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SUMMARY 

The goal of representing the physical state of a part throughout the manufacturing process 

as a digital twin has become a popular topic in recent years. With new advancements in additive-

subtractive (hybrid) technologies, the need to gather and process spatial information from inside 

a CNC system has intensified. Open-loop g-code execution continues to operate with no 

feedback to describe the current state of the workpiece. It is evident that scanning sensors must 

be integrated into future machining systems in order to construct a closed-loop architecture 

whereby the controller can process geometric data to update subsequent commands. This 

dynamic, closed-loop g-code architecture will revolutionize manufacturing.  

In order to advance the research in close-loop machining systems, this thesis presents a 

simple but novel technique for voxel volume model registration. This is done through the 

application of registering and machining near-net-shape structures and rough castings. Through 

the implementation of a Euclidean distance transform and variance calculation, an intensity-

based similarity metric is demonstrated over a discrete voxel domain driven by a metaheuristic 

registration algorithm. Simulation tests conducted over a uniform grid structure show that the 

technique is successful in positioning a floating volume inside its corresponding near-net-shape. 

Results for six 0.1mm resolution voxel models are reported followed by the metric’s 

performance under different starting conditions and registration constraints. Tests indicate that 

the technique works best for narrow to moderately offset volumes.   

The technique is presented as a prototype to demonstrate the viability of the method. 

Further applications and refinements of this simple technique will provide engineers with an 

additional method for part registration to be used in future developments of closed-loop 

machining systems.
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CHAPTER 1: INTRODUCTION 

1.1 Problem Context 

The machining of castings, weldments and irregular structures present several challenges 

to production. The field of reverse engineering often requires that parts be duplicated when a 

computer-aided design (CAD) model is not readily available. Being able to digitally represent 

this data in a fast and accurate manner is imperative to compete in a modern, global economy 

which demands rapid production and short process workflow times. Similarly, machine or 

robotic toolpaths generated through a computer-aided manufacturing (CAM) software require 

the user to define a starting volume or stock material. Many such starting volumes or rough 

castings are complex and vary in their dimensional compliance. Even if an accurate computer 

model of the starting volume can be obtained, the programmer must position the CAD model 

properly relative to this starting material.          

 Uncertainties about the actual dimensions of the starting cast material when machining 

rough castings is a topic of common concern. The process of assessing a workpiece prior to 

machining is referred to as “marking-out” and typically involves the manual process of leveling 

on a special plate [1]. There is a danger that a rough casting received on the shop floor is not 

within tolerance due to the dimensional inaccuracies from thermal deformation in the 

manufacturing process. Industry needs to quickly determine whether a part is within tolerance to 

ensure a necessary allowance for all to-be-machined surfaces or if it should be scrapped.  Optical 

scanners and computer vison programs have been used to scan and calculate whether a casting is 

adequate for machining and what adjustments should be made for proper alignment. For many of 

these computer vison techniques, datum planes or points are needed and are created by either 

machining the stock itself or by integrated markers on a specialized fixture [2]. Various fixture 
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schemes exist [3][4] for specific parts so the pre-programmed g-code can be run with little to no 

adjustment to the material. However, the processes of marking-out and any subsequent part-

fixture adjustment is time-consuming, and therefore costly.  

These difficulties stem from the fact that the traditional manufacturing process workflow 

of progressing from CAD to CAM to execution on a numerical controller (NC) is inefficient. 

Currently, toolpath programming is done separately from the actual computer numerical 

controller (CNC) which executes the commands specified in a g-code file. This puts the burden 

on the shop floor to conform to machine kinematics that have already been defined. Little 

flexibility is offered in cases of damaged stock, changing fixtures or swapping tools.  

This research argues that the most effective way to machine weldments and irregularly 

shaped casings, particularly in a low volume production scenario, is through the development of 

a closed-loop machining system (CLMS). That is, a system capable of sensing and processing 

empirical data about the workpiece and generating g-code directly from the controller. Such a 

system would be able to update toolpaths in discrete, real-time intervals throughout the 

manufacturing process. Through the use of optical scanning technology, a CLMS would have the 

ability to evaluate the material removal error from tool/part deflection and tool wear to make 

corrections in subsequent g-code commands directly. Moreover, interruptions from tool breaks 

and minor crashes would not necessarily mandate that the machining process be restarted.  

In order for such a system to be implemented, methodologies for part/volume registration 

need to be explored. After a CAM package embedded in a CLMS acquires positional data 

describing the workpiece, the software needs to process the relationship between the current 

stock volume and the desired final part. This digital twin (DT) is the key to generating toolpaths 

from the near-net-shape (NNS) stock instead of maneuvering the workpiece position to conform 
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to a static g-code. In other words, the CAD model describing the target part geometry needs to be 

aligned inside the NNS. Such an alignment should be one that ensures enough material is present 

to encompass all to-be-machined surfaces. For efficient machining, the amount of material 

encompassing the final part model should be as uniform as possible to avoid unnecessary 

toolpaths and maintain consistent feed rates.   

 

1.2  Purpose of Thesis 

This thesis presents a process for digital twin part/volume registration within the context 

of closed-loop machining systems. It is proposed that integrating optical scanning technology 

into CNC machines will allow for closed-loop feedback of a DT representation. Comparisons 

between this DT and a desired final part geometry model will allow machine controllers to 

produce g-code dynamically. This research focuses on the initial task of investigating a technique 

to register CAD models with volumetric data from point cloud scanners.  

A proposed intensity-based optimization metric is demonstrated as a simple but novel 

approach to NNS voxel volume registration. Unlike methods commonly used in medical imaging 

and point clouds, which are focused on consolidating separate sets of data into a single, overlaid 

volume, the registration described in this thesis minimizes the variance of selected distance field 

values. This allows for an optimization algorithm to drive a floating model to be positioned 

inside a larger reference volume so that the amount of material present between the two models 

is as uniform as possible. 

In order to demonstrate the utility of this method, registration tests were conducted for 

voxel-based models over a simple uniform grid structure. The initial results of applying three 

different metaheuristic optimization techniques are reported to broadly illustrate their behavior. 
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Additional tests conducted using a genetic algorithm demonstrate the method’s performance 

under different conditions and constraints. In each case the computation of a 6 degree-of-

freedom transformation is directed to fit a target part geometry inside a NNS rough casting 

volume. A test suite of parts with differing levels of complexity shows that the technique is 

applicable to a wide range of geometries.   

It should be noted that this thesis does not seek to provide a direct implementation of 

point cloud to voxel part registration. Instead, the background and basic theories are discussed 

and demonstrated to facilitate further research into CLMS and their machine/computer vision 

registration algorithms. While a complete development of the ideas presented is beyond the 

scope of this research, the proposed method’s feasibility is validated by a series of successful test 

results for NNS volume registrations. Areas where the registration does not perform well are also 

covered to indicate in what situations the technique should not be applied.   
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CHAPTER 2: BACKGROUND AND PRIOR WORK 

This section covers related research and prior work on four main topics that are included 

in this thesis: the digital twin concept, closed-loop CNC control, direct point cloud machining 

and alignment algorithms for machinable castings.  

 

2.1  The Digital Twin 

Advancements in model-based design, digital manufacturing, cloud computing and big 

data analytics is leading industry to what will likely be the next industrial revolution. The ease of 

acquiring and transferring real-time digital data has made it possible for engineers to consolidate 

this information into a virtual object. This object is referred to as a digital twin. Glaessen and 

Stargel [5] define the DT as “an integrated multiphysics, multiscale, probabilistic simulation of 

an as-built vehicle or system that uses the best available physical models, sensor updates, fleet 

history, etc., to mirror the life of its corresponding flying [or physical] twin.”  Similarly, 

Boschert and Rosen [6] refer to it as “a comprehensive physical and functional description of a 

component, product or system which includes more or less all information which could be useful 

in all—the current and subsequent—lifecycle phases.”  

Although efforts have been made to provide a rigorous, conceptual template for the 

concept [7], the DT can be simply regarded as the result of advancing information and sensor 

technology providing a new wealth of data for engineers to make more informed decisions. In 

general, the DT can be thought of as being comprised of three main sub-categories: (1) the 

physical product/system or “physical space”, (2) the virtual representation of the product/system 

or “virtual space” and (3) all the data lines that connect the physical and virtual product/system 

which facilitate the exchange of information [8][9]. It should be noted that the interaction 
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between the two spaces is a key feature of the DT. For example, a sensor measuring tool chatter 

(physical to virtual interaction) may send the frequency data to a cloud register where a program 

can then send commands to adjust the spindle speed and/or feed rate  (virtual to physical 

interaction).   

 Numerous applications of the DT concept have been published. Hochhalter [10] 

described the use of embedded sensory particles with a DT model to detect cracks in NASA 

vehicles parts. The integration of non-geometric data into a CAD model was investigated by 

Miller et. al. [11] as an advancement in model-based paradigms. This demonstrated data storage 

of parameters such as heat, pressure and surface roughness in a CAD plugin. Zhang et. al. [12] 

applied the DT to customizable design through a case study of a glass production line. Finally, 

steps were taken by Knapp et. al. [13] to build a DT for additive manufacturing. Their model 

produced accurate predictions for temperature, cooling and solidification parameters.   

Although it is equally valid to apply the DT concept to entire systems, we will focus on 

the DT’s role in a single-unit production for the remainder of this research. Specifically, we will 

consider the interaction between the physical and virtual representations of a part through the 

machining processes. 

 

2.2  Closed-Loop CNC  

As industry reacts to changing conditions in a globally competitive market, machining 

systems must respond by integrating the separate process workflows of design and NC operation. 

G-code (ISO 6983) is the low-level language which is still the prevailing machine tool 

programming standard. STEP-NC (ISO 14649) was developed as an extension of the Standard 

for Exchange of Product data model (STEP) (ISO 10303) to facilitate the bidirectional exchange 
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of geometry data between CAD-CAM systems [14]. Unlike g-code, which consists of sequential 

tool and motion commands, STEP-NC is feature-based, high-level and object-oriented. This 

makes the standard much more intuitive. Furthermore, STEP-NC allows for shop floor feedback, 

making production more flexible and responsive to changes. Whereas traditional g-code 

maintains a separation between CAD, CAM and the NC controller, STEP-NC integrates the 

process. This makes the controller the central intelligence capable of generating toolpaths from 

an embedded CAM system [15].   

 Naturally, engineers have started examining this new closed-loop CNC architecture 

capable of processing measurement data to alter toolpath trajectories and parameters accordingly. 

Dynamic path planning will further automate the manufacturing process and avoid errors from 

tool wear, chatter and misaligned fixtures. The research from Brecher et. al. investigated the 

combination of part inspection with data feedback in the STEP-NC workflow. They also stressed 

that STEP-NC is a passive data model requiring intelligent, closed-loop functionality to be 

developed independently in order for closed-loop process planning to be realized. Rauch et. al. 

[16] introduced a STEP-NC platform designed for simulating and optimizing high speed 

machining operations. A prototype architecture and object-oriented controller was constructed by 

Hu et. al. [17] with integrated sensors for real-time control. Recently, Lynn et. al. [18] 

implemented a direct servo control scheme for digital volumetric processing from a 5-axis CAM 

software. Their servo position feedback loop was demonstrated on a modified, consumer grade 

5-axis mill with a LinuxCNC© based controller. 
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2.3  Direct Point Cloud Machining 

Traditionally, reverse engineering necessitated the acquisition and conversion of discrete 

points to a CAD model before proceeding to additive or subtractive operations [19]. However, 

the meshing process is time consuming and can be susceptible to errors introduced by the file 

format conversion. The desire to avoid this conversion has led recent investigations into direct 

point cloud machining for reverse engineering. Much of the prior research in this area has been 

focused on the development of various path planning strategies for direct 3-axis machining from 

point cloud data. Barnfather and Abram [20] presented an algorithm which used this data as a 

means of error compensation for lower cost industrial robotics. The dimensional error in 

machining was considerably decreased by integrating optical point data into the path planning 

computations. Feng and Teng [21] applied a piecewise path generation algorithm to point clouds. 

Zou and Zhao [22] similarly extended traditional iso-parametric toolpath planning to discrete 

data points through an iterative computation of path parameters and linear interpolation. Zhang 

et. al. [23] used neighboring points within a bounded search to fit curvature-adaptive toolpaths to 

point cloud data. A B-spline interpolation was used by Masood et. al. [19] and Liu et. al. [24] to 

generate toolpaths from scanner data stored in a tessellated format. Xu et. al. [25] proposed a 

path planning technique which used a least-squares projection of paths from a generic surface 

about a minimum bounding box containing the point cloud data. Machine tool roughing and 

finishing strategies were achieved through boundary extraction and 2D curve offsetting 

operations respectively. Finally, a method for generating toolpaths that yield a constant scallop 

height was proposed by Liu et. al. [26] which significantly reduced the path length compared to 

an iso-planar method of path generation.  
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2.4  Alignment of Castings for Machining 

 Various improvements to the prevailing methods used in the post-processing and finish 

machining of rough castings have been proposed. A technique for an automated cast or forged 

workpiece comparison with a CAD model was introduced by Chatelain and Fortin [27]. This 

research used a balancing technique to properly align the cast workpiece by offsets incorporated 

into the fixture. Their algorithm compared a measurement dataset taken from the casting with the 

published CAD model. Convergence to an optimal placement in the fixture indicated that the 

casting had enough material to position the CAD model inside the measured dataset. Otherwise, 

the workpiece would be scrapped for being too small. Both least-squares and logarithmic 

objective functions were used in a nonlinear, global constrained optimization to compute an 

optimal 4 × 4 homogeneous transformation matrix. Gessner et. al. [1] utilized an optical scanner 

and reference CAD model to automate the marking-out process. The point cloud/CAD alignment 

was achieved through a minimization of machine allowances (i.e., minimal amount of material 

removed) derived from the distances between the reference CAD model and the average plane 

calculated from the workpiece surfaces. Haghighi, Ramnath and Kalish et. al. [28][29][30]  

proposed a means of calculating rough casting fixture adjustments when machining large 

castings and weldments. Here again, the parameter search also served the additional purpose of 

evaluating whether the casting of interest was within tolerance or if the decision should be made 

to scrap the workpiece. Their research used point cloud data describing the casting to determine 

the position of the workpiece relative to the machine’s pre-programmed toolpaths.  

Each of these techniques are successful since simple fixture adjustments are sufficient to 

modify the machining process of rough castings and weldments without regenerating g-code for 
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3-axis CNC machines. However, they are not directly applicable to operations requiring adapted, 

newly generated g-code such as hybrid manufacturing and direct digital 5-axis machining. 

 The research conducted by Lei and Zheng [31] is of particular interest since their 

approach has similarities to the technique proposed in this thesis. Lei and Zheng used a 

combination of laser trackers and CNC positioners in a closed-loop alignment process for large-

scale components. Through this process, a link was established between the laser tracker, 

positioning system and CAD model. Different coordinate systems were used to compute a proper 

alignment by minimizing the variation of key (geometric) characteristics [32] (e.g., profile, 

assembly hole position, etc.).  This approach distinguishes datum sets based on parallelism, 

position and concentricity to establish a metric for a geometric transformation of the CAD 

model. The CNC system handled both the motion control of the positioners and the machining 

by communicating with an industrial computer running the alignment process. 

The presented thesis research expands this prior work by proposing that a fully integrated 

control system run directly on a joint CNC-CAM controller. This controller would use point 

cloud data to produce a DT model of the starting volume as opposed to tracking discrete datum 

points. Since an entire spatial model of the DT is generated, this allows for distance field 

calculations to be referenced in aligning CAD models to rough castings and irregularly shaped 

starting volumes.  
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  CHAPTER 3: OVERVIEW OF RELEVANT THEORY 

This chapter briefly covers the technical background and core theoretical concepts 

presented in this thesis. Voxels and voxel data structures are described followed by an overview 

of the image registration process. Two popular registration algorithms are explained since they 

are later used to demonstrate that additional image registration metrics are needed for 

part/volume registrations in CLMS. The remainder of this chapter presents the ideas behind 

distance fields and the basics of three different metaheuristic optimization algorithms used in 

later tests. 

 

3.1  Voxels and Voxel Modeling  

Voxels can be defined as 3D image pixels. Thus, voxels can be viewed as the 3D 

counterparts of pixels more commonly encountered in 2D imaging. That is, pixels are the unit 

squares that describe an image whereas voxels are the unit cubes that constitute a volume. An 

additional dimension of depth allows voxels to represent solids in the discrete domain of digital 

computers. Boolean (True/False) values can be tied to specific voxels indicating the presence of 

a solid object. Alternatively, intensities, like the grayscale/RGB values in pixels, can also be 

assigned to voxels to signifying parameters such as distance, density or material.  

 

3.2  Uniform Grid  

 A uniform grid voxel structure is one of several methods used to store and represent 

voxels. In a uniform grid, a bounding box about a space is subdivided to cells (i.e., voxels) of 

equal size. This data structure is simply a 3D array with its matrix lattices aligned to the space’s 

world coordinate system. Volumes contained inside the bounding box are represented by voxel 
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values at discrete locations. For example, a voxel located at a particular (X, Y, Z) coordinate may 

be a assigned a binary "0" or "1". In the case of modeling solids, this indicates the cubical cell 

contains either empty space or an intersection with a surface/solid respectively. Regular, uniform 

spacing in a grid structure allows for easy implementation and indexing. However, these 

structures are impractical when attempting to represent high resolution volumes. As with 2D 

curves, large numbers of voxels are required to approximate surfaces in the discrete domain. In 

the case of 3D grid arrays, refining the resolution increases the number of voxels by a cubic 

order of magnitude. The memory allocation required can quickly become too cumbersome for 

CPUs/GPUs to store and process. Uniform grids are therefore only practical when the target 

volume can be represented at relatively low resolutions [33]. Figure 1 shows the difference in 

how resolution affects part representation.  

 

 

 

 

 
Figure 1. Comparison between voxel resolutions of an impeller model 
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3.3 Other Voxel Storage Structures 

The shortcomings of a direct, single-level uniform grid can be overcome through more 

efficient spatial descriptions of the volume. An improvement to uniform grid, called a two-level 

grid, exploits adaptive refinement by making each voxel itself a uniform grid of arbitrary 

resolution [34]. The first, general grid is the top-level and the collection of grids corresponding 

to individual voxels is the second-level. However, this hierarchical structure is fixed at two grid 

levels and therefore still is susceptible to similar problems in memory overhead for high 

resolutions [33].   

An octree is another data structure that utilizes a voxel hierarchy by dynamically 

subdividing the bounding box space containing a solid. It is regarded as the canonical way of 

improving grid-based methods [35]. Unlike uniform grids, voxel sizes are not required to be 

regular or uniform over the entire space containing the volume. Moreover, the depth of the 

hierarchy is determined by the extent to which the algorithm adaptively subdivides space. The 

selected resolution then corresponds to the smallest voxel size used in the octree partitioning. 

Figure 2 is a graphical description of how a quadtree (the 2D equivalent of an octree) hierarchy 

is constructed.  

 

 

 

Figure 2. Quadtree of a triangle and resulting hierarchical diagram [36] 
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Octrees follow a similar logic but sequentially subdivide 3D space into eight octants rather than 

four quadrants in 2D space. The resulting nodes from the partitioning are evaluated and 

categorized based on their contents. Full/empty nodes are those that contain a solid or empty 

space respectively. A partial node signifies an intersection with an object’s surface and is marked 

for further subdivision if the minimal voxel resolution has not yet been reached. Here, octrees are 

explained in the context of a parametrized CAD model; however, point cloud data can also be 

stored as an octree where octant subdivisions are governed by whether or not points are 

contained inside the nodes. The disadvantage to using an octree to represent high resolution parts 

is that it requires many levels in the overall tree structure. This can become a computational 

bottleneck in applying transformations and data processing [37][33]. 

A hybrid voxel representation called the hybrid dynamic tree (HDT) uses an adaptive 

hierarchical (tree-based) data structure which reduces the memory footprint requirement for high 

resolution 3D data and allows for fast GPU processing [36][33][38][39]. The advantage of HDT 

structures is that it blends dense grids with octrees to be well suited for parallel execution on a 

GPU device [40]. The voxel-based CAM software, SculptPrint©, used in this research represents 

part geometries in a HDT data structure. The computational load of 5-axis inverse kinematics, 

path planning and collision avoidance is made worse by working from complex boundary 

representation (B-Rep) and non-uniform rational b-splines (NURBS) surfaces. SculptPrint 

mitigates this challenge by discretizing parametric curves into a HDT voxel structure. As a 

result, calculating material removal or model intersections becomes a simple operation of 

removing boolean voxels from regions of space and executing logical comparators respectively.  

Other voxel structures, such as hash table and k-d trees, are not considered here as they 

are not applicable to the scope of this research or recommendations for future work. 
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3.4 Image Registration  

The general goal of image registration is to obtain a transformation of a floating image F 

that best aligns it with a reference image R. This typically means the complete superimposition 

of F over R. However, this is not always the case, as when attempting to align partial point cloud 

scans through a closest-point algorithm. Since these algorithms minimize the overall distance 

between point sets, segmentation is typically required where structures of interest are selected 

and isolated for analysis [41]. Therefore, a particular image registration program must be 

selected with knowledge of the criteria necessary to achieve the desired alignment given a 

particular demand. In registration terminology, images not only refer to arrays of pixels, but also 

to 3D volumetric structures. This research will use the terms “image” and “volume” 

interchangeably when describing a 3D registration. The convention of using the letters F and R 

to refer to the respective registration objects will also be followed.   

The registration process can be generalized to four main components: a transformation 

function, cost function, similarity metric and optimization algorithm. Figure 3 shows a 

generalized sequence in which these four structures interact. The transformation function 

iteratively takes the parameter(s) to be optimized and uses the current value(s) to describe a 

particular geometric transformation. This is often in the form of a 4 × 4 homogeneous 

transformation matrix. The following flowchart in Figure 3 illustrates the transformation operator 

T(x) acting on the image F.  
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Figure 3. Generalized flowchart for registration optimization 

 

Voxel registration techniques are driven by intensity-based cost functions. This is in 

contrast to feature or distance-based techniques such as closest-point and pattern search 

algorithms. An intensity-based cost function is created with an expectation of how an image’s 

voxel intensities should relate to its corresponding image when properly aligned [42]. For 

example, if the two images have the same or very similar intensity values when aligned, an 

intensity cost function would attempt to minimize the differences between the intensity values 

[43]. Cases where the intensities should be nearly identical at corresponding points are referred 

to as intramodal. In practice, this occurs when attempting to register two images taken from the 

same sensor. However, when two images are taken from different sensors or imaging study (e.g. 

magnetic resonance imaging and computer tomography) the intensity values representing the 

same object are often recorded differently [44]. Intermodal or multimodal intensity cost 

functions are implemented in such situations where an alignment of slightly dissimilar 

perspectives is required.  
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Medical image registration is an area that continues to see increased interest as clinical 

and research applications demand faster and more efficient algorithms [42]. Although general 

image registration is applicable to areas of machine vision and robotics, a large portion of the 

published research in the field is in medical imaging [45][46]. Medical registration is focused on 

the comparison and alignment of the same area of interest taken from different perspectives or at 

different times. For example, a qualitative analysis of the progression of multiple sclerosis 

requires multiple scans to be overlaid [47]. Further applications include new areas of image 

guided surgery [45][48]. 

 

3.5  Information Entropy and Mutual Information 

The concept of information entropy is used in medical imaging to quantify the 

uncertainty contained when comparing image stack files from different measurement machines. 

Qualitatively, entropy represents the amount of “uncertainty” or “unpredictability” contained in 

an information source. Considering the discrete case of a random variable X which takes on 

values 𝑋𝑋 = { 𝑥𝑥1, 𝑥𝑥2, … } with associated probabilities of occurring described by the probability 

mass function 𝑝𝑝𝑋𝑋(𝑥𝑥) =  {𝑝𝑝1,𝑝𝑝2, … }, the entropy contained in X may be quantitatively written as 

 𝐻𝐻(𝑋𝑋) =  −�𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝(𝑥𝑥)
𝑥𝑥∈𝑋𝑋

 (1) 

Here, 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝(𝑥𝑥) is measured in units of bits. It can be seen that the less information known a 

priori about the likelihood of events in the set 𝑋𝑋 occurring, the greater the entropy 

measure 𝐻𝐻(𝑋𝑋). In other words, 𝐻𝐻(𝑋𝑋) is maximum if all 𝑝𝑝𝑖𝑖 have an equal likelihood of occurring 

such that 𝑝𝑝𝑖𝑖 = 1
𝑖𝑖
∀𝑖𝑖 [44]. For example, a fair die has 6 equally likely outcomes. 
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𝐻𝐻(𝐷𝐷) =  −�𝑝𝑝(𝑑𝑑) 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝(𝑑𝑑)

6

𝑖𝑖=1

=  −
1
6
�𝑙𝑙𝑙𝑙𝑙𝑙2 �

1
6
� = 𝑙𝑙𝑙𝑙𝑙𝑙2 6 

6

𝑖𝑖=1

 
 

(2) 

If the die in question was loaded (more information is known a priori) then the probability mass 

function 𝑝𝑝(𝑑𝑑) would not be uniformly distributed. Consequentially, 𝐻𝐻(𝐷𝐷)𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 > 𝐻𝐻(𝐷𝐷)𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙.  

Consider the case of two discrete random variables X and Y defined on the same 

probability space. The behavior of the two random variables may be simultaneously defined over 

a joint probability distribution and described by the joint probability mass function 𝑝𝑝(𝑥𝑥,𝑦𝑦). This 

can be visualized as a surface in 3D space. It follows that the joint entropy quantifying the 

amount of uncertainty of two discrete information sources over the same space is 

 𝐻𝐻(𝑋𝑋,𝑌𝑌) = −��𝑝𝑝(𝑥𝑥,𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥, 𝑦𝑦)
𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋,

 (3) 

Both of these entropy measures need to be calculated by approximating the probability 

distribution functions. This is accomplished by constructing histograms for the entropies of X 

and Y individually and a joint histogram for the joint entropy. A joint, or bivariate, histogram is 

analogous to traditional histogram plots on a 2D surface but with an added dimension. Figure 4 

and Figure 5 show the different ways of graphically representing histogram and joint histogram 

data. 

 

 

 

Figure 4. Histogram plots for two random variables X and Y 
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(a)                                                                           (b) 

Figure 5. Two representations of a joint histogram  
(a) a joint histogram with bin counts indicated incrementing along a Z-axis                      

(b) a joint histogram with bin counts indicated by pixel intensity (black to white) 

A popular registration technique used in medical imaging involves finding the 

configuration that yields the maximum mutual information (MMI) between two images. Derived 

from information theory, mutual information (MI) measures the statistical dependence of two 

random variables. In terms of voxels and images, MI indicates how much information one image 

contains about the other based on the intensities of corresponding voxels in each image [49]. The 

MI between two random variables can be written as 

 
𝐼𝐼(𝑋𝑋,𝑌𝑌) = ��𝑝𝑝𝑋𝑋𝑌𝑌(𝑥𝑥,𝑦𝑦) log

𝑝𝑝𝑋𝑋𝑌𝑌(𝑋𝑋,𝑌𝑌)
𝑝𝑝𝑋𝑋(𝑥𝑥) ∙ 𝑝𝑝𝑌𝑌(𝑦𝑦)𝑦𝑦∈𝑌𝑌

=
𝑥𝑥∈𝑋𝑋

 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑋𝑋,𝑌𝑌) 

 

(4) 

Thus, MI depends on the joint entropy of the two variables taken together as well as their 

marginal entropies. These individual entropy measures are the amounts of information 

contributed from overlapping regions of 𝑋𝑋 and 𝑌𝑌. Rewriting this equation in terms of a 

translated, floating image F and rigid image R, 

 𝐼𝐼(𝐹𝐹,𝑅𝑅) = 𝐻𝐻(𝐹𝐹) + 𝐻𝐻(𝑅𝑅) − 𝐻𝐻(𝐹𝐹,𝑅𝑅) = 𝐻𝐻�𝑇𝑇(𝐹𝐹)� + 𝐻𝐻(𝑅𝑅) − 𝐻𝐻(𝑇𝑇(𝐹𝐹),𝑅𝑅) 
 

(5) 

Here, F is explicitly shown as undergoing a geometric transformation by the operator 

T(X).  Finding a positioning of F that most closely aligns it with R is equivalent to maximizing 
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the mutual information between the two images. It can be seen in Equation 5 that this 

corresponds to maximizing the marginal entropies 𝐻𝐻(𝑇𝑇(𝐹𝐹)) and 𝐻𝐻(𝑅𝑅) while minimizing the 

contribution of the joint entropy 𝐻𝐻(𝑇𝑇(𝐹𝐹),𝑅𝑅). Since 𝑅𝑅 remains fixed, 𝑇𝑇(𝐹𝐹) is the only term that 

determines the amount and quality of overlap between the two volumes.  

Minimizing the final term directly decreases the overall amount of uncertainty between 

the two images. That is, the absolute value of the joint entropy is decreased with transformations 

that result in regions of R superimposed over complex regions of F [47]. In other words, 

minimizing the joint entropy term is analogous to maximizing how well F “describes” R. The 

amount of joint entropy contained between the two images is evaluated based on the occurrence 

of filled voxel space at various uniform grid points.  

Since MMI is based on the mutual information as described by voxel intensity values, 

observing a graphical representation of the joint histogram between two overlapping images can 

lend a qualitative understanding of the algorithm’s behavior. Figure 6 demonstrates a 2D 

registration of an early Apple® logo and its corresponding joint histogram plots. Similarly, Figure 

7 shows a set of colored intensity joint histograms as an image is moved to superimpose its copy. 

When misaligning two images and tracking the resulting joint histograms, high intensity regions 

decrease and plots exhibit dispersion characteristics [44]. Assuming the two images are identical, 

a transformation that perfectly superimposes F over R is one which has a 1:1 correspondence 

between all voxel intensities. That is, all voxels with value 2 should be overlaid with voxels also 

of value 2, and so on. For each 1:1 mapped pixel between F and R, the count on the joint 

histogram is increased by one. If two identical images were perfectly aligned, we would expect 

bin counts only along the main diagonal of the joint histogram. Therefore, qualitatively judging 

the accuracy of a fit by evaluating the joint histogram alone becomes equivalent to seeing how 
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close or dispersed the bin counts are from the main diagonal. A different similarity metric based 

on joint histograms called cross-correlation operates under this assumption.   

However, it should be noted that minimizing the joint entropy alone is not equivalent to 

maximizing mutual information. Recall that the marginal entropies 𝐻𝐻(𝑇𝑇(𝐹𝐹)) and 𝐻𝐻(𝑅𝑅) are not 

invariant to the amount of overlap between the two images [44]. 

 
 

 

Figure 6. Apple® logo registration with joint histogram plots 
 

 

Figure 7. Colored intensity histograms through a superimposition sequence 
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These terms are capable of changing through each registration iteration. In some situations, this 

overlap dependence is mitigated through normalization schemes [49]. Since MI depends on both 

the marginal and joint entropies, this causes the similarity metric to not assume a specific linear 

nature of dependence on mapped voxel intensities [49]. 

 

3.6 Iterative Closest Point 

 Iterative Closest Point (ICP) is a simple and popular algorithm used in the geometric 

processing and image registration problems [50]. The method matches two surfaces by 

minimizing the distance between corresponding points based on an initial displacement. Figure 9 

shows the general pseudocode for an ICP algorithm. A point set ℙ1 is transformed through a 

rotation 𝑹𝑹 and translation 𝒕𝒕 so that each point 𝜌𝜌1𝑖𝑖 ∈ ℙ1 will be closest to its corresponding point 

𝜌𝜌2𝑖𝑖 ∈ ℙ2. This is achieved through a squared distance minimization, written mathematically as: 

 𝑚𝑚𝑖𝑖𝑚𝑚
𝑹𝑹,𝒕𝒕

�((𝑹𝑹𝜌𝜌1𝑖𝑖 + 𝒕𝒕) − 𝜌𝜌2𝑖𝑖)2
𝑖𝑖

 (6) 

 However, like many optimization methods, ICP does not guarantee convergence to the global 

minimum. This is due to the fact that the method is heavily reliant on a decent initial placement 

between the set ℙ1 and ℙ2. Specifically, the choice of a closest point 𝜌𝜌1𝑖𝑖 for each 𝜌𝜌2𝑖𝑖 determines 

the likelihood of convergence to the desired overlap. Various extensions [51][52] have been 

proposed to the ICP algorithm to improve its robustness and efficiency.  

 

 
Figure 8. Two point sets with corresponding points in ICP [50] 
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Algorithm 1. Pseudocode for a standard ICP algorithm 
 

 

 

 
Figure 9. Flowchart for basic ICP algorithm 

3.7 Distance Field Transforms 

 Distance fields within a voxel space are a collection of intensities that increase or 

decrease as a function of position. Typically, this position is based on a previously defined array 

of boolean values. For example, a distance field returned by a computer program might reflect 
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the distance of each voxel to a false value contained in an input array. Considering a set 𝕊𝕊,  an 

unsigned distance function can be defined as: 

 𝑑𝑑𝕊𝕊(𝜌𝜌) = 𝑖𝑖𝑚𝑚𝑖𝑖‖𝑥𝑥 − 𝜌𝜌‖  ∀ 𝑥𝑥 ∈ 𝕊𝕊 (7) 

Where 𝑑𝑑𝕊𝕊(𝜌𝜌𝑖𝑖) is the smallest absolute distance of 𝜌𝜌𝑖𝑖 to a point contained in 𝕊𝕊 [53]. The most 

direct method of computing a distance field is to apply an unsigned distance function over all 

voxels in a space. However, this method is impractical due to the high computational cost in 

iteratively calculating all the distances to 𝕊𝕊 for all the voxels. Distance transforms operate 

differently by assigning each pixel/voxel the smallest distance from itself to a subset of 

pixels/voxels. That is, instead of evaluating all distances in a space, only those distances near a 

surface boundary condition are calculated and the remaining voxel intensities are estimated by 

propagating these initial values. 

 

 
Figure 10. Example of a distance transform over a square in a uniform voxel grid 

Various algorithms [53][54] have been developed and are generally classified by the 

method in which the distance values are estimated from a voxel of known quantity and how these 

values are used to propagate subsequent values to the remaining voxels [53]. Although different 

schemes may be chosen to populate the intensities through a distance transform (e.g., Manhattan, 
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Chessboard, etc.) this research uses an exact Euclidean distance transform as provided in 

MathWorks® Image Processing Library™  [55]. 

 

3.8 Genetic Algorithm 

The concept of modeling evolutionary processes and applying the mechanics as an 

optimization technique began with the development of evolutionary computation by computer 

scientists from 1957 to 1967 [56]. The development of electronic computers allowed for the 

application of large-scale iterative calculations necessary to simulate and test evolutionary 

theories [57][58]. However, the application of biological theory to computer science also 

provided engineers a new, stochastic method for resolving complex engineering problems of 

multiple parameters [56][59].  Several paradigms have been developed in the field of 

evolutionary computation which differ in their various representations, methods and operators. 

Genetic algorithms (GAs) are the most popular of these paradigms and are considered in this 

research [60].  

 A GA can be categorized as a non-gradient-based, metaheuristic optimization technique. 

Here, metaheuristic refers to the deliberate introduction of randomness to the search strategy in 

specific parts of the algorithm. By contrast, a purely heuristic technique would be a random-

search procedure [61]. These random elements mimic the stochastic aspects of genetics and 

mutation observed in evolutionary biology. The goal of a common GA optimization is to 

determine a set of parameter values that maximize/minimize a complex, multivariate function 

[56]. Consider such a function, 𝑦𝑦 = ℱ(𝑋𝑋) where 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛}. This function can be 

optimized by interpreting it as representing a fitness function. There are various ways to define a 

fitness function but we will assume for this research that the fitness function and the multivariate 
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function to be optimized are the same [62]. The complete range of this fitness function is called 

the fitness landscape [56].  How low/high the dependent output variable 𝑦𝑦 is understood to 

reflect how well a handful of chosen input parameters satisfy the function’s criteria. From this 

perspective, there is a clear analogy between the fitness function and a law of natural selection. 

Therefore, simulating the evolutionary process of a population of candidate solution parameters 

vying for survival should eventually converge to a set of solutions that optimally satisfy the 

governing multivariate function. GAs and other evolutionary algorithms make few or no 

assumptions about the behavior of this fitness landscape. Therefore, the governing fitness 

function is not required to be continuous differentiable, unlike traditional gradient-based methods 

of optimization. Instead, the algorithm searches for the global optimum through the population 

and stochastic elements [63].  

   Algorithm 2 shows the generalized pseudocode structure for a common GA. The 

program represents each candidate solution as a binary string chromosome among a population 

of randomly initialized candidates. Following from the biological analogy, each bit in the string 

is referred to as a gene and each gene position as a locus. Each iteration, or generation, of the 

algorithm tracks the performance of the set of chromosomes against the selected fitness function 

and applies three general operators: selection, crossover and mutation [56]. As seen on Figure 11 

and  Algorithm 2, the individual chromosomes of each generation are scored and sorted by a 

selection function which favors higher valued fitness scores. 
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   Algorithm 2. Pseudocode for a standard GA 
 

 
 

 

Figure 11. Flowchart for basic GA 

Those chromosomes reflecting favorable fitness scores are selected as parents for the next 

generation. Parents are then further selected to undergo either a crossover or mutation operation. 

Two chromosome parents are paired for swapping discrete, random set(s) of genes by a 

crossover operator. After crossover, the two new children chromosomes are passed to the next 
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generation. A chromosome offspring may also be selected for mutation where a randomly 

selected gene is inverted (bit-flipped). Different schemes have been developed for the crossover 

and mutation operators but are generally governed by user-defined crossover and mutation rates 

which reflect the probability involved in determining the locus to swap/mutate. The combined 

processes of crossover and mutation drives the population toward favorable results but also 

introduces genetic diversity in successive iterations. Figure 12 shows a general representation of 

a crossover and mutation sequence on a binary chromosome string. This iterative process of 

selection, crossover and mutation continues until some terminating criteria selected by the 

programmer is met. 

 
Figure 12. GA chromosome operations 

crossover (a-b) and mutation (c-d) 

3.9  Particle Swarm Optimization 

 Particle swarm optimization (PSO), like GAs, is a biologically inspired and population-

based optimization algorithm. However, PSOs are based on the intelligence of decentralized, 

organized systems called swarms [64]. Since it does not use crossover or mutation operators it is 

simpler to implement. Also, PSO techniques have been shown to sometimes outperform GAs 
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when applied to the same problem. This is due to the mechanism that tracks the current global 

optimum across the population and the fact that the algorithm has fewer parameters for the user 

to tune [65][66]. The individual agents or particles that comprise the population form multiple, 

piecewise paths through the fitness landscape by their individual trajectories. Each individual’s 

trajectory consists of a stochastic component and a deterministic or collective component. This 

causes the particle to experience an attraction toward both the current global best among the 

entire population 𝒫𝒫 and the current best encountered along its own path 𝑋𝑋�. At the same time, the 

stochastic component allows for variation to be introduced into the particle’s path [61].  

Therefore, these individual, interacting agents optimize the objective function by collectively 

adapting to the global function landscape.  

 

 
Figure 13. Illustration of PSO in successive iterations [67] 

Through successive iterations, each particle keeps track of the current best solution across 

the whole population (𝑋𝑋�) as well as its own personal best solution �𝑋𝑋��. These are referred to as 

social and cognitive components respectively. The velocity and position of each particle in 

successive iterations is a function of these components. However, the contribution of each term 
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to the iteration is randomly determined [64]. As the particles travel through ℝ dimensional space 

defined by the rank of the objective function ℱ(𝑋𝑋), they maintain their own position and velocity 

as well as record the global and personal best positions. 

 

   Algorithm 3. Basic PSO pseudocode   
 

 

For a time 𝑡𝑡, let 𝑋𝑋𝑖𝑖 be the location of a particle in ℝ dimensional space and a member of a 

population of size 𝑁𝑁. Mathematically, 𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑖𝑖0, …𝑥𝑥𝑖𝑖𝑖𝑖 , …𝑥𝑥𝑖𝑖𝑖𝑖� ∀ 𝑗𝑗 ∈ [1,ℝ]. Let vi be particle 𝑖𝑖’s  

corresponding velocity. Both the position and velocity can be updated for the subsequent 

iteration at time 𝑡𝑡 + 1 along each dimension 𝑗𝑗 ∈ [1,ℝ] from the equations: 

 𝑣𝑣𝑖𝑖,𝑖𝑖𝑡𝑡+1 = 𝑤𝑤𝑡𝑡𝑣𝑣𝑖𝑖,𝑖𝑖𝑡𝑡 + 𝑐𝑐1𝑟𝑟1,𝑖𝑖
𝑡𝑡 (𝑥𝑥�𝑖𝑖,𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡 ) + 𝑐𝑐2𝑟𝑟2,𝑖𝑖

𝑡𝑡 (𝑋𝑋�𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡 ) (8) 

 

 𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖,𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑡𝑡+1 (9) 
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Here, 𝑐𝑐1 and 𝑐𝑐2 are acceleration constants and 𝑟𝑟1 and 𝑟𝑟2 are random variables over a uniform 

distribution [64]. The acceleration constants typically have values 𝑐𝑐1 ≈ 0.1~0.4 and  

𝑐𝑐2 ≈ 0.1~0.7. The variable 𝑤𝑤𝑡𝑡 is an inertial weight which is a function of the iteration number 

and used to control the maximum velocity across the population [68].  The first term in   

Equation 8 is a memory term from the previous iteration. The second and third terms are the 

cognitive and social terms since they are governed by the personal and collective bests 

respectively [64]. It should be noted that 𝑐𝑐1 can be set to decrease as the algorithm progresses to 

ignore the stochastic influences in latter iterations [65].  

At least 24 different PSO variants exist which employ different approaches and 

augmentations [61]. The version used in this research and provided by the MathWorks® 

Optimization Toolbox™ is a classic PSO algorithm [69] with modifications for constrained 

optimization [70] [71]. Due to the fact that these particles form multiple, interacting Markov 

chains, analysis on the convergence of PSO algorithms is very difficult or impossible. It follows 

that the parameters 𝑐𝑐1 and 𝑐𝑐2 must be fine-tuned for specific applications and function 

landscapes [65]. In general, as the population size increases, the probability of convergence also 

increases since only one agent is needed to update the global best 𝑋𝑋� [64]. However, convergence 

is not guaranteed. PSO algorithms have also been demonstrated to be very effective in 

conjunction with other optimization algorithms to produce hybrid functions [72]. 

 

3.10 Simulated Annealing 

 Simulated annealing (SA) is an optimization technique that mimics the annealing process 

where a material is heated and slowly cooled. Classic SA is not population-based and starts from 

an initial solution. This starting point is iteratively modified and updated to a new solution 
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slightly away from the previous solution. However, population-based SA algorithms have been 

proposed [73][74] to gain a wider scope to search the optimization function landscape.  

A conceptual understanding of SA can be gained by considering atoms bound inside a 

uniform crystalline structure. In the metallurgical annealing process atomic bonds are broken as 

energy (heat) is increasingly added to the system. This allows the atoms previously bound inside 

various positions of the crystalline structure to break free and move around. If the metal is 

cooled, new bonds form to lock the atoms in place. However, if the substance is cooled very 

slowly, the atoms tend to rearrange into a more regular, uniform distribution throughout the 

crystal lattice structure [75].    

 Like PSO, the algorithm works in terms of a Markov chain and accepts changes that are 

favorable when evaluated by the objective function [76]. However, unfavorable changes in the 

points are also accepted depending on a probability 𝑝𝑝. This allows SA to avoid local minima. 

This probability 𝑝𝑝 may be written based on the Boltzmann distribution: 

 
𝑝𝑝 = 𝑒𝑒𝑥𝑥𝑝𝑝 �

−𝛥𝛥𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

� 
(10) 

where 𝑇𝑇 is the temperature, 𝛥𝛥𝐸𝐸 is the change in energy and kB is Boltzmann’s constant. If 𝛥𝛥𝐸𝐸 is 

assumed to be directly proportional to the change in the objective function 𝛥𝛥ℱ(𝑋𝑋), the 

expression can be simplified by assuming 𝛥𝛥ℱ(𝑋𝑋) = 𝛥𝛥𝐸𝐸. Equation 10 may be rewritten as in 

terms of a random variable 𝑟𝑟: 

 𝑝𝑝 = 𝑒𝑒𝑥𝑥𝑝𝑝 �
−𝛥𝛥𝐸𝐸
𝑇𝑇

� > 𝑟𝑟 (11) 

Equation 11 indicates that the algorithm will accept a modification for a candidate solution 𝑋𝑋𝑡𝑡 at 

time t that is unfavorable when evaluated by ℱ(Xt) if 𝑝𝑝 is greater than some randomly generated 

number 𝑟𝑟 [76]. 
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 The most important parameter in the SA algorithm is the initial temperature 𝑇𝑇𝑙𝑙. If 𝑇𝑇𝑙𝑙 is 

too high, the probability used in evaluating unfavorable changes will also be high. With more 

and more changes accepted without discrimination, the algorithm approaches the behavior of a 

random search. Alternatively, if 𝑇𝑇𝑙𝑙 is too low, the probability 𝑝𝑝 will also be low and few 

unfavorable changes will be accepted. Thus, the algorithm would show more hill-climbing 

characteristics and be in danger of getting stuck in local minima. This latter case is analogous to 

quenching a heated material. Figure 14 is a graphical comparison to illustrate how disorder in a 

viscous material state can be brought into order in a crystalline state through annealing or 

converge prematurely to an amorphous state.  

 

 

Figure 14. Annealing and quenching processes to reach a lower energy state 
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Another parameter important to SA is the cooling rate. Equations 12 and 13 are two common 

cooling distributions that are dependent on user-defined parameters 𝛼𝛼 and 𝛽𝛽 [76]. 

 𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑙𝑙 − 𝛽𝛽𝑡𝑡 (12) 
 

 𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑙𝑙𝛼𝛼 (13) 

The temperature function selected for this research is in the form: 

 𝑇𝑇 = 𝑇𝑇0 ∗ 0.95𝑡𝑡 
 

(14) 

where 𝑡𝑡 is the current iteration number. The final parametric function of interest is the 

neighborhood function 𝒩𝒩(𝑋𝑋𝑡𝑡) which generates a new, modified candidate solution for the 𝑡𝑡 + 1 

iteration.  

Unlike PSO or GA, SA can be proven to eventually converge to a global optimum 

provided some appropriate conditions are met [72][77]. However, such conditions are governed 

by the particular optimization problem and the defined parameters so care should be taken in 

evaluating the result of a SA optimization despite a theoretical guarantee of convergence. SA is 

easy to implement but has the disadvantage that the programmer must be reasonably experienced 

to make necessary adjustments in the optimization parameters for particular problem suites [77].    
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      Algorithm 4. Basic pseudocode for a non-population-based SA algorithm 
 

 

 

 
Figure 15. Flowchart for a basic SA algorithm 
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CHAPTER 4: PROPOSED REGISTRATION TECHNIQUE  

 The primary objective of this thesis is to suggest a particular use of a distance field 

similarity metric in image registration. This chapter introduces the proposed method of 

registering two voxel volumes through minimization of distance field intensity variance. To 

demonstrate the need for another approach to image registration, the performances of two 

existing and popular registration techniques are examined. Details of the proposed method are 

then explained before they are tested in Chapter 5.  

4.1  Performance of ICP and MMI 

ICP and MMI are widely used methods in image registration. However, both can be 

shown to have inaccuracies when attempting to match NNS geometries. Software designed for 

point cloud data acquisition and registration commonly use an ICP algorithm to join partial 

scans. Similarly, MMI is a very popular multimodal registration technique used to align 

volumetric images. However, both of these methods hold an underlying assumption that the sets 

of data being registered describe the same geometry. This assumption can cause problems in 

attempting to accurately register castings, weldments and NNS geometries. 

 As covered in section 3.6, ICP determines the transformation of a floating image F by 

minimizing the mean squared error in the Euclidean distance between associated points. This 

makes sense if F is simply a misaligned version of the reference image R. If the geometries are 

the same, we should expect �𝜌𝜌𝑖𝑖𝑅𝑅 − 𝜌𝜌𝑖𝑖𝐹𝐹  � ≈ 0 for corresponding points assuming the error 

attributed to any measurement device is small. However, this distance will be a finite number in 

registering rough castings and NNS geometries. That is, �𝜌𝜌𝑖𝑖𝑅𝑅 − 𝜌𝜌𝑖𝑖𝐹𝐹 � = 𝑑𝑑𝑖𝑖. In general, it is 

possible for a transformation to cause enough points in F to overlap with R that minimize the 

overall mean squared difference between the images but allow a subset of points to be 
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completely misaligned. This is in contrast to what is desired when aligning parts for 

programming toolpaths. Material removal should be as consistent as possible along all 

dimensions.  

 Figure 16 and Figure 17 show the results of applying ICP to a parallelepiped, impeller 

and their corresponding offset geometries to simulate a NNS rough casting. An ICP algorithm 

only considers surface data points so a point cloud was created in the test from a uniform number 

of voxels defining the outermost layer of the volume. The green point cloud corresponds to the 

reference geometry with a 1.5mm offset from the purple point cloud’s outer surface. All 

registration tests were conducted with the floating volume F translated to be outside R.  

 Figure 16 indicates that the final fit of the parallelepiped inside the green point cloud is 

largely acceptable except when viewed along the X-axis (Figure 16a). As expected, the 

registration converges to a global minimum by causing some points to be closer to their 

associated counterpart than others. Despite the inaccuracy caused by the tilt, the part was 

transformed to be fully inside the green point cloud defining R. However, Figure 17 shows a 

clear failure in applying ICP to the impeller model.  

It is reasonable to anticipate failures when applying ICP to NNS registrations. Again, ICP 

algorithms canonically attempt to drive the error between two images to zero. If the two volumes 

being registered are not identical, there is no reason to expect that a transformation resulting in a 

consistent error among all points (i.e., a centrally positioned part inside its NNS) should also be 

the one that yields minimal error. Instead, ICP will converge to whatever F position yields the 

smallest overall error among points. ICP is therefore definitely not applicable to offset 

geometries where all points must be guided to remain inside the NNS volume. 
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(a) (b) 

Figure 16. Parallelepiped and NNS point cloud registration results using ICP 

 
 

  
(a) (b) 

Figure 17. Impeller and NNS point cloud registration results using ICP 

Unlike ICP, MMI takes the pixels throughout the volume into account and does not rely 

on minimizing distances between surface points. MI-based metrics are popular because they are 

robust in multimodal registration where voxel intensities between the two images differ in pixel 

brightness and contrast. However, directly applying a MMI technique to CAD and DT models 

derived from point cloud data is not straightforward.  
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The software application used in this research assigns voxel intensities of 0 (for empty 

space) or 1 (for solid material) by default. Therefore, a standard of assigning values outside of 

this binary scheme must be chosen. Otherwise, the registration terminates for any orientation 

where F is completely inside R. The method proposed in this research is to assign intensities 

based on a Euclidean distance transform. Voxel intensity values can be derived from a distance 

field generated for both volumes. However, this results in two slightly different intensity patterns 

since distance transforms are naturally dependent on the amount of material present.  

Figure 18 and Figure 19 show the same registration results of the parallelepiped and 

impeller but through a MMI registration technique. The intensities are assigned to both volumes 

through a distance field transform. The figure is shown as if it were a point cloud for clarity. 

Figure 18a is the registration result which terminated to leave sections of F completely lying 

outside of the green reference volume. Although it might appear that the metric failed, Figure 

18b, shows that a local maximum of 0.3344 was missed by the previous registration and 

corresponds to a proper alignment.  

    
 

(a) (b) 

Figure 18. Point cloud representation of parallelepiped registration using MMI  
(a) Mis-registration MI = 0.2850 (b) Corrected registration MI = 0.3344 
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Figure 19. Point cloud representation of impeller registration using MMI 

MMI registration appears to perform much better when tested on the impeller geometry. 

Figure 19 shows that the registration successfully terminated with a MI measure of 0.2297.  

The registration is very favorable despite the fact that the models being aligned were 

volumetrically offset by about 1.5mm. This indicates that utilizing a Euclidean distance 

transform to assign voxel intensities in MMI registration works well for NNS parts. Noise and 

pixel value differences may exist in multimodal registrations; therefore, this form of MMI should 

be seriously considered as a viable alternative to certain ICP registrations.  

However, MMI is limited to only slightly offset volumes. Figure 20 shows a MMI 

registration of the impeller to a general stock volume. Clearly, MMI did not successfully align 

the part model inside the cylindrical stock. This result is reasonable if it is recognized that 

distance transforms applied to unlike geometries create unexpected minima in the MMI 

registration landscape.    

 As the offset reference volume R from Figure 20 increases in size, less information is 

contained in either image to adequately describe the other. MMI produces a clear optimum when 

the overall geometries being aligned have either matching, distinct features or are similarly 
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shaped. Although MI is valued as a robust similarity metric, because it does not assume the 

nature of dependence on corresponding voxel intensities [49], it does assume that some 

relationship exists. The distance transforms applied to images do not constitute a relation 

between the two parts if the volumes used to generate the intensity values are not similar. A 

different method of voxel intensity assignment would be required.  

 

 

 

Figure 20. Impeller registered with a non-offset/dissimilar volume 

It may be possible to reassign voxel values in F and R to guide the algorithm to a more central 

location, but such analytical processing would defeat the need for an automated registration 

technique. An empirical or a priori knowledge of how F should fit inside R would be necessary 

to make such adjustments.  

Although MMI matches the complex regions of F and R, it does not incorporate a 

mechanism to explicitly position F with minimal variance of distance to the outer surface of R 

which is necessary for a uniform finishing allowance. Additionally, interpolation artifacts 

resulting from sub-voxel transformations have the potential to form undesirable local maxima at 

locations askew from the optimal positioning. This effect is caused by trilinear interpolation 

created from non-grid alignment orientations which form additional voxels. The increased 
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number of voxels introduces noise or dispersion to the histogram. This translates to an increase 

in entropy levels. Finally, the computation cost associated with computing the joint histogram is 

of concern. Despite these shortcomings, the implementation of MMI in computer-aided 

engineering is an exciting application that deserves closer attention.  

This research instead investigates a method that simply and explicitly considers the 

variance of distance values defined only by the reference volume R. As a result, the technique 

avoids joint histogram calculations, MMI interpolation artifacts and is slightly more amenable to 

dissimilar registrations.   

 

4.2  Minimization of Distance Field Intensity Variance  

The tests conducted in Section 4.1 show that an alternative registration technique that 

directly addresses scenarios involving NNS part geometries is needed. This thesis proposes a 

new method which utilizes only a Euclidean distance transform of the reference volume R to 

judge the positioning of F. Figure 21 is a flowchart describing the prototype technique.  

 For a given transformation 𝑇𝑇(𝐹𝐹), those voxel intensities in R that are not overlapped by F 

are indexed through a material non-implication operation from R to F (i.e., 𝑅𝑅 ⊅ 𝐹𝐹 or 𝑅𝑅 ↛ 𝐹𝐹). 

The variance calculated over the resulting one dimensional vector of intensities is then used as a 

similarity metric to drive the optimization algorithm. In other words, those voxels in R that are 

not overlapped by F are considered. A lower variance among this collection translates to a 

positioning with consistent distances to the exterior of R in all directions. In other words, there 

will always be more single-valued voxels on the outermost surface of R being one voxel length 

minimal distance to empty space as assigned from the Euclidean distance transform. 
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Figure 21. Proposed registration flowchart  
for minimizing distance field intensity variance (used in uniform voxel grid) 

 Originally, only those voxels in R which were overlapped by the outermost surface of F 

were considered. This gave an intuitive and direct measure of the distance field values as they 

pertained to the positioning of the target model inside its NNS. However, initial program runs 

revealed that the final transformations were slightly inaccurate when compared to a material non-

implication index. Two primary sources of this error can be identified. First, the variance 

calculation had a lower sample size when compared to the material non-implication index. As a 

result, the variance values taken from the positions of F’s perimeter did not transition as 

gradually when the volume was iteratively moved to central alignments. This had a more 

pronounced effect in the relatively coarse resolution uniform grid structure used in the prototype 

program. Therefore, the optimization had a greater tendency to prematurely terminate at local 
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minima. Second, the number of voxels around the external surface of F changed from trilinear 

interpolation. The values in R were determined by first transforming F into the space defining R. 

Voxel center points naturally fell between grid points. To change these points, trilinear 

interpolation was used to assign F voxels into the grid of R.  However, this caused some voxels 

to be divided between grid points and the increasing total voxel number affected the different 

variance calculations. Therefore, the choice to use a material non-implication index was made as 

a practical measure to buffer the fluctuations in variance from operating on a uniform grid. In 

general, a form of a material non-implication index or direct index method should be usable in a 

practical, non-uniform grid application of this technique. 

 The aim of a DT voxel model registration for CLMS is to minimize the variation of the 

machining allowance (i.e., the distances). This would allow for more consistent feeds and speeds 

as well as ensuring enough material is present. Since Euclidean distance transforms calculate 

distances from a known starting location (i.e., the external surface for uniform grid voxel 

models) any fit that minimizes the variance of certain sampled points is equivalent to minimizing 

the variance of the distances of the volume F to the exterior of R. Assuming R is larger than F, 

these sampled points can be all those in R that are not overlapped by F. The location of these 

points is easily determined through a boolean comparison. Figure 22 shows an example of how a 

material non-implication index produces a minimal distance field variance when the distance 

transform is performed from the outer surface of R. As progressively more central regions of R’s 

distance field is negated by an overlapping volume, the intensity variance of the non-overlapped 

area decreases.  Note that in Figure 21 there is a penalty component added to the variance 

calculation in case any portion of F is transformed to be entirely outside of R. 
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                               (a)                               (b) 

  
                                (c)                               (d) 

Figure 22. Progressive material non-implication operations over a distance field                
The variance values are: (a) 2.333 (b) 1.689 (c) 0.622 (d) 0.251 

 While any increasing penalty function may be chosen, the one used in this research takes 

the form:  

 𝜂𝜂 = 𝑥𝑥 𝑙𝑙𝑚𝑚(𝑥𝑥 + 1) (15) 

This equation contributes an exponentially increasing penalty as a function of the number of 

voxels 𝑥𝑥 that lie outside of R. As a result, those candidate solutions encountered through the 

optimization process which have sections of F outside the reference volume are heavily 

penalized. These candidate solutions quickly are marked as “poor choices” by the algorithm so 

regions more likely to yield optima may be searched. 
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CHAPTER 5: TESTING 

 This chapter covers the testing and results of registering six voxel part models using a 

minimized distance field variance technique. An explanation of the general parameters common 

for all subsequent tests is first presented. An initial set of tests is then reported which compares 

the “out-of-the-box” performance of different metaheuristic techniques used to drive the 

registration. An additional set of tests were conducted with a GA optimizer to show the 

performance in registering a rotated model. Finally, a registration of a dissimilar NNS volume is 

then conducted to demonstrate the limits and flexibility of the technique.   

5.1  Parameters and Equipment Used  

All part models used in testing were first voxelized and exported as image stacks from 

the voxel-based CAM software SculptPrint©. Figure 23 shows the user interface in which a 

stereolithography (STL) model is voxelized to a specific resolution. SculptPrint uses a HDT 

voxel structure to store volumetric data in order to conserve memory and increase efficiently. As 

a result, it can achieve extraordinarily minute voxel sizes for precision machining while avoiding 

complex NURBS and B-rep surfaces. Figure 24 shows a comparison between the STL and 

voxelized models in SculptPrint when a coarse resolution is selected. 
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Figure 23. User interface for SculptPrint used to voxelize models used in tests 

 

 

  
        (a)    (b) 

Figure 24. Comparison between the (a) STL and (b) voxelized head model 

A uniform grid voxel structure was chosen to demonstrate the registration technique 

because it was the most direct method to write and test. Since a computer with a powerful 

processing unit and large memory was available, the general impracticality of large data sets was 

not as great of a concern. The concepts presented should be equally applicable to professional 

implementations that use octree or HDT voxel storage schemes. Further considerations of a more 

in-depth application of the presented technique is covered in the conclusions portion of this 
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thesis. All operations used to produce voxelized models and NNS volumes were performed in 

SculptPrint using a convolution computation with the offset parameter set to different values.  

Due to the practical constraints imposed by using a uniform grid, a voxel resolution of 

0.1mm was chosen in SculptPrint for the test models. This size was chosen because it is a 

common Z-axis resolution in commercial grade fuse deposition modelling 3D printers. 

Therefore, it is fine enough for basic details but still allows for uniform grid indexing and 

processing on a powerful computer.   

 The files used to run optimization and registration were coded in Matlab® R2017a using 

the MathWorks® Optimization Toolbox™ and Parallel Computing Toolbox™. All tests were run 

on an Intel® Xeon® 2.40GHz 8-core CPU over a 64bit Windows® operating system. To mitigate 

the long execution times involved with working with large data sets, tests involving population-

based optimizations were performed in parallel on the 8-core CPU. X-Y-Z center point 

coordinates for the volume F were collectively translated and rotated about the volume’s 

centroid and trilinearly interpolated for each iteration. Every new transformation of F was used 

to index the material non-implication voxels from R to F which were stored in a lookup table. 

These values were then converted to a vector for a simple variance calculation. A 1 × 6 vector 

containing eulerian roatation angles (ZYX) and voxel increment coordinate translations (XYZ) 

was coded as the input arguments to be optimized. 

Figure 25 shows the voxelized parts used in the registration tests. Four simple geometric 

shapes were selected (a cube, sphere, parallelepiped and torus) as well as two more complicated 

structures (a bust of a human head and an impeller). Note that the voxel bounding box is slightly 

larger than the actual image when initially processed from an image stack file source. 
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Figure 25. Part models used in voxel volume registration tests 
From left to right: cube, head, sphere, impeller, parallelepiped and torus 

 

Table 1. Part list used in registration tests with general measurements 

PART NAME ACTUAL SIZE RESOLUTION BOUNDING BOX 
Cube 40.0mm × 40.0mm × 40.0mm 0.1mm 512 × 512 × 401 
Sphere 40.0mm × 40.0mm × 40.0mm 0.1mm 512 × 512 × 401 
Parallelepiped 40.0mm × 50.0 × 40.0mm 0.1mm 576 × 640 × 401 
Torus 50.0mm × 50.0 × 10.0mm 0.1mm 704 × 704 × 101 
Head 49.2mm × 46.0mm × 64.4mm 0.1mm 640 × 640 × 646 
Impeller 68.8mm × 68.8mm × 44.5mm 0.1mm 896 × 896 × 446 

 

 As stated previously, rough casting volumes were simulated by a voxel convolution 

offset performed in SculptPrint with a dilation parameter set to either 1.5mm or 2mm depending 

on the test. Since the model F was used to derive the reference casting R, the original, relative 

positions of the two volumes was be established as the “best” alignment for certain tests in which 

this alignment could be maintained inside the Matlab development environment. Results from 

subsequent tests may be compared to this positioning where applicable. Table 2 lists the 

parameters for each baseline part placement used to judge the quality of registration results. 
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Table 2. Baseline position metrics by part model  

Model Offset 
Input 

Variance 
Penalty 

Minimum 
Distance 

Maximum 
Distance  Mean Standard 

Deviation 

Cube 1.5 19.105 1.25 1.60 1.60 0.207 
2 34.992 1.68 2.20 2.13 0.560 

Sphere 1.5 19.860 1.41 1.72 1.63 0.443 
2 34.431 1.95 2.19 2.12 0.291 

Parallelepiped 1.5 19.417 1.10 1.70 1.62 0.520 
2 34.253 1.66 2.16 2.11 0.291 

Torus 1.5 22.386 1.51 1.93 1.71 1.030 
2 38.185 1.94 2.45 2.21 1.106 

Head 1.5 20.012 1.17 3.56 1.62 1.121 
2 35.239 1.63 4.24 2.13 1.473 

Impeller 
1.5 22.002 1.23 2.65 1.66 1.655 
2 40.054 1.76 3.38 2.20 2.214 

 

Note that the minimum distance for any part is less than the offset parameter of 1.5mm or 

2mm. This entry reflects a relatively miniscule number of small voxel lengths between the sharp 

edges of F and the exterior of the surrounding R volume. The discrepancy can be traced to a 

discretization error in the convolution algorithm. Hossain et al. [40] proposed the CUDA 

accelerated offset algorithm for subtractive 3D printing which is used in this research. Figure 26 

shows the 2D representation of how the offset algorithm operates. A circular structuring element 

is swept across the leaf node voxels in the HDT to trace an offset of a certain radial distance.  
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 (a) 2D Structuring 
Element 

(b) 2D cross-section of 
HDT pre-sweep 

(c) Dilated HDT cross-
section after template sweep 

 

 
Figure 26. Offsetting illustration [40] 

 
 

 

 

 

 
Figure 27. Voxel offset error reporting from research conducted by Hossain et. al. [40] 

 

The cited research demonstrated that the technique was very successful but is susceptible 

to errors when the number of voxels in the offset was low. The minor distance errors contained 

in this thesis can be attributed to the fact only a 15-20 voxel offset was selected for the low-

resolution grid structure. To give a better measure of how well placed F is inside R, the mean and 
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standard deviation of all minimum distances across the surface of F to the exterior of R is also 

reported.    

Function tolerances and stall iterations are the primary stopping criteria for all tests. A 

function tolerance is the specified threshold difference between successive iterations. Every 

sequential iteration that has a function value difference below this threshold is counted as one 

stall iteration. For example, if the 𝑖𝑖𝑡𝑡ℎ and (𝑖𝑖 − 1)𝑡𝑡ℎ iterations are evaluated by the function ℱ(𝑥𝑥), 

and if ‖ℱ(𝑖𝑖) −  ℱ(𝑖𝑖 − 1)‖ < Δℱ𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓𝑛𝑛𝑡𝑡𝑙𝑙, then a counter is incremented by one in the program to 

count the stall iterations. If the next function difference is above the threshold the counter resets 

to zero. The program terminates once a maximum number of stall iterations has been reached. 

The maximum number of total iterations is specified as simply a precaution to avoid an infinite 

loop.  

As expected, all registrations in this thesis eventually converged before reaching their 

assigned maximum iteration number. The number of function evaluations is also reported to give 

an idea of the computation load required to run each code file to completion. As the name 

implies, this is the number of individual similarity metric function calls or comparisons that took 

place for a given registration test.  

All Eulerian angles are in units of degrees and all distance measurements are reported in 

millimeters or voxel units. Sub-voxel transformations and angles are reported to 1/10th accuracy. 

Different registration program runs were given slightly different optimization settings depending 

on the initial conditions or focus of the test. Table 3 lists the optimization parameters which are 

common across all reported tests. Those parameters which were altered, including bounded 

constraints and optimization settings, are reported in the tabulated results. 
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Table 3. Optimization parameters common across all registration tests 

 
 

 

5.2  Initial Optimization Tests with GA, PSO and SA 

   The first series of tests attempted to register the six part models in the test suite to their 

respective NNS geometries. Figure 28 and Figure 29 are examples of the floating part volumes, 

NNS volumes and ideal alignments after registration. In order to implement and test the use of a 

minimal distance field intensity variance similarity metric, three different optimization methods 

were used for an initial comparison: GA, PSO and SA.  

 

 

 

 Figure 28. Impeller model with convolution offset 
(a) voxelized floating model F (b) offset reference model R (c) centered F inside R 
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 (a) (b) (c)  

Figure 29. Head model with convolution offset 
(a) voxelized floating model F (b) offset reference model R (c) centered F inside R  

 

 In practice, each metaheuristic optimization method requires trial-and-error tuning of 

certain performance parameters. The reported settings should not necessarily be taken as general 

rules of thumb since they are specific to the chosen problem suite. This research presents the 

results of different optimization techniques from an “out-of-the-box” implementation without a 

series of rigorous trial-and-error tests. Instead, the goal is to give an idea of how well each 

method responds with minimal tuning.   

  The conclusion that there doesn’t exist a “best” set of search parameters for each 

optimization technique comes from the No Free Lunch Theorem [78]. This states that whatever 

performance one algorithm gains in one class of problems, it is necessarily offset by loss in 

another. There is no optimal set of optimization parameters independent of a given problem 

context. Therefore, again, the chosen parameters used in all following tests should be recognized 

as being empirically chosen through minimal trial-and-error with values similar to those used in 

select published research [79].     
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Table 4. Optimization parameters for initial registration tests 

 

The NNS reference volumes were generated by a 1.5mm selected convolution in 

SculptPrint. Each registration used the same starting offset for the floating volume of -30 voxels 

translated in each of the X, Y and Z world coordinate directions and with no rotation. The 

optimization algorithms was also constrained to a +50 voxel translation and ±5° rotation about 

each axis. Note that some rotation entries are struck through. This is because rotation about this 

axis is not meaningful due to the part’s symmetry. For example, rotations about the Z-axis for the 

torus model do not contribute to any change in orientation because the part is completely 

symmetric about this axis. Similarly, rotation results are not geometrically meaningful for a 

sphere.  

Three tests were executed for each part model using some moderate stopping criteria 

settings. Two subsequent tests were made with this criteria modified for a convergence within a 

lower tolerance. This was done to observe the increase in both iteration number and quality of 

result when stall iterations were increased and/or function tolerances were decreased.   

GA Population 30
GA Stall Iterations 5
PSO Stall Iterations 10
SA Stall Iterations 50

Angluar Bound ± 5°
Translational Upper Bound 50 Voxels
Translational Lower Bound 0 Voxels
Predicted Angular Rotation 0°

Predicted Translation [30 / 30 / 30]
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Figure 30. Starting orientation for initial optimization testing 

   

Figure 31 summarize the error results in using a GA, PSO and SA algorithms to drive the 

registrations. Figure 32 illustrates the percentage of tests that yielded a registration with a 

minimum 1mm of material covering all to-be-machined surfaces. Additionally, the percentage of 

tests with a statistical mode of distances in a 0.2mm tolerance from the predicted offset are 

plotted (i.e.,  1. 5 ± 0.2 𝑚𝑚𝑚𝑚).  Tables listed in the appendix report the complete results as well as 

the errors based on the approximated, optimal placement. Again, the placement that was selected 

as the baseline is only approximate and derived from the creation of the offset R based on F. 

Errors attributed to using a low voxel number may cause an ideally centered position to be 

different from this baseline.  
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Figure 31. Error in rotational and translational motion across optimizing schemes used 

 
Figure 32. Minimum material distance and occurrence of mode within 0.2mm tolerance  

 All three optimization tests successfully placed the floating volume completely inside the 

corresponding NNS with a success rate of at least 97%. The tests that terminated with some 

portion of F outside of R are highlighted in the tabulated data. Although the tests using GA gave 

a 100% successful placement inside the R volume, it should be reiterated that this does not mean 
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that implementing GAs will prevent registration failure. As a practical rule of thumb, all 

stochastic methods should be considered susceptible to failure under the right conditions.  

 Further examining the test data from the appendix, it can be seen that decreasing the GA 

function tolerance appears to give clear improvement to only the registration results for the head 

and impeller models. This is reasonable considering that their more complicated geometries 

would benefit from finer adjustments occurring in later iterations. By comparison, tightening the 

tolerances in the PSO tests did not greatly improve the results but did considerably increase the 

number of function evaluations. Although code performance is not a focus of this research, the 

increased number of evaluations should be noted as an indicator of possibly greater computation 

cost associated with the method. Implementing SA as the optimization scheme gave the poorest 

results across the board. This is not surprising since prior research and theory [77] state that 

although the algorithm is easy to implement, the actual parameter selection and tuning requires 

experience to return adequate results. Therefore, it is clear that although SA may be a very 

beneficial optimization technique, application of this optimization to a registration program 

should not be made without a commitment to further testing. 

It should also be noted that several of the tests minimized the variance below the 

predicted or starting value through sub-voxel translation (see entries with negative variance 

penalty error). This emphasizes the fact that the accuracy of a discrete, intensity-based 

registration method will be directly influenced by the voxel resolution and the means by which 

intensity values are generated. Since this research uses a Euclidean distance transform, the 

measurement intensity values, which are not constrained to integer multiples of the voxel 

resolution, will drive the optimization to some sub-voxel global optimum position.  
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5.3  Further Testing Using GA 

 From the results in Section 5.2, a GA appeared to offer the best performance to function 

evaluation ratio when applied with minimal parameter tuning. Two additional test sets were 

conducted to incorporate rotational misalignment positions and the use of integer constraints. 

The results of these simulated registrations present a general description of the proposed 

technique under different conditions.  

First, the similarity metric’s performance was examined when the optimal alignment 

position should ideally terminate at a final rotation and translation. Figure 33 shows the new 

starting condition for the head model. Unlike the tests in section 5.2, each model was internally 

modified to have an initial 10° rotation about the X, Y and Z axes in addition to a 2mm 

translation. The convolution offset parameter used to generate the reference volume R was also 

increased to 2mm.  

To misalign the volumes, the models could either be rotated by adding a rotational offset 

to the models used in section 5.2 or by importing already rotated data in image stack format. 

Both these methods were considered to gauge the possible effects of errors through volume 

interpolation. The former method of generating rotated model data was first examined. 

 
Figure 33. Rotational misalignment representation in SculptPrint 
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Table 5. Optimization parameters used in first rotational misalignment test 

 
 

Table 6 and Table 7 list the registration results and errors from registering each model 

from an incorporated rotational offset and translational misalignment. The sphere was excluded 

from these tests since rotation would have no effect on the results. As with the previous set of 

tests, the minimum and maximum material thickness around F for the positioning does not 

exactly reflect the offset parameter input. However, the mode and mean values indicate that the 

alignment is acceptable in generating a near uniform machining allowance. Overall, the final 

registration data indicate very favorable alignments across all models. 

 

Table 6. Rotational misalignment registration results using GA 

 
 
 

Population 50
Stall Iterations 10

Function Tolerance 1.00E-04
Angluar Bound ± 15°

Translational Upper Bound 40 Voxels
Translational Lower Bound 0 Voxels
Predicted Angular Rotation [-10° / -10° / -10°]

Predicted Translation [20 / 20 / 20]

Iterations Variance
Penalty

Variance
Penalty
Error

R.Z R.Y R.X T.X T.Y T.Z Min.
Dist

Max.
Dist

Mean Mode SSD Function
Evals

Cube 59 34.302 -0.102 -10.00 -10.21 -10.04 1.90 1.96 2.01 1.60 2.30 2.13 21 0.74 3000
PP 97 33.751 -0.503 -9.98 -9.84 -9.98 2.02 2.14 2.10 1.57 2.33 2.10 21 0.85 4900

Torus 40 38.262 0.105 9.52 -9.89 -9.92 2.00 2.00 2.00 1.85 2.51 2.21 21 1.15 2050
Head 88 34.654 -0.585 -9.99 -10.00 -9.99 2.05 2.06 2.04 1.63 4.21 2.12 21 1.38 4450

Impeller 46 40.086 0.033 -10.57 -9.97 -9.84 2.04 2.10 2.20 1.47 3.35 2.21 23 2.37 2350

Rotation Translation
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Table 7. Error results from rotational misalignment tests using GA  

 

 

 Since the rotation offset was programmed directly to the models from 5.2, the possibility 

of errors originating from a rotation that generated new voxels through trilinear interpolation was 

avoided. A more realistic rotation registration test should consider data of an already misaligned 

model. In practice, a part may be scanned in any orientation. Therefore, a second means of 

attaining an initial misalignment was used to confirm the technique’s ability to register parts 

though rotational transformations. The HDT models were first rotated in SculptPrint and then 

sent as an image stack. Figure 34 compares images from the rotated (34a) and non-rotated (34b) 

stacks to illustrate the differences in how the volume was reconstructed in the registration 

program. Again, this was done to give a more realistic data input to the software. The prototype 

demonstration program used in this research may be prone to interpolation or aliasing errors 

from trilinear interpolation when attempting to match voxel sets that were generated from 

different orientations. Consequently, the results of registering data from these rotated image 

stacks gives an indication of the technique’s robustness and flexibility. The parallelepiped and 

impeller models were chosen to represent a simplistic and complex geometry for the test. 

R.Z R.Y R.X T.X T.Y T.Z
0.00 -0.21 -0.04 -0.10 -0.04 0.01
0.02 0.16 0.02 0.02 0.14 0.10

19.52 0.11 0.08 0.00 0.00 0.00
0.01 0.00 0.01 0.05 0.06 0.04
-0.57 0.03 0.16 0.04 0.10 0.20

0.57 0.21 0.16 0.10 0.14 0.20
MAX ABS ERRORS:

Rotation Alignment Errors
Rotation Error Translation Error
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 (a) (b) 

Figure 34. Difference between a rotated (a) and non-rotated (b) image stack file 

 Since the image stacks were generated from different model orientations, it is difficult to 

approximate or predict the “correct” transformation results to judge the registration as with 

previous tests. Therefore, the error from a predicted solution will not be considered. Instead, the 

measurement data (i.e., minimum, mode and standard deviation) of the distance field will be 

used as the primary means of evaluating success. A visual inspection from figure plots is also 

used to determine whether the registration was successful. The simulation tests were run twice 

for a 2mm offset volume and the results are reported in Table 9. 

 

Table 8. Optimization parameters used in second rotational misalignment test 

 
 

 

 

Population 50
Stall Iterations 10

Function Tolerance 1.00E-04
Angluar Bound ± 15°

Translational Upper Bound 0 Voxels
Translational Lower Bound (-50) Voxels
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Table 9. Registration results for rotated image stack alignment 
 

 
 

 

  
 (a) (b) 

 

  
 (c) (d) 

 

  
 (e) (f) 

Figure 35. Cross-sectional views of boolean subtracted volumes (rotation image stack)  
(a)(d) X-Z, (b)(e) Y-Z and (c)(f) X-Y planes bisecting the parallelepiped and impeller 

models 

Iterations Variance
Penalty R.Z R.Y R.X T.X T.Y T.Z Min.

Dist
Max.
Dist Mean Mode SSD Function

Evals
42 38.893 -8.22 -11.47 -8.23 -43.55 -31.69 -22.73 1.30 2.50 2.22 2.30 1.61 2150
25 39.238 -8.03 -10.80 -8.18 -42.03 -31.03 -21.38 1.27 2.80 2.22 2.20 1.74 1300
79 43.938 -8.50 -11.41 -8.42 -20.07 -36.19 -32.74 1.55 3.49 2.30 2.40 2.13 4000
43 43.963 -8.61 -11.40 -8.20 -19.46 -36.17 -33.30 1.63 3.55 2.30 2.30 2.16 2200

Distance [mm]

Impeller

Rotation [Degrees] Translation [Voxels]

Parallelepiped
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 Figure 35 shows the boolean subtraction plots for the X-Z, Y-Z and X-Y cross-sectional planes 

dividing both volumes. The yellow volume represents the larger model R and the subtracted void 

represents the superimposed F. The hollowed appearance of the images in Figure 35 clearly 

indicate that F was centrally superimposed on R in both registrations.  

A second set of additional tests conducted using GA was aimed at determining the 

efficiency of incorporating mixed-integer programming constraints to the registration process. 

MathWorks® Global Optimization Toolbox™ used in this research allows for integer constraints 

to be applied to specific variables in the GA function. Due to the fact that a minimal voxel 

resolution is known for both octree and gird structures, it was hypothesized that constraining the 

transformations of F would avoid unnecessary sub-voxel motions and improve overall efficiency 

by decreasing the number of total function evaluations. A monotonic vector set representing the 

constrained bounds of rotation/translation was incorporated into the voxel class. The integer 

constraint in the GA function was then used to index this vector for specific values. This is in 

contrast to the direct, classical bit-string manipulation of chromosomes where the range or 

increment is determined by the data type.  

Each of the parts was first registered with X, Y and Z translations restricted to integer 

values for volume offsets of 1.5mm and 2mm. Table 10 summarizes the optimization parameters 

used in the test which are similar to section 5.2.  

Table 10. Optimization parameters for integer constrained translation tests 

 

Population 30
Stall Iterations 10
Angluar Bound ± 20°

Translational Upper Bound 50 Voxels
Translational Lower Bound 0 Voxels
Predicted Angular Rotation 0°

Predicted Translation [30 / 30 / 30]
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Table 18 and Table 19 included in the appendix list the results and approximated errors 

from implementing the integer constrained translation optimization. The most obvious difference 

in these test results and those from section 5.2 is that the rotational errors are slightly larger. This 

is reasonable considering that the predicted “correct” solution is an approximation-based on the 

relative positioning from offsetting F to generate R. Recall that several tests found a variance 

below the predicated value through sub-voxel translations. Since these sub-voxel translations 

were constrained, it is understandable that a non-integer constrained rotation resulted in a new 

global optimum slightly off-axis from the predicted result. Most importantly, the total number of 

function evaluations performed by the registration program before termination dropped as 

predicted.  

Next, an experiment was run where the rotations were also constrained to 1° increments. 

Instead of testing all the voxel models again, the head and impeller were singled out as the two 

most complicated models to be used in the test. Table 11 shows that discretizing the rotations to 

1° increments eliminated the slight angular error from the previous test. Further, the number of 

function evaluations reported is practically half the value from tests with similar optimization 

tolerances. It should be noted that although discretizing rotations has been shown here to 

decrease the number of function evaluations, and consequently shorten the time for the 

optimization to reach a terminating criteria, a smaller increment should be used in more serious 

applications. Unlike constraining translations to the length of the voxel resolution, choice of an 

appropriate discretized rotation amount is not clear. Since too large of an increment can cause the 

registration to completely miss the desired global minimum, it would be safest to maintain a 

discrete step size between 0.5° − 0.1°. 
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 Table 11. Registration results using incremental integer sets for rotation and translation  

  

 

 

5.4  Robustness and Limitations 

 The previous tests investigated the registration of voxel models with their respective NNS 

volumes to simulate rough castings. However, to present a more complete picture of the 

proposed technique, conditions where the registration fails or is applied to non-NNS geometries 

should be examined. This section presents several test results where these cases are addressed.  

Since a predicted “correct” answer to the registration is either not known or difficult to determine 

and failed alignments are readily identifiable, this section relies on a visual examination of the 

final transformation plots to judge the success of the program. As a consequence of this choice, 

the voxel resolution was increased from the previously used 0.1mm value to approximately 

0.3mm. This was done to increase program efficiency and simply demonstrate the end behavior 

of the technique since the previously reported tests established the accuracy of the results. 

 First, a registration was attempted to align a turbine blade with a slightly modified 

volume of the same model. Specifically, the same model with additional material added to its 

perimeter was used as the reference volume R instead of a NNS offset volume. Figure 36 shows 

the turbine blade model (36a) and the same model with an additional weld lip added to the top 

rim (36b). This simulation test has direct applications to hybrid machining and remanufacturing 

Iterations Variance
Penalty

Variance
Penalty
Error

R.Z R.Y R.X T.X T.Y T.Z Min.
Dist

Max.
Dist Mean Mode SSD Function

Evals

39 20.148 0.137 0 0 0 30 31 30 1.14 3.53 1.62 1.60 1.25 1200
40 20.012 0 0 0 0 30 30 30 1.17 3.56 1.62 1.60 1.12 1230
30 21.939 -0.063 0 0 0 30 30 31 1.15 2.60 1.66 1.70 1.64 930
40 21.939 -0.063 0 0 0 30 30 31 1.53 2.60 1.66 1.70 1.64 1230Impeller

Rotation [Degrees] Translation [Voxels]

Head

Distance [mm]
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processes. In one possible scenario, a damage blade could be repaired by fusing additional, arc 

welded material around the perimeter. In the context of CLMS, the registration algorithm can 

process the DT models of the blade to align the target part geometry so that the additional 

volume can be identified as excess material to be machined away. However, this is unlike 

registering parts to a NNS. Instead, no additional volume is present around certain areas of the 

part. . Figure 36a is be the floating, final model and Figure 36b is be the volume as it would be 

scanned and read as DT.   

 

  
 (a) (b) 

 Figure 36. Turbine blade models (a) nominal and (b) with weld 

The results of a registration with the same optimization parameters used in 5.2 is 

portrayed in Figure 37 as a set of boolean subtracted volumetric image slices. The absence of the 

yellow volume in comparing the subplots (a) and (d) indicate that the blade model F was aligned 

to superimpose the regions in R where additional material was not added. In other words, the 

common regions between the volumes were correctly matched. This result appears to show that 

the technique can even be used in limited situations where NNS volumes are not being 

registered. However, we can analytically see that the reason for this particular successful 

registration was that there were very few orientations where F could be entirely inside R.   
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(a) (b) 

    
(c) (d) (e) (f) 

Figure 37. Turbine blade boolean subtracted volumetric image slices 

Therefore, this example should be considered a special case given that so few orientations 

were available for the turbine blade to assume while still remaining inside its corresponding 

reference volume. Also note that in Figure 37b and Figure 37d the lower surface is still visible. 

This offset is not desirable for situations where only the additional material added to the target 

model F needs to be identified for machining.  

Figure 38 shows two dissimilar parts that give a better example of a scanned volume and 

target model in the context of hybrid machining. We can consider Figure 38b to represent a 

scanned volume after material has been added to a part undergoing a hybrid machining 

operation. Again, Figure 38a would be the final target geometry in this scenario. Unlike the parts 

previously described, more material has been added to the upper portion of the rod and only a 

small section of the parts are nearly identical or unmodified.  
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(a) (b) 

Figure 38. Additional modified volume example for more realistic hybrid registration 

The previous test indicated that the technique of minimizing voxel intensity variances 

from a material non-implication index was robust enough to still register slightly modified parts 

with additional volume present. However, Figure 39 shows the same registration results when 

the parts from Figure 38 are used.  

   
(a) (b) (c) 

Figure 39. Boolean subtraction plots for alternative modified structure 

This registration failed to match the near identical regions of the parts despite successfully 

terminating the optimization to maintain all portions of F inside of R. The resulting vertical 

offset and tilt in Figure 39a and Figure 39b can be attributed to similarity metric being designed 

to minimize the variance of non-overlapped voxel values. Considering this further, we can 

qualitatively reason that such an alignment taken in Figure 39 possesses a smaller variance than 
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one with the bottom edges directly overlapping. All of the outer surface voxel intensities in R are 

valued 1 since they are one voxel length away from empty space as assigned by the Euclidean 

distance transform. Therefore, overlapping and thus negating a large amount of single-valued 

voxels located on the surface of R would result in a higher variance value than negating the 

higher valued, central ones. MMI would be a better metric to use in such cases where regions of 

identical structure are present between the target and real-time volumes of the DTs. This is 

discussed further in the concluding section of this thesis.   

The second registration scenario examined was selected to demonstrate the limitations of 

the presented method when it is applied to larger dissimilar volumes. Figure 38 shows the two 

models selected for a test using dissimilar structures. Again, the conical starting stock is not a 

generated offset volume of the impeller model. Ideally, the impeller should be centrally aligned 

inside the larger material. However, the intensity measures across the green conical volume R 

from the distance transform will not necessarily cause the material non-implication index to 

guide F to an on-axis, central region. If the impeller was a scaled version of the conic volume, 

this might be the case. However, the outer blade profiles are not similar to the conical pitch. 

Moreover, the hole in the impeller model would necessarily not overlap the most high intensity 

weighted voxels in R if the model was positioned centrally along the axis of rotation of the 

starting stock.  
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 (a) (b) 

 Figure 40. Impeller and conic stock part models used in dissimilar registration 
(a) transparent view (b) sectional view 

Recall that a material non-implication operation was selected to calculate the distance field 

variance for uniform grid voxel structures. This means that those voxels in R that are not 

overlapped by F are considered through a variance calculation. Also, recall that the distance field 

generated across R results in voxels with the highest intensity at the most central locations in the 

volume. Since the impeller model incorporates a hole along its central axis, there is a conflict 

between the desired central alignment and the material non-implication operation. In other 

words, if F is placed centrally inside the conical R, the hole causes the volume of F to not 

overlap the highest weighted voxels of R. This has the potential to increase the subsequent 

variance calculation and drive the registration to an off-center alignment. 

Figure 39 shows a set of volumetric boolean subtraction plots similar to Figure 35 and 

Figure 37 taken from the registration of the conical stock and impeller model. As predicted, the 

central, axial hole in the impeller drives the final alignment to the edges of the reference volume. 

A slight tilt about the X-axis is also observable.  
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(a) (b) (c) 

Figure 41. Boolean subtracted volumetric image slices for impeller-conic registration 

The simplest solution is to eliminate (fill) the hole so that central alignments will cover, 

and thus negate, the central voxels in R. Although this sounds like a trivial operation, the task of 

altering geometries can be very challenging for NURBS and B-rep models. However, since 

voxel models incorporate independent, discrete volumetric elements, adding and subtracting 

volumes is simple. The hole was identified and filled by indexing 2D slices of the model along 

its Z-axis. It should be noted that although this modification changes the volume used in the 

registration, keeping track and removing these alterations after a registration to return the 

impeller to its original state is also quite simple. After the proper alignment has been identified, 

voxels previously added can be subtracted through a fast boolean operation. A second 

registration with the filled-hole impeller model was then performed. Figure 40 shows the new 

results after performing the volume modification. Note that filling in the axial hole did not drive 

the registration to converge to a more centrally aligned position. Instead, the optimization 

appears to have terminated at a slightly worse position. This fact signifies that the modified 

impeller is still too dissimilar to R. Because of this, a global minimum still doesn’t exist near the 

central regions of the conical stock.  
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(a) (b) (c) 

Figure 42. Boolean subtracted volumetric image slices for hole-filled registration 

 A final volume modification was then performed. This operation eliminated the blades by 

extending additional material from the central axis to the outer bounds of the part for each 2D 

slice along the Z-axis of symmetry. The resulting volume is shown in Figure 41. Figure 42 shows 

the results for the final registration using the further modified impeller model. 

  
(a)                     (b) 

Figure 43. Further modified impeller volume 
 

   
(a) (b) (c) 

Figure 44. Boolean subtracted volumetric image slick for modified impeller registration 
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The additional modification presented a more favorable registration result than the 

previous program runs. However, the image segmentation and modification operations are by no 

means an ideal solution. Different part geometries would require different approaches for 

modification and there is no clear way to automate this process. In conclusion, registrations 

between two dissimilar volumes appear to suffer from similar problems as MMI as described in 

section 4.1. This being said, there is a notable advantage in the ability to easily modify volumes 

in the context of part/volume registration. For example, the inclusion of fiducial spheres to a 

CAD model to help drive the registration to a proper positioning is infinitely easier with these 

discrete models. Voxel-based models are therefore superior when attempting to debug alignment 

optimizations where the similarity metric is not behaving as expected.  

  

 

 

 

 

 

 

 

 

 

 

 



75 
 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 This thesis has presented a simple but novel technique for voxel volume registration in 

CLMS and has demonstrated its basic viability in a prototype uniform grid application. The 

presented ideas and data are not meant to describe an exhaustive testing or directly 

implementable program. Instead, a practical use of this method must necessarily be programmed 

in a more efficient voxel format (i.e., octree or HDT). The choice to program a uniform grid 

structure was made so that the basic concept could be validated in the simplest context. 

However, this decision affected other aspects of the application which may not directly translate 

to further research.   

 It was previously found that programs which indexed the intensities of R based on the 

overlap of the surface voxels in F performed slightly worse than a material non-implication 

index. As stated in section 4.2, this was due to the voxel sample size on the uniform grid. This 

research followed the convention of interpolating the floating volume into the coordinate space 

of R in order to determine which values should be indexed. As a result, the program suffered 

from interpolation artifacts. Trilinear interpolation tended to cause fluctuations in the total 

number of voxels present. However, an indexing based only on the outermost voxels in F is still 

the most intuitive means of measuring the distances about F and decreases the computation cost 

by calculating fewer floating point values for the variance. Since future uses of this technique 

will inevitably use more advanced voxel structures (e.g., octree, HDT), they should not be 

susceptible to the same errors. In short, future research that would build on this technique may be 

equally or better served by indexing R based on the surface positions of F.  

 The use of a uniform grid also lead to directly storing the voxel intensities of R in a 

lookup table for the subsequent indexing operations. With the voxel resolution set to 0.1mm in 
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this research, this was acceptable. However, a smaller resolution is necessary to achieve the finer 

detail demanded by professional CAM applications. Since continually increasing the size of the 

lookup table is impractical, the natural solution is to define a separate grid over R prior to the 

start of the registration iterations. Instead of using the lookup table directly, as done in this 

research, values for points which lie between grid positions can simply be interpolated. Note that 

doing this will avoid increasing the voxel size through trilinear interpolation artifacts since the 

voxel center points of F are not being plotted onto the space of R in order to index the values.  

 The qualitative experiments in section 5.4 show that caution should be taken in applying 

the ideas presented in this research to registrations of dissimilar volumes, particularly larger 

offset volumes. Such cases may require a more advanced form of automatic segmentation in 

order to appropriately format the floating volume to conform to the larger stock. The overall 

results from the reported tests indicate that the proposed technique works best with narrow to 

moderately offset NNS volumes. It should be noted that the registrations were designed under 

the assumption that the NNS is offset in all directions. No mechanism exists to ignore a 

particular dimension although one transformation parameter may be simply turned off. However, 

if the floating volume must be completely translated in order to be aligned, the results could be 

unacceptable. For example, a worker might wish to machine a rough casting on all surfaces 

except the bottom of the workpiece. In this case the program would create an undesirable offset 

by producing a machining allowance about the bottom of the casting. A more advanced 

technique, such as MMI may be more applicable in such situations.  

As a corollary, further investigation into the use of MMI and information theory 

registration metrics in computer-aided modelling and alignment is strongly encouraged. This 

thesis did not directly focus on implementing MMI in CAM registration of rough castings and 
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weldments but it is evident that the technique is powerful and applicable to many described 

challenges encountered by industry. MMI can be observed to terminate at a desirable position 

that maintains a consistent amount of material encompassing the floating volume across all 

dimensions even without an explicit mechanism to minimize the intensity variance as designed 

in the proposed method. This is because the convergence of MMI is based solely on the 

information reflected by the intensity values between the images. As seen in section 4.1, MMI 

will align F inside R for Euclidean distance transform intensities as long as the general shapes 

conform to each other. The proposed method in this research performs slightly better under 

conditions where the volumes are more dissimilar, but only after some alterations to modify the 

floating volume.  

As mentioned previously, the registration of NNS and irregular volume geometries has 

direct implications to hybrid technologies. Section 5.3 showed that the technique of minimizing 

voxel intensity variances from a material non-implication index was robust enough to still 

register slightly modified parts with additional volume present. However, the example should be 

considered a special case given that so few orientations were available for the turbine blade to 

assume while still remaining inside its corresponding reference volume. Figure 38 showed a 

more realistic example of two modified, dissimilar parts. The results using these parts in section 

5.3 showed the use of minimization of voxel intensity variance failed to give a favorable 

alignment for hybrid machining. However, the application of MMI can yield the desired result 

for such a situation. Figure 45 shows the boolean subtraction plots after a MMI registration using 

the parts from Figure 38. Notice that the nearly identical sections are perfectly aligned, showing 

no excess material on the bottom face.  



78 
 

   
(a) (b) (c) 

Figure 45. Modified structure registration using MMI 

This example clearly demonstrates that MMI would be a better technique in those situations 

where F and R retain some nearly identical structures. Like many registration methods, the initial 

positions that the floating and reference images take relative to each other is important to the 

convergence of the algorithm [80]. In the case of this example, the registration could easily fail if 

the models were not aligned closely enough. However, this is not of particular concern since it is 

not as difficult to achieve a decent positioning to put the volumes in close proximity with each 

other.     

As previously mentioned, emerging hybrid machining technologies will require volume 

registration techniques to confirm material placement on the workpiece for secondary subtractive 

operations. It is worth mentioning that although this research proposes the basic idea, the 

specifics of volume registration in hybrid machining systems has yet to be explored. For 

example, the uncertainties in proper material placement in additive operations could be 

addressed on a layer-by-layer basis by incrementally scanning the workpiece. 

Overall, the proposed technique of minimizing voxel intensity variance offers flexibility 

in cases where a central alignment must be identified. Specifically, the technique directly 

incorporates a means to minimize the variance of voxel distances of F from the outer edges of R. 
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Also, it considers only one set of voxel intensities and thus offers a slight computational 

advantage over MMI when applied to simple registration scenarios. Although further refinements 

are needed, the similarity metric and registration technique can contribute to certain situations in 

the future of CLMS and associated volume registrations.  

 Finally, this research hopes to encourage future research into CLMS as well as the 

acquisition and processing of sensor data from machine tools. Further research into the actual 

acquisition of spatial data and integration of NC architectures with CAM software is a 

monumental task which will require years of further research. The integration of sensor feedback 

describing the real-time state of a workpiece is an inevitable outcome of the DT concept. How 

this sensor data is used to update the machining process will become a pivotal manufacturing 

innovation in the near future.   
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Table 13. Error sets for genetic algorithm initial testing 

 

 

 

 

 

 

 

 

 

 

 

 
 

R.Z R.Y R.X T.X T.Y T.Z
-0.18 0.01 0.72 -0.82 -0.09 1.35
0.11 0.18 0.07 -1.09 -0.24 0.00
-0.09 -0.02 0.02 -0.26 -0.47 -0.43
0.02 0.02 0.01 0.43 -0.47 -0.40
0.02 0.02 0.01 0.43 -0.47 -0.40

0.18 0.18 0.72 1.09 0.47 1.35

Cube Genetic Algorithm Errors 

MAX ABS ERRORS:

Rotation Error Translation Error
R.Z R.Y R.X T.X T.Y T.Z
4.47 -0.37 -1.03 -0.16 0.02 -0.01
2.12 2.04 -1.23 0.23 0.23 0.41
0.70 -1.18 0.73 -0.07 0.24 -0.05
4.47 -0.37 -1.03 0.01 0.03 0.06
4.78 -0.15 -0.45 0.12 0.05 0.03

4.78 2.04 1.23 0.23 0.24 0.41
MAX ABS ERRORS:

Sphere Genetic Algorithm Errors
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
0.06 0.01 0.03 -0.39 -0.50 0.50
0.36 0.03 0.06 -0.42 3.43 1.51
0.18 0.07 0.17 -1.11 1.54 0.94
0.02 0.00 0.18 2.37 0.07 0.98
0.02 0.00 0.18 2.37 0.07 0.98

0.36 0.07 0.18 2.37 3.43 1.51
MAX ABS ERRORS:

Parall. Genetic Algorithm Errors
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
-1.56 -0.08 0.40 0.40 0.01 -0.12
4.38 0.23 0.07 -0.24 -0.39 0.49
1.88 0.13 0.01 0.50 -0.27 0.01
0.43 0.04 0.00 0.36 -0.21 0.49
0.43 0.04 0.00 0.36 -0.21 0.49

4.38 0.23 0.40 0.50 0.39 0.49
MAX ABS ERRORS:

Torus Genetic Algorithm Errors
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
0.27 0.04 -0.03 -0.16 0.26 0.36
-0.07 0.20 -0.38 1.61 2.18 2.41
-0.64 0.08 -0.11 0.07 -0.11 0.56
-0.64 0.08 -0.11 0.07 -0.11 0.56
-0.64 0.08 -0.11 0.07 -0.11 0.56

0.64 0.20 0.38 1.61 2.18 2.41
MAX ABS ERRORS:

Head Genetic Algorithm Errors
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
-0.15 0.07 -0.01 -1.24 2.03 1.52
0.03 -0.03 0.08 5.35 -4.12 0.55
-0.71 0.13 0.03 0.45 0.62 4.88
-0.02 0.04 0.18 2.26 0.34 0.82
0.00 0.03 0.02 0.42 -0.44 1.38

0.71 0.13 0.18 5.35 4.12 4.88
MAX ABS ERRORS:

Impeller Genetic Algorithm Errors
Rotation Error Translation Error
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Table 15. Error sets for particle swarm initial tests 

 

  

 

  

 

  
  

    

R.Z R.Y R.X T.X T.Y T.Z
0.04 0.01 -0.12 0.50 0.32 -0.06
0.02 -0.18 -0.06 -0.82 -0.35 0.71
-0.11 1.26 0.04 -8.10 12.96 -8.86
0.00 0.00 0.00 -0.44 -0.48 0.49
0.00 0.01 0.01 -0.41 0.41 -0.44

0.11 1.26 0.12 8.10 12.96 8.86

Cube Particle Swarm Errors
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
5.00 -2.56 -0.19 -0.10 -0.01 0.02
3.68 0.42 3.81 0.02 -0.01 0.08
-5.00 -5.00 1.91 1.96 0.42 2.22
4.43 0.16 0.19 -0.04 -0.16 0.15
-0.18 -0.17 -0.18 0.01 0.01 0.08

5.00 5.00 3.81 1.96 0.42 2.22

Sphere Particle Swarm Errors
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
0.00 0.00 0.01 -0.47 -0.41 0.46
0.03 0.01 0.02 -0.58 -0.43 -0.47
-0.27 0.49 -1.20 2.68 -4.23 0.59
0.00 0.00 0.01 -0.44 0.37 0.47
0.00 0.00 0.01 -0.45 0.37 0.46

0.27 0.49 1.20 2.68 4.23 0.59

Rotation Error Translation Error

MAX ABS ERRORS:

Parall. Particle Swarm Errors

R.Z R.Y R.X T.X T.Y T.Z
-0.53 -0.90 -0.73 -5.66 1.18 3.70
2.45 0.86 1.27 -2.46 -3.81 -1.70
-1.99 -0.46 -0.98 0.64 -3.61 1.24
-3.14 0.00 0.00 0.00 -0.07 -0.44
0.00 -0.08 -0.09 0.48 -0.46 0.00

3.14 0.90 1.27 5.66 3.81 3.70

Rotation Error Translation Error

MAX ABS ERRORS:

Torus Particle Swarm Errors

R.Z R.Y R.X T.X T.Y T.Z
0.87 -0.03 0.01 0.33 0.51 1.48
-0.01 0.00 -0.01 -0.46 -0.37 -0.57
0.00 0.00 0.01 -0.41 0.47 0.41
0.00 0.00 0.01 -0.41 0.47 0.41
0.00 0.00 0.01 -0.41 0.47 0.41

0.87 0.00 0.01 0.46 0.51 1.48
MAX ABS ERRORS:

Head Particle Swarm Errors
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
-0.35 -0.01 0.00 -0.04 -0.52 1.45
-0.34 0.00 0.01 0.37 -0.50 1.35
-0.16 -0.55 -1.23 1.20 4.30 -5.78
-0.33 0.16 0.03 0.06 0.37 1.29
-0.32 0.00 0.00 -0.43 -0.40 1.50

0.35 0.55 1.23 1.20 4.30 5.78

Impeller Particle Swarm Errors
Rotation Error Translation Error

MAX ABS ERRORS:
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Table 17. Error sets for simulated annealing initial testing 

 

  

 

  

 

  
 

 

R.Z R.Y R.X T.X T.Y T.Z
0.13 0.08 -0.34 0.86 4.79 2.27
-0.33 -0.20 -0.21 -2.63 1.05 -0.87
-0.15 0.19 -0.09 -8.99 7.79 -0.73
0.10 0.21 -0.25 -0.67 10.10 6.78
0.10 0.21 -0.25 -0.67 10.10 6.78

0.33 0.21 0.34 8.99 10.10 6.78

Cube Simulated Annealing Errors

MAX ABS ERRORS:

Rotation Error Translation Error
R.Z R.Y R.X T.X T.Y T.Z
4.92 -4.09 1.64 -2.93 -1.87 0.22
1.11 4.13 -1.36 -0.15 1.47 3.29
2.54 -2.58 4.94 0.21 0.62 -0.91
4.51 4.79 2.47 0.06 -1.33 1.67
0.46 -0.43 -4.08 -0.53 -0.04 0.16

4.92 4.79 4.94 2.93 1.87 3.29

Rotation Error Translation Error

MAX ABS ERRORS:

Sphere Simulated Annealing Errors

R.Z R.Y R.X T.X T.Y T.Z
0.15 0.46 0.16 2.54 -1.42 -0.40
0.20 -0.17 0.09 -3.07 3.45 8.03
-0.02 -0.01 -1.33 9.36 -3.92 -6.50
0.10 -0.29 0.02 1.27 0.05 -0.34
0.16 0.06 -0.12 1.64 1.54 3.00

0.20 0.46 1.33 9.36 3.92 8.03
MAX ABS ERRORS:

Parall. Simulated Annealing Errors
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
0.70 -1.52 -0.19 4.86 -1.21 0.00
-4.89 0.28 0.18 -3.34 -2.26 2.03
-2.21 -0.13 -0.05 0.95 0.88 0.17
-3.06 0.27 0.03 -2.60 -3.95 0.73
1.07 0.03 -0.03 -1.72 -3.87 0.58

4.89 1.52 0.19 4.86 3.95 2.03

Torus Simulated Annealing Errors
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
1.82 -0.27 -0.36 -2.25 3.62 -2.16
-1.86 0.02 0.32 0.91 -0.11 -4.44
-0.46 0.09 0.46 -0.67 -2.89 -1.80
-0.46 0.09 0.46 -0.67 -2.89 -1.80
-0.46 0.09 0.46 -0.67 -2.89 -1.80

1.86 0.27 0.46 2.25 3.62 2.16

Head Simulated Annealing Errors
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
0.04 -0.14 0.00 2.80 11.37 -5.04
-0.36 0.17 -0.14 -1.65 -4.22 2.29
-0.01 -0.12 -0.05 -2.84 3.28 4.83
-0.14 0.12 -0.43 -1.20 7.83 1.62
0.15 -0.55 -0.86 -11.18 -10.48 -4.69

0.36 0.55 0.86 11.18 11.37 5.04

Rotation Error Translation Error

MAX ABS ERRORS:

Impeller Simulated Annealing Errors
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Table 19. Error sets for registrations using integer constrained translation 

 

  

 

  

 

  
 

 

 

 

R.Z R.Y R.X T.X T.Y T.Z
0.13 -0.19 0.00 0 0 0
-0.05 -0.53 -0.22 0 -1 0
0.23 0.05 -0.17 0 0 0
-0.15 -0.16 -0.03 -1 1 1
-0.01 -0.23 1.09 -1 0 1

0.23 0.53 1.09 1 1 1

Cube Constrained Translation Errors 
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
-1.36 1.10 -0.12 0 0 0
-1.09 2.30 0.31 0 0 0
0.18 -0.21 0.15 0 0 0
-0.15 -1.80 -1.47 0 0 0
2.19 -0.32 -0.47 0 0 0

2.19 2.30 1.47 0 0 0

Rotation Error Translation Error

MAX ABS ERRORS:

Sphere Constrained Translation Errors 

R.Z R.Y R.X T.X T.Y T.Z
-0.77 0.19 -0.21 -1 0 0
-0.28 -0.17 -0.02 0 0 1
-0.18 -0.05 -0.13 0 0 0
-0.11 0.07 0.00 1 0 0
0.00 0.09 0.18 0 0 0

0.77 0.19 0.21 1 0 1
MAX ABS ERRORS:

Parall. Constrained Translation Errors 
Rotation Error Translation Error

R.Z R.Y R.X T.X T.Y T.Z
2.45 0.07 0.13 0 0 0
-4.67 0.08 -0.03 0 0 0
-1.49 -0.03 0.09 0 0 0
1.54 -0.07 0.34 0 0 0
-2.36 0.23 -0.27 -1 0 0

4.67 0.23 0.34 1 0 0

Torus Constrained Translation Errors 
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
0.12 -0.13 0.17 0 0 0
0.16 -0.16 -0.14 0 0 0
-0.11 0.13 -0.12 -1 -1 0
0.74 0.11 0.03 0 0 2
-0.11 0.12 -0.32 0 0 1

0.74 0.16 0.32 1 1 2

Head Constrained Translation Errors 
Rotation Error Translation Error

MAX ABS ERRORS:

R.Z R.Y R.X T.X T.Y T.Z
-0.18 -0.15 -0.05 0 0 1
-0.15 0.13 0.06 0 0 1
-0.34 -0.10 0.10 0 0 1
1.67 0.68 0.53 -1 1 0
-0.82 0.15 -0.17 0 0 1

1.67 0.68 0.53 1 1 1

Rotation Error Translation Error

MAX ABS ERRORS:

Impeller Constrained Translation Errors 
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