable.
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@) Experimental Data
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CHAPTER IV
ANALYTTCAY, SOLUTION

A method for analyzing turbulent wall Jets is developed and then
tested againgt experimental results in this chapter. The technique is
based upon the results and conclusions established from the analyses of
the experimental data. In general, a wall-jet flow must asymptotically
degenerate into an ordinary boundary-layer flow far downstream. There-
fore, the solution has been deasigned so that it is applicable for and,
in fact, can degenerate into a boundary layer solution. It is émphasized,
however, that the present study is primarily concerned with establishing
the feasibility of the solution technigque. Iittle effort is devoted to

refining the technique or establishing an efficient numerical scheme.

Bagsic Technique and Assumptions

The wall-jet shear flow is considered to be subdivided into an
"inner shear layer”, a "submerged shear layer’, and an "outer shear
layer" as shown in Figure 10. The imner shear layer is further sub-
divided into the "wall sublayer" as considered in Chapter III and an
"inner shear layer similarity zone".

The velocity profile in the "wall sublayer” is given by Equation
{60) and depends upon the wall shear stress, the wall shear stresses

gradient and the pressure gradient as expressed by UT, A, and .

The shear stress distribution is specified for the "inner shear
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layer similarity zone'". TFor the wall-jet flows this could be given by
the gimilarity function g, as tabulated In Table 3. As an alternative
which provides the flexibility for adapting the procedure to a boundary-
layer flow, it 1s assumed that the similarity function can be represented

by a cubic, that is

g(§)=:::‘*’ = (1+a+2p)- (2a+30) &
m w
+a(§)2+b(gl)3 (61)

which satisfies the conditions

g(l) =1, and g*'(1) = 0 (62)

The constants a and b are determined so that the shear stress and the

shear stress gradient are continuous at the interface between the "wall
gsublayer” and this "imner shear layer similarity zone". They are to be
evaluated from the wall sublayer equation for T/Tw (i.e., Eq. (55)) applied

at the match point or interface., Letting

¥/ at the match point,

wm
It

A
|

= T/Tw at the matech point, (63)

and

o'z (T/Tw)‘ at the match point
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Equetion (61) then becomes

Yo, %{-238) * B . B
s (§)=2-m G-8Y P - e) o7 -y

M&l]x.{ B*.(;LLEL .(2_+.B_)_](%)

e B) B
* * 3
- 27 (—11_3)3”3'(";'%_3)”5](%) (6k)

Results computed from Equation (64) are compared with both wall jet and
boundary layer data in Figures 27(s) - (b). The values of g for the
wall jet are from typical data presented earlier, Those for Wieghardt's
data were also obtained by integrating the momentum and continutiy
equations using the experimental mean flow data., Those for Bradshaw's
data are experimental values (36). The values obtained from Equ. (64)
are for matching at p = 0.2 Gm/ﬁ {the approximate outer limit of the
boundary layer wall layer for which § = §) and with TB* and TB*' deter-
mined directly from the data. The agreement between the cubic profile
and the experimental distribution is reagonable good., In ann cases

the cubic profile underestimates the stress in the outer portion of
this shear layer. Undoubtedly, an improved analytical expression (or

a numerical tabulation) could be cbtained (this should involve a much
more comprehensive study of boundary layer data). However, for the

purposes of the present exploratory study the agreement is considered

satisfactory. Tor all the subsequent results the match point isg also

taken to be at B = 0.2 &m/G.
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Equation (6L4)

Series III VR = 2.92
x=U46Th h= 0,05

Equil%bi%um B. L.
Uiax .

Bradshaw {36)

-6 L O O

(b) TFlows with Adverse Pressure Gradients

Figure 27. (Continued)
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The shear stress distributions are also specified for the "sub-
merged shear layer" and the "outer shear layer”. These are given by
the similarity functions g, (for the submerged shear lsyer) and &y (for
the outer shear layer) as tabulated in Table 3. These shear stress
distributions are matched (in value and slope) at the interface between
the two layers.

The normalized shear stress functions g, g, and g3 involve the
shear stresses T’ Tm and Tor Ty is determined by evaluating U} (as
related to the wall layer velocity profile by Eq. (60)) simultaneously
with the entire velocity profile as discussed subsequently T and To
are related to the mean flow via the eddy viscosities (Eq. (30) and (31).
The eddy viscosities are in turn related tc the mean flow properties

via the turbulent Reynolds numbers RT and RT . RT is evaluated from

_ J W J

the mean flow properties using EFq. (50). No explicit relationship was

developed for RT , however, Therefore, values of RT have been deter-
W

W
mined directly from Figures 16 (a) and (b).

Numerical Solution

Numerical Notation and Specified Condifions

The finite difference notaftion used in the numerical analysis
from the axial station i1 to 1 + 1 is shown in the sketch on the next
page. The outer edge of the wall sublayer is at j = 0. The outer
edge of the entire shear layer (y = 8sL) where U = Ué is at j = N.

The following boundary and flow conditions are specified:

1. y/6 =p=0.2 y/&m at j=0,1+1

2. All conditions at i (i.e., Ups U_ s Ay, and ni)
i
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8sL 441 ___J_
3 %

Jg-1 v
h -
e — e = = = Qy/s=8

J=20

|

NN NNy

Wall i i+3 i+1
3. U=sV=0aty=0

h, T
(Eq. (bl4}), £ = &5 for submerged shesr layer (Table 3}, and f = &3 for

I}

f(yi,j) for =0, . ., N (f =g for inner shear layer

outer shear layer (Table 3)).

Se Mgy = Mgl (i.e., A lags behind by % the station increment.
2

i+vl
This eliminates a double interation)

Solution for Wall Sublayer

The velocity profile and the shear stress in the wall sublayer
are computed by numerically solving Egs. (55) and (60) using linear
steps. Bince U and hi+ at station i1 + 1 are initially unknown,

T, 1
i+l
they are first estimated. These first estimates are then used to deter-

mine the first approximation for U (and hence 3, 1) simultanecusly
Tit+l i+=
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with Ui+l i in the entire ocuter layer. The detailed procedure for
E

obtaining the first approximation is as follows:

1. Assume that li+l = ?Li

2., Estimate U using

Ti41
U 2
it h (65)
U =U + [ K. :\
Tie1 N v i
3. Assume that § = §
iy My
k., Estimate Yi+1,0 using
B & U
y‘j.—i-l,.o - v

5. Compute yi,o for yi,o yi+l,o using
U
+ + Ty,
Yie~Yislo T (67)
Ti4l
6. Compute yi,o = yi+l,o using
Yy 0=V o=V 5 o U (68)
i,0 i+l,0 i,o T
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= % [ r'i,o U“"'i dy‘!‘ _ f"j&l,o U+i+liv+ :| (69)

Q Q

where integrals are evaluated numericelly using Equation (60) for ur.

8. Using Bq. (60) numerically compute

+
. U = T .
U1+l’o/ ria1 o (¥ 1+l,o) (70)

U and UT in Eq. {70) are considered as unknowns. They can

i+l0 i+l
finally be evaluated using a solution for Ui+l i in the entire outer
2
layer,

Solution for Quter Layer

The boundary condltions applied at j = O are Ui+l.and Vi as

3.

given by Eq. (69) and (70). The detail procedure is as follows:

l. Assume s are given by

J

= T, where the values of 7.
+%9j Tlaj Tl:
the functions g, 8o and g3.

2. Solve the boundary layer equations (Egs. (10) and (11))

using the finite difference form

(U +U, .)
1+1,3 1,7 -
g z Ui,y = Vi,g)e

Ui, T Yie, 51 )

Jhk = - %5 + %% (71)




128

Equation (70) and (71) are N + 1 equations for N + 1 unknowns Ui+l o
>3
v e s Ui+l,N-l and U71+l. These equations are solved simultaneously by

matrix inverszsion.

With a first approximation for U , the entire procedure is
Ti+1
repeated again starting with the wall sublayer but using the new value
of U and usi . = A, where
T4l e l:|.+l i+}
(u -9 )
T- Ts
+1
P = = - (72)
( Tl+l Ti )

Tteration is then continued until the solution converges.
The boundary layer thickness is finally calculated by integrating

the boundary layer equations to give

T 8 2
W i 3u idu 1dpP
—'“f axdy+Joaxdy+pdxsi (73)
( ‘(ﬂi) M-ig
1 fiv o '3 p
+288 y=8;* 2
where Af = 61+l - ai. An initial guess for A5 is necessary. Starting

with the initial guess the calculations are iterated until the solution

converges. § is then computed using §.

141 = 63 7 08

i+l
Numerieal Results

The analysis was first tested for typical boundary-layer flows.
This test was considered to be esgsentiel since in mogt cases a wall-
jet flow asymptatically approaches a boundary-layer flow. It is

important, therefore, that a wall-jet analysis behave properly in this

asymptatic limif, The analysis was then tested for typical wali-Jet
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flows.

Results computed for Wieghardt's flat plate flow (35) are com-
pared with the experimental data in Figures 28 (a) - (c¢). The numerical
calculations were started at x = 1.087 m using the experimental data
for the initial velocity profile. However, the initial value of U}
was computed by fitting the experimental velocities near the wall to
the wall sublayer equation.

Results computed for Ludwieg and Tillmann's flow (35) with mild
adverse pressure gradients are compared with the experimental data in
Figures 29 {a) - (b). The numerical calculations are started at
x = 1,282 m using the experimental data and again evaluating U% at
this point so that the data were consistent with the wall sublayer
equation,

Results computed for two cases of wall-Jet flows are compared
with the experimental results in Figures 30 (a) - {d), and 31 (a) - (c).
The calculations for Figures 30 (a) - (d) (Series II) were started at
X = 52 while those of Figures 31 (a) - {c) (Series III) were started
at X = 197. Again, in both cases the initial veloecity profiles were
specified by the experimental data and U} wag selected to be consistent
with the wall sublayer equation,

As shown by the comparisons in Figures 28, 29, 30 and 31, the
present method is reasconably successful in predicting the flow field
produced by either a wall jet or a boundary layer. It is concluded
that the similarity approach is quite plausible and encouraging. The

differences between the analytically and experimental results are

primarily attributed to the choice of the matching point at the interface
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between the "wall sublayer” and the "inner shear stress similarity
zone" and the nmmerical solution.

It is believed that a better matching condition would pasrticularly
improve the results for the Ludwieg and Tillmann flow (in this case the
shear stress near the wall first rises and then decreases similar to
that shown in Figure 29 (b)).

For example, it i3 readily possible to allow the matciing point
to float by specifying that the shear stress at the interface be equal
to that predicted using the Clauser relation for an eddy viscosity
which uses the wall-layer displacement thickness as the length scale
and the maximum wall-layer velocity as the velocity scale., For this
condition, it is expected that the boundary layer results would be
very similar to those predicted by the method of Reference (37).

The numerical golution is relatively inefficient and as a
result it was not reasonable tc properly evaluate the step sizes and
convergence (for the present calculations relatively large steps were
used in the streamwise direction).

In the authors cpinion, considerahble improvement can and should

be made by refining the numerical solution and developing a more

definitive matching technique.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Results from detailed analyses of experimental turbulent wall-
jet data yield the following conclusions:

l. Similarity of wvelocity profiles in the jet and wake layers
iz observed when the velocities and lengths are appropriately scaled.
This holds true even in the presence of a pressure gradient.

2, Similarity of shear stregs profiles in the inner, jet and
wake layers is observed when the stresses and lengths are appropriately
scaled. This holds true even in the presence of a pressure gradient.

3, The wall sublayer velocities and shear stresses can be cal-
culated from the similarity form of the viscous sublayer equations.

The velocity profile and the wall shear stress agree quite well with
the experimental data. The results incidentally show that the viscous
sublayer is more strongly affected by stresmwise shear-gtregs gradients
than is the rest of the inmer layer.

k. The turbulent energy equation can be converted into a
differential equation for the maximum shear stress, along the line of
maximm shear stress by defining three empirical functions relating
the turbulent intensity, diffusion and dissipation to the shear stress
profile. A resulting cloged form expression for RT agrees reasonably
well with experimental data.

5. A cubic profile for approximating the inner shear layer
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stress distribution outside the wall sublayer was developed for wall
jets and boundary layers. Although it is believed that a better
similarity function can be developed, the cubic profile as an initial
try agrees reasonably well with experimental data. This similarity
approach provided a more general basis for predicting the turbulent
flow,

6. The shear-stress similarity approach for snalyzing turbulent
wall jets appears very promisging. This appreach not only can reduce
the partial differential equation from second order to first order
but alsc can avoid the singularity at zero shear stress which appears
in the eddy viscosity approach. These advantages 1n conjunction with
the preliminary finite-difference scheme used herein provide a reason-
ably successful method for the prediction of two-dimensional turbulent
boundary layers and wall jets developing over a flat plate in constant
or adverse pressure gradient.

The results presented herein are sufficiently promising to
warrant additional fundamental studies. In particular the following
additiconal studies are recommended:

1. Turbulent boundary layer data for a wide range in flow
.conditions should be analyzed in detail and compared with the present
wall-jet results in order to establish an improved similarity function
for the shear stress distribution in the porition of the inner shear
layer outside the wall sublayer. This study should also consider the
problem of matching this similarity function with the wall sublayer

solution.

2, Additional experiments and analyses should be made to




improve the method of predicting the maximum shear stresses in the jet

and wake layers of wall jets, Experimental measurements of the
turbulence quantities, including the Reymolds stresses, in the regions
around these maximum stresses should be maede.

3. The numerical analysis for caleculating the well-jet develop-

ment should be refined.
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