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ABSTBAGT

The increasing dependence of the eleetrio power utili-
- tles upon the network calculator for syetem analysis shows o
‘the need for better and clearer methods of power system rep-
'resentation and'analysis; -Symmetrioal'comnonente_and modi-
fications of symmetrioal oomponentsﬁhave supplied a suitable
_method for the anaiysis'of balanced sjstems; bnt there is
need for. a more satisfactory”analysis'for.nnbaldnced_systemsw_

This thesis investigates the application of linear
- matrix transformatiOns;to the'sinplifioation-of the'soiution
of unbalanced threo-phaseisYetons. The . eii@tfng oomponents
are shown to be but speclal types of matrix transfonmations.
':The advantages and disadvantages of these transformations are
fdiscussed. The speclal oharaotoristios of the transforma-
tions of tensor analysls as appiied-to eleotricai systens are
discussed. _ | :_ . _. .

. The. applioation of the congruent matrix transformation
to diagonalize a symmetric natrix is dieoussed-in'detail as
Ca means of determining new and advantageous components for
"use Jin aolving unbalanced three-wira and four-wire three-phase
;systems. ~An- example ofa flat—spaoed threo-wiro aeries
three~phase system is solved by the eongruent transformation
method,_




. Complex-similarity matrix transformations are dia- :
‘cussed. This linear transfermation 1s shown to be & general
: ¢ransformation. It is shown hew symmstrical components cani'
be dgriveﬁ by'this linear transformation as a-gpeeial case
of the complex-similérity transformation, It is ﬁbinted
-out that alpha, béﬁa, Zero components may be derived by thls
genaral transformation. It is noted that the digital ‘COm-
puter ia neadad for stagea of the developmant of these trans=-
formatien matrieesu _ \

& linear matrix transf@rmation has been found that will
diagonaliza any symmetrical 1mpedance matrix. - This transfer-
| mation will make it possible t@ represent a three-phase net~

work as three 1ndapendent single-phaae systems.=
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CHAPTER I

. ~INTRODUCTION

:;:_;_'-' A

The solgtionmqf'liﬁé#r threesphase-eledtribal net- -

works 1s dn'lﬁpéi%aﬁiﬂﬁrbngMfﬁé those céncerned with the

generation, distribution, and ﬁtiiizatioﬁ'offelectfical

powsr., In & power systém,'the knoﬂanuantities-are'most

frequentiy'thé generated voltages and the syStém:impedancea.

The unknown quantities are the currents. Hﬁforfuﬁately,

the arlithmetic laboy Ln the solutibﬁ-of'lihear threeaphasé‘

electrical networks renders a solution prohibitive: for &

great number of practical problema.

A graat stride teward the reduction of the 1abor

invclved in the solving of three-phase electrical networks

was made by C. L. Fortescue (1), in 1913, with the intre-

:duction of "symmetrical components. Various other types

oﬂ componenta followed._ modified symmetrical components"

_ byéw. We pria_TZ),'in'lgiT, andﬂ“aipha, beta, zero coms'“
ponents" by Bdlth Clarke (3), in 1938, Other types of

components have been utilized for the solutionsof further

-specific problems. ' The two redetion method for solutiona

'involving salient pole three-phase machines and the double

[ ——




:'_M SRRIAE:

urevelving field theory of eingle-phase motors may be cited "
a8 examples.;-!;w_,h_ _ e |
| Each of tﬁese methods weslpropesed to selve a par-

. tieuwlar problem, and each ef them evolved from ‘the special
characteristics of the physicel.system-under consideration.
This approach sesulted in the_less.of'the fundsmental nature
of the methodsﬁ ‘the use of each of these'“cemponents" in-
volved s&betifﬁtigﬁ;or esnew-ggteéf*vafiabiee. Theseinew
veriebles.:esulted frem the femilierity ef.ihdividuelsvwith
'ehe' Seliitieha of speci'ﬂc -he-twei'ks ‘and did ndt resﬁit'from

a systematic mathematieal investigation of the solutiens of
netwerke by eubstitution of veriables.

The. purpese of this thesis is to 1nvestigate enelyti-
cally the applicetien of 1inear transformetiens to three-phase
-electrical eystems and to present infermetien concerning the
nature of the transformatiens which yield the- simplest: solu~

tion in terms of the’ new veriables.




CHAPTER I
EXISTING COMPONENTS AS LINEAR TRANSFORMATIONS
‘Linear trangformations are to be applied to the genergl_'
”equatiohs for a;§$riés-threé-phase3n§tﬁork-as ahéwn 1n.Fgg.31.
The general equdtions in terms of the-eriginél:variaﬁles'are:
 Va T Za Tyt Zgp Ty * ZactTc (1)

BTt B ! ek
¢ 7 Z I * Z Ib * Z ;

< <
1] 1]

The analyais utilized 1n this work can be described

best in matrix notation, therefbra, Eq. l will be expressed as

Va| [%aa Zap 'ZQJ Hal L o (2)

"o = |%0a  Zob  Zoe)” |To

Vol [Zca Zob Zoo Icl

v F_Z-I'.“' R : (3)

| The matrix Z is symmetrical by the reciprocity theorem,_
1. 8, Zij e Zji {1,j=4a, b, ¢ for all values).




| &

B va

. Zaa

BN S e k

Zbe

VAL

Fig. ' 1 -

-A"serieé'fhreé-pﬁasb

system
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The préviously utﬁliﬁéd'“éompOnents“ transform the
currents, voltages and impedances to new variables as. shown
below. A transform&tion matrix C ls utilized to transform

both the currents and voltages. For instance:

viecv Y
or
el },m},;}' _vﬁ' ' _ (5)
Va1 =% 1 a af v
Vao | 1 a% a ?c
and o
It =G (6)
or
1 1 1

wheyé:'_i;%ﬁ;'dhd azlare the first, sscond, and third -

cube roots . of uni £y, respectively.
Premultiplylng both sides of Eg. L and Eq, 6 by c l(thé inverse
of ¢) and substituting the results into Eg. 3,_the following

equation results:




,C‘lanF.Z~C'1-if AR @)

Premultiplying both sldes of Eq. 8 by C ylelds
Vi = (C:zecm)e N ()

and by letting

r

.fheiequatieniin terme of the new variebles becomes:

. The use of these cemponenta 1s er advantage 1f the'_

reeulting matrix 2t ls a diagonal matrix, as the three-phase

~ system cen then be replaeed by three indepenﬂent single-phase'
',eyeteme. Thils- feature iz of great advantage 1n system. eelu-
1‘tiensewith;a-netwerk-calculater.' The reduetion of the three-
phase netwerk inte-three indepehdentfsingle-phase systems no
longer necessitates the:solving.ef'éhé netﬂeﬁk'by a system of
eimultaneoﬁe;equetions;. In balanced three-phaee systenms (&
| afetem in whiéhethe"pﬁaeee are eleetrically 1dehtica1] all
the befbre mentiened cemponents transferm the Z matrix 1nte a
diagonal matrix.. Onpthe‘o#he: hanﬂ, ferhppbelanced three-phase
systens, the.reeultieé leiliwnot pe of the diagonal form;
therefore, the use of th@se cemponente is of little or ‘ne ad-

vantage and will frequently add to. the labor of the eolutiene

of unbalanced networks.

. s




The msthoda presented in this thesis will utilize |

transformations to produce & diagonal matrix PARE The-

[proeedure of thisﬁfhesia may ba cempared to that of’Gabriel

- Kron (hl. In Kron's.work,-a11 the~transformapiens-are-tenaor_

transfofﬁa%iqhsfin yhﬁsﬁ“ﬁe“makeg’ngjéttempt to use traﬁg-}

forms tions which yleld diagonal impedance tensors. This”in- :

vestigatien will use linear transformations uhich will treans-

form the matrix Z of beth balanced and unbalanced systenms

directly 1nto a diagonal matrix, No other restrictions will

. be placed upon the new variables. o




CEAPTER III
LINEAR mnemem‘ﬂxeﬂé |

A 1inearltrenefcrmetion of the impedance metrix Z inte
"a dlagonal metrix may be accomplished by two methcde- (1) _
directly, by = “congruent trenefcrmaticn (5)" and (2) directly,
by a "ccmplex-eimilarity transfermaticn (6) “  The congruent
'_trenefcrmaticn will be diecueeed in thie chepter and 111uetrat-
ed in Chapters IV and V. The eecend method will Dbe discussed in
Chapter VE. o _ | |

_ The matrix z ie a eymmetric\metrix with elements in
the field of ccmplex numbere, i. e., ite elements are. complex.
. Thie type- ef matrix, even though it 1e cemmcn in electrlcal _
| engineering,-hae not been of much 1ntereet to the_methematicieﬁ;
The-edvahtage,in tfaﬁeferﬁing Z into a diagonal matiix is made
evident by_tﬁe eaee.cf‘operating witﬁ'tﬁie type m£tr1x,e1n |
pertieular, 1r.the'd1egeeel matfix-eperetee'en e'colemn.metiix.
The elements of & matrix resulting from the prcduct of &
diagenel matrix with a column. metrix are 1ndependent. Thie
1ndependence is from the result that none of the elements of
the product matrix ccntain a commen fEctor from the twe op-
'eratlng matricee, 1. e., the element of the 1th row end the

“ith cclumn;eg;the_diagonel metr;x ferme a2 product with




~ only the 1th element in the column metrix. I, then,

the impedance matrix 1a diagonalized, a three-phase syetem N

can be analyzed in terms of the new varisbles as three in’w_]

dependent eingle-phase systems.
The congruent traneformation 18 the most direct

method of diagonalizing a symmetrio matrix. A congruent

transformetion is defined as one in which the transformation

13 aocomplished by premultiplying with a traneformation
matrix P and postmnltiplying with the tranepose of P, The
transformation matrix P must heve the rellowi-ng-.cparacter- -
'iatios:, its . determinant'mnst:eeroonzero and ftlmnet'bo
obtainable by & succession of: elementary row operatione of“r
the type which will be later deneted as Oij(k). The: cone
sequence of performing each row operation of thie type is
that a zero will be introduced belou the main diagonal of
- the resulting-matrix. If this operation is repeated ‘three
times; all the elements of a ‘three-by-three matrix below
‘the main dlagonal will be made zero. Thus in the_trans-

formation |
21 = PeZePy
the matrix P 1s developed with thieﬂeucceseion'of rov opera-

tions, and the product P-Z will’ have only zeroe below the

main diagonal.
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The diagon@lizﬁtﬁOn'Of-Z Willhphsn;bg c9mp1e£ed by &
series of column bpératiags"which will be denoted by Gﬂﬁ(k)
and will be discussed létersigTh;S'serieslof'calumn opera-
tions will yisld zéros'abq#é'tha main.diﬁgonal. It'will be
shown that this series of Eolumn.opgrdtiﬁns will yield the

- transpose 6@_? softhat3Eq; 12 13'satisfied;. It will also be

shown that the result of the three row'operations and the

thres column operations will indeed diagomalize the matrix,

' Théée opérations may be performed in~either ordaf es indi-

cated in EQ. 12; 1. e., P may be premultiplied into Z and

the result postmultiplied by Piy or Z may be pestmnltiplied L

by Pt and that result premnltiplied by- P.
. Thus, for any three-phase circuit ef ‘the. type shown

- in Fig. 1, the matrix ? which reduces the impedanca matrix

to diagona; form may be fqund. Chapter Iy will show how
thiS"may be“accOmp1iahad.' | '

..'-.‘- -m‘i:'l




CHAPTER IV
* CONGRUENT TRANSFORMATIONS
" APPLIED TO THREE-PHASE SYSTENS
The épﬁiication of congruent £ranéforﬁa£ibns to dia-
'gonalize the 1mpedance matrix of a three-wire three-phase -

system follows, This type of transfarmation requires

where: 2 iafthepéymmétricai 1ﬁpeaénce matrix,
Z' is the new diagonal impeaance ﬁ&ﬁrix,.
P’is the transformation matrix to be developsed, and
Py 1s the Lranspoae of P. _ _

In ordar to simplify the writing of equations, let the im—

pedance of Fig. 1 be denoted as follows.

o
 Zog
ab
Zgg
Zcb.

N

il

£ N
oo
)
W
o O

Thus

c] - (15)
£ - .
L] . ’ .

)
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.. The elemanta of P are obtained by firat oparating on
‘the unit matrix U with the . row operation and premultiplying
the result into Z. This is dons in. succeasion, with the
result of the. row operation on the unit matrix being pramulti-j
plied into the preceding result. This row operation is de-
' aoted as 01 j(k) and acts on the metriz which follows it.
Oij(k) multlpilées the: jph row of ‘the matrix by k and edds the
result to the ith-raw. The result’ of-thia will be & matrix
daﬁéted-ﬁs'ﬂ(pj-with Pﬁtheﬁhumbér;in*thé sequence of opébaf'
tions. : . | - . . . -
The SeEOnﬁ‘sarhas<of*&t&ps'ufilizes elémentﬁgyfcoluMn“
'aperatiéns‘whieh.aqt,-1n'this ﬁoﬁk,ﬁon the unit matrix Y and
the resuit_poétmﬁltipiied 1nto'the-ﬁesdltlof thélpréceaing: |
step.. The column 6peration 'w'.{ll Be-'dencf'ea 'a's"-'c',_ J(k)"'aﬂd'ac'ts"
on the matrix which precedea it. Cij(k) mnltiplies thelgth |
column by k and adds the result to the ith column._ The rasult ;
of this operation on Uwill be denoted by C(p) with p the

number in the sequence, These are,illustrated below:

] o (18)

o 100 fLxo
0y p(k)U = 012(k){01 0 =[o 10
e T e o1 o
05 (k)T o()[wd 100]'
52 (k)T = 0., (k)0 1 0l=Jo 1 x
Pa3tid 23" boil po1i




Similarly:

first elementary row operation will iﬁtroducé a zero as the

Tiet-ﬁﬁis:épérétién-ﬁelépﬁéfédgﬁs‘é(i); so that - ' - i

-The result of the next rdwiqpération_ﬂ(a)'wili Be'premulti-

1 e e n

13

S -7
C12(k).U = | -

t
(=
[
N :
—— .
W ..
v.
. * ) .
it:)_SDI-'. '
oK.
oo,
fl
TR

'
o
N
A
——
W
et
S |
oro
oo,
W

Gp3(K)eT =

These Steps willjbe perfcrméd.on the unit matrix in the
folldﬁing Sequengé, an§-each.éperatian will act on Z by intro-

ducing a zero béléwﬁ%he'maip“diggohﬁl of Z. The use of the

elément in the first colusm and the second row, as can be

seen below,

; k. (18)
@21"b/a’°uf£/h‘ 1 0

o o -1

SR e . a9

ﬁliéd”into the result of Eq.'19'and will introduce & zero as

the elemenﬁ in the third row and first columm.-
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(20)

and

(a1)

The triangularization of the matrix will be completed
by the operation

~ (22)

| 0(3) = 03255432;3.

= "'i'-' A

o ! . o ;'2  " bekf
R e e

B

Since alllfhe e1ememts'be1oﬁ the main diagonal are zsros in Eq.

23, 1t will be noted that P has been developed. From Eq. 23,
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: f;z F.O(Bjtélz)'o(I)*z“-’_ ) - : {Zh)
therefore,
R EVCIRL PR

 Substituting Eqs. 18, 20, and 22 into Eq. 25, P is defined.

d o o {28)

Complatiép_ of the diagdr;e;ii-z'éﬁéﬁ‘of‘ the right side
pf'Eq.-BB will’bg acbompliéhed-by thé devélépmant.oflPtt‘
Py méy-be derivedifrém.Eq. Zg by a s1mp1a transposition of
‘the rows ror the columma, or it may be developed ag a ageries
- of elementary column eperations Gij(k) ' It should be roted
‘that CZl(k) U 13 the transpose of Bgl(k)-U.

The steps of the develepment of Pt’ by the latter
method, are. the following:

2 Of - en |
a - el
I e | \
Ca) ¥ 021§-b/a}(u =
L (28
o L 0 fQ/& (28)
!1Cté).F-c3i(‘§/a)°H = ﬂo
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From Bq. 130,

By e €1)'C(2)*C3, (31)

and'substitﬁting'Eqs; 27, 28, and 29 intq-Eq. 31 defines the
elements of Pt: ‘

(32)

-Pt,'—' O

It may be noted that P, is the transpose of P by'compﬁring Eq.
26 with Bq. 32, Further 1t may be noted that P+Z-P, is the
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diagonel matvixz of 4. 30 and is the 2! d@?iﬁéd_inlEqs..le
and 13. PR

To défermihe;hoﬁ thé-ﬁoitagés:ﬁnd“Eurreﬁfélare trans-
_ rormed, ‘both sides of Eq. 12 are pramultiplied by P71 and

&

;jpostmultiplied by Ptl. The result is
| %,za;;?T}fszag? S Gy
‘ ﬁ€; 33 subsfitﬁéé&-intb Eqa 3 y1é1aéf; __
| V= P"l' Z.-':-IP"El@I' " o S (3&) |
Both %idésiof"ﬁé;”thare.premuléipiiad-bj;?;_gndj.
o eveseedo o Gn

Let

‘H

Vo= BV - - (36)
and

TeEler o (37)
énd in térma'qr'th¢ héﬁ'vafiables, fhe-desired.form of Eg,., 1) is
obtained. It can be shown that the instantaneous power W is
invariant under congruent transformation. Iﬁét&nfaneous-pbwer

is_defihed

We Vel 1 O (38)
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'PremultiplyingsEQg 36 by p~1,

veplye - 39)
and transposing v defines Vt in terms of the new variables.
Vy ;'v',B#l' - - (uo)

Premultiplying ‘both sides of Eq. 37 by Pt defines 1 in terms

- of the new variablea.
-1::pt;'1r' o B ¢

Substituting EQS. hD and 41 into Eq. 38 defines the power in

terms of the new variables.' _'?

= ka?gl;?ﬁ-rt = ._ S .: (hé)
or .

W s vi.zr ; | ';_ '(E3J

'Thu?, the instantaneous powsr iszinvariant-hnder'eqngruént
. transformation.

To determine the transforming matrix rOrffhe currents,

 the inverse ef-Pt,muSt;b@_ébtained. Thére'ard"three'steps in
cbtaining the inverse of s matfix'Pf='.(1)-e#51uate'the de=
terminant of Pys (2) form the adjoint of Pt’ Adj Pt » and (3)
divide the Adj Pt by the determinant af P

‘Inspection of Eq. 32 shows that the determinﬁﬁt of Py
is unity,.




The Adj P, is formed by trensposing Py, replacing

edch element b’y' 1te 'co‘i"aé-t'oz'*_, and maltiplytng each cofactor

by (-1)1'““-1,- wl-i"e:;e-& and j are the number of the row and

column, réspectively. : The Adj By is

ClE2a) CD3eva) L M) |

o by  (;155_7 7f:

Thus, _

'_||.
- p———
o,
.
@
T et
B a—
~.
o

SR S| oL oo . e e ————

(46)

19

(Ll

(45)
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RSN Y2 | I O

L ot I I,
I = 12 = |0 1 a_ * Ib
L _ ' - ~bb¥d .
I ' a

‘Substituting Eqé. W6, 47, aﬁdf30£into Eg. 10, the results are

. . o -. o e
=(b2&d I | o
Vy F ( ~c? (bm))

As an illustration, the circuit shown in Pig. 2° will
be soived The circuit represents a three-wire transmission.
" line one mile long, composed.of" thrae 2/0 solid copper con-
-ductors. The conductors lis in a-horizqntal plane with con-:
ductor 3I1@ ﬁﬁe'centér'jd 1nchés-fr6ﬁjg and LS_inches from b.
The condﬁctofs are 50 feet above the ground. The values for
'thq impedances were'determinad using C&rsonfs Eguations rqr
the self and mufual 1mpedances.of tfahsmission iines in the
presencé of gfound.. |

The ajstem 1mpedanée values for Eq. L8 are:

a=dre= 0,523%j1.5 ohms .. ' . (49)
b= 0.092%j0. 80l ohms | |
c = . 0.0924+30,85l ohms

f= 0.0924 30, 73} ohms
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. | 0.5234§1.5

' *_-'i-é-'jo |

\ 0.092+30.804 y O 09_2%50.731;

- "'0..5.23*;11'-. [

~0.5~ 10,866 _
| 0.092=J0.85Y

sy
. "Oos*jOOuabb

Series three-wire three~phase é-yéﬁém“ S



-0.5-j0.a66

The app;iéd vOltages“#re

.gb
c

.“ “H .“ R

balancad;'sof

1.4 jO voitsj‘.__
=0,5 = 3J0.866 volts:
=0.5 + j0.866 volts

‘Subsituting Eq. 50 into Eq. L6

q .

vi

WS

1+ jOlveltﬁﬂf- o
0,997 ~ j0.978 volts

‘Wl

‘Then substituting Eqd. 51 'and 49 into Eq. LS

'dﬂGﬂﬁi

and finally substituting

H -
QH.-

[r)

The values of EQS;'49,fEOQ&h@153'uefefsubstituted

‘into Eg. 1, and the reSuifs'cheek-very accurately, -

«596 amnp#es

6
78 + j1.188 amperes

the velues of Eq. 52 into Eq, L7

= 0,611 = J1.167 amperes
= =1,237 -~ 3j0,004 amperes

0.678 + 31,188 amperes

(50)

-JG
+ j0.325 amperes
il

(53)

22

(51)

(52).




_ CHAPTER V
CONGRUENT TRANSFORMATIONS APPLIED TO
FOUR-WIRE sERIE's THREE~PHASE SYSTEMS
In the presentation of the application of the con-

gruent tranafermatien to feur-wire systems, let the impedance

matrix of Fig‘ 3 be denoted as

(54)

T 2. T

Roop
ﬁ“o_i—_;g S

DT

The impedance matrix will be tranefermed with‘the‘transforma-

tibn matrix’P The same type of elementary POW operation which

- wWas explained 1n the last chapter will be used in the develop-
ment of this P, -Ituuxll be-ehown~that-the_transformation
matrix P for a feur-wire'syefem_cehﬁains'&s a submaﬁrix the
trahsfermation_m&trix P fbr-aftﬁree;wire'eyetem;‘ Thus,.the
four-wire ayefem.P can be developed from fhe P of the three-
wire system, |

Let the first operetion be.

. o(i)'F 0, (~b/a)-u ;'OEIFki)fU = T (85)
1 o o o
f«b/a 1 0 0.
0o 0 1 .0
0o o 1]

L0
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Fig. 3

Series-fqur;wire three-phase systenm




and

Let the.néxt'bp&réﬁion-placa'awzerb'in the first column and

in the third row,

0(2) ® O3p(~c/a)u s 03y (k) U
1 -
o -
0.

. 0.
0 1 .0
L@ 0

Hodo

and

0(2)+0¢1)+2 =

Similarly

Opli3)ey =

£

(56)

(57)

- (58)

- (59)




introduces aAZéro in the first column, fourth row.

o ~be+f\ - o
O 7 032 |- By | U 7 0350k)) U
R B3 . |
L o o o
o 1 o ... 0
1 Eg}f o
0 - % 1 0
.0 6. 0", l.

introducea a zero 1n the second column, third rew of Z

Next RS
~ ("_E.*h .
%) F Oz [*Es |V F Ouz‘ k) U =
| \ & | _
h 0 o o
0 Q0 ' 1 - 0
\0 -_sfh 0 1
a . o

Let the last ogperation be

U= OuB(ké)'U

26

(60)

- (61)

(62)

!i



.io

So

Z' is friang.u_larized by

| 0(6)‘?(5)‘O(h_)"O(B)'0(2)_'0(1)22_?

C(63)

Lz
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Thefefora,lP”is dev510§ed'and is defined as
P = Oce) 0(5)‘0(4) 003)°0z 2)" %) o e

or letting the elementa of. P which are not 2870 or unity be

of Eqs. 55, 57, 59, 60, 61, and 62

Written-in terms of the kp
B te o o (65)
2 TR
o klkjfka '_kh_ N 1 B

It will be neted'that the'submatrix.formed‘by'thé5fif§t
three. rows of the flrst three columns of Eq. 65 is the same ‘
matrix of Eq. 26, The k are the same.' |

P S
The solution of the feur—wire aystem can now be ear~

_ ried out in exactly the same manner as was illustrated for -

the three-wire system. The transpose of P can be mora easily
obtained f?em Eq 6; rather than uaing the column operations. S
The inverse of Pt cen be ebtained by the procedure with which

Eh. u5 wes develeped; The transformation aquations are the

same as in the three-wire system.




GHAPTER VI
. CQMPBEX-SIMILARITY TRANSFGRMATIONS
OF THREE-PHASE SYSTEMS

.'1.

Tﬁélégﬁpiﬁﬁraimiiafiﬁﬁ trépsfbrmsﬁién_igfgfgenefal-type S

of tfanaformation which actua}1y enQompassqs the methods of
all of the ﬁrgﬁéﬁﬁly usqd coﬁpanents} _Hoﬁeﬁar, the aigébraic
difficulties which sre encountered in the application of this
method to thaiﬁ,exact-tranéfe:ming eQuatioﬁs_fdr;the_éenéral.
fhree-phase system rendérs thia:im@racticﬁl_uithout the aid of
a digifal.compﬁter. _?his'chaptqr'ﬁiil-diseuss this transforma-
~ tion and outline thﬁ'mathodéfwheﬁqby:it’may'b6 ufi1izad"for a
| épecific syﬁtém (one.in which the algébrashas:been.performﬁd);

| The complex-similarity transformation acts to diagonalize
a symmetric matrix Z by the following tranaformation equation

Zt g Ly 1-z T (66)

. -where T 13 a matrix which 1s developed from the 1mpedance -
_matrix Z and acts to preduce the diagonal matrix Z'
The development-of T from A involves the use of the
following features of the matrix Z:
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(a) the. characteristic determinant of Z which is denoted as
|z - XUI | . (67)

where U is the unit matrix and A is any one ef the reota

(called the charactaristic raots) of the equation
|z - XU]= 0.'-' o - _(68)
and (b) the characteristic vectera N are obtained fram the equa-
tion |
Zexul-m 20 - (69
where N is a coiﬁhn-matrix mhbse'elements;form'the_
characteristic veectors H. _ |

The number oL characteristic roots will ba the same as..

the order of the matrix Z, and thepe-will be one N fbr each

characteristic root;-'mhese charécteristicivectofa are used

to form the columns of the matrix T, Thé action of the matrikl

T which is obtaired in this menner to diagonalize Z will not

be affected by an interchange in the columns of T; hence, the
column matrices may be placed 1n any order._ _
- The evaluation of by depends on the determination of N

which, in~turn, dapands on the evaluation of the charactqristicf“

roots. For a three-phase system the evaluation of the character=-

istic roots requires the solution of a third-order {or & fourth- -

order, in the case of a four-wire system) complex algebraic
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eduatﬁon; “Thélsblﬁtion for fheSafdeté; as sfatéd'before;;
13 practical only wilh the use of a computer.
‘The proof that the use of the above preacrlbad matrix
T will indeed diag@nilize a symmetrical matrix is shown 1in
_.Reference (7)3 and willl not be presented here. _
This procedure will be illustrated by appljihg it to
a balﬁncad'three-wir;.sﬁstem.fbr which”tﬁe'char&éferistiél

rdots~are known, The-impedancé'z uiilﬁbe

a zm .Zm 3

o B | | R
whers: £ s the sélf¢impedanCe'in each phase and

Z, is the 1mpedance between phasas.

From Eq. 63
qu zJ ;zm_ o - o (71)
Iz - XUN 3-X  Z, (=0
| zm zm - B-X
The values of X whi.ch %atiSfy'Eq.'7l_afe
Y =gezo b 0 (72)

Xy B - 2y

! X3 = 2 4 2zm

P — e e —
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For the root Xy éjE?Zﬁ, theecharaétériStic-véctor N will have .
| domponents-nl, n2,'aﬁd,n3.' From'Eqn 21;'
z-(z-zm)_~\;m - Zo 1 [m N . (7})
Zy g-(2-2,) 2,  [-|ng] =0
_Fram .qu 73’ .
. nyng#ng F 0":' . | (7h)

or

Thé-seqond ch&r&c#e#isbig vector N will have qdﬁpbnﬁnts_hhﬁl
ng, and ng. ObviOusiy,_ifa éomponants_will bé‘théfséme as?fbr _
thé first-fqet;. It shéuld.ﬁe-noted that T:m&at have & nqﬁzero _
détarminant; theréfOre, two columns of T can not be identical.

Thus,

- Ay F L omg et ng=a (15)
For the third root, - T

Z;fz+225i:_§m:1} ”':-12mhw o :__n7 (76)
P 7 B (B2g, 1 el

n7 4+ QB - ?ng'? o . ' :(77)

— oo




| n7 ='ng ¥ n9 =1

The matrix T will be fermed by theee charaeterlstic Vectere

A S T o (78)
T=fl  a af
L ea a’

whibh'ﬁiil'be recegnized-as'the c tfansfofﬁatidn_ﬁetrix of

EQ. 5. The enly_differenca'ih'the two is the constant factor:

of 1/3.

'This'ﬁethod-ie applie&bie'te*unbalanced systems as
well as balanced. It is interesting to note that'aipha,-bete,

zero. cemponents (8) can be derived 1n a like manner. Alpha,

'beta, -zero eemponents will diagonalize ALY 1mpeéance matrix

with &n unbalance represented by changing the -impedance of
one of the main-diagonal elements of: EQ. 70,

‘The complex-similarity transfbrmation_fe the generai'
traﬂéfbrmatienrwhich-includes all transformations (excopting
congruent) of the symmetrical imﬁedance-maﬁrix Z into a
dlagonsl matrix Z', Tt wlll be noted that syrmetrical com-

ponents 1s a - special case of the general franeformetien._
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