Towards Finding Optimal Partitions of Categorical Datasets

Keke Chen Ling Liu
College of Computing, Georgia Institute of Technology
{kekechen, lingliy@cc.gatech.edu

Technical Report, October, 2003

Abstract

A considerable amount of work has been dedicated to clustering numerical data sets, but only a handful of categorical
clustering algorithms are reported to date. Furthermore, almost none has addressed the following two important cluster
validity problems: (1) Given a data set and a clustering algorithm that partitions the data getinspers, how can we
determine the begt with respect to the given dataset? (2) Given a dataset and a set of clustering algorithms with a fixed
k, how to determine which one will produdeclusters of the best quality? In this paper, we investigate the entropy and
expected-entropy concepts for clustering categorical data, and propose a cluster validity method based on the character-
istics of expected-entropy. In addition, we develop an agglomerative hierarchical algorithm (HierEntro) to incorporate
the proposed cluster validity method into the clustering process. We report our initial experimental results showing the
effectiveness of the proposed clustering validity method and the benefits of the HierEntro clustering algorithm.

1 Introduction

Data clustering is an important method in data analysis. A considerable amount of work has been done in clusterir
numerical datasets. Most traditional clustering techniques define distance functions, such as Euclidean distance, for ¢
pair of items and then to group the items that are close into a cluster [14]. When a distance function is given, it is natur:
to introduce the density-based methods [7, 4] to clustering. Correspondingly, such distance functions and the dens
concept are also heavily used in cluster validity methods [13, 11].

Traditionally, clustering techniques are not directly applicable for categorical data. Preprocessing is commonly use
to obtain the numeric features from categorical data for clustering. For example, in information retrieval, the vecto
model is applied where the frequency of occurrence of a word in document is used as a numerical feature for clusterin
However, there are also many datasets containing categorical data, which could not be transformed to numerical featu
appropriately, where special categorical clustering is needed. Examples include partitioning market basket data to fir
localized association rules [1], DNA or protein sequence data in Bioinformatics, and alarm messages from intrusio
detection systems. It is widely recognized that clustering based on the categorical features are useful in many applicati
areas.

Categorical clustering has special characteristics compared to numerical clustering. First, since categories have
sequential meaning, the definition of distance between categorical records is not intuitive except Hamming distance,
which the distance is equal to the number of unmatched attributes between two records. Second, similarity based on b
of records, e.g. “orderliness” of records, is more significant for clustering categorical data. For example, the “group’
operation in relational database produces groups where the values of grouped attributes are identical in each group —t
they are totally “ordered”, while categorical clustering allows to introduce impurity into each group, as long as each grou
still shows high “orderliness”. Third, when non-distance similarity criterion is used for categorical data, the traditional
cluster validity methods are not applicable anymore. We need appropriate clustering validity methods to determine tt
optimal number of clusters and to evaluate the quality of clusters as well.

Cluster validity methods [11] are typically used to evaluate the quality of the clusters produced by certain clustering
algorithm. One main issue in cluster validity is to determine the optimal number of clusters that fits the data set best. |
most numerical clustering algorithms, the structure of clusters can be evaluated by the geometry and density distributi
of clusters. (A good example is to evaluate the clustering result of a 2D experimental data set by visualizing them t
see if the clustering result matches the geometry and density distribution of points.) A good numerical clustering schen
gives satisfactory “compactness” within clusters and enough “dissimilarity” between clusters. However, since the distanc
functions are not suitable and unintuitive for categorical data, intuitive concepts like the geometry and density distributio
are not appropriate in evaluating the quality of categorical clusters.

Although it is unnatural to define a distance function between categorical data or to use the statistical center of a grot
of categorical items, there are some algorithms, for example, K-Modes [12] algorithm and ROCK [10] algorithm, try



to fit the traditional clustering methods into categorical data. However, since the numerical similarity/distance functior
might not describe the categorical properties properly and intuitively, it leaves little confidence to the clustering result
Furthermore, almost none has addressed the following two important cluster validity problems: (1) Given a data set anc
clustering algorithm that partitions the data set ihtdusters, how can we determine the blestith respect to the given
dataset? (2) Given a dataset and a set of clustering algorithms with &fiked to determine which one will produée
clusters of the best quality?

With these problems in mind, in this paper we propose a novel categorical cluster validity method and a hierarchice
algorithm HierEntro) to incorporate this cluster validity method into the categorical clustering process. This develop-
ment is based on a number of observations. First, we argue that in categorical datasets, the “orderliness (disorderlines
of a set of records (or rows, items, instance vectors ...) can be captured by the concept of entropy. Second, we obse
that there is a connection between clustering and entropy: clusters of similar points have lower entropy than those
dissimilar ones, which also implies that a group of points in different clusters should have larger entropy than those in or
cluster. Thirdly, we argue that the expected entropy and its characteristics play critical roles in evaluating cluster qualit
and determining the optimal partitioning schemes. Concretely, an ideal partitioning leaves satisfactory orderliness withi
a cluster and merging any two clusters in the partitioning scheme should introduce significant disorderliness. The ma
idea of our cluster validity method is based on the special properties of increment of expected-entropy with the decreasil
of number of clusters. It suggested us finding the optimal numbers of partitions by observing the “ideal validity graph”.
The HierEntro algorithm was then proposed to produce an ideal validity graph. The experiments show that HierEntrc
can produce high quality clusters and help to determine the optimal clustering schemes.

The rest of the paper is organized as follows. Section 2 briefly reviews the related work. Section 3 defines thi
entropy and expected-entropy concepts used in categorical clustering, explores some important properties, and propose
incremental expected-entropy based validity method and algorithm HierEntro. Section 4 demonstrates that this approa
is effective in clustering and validating the experimental datasets. Finally, we conclude our work in section 5.

2 Related Work

While many numerical clustering algorithms [13, 14] have been published, only a handful of categorical clustering al
gorithms appear in literature. The general statistical analysis of categorical data was introduced in [2]. Many ideas i
categorical clustering were also derived from the similar concepts and algorithms in numerical clustering. For example
KModes algorithm [12] employs the similar ideas in KMeans [13] algorithm, where the distance function and the defini-
tion of mean are re-designed for categorical data. With proper selection of the initial modes, KModes algorithm can b
quite effective and very fast due to thE N') complexity.

Whereas, ROCK [10] is an adaptation of agglomerative hierarchical clustering algorithm and graph-based algorithr
[14], which heuristically optimizes a criterion function defined in terms of the number of “links” between tuples. Jaccard
coefficient is used to define the similarity, which is then used to defined the links. This linkage-based approach is sti
based on the distance function, therefore, it is only applicable to the applications, where the distance function mak
sense.

Gibson et al. introduce STIRR [9], an iterative algorithm based on non-linear dynamical systems. STIRR represen
each attribute value as a weighted vertex in a graph. Starting with the initial conditions, the system is iterated until .
“fixed point” is reached. when the fixed point is reached, the weights in one or more of the “basins” isolate two groups o
attribute values on each attribute. Even though they proved this approach works for some experimental datasets with t
partitions, the user may hesitate in using it due to the unintuitive working mechanism.

CACTUS [8] adopts the linkage idea from ROCK and names it “strong connection”. However, the similarity is
calculated by the “support”. A cluster is defined as a region of attributes that are pair-wise strongly connected.Similarly
the concept of “support” or linkage is still indirect in defining the similarity of categorical data, and unnecessarily makes
the clustering process complicated. As we suggested, similarity measures based on bulk of records, like entropy, are m
suitable.

Cheng et al. [6] applied the entropy concept in numerical subspace clustering, and Coolcat [5] introduced the entroy
conceptinto categorical clustering further. There is a connection between clustering and entropy: clusters of similar poin
have lower entropy than those of dissimilar ones, which also implies that points in different clusters should have large
entropy than those in one cluster. Coolcat is kind of similar to KModes. However, Coolcat assigns the item to a cluste
that minimized the expected-entropy. Considering the cluster centers may shifting, a number of worst-fitted points wil
be re-clustered after a batch. Even though Coolcat approach introduces the entropy concept into its categorical cluster
algorithm, Coolcat did not consider the problem of finding the optimal number of categorical clusters.

C. Aggarwal [1] demonstrated that localized associations are very meaningful to market basket analysis. To fin
the localized associations, they introduced a categorical clustering algorithm CLASD to partition the basket data. The
defined a new similarity measure for a pair of transactions. CLASD is still a kind of traditional clustering algorithm — the
special part is the definition of similarity function for categorical data.



Most of recent research in categorical clustering is focused on clustering algorithms. Surprisingly, there is no re
search concerning about the special validity methods for categorical datasets. We will introduce our validity methods fc
categorical datasets in the following sections.

3 Expected-Entropy Based Categorical Cluster Validity Method

In this section, we begin with the specific definition of entropy and expected-entropy that are used in our cluster validit)
method. The characteristics of expected-entropy are then explored to introduce the proposed cluster validity methc
With the properties of expected-entropy, we show that the expected-entropy of the optimal partitioning monotonousl
increases when the number of clusters of the partitioning scheme decreases. “Validity graph” describes the incremen
rate of expected-entropy between the neighboring optimal schemes. On an “ideal validity graph”, we can easily fin
the candidates for the possible optimal number of clusters and “OpPlot” is used to locate them precisely. Finally, a
approximately optimal algorithm in finding ideal validity graph is described and its implementation HierEntro is analyzed.

3.1 Definition of Entropy and Expected Entropy

In the following discussion, we define a dataSeis a table having columns andV rows. LetA; denote thg-th column.

There are a limited number of distinct categorical values definetbinain(A;). A; is conceptually different from
Ay (k # j). Thei-th row can be represented ad-@imensional vectdti;1, a;o, - - . , a;q), Wherea;; € domain(4,),1 <

i < N. Let P(a;1,a;2,...,a;q) be the probability of the vectdu;1, a;o, - . ., a;q) @appearing in datasét The classical
definition of entropy can be described as:

Eo(S) = — Z Z P(ai1, a2, ..., aia)logy P(air, aiz, .. ., aia) )

a1 €A a;g€Aq

wherePlog, P = 0, if P = 0. Given a datased, the probability of one record can be estimated by the frequency of its
occurrence in the instance space. From equation 1, it is easy to inferendg (Bat< 0. Generally, if the records are

in D categories, the entropy is in range of [6g, D]. The largest value is reached when the categories are uniformly
distributed. Since we should consider the orderliness/disorderliness in each column rather than in record level whe
we perform categorical cluster analysis, let us narrow down the entropy definition onto the column level and averag
the column entropies as the final entropy for the dataset. As above discussion, the entropy of each column may fa
onto different ranges [Qog, D;], whereD; is the number of elements ifvmain(A4,). Since the columns having more
categories should have higher probability in generating large entropy and thus may dominate the overall entropy by simp
averaging them, we need to normalize the entropy of each column before averaging. We argue thatlugin®; as

the normalization weight is appropriate. First of all, it normalizes each column-entropy to the range of [0, 1] eliminating
the dominating factors. Secondly, this normalization slightly reduces the entropy contribution of the columns that hav
more categories, which makes the potentially more disordered (“noisy”) columns not disturbing the underlying cluste
structure.

1

E = —
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whereP(a;;) denotes the probability of a categorical vatyg in the j-th column and can be estimated by counting the
occurrence frequency of the categorical vadygin j-th column. When a value;; in domain(A;) does not appear in
the datase$, P(a;;) is defined as 0. Obviously, we ha@e< S < 1.

Evaluating the cluster quality of a clustering scheme should consider the intra-quality of all clusters produced by
the scheme. Partitions in different size having the same entropy should not be regarded as equivalent in the level
disorderliness. Here, we derive another important concept,etkgected entropyEE), for assessing the intra-cluster
quality of a bunch of categorical clusters. Suppose a dataset is partitiokeclusters. LetC* denote a partitioning
scheme of clustersC; be the clustet, which has entropy of/(C;). Since large partitions have more influence over the
quality of scheme, we define the expected entropy of a clustering scheme as the entropy sum of all partitions weighted
the size of each partition.

EE(C* kNiEc lkN E(C 3
( )_;N(Z)_N; z'(z) ()
whereN is the total number of instances in the datasets,/gnid the number of instances ifth partition. We name the
variable partV; - E(C;) as the “weighted entropy”, which shall be used in the following lemma proof.

Expected entropy could then be used to assess the intra-cluster quality of a categorical clustering scheme as !
compactness indices do to the numerical clustering. We have the relatiof$tapmaller expected-entropy=- the
possibly smaller entropy in each cluster=- the more items similar in each clustets=- the more “compact” the cluster



Therefore, given a bunch of clustering schemes with the same number of clusters, the best scheme can be defined as
one having the lowest expected-entropy.

Expected-entropy gives a way to assess the quality of clustering schemes if the number of ¢dugitem. Wherk is
not determined, we need to find the optirhdbr possibly a number of godgds), which gives acceptable quality among all
clustering schemes. Traditionally, statistical indices are applied to evaluate the schemes with different number of clustel
The peaks, valleys, or distinguished knots on the index curve are regarded the interesting points, the corresponding num
of clusters to which is then recommended as the best number of clusters (tti. i@ah the expected-entropy serve as
such an index? In order to answer this question, we have to explore the characteristics of the expected-entropy.

3.2 Characteristics of Expected-entropy in Finding the Globally Optimal Categorical Clusters

Given the number of clusteks there is at least one optimal clustering scheme having the lowest expected-entropy among
all possiblek-cluster schemes. We would like to check over the expected-entropy curve of these optimal schemes. T
discover the shape of expected-entropy curve, we start with the initial scenario where each instance is a cluster a
the expected-entropy is zero (Lemma 1). We then use Lemma 2 to prove that the expected-entropy of optimal scher
monotonously increases when the number of clusters decreases (Lemma 3). So expected-entropy is inadequate to
the optimalk. However, the increasing rate of expected-entropy between the neighboring optimal schemes may reve
some important properties behind the expected-entropy curve. We then define the “validity graph” and “ideal validity
graph” for probing the possible optimal schemes. To begin with, we first introduce the lemmas that help us describe tf
expected-entropy curve.

Lemma 1. (Zero Start)The smallest expected-entropy is zero when each instance is considered as a cluster.

Proof : Since the expected-entropy is non-negative by the definition, the minimum value, zero, is reached when eac
cluster has zero entropy. This happens when each cluster contains identical instances and the extreme situation is 1
each cluster contains only one instance.

Any k-cluster scheme can be formed by merging two clusters of sk#i-Cluster scheme, therefore, we are inter-
ested in the property of this merging.

Lemma 2. (Incremental Merging) Merging two clusters in any clustering scheme increases the expected-entropy or
keeps the expected-entropy unchanged.

Proof : Intuitively the merging should increase the global disorderliness. Formall§; landC, be the two clusters to
be merged, withV; and N, records respectively in/acluster partitioning scheme. By the definition of expected-entropy
(equation 3), we want to prove that the sum of the weighted entrofiy; @ndC, is less than the weighted entropy of
(Cl U (Cg, i.e.

N1~E((C1)+N2-E((C2) < (Nl—l—Ng)E((Cl U(CQ), or

d
1 1 1 1
-2 E o D, > N1 Pi(aij)logy Pi(ai;) — p E oz, D N3 - Py(aij) logy Pa(as;)
Jj=1 aijGA]‘ j=1 a;i;€EA;
1 Zd 1 5
S —E j=1 10g2 Dj a; .eA.(Nl " NQ) ' PlUQ(aij) 10g2 P1U2(aij) (4)

Therefore, to prove (4), we can check if the following relation is satisfied:
Ni - Pi(aij) - logy Pi(aij) + N2 - Pa(ai;) - logy Pr(aij) = (N1 + Na)Pruz(aij) logy Pruz(as;) (5)

Without loss of generality, suppose cluster hask items and clusteC, hasm items having value:,;; at j-th
column. The formula 5 can be transformedittvg., Nﬁl + mlog, - > (k 4+ m)log, iji’?vz Sincek, m, N1, N, are
positive integers, lek = v - m and Ny, = v - Ny, (u,v > 0), and then we can eliminaleg, to get a simpler form:
70T S (1+1;;u+1. Itis easy to prove th% is the maximum value of the functiof(v) = 4w (u, v > 0).
Therefore, formula (5) is true and thus (4) is true. Lemma 2 is proved. We then try to see what the relationship is betwee
the neighboring optimal schemes havingndk + 1 clusters respectively.

Definition 1. A k-cluster clustering scheme is optimal, if the scheme gives the minimal expected-entropy among all of th
k-cluster schemes. We u€@E E(C*) to denote the minimal expected-entropy:afluster schemes, e.@pEE(CF) =
min{ EE(CF)}, whereCF represents any of the possiblecluster clustering schemes.

Lemma 3. OpEE(C™) > OpEE(C™), whenn < m
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Proof : This lemma says that, when < m, the optimal partitioning of. clusters has the same or larger expected-
entropy than that ofn clusters. It is easy to constructively prove it, when we have Lemma 2. Let us construct one
arbitrarym-cluster schemé7™ by splitting the clusters in an optimalcluster scheme. With Lemma 2 and definition 1,
we have

OpEE(C™) > EE(CT") = OpEE(C™). (6)

The first equation in above formula is satisfied when only merging of identical instance vectors happefig'ftori™.

The second equation is satisfied wheft is an optimal scheme of: clusters. Therefore, the optimal expected-entropy
monotonically decreases with the increasing of the number of clusters. Our experimental results show that a reasona
categorical clustering algorithm produces expected-entropy curves similar to Figure 1. This curve implies that, 1) it i
highly possible that the globally optimal clustering scheme is not unigue in terms of expected-entropy and 2) expecte
entropy is not a good index for finding the optinal

What can we explore more from the expected-entropy relationship? Let us look at the incremental rate of expectes
entropy instead. Intuitively, small incremental rate between two neighboring schemes implies that they are similar il
terms of the expected-entropy. If expected-entropy increases a lot when the number of clusters is reduced, this reduct
of number of clusters introduces too much disorderliness into the partitions and probably should not be suggested.
looking at the incremental rate of expected-entropy, we can probably find a series of neighboring “stable” schemes, whic
have small increasing rate on expected-entropy, and we may also find the points where a series “stable” schemes becc
a “less stable” scheme — the incremental rate increases dramatically. All of these changes on the incremental rates h
some specific meaning behind.

Hence, in order to explore the possible globally optimal schemes, we first formally dieéiriacreasing rate of
expected-entrop(IEE) as the increment of expected-entropy from thet 1)-cluster clustering scheme focluster
schemelEE(k) = EE(C*)— EE(C**t1), and the IEE plot as théValidity Graph”. We also define a validity graph
satisfyingIEE(k) > IEE(k + 1) fork = 1..N — 1, is an ‘Ideal Validity Graph (IVG)”. Since an ideal validity
graph is usually a step-like curve (Figure 2), it is much easier to find the candidates of globally optimal schemes from |
— the global optimal schemes may be at the points of the ideal validity graph where the IEE drops sharply and reaches
“platform” as the number of clusters increases. Figure 2 sketches an ideal validity graph and the possible globally optim
schemes. Generally, the decision rules can be described as foll)vgshemes are at the platform area of I\\&=
schemes have similar qualiand2) a dramatic dropping at IVG implies a candidate of optimal scheme

In order to observe the possible optimal numbers clearly, we try to extract th&ketg“on the ideal validity graph
automatically. As above description, the optimal points can be defined as fokagvan optimal point at the ideal validity
graph, ifIEE(k — 1) — IEE(k) is much larger thal/ EE(k) — IEE(k + 1)) compared to the other points in a local
arealk — n, k + n], wheren is a small integer. These “knots” can be precisely extracted from the 2nd order differential of
IEE curve. We definAIEE(k) = IEE(k) — IEE(k+1) andA%2IEE(k) = AIEE(k —1) - AIEE(k). By looking
attheAZI EE(k) plot, we can find the candidates of optimal numbers are among the top-k peaks (Figure 3) from left to
right. We name the plot cA?7EE(k) as “Optimal Top-k PlotQpPlot)”, which is only used to extract the candidates
of optimal numbers from ideal validity graph automatically.

3.3 an Algorithm for Generating Ideal Validity Graph

The precise way to find the validity graph is to calculate the optimal expected-entropy fok.gach 1..N. However,
this optimal method is highly complex in computational cost for even a small dataset. To simplify the computation, we
propose a greedy algorithm, which produces near optimal expected-entropy fok eadhan ideal validity graph for
identifying the candidates of the globally optimal schemes in an acceptable cost.

This algorithm begins with the scenario, where each instance vector is a cluster and the expected entropy is 0
Lemma 1 describes, and then iteratively find a pair of clusters to merge, the merging of which leaves the minimun
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increment to the expected-entropy. The merging continues until the number of clusters becomes 1. The expected-entrc
in each step is saved for generating validity graph and OpPlot. Meanwhile, the clusters and their sub-clusters form
cluster tree in the merging process and record the merging process precisely. Any of the candidate optimal schemes
be easily extracted from the tree and the hierarchical structure between the candidates also helps the user to understan
relationship between them. This merging does not ensure the optimality, however, the quality of the generated clusteril
schemes is proved very high in the experiments. More importantly, this algorithm could produce an ideal validity grapt
while the other algorithms do not. We shall prove it later.

We definethe incremental rate of expected-entropy in merging two clugiE&£M) as the dissimilarity measure
for a pair of clusters. Concretely, if two clusters contain identical records, merging them will keep the expected-entrop
unchanged (Lemma 2), thi&# EM = 0, and the dissimilarity is the lowest. If the two clusters are very different, the
merging will introduce large disorderliness, ilds M will be large and the dissimilarity between them is large.

Definition 2. LetC; andC; denote the two merged clusters, havivigand lV; records respectively. The incremental rate
of expected-entropy in the mergingE EM (C;, C;) = +{(N;+ N;)- E(C;UC;)— N;- E(C;) — N;- E(C;)}. Similarly,

we defind EEM (C;, C;, Cy) as the incremental rate of expected-entropy in merging three clusters in the sequéhce of
andC; and thenCy,.

With Lemma 2, we know/ EEM (C;,C;) > 0. By the above definition we also havd EM (C;,C;,Cy) =
Therefore, changing the sequence of merging three clusters will not change the increment of expected-entropy. Obvious
we also havd EEM (C;,C;,Cy) > IEEM(C,,C,), where(z, y) is any combination of two elements (i j, k).

Lemma 4. The greedy algorithm generates an ideal validity graph.

Proof: sorting any pair of cluster&C;, C;) by IEEM (C,;, C;) value in ascending order, the greedy algorithm merges
the pair having the minimundE EM (C;, C,;) each time, and the global weighted expected-entropy is increased by the
minimum I EEM (C;, C;) at meanwhile. After merging, theEEM (C;, Ci) andIEEM (C;, Cy)(k # 4, j) should be
updated tol EEM (C,;, C;, Cy), since the cluste€, andC; have been replaced by the clus@ru C;. As we have
discussed, we have the updated valdeE' M (C;,C;,Cy,) > IEEM(C;,C;). Therefore, in next merging the greedy
algorithm will pick a pair of clusters, which, in any case, Hd&F M value greater thahEE M (i, 7). Generated by this
algorithm, the incremental rate of expected-entropy between two neighboring schEifi€s) is equal to thd EEM at
stepk. Therefore, the produced validity graph is an ideal validity graph.

At first look, it seems that finding the pair of clusters of miniméi@E M is very costly. However, with the proper
data structure, the entire algorithm can be implemented in the complexi®f §f) IEEM calculation, plusD(N?)
heap operations (insertions and deletions).

3.4 The Hierarchical Expected-entropy Based Clustering/ Validating Algorithm (HierEntro)

We implement the algorithm proposed in the last section with an efficient hierarchicalfiayKntro). “Summary
tables” and a priority queue built on heap are used to simpliff A& M calculations and the merging operations.

The expected-entropy computation is based on frequency counting of each categorical value in each attribute. -
facilitate the frequency counting process, we build up a summary table for each cluster to keep track of the frequency
each category in each attribute. Such a summary table is also helpful for the merging operation. To merge two clustel
we just need to sum up the two summary tables as that of the new cluster.

A priority queue built on heap is used to choose the candidate pair clusters having midifiny. An auxiliary
2D table ( EEM-table) (Figure 5) is used to save the IEEM value of merging each pair of clusters. Initially the table has

less than half entries%%) full and each entry is pushed into the priority queue.



The merging operation is not only merging two summary tables, but also updating the dgldidd entries. Con-
cretely, if C; is the master cluster in merging’;, C;), C; should be merged t¢; and theC; related/ EEM entries,
i.e. the entriegk, j) and(j, k)(k # j) should be removed from the priority query. And the entfie&) or (k,:)(k # i)
should be updated with the vald& EM (C;, C;, Cy,).

The algorithmHier Entro output a set of expected-entropies indexed by the number of clusters, and the hierarchical
cluster label tree which encoding all candidate optimal schemes. Due to the space limitation, we give the concre
algorithm in the appendix.

3.5 Complexity Analysis for HierEntro Algorithm

The cost of HierEntro comes from several parts, including the initialization of summary tables, the initialization of
IEE M-table, the merging operations, and the heap operations. Initializing summary table¢dstd/O operation

and Initializing I EE M-table costsO(N?)IEEM calculation. Eachh EEM calculation includes adding up the two
summary tables and computing the weighted entropy with the merged summary tables. However, the calculation
weighted entropy can be simplified, since:

d
1 1 Cjk Cik
N, E(C) = —= > N; - 2logy, 22
(Ci) G2 A N, B2 N,
’ C,jk=JfTeq(.szk)

d
1 1
= - E : g cji(logy cjr — logy Ni)

ajLEA;
cjp=rrea(ajy)

Since the frequency;, and the number of instanc€; are non-negative integers, an auxiliary array can be used to buffer
thelog, values. By using théogs value buffer, the complexity of calculating weighted entropy can be reduc@@ia),
whered is the number of attributes and is the average number of categories in an attribute. The total runs of merging
operations cosO(N?)IEEM calculation andD(N?) heap operations (deletions and insertions, eact (log V)).
Therefore, the total time complexity 8(dmN? 4+ N2 log N).

The summary tables require(dmN) space, the auxiliary array for log calculation coSt&V) space and both of
IEEM-table and the heap coSt(N?). So totally, the algorithm need3(/N?) space to process a categorical dataset in
size of N rows byd columns.

4 Experimental Results

In this section, we first explore more characteristics of the proposed validity method with some small synthetic datase
for easy understanding. Then, we show the quality of HierEntro clustering results on two real datasets: archaeologic
and soybean-small data, compared to the other three categorical clustering algorithms: ROCK [10], KModes [12] an
CoolCat [5], in terms of expected-entropy. Validity graphes on the above results show how the validity method with
HierEntro works in revealing the possible optimal partitioning schemes of real categorical datasets. The experiment
results conclude that HierEntro can not only gives clustering schemes in high quality, but also help to determine th
possible globally optimal clustering schemes.

Another problem with the categorical clustering is how to understand the clustering result well. Interpreting the
result with external labels is a good way helping to understand the clustering results. Previous research on categori
clustering falsely used the external labels to validate the quality of their algorithmic results. However, the cluster structur
is determined only by the inherent properties of the dataset with the meaningful similarity measures, not by any extern
information. Therefore, we would like to name this validation processsakdating the consistency between external
labels and the defined cluster structymather than Validating the quality of clusters with external label$he proposed
validity method, together with HierEntro, can help to check the consistency efficiently.

4.1 Experimental characteristics of the validity method

Let us construct a 2-column 10-record categorical dataset D&10), (a 1), (b 0), (b 1), (c 0), (c 1), (d 0), (d 1), (e

0), (e 1). The first column contains 5 categories (a, b, c, d, e) equally in size and the second column contains boolee
values (0,1) equally in size. The ideal validity graph (Figure 6) suggests that the partitioning of 2 clusters, which equall
partitions the dataset by the boolean column, is the best one. Roughly, the ideal validity graph shows the schemes frc
2-cluster to 8-cluster are all very similar in terms of expected-entropy, so we can choose the 2-cluster scheme as the b
People may intuitively think that another scheme of 5 clusters, i.e. the one partitioned by the first column, is a suboptim:
one, but the graph seems not suggest a 5-cluster scheme, but a 4-cluster scheme. What is the difference here? Let us
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at the 5-cluster schemes generated by HierEdtf¢(a 0), (b 0), (e 0), {(a 1), (e 1}, {(b 1)}, {(c 0), (d O}, {(c 1), (d

1)}}. It seems that the partitioning is biased by the second column. This is true since the second column has categor
and thus weighed more in expected-entropy. By doing so, HierEntro can correctly focus on the optimal schemes with le
number of clusters.

Experiments on more datasets clearly show that HierEntro can capture the optimal numbers correctly. We design
set of 2-column 10-record datasets, where the first column contains a number of clusters, while the second column has
categories represented by 0..9, which do not suggest any cluster structure. For example, a 6-cluster dataset is (a 0), (
(b2),((b3),(c4),(c5),(d6),(d7),(e8),(f9).

Datasets in uniform or normal distribution are tested to see if the validity results confirm the inherent structures. -
different datasets for each distribution are used. Each column of the datasets cortefrsaBegories. Uniform datasets
have all categorical values in one column uniformly distributed. A normal-distribution dataset has one multi-dimensiona
center, and all categorical values are normally distributed around this center. so there is no non-trivial cluster structure(or
one cluster) in the normal datasets either. The validity graphs (Figure 8 and 9) confirm that there is no obvious clust
structure in all of the datasets — no significditE dropping happens.

4.2 Finding the possible optimal partitions in real datasets

In this section, we want to experimentally prove that the HierEntro clustering results have very good quality in terms o
expected entropy, even though it does not ensure the optimal expected-entropy. The validity graphs are also used to f
the possible optimal partitions. Two datasets are used here.

e Archaeological data is used in Coolcat paper [5] and originally in [3]. This is a hypothetical collection of human
tombs and artifacts from an archaeological site. It has 9 attributes and 20 instances. The first attribute indicate
the sex (M for male, F for female) of the individuals buried. The other eight attributes are binary (1 present, O
non-present), and represent artifacts types (e.g., ceramics, bracelets, arrow points) that were found (or not found)
the tomb. So basically it is a boolean dataset.

e Soybean-small dataset was used by K-Modes [12] and can be found in UCI machine learning database (www.ics.ur
This is a small subset of the original larger data set(soybean-large). It has 35 attributes and 47 instances, containi
4 clusters as the document says. The 35 attributes contains the month, temperature, leaf shapes, seed conditi
and all other factors that can be significant in causing soybean diseases. There are 8 columns containing more tf
2 categories, several columns having identical data (thus no use in clustering), and the others boolean data.

We choose to evaluate four algorithms: K-Modes, Coolcat, ROCK [10] and HierEntro. We will briefly introduce
the compared three algorithms in the related work. Among the three, K-Modes and Coolcat are consistent with th
expected-entropy oriented method, while ROCK is a distance/linkage based algorithm, which is not consistent with th
expected-entropy criterion. The quality of different clustering schemes are evaluated by the expected-entropies. Sin
Coolcat is a randomized algorithm, we run Coolcat 20 times on each number of clusters and pick the best result :
‘Coolcat-best’ and the average of the 20 results as ‘Coolcat-avg’.

The expected-entropy graph shows that the three algorithms: HierEntro, Coolcat and K-Modes produce results
similar quality, while ROCK presents not so good expected-entropies since it uses the linkage-based approach. Ev
though the results of ‘Coolcat-best’ are likely to reach the optimal expected-entropy, HierEntro almost always generate
the schemes having the lowest expected-entropy among the three algorithms. In addition, only the validity graphs
HierEntro are ideal validity graphs, which can help us conveniently determine the optimal number of clusters. We can se
that other algorithms give irregular zigzag lines indicating nothing significant for evaluation.

In the OpPlot of archaeological dataset, 2 is highly suggested as the optimal number of partitioning (Figure 14)
Checking the produced labels for 2-cluster scheme, we find itis 100% consistent with the 'sex’ column! This is interesting
For soybean dataset, 2-cluster or 4-cluster partitioning are recommended as the best ones (Figure 15). Checking
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description given in the literature — there are 4 types of soybean diseases being tested, so we look at the 4-cluster clustel
result. Comparing the external labels (labeling the datasets with the four diseases) to the HierEntro 4-cluster result, v
surprisingly found that they are also 100% consistent! The experimental result on the real datasets proves that HierEn
and the validity method can be effective in identifying the interesting structure.

4.3 Validating the Consistency between External Labels and Entropy-based Clusters

Since clustering is an unsupervised grouping process, there is no explicit label provided for clustering. Any validity
methods using external labels to validate the cluster quality are not feasible. However, external labels are often provid
as the application specific knowledge by domain experts to explain or understand the clustering result. Re-categorizil
the clustering result with the domain knowledge is also an efficient way to understand the inherent structure in the datas
However, since there are many possible clustering schemes, how to choose the candidates for consistency checkin
a important problem. The validity method plays important role in choosing the candidates, while the HierEntro resul
makes this process even easier — checking one candidate is enough to determine the consistency level.

We define the consistency between external labels and a clustering scheme as follows. Looking at one cluster, find t
external label that labels the most cluster members and regard it as the major label. The other labels are regarded as m
labels for this cluster. The impurity of external labelling is evaluated by the percentage of the minor labels over all labels
Lower impurity means the corresponding external labels are more consistent with the categorical clustering result.

Since HierEntro merges a pair of cluster in each step, with the reduction of number of clusters, the impurity shoul
increase or keep unchanged by the definition. Therefore, we do not need to check the consistency on each possible opti
number. Instead, we only check the impurity level around the largest possible optimal number of clusters to determir
consistency level.

Let us look at the example of “mushroom” dataset. The external labels are given by the original dataset, indicatin:
“poisonous” or “edible”. They were shown possibly consistent with the categorical clustering result by ROCK [10].
We checking the consistency one a 2000-record random sample. As the document of the dataset describes — there
around 20 kinds of mushrooms, we choose the largest optimal number of clust@®) from the OpPlot, which is
16. The corresponding impurity plot shows that in partition number of 16 the unmatching rate is very low, only about
0.9%. Therefore, we confirm that the consistency level is high. Re-categorizing these 16 clusters to either “poisonous”
“edible” is meaningful. Further domain-related analysis can be focused on the clusters that are not purely labelled.

5 Conclusion and Future Work

Most of the recent research about categorical clustering is adapting the techniques in numerical clustering to the categori
counterpart. Since this revision, especially, the distance definition, is very unnatural for categorical data, the clusterir
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data.

results are not well-understandable, nor applicable in combining domain knowledge. In this paper, we proposed a clust
validity method based on the characteristics of entropy and expected-entropy. We developed an agglomerative hierarchi
algorithm (HierEntro) to incorporate the proposed cluster validity method into the clustering process. The validity methoc
suggests us to find optimal number of clusters by observing the ideal validity graph. The HierEntro algorithm ther
proposed to generate an ideal validity graph. Our proposed approach has three unique features: First, it produces hi
quality clusters in terms of expected-entropy. Second, it recommends those globally optimal partitioning schemes to be t
candidate choices to set the best value for the pararhdtbe total number of clusters). These candidates are formed in
a hierarchical way, making it easy to understand the correlation between the candidates. Thirdly, the HierEntro clusterir
algorithm helps to validate the consistency between the external labels and the inherent cluster structure efficiently.
From our initial experiments, we have shown the effectiveness of the proposed clustering validity method and th
benefits of the HierEntro clustering algorithm. Although the current compléXity? log N + dmN?) prevents Hier-
Entro processing very large datasets efficiently, many techniques, such as sampling or summarization can be potentie
combined to process very large datasets. Therefore, improving the scalability of HierEntro will be the next step toward
finding optimal partitions of large categorical datasets.
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