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Abstract

A considerable amount of work has been dedicated to clustering numerical data sets, but only a handful of categorical
clustering algorithms are reported to date. Furthermore, almost none has addressed the following two important cluster
validity problems: (1) Given a data set and a clustering algorithm that partitions the data set intok clusters, how can we
determine the bestk with respect to the given dataset? (2) Given a dataset and a set of clustering algorithms with a fixed
k, how to determine which one will producek clusters of the best quality? In this paper, we investigate the entropy and
expected-entropy concepts for clustering categorical data, and propose a cluster validity method based on the character-
istics of expected-entropy. In addition, we develop an agglomerative hierarchical algorithm (HierEntro) to incorporate
the proposed cluster validity method into the clustering process. We report our initial experimental results showing the
effectiveness of the proposed clustering validity method and the benefits of the HierEntro clustering algorithm.

1 Introduction

Data clustering is an important method in data analysis. A considerable amount of work has been done in clustering
numerical datasets. Most traditional clustering techniques define distance functions, such as Euclidean distance, for any
pair of items and then to group the items that are close into a cluster [14]. When a distance function is given, it is natural
to introduce the density-based methods [7, 4] to clustering. Correspondingly, such distance functions and the density
concept are also heavily used in cluster validity methods [13, 11].

Traditionally, clustering techniques are not directly applicable for categorical data. Preprocessing is commonly used
to obtain the numeric features from categorical data for clustering. For example, in information retrieval, the vector
model is applied where the frequency of occurrence of a word in document is used as a numerical feature for clustering.
However, there are also many datasets containing categorical data, which could not be transformed to numerical features
appropriately, where special categorical clustering is needed. Examples include partitioning market basket data to find
localized association rules [1], DNA or protein sequence data in Bioinformatics, and alarm messages from intrusion
detection systems. It is widely recognized that clustering based on the categorical features are useful in many application
areas.

Categorical clustering has special characteristics compared to numerical clustering. First, since categories have no
sequential meaning, the definition of distance between categorical records is not intuitive except Hamming distance, in
which the distance is equal to the number of unmatched attributes between two records. Second, similarity based on bulk
of records, e.g. “orderliness” of records, is more significant for clustering categorical data. For example, the “group”
operation in relational database produces groups where the values of grouped attributes are identical in each group – thus
they are totally “ordered”, while categorical clustering allows to introduce impurity into each group, as long as each group
still shows high “orderliness”. Third, when non-distance similarity criterion is used for categorical data, the traditional
cluster validity methods are not applicable anymore. We need appropriate clustering validity methods to determine the
optimal number of clusters and to evaluate the quality of clusters as well.

Cluster validity methods [11] are typically used to evaluate the quality of the clusters produced by certain clustering
algorithm. One main issue in cluster validity is to determine the optimal number of clusters that fits the data set best. In
most numerical clustering algorithms, the structure of clusters can be evaluated by the geometry and density distribution
of clusters. (A good example is to evaluate the clustering result of a 2D experimental data set by visualizing them to
see if the clustering result matches the geometry and density distribution of points.) A good numerical clustering scheme
gives satisfactory “compactness” within clusters and enough “dissimilarity” between clusters. However, since the distance
functions are not suitable and unintuitive for categorical data, intuitive concepts like the geometry and density distribution
are not appropriate in evaluating the quality of categorical clusters.

Although it is unnatural to define a distance function between categorical data or to use the statistical center of a group
of categorical items, there are some algorithms, for example, K-Modes [12] algorithm and ROCK [10] algorithm, try
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to fit the traditional clustering methods into categorical data. However, since the numerical similarity/distance function
might not describe the categorical properties properly and intuitively, it leaves little confidence to the clustering result.
Furthermore, almost none has addressed the following two important cluster validity problems: (1) Given a data set and a
clustering algorithm that partitions the data set intok clusters, how can we determine the bestk with respect to the given
dataset? (2) Given a dataset and a set of clustering algorithms with a fixedk, how to determine which one will producek
clusters of the best quality?

With these problems in mind, in this paper we propose a novel categorical cluster validity method and a hierarchical
algorithm (HierEntro) to incorporate this cluster validity method into the categorical clustering process. This develop-
ment is based on a number of observations. First, we argue that in categorical datasets, the “orderliness (disorderliness)”
of a set of records (or rows, items, instance vectors . . . ) can be captured by the concept of entropy. Second, we observe
that there is a connection between clustering and entropy: clusters of similar points have lower entropy than those of
dissimilar ones, which also implies that a group of points in different clusters should have larger entropy than those in one
cluster. Thirdly, we argue that the expected entropy and its characteristics play critical roles in evaluating cluster quality
and determining the optimal partitioning schemes. Concretely, an ideal partitioning leaves satisfactory orderliness within
a cluster and merging any two clusters in the partitioning scheme should introduce significant disorderliness. The main
idea of our cluster validity method is based on the special properties of increment of expected-entropy with the decreasing
of number of clusters. It suggested us finding the optimal numbers of partitions by observing the “ideal validity graph”.
TheHierEntro algorithm was then proposed to produce an ideal validity graph. The experiments show that HierEntro
can produce high quality clusters and help to determine the optimal clustering schemes.

The rest of the paper is organized as follows. Section 2 briefly reviews the related work. Section 3 defines the
entropy and expected-entropy concepts used in categorical clustering, explores some important properties, and proposes an
incremental expected-entropy based validity method and algorithm HierEntro. Section 4 demonstrates that this approach
is effective in clustering and validating the experimental datasets. Finally, we conclude our work in section 5.

2 Related Work

While many numerical clustering algorithms [13, 14] have been published, only a handful of categorical clustering al-
gorithms appear in literature. The general statistical analysis of categorical data was introduced in [2]. Many ideas in
categorical clustering were also derived from the similar concepts and algorithms in numerical clustering. For example,
KModes algorithm [12] employs the similar ideas in KMeans [13] algorithm, where the distance function and the defini-
tion of mean are re-designed for categorical data. With proper selection of the initial modes, KModes algorithm can be
quite effective and very fast due to theO(N) complexity.

Whereas, ROCK [10] is an adaptation of agglomerative hierarchical clustering algorithm and graph-based algorithm
[14], which heuristically optimizes a criterion function defined in terms of the number of “links” between tuples. Jaccard
coefficient is used to define the similarity, which is then used to defined the links. This linkage-based approach is still
based on the distance function, therefore, it is only applicable to the applications, where the distance function makes
sense.

Gibson et al. introduce STIRR [9], an iterative algorithm based on non-linear dynamical systems. STIRR represents
each attribute value as a weighted vertex in a graph. Starting with the initial conditions, the system is iterated until a
“fixed point” is reached. when the fixed point is reached, the weights in one or more of the “basins” isolate two groups of
attribute values on each attribute. Even though they proved this approach works for some experimental datasets with two
partitions, the user may hesitate in using it due to the unintuitive working mechanism.

CACTUS [8] adopts the linkage idea from ROCK and names it “strong connection”. However, the similarity is
calculated by the “support”. A cluster is defined as a region of attributes that are pair-wise strongly connected.Similarly,
the concept of “support” or linkage is still indirect in defining the similarity of categorical data, and unnecessarily makes
the clustering process complicated. As we suggested, similarity measures based on bulk of records, like entropy, are more
suitable.

Cheng et al. [6] applied the entropy concept in numerical subspace clustering, and Coolcat [5] introduced the entropy
concept into categorical clustering further. There is a connection between clustering and entropy: clusters of similar points
have lower entropy than those of dissimilar ones, which also implies that points in different clusters should have larger
entropy than those in one cluster. Coolcat is kind of similar to KModes. However, Coolcat assigns the item to a cluster
that minimized the expected-entropy. Considering the cluster centers may shifting, a number of worst-fitted points will
be re-clustered after a batch. Even though Coolcat approach introduces the entropy concept into its categorical clustering
algorithm, Coolcat did not consider the problem of finding the optimal number of categorical clusters.

C. Aggarwal [1] demonstrated that localized associations are very meaningful to market basket analysis. To find
the localized associations, they introduced a categorical clustering algorithm CLASD to partition the basket data. They
defined a new similarity measure for a pair of transactions. CLASD is still a kind of traditional clustering algorithm – the
special part is the definition of similarity function for categorical data.

2



Most of recent research in categorical clustering is focused on clustering algorithms. Surprisingly, there is no re-
search concerning about the special validity methods for categorical datasets. We will introduce our validity methods for
categorical datasets in the following sections.

3 Expected-Entropy Based Categorical Cluster Validity Method

In this section, we begin with the specific definition of entropy and expected-entropy that are used in our cluster validity
method. The characteristics of expected-entropy are then explored to introduce the proposed cluster validity method.
With the properties of expected-entropy, we show that the expected-entropy of the optimal partitioning monotonously
increases when the number of clusters of the partitioning scheme decreases. “Validity graph” describes the incremental
rate of expected-entropy between the neighboring optimal schemes. On an “ideal validity graph”, we can easily find
the candidates for the possible optimal number of clusters and “OpPlot” is used to locate them precisely. Finally, an
approximately optimal algorithm in finding ideal validity graph is described and its implementation HierEntro is analyzed.

3.1 Definition of Entropy and Expected Entropy

In the following discussion, we define a datasetS as a table havingd columns andN rows. LetAj denote thej-th column.
There are a limited number of distinct categorical values defined indomain(Aj). Aj is conceptually different from
Ak(k 6= j). Thei-th row can be represented as ad-dimensional vector〈ai1, ai2, . . . , aid〉, whereaij ∈ domain(Aj), 1 6
i 6 N . Let P (ai1, ai2, . . . , aid) be the probability of the vector〈ai1, ai2, . . . , aid〉 appearing in datasetS. The classical
definition of entropy can be described as:

E0(S) = −
∑

ai1∈A1

. . .
∑

aid∈Ad

P (ai1, ai2, . . . , aid) log2 P (ai1, ai2, . . . , aid) (1)

whereP log2 P = 0, if P = 0. Given a datasetS, the probability of one record can be estimated by the frequency of its
occurrence in the instance space. From equation 1, it is easy to inference thatE0(S) 6 0. Generally, if the records are
in D categories, the entropy is in range of [0,log2 D]. The largest value is reached when the categories are uniformly
distributed. Since we should consider the orderliness/disorderliness in each column rather than in record level when
we perform categorical cluster analysis, let us narrow down the entropy definition onto the column level and average
the column entropies as the final entropy for the dataset. As above discussion, the entropy of each column may falls
onto different ranges [0,log2 Dj ], whereDj is the number of elements indomain(Aj). Since the columns having more
categories should have higher probability in generating large entropy and thus may dominate the overall entropy by simply
averaging them, we need to normalize the entropy of each column before averaging. We argue that using1/ log2 Dj as
the normalization weight is appropriate. First of all, it normalizes each column-entropy to the range of [0, 1] eliminating
the dominating factors. Secondly, this normalization slightly reduces the entropy contribution of the columns that have
more categories, which makes the potentially more disordered (“noisy”) columns not disturbing the underlying cluster
structure.

E(S) =
1
d

d∑

j=1

E(Aj), E(Aj) = − 1
log2 Dj

∑

aij∈Aj

P (aij) log2 P (aij) (2)

whereP (aij) denotes the probability of a categorical valueaij in thej-th column and can be estimated by counting the
occurrence frequency of the categorical valueaij in j-th column. When a valueaij in domain(Aj) does not appear in
the datasetS, P (aij) is defined as 0. Obviously, we have0 6 S 6 1.

Evaluating the cluster quality of a clustering scheme should consider the intra-quality of all clusters produced by
the scheme. Partitions in different size having the same entropy should not be regarded as equivalent in the level of
disorderliness. Here, we derive another important concept, theexpected entropy(EE), for assessing the intra-cluster
quality of a bunch of categorical clusters. Suppose a dataset is partitioned tok clusters. LetCk denote a partitioning
scheme ofk clusters,Ci be the clusteri, which has entropy ofE(Ci). Since large partitions have more influence over the
quality of scheme, we define the expected entropy of a clustering scheme as the entropy sum of all partitions weighted by
the size of each partition.

EE(Ck) =
k∑

i=1

Ni

N
· E(Ci) =

1
N

k∑

i=1

Ni · E(Ci) (3)

whereN is the total number of instances in the datasets, andNi is the number of instances ini-th partition. We name the
variable partNi · E(Ci) as the “weighted entropy”, which shall be used in the following lemma proof.

Expected entropy could then be used to assess the intra-cluster quality of a categorical clustering scheme as the
compactness indices do to the numerical clustering. We have the relationship:The smaller expected-entropy⇐⇒ the
possibly smaller entropy in each cluster⇐⇒ the more items similar in each clusters⇐⇒ the more “compact” the cluster.
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Therefore, given a bunch of clustering schemes with the same number of clusters, the best scheme can be defined as the
one having the lowest expected-entropy.

Expected-entropy gives a way to assess the quality of clustering schemes if the number of clusterk is given. Whenk is
not determined, we need to find the optimalk (or possibly a number of goodk’s), which gives acceptable quality among all
clustering schemes. Traditionally, statistical indices are applied to evaluate the schemes with different number of clusters.
The peaks, valleys, or distinguished knots on the index curve are regarded the interesting points, the corresponding number
of clusters to which is then recommended as the best number of clusters (the bestk). Can the expected-entropy serve as
such an index? In order to answer this question, we have to explore the characteristics of the expected-entropy.

3.2 Characteristics of Expected-entropy in Finding the Globally Optimal Categorical Clusters

Given the number of clustersk, there is at least one optimal clustering scheme having the lowest expected-entropy among
all possiblek-cluster schemes. We would like to check over the expected-entropy curve of these optimal schemes. To
discover the shape of expected-entropy curve, we start with the initial scenario where each instance is a cluster and
the expected-entropy is zero (Lemma 1). We then use Lemma 2 to prove that the expected-entropy of optimal scheme
monotonously increases when the number of clusters decreases (Lemma 3). So expected-entropy is inadequate to find
the optimalk. However, the increasing rate of expected-entropy between the neighboring optimal schemes may reveal
some important properties behind the expected-entropy curve. We then define the “validity graph” and “ideal validity
graph” for probing the possible optimal schemes. To begin with, we first introduce the lemmas that help us describe the
expected-entropy curve.

Lemma 1. (Zero Start)The smallest expected-entropy is zero when each instance is considered as a cluster.

Proof : Since the expected-entropy is non-negative by the definition, the minimum value, zero, is reached when each
cluster has zero entropy. This happens when each cluster contains identical instances and the extreme situation is that
each cluster contains only one instance.

Any k-cluster scheme can be formed by merging two clusters of some (k+1)-cluster scheme, therefore, we are inter-
ested in the property of this merging.

Lemma 2. (Incremental Merging) Merging two clusters in any clustering scheme increases the expected-entropy or
keeps the expected-entropy unchanged.

Proof : Intuitively the merging should increase the global disorderliness. Formally, letC1 andC2 be the two clusters to
be merged, withN1 andN2 records respectively in ak-cluster partitioning scheme. By the definition of expected-entropy
(equation 3), we want to prove that the sum of the weighted entropy ofC1 andC2 is less than the weighted entropy of
C1 ∪ C2, i.e.

N1 · E(C1) + N2 · E(C2) 6 (N1 + N2)E(C1 ∪ C2), or

−1
d

d∑

j=1

1
log2 Dj

∑

aij∈Aj

N1 · P1(aij) log2 P1(aij)− 1
d

d∑

j=1

1
log2 Dj

∑

aij∈Aj

N2 · P2(aij) log2 P2(aij)

6 −1
d

d∑

j=1

1
log2 Dj

∑

aij∈Aj

(N1 + N2) · P1∪2(aij) log2 P1∪2(aij) (4)

Therefore, to prove (4), we can check if the following relation is satisfied:

N1 · P1(aij) · log2 P1(aij) + N2 · P2(aij) · log2 P1(aij) > (N1 + N2)P1∪2(aij) log2 P1∪2(aij) (5)

Without loss of generality, suppose clusterC1 hask items and clusterC2 hasm items having valueaij at j-th
column. The formula 5 can be transformed tok log2

k
N1

+ m log2
m
N2

> (k + m) log2
k+m

N1+N2
. Sincek,m, N1, N2 are

positive integers, letk = u · m andN2 = v · N1, (u, v > 0), and then we can eliminatelog2 to get a simpler form:
v

(1+v)u+1 6 uu

(1+u)u+1 . It is easy to prove that uu

(1+u)u+1 is the maximum value of the functionf(v) = v
(1+v)u+1 (u, v > 0).

Therefore, formula (5) is true and thus (4) is true. Lemma 2 is proved. We then try to see what the relationship is between
the neighboring optimal schemes havingk andk + 1 clusters respectively.

Definition 1. A k-cluster clustering scheme is optimal, if the scheme gives the minimal expected-entropy among all of the
k-cluster schemes. We useOpEE(Ck) to denote the minimal expected-entropy ofk-cluster schemes, e.g.OpEE(Ck) =
min{EE(Ck

i )}, whereCk
i represents any of the possiblen-cluster clustering schemes.

Lemma 3. OpEE(Cn) > OpEE(Cm), whenn < m
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Figure 1: Sketch of expected-entropy graph.
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Figure 2: Sketch of ideal validity graph.
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Proof : This lemma says that, whenn < m, the optimal partitioning ofn clusters has the same or larger expected-
entropy than that ofm clusters. It is easy to constructively prove it, when we have Lemma 2. Let us construct one
arbitrarym-cluster schemeCm

1 by splitting the clusters in an optimaln-cluster scheme. With Lemma 2 and definition 1,
we have

OpEE(Cn) > EE(Cm
1 ) > OpEE(Cm). (6)

The first equation in above formula is satisfied when only merging of identical instance vectors happens fromCm
1 to Cn.

The second equation is satisfied whenCm
1 is an optimal scheme ofm clusters. Therefore, the optimal expected-entropy

monotonically decreases with the increasing of the number of clusters. Our experimental results show that a reasonable
categorical clustering algorithm produces expected-entropy curves similar to Figure 1. This curve implies that, 1) it is
highly possible that the globally optimal clustering scheme is not unique in terms of expected-entropy and 2) expected-
entropy is not a good index for finding the optimalk.

What can we explore more from the expected-entropy relationship? Let us look at the incremental rate of expected-
entropy instead. Intuitively, small incremental rate between two neighboring schemes implies that they are similar in
terms of the expected-entropy. If expected-entropy increases a lot when the number of clusters is reduced, this reduction
of number of clusters introduces too much disorderliness into the partitions and probably should not be suggested. By
looking at the incremental rate of expected-entropy, we can probably find a series of neighboring “stable” schemes, which
have small increasing rate on expected-entropy, and we may also find the points where a series “stable” schemes become
a “less stable” scheme – the incremental rate increases dramatically. All of these changes on the incremental rates have
some specific meaning behind.

Hence, in order to explore the possible globally optimal schemes, we first formally definethe increasing rate of
expected-entropy(IEE) as the increment of expected-entropy from the(k + 1)-cluster clustering scheme tok-cluster
scheme:IEE(k) = EE(Ck)−EE(Ck+1), and the IEE plot as the “Validity Graph”. We also define a validity graph
satisfyingIEE(k) > IEE(k + 1) for k = 1..N − 1, is an “Ideal Validity Graph (IVG)”. Since an ideal validity
graph is usually a step-like curve (Figure 2), it is much easier to find the candidates of globally optimal schemes from it
– the global optimal schemes may be at the points of the ideal validity graph where the IEE drops sharply and reaches a
“platform” as the number of clusters increases. Figure 2 sketches an ideal validity graph and the possible globally optimal
schemes. Generally, the decision rules can be described as follows:1) schemes are at the platform area of IVG⇐⇒
schemes have similar qualityand2) a dramatic dropping at IVG implies a candidate of optimal scheme

In order to observe the possible optimal numbers clearly, we try to extract the key “knots” on the ideal validity graph
automatically. As above description, the optimal points can be defined as follows.k is an optimal point at the ideal validity
graph, ifIEE(k − 1) − IEE(k) is much larger than(IEE(k) − IEE(k + 1)) compared to the other points in a local
area[k−n, k + n], wheren is a small integer. These “knots” can be precisely extracted from the 2nd order differential of
IEE curve. We define∆IEE(k) = IEE(k)− IEE(k +1) and∆2IEE(k) = ∆IEE(k− 1) - ∆IEE(k). By looking
at the∆2IEE(k) plot, we can find the candidates of optimal numbers are among the top-k peaks (Figure 3) from left to
right. We name the plot of∆2IEE(k) as “Optimal Top-k Plot (OpPlot)”, which is only used to extract the candidates
of optimal numbers from ideal validity graph automatically.

3.3 an Algorithm for Generating Ideal Validity Graph

The precise way to find the validity graph is to calculate the optimal expected-entropy for eachk, k = 1..N . However,
this optimal method is highly complex in computational cost for even a small dataset. To simplify the computation, we
propose a greedy algorithm, which produces near optimal expected-entropy for eachk and an ideal validity graph for
identifying the candidates of the globally optimal schemes in an acceptable cost.

This algorithm begins with the scenario, where each instance vector is a cluster and the expected entropy is 0 as
Lemma 1 describes, and then iteratively find a pair of clusters to merge, the merging of which leaves the minimum
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Figure 5: IEE table and the operation schedule following a merging operation

increment to the expected-entropy. The merging continues until the number of clusters becomes 1. The expected-entropy
in each step is saved for generating validity graph and OpPlot. Meanwhile, the clusters and their sub-clusters form a
cluster tree in the merging process and record the merging process precisely. Any of the candidate optimal schemes can
be easily extracted from the tree and the hierarchical structure between the candidates also helps the user to understand the
relationship between them. This merging does not ensure the optimality, however, the quality of the generated clustering
schemes is proved very high in the experiments. More importantly, this algorithm could produce an ideal validity graph
while the other algorithms do not. We shall prove it later.

We definethe incremental rate of expected-entropy in merging two clusters(IEEM) as the dissimilarity measure
for a pair of clusters. Concretely, if two clusters contain identical records, merging them will keep the expected-entropy
unchanged (Lemma 2), thusIEEM = 0, and the dissimilarity is the lowest. If the two clusters are very different, the
merging will introduce large disorderliness, i.e.IEEM will be large and the dissimilarity between them is large.

Definition 2. LetCi andCj denote the two merged clusters, havingNi andNj records respectively. The incremental rate
of expected-entropy in the merging:IEEM(Ci,Cj) = 1

N {(Ni+Nj) ·E(Ci∪Cj)−Ni ·E(Ci)−Nj ·E(Cj)}. Similarly,
we defineIEEM(Ci,Cj ,Ck) as the incremental rate of expected-entropy in merging three clusters in the sequence ofCi

andCj and thenCk.

With Lemma 2, we knowIEEM(Ci,Cj) > 0. By the above definition we also haveIEEM(Ci,Cj ,Ck) =
IEEM(Ci,Cj)+IEEM(Ci∪Cj ,Ck) = 1

N {(Ni+Nj +Nk)E(Ci∪Cj∪Ck)−Ni ·E(Ci)−Nj ·E(Cj)−Nk ·E(Ck)}.
Therefore, changing the sequence of merging three clusters will not change the increment of expected-entropy. Obviously,
we also haveIEEM(Ci,Cj ,Ck) > IEEM(Cx,Cy), where(x, y) is any combination of two elements in(i, j, k).

Lemma 4. The greedy algorithm generates an ideal validity graph.

Proof : sorting any pair of clusters(Ci,Cj) by IEEM(Ci,Cj) value in ascending order, the greedy algorithm merges
the pair having the minimumIEEM(Ci,Cj) each time, and the global weighted expected-entropy is increased by the
minimumIEEM(Ci,Cj) at meanwhile. After merging, theIEEM(Ci,Ck) andIEEM(Cj ,Ck)(k 6= i, j) should be
updated toIEEM(Ci,Cj ,Ck), since the clusterCi andCj have been replaced by the clusterCi ∪ Cj . As we have
discussed, we have the updated valueIEEM(Ci,Cj ,Ck) > IEEM(Ci,Cj). Therefore, in next merging the greedy
algorithm will pick a pair of clusters, which, in any case, hasIEEM value greater thanIEEM(i, j). Generated by this
algorithm, the incremental rate of expected-entropy between two neighboring schemesIEE(k) is equal to theIEEM at
stepk. Therefore, the produced validity graph is an ideal validity graph.

At first look, it seems that finding the pair of clusters of minimumIEEM is very costly. However, with the proper
data structure, the entire algorithm can be implemented in the complexity ofO(N2) IEEM calculation, plusO(N2)
heap operations (insertions and deletions).

3.4 The Hierarchical Expected-entropy Based Clustering/ Validating Algorithm (HierEntro)

We implement the algorithm proposed in the last section with an efficient hierarchical way (HierEntro). “Summary
tables” and a priority queue built on heap are used to simplify theIEEM calculations and the merging operations.

The expected-entropy computation is based on frequency counting of each categorical value in each attribute. To
facilitate the frequency counting process, we build up a summary table for each cluster to keep track of the frequency of
each category in each attribute. Such a summary table is also helpful for the merging operation. To merge two clusters,
we just need to sum up the two summary tables as that of the new cluster.

A priority queue built on heap is used to choose the candidate pair clusters having minimumIEEM . An auxiliary
2D table (IEEM -table) (Figure 5) is used to save the IEEM value of merging each pair of clusters. Initially the table has
less than half entries (N(N−1)

2 ) full and each entry is pushed into the priority queue.
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The merging operation is not only merging two summary tables, but also updating the relatedIEEM entries. Con-
cretely, if Ci is the master cluster in merging(Ci, Cj), Cj should be merged toCi and theCj relatedIEEM entries,
i.e. the entries(k, j) and(j, k)(k 6= j) should be removed from the priority query. And the entries(i, k) or (k, i)(k 6= i)
should be updated with the valueIEEM(Ci, Cj , Ck).

The algorithmHierEntro output a set of expected-entropies indexed by the number of clusters, and the hierarchical
cluster label tree which encoding all candidate optimal schemes. Due to the space limitation, we give the concrete
algorithm in the appendix.

3.5 Complexity Analysis for HierEntro Algorithm

The cost of HierEntro comes from several parts, including the initialization of summary tables, the initialization of
IEEM -table, the merging operations, and the heap operations. Initializing summary table costsO(N) I/O operation
and Initializing IEEM -table costsO(N2)IEEM calculation. EachIEEM calculation includes adding up the two
summary tables and computing the weighted entropy with the merged summary tables. However, the calculation of
weighted entropy can be simplified, since:

Ni · E(Ci) = −1
d

d∑

j=1

1
log2 Dj

∑
ajk∈Aj

cjk=freq(ajk)

Ni · cjk

Ni
log2

cjk

Ni

= −1
d

d∑

j=1

1
log2 Dj

∑
ajk∈Aj

cjk=freq(ajk)

cjk(log2 cjk − log2 Ni)

Since the frequencycjk and the number of instanceNi are non-negative integers, an auxiliary array can be used to buffer
thelog2 values. By using thelog2 value buffer, the complexity of calculating weighted entropy can be reduced toO(dm),
whered is the number of attributes andm is the average number of categories in an attribute. The total runs of merging
operations costO(N2)IEEM calculation andO(N2) heap operations (deletions and insertions, each inO(log N)).
Therefore, the total time complexity isO(dmN2 + N2 log N).

The summary tables requireO(dmN) space, the auxiliary array for log calculation costsO(N) space and both of
IEEM -table and the heap costO(N2). So totally, the algorithm needsO(N2) space to process a categorical dataset in
size ofN rows byd columns.

4 Experimental Results

In this section, we first explore more characteristics of the proposed validity method with some small synthetic datasets
for easy understanding. Then, we show the quality of HierEntro clustering results on two real datasets: archaeological
and soybean-small data, compared to the other three categorical clustering algorithms: ROCK [10], KModes [12] and
CoolCat [5], in terms of expected-entropy. Validity graphes on the above results show how the validity method with
HierEntro works in revealing the possible optimal partitioning schemes of real categorical datasets. The experimental
results conclude that HierEntro can not only gives clustering schemes in high quality, but also help to determine the
possible globally optimal clustering schemes.

Another problem with the categorical clustering is how to understand the clustering result well. Interpreting the
result with external labels is a good way helping to understand the clustering results. Previous research on categorical
clustering falsely used the external labels to validate the quality of their algorithmic results. However, the cluster structure
is determined only by the inherent properties of the dataset with the meaningful similarity measures, not by any external
information. Therefore, we would like to name this validation process as “validating the consistency between external
labels and the defined cluster structure”, rather than “validating the quality of clusters with external labels”. The proposed
validity method, together with HierEntro, can help to check the consistency efficiently.

4.1 Experimental characteristics of the validity method

Let us construct a 2-column 10-record categorical dataset DS1:{(a 0), (a 1), (b 0), (b 1), (c 0), (c 1), (d 0), (d 1), (e
0), (e 1)}. The first column contains 5 categories (a, b, c, d, e) equally in size and the second column contains boolean
values (0,1) equally in size. The ideal validity graph (Figure 6) suggests that the partitioning of 2 clusters, which equally
partitions the dataset by the boolean column, is the best one. Roughly, the ideal validity graph shows the schemes from
2-cluster to 8-cluster are all very similar in terms of expected-entropy, so we can choose the 2-cluster scheme as the best.
People may intuitively think that another scheme of 5 clusters, i.e. the one partitioned by the first column, is a suboptimal
one, but the graph seems not suggest a 5-cluster scheme, but a 4-cluster scheme. What is the difference here? Let us look
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Validity graph of DS1
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Figure 6: Ideal validity graph for DS1
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Figure 7: Validity graph of some simple datasets.
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Figure 8: Validity graph for uniformly distributed data

at the 5-cluster schemes generated by HierEntro,{{(a 0), (b 0), (e 0)}, {(a 1), (e 1)}, {(b 1)}, {(c 0), (d 0)}, {(c 1), (d
1)}}. It seems that the partitioning is biased by the second column. This is true since the second column has categories
and thus weighed more in expected-entropy. By doing so, HierEntro can correctly focus on the optimal schemes with less
number of clusters.

Experiments on more datasets clearly show that HierEntro can capture the optimal numbers correctly. We design a
set of 2-column 10-record datasets, where the first column contains a number of clusters, while the second column has 10
categories represented by 0..9, which do not suggest any cluster structure. For example, a 6-cluster dataset is (a 0), (a 1),
(b 2), (b 3), (c 4), (c 5), (d 6), (d 7), (e 8), (f 9).

Datasets in uniform or normal distribution are tested to see if the validity results confirm the inherent structures. 4
different datasets for each distribution are used. Each column of the datasets contains 8∼12 categories. Uniform datasets
have all categorical values in one column uniformly distributed. A normal-distribution dataset has one multi-dimensional
center, and all categorical values are normally distributed around this center. so there is no non-trivial cluster structure(only
one cluster) in the normal datasets either. The validity graphs (Figure 8 and 9) confirm that there is no obvious cluster
structure in all of the datasets – no significantIEE dropping happens.

4.2 Finding the possible optimal partitions in real datasets

In this section, we want to experimentally prove that the HierEntro clustering results have very good quality in terms of
expected entropy, even though it does not ensure the optimal expected-entropy. The validity graphs are also used to find
the possible optimal partitions. Two datasets are used here.

• Archaeological data is used in Coolcat paper [5] and originally in [3]. This is a hypothetical collection of human
tombs and artifacts from an archaeological site. It has 9 attributes and 20 instances. The first attribute indicates
the sex (M for male, F for female) of the individuals buried. The other eight attributes are binary (1 present, 0
non-present), and represent artifacts types (e.g., ceramics, bracelets, arrow points) that were found (or not found) in
the tomb. So basically it is a boolean dataset.

• Soybean-small dataset was used by K-Modes [12] and can be found in UCI machine learning database (www.ics.uci.edu).
This is a small subset of the original larger data set(soybean-large). It has 35 attributes and 47 instances, containing
4 clusters as the document says. The 35 attributes contains the month, temperature, leaf shapes, seed conditions,
and all other factors that can be significant in causing soybean diseases. There are 8 columns containing more than
2 categories, several columns having identical data (thus no use in clustering), and the others boolean data.

We choose to evaluate four algorithms: K-Modes, Coolcat, ROCK [10] and HierEntro. We will briefly introduce
the compared three algorithms in the related work. Among the three, K-Modes and Coolcat are consistent with the
expected-entropy oriented method, while ROCK is a distance/linkage based algorithm, which is not consistent with the
expected-entropy criterion. The quality of different clustering schemes are evaluated by the expected-entropies. Since
Coolcat is a randomized algorithm, we run Coolcat 20 times on each number of clusters and pick the best result as
‘Coolcat-best’ and the average of the 20 results as ‘Coolcat-avg’.

The expected-entropy graph shows that the three algorithms: HierEntro, Coolcat and K-Modes produce results in
similar quality, while ROCK presents not so good expected-entropies since it uses the linkage-based approach. Even
though the results of ‘Coolcat-best’ are likely to reach the optimal expected-entropy, HierEntro almost always generates
the schemes having the lowest expected-entropy among the three algorithms. In addition, only the validity graphs of
HierEntro are ideal validity graphs, which can help us conveniently determine the optimal number of clusters. We can see
that other algorithms give irregular zigzag lines indicating nothing significant for evaluation.

In the OpPlot of archaeological dataset, 2 is highly suggested as the optimal number of partitioning (Figure 14).
Checking the produced labels for 2-cluster scheme, we find it is 100% consistent with the ’sex’ column! This is interesting!
For soybean dataset, 2-cluster or 4-cluster partitioning are recommended as the best ones (Figure 15). Checking the

8



Validity graph for normally distributed data
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Figure 9: Validity graph for normally distributed data.
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Figure 10: Expected-entropy of archaeological data.
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Figure 11: Validity graph of archaeological data.
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Figure 12: Expected-entropy of soybean data.
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Figure 13: Validity graph of soybean data.
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Figure 14: Finding the optimal numbers for archaeologi-
cal data.

description given in the literature – there are 4 types of soybean diseases being tested, so we look at the 4-cluster clustering
result. Comparing the external labels (labeling the datasets with the four diseases) to the HierEntro 4-cluster result, we
surprisingly found that they are also 100% consistent! The experimental result on the real datasets proves that HierEntro
and the validity method can be effective in identifying the interesting structure.

4.3 Validating the Consistency between External Labels and Entropy-based Clusters

Since clustering is an unsupervised grouping process, there is no explicit label provided for clustering. Any validity
methods using external labels to validate the cluster quality are not feasible. However, external labels are often provided
as the application specific knowledge by domain experts to explain or understand the clustering result. Re-categorizing
the clustering result with the domain knowledge is also an efficient way to understand the inherent structure in the dataset.
However, since there are many possible clustering schemes, how to choose the candidates for consistency checking is
a important problem. The validity method plays important role in choosing the candidates, while the HierEntro result
makes this process even easier – checking one candidate is enough to determine the consistency level.

We define the consistency between external labels and a clustering scheme as follows. Looking at one cluster, find the
external label that labels the most cluster members and regard it as the major label. The other labels are regarded as minor
labels for this cluster. The impurity of external labelling is evaluated by the percentage of the minor labels over all labels.
Lower impurity means the corresponding external labels are more consistent with the categorical clustering result.

Since HierEntro merges a pair of cluster in each step, with the reduction of number of clusters, the impurity should
increase or keep unchanged by the definition. Therefore, we do not need to check the consistency on each possible optimal
number. Instead, we only check the impurity level around the largest possible optimal number of clusters to determine
consistency level.

Let us look at the example of “mushroom” dataset. The external labels are given by the original dataset, indicating
“poisonous” or “edible”. They were shown possibly consistent with the categorical clustering result by ROCK [10].
We checking the consistency one a 2000-record random sample. As the document of the dataset describes – there are
around 20 kinds of mushrooms, we choose the largest optimal number of clusters (< 20) from the OpPlot, which is
16. The corresponding impurity plot shows that in partition number of 16 the unmatching rate is very low, only about
0.9%. Therefore, we confirm that the consistency level is high. Re-categorizing these 16 clusters to either “poisonous” or
“edible” is meaningful. Further domain-related analysis can be focused on the clusters that are not purely labelled.

5 Conclusion and Future Work

Most of the recent research about categorical clustering is adapting the techniques in numerical clustering to the categorical
counterpart. Since this revision, especially, the distance definition, is very unnatural for categorical data, the clustering
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Figure 16: Validity graph of mushroom data.
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Figure 17: Unmatching rate of external labels.

results are not well-understandable, nor applicable in combining domain knowledge. In this paper, we proposed a cluster
validity method based on the characteristics of entropy and expected-entropy. We developed an agglomerative hierarchical
algorithm (HierEntro) to incorporate the proposed cluster validity method into the clustering process. The validity method
suggests us to find optimal number of clusters by observing the ideal validity graph. The HierEntro algorithm then
proposed to generate an ideal validity graph. Our proposed approach has three unique features: First, it produces high-
quality clusters in terms of expected-entropy. Second, it recommends those globally optimal partitioning schemes to be the
candidate choices to set the best value for the parameterk (the total number of clusters). These candidates are formed in
a hierarchical way, making it easy to understand the correlation between the candidates. Thirdly, the HierEntro clustering
algorithm helps to validate the consistency between the external labels and the inherent cluster structure efficiently.

From our initial experiments, we have shown the effectiveness of the proposed clustering validity method and the
benefits of the HierEntro clustering algorithm. Although the current complexityO(N2 log N + dmN2) prevents Hier-
Entro processing very large datasets efficiently, many techniques, such as sampling or summarization can be potentially
combined to process very large datasets. Therefore, improving the scalability of HierEntro will be the next step towards
finding optimal partitions of large categorical datasets.
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