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SUMMARY 

Despite advances in prevention, detection, and treatment of cancer, this disease 

remains the second leading cause of death in the United States. The majority of cancer 

related deaths are due to metastasis rather than primary tumors and, although mortality 

rates have decreased over the last two decades, efforts to achieve comprehensive diagnoses 

and effective treatments still encounter obstacles due to lack of non-invasive technologies 

that accurately assess cancer. The goal of this project is to design a non-invasive approach 

for the assessment of sentinel lymph node metastasis using ultrasound and photoacoustic 

imaging, augmented with contrast agents. The focus is two-fold: first, contrast-enhanced 

ultrasound and photoacoustic imaging are evaluated as a tool to track functional and 

molecular changes of metastatic lymph nodes in relevant in vivo cancer models. 

Specifically, imaging of immune cell uptake and transport of lymphotropic nanoparticles 

to the sentinel lymph node, and imaging of clearable nanoparticles targeted to the 

epidermal growth factor receptor provide diagnostic information regarding metastatic 

nodal involvement. Second, alternative contrast agents are designed with the goal of 

solving challenges of the proposed techniques and augmenting therapeutic capabilities. 

Overall, the study is expected to help identify cancer based on functional and molecular 

changes, therefore augmenting and potentially replacing sentinel lymph node biopsy.  
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CHAPTER 1. INTRODUCTION 

Despite advances in prevention, detection, and treatment of cancer, this disease 

remains the second leading cause of death in the United States and is expected to take over 

600,000 American lives this year. In women, breast cancer is the most common type and 

second deadliest after lung cancer. In the U.S., 1 in 8 women will develop invasive breast 

cancer in their lifetime. Over 250,000 new cases and more than 40,000 deaths are expected 

in 20181. In men, prostate cancer is the most common, and second deadliest after lung 

cancer. The majority of cancer related deaths are due to metastasis rather than primary 

tumors. Although mortality rates have decreased over the last two decades, efforts to 

achieve comprehensive diagnoses and effective treatments encounter obstacles due to lack 

of technology or excessive morbidity. 

1.1 Hallmarks of cancer 

Humans can develop diverse kinds of cancerous tumors with varying molecular and 

morphological characteristics. Despite the complexity inherent to each type of tumor, there 

are common hallmarks that have been described by Hanahan and Weinberg2. Namely, the 

hallmarks of cancer are the following: 

 Sustaining Proliferative Signaling 

 Evading growth suppressors 

 Resisting cell death 

 Enabling replicative immortality 

 Inducing angiogenesis 
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 Activating invasion and metastasis  

The present work will concentrate on the last of these hallmarks: activated invasion 

and metastasis. Metastasis is the culmination of cancer and occurs when primary tumor 

cells successfully invade other locations of the body after hematogenous and/or lymphatic 

spread. Given that the majority of cancer deaths are caused by metastatic spread, it is 

critical to detect these lesions as soon as possible to design an appropriate treatment 

strategy. By improving early detection and treatment of metastasis, cancer survival rates 

can increase. Additionally, doing so with minimal morbidity would improve quality of life 

of cancer patients. 

Because many tumors initially spread through the lymphatic way, the present work 

will focus on tools to aid in early detection of lymph node metastasis.  

1.2 Detection of lymph node metastasis 

Many tumors spread initially via lymphatic vessels, invading lymph nodes near the 

primary tumor. The current clinical practice to assess lymph node metastasis is to biopsy 

and examine tumor-neighboring lymph nodes for presence of metastasis, particularly the 

first one to which the tumor drains, known as the sentinel lymph node (SLN). If no cancer 

cells are found in the sentinel lymph node, it is likely that the remaining lymph nodes are 

also uninvaded3. Thus, sentinel lymph nodes are key in cancer staging, prognosis, and 

treatment design. During a SLN biopsy procedure, locating the sentinel node is a challenge 

in itself and requires the use of typically radioactive contrast agents4-7. Upon localization 

of the radiotracer, the SLN is removed for examination by a pathologist. Unfortunately, 
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this procedure involves morbidity due to removal of the node and pathologists are prone to 

miss small micrometastases, with false-negative rates as high as 60%8-9. 

1.2.1 Alternative strategies for sentinel lymph node biopsy 

Non-invasive imaging techniques can synergize with contrast agents to overcome 

some of the hurdles inherent to SLN biopsy by providing enhanced diagnostic information 

and treatment guidance with decreased morbidity. Several studies have investigated the use 

of conventional imaging modalities, such as MRI, CT, PET, and ultrasound for assessment 

of metastatic lymph nodes10-13. However, there are challenges that prevent those 

approaches from being realistic alternatives to SLN biopsy. For instance, MRI, CT, and 

PET are time consuming and costly techniques that are not compatible with the current 

clinical paradigm. Moreover, they do not offer improvements in specificity and sensitivity 

that would justify the elevated costs. While conventional ultrasound has not provided 

enough sensitivity or specificity either, it is of interest because of its high versatility and 

low cost. 

1.3 Ultrasound and photoacoustic imaging 

Ultrasound and photoacoustic (US/PA) imaging have emerged as promising tools 

to visualize tumor characteristics in a non-invasive, cost-effective way. These synergistic 

imaging modalities allow anatomical, functional, and molecular visualization of pathology. 

Ultrasound is widely used in clinic to study tissue morphology but suffers from poor 

contrast for other applications. US/PA synergy lies on using ultrasound’s anatomical 

information to guide photoacoustic’s functional and molecular imaging with enhanced 

contrast14-17.  
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Several studies have shown applications for lymphatic imaging and SLN mapping 

using contrast agents18-23. Given the potential for functional and molecular evaluation of 

the lymph node, US/PA have been explored as alternatives to SLN biopsy for metastasis 

diagnosis, in order to reduce invasiveness and cost, while maintaining clinical accuracy24-

26. However, these attempts still face challenges such as cost, low sensitivity and 

specificity, and potential effects of the contrast agents. 

There are a variety of exogenous PA contrast agents, including optical dyes, carbon 

nanotubes, plasmonic nanoparticles and hybrid nanoconstructs27-28. Agents with near-

infrared (NIR) absorption, between 700 and 1100 nm, are preferred because these 

wavelengths allow deeper light penetration in tissue29. One of the most commonly used 

agents are plasmonic gold nanoparticles (AuNPs) due to their high absorption cross-

section, biocompatibility, and ease of surface modification30-31.  

Despite their biocompatibility, one of the main challenges of AuNPs is the concern 

about long-term effects of non-cleared gold. Some of the most versatile AuNPs are bigger 

than 5 nm, which prevents them from undergoing renal clearance. However, efforts have 

been made to design smaller nanoparticles and degradable clusters, providing versatile 

optical absorption while enabling later renal clearance32-33. Other nanoparticles such as 

copper sulfide offer advantages such as biocompatibility and NIR absorption with small 

particle size, at the expense of lower molar absorptivity compared to gold by about two 

orders of magnitude34-35.  

Apart from solid nanoparticles, novel hybrid agents also offer biocompatibility and 

faster clearance. Indocyanine green (ICG), an FDA-approved dye, can be encapsulated in 
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liposomes to provide higher PA signals and longer circulation times than free dye 

molecules36.  

To distinguish endogenous chromophores (e.g., blood) and exogenous contrast 

agents, multiwavelength PA data is usually required. Indeed, using distinct spectral 

features of endogenous absorbers (oxygenated and deoxygenated blood) and exogenous 

contrast agents, the presence of absorbers and their relative concentrations can be 

calculated by using various analytical or iterative signal processing methods37-38. When 

many absorbers are present, the mathematical fit seems to yield better results with lower 

mean square errors. However, presence of multiple absorbers, particularly agents that are 

not spectrally distinct, may actually decrease the estimation accuracy of the spectral 

matching algorithms, while increasing the computational cost37-39. Because of this, contrast 

agents with high molar absorptivity and distinct spectral features are ideal because they can 

allow for single-wavelength imaging or simplify multiwavelength approaches. 

1.4 Photoacoustic applications in oncology1 

Tumor environments undergo a series of physiological and metabolic changes that 

alter local pH, oxygenation, and vascularization40. In addition, certain cell receptors are 

over-expressed and can be targeted with different agents and ligands. All of these processes 

can be identified with different PA imaging techniques and used for diagnosis and staging. 

 

                                                 
1 This section is partially adapted from a textbook chapter ‘Overview of Photoacoustic Imaging’ (Dana, 

Dumani, Cook, and Emelianov 2016). Diego Dumani is the primary author of this section. 
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1.4.1 Hemoglobin and imaging of blood oxygenation  

Cancer cells that undergo rapid proliferation rely on vasculature to meet high 

oxygen and nutrient demands. This often results in abnormal vascular formation due in part 

to unbalanced pro- and anti-angiogenic factors41. In addition, a correlation with tumor 

progression and oxygen saturation has been observed, showing that hypoxia increases with 

tumor growth42. 

PA imaging of hemoglobin can visualize areas of increased angiogenesis, while 

estimating oxygen saturation can help to identify hypoxic regions that may indicate 

presence of cancer. This method has been used to diagnose tumors42 and metastatic lesions 

in lymph nodes (Figure 1)43, and to assess therapies by correlating changes in oxygenation 

as the indicator of treatment efficacy44. 

At least two different wavelengths are needed for this technique, but more can be 

used for increased reliability at the expense of longer imaging times and increased system 

complexity. Studies referenced above have used up to ten different wavelengths in the 680 

nm – 860 nm range. More sophisticated algorithms can be used to optimize the wavelength 

selection if needed45. 

The absence of exogenous agents makes this method readily translatable. However, 

potential difficulties may arise with small metastatic regions that have not reached a level 

of hypoxia to be considered malignant, or on the contrary, when areas of a tumor in later 

stages become necrotic and oxygen saturation estimations do not accurately represent 

tissue pathology. 
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Figure 1 – Photoacoustic imaging of lymph node metastasis based on oxygen 

saturation. (A) Schematic drawing depicts the location of the primary tumor, cervical 

lymph nodes, and imaging volume. (B) Representative two-dimensional US image 

shows the cervical lymph nodes (arrows). (C) Coregistered PA image. (D) Ten single-

wavelength PA images were acquired in each imaging plane. (E) A linear least-

squares spectral unmixing algorithm was used to calculate the spectroscopic PA 

image depicting the oxygen saturation. Scale bars are 2 mm. Reproduced from43. 

1.4.2 Targeted contrast agent visualization 

The demand for increasing constant nutrient supply in a rapidly-growing tumor 

causes the over-expression of various cell receptors that can be targeted for contrast agent 

and drug delivery46. Commonly targeted cell receptors include: αvβ3-integrin, folate 

receptor, vascular endothelial growth factor (VEGF) receptor, and the family of epidermal 

growth factor receptors (EGFR and HER2)47. 

 Contrast agents are targeted to these cancer biomarkers using different surface 

modifications and functionalizations. Polymer coatings and proteins can be attached to 

contrast agents to bind to cancer-specific receptors and enhance tumor accumulation. These 
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coatings aim to avoid non-specific binding on normal cells and tissues48. Nanoparticles 

(NPs) have been conjugated to αvβ3-integrin antagonists to image tumor related 

angiogenesis49. Anti-HER2 and anti-EGFR antibodies have also been used to deliver 

targeted contrast agents to the cancer cells 50. Targeted plasmonic NPs, such as gold 

nanospheres, can undergo receptor-mediated endocytosis, showing a spectral shift due to 

particle aggregation (Figure 2)24, 51. 

 

Figure 2 – PA visualization of lymph node metastasis using targeted AuNPs. Raw PA 

images of NP accumulation at 680 nm and 860 nm (A and B, respectively). PA spectral 

changes over time (C-E). Colors correspond to AuNPs (yellow) or blood (red, blue) as 

marked on A and B. Absorption spectrum of AuNPs changes after aggregation. An 

overall increase in signal from gold nanoparticles (yellow) shows the accumulation 

kinetics (F). Adapted from24. 

A 

B 

C D E 

B 
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Challenges of this technique include finding specific ligands and antigens, as well 

as robust conjugation techniques to increase affinity and avoid non-specific binding. NPs 

can degrade in physiological media; thus these surface modifications should also be able 

to preserve the particles in vivo. Moreover, circulation times must be optimized to 

minimize uptake by the reticuloendothelial system52. 

1.4.3 Protease sensitive contrast agents  

PA imaging can be used to identify cancerous lesions through the use of activatable 

probes. The method involves the injection of a probe absorbing at two different 

wavelengths (λ1 and λ2), with one absorbing region targeted to cancer-related matrix 

metalloproteinases (MMPs) using an activatable cell-penetrating peptide (ACPP). When 

the probe is cleaved by MMPs, only the sensitive ACPP accumulates in the cell, resulting 

in single-wavelength absorption at λ1. An image subtraction method can then be used to 

visualize the cleaved (activated) probe53, and has been applied to image follicular thyroid 

carcinoma in mice in vivo54. 

1.4.4 Kinetic-based methods 

Vasculature in healthy tissue is characterized by organized, dichotomous 

branching. In contrast, tumor vasculature exhibits increased, but erratic vessel formation, 

with larger inter-endothelial junctions in vessel walls forming a porous endothelium with 

gaps ranging from 100 nm to 2 µm. Consequently, leaky vasculature naturally found in 

solid tumors allows agents to easily extravasate41, 47, 55 and increases retention of these 

materials56. The sum of these factors is known as Enhanced Permeability and Retention 

(EPR) effect and has been shown to facilitate passive accumulation of nano-sized agents57. 
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Photoacoustic imaging has been used to track passively-delivered dyes and NPs to 

identify tumors and to monitor treatment30, 36, 58. Kinetics can be useful for precise 

localization by identifying differences in wash-in and wash-out times36, 59-60. This approach 

is especially convenient as it does not necessitate tumor-specific targeting moieties, 

although active targeting has been shown to enhance endocytosis after accumulation in the 

tumor by the EPR effect61. 

Unfortunately, the EPR effect is heterogeneous within tumors and varies with 

location and time41. Short circulation times may not allow agents to successfully 

accumulate, requiring surface modifications to avoid premature clearance. As some tumors 

do not exhibit a strong EPR effect, accumulation can be further enhanced using active 

targeting techniques 61-62. For lymph node metastasis applications, more studies are needed 

in order to determine effects EPR. In fact, an opposite effect may exist, as will be discussed 

in further sections of this document. 

1.4.5 Circulating tumor cells 

In addition to local invasion and lymphatic spread, the vascular system is a major 

conduit for cancer metastasis. The presence of circulating tumor cells (CTCs) in blood 

vessels can indicate the potential for metastatic disease63. PA imaging has been investigated 

for in vivo tracking of CTCs, enabling larger blood volumes to be sampled. PA flow 

cytometry approaches allow detection with sensitivities of approximately 1 CTC/mL on 

abdominal vessels of a melanoma mouse model64.  

To reduce scanning time and allow detection of other types of cancer while keeping 

the same sensitivity, magnetic NPs targeted to tumor-specific receptors can be injected and 
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captured near vessel walls with an external magnet. This accumulation provides increased 

PA signal that indicates presence of CTCs65. Additionally, magnetomotive PA techniques 

can be used for improved sensitivity, but are yet to be tested in vivo66. 

PA-based detection of CTCs is promising because it provides a non-invasive, real-

time option with high sensitivity and penetration. However, humans possess a blood 

volume that is three orders of magnitude larger than in a mouse, requiring greater scan 

times and/or enhanced sensitivity. 

1.5 Additional functional and morphological changes in metastatic lymph nodes 

In order to design diagnostic techniques that can improve, or eventually replace 

SLN biopsy, it is important to understand the changes that lymph nodes undergo before, 

during, and after metastasis. Subsequently, these signs may be assessed and combined to 

attain highly sensitive and specific diagnoses.  

As mentioned in section 1.4, US/PA imaging has been successful in identifying 

changes in oxygen saturation and overexpression of tumor cell receptors. However, 

additional morphological and functional changes could also be studied. 

Prior to invasion, tumors release various growth factors to induce 

lymphangiogenesis. Increased intratumoral and peritumoral lymphatic density can be 

correlated to lymph node metastasis in certain types of cancer67. Additionally, these factors 

also have effects in the draining sentinel lymph node(s). It is important to note that these 

changes start to appear prior to metastatic invasion, to prepare the environment for 

metastasis. The emergence of more lymphatic vessels is also accompanied by an increase 
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in lymph flow, which also plays a role in facilitating migration of metastatic cells. Once 

tumor cells start to appear in the sentinel lymph node, they will continue to release growth 

factors that prepare other lymph nodes and organs for further invasion. 

In addition to an increase in lymphangiogenesis and lymph flow, pre-metastatic 

lymph nodes experience a remodeling of high endothelial venules and expansion of 

immune cell and stromal cell populations. Interestingly, there is also an 

immunosuppressive cytokine environment caused by cancer. SLNs become more 

immunocompromised with an increase in the primary tumor size68. 

Healthy lymphatics constantly deliver antigen presenting cells carrying 

peripherally-captured antigens, in addition to soluble antigens for uptake by node-resident 

dendritic cells and macrophages69. When cancer appears, there are complex changes that 

modulate and alter dendritic cell maturation behavior, as a mechanism to stop immune 

responses against metastatic cells68. 

Overall, pre-metastatic and metastatic lymph nodes experience changes in immune 

cell populations, remodeling of areas occupied by these cells, and downregulation of 

immune function70. Although these morphological, phenotypical and functional changes 

are extremely complex, their evaluation could be useful in the assessment of sentinel lymph 

nodes and staging of cancer patients.  

1.6 Summary of research goals 

The goal of my research is to design a non-invasive approach for the assessment of 

sentinel lymph nodes using ultrasound and photoacoustic imaging, augmented with 
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contrast agents. Specifically, contrast-enhanced ultrasound and photoacoustic imaging are 

evaluated as tools to track functional and molecular changes of metastatic lymph nodes in 

relevant in vivo cancer models. To solve challenges of the proposed techniques and 

augment theranostic capabilities, alternative contrast agents are designed and tested in vivo. 

Chapter 2 focuses on detecting changes in immune cell uptake and transport of 

lymphotropic nanoparticles to the sentinel lymph node. Three dimensional US/PA imaging 

is used to quantify the volume occupied by nanoparticle signal, therefore providing 

information of functional and morphological disruptions correlated to metastasis. 

Chapter 3 intends to further expand the characterization, introducing a molecular 

US/PA imaging approach. This approach uses EGFR-targeted gold nanoparticles but 

overcomes the concern of long-term biocompatibility by using 5-nm clearable 

nanoparticles. 

Chapter 4 presents a contrast agent based on FDA-approved indocyanine green dye. 

This agent can be tracked before and after interaction with tumor environments, and 

improves imaging sensitivity in molecular imaging applications, particularly useful for 

detection of small metastatic foci. Additionally, it may be more readily translatable to clinic 

than other metallic nanoparticle agents. 

Chapter 5 explores a hybrid contrast agent that allows dual surface modification. 

Such agent can be targeted to cancer cells and loaded with dyes to enhance imaging 

sensitivity. Additionally, it has the potential to be used as a vehicle for image-guided drug 

delivery upon diagnosis. 
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Chapter 6 focuses on a multifunctional nanoparticle that can operate as a PA/MRI 

contrast agent. Its optical and magnetic properties allow multimodality and could 

potentially be used in theranostic applications. Preliminary studies show diagnostic value 

for both sentinel lymph node imaging and circulating tumor cell screening. 

Finally, Chapter 7 discusses the future outlook based upon the presented work, 

including challenges that should be addressed in subsequent studies. The next steps 

regarding technique improvement and contrast agent utilization, particularly in therapeutic 

applications, are presented. 
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CHAPTER 2. DETECTION OF LYMPH NODE METASTASIS BY 

PHOTOACOUSTIC IMAGING OF IMMUNE CELL UPTAKE 

AND TRANSPORT DYNAMICS 

The functional and morphological changes that lymph nodes undergo during 

metastatic invasion, introduced in section 1.5, suggest that interactions of immune cells 

with foreign objects, namely nanoparticles, could be affected when metastasis is present. 

To evaluate these changes, an immunofunctional imaging method was developed 

for identifying sentinel lymph node metastasis, using combined ultrasound and 

photoacoustic imaging augmented with glycol-chitosan-coated gold nanoparticles 

(GC-AuNPs). The hypothesis (Figure 3) establishes that GC-AuNPs are uptaken by 

immune cells upon peritumoral injection. After lymphatic transport by the immune cells, 

the presence of metastasis affects the spatio-temporal distribution of GC-AuNP-loaded 

immune cells in the SLN. This effect can be monitored via US/PA imaging and quantified 

to obtain a diagnostic result.  

2.1 Role of glycol-chitosan-coated gold nanoparticles 

Gold nanoparticles (AuNPs) are one of the most commonly used photoacoustic 

contrast agents due to their high molar absorptivity and capability for diverse surface 

modifications. The use of AuNPs entails many benefits for the immunofuctional imaging 

approach. Spherical AuNPs have a negligible near-infrared (NIR) optical absorption and 

are thus invisible in NIR US/PA when colloidally dispersed. However, cellular uptake-
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induced aggregation results in an enhancement of the NIR absorption, allowing to visualize 

endocytosed nanoparticles71. 

Glycol-chitosan enhances hydrophilicity, stability and biocompatibility of 

AuNPs72. GC-AuNPs have effectively been used for in vivo contrast-enhanced 

photoacoustic mapping of cervical lymph nodes in healthy mice, generating high-contrast 

images due to uptake by immune cells73. Further in vitro studies showed that, within 24 

hours, GC-AuNPs are preferentially uptaken by immune cells rather than cancer cells73. 

The nanoparticle’s neutral to weak-positive surface charge facilitates protein adsorption 

and subsequent immune cell uptake. These results enabled further validation of our method 

in vivo. 

2.2 Role of immune cells 

The optimal delivery of agents to the lymph nodes has been subject of numerous 

studies. This delivery can occur via passive flow and subsequent uptake by lymph node 

resident immune cells, or via cell trafficking after uptake at the injection site. In general, 

delivery efficiency can be affected by nanoparticle size, shape, and surface properties, such 

as charge, hydrophobicity and chemical composition 74.  

To enhance this delivery, both chitosan and glycol-chitosan have been studied as 

vaccine adjuvants because they regulate immune response, thus promoting immune cell 

activation75-78. Furthermore, cationic particles are known to promote trafficking and 

retention in the lymph node79-81. These properties of glycol-chitosan can be advantageous 

for lymphatic imaging. 
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In the present study, skin resident dendritic cells are suspected to have a role in 

transporting GC-AuNPs to the sentinel lymph node. Additionally, lymph node resident 

immune cells may also recognize and uptake passively-drained GC-AuNPs, further 

increasing the local photoacoustic signal. Overall, the nanoparticle-loaded cells in the 

lymph nodes may consist of a combination of peripheral migratory immune cells and 

resident immune cells. 

Previous studies have used iron oxide nanoparticles (IONPs) and MRI as a method 

to find metastatic lymph nodes. Upon intravenous injection, healthy lymph nodes showed 

an increased, homogeneous presence of IONPs, after being uptaken and transported by 

immune cells10-11. On the other hand, metastatic lymph nodes showed decreased, 

heterogeneous accumulation. However, this method carries several challenges. The 

intravenous administration requires a much higher dose to achieve enough agent delivery 

and imaging sensitivity. Additionally, this route offers no distinction between sentinel and 

non-sentinel nodes. This, together with negative contrast of IONPs deems this method not 

time-effective nor easily compatible with the current diagnostic paradigm. 

Another study suggested using similar IONPs for ex vivo photoacoustic detection 

of metastasis82. However, IONPs are poor NIR absorbers thus preventing high imaging 

sensitivity. As such, in vivo attempts failed to detect differences between metastatic and 

non-metastatic groups83.  

In this chapter, the goal is to assess changes in immune cell uptake and distribution, 

due to metastasis, by using a contrast agent that is highly lymphotropic, promotes immune 
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cell interaction, and generates high-contrast photoacoustic images, providing highly 

sensitive diagnostic value. 

 

Figure 3 – Immunofunctional imaging paradigm. (a) The mouse is injected 

peritumorally with GC-AuNP contrast agent. (b) The contrast agent becomes NIR-

absorbing upon uptake by immune cells and is transported to the sentinel lymph node 

via afferent lymphatic vessels. (c) The GC-AuNP-loaded cell accumulation in the 

lymph node provides information about presence of metastasis.  

2.3 Materials and methods 

2.3.1 Synthesis of gold nanoparticles 

GC-AuNPs were synthesized through chloroauric acid reduction as described 

elsewhere84. Briefly, 300 ml of glycol chitosan solution (1 mg/ml, Sigma-Aldrich Corp., 
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St. Louis, MO) was boiled to 70°C and mixed with HAuCl4·3H2O solution (1 mM, 100 

ml) under stirring for 24 hours until the solution turned to red. Glycol-chitosan acted as a 

reducing and stabilizing agent. The resulting nanoparticle size was 20 nm, with an optical 

absorption peak of 520 nm. Nanoparticles were washed and concentrated via centrifugation 

and diluted to a concentration of 0.1 mg/ml of gold. 

As a control, PEG-AuNPs were synthesized by citrate reduction. Briefly, 6 ml of 

hydrogen trichloroaurate (III) solution (25 mM) was diluted with 279 ml of distilled water 

and heated to boil under stirring. Then, 15 ml of trisodium citrate solution (1 wt%) was 

added to produce gold nanoparticles with a diameter of approximately 20 nm. After cooling 

down, 5 ml of nanoparticle colloid was mixed with 5 ml of mPEG-SH solution (Laysan 

Bio, Inc., MW=5000, 2 mg/ml) under stirring for 24 hours. Before injection, PEG-AuNPs 

were washed via centrifugation and concentrated to 0.1 mg Au/ml.  

2.3.2 Ultrasound and photoacoustic imaging 

US/PA imaging was performed using a Vevo LAZR system (Visualsonics Inc.). 

Laser irradiation was delivered through a fiber optic bundle, integrated with a 40 MHz 

ultrasound transducer (LZ-550). The laser was tuned from 680 to 970 nm, with a 4-6 ns 

pulse duration and 20 Hz repetition rate. Laser fluence was kept under the American 

National Standard Institute (ANSI) safety limits. For 3D scans, the transducer was attached 

to a translational motor. The motor moved perpendicularly to the imaging plane while 

acquiring US/PA imaging slices. Images were post processed and analyzed using Amira 

(Thermo Fisher Scientific) and MATLAB (MathWorks). 
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2.3.3 Animal model 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Georgia Institute of Technology. Five-week old female nude 

mice (Nu/Nu, Charles River) were inoculated in the right caudal mammary fat pad with 

2×106 human breast adenocarcinoma cells in 50% matrigel (MDA-MB231-Red-FLuc-

GFP, PerkinElmer) for the metastatic group. For the non-metastatic control group, mice 

were inoculated similarly with non-metastatic human ductal carcinoma cells (BT474, 

ATCC). Tumors were allowed to grow up to a 10 mm diameter prior to imaging studies. 

Naïve mice of the same strain and age were used as an additional control group. 

2.3.4 Imaging protocol 

Mice were injected with 100 µl of GC-AuNP colloid peritumorally. US/PA imaging 

was performed before and immediately after injection, and 1 h, 24 h, and 48 h subsequently. 

Conventional B-mode ultrasound was used to identify the inguinal lymph node anatomy. 

Accumulation of GC-AuNP in the SLN after cellular uptake by immune cells was 

visualized using multiwavelength PA imaging. At the end of the imaging studies, tissue 

was harvested for histological analysis. 

2.3.5 Histological analysis 

The inguinal lymph nodes were resected after imaging studies and kept in 10% 

buffered formalin. Samples were then embedded in paraffin and sliced for H&E staining. 

Histology slides were visualized on a Leica DMI3000B microscope. Cancer cells were 
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identified by presence of GFP fluorescence, and GC-AuNP were identified using dark-field 

microscopy.  

2.3.6 Image analysis 

Three-dimensional B-mode ultrasound images were used to segment the lymph 

node volume of each mouse, creating a lymph node mask. Photoacoustic images were 

filtered using a 3D median filter followed by a 3D averaging window. A low threshold was 

applied to remove pixels under the noise floor. Then, adaptive thresholding85 was 

performed using a moving window 1/8 the size of the image, to avoid overestimation of 

the threshold in cases where strong skin signals or other artifacts were present. The lymph 

node mask was applied to the thresholded images. The ratio of bright pixels over the total 

pixels in the mask corresponds to the percent volume of the lymph node occupied by 

nanoparticle-loaded cells. 

2.3.7 Statistical analysis 

A one-way analysis of variance (ANOVA) test was performed for the healthy, non-

metastatic, and metastatic study groups. A post-hoc Tukey’s honest significant difference 

(HSD) test was performed to determine the statistically significant differences among study 

group means. 

2.4 Results and discussion 

GC-AuNPs exhibited high contrast enhancement in animal studies upon cell 

endocytosis. Images before and 24 hours after injection demonstrate a 10-fold increase of 

PA signal at 700 nm in the lymph node (Figure 4). This increase enables single-wavelength 
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imaging of GC-AuNPs, therefore simplifying image acquisition and analysis. If much 

lower doses of gold were required, GC-AuNPs could still be localized using 

multiwavelength imaging at the expense of a more time-consuming approach. 

 

 

Figure 4 – Ultrasound/Photoacoustic images of a non-metastatic sentinel lymph node 

(a) before and (b) 24 hours after injection of GC-AuNP. (c) After 24 hours, the 

photoacoustic signal spectrum shows a 10-fold increase in absorption at 700 nm  

 

When metastatic and non-metastatic study groups were compared, US/PA imaging 

showed that distribution of GC-AuNP-loaded cells in the SLN was disrupted due to 

metastasis (Figure 5). Single-wavelength 700 nm PA images effectively demonstrated this 

effect. No significant changes in imaging contrast were observed between 24 h and 48 h 

drainage. As metastases further invade the lymph node, the effect could become even more 

pronounced to the point where no PA contrast would be seen inside the node.  
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Figure 5 – Two-dimensional US/PA immunofunctional imaging 24 hours after 

injection. (a, d) B-mode ultrasound was used to localize the lymph nodes.  

(b, e) Overlaid photoacoustic imaging shows GC-AuNP-loaded cells in the lymph 

node and afferent lymphatic vessel. (c, f) Ultrasound-masked photoacoustic images 

show the effect of metastasis in nanoparticle-loaded-cell accumulation.  

The behavior was further confirmed on three-dimensional images acquired using a 

translational motor. In the metastatic study group, the percent volume of the SLN 

containing GC-AuNP-loaded cells showed a statistically significant reduction of more than 

2-fold compared with non-metastatic controls. Naïve mice did not show any statistically 

significant difference from non-metastatic tumor bearing mice (Figure 6). 
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Figure 6 – 3D-rendered US/PA images of the sentinel lymph node 24 hours after 

injection in (a) naïve mouse, (b) tumor bearing mouse without metastasis, (c) tumor 

bearing mouse with metastasis. (d) The bar graph shows an over 2-fold decrease in 

the percent lymph node volume occupied by nanoparticle-loaded cells. Data are 

shown as means ± SD (n = 3). **p = 0.002 ; ***p = 0.001 

PEGylated gold nanoparticles (PEG-AuNPs) were injected in naïve mice as an 

additional control to confirm the immunogenicity of GC-AuNPs. Upon injection, and 24 

hours after, no significant changes in PA signal were seen due to PEG-AuNPs. PEGylation 

prevents opsonization and thus phagocytosis by immune cells86. Because of this, PEG-

AuNPs did not show significant NIR absorption compared with GC-AuNPs (Figure 7). 
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Figure 7 – Ultrasound/Photoacoustic images of a healthy sentinel lymph node in a 

naïve mouse (a) before and (b) 24 hours after injection of PEG-AuNPs. (c) After 24 

hours, there are no significant changes in the the photoacoustic signal spectrum.  

Histology results (Figure 8) were consistent with the proposed hypothesis. These 

results confirmed that metastatic cells inside the SLN disturb the distribution of 

GC-AuNP-loaded immune cells, as identified by US/PA imaging. Additionally, the 

nanoparticles did not coincide with cancer cells when both images were overlaid, as 

expected from previously described in vitro uptake experiments73. The cited studies also 

showed that in non-metastatic controls, GC-AuNP were found in subcapsular sinuses 

across the SLN.  
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Figure 8 – Histological analysis shows (a) GC-AuNPs using dark-field microscopy and 

(b) cancer cells using GFP fluorescence. (c, d) The merged images show that GC-

AuNPs and cancer cells do not spatially coincide. Scale bars are (c) 150 µm, and (d) 

300 µm.  

Results lead to presume that the metastatic foci lodged in the afferent region of the 

node affect the natural inflow and accumulation of nanoparticles and nanoparticle-loaded 

cells. Additionally, it is known that metastatic and pre-metastatic tumors induce 

morphological and functional remodeling in sentinel lymph nodes, including changes in 

the lymphatic sinuses and immune cell trafficking, as well as modulation of immune cells 

and immune supression69, 87-88. This may also explain why naïve mice showed slightly 

lower accumulation than pre-metastatic nodes. However, the differences were not 

statistically significant, so this is up for further investigation. 
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It is also noted that the lymphatic drainage and cellular uptake mechanisms of 

GC-AuNPs should be further studied. While a portion of the GC-AuNPs may be 

phagocytosed and transported to the sentinel lymph node, it is possible that some 

nanoparticles passively flow to the SLN where they are uptaken by lymph node resident 

immune cells. Some of these free-flowing particles may even be endocytosed by 

endothelial cells on the lymphatic vessel walls, contributing to their intense PA signal. 

Albeit the specific aspects and proportion of each mechanism are of interest, they are out 

of the scope of this study. 

The immunofunctional imaging approach is not exempt of limitations; however, 

they can likely be overcome to maintain the method’s utility. One of its strengths is that 

the statistically-significant reduction is based on the volume of the SLN containing 

GC-AuNP signal, as calculated via US/PA, but it is independent of the average signal 

intensity. Thus, the method is unaffected by changes in laser fluence or differences in skin 

absorption. Although a fully-invaded SLN is expected to show no PA signal, i.e., negative 

contrast, the advantage is that GC-AuNPs, being aggregated inside of cells, can be 

visualized at the lymphatic vessels on their way to the lymph node (Figure 5e), thus 

indicating that the drainage occurred, even if the SLN is fully invaded. 

Because the nanoparticles are not in tumor cells, the method presented is 

independent of the molecular characteristics of the tumor and, as such, does not require 

expensive antibodies or sophisticated surface modifications on the contrast agent. This can 

be particularly useful with triple-negative tumors, such as the model used in this study. 
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However, potential sources of non-specificity could be caused by other lymphatic 

ailments, such as slow lymph flow or infections. A way to solve this issue would be to 

perform further molecular imaging, such as that shown by Luke, et al.24 or the studies 

presented in CHAPTER 3 below, in the cases where immunofunctional imaging is 

inconclusive but indicates possibility of metastasis. Thus, the method is expected to be 

highly sensitive, with high but limited specificity in patients with ongoing lymphatic 

ailments. Nevertheless, many other alternative diagnostic approaches would likely be 

affected by such ailments as well. 

The minimum number of metastatic cells to cause a distinguishable signal 

distribution difference is yet to be determined. In the oncology field, it is up to debate 

whether lesions smaller than 2 mm warrant treatment strategies any different than those in 

patients with no nodal involvement89-94. In this study, the diameter of the whole organ was 

close to 2 mm, demonstrating that the resolution of US/PA would be sufficient to identify 

changes in submillimeter scales. The changes seen were consistent with others shown in 

literature using intravenous iron oxide contrast agents10-11. These patterns can be 

characterized in future trials with larger sample numbers, to create tables such as those 

shown using MRI and iron oxide contrast agents to identify the degree of nodal 

involvement95. The proposed technique, however, would add versatility and 

cost-effectiveness, enhanced by a superior imaging sensitivity and resolution. 

Last, the GC-AuNPs used in this study were 20 nm and, as such, do not readily 

clear via renal excretion. However, as a proof of concept the study was successful in 

identifying changes caused by SLN metastasis. The same approach may be applied using 
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different types of contrast agents, such as smaller (< 5nm) or biodegradable nanoparticles 

that promote renal clearance. 

2.5 Conclusion 

The proposed immunofunctional imaging approach localized immune cells with 

endocytosed GC-AuNPs, allowing for evaluation of their spatio-temporal distribution in 

the SLN. This technique goes beyond merely detecting SLN location and provides 

functional information that can be correlated to the presence of metastasis. The results are 

consistent with previous literature and in vitro studies. Additionally, this method is 

cost-effective because it does not require expensive imaging modalities, antibodies or 

sophisticated molecular targets. From a research perspective, the developed US/PA 

imaging tool could also advance research in basic science and areas such as immunology 

or immunotherapy. From a clinical perspective, the tool can aid physicians in detection of 

sentinel lymph node metastasis thus guiding and potentially avoiding unnecessary SLN 

biopsy. 
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CHAPTER 3. MOLECULAR PHOTOACOUSTIC IMAGING OF 

LYMPH NODE METASTASIS USING CLEARABLE GOLD 

NANOPARTICLES2 

Functional imaging offers a cost-effective, “one-size-fits-all” approach that can 

point suspicious lymph nodes to clinicians. Upon detection, a robust diagnostic platform 

could also confirm the size and location of the metastatic lesions, based on molecular 

characteristics. Previously, Luke, et al.24 introduced molecularly activated plasmonic 

nanosensors (MAPS) to detect lymph node micrometastasis. The MAPS consisted of 

40-nm gold nanospheres targeted to the epidermal growth factor receptor (EGFR). 

However, it has been shown that gold nanoparticles larger than 5 nm accumulate 

indefinitely in the spleen and liver of mice96. Beyond biocompatibility and long-term 

exposure effects, other concerns exist when nanoparticles are not cleared, such as their 

effect or interference with other diagnostic tests97. 

In this chapter the molecular imaging approach is further improved by investigating 

the use of 5-nm gold nanospheres targeted to EGFR to detect micrometastasis. 

Nanoparticles smaller than 5 nm in size rapidly undergo renal clearance upon intravenous 

administration97. As such, they represent an excellent option towards future clinical 

translation of this technique. 

 

                                                 
2 This chapter includes work performed in collaboration with Sangheon Han and Dr. Konstantin Sokolov 

from The University of Texas MD Anderson Cancer Center. 
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3.1 Materials and Methods 

3.1.1 Gold nanoparticles 

Gold nanospheres, 5 nm, were synthesized by citrate reduction method as 

previously described98. Briefly, 100 ml of deionized ultrapure water was heated to 97 °C. 

Then, 1 ml of 10 mg/ml HAuCl4 solution was added under stirring, followed by 1 ml of 

10 mg/ml sodium citrate solution after one minute. A 1 ml solution of 0.75 mg/ml NaBH4 

in 1% sodium citrate was added to the solution one minute later. The solution was stirred 

for 5 minutes and transferred to an ice bath to cool down to room temperature. EGFR-

targeting was performed according to previously reported methods99.  

3.1.2 Animal model 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Georgia Institute of Technology. Five-week old female nude 

mice (Nu/Nu, Charles River) were inoculated submucosally in the tongue with 2×105 

luciferase-expressing human oral squamous cell carcinoma cells100 (generously provided 

by the lab of Dr. Jeffrey Myers, MD Anderson Cancer Center) in 30 µl of cell media. 

Tumors were allowed to grow up to a 5 mm diameter prior to imaging studies. At this point, 

likelihood of metastasis to one or more cervical lymph nodes was high101. 

3.1.3 Bioluminescence 

Before US/PA imaging procedures, bioluminescent imaging was performed using 

an IVIS Spectrum CT imaging system (PerkinElmer). Mice were anesthetized and injected 

intraperitoneally with 150 µl of RediJect D-Luciferin substrate (Perkin Elmer). Then, the 
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animal was placed inside the imaging chamber for bioluminescence imaging. Repeated 

scans were acquired continuously for approximately 15 minutes to achieve maximum 

bioluminescence emission. 

After US/PA studies, the bioluminescent imaging procedure was repeated under 

terminal anesthesia. After luciferin injection, the tongue was resected to remove the tumor 

from the field of view, thus acquiring bioluminescence signals from metastatic cells only. 

3.1.4 Ultrasound and photoacoustic imaging  

Mice were anesthetized and injected peritumorally in the tongue with 30 µl of 

EGFR-targeted gold nanoparticles, corresponding to approximately 50 µg of gold. 

Combined ultrasound and multiwavelength photoacoustic imaging of the cervical lymph 

nodes was performed immediately after, using a Vevo LAZR with 40 MHz LZ-550 

transducer. The wavelength acquisition range was from 680 nm to 970 nm, in steps of 2 

nm. The lymph nodes were imaged continuously for 3 hours. Mice were allowed to wake 

up and underwent US/PA imaging under anesthesia 24 hours after, following the same 

protocol as day 1.  

3.1.5 Multiwavelength spectroscopic analysis 

Spectroscopic analysis was performed following a previously-reported method38  

based on a linear least squares (LLS) algorithm. In vivo PA imaging data were used as 

input to the unmixing algorithm. The absorption spectra of oxygenated hemoglobin, 

deoxygenated hemoglobin, and plasmon-coupled nanoparticle spectra were used as 

parameters. 
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The output consisted of three image matrices, corresponding to concentrations of 

oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), and nanoparticles 

(AuNP) in arbitrary units. All resulting images were overlaid on the raw ultrasound image 

using different colormaps. 

To avoid skin signals, ultrasound-based segmentation was applied. Ultrasound 

signals above 20 dB were used as input to an edge detection algorithm102. Then, the skin 

edge was dilated in the z (depth) direction assuming a skin thickness of approximately 400 

µm, based on literature reports of mouse skin thickness103. 

3.2 Results and discussion 

Bioluminescence imaging confirmed presence of metastatic cells prior to US/PA 

imaging (Figure 9). The proximity of the primary tumor and the cervical sentinel lymph 

lymph node, together with the poor spatial resolution inherent to bioluminescence imaging 

at this depth, did not allow to evaluate metastasis with certainty. After terminal tongue 

resection (removal of the primary tumor) it was clear that the sentinel node was invaded, 

due to the strong bioluminescence signal detected. 
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Figure 9 – Bioluminescence image of lymph node metastasis prior (left) and after 

(right) tongue tumor removal. 

In ultrasound and photoacoustics, skin can be a source of unwanted signals. This 

can be due to skin pigmentation or accumulation of impurities on the skin that cause optical 

absorption hot spots, or small air bubbles causing hyperechoic regions and artifacts. 

Particularly, for detection of small cancer cell foci in the lymph node, the photoacoustic 

signal intensity may not be high enough to be distinguished from blood, skin, or image 

artifacts. Multiwavelength PA allows to detect and isolate signals with spectra 

corresponding to gold nanoparticles. However, skin artifacts can have unpredictable 

spectra that may be incorrectly detected as nanoparticles by spectral unmixing algorithms. 

Because of this, a skin segmentation algorithm was applied prior to spectral unmixing, 

based on ultrasound intensity and assuming a skin thickness of approximately 400 μm 

(Figure 10), and signals from this region were rejected. 
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Figure 10 – Ultrasound-based skin segmentation images. A mask (left) was created 

by detecting the edge of the skin and assuming a 400 μm thickness. Only the blue area 

is preserved. The mask is overlaid (right) with the b-mode ultrasound to show the 

rejected skin area. 

Upon injection of EGFR-targeted AuNPs, multiwavelength US/PA imaging was 

performed. After 20 minutes, a localized aggregation of nanoparticles became noticeable 

on the right cervical lymph node (sentinel node). The aggregation was confirmed and 

isolated from blood signals using spectroscopic analysis (Figure 11). This localized signal 

indicated presence of metastasis and persisted over the course of the imaging session, 

which lasted 3 hours. After 24 hours, no noticeable nanoparticle signals were detected, 

suggesting a decrease in aggregation and plasmon coupling due to nanoparticle dynamics 

such as being exocytosed by the cancer cells. 
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Figure 11 – Ultrasound and spectroscopic photoacoustic image of a murine neck axial 

cross section showing the cervical lymph nodes (whited dashed contours), 2 hours 

after injection of EGFR-targeted AuNPs. The colormaps show oxygenated 

hemoglobin (blue), deoxygenated hemoglobin (red), and aggregated gold 

nanoparticles (yellow). Metastasis is indicated by localized aggregation of gold 

nanoparticles (white arrow). 

The results are promising regarding the feasibility of clearable gold nanoparticles 

for molecular imaging of lymph node metastasis. It is important to note, however, that 

further studies are needed to fully evaluate the sensitivity and specificity when small 

nanoparticles are used compared to previous literature using 40-nm gold spheres. 

In part, the results differ from those shown by Luke, et al.24 in the sense that those 

studies using 40-nm nanoparticles showed a more progressive aggregation of nanoparticles 

over the course of 125 minutes, with little to no nanoparticle signal in the first 25 minutes. 

In contrast, when using 5-nm nanoparticles the signal appeared within the first 20 minutes 

and remained relatively steady during the imaging session. It is possible that larger 40-nm 

nanoparticles have slower drainage dynamics than the smaller 5-nm ones used herein. If 
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so, this would be an additional advantage of using 5-nm gold particles, which would 

provide faster results and reduce procedure times. 

Because nanoparticles were not detected during the second imaging session, results 

suggest that the nanoparticles may start to clear the area after 24 hours. More studies are 

needed to confirm this hypothesis. For instance, harvesting the lymph node at different 

time points after injection and drainage would allow to perform histological analysis to 

assess colocalization of nanoparticles and cancer cells, and confirm successful clearance. 

Immunohistochemistry for EGFR expression and silver staining would be viable methods 

to evaluate colocalization and clearance. Biodistribution studies are also necessary to 

confirm renal excretion and study any remaining gold in organs such as spleen and liver. 

Additional experimental groups are also needed to fully evaluate the accuracy of 

this technique. For instance, a larger number of cancerous mice would help assess the 

sensitivity of the method, while the use of non-cancerous controls or non-specific 

antibodies could assess the specificity of the technique.  

The low imaging sensitivity of this technique is a limitation and requires 

spectroscopic analysis to determine the location of metastasis. Increasing the injected agent 

concentration could increase contrast, but it may imply additional cost and dosage 

concerns. The use of multimodal contrast agents may solve this weakness by improving 

imaging sensitivity and will be discussed in subsequent chapters of this document. 
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3.3 Conclusion 

Using US/PA and targeted nanoparticles, it was possible to precisely detect lymph 

node metastasis non-invasively. Because the contrast agent is expected to clear via renal 

excretion, the presented results constitute a step towards potential clinical translation. More 

studies are needed for statistical analysis to obtain the sensitivity and specificity of this 

method in comparison with previous literature. Additionally, renal clearance must be 

confirmed and characterized with more thorough biodistribution studies. Gold nanospheres 

offer the advantage of acting as sensors, thus differentiating between free nanoparticles 

(invisible) and uptaken nanoparticles. Access to alternative multimodal contrast agents that 

can act as sensors and provide higher sensitivity could further augment the diagnostic value 

and could increase the range of possibilities for clinical trials, in case additional safety 

concerns persisted for gold nanoparticles.  
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CHAPTER 4. ENHANCED SENSITIVITY WITH A DUAL MODE 

NANOSENSOR FOR MOLECULAR IMAGING3 

Numerous biomarkers play a significant role in medical imaging for oncology, 

cardiology, immunology, among other areas. Identifying the presence of different types of 

molecules and cells, together with environmental cues, such as pH and oxygenation, can 

be critical for diagnosis, therapy and monitoring of disease. 

Contrast agents are commonly used to enable and enhance biomarker 

visualization27, 104-109. In many cases, imaging applications can further benefit from 

responsive contrast agents that are able to interact and change with the environment, 

elucidating the status of one or more biomarkers. Examples include imaging of cancer 

cells24, 110, immune cells111-112, pH113-114 or enzyme activity115-116.  Particularly, CHAPTER 

3 introduced the use of gold nanoparticles to target cellular receptors in cancer cells. While 

the approach is promising, it could be further enhanced in aspects such as sensitivity and 

ease of clinical translation. 

The choice of imaging modality is dependent on the desired sensitivity, spatial and 

temporal resolution, cost, safety, and the ability to provide structural, functional or 

molecular information. Unfortunately, no single modality excels in all these attributes117-

118. Particularly, technologies such as PET and fluorescence imaging exhibit high 

sensitivity but suffer from poor spatial resolution. Conversely, others such as MRI, 

                                                 
3 Part of this chapter is adapted from a proceeding manuscript titled ‘Co-registered photoacoustic and 

fluorescent imaging of a switchable nanoprobe based on J-aggregates of indocyanine green’ (Dumani, et al 

2018). Diego Dumani is the primary author of this manuscript. 
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ultrasound, and photoacoustic imaging allow superior resolution at the expense of limited 

sensitivity due to lower signal-to-background ratio. By using multimodal imaging 

approaches, high resolution images may be achieved while synergistically boosting 

detection sensitivity119-120. 

Previously, the use of liposome-encapsulated J-aggregates of indocyanine green 

(ICG) (Figure 12A), named PAtrace, was introduced as an environment responsive agent 

for photoacoustic imaging (PA)121-122. This contrast agent has an optical absorption peak 

at 890 nm that blue-shifts to 780 nm upon interaction with cells or environment (Figure 

12B). This shift is caused by the rupture of the liposome, which releases the ICG 

J-aggregate, subsequently breaking down into free ICG molecules. Besides the absorption 

spectrum shift, detectable via photoacoustic imaging, the process also enables fluorescence 

emission detected above 800 nm, a long-known characteristic of ICG123-125. 

In this chapter, the multimodality of PAtrace is exploited by using a platform 

integrating a 3D photoacoustic/fluorescence tomography (PAFT) instrument. The system 

simultaneously acquires both imaging components using the same laser pulse as excitation, 

thus allowing co-registration. First, phantom results are shown to validate the 

photoacoustic detection prior to activation, and multimodal detection after activation. Last, 

in vivo results of particle drainage and activation are shown in a murine inguinal lymph 

node. 
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Figure 12 – (a) Schematic of PAtrace shows an ICG J-aggregate encapsulated by a 

phospholipid and cholesterol shell. (b) Absorption spectra of intact and digested 

PAtrace. Before interaction, a sharp peak at 890 nm is obtained. After interaction 

with cells or environment, free ICG absorption spectrum is recovered. 

4.1 Materials and methods 

4.1.1 Photoacoustic/Fluorescence imaging setup 

Tomographic photoacoustic and fluorescence imaging was simultaneously 

performed using a PAFT system, as described by Brecht et al 126. Briefly, the sample holder 

is vertically inserted in a water tank where laser excitation is delivered by four orthogonal 

fiberoptic illuminators, using a Phocus Mobile tunable laser (Opotek Inc). The laser can be 

tuned between 690 nm and 970 nm, with a 10 Hz repetition rate, and 5 ns pulse duration. 

Fluence at the phantom or skin surface was kept below the American National Standard 

Institute (ANSI) safety limits. Photoacoustic images are acquired with a 96-element array 

transducer, 6 MHz center frequency. Fluorescence is acquired with a scientific CMOS 

camera Dhyana 400D (Tucsen Photonics) equipped with a fluorescence emission filter 

matching the emission spectrum of ICG. During the scan, the sample rotates at 10°·s-1 

while tomographic slices are registered for full-volume offline reconstruction using 

standard filtered backprojection. 
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4.1.2 Phantom imaging 

A phantom was designed containing five ultrathin wall polytetrafluoroethylene 

(PTFE) tubes, 0.9 mm diameter (Zeus, Inc.). Each tube was filled with a different contrast 

agent as represented in Figure 13A. Optical densities of the agents were matched to OD = 

5 cm-1 at their respective absorption peak. The phantom included PAtrace in DI water, 

PAtrace in Triton X-100, free ICG solution, and cupric sulfate (CuSO4) solution. Triton X-

100 is a surfactant that breaks down liposomes and monomerizes the ICG, simulating the 

activation and environment interaction that particles would undergo in vivo. The CuSO4 

solution was used as a reference to normalize wavelength-dependent laser fluence 

variations. 

The tube ends were sealed with glue to prevent leakage, and one hour was allowed 

for the glue to dry. Then, the phantom was placed vertically in the sample holder and 

inserted into the water tank (temperature = 25 °C). Images were acquired using 780 nm 

(multimodal) and 890 nm (PA only) laser excitation. 

4.1.3 In vivo imaging 

A naïve mouse (Nu/Nu, Charles River Laboratories) was used as part of a protocol 

approved by the Institutional Animal Care and Use Committee (IACUC) at the Georgia 

Institute of Technology. The animal was injected with 40 µl of PEGylated PAtrace (OD = 

80 cm-1) in the right caudal mammary fat pad. The particles were allowed to drain to the 

inguinal lymph node for 24 hours. The mouse was then anesthetized and positioned in a 

restrainer with a free-breathing anesthesia delivery system (Figure 14). The restrainer was 

vertically placed in the sample holder and inserted into the water tank. Water temperature 
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was kept at 37 °C. Images were then acquired with PAFT system using 780 nm 

(multimodal) and 890 nm (PA only) wavelengths. 

Two-dimensional spectroscopic PA images were subsequently acquired using a 

Vevo LAZR system as previously described in section 2.3.2. 

4.2 Results and discussion 

The results of the PAFT phantom imaging showed successful detection of PAtrace 

activation, both photoacoustically and fluorescently. Upon activation, PAtrace is expected 

to lose 890-nm absorption, and gain 780-nm absorption, together with reinstated 

fluorescence. The free ICG solution displayed a similar behavior to that of digested 

PAtrace, as expected.  

A front view of the phantom (Figure 13B) shows no fluorescence for intact PAtrace, 

and high fluorescence emission for digested PAtrace, as well as free ICG. While all tubes 

are in the field of view, only tubes 2 and 3 are visible. Tube 1, and support rods are slightly 

discernible, due to a small leakage of excitation light. At 890 nm, only intact PAtrace was 

detected via PA imaging (Figure 13C). PA images at 780 nm show high contrast for 

activated PAtrace and free ICG, but low signal when PAtrace is intact (Figure 13D). 

The tube containing CuSO4 showed no fluorescence. It was photoacoustically 

detected both at 890 nm and 780 nm. Due to its known absorption spectrum, it was used to 

normalize PA intensities and account for wavelength-dependent laser fluence variations. 

The tube with DI water was not visible with either modality, showing that the PTFE tubes 

had no contribution to background signal. 
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Figure 13 – (a) Schematic of PAFT phantom design. On the left is the phantom, on 

the right is a horizontal slice view. (b) Fluorescence image showing tubes 1, 2, and 3, 

using 780 nm excitation. Tubes 4, 5, and support rods are not visible.  

(c) Horizontal slice view of PA at 890 nm. (d) Horizontal slice view of PA at 780 nm. 

The tubes’ positions are matched in (a), (c), and (d) horizontal slices 

 

Figure 14 – Schematic of mouse restrainer and its position in PAFT system. 

In vivo results showed feasibility of this platform for use in preclinical studies. The 

injection site and draining lymph node were clearly identified in PA images at 780 nm 

Anesthesia
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(Figure 15). Endogenous absorption, coming predominantly from deoxygenated blood, 

was also visible. On the other hand, fluorescent images showed high emission at the lymph 

node but very low background signals. High PA contrast and fluorescence at 780 nm 

excitation indicate activation of PAtrace, most likely due to cellular uptake. This suggests 

that the contrast agent may have been endocytosed at the injection site and then trafficked 

to the lymph node via immune cells. Another possibility is that the particles were also 

digested by lymph node resident cells after passive drainage to the lymph node occurred. 

 

Figure 15 – Photoacoustic (PA) 2D projection and fluorescence images of a mouse 

(dorsal view) using 780 nm laser excitation 

Additionally, Vevo LAZR was used to confirm the spectral shift by performing 

multiwavelength PA imaging (Figure 16). While the injection site shows a peak absorption 

at 890 nm, the lymph node shows the highest absorption between 780 nm and 800 nm. This 

implies that the particles were digested in this region or digested at the injection site and 

transported to the node. In this study, the PEGylated PAtrace particles were not targeted to 

any specific biomarker. Because of this, a solution with a high optical density was injected 

to maximize non-specific cellular uptake and particle activation. The mechanism may be 

Back of mouse

PA Fluorescence

Lymph nodeLymph node

Injection site
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due to several reasons such as immune cell uptake before or after drainage to the node, in 

addition to environment and interstitial pressure differences. In the future, the phospholipid 

shell of PAtrace could be functionalized to interact with specific cell types, molecules, or 

environmental cues. Then, a much lower amount of contrast agent would be needed, given 

the potentially higher uptake activity, together with the sensitivity boost that fluorescence 

provides. Additionally, smaller timeframes could be used, such as the molecular imaging 

paradigm for sentinel lymph node metastasis introduced in CHAPTER 3. 

 

Figure 16 – US/PA images 24 hours after injection. The dashed white lines indicate 

the location of (a) the inguinal lymph node and (b) subcutaneous injection site. (c) The 

graph shows the spectral shift due to digestion of the liposomes. 

By using a responsive multimodal agent, there is no requirement for complex image 

registration between reference and detection scans. Additionally, PA imaging of 

endogenous absorbers could also be used to complement the obtained molecular 

information with functional parameters such as blood oxygenation. As such, this contrast 

agent could further enhance molecular imaging of lymph node metastasis. 
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4.3 Conclusions 

An environment responsive contrast agent (PAtrace) was investigated using a 

combined photoacoustic/fluorescence tomography (PAFT) imaging system. The synergy 

of photoacoustic and fluorescent imaging modalities can be exploited to enhance sensitivity 

and resolution of the system. Studies showed successful activation and detection of PAtrace 

in a phantom and in vivo. These preliminary studies suggest the feasibility of this agent for 

sentinel lymph node imaging. The introduced approach can be used in various applications 

including oncology, cardiology, immunology, and many others. Future studies will include 

surface functionalization of the contrast agent for applications in lymph node metastasis 

detection, but the agent could also be applied to evaluate primary tumors, as well as for 

other diseases such as atherosclerotic plaque characterization.  
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CHAPTER 5. A GOLD-SILICA JANUS NANOSENSOR TO 

ENHANCE DIAGNOSTIC AND THERAPEUTIC POTENTIAL4 

In Chapters 1 and 2, gold nanoparticles (AuNPs) were exploited to elucidate 

functional and molecular characteristics of sentinel lymph nodes. Gold nanoparticles have 

been particularly attractive for use as exogenous contrast agents because their characteristic 

local surface plasmon resonance (LSPR) efficiently converts light energy into heat, 

providing high contrast in PA imaging31. Moreover, the optical properties of AuNPs can 

be altered by varying their size, morphology, or surface coating to modulate the frequency 

of the LSPR that determines the optical wavelength127. The biocompatibility of AuNPs and 

the ease of surface modification are also attractive for applications in targeted delivery128. 

To enhance imaging performance and stability, AuNPs have been coated with silica shells, 

which are also biocompatible and easily modified by well-defined silane chemistry129. 

Silica shells can significantly enhance the colloidal stability and photostability of gold 

nanostructures, and improve the PA conversion efficiency by reducing the interfacial 

thermal resistance between gold and the surrounding medium130. Once the AuNPs are fully 

coated with silica, however, it is difficult to modulate their optical properties131, thus they 

would not act as sensors of cellular uptake. In this chapter, it is hypothesized that a partial 

silica coating on AuNPs can retain some exposed gold surfaces to facilitate the modulation 

of the optical properties, while simultaneously enhancing colloidal stability, with weaker 

inter-particle van der Waals interactions due to the lower Hamaker constant of silica than 

                                                 
4 Part of this chapter is adapted from a manuscript titled ‘Tunable aggregation of gold-silica janus 

nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo’ (Park, Dumani, 

Arsiwala, Emelianov, Kane, 2018). Diego Dumani is equally-contributing primary author of this manuscript. 
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that of gold (Asilica = 1×10-20 J and AAu = 4×10-19 J), in response to local environment 

changes and laser radiation132.  

In this chapter, the synthesis of AuNPs coated with anisotropic silica shells is 

demonstrated and their colloidal behaviors in cell culture media (CCM) are investigated. 

A controlled aggregation of AuNPs with anisotropic silica shells was found in CCM, 

enabling an amplification of PA signals in the NIR region.  The PA properties of the 

resulting nanostructures were investigated using phantoms simulating biologically relevant 

environments, such as tissue-mimicking phantoms containing breast cancer cells. 

Additionally, the use of the contrast agent in vivo was demonstrated using a naïve murine 

model. The ability to modulate AuNP aggregation in response to a range of stimuli in 

combination with high resolution and deep penetration of NIR PA imaging are very 

attractive for a broad range of biomedical imaging and therapeutic applications. 

5.1 Janus nanoparticle design 

To achieve the synthesis of AuNPs with anisotropic silica shells, it is first necessary 

to have monodispersed AuNPs. AuNPs with a diameter of 30 nm were chosen as the core 

material. The synthesis of citrated AuNPs was performed based on a seed-mediated 

growing method133. AuNPs have been anisotropically coated by various methods including 

polymer-guided self-assembly134 and chemical deposition135. The self-assembly of 

polyacrylic acid (PAA, Mw: 250,000 Da) and 4-mercaptobenzoic acid (4-MBA) was used 

to synthesize AuNPs coated with anisotropic silica shells. Both PAA and 4-MBA have 

strong affinity for the surface of AuNPs. While the carboxylic acid moieties mediate the 

binding of PAA to AuNPs136, the thiol-gold interaction is dominant for interactions of 
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4-MBA with AuNPs137. Due to the different anchoring motif of PAA and 4-MBA, tuning 

the ratio of PAA and 4-MBA results in AuNPs with part of the surface coated with PAA 

and the remaining part coated with 4-MBA138. 4-MBA-coated AuNPs promote 

silicification under specific conditions (basic pH, alcohol-water cosolvent system, using 

hydrolysable silane precursors) because the high interfacial energy of the gold-ligand-

solution interface promotes the initiation of heterogeneous nucleation for silicification. On 

the other hand, PAA-coated AuNPs do not promote silicification134. AuNPs with PAA and 

4-MBA were prepared in a 2-propanol/water co-solvent, and then anisotropic silica shells 

were generated in situ by the addition of silica precursor – tetraethyl orthosilicate (TEOS) 

– in the presence of ammonia. The resulting AuNPs with anisotropic silica shells are 

hereinafter referred to as gold-silica janus nanoparticles (GSJNPs). 

5.2 Materials and methods 

Unless otherwise specified, reagents were used as received without further 

purification. Gold(III) chloride trihydrate (HAuCl4∙3H2O ≥99.9%), sodium citrate tribasic 

dehydrate (≥99%), 2-propanol (ACS reagent ≥99.5%), ethyl alcohol (ACS reagent 

≥99.5%), ammonium hydroxide solution (ACS reagent 28.0-30% NH3 basis), tetraethyl 

orthosilicate (TEOS, 99.999%), 4-mercaptobenzoic acid (4-MBA, 99%), poly(acrylic acid) 

solution (PAA, Mw: 250,000, 35 wt% in H2O), Dulbecco’s Phosphate Buffered Saline 

(DPBS, 10×, modified), gelatin from porcine skin (gel strength 300, Type A), and silica 

gel (pore size 60 Å, 230-400 mesh particle size, 40-60 mm particle size) were purchased 

from Sigma-Aldrich. Dulbecco's Modified Eagle Medium with 10% Fetal Bovine Serum 

(DMEM with 10% FBS, no phenol red) was purchased from Thermo Fisher Scientific. 
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MTT cell viability assay kit was purchased from Biotium. Deionized water (DI water) was 

purified using a Millipore Milli-Q system (18 MΩ). 

5.2.1 Nanoparticle characterizations  

Dynamic light scattering data were measured with a Zetasizer Nano ZS (Malvern, 

UK). Transmission electron microscopy (TEM) was performed using a Tecnai F30 (FEI 

Company, USA) equipped with energy dispersive X-ray spectroscopy (EDS, Oxford 

Instruments) for element analysis and a HT-7700 (Hitachi, Japan) for general imaging 

purpose. UV-Vis spectra and optical density were taken with an Evolution 220 

spectrometer (Thermo Fischer Scientific). Cell cytotoxicity of GSJNPs was analyzed by a 

plate reader (SpectraMax i3x, Molecular Devices). Ultrasound/photoacoustic (US/PA) 

images were acquired using an integrated ultrasound-photoacoustic imaging system (Vevo 

LAZR, FUJIFILM VisualSonics, Inc.) with ultrasound transducers LZ-250 and LZ-550. 

5.2.2 Synthesis of citrate-stabilized AuNPs  

Synthesis of citrate-stabilized AuNPs was performed as described elsewhere133. 

Briefly, an aqueous citrate solution (2.2 mM, 150 mL) was refluxed by heating in oil-bath. 

After 10 min, 1 mL of an aqueous solution of HAuCl4 (25 mM) was added to the reaction 

vessel. The color of the solution turned to blue and then to red. After 20 min of reflux, the 

temperature of reaction mixture was cooled down until it reached 90 oC. To this solution, 

1 mL of an aqueous solution of HAuCl4 (25 mM) and 1 mL of aqueous citrate solution (60 

mM) were added sequentially (time gap: 2 min) to achieve a seeded growth of AuNPs. 

After 30 min of incubation, sequential injections were repeated until the size of AuNPs 

reached up to 30 nm in diameter. 
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5.2.3 Synthesis of GSJNP and GSCSNP  

To synthesize GSJNP with 30 nm of AuNP, the protocol was modified based on a 

previous report139. PAA and 4-MBA solutions were prepared in DI water (0.042 mM) and 

ethanol (5 mM) respectively. A 2-propanol/water co-solvent system was prepared with 38 

mL of 2-propanol and 12 mL of DI water. To this solution, 400 µl of both PAA and 4-

MBA solutions were added and stirred for 10 min. In parallel, 10 mL of as-prepared citrate-

stabilized AuNPs were washed with the same amount of DI water. The resulting AuNP 

solution was added dropwise to the reaction mixture of PAA and 4-MBA in 2-

propanol/water co-solvent. After 30 min, 1.8 mL of aqueous ammonium hydroxide 

solution (28-30%) was added to maintain the basic pH, and then 12 mL of TEOS solution 

in 2-propanol (8.96 mM) was added to form the anisotropic silica coating. The reaction 

mixture was gently stirred for 12 hours. After the reaction, the products were washed with 

a 1:1 mixture of 2-propanol and DI water, and filtered using a syringe filter equipped with 

0.2 µm pores to remove unwanted aggregates. For GSCSNP, the synthesis was proceeded 

following the same protocol for GSJNP except the addition of PAA.   

5.2.4 Photoacoustic imaging with PTFE tube phantoms  

Aqueous solutions of GSJNP and GSCSNP in DI water were concentrated by 

centrifugation, and the resulting pellets were re-dispersed in DMEM with 10% FBS (final 

optical density (OD) = 2 cm−1). Two polytetrafluoroethylene (PTFE) tubes 0.89 mm in 

diameter (Sub-Lite-Wall®, Zeus Inc.) were filled with 50 µL of GSJNP and GSCSNP 

solutions, and the resulting tubes were placed horizontally in a water chamber filled with 

DI water for US/PA imaging characterization. US/PA images of both tubes were acquired 
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simultaneously using an integrated ultrasound-photoacoustic imaging system (Vevo 

LAZR), with a 20 MHz LZ-250 transducer. Light was delivered via integrated optical fiber, 

using a nanosecond pulsed laser with 20 Hz repetition rate and an optical parametric 

oscillator (OPO) emitting from 680 nm to 970 nm. For single wavelength images, 100 

frames were acquired at 700 nm excitation and then averaged for signal comparison. 

5.2.5 Preparation of GSJNP-Loaded Cells  

Two cell lines were chosen to prepare GSJNP-loaded cell samples. Macrophages 

(J774A.1 cell line) and human breast cancer cells (MDA-MB-231 cell line) were grown in 

DMEM with 10% FBS to confluency. Upon confluency, a small volume of concentrated 

GSJNP solution was added into the cell culture medium to fix the final OD of GSJNP at 

2.0. The cells were incubated with GSJNP for 48 h at 37 °C and then the GSJNP-loaded 

cells were collected by centrifugation. The cells were fixed using 10% buffered formalin, 

and re-dispersed in PBS. The resulting solution of GSJNP-loaded cells was used to create 

inclusions as part of a gelatin tissue-mimicking phantom.  

5.2.6 Photoacoustic imaging with tissue-mimicking gelatin phantom 

A tissue-mimicking phantom was made with aqueous solutions of gelatin and silica 

gel particles in DI water. The final concentrations of gelatin and silica gel particles were 

fixed at 6 wt% and 0.2 wt%, respectively, to simulate optical and ultrasound scattering of 

biological tissues. The solution mixture was heated over 45 °C while mechanical stirring 

until the solution became homogeneous, and then placed in a vacuum chamber for 5 min 

for a degassing process. The solution (300 ml) was then poured into a plastic mold and 

refrigerated overnight to be solidified. The resulting gelatin block was used for the basal 
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structure to support the gelatin inclusions containing GSJNP-loaded cells to be analyzed. 

The gelatin inclusions were prepared by mixing an aqueous solution containing gelatin (12 

wt%) and silica gel particles (0.4 wt%) with an aqueous solution of GSJNP-loaded cells at 

1:1 volume ratio. A 15 µL drop of the resulting solution was placed onto the previously 

made gelatin block to create dome-shaped gelatin inclusions. The resulting phantoms were 

refrigerated for 4 hours before the US/PA imaging analysis. US/PA images were acquired 

and analyzed with Vevo LAZR following the same protocol described above, using a 40 

MHz LZ-550 transducer. 

5.2.7 Characterization of cytotoxicity of GSJNP  

Human embryonic kidney cells 293T (HEK 293T) were seeded in a U-bottom 96-

well plate at a density of 10,000 cells/well and cultured in DMEM with 10% FBS at 37 °C 

in 8% CO2 for 24 h. After aspirating the supernatant of each well, the cells were treated 

with varying amounts of GSJNP in a total volume of 100 μl of DMEM with 10% FBS for 

24 h. 10 μl of MTT solution was added to 100 μl of medium in each well and further 

incubated at 37 °C in 8% CO2 for 4 h. 200 μl of DMSO was added to solubilize the mixture 

and dissolve the formazan salt. The absorbance at 560 nm (signal from blue formazan) was 

measured with a plate reader and background absorbance at 630 nm was subtracted from 

the signal absorbance to obtain normalized absorbance values. All experiments were 

performed in triplicate. The relative cell viability was normalized relative to the untreated 

control cells. 
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5.2.8 Ultrasound and photoacoustic imaging in vivo  

All animal procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Georgia Institute of Technology. Naïve nude mice were 

anesthetized and injected subcutaneously in the mammary fat pad area with 60 µl of GSJNP 

or GSCSNP, at an optical density of 4.6 cm-1. Combined ultrasound and multiwavelength 

photoacoustic imaging was performed at the injection site immediately after, using a Vevo 

LAZR with 40 MHz LZ-550 transducer. The wavelength acquisition range was from 700 

nm to 970 nm, in steps of 2 nm. The particles were allowed to drain for 24 hours to the 

nearest inguinal lymph node, which was then imaged under anesthesia following the same 

protocol as day 1. Following imaging experiments the mice were euthanized by CO2 

asphyxiation. 

5.2.9 Multiwavelength spectroscopic analysis 

Spectroscopic analysis was performed following a previously-reported method38 

based on a linear least squares (LLS) algorithm. In vivo PA imaging data were used as 

input to the unmixing algorithm. The absorption spectra of oxygenated hemoglobin, 

deoxygenated hemoglobin, together with nanoparticle spectra obtained in vitro, were used 

as parameters. 

The output consisted of three image matrices per mouse, corresponding to 

concentrations of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), and 

nanoparticles (AuNP) in arbitrary units. All resulting images were overlaid on the raw 

ultrasound image using different colormaps. 
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5.3 Results and discussion 

The morphologies of GSJNPs were characterized by transmission electron 

microscopy (TEM) (Figure 17) and their atomic composition using high-resolution TEM 

in combination with energy-dispersive X-ray spectroscopy (EDXS). The point analysis of 

atomic composition indicated the presence of silicon and gold atoms and confirmed the 

presence of a silica shell and AuNP core (Figure 18). Averaging data from a hundred 

GSJNPs, the size of GSJNPs was calculated to be 45.9 ± 5.9 nm and the thickness of the 

silica shells 16.6 ± 2.7 nm. Additionally, AuNPs coated with isotropic silica shells – gold-

silica core-shell nanoparticles (GSCSNPs) – were synthesized by using 4-MBA as the sole 

ligand (without any PAA) and characterized by TEM. The thickness of silica shells for 

GSCSNPs was calculated to be 25.0 ± 2.3 nm. 

 

Figure 17 – TEM images of gold-silica janus nanoparticles and gold-silica core-shell 

nanoparticles 
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Figure 18 – TEM image of GSJNPs and EDS characterization corresponding to the 

two spots at (a) gold nanoparticle and (b) silica shell on holey carbon film coated 

copper grids. 

UV-Vis spectroscopy and dynamic light scattering (DLS) was used to characterize 

the colloidal behavior of GSJNPs in DI water and in Dulbecco's Modified Eagle's Medium 

(DMEM) with 10% (v/v) of fetal bovine serum (FBS), a commonly used CCM. The 

absorption spectra of citrated AuNPs, GSJNPs, and GSCSNPs in DI water show the 

maximum peaks of each sample at 524, 526, and 532 nm respectively (Figure 19a). The 

slight red-shift in plasmon resonance may be attributed to the increase in the local refractive 

index around gold nanoparticles resulting from the formation of silica shells140. The 

corresponding mean hydrodynamic sizes were 55, 126, and 65 nm for citrated AuNPs, 

GSCSNPs, and GSJNPs, respectively (Figure 19b and Figure 20).  
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Figure 19 – (a) UV-Vis absorption spectra of citrated AuNPs (black line), GSCSNPs 

(blue line), GSJNPs (red line) in DI water (solid lines) and in DMEM with 10% FBS 

(dotted lines). (b) Hydrodynamic sizes of citrated AuNPs, GSCSNPs, GSJNPs in DI 

water, and GSJNP in DMEM with 10% FBS. (c) TEM micrograph of GSJNP in 

DMEM with 10% FBS. 

 

Figure 20 – DLS size distribution curves of citrate-stabilized AuNPs, GSJNPs, and 

GSCSNPs in DMEM with 10% FBS. 

When the surrounding medium was changed from DI water to DMEM with 10% 

FBS, the color of aqueous GSCSNP solution was maintained in DMEM with 10% FBS, 
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and the resulting UV-Vis absorption spectrum had a single peak at 530 nm, which is similar 

to the one in DI water (Figure 19a). In contrast, the color of GSJNP and citrated AuNP 

solutions were rapidly changed from red to violet, indicating the formation of aggregates. 

AuNPs formed large aggregates as would be expected given the lack of silica protection.  

In contrast, the aggregates of GSJNPs were observed to maintain stable colloidal 

dispersibility (Figure 21) and the hydrodynamic diameter was measured to be 166 nm (ca. 

2.5-fold larger than that of GSJNPs in DI water, Figure 19b). It was noteworthy that the 

UV-Vis absorption spectrum of resulting aggregates showed not only the red-shifted 

profile but also a new absorption band ranging from 600 to 700 nm of wavelength (Figure 

19a). TEM observation clearly showed the resulting morphologies of GSJNPs controllably 

aggregated by the incubation in DMEM with 10% FBS (Figure 19c). The images showed 

some single GSJNPs, but mainly aggregates in which the gold surfaces of adjacent GSJNPs 

were in close proximity, confirming that the aggregation process was not random. This 

result implies that the partial silica shells guide the controlled aggregation of GSJNPs via 

interactions between the exposed gold surfaces, thereby enhancing their plasmonic 

coupling. Silica shells maintain their inertness and sufficient negative surface charge even 

if their surrounding medium is changed from DI water to DMEM with 10% FBS141. 

Overall, results suggest that GSJNPs spontaneously undergo a controlled aggregation in 

DMEM with 10% FBS, protected by the partial silica shells from unwanted further 

aggregation.  
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Figure 21 – Stability of GSJNP aggregates in DMEM characterized using (a) UV-Vis 

and (b) DLS. 

To demonstrate the feasibility of PA imaging with GSJNPs, phantom experiments 

were performed with polytetrafluoroethylene (PTFE) tubes mimicking the blood or lymph 

vessels. GSJNPs were dispersed in DMEM with 10% FBS at an OD = 4 cm−1. GSCSNPs 

were also prepared under the same conditions as a control. PA images were acquired using 

an integrated ultrasound-photoacoustic imaging system (Vevo LAZR) operating with a 20 

MHz ultrasound transducer (LZ-250) and 700 nm laser irradiation. As depicted in Figure 

22a, the PA intensity of GSJNPs was significantly stronger than that of GSCSNPs at 700 

nm excitation. The PA intensities, averaged over 100 frames, were measured to be 2.13 ± 

0.06 for GSJNPs and 0.28 ± 0.02 for GSCSNPs, which was an almost eight-fold increase 

of PA intensity for GSJNPs (Figure 22a). Aggregation and plasmon coupling of GSJNPs, 

which were not present in GSCSNPs due to the isotropic silica shells, enabled the strong 

NIR absorption and caused the increase in PA intensity. Furthermore, multiwavelength PA 

imaging was performed to investigate the spectral variation of PA intensities in NIR region. 

This spectral pattern analysis is widely used in various applications, including the 

differentiation of atherosclerotic plaques, and selective detection of cancer142-144. PA 
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images were obtained to generate PA intensity spectra from 700 nm to 970 nm. GSJNPs 

maintained a high PA intensity from 700 nm to 790 nm, gradually decreasing for higher 

wavelengths. In contrast, GSCSNPs had a low PA intensity throughout the NIR region 

(Figure 22b). 

 

Figure 22 – Photoacoustic signal measurement using PTFE tubes for GSJNPs and 

GSCSNPs in DMEM with 10% FBS. (a) Combined PA images with ultrasound 

images (left) and averaged PA intensity at 700 nm excitation (right). (b) 

Multiwavelength PA signal measurements of GSJNP (red line) and GSCSNP (gray 

line). 

To validate in vitro NIR imaging capabilities of GSJNPs, mouse monocytes-

macrophages (J774A.1 macrophage cell line) and human breast cancer cells (MDA-MB-

231 human breast adenocarcinoma cell line) were used as model cell lines. A 

tissue-mimicking phantom was created with dome-shaped gelatin inclusions containing 

GSJNP-loaded cells. To simulate optical and ultrasound scattering of biological tissues, the 
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gelatin inclusions were made by a mixture of gelatin (6 wt%) and silica gel particles (0.2 

wt%) in DI water as described in a previous report131. Based upon PA imaging analysis of 

the gelatin inclusions, both cell lines exhibited very high PA intensities at 700 nm 

excitation, as shown in the PA images of each cell line (Figure 23) and the GSJNPs in cells 

generated a constant PA signal over more than 400 laser pulses, confirming photothermal 

stability under laser irradiation (Figure 24).  Multiwavelength PA measurements also 

indicated strong NIR absorption (Figure 25). These results demonstrate the potential role 

of GSJNPs as a PA contrast agent for in vitro and in vivo biomedical applications, such as 

cancer diagnosis, therapy and immunology. In biomedical applications, distinguishing 

contrast agents’ cellular and environment interactions is often a challenge. Heterogeneous 

self-assembly of commonly used AuNPs implies an uncertainty in the resulting absorption 

spectra upon these interactions. In many cases, a non-distinctive spectrum may be confused 

with that of endogenous absorbers such as blood or melanin. This hinders analytical 

spectral analysis methods and requires sophisticated, time-consuming imaging procedures. 

The controlled aggregation of GSJNPs provides a characteristic spectrum that could be 

resolved using the multiwavelength PA imaging, allowing simpler approaches with 

potential for more accurate diagnostic and therapeutic techniques.  
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Figure 23 – Ultrasound and photoacoustic images (scale bar = 2 mm) of gelatin 

inclusions containing (a) macrophages and (b) human breast cancer cells incubated 

with GSJNPs. 

 

Figure 24 – Stability of PA signal for GSJNPs in macrophages under laser irradiation. 
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Figure 25 – Multiwavelength PA signal measurements of gelatin inclusions containing 

(a) macrophages and (b) human breast cancer cells incubated with GSJNPs. 

Lack of cytotoxicity is an important factor for contrast agents to be used in vivo. 

The viability of human embryonic kidney cells 293T (HEK293T) was tested after 

incubation with GSJNPs for 24 hours using an MTT assay. As the concentration of GSJNPs 

was changed from 0.0625 to 2.0 of OD, the cell viability remained high, confirming their 

cytocompatibility (Figure 26). 

 

Figure 26 – Cytotoxicity analysis of GSJNPs with HEK 293T cells by MTT assay (y 

axis: relative % viability calculated by comparing cells treated with GSJNPs with 

untreated cells, x axis: final OD of GSJNPs at 532 nm). 
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The imaging capabilities of GSJNPs in vivo were characterized next.  Upon 

subcutaneous injection into the mammary fat pad of healthy mice, GSJNPs immediately 

aggregated displaying a strong NIR photoacoustic signal. Conversely, GSCSNPs did not 

plasmon couple, but exhibited weak NIR signal due to their expected non-zero optical 

absorption (Figure 27a). This result is consistent with phantom studies and confirms the 

ability for contrast enhancement in vivo. Due to their inherent surface differences, particle 

drainage dynamics to regional lymph nodes may vary immediately after injection. 

However, after 24 hours, both particle types are expected to arrive to the inguinal lymph 

node, either via passive drainage or active cell transport145-147. However, due to plasmon 

coupling, the mouse injected with GSJNPs showed high PA contrast in the lymph node, 

while the mouse with GSCSNPs did not (region inside white dashed line, Figure 27b). 

Multiwavelength PA further confirmed the detection of GSJNPs. By using spectral 

unmixing methods38, together with previously-obtained in vitro spectra, it was possible to 

separate the PA signals coming from oxygenated hemoglobin (HbO2), deoxygenated 

hemoglobin (Hb), and GSJNP (Figure 27c). Additionally, it was further confirmed that the 

average PA spectrum in the lymph node area matched the absorption spectrum in vitro 

(Figure 27d). The spectrum from the lymph node with GSCSNPs predominantly showed 

characteristics of oxygenated and deoxygenated hemoglobin. The ability of GSJNPs to 

controllably aggregate and plasmon-couple enables NIR PA imaging at relevant depths. 

Furthermore, the likelihood of morphological deformation by laser irradiation may be 

lower for GSJNPs in contrast to other NIR-absorbing AuNPs such as gold nanorods148, 

ensuring reproducible PA imaging. With additional surface modifications, GSJNP 
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aggregation could be triggered by different environmental cues, facilitating molecular 

imaging and tumor-targeted theranostic applications. 

 

Figure 27 – Combined ultrasound and photoacoustic in vivo images (λ = 700 nm, scale 

bar = 2 mm) of mice injected with GSJNPs or GSCSNPs (left and right column, 

respectively) at (a) mammary fat pad subcutaneous injection site (yellow arrow) and 

(b) draining inguinal lymph node (white dashed line). (c) Multiwavelength PA 

imaging enables spectral unmixing of oxygenated hemoglobin (HbO2, blue), 

deoxygenated hemoglobin (Hb, red), and nanoparticles (AuNP, yellow). (d) 

Multiwavelength PA spectra in the lymph node of each mouse, injected with GSJNPs 

(red line) and GSCSNPs (black line). 

 

5.4 Conclusions 

This chapter demonstrated the controlled aggregation of GSJNPs and its use as a 

contrast agent for photoacoustic imaging in vitro and in vivo. The interactions between the 

exposed gold surfaces of GSJNPs generated plasmon-coupled nanostructures with high PA 

intensity in the NIR. While other nanostructures are also capable of absorbing in the NIR 

region, a major advantage of GSJNPs is their responsiveness to environmental conditions. 
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For instance, it is feasible to design functionalized GSJNPs that would aggregate 

specifically in a tumor environment or a metastatic lymph node.  Additionally, GSJNPs 

offer potential for orthogonal modifications of the gold and silica surfaces, and the loading 

of drugs and dyes in the anisotropic silica shell.  The ability to control the aggregation of 

GSJNPs and their cytocompatibility will facilitate in vivo applications of various imaging 

techniques using photoacoustic imaging.  The controlled aggregation of GSJNPs 

demonstrated herein thus represents a valuable addition to the chemical tool box to advance 

the development of theranostic agents that can potentially be applied to the assessment and 

treatment of sentinel lymph node metastasis. 
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CHAPTER 6. PRUSSIAN BLUE NANOCUBES – TOWARDS 

FULL-BODY MULTIFUNCTIONALITY 

Across this dissertation, it is notable that the choice of contrast agent has important 

implications in the success of US/PA diagnostic techniques. Sometimes, versatility or 

safety are compromised in favor of diagnostic accuracy. Nevertheless, developing contrast 

agents and introducing new imaging modalities to clinic is already an arduous and long 

process. Nanomaterials have become increasingly used to augment diagnostic and 

therapeutic capabilities in numerous biomedical and clinically-relevant applications104, 149-

152. While extensive research has been performed to explore biocompatible nanostructures 

having optical and magnetic properties that are suitable for current diagnostic and 

therapeutic modalities, to date, designing multifunctional theranostic agents of appropriate 

size, shape, and surface characteristics remains a constant challenge. While no single agent 

is ideal for all applications and stages of patient care, access to safe, versatile nanomaterials 

could give clinicians the flexibility needed to design more comprehensive theranostic 

schemes. A contrast agent that is safe, economic, and versatile to be useful in various 

diagnostic and therapeutic procedures (i.e., multifunctional) may find an easier path into 

clinic than other less-versatile, less-safe agents.  

Among many solid nanoparticles, Prussian blue is of particular interest due in part 

to its excellent biocompatibility. Prussian blue is approved by the U.S. Food and Drug 

Administration (FDA), under the brand name Radiogardase®, for the treatment of patients 

with known or suspected contamination of cesium and/or thallium. However, this clinical 

indication has nothing to do with Prussian blue’s most defining characteristic. 
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Prussian blue’s vibrant blue appearance stems from a very strong optical absorption 

of red light. Because photon absorption occurs in the tissue optical window (650 – 

1300 nm) 29, several preclinical investigations have been performed to assess the feasibility 

of Prussian blue nanoparticles (PBNPs) as a contrast agent in photoacoustic imaging153-157 

and to enhance heating in photothermal therapy158-160. In addition to its visible appearance, 

Prussian blue is more than 45% iron by mass, endowing it with magnetic properties that 

have been studied in MRI158, 160-161. The intrinsic optical and magnetic properties of 

Prussian blue have also progressed to explorations in multimodal theranostics154-155, 158, 160. 

However, PBNPs have not been developed and studied to their full potential. Particularly, 

conventional synthesis methods are prone to variability, resulting in PBNPs of different 

sizes and properties. 

Nanoparticle size can be crucial for specific applications. For instance, size is an 

important factor to predict localization of intravenously-injected nanoparticles. 

Nanoparticles smaller than 5 nm in size rapidly undergo renal clearance upon intravenous 

administration97. Nanoparticles between 50 – 100 nm are retained in the liver due to 

spacing of vascular fenestrations and endothelial gaps162. Nanoparticles between 200 – 

500 nm are retained in the spleen according to the size of the interendothelial cell slits162. 

Large particles in the 2 – 5 µm range have been shown to accumulate in the lungs162. 

Tumors can exhibit a range of fenestrations from 380 – 780 nm163, which leads to their 

enhanced permeability and retention, and nanoparticles in the range of 30 – 100 nm in 

diameter have exhibited good penetration in a study involving a highly permeable tumor. 

However, in a poorly permeable human pancreatic adenocarcinoma, only nanoparticles 

smaller than 50 nm in diameter showed accumulation162. Based on these examples, smaller 
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particles can be useful when rapid clearance and enhanced permeation are required. 

However other applications, such as magnetic delivery of nanoparticle-labeled cells, may 

require larger constructs that exhibit a stronger response to external fields. Being able to 

tune the size of PBNPs enables a variety of applications and allows researchers to tune 

their nanoparticles to meet the particular needs of specific diagnostic and therapeutic 

schemes. 

This chapter presents a facile seed-mediated growth method for the synthesis of 

Prussian blue nanoparticles. Unlike previous Prussian blue synthesis methods which 

involve the reduction of iron salts or iron complexes154, 158, 161, 164-165, this method uses 

previously synthesized Fe3O4 nanoparticles as the iron source. The Fe3O4 nanoparticles 

supply magnetic iron species to ferrocyanide molecules, which assemble into Prussian blue 

nanocubes (PBNCs). Since this reaction occurs very quickly, the resulting PBNC size is 

directly related to the size of the Fe3O4 nanoparticle. Additionally, the potential of the 

developed PBNCs as multimodal, multifunctional agents is shown. The magnetic and 

optical properties of PBNCs proved useful for applications including MRI, photoacoustic 

imaging, and magnetic manipulation of PBNC-labeled cells. 

6.1 Materials and Methods 

6.1.1 Synthesis of SPION precursors 

Dextran-coated SPIONs, 5 nm and 10 nm diameter, were purchased from Ocean 

NanoTech (San Diego, CA). Small SPIONs (3 nm diameter) were synthesized in-house. 

All chemicals, unless otherwise stated, were purchased from Sigma.  
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All glassware and stir bars were washed with aqua regia (3 parts hydrochloric acid 

(HCl): 1 part nitric acid (HNO3)) prior to synthesis. A three-neck round bottom flask 

containing an egg-shaped stir bar was suspended in a silicon oil bath placed on a heated 

stir plate. The temperature of the oil bath was continuously monitored throughout the 

reaction. One neck was used as a gas inlet, and the second neck was connected to a 

condenser to keep the reaction under reflux. Prior to adding any reagents, the oil bath was 

heated to 80 ˚C for 30 minutes while oxygen was purged with argon or nitrogen gas. After 

initial heating, 200 ml of triethylene glycol (TEG) and 12.714 g of iron(III) acetylacetonate 

(Fe(acac)3) were added to the flask. The solution of Fe(acac)3 in TEG was heated to 140 ˚C 

for one hour under stirring. An additional 200 ml of TEG was added to collect any 

Fe(acac)3 remaining on the sides of the flask. Once the reaction stabilized at 140 ˚C, 

temperature was increased to 200 ˚C. After an additional 2 hours, the reaction was cooled 

to room temperature overnight. Stirring and purging with argon or nitrogen gas continued 

while cooling. The total volume and milligrams of Fe were determined for PBNC synthesis. 

Small SPIONs were dextran-coated prior to PBNC synthesis. The SPIONs in TEG were 

diluted 10x in deionized ultra-filtered water (DIUF), dextran was added (10 mg per 1 mg 

of Fe) and the reaction was gently stirred overnight to coat 

6.1.2 Synthesis of PBNCS 

Prussian blue nanocubes (PBNCs) were synthesized using a seed-mediated method. 

Diameter of superparamagnetic iron oxide nanoparticles (SPIONs) precursors was altered 

to produce PBNCs with different edge lengths. Stock solutions of the reactant and catalyst 

for PBNC synthesis were prepared in advance. The catalyst was composed of 1.85% HCl 

in DIUF. The reactant was composed of 5% potassium hexacyanoferrate (II) trihydrate 
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(K4Fe(CN)6 ·3H2O) by mass. Under vigorous stirring, 60 mg of SPIONs were added to 150 

ml of DIUF. The solution was briefly stirred before proceeding to ensure SPIONs were 

dispersed throughout the solution. Then, 7.5 ml of the reactant stock solution was added. 

The reaction was stirred for 1 minute, and 2.496 ml of the catalyst solution was added. The 

reaction was stirred for at least 1 hour. The solution became a deep blue color as the PBNCs 

formed. When necessary to stabilize PBNCs and minimize aggregation, 0.1 mg of citric 

acid per 0.5 mg of Fe precursor were added during the synthesis. This protocol was tested 

with SPIONs up to 10nm. Following synthesis, the UV-Vis absorbance spectrum of 

PBNCs was measured using a Synergy HT Microplate Reader (Biotek). 

6.1.3 Transmission electron microscopy 

Transmission electron microscopy (TEM) (Hitachi HT7700 TEM) was used to 

characterize the PBNCs, 5 nm diameter SPIONs, and 10 nm diameter SPIONs. Small 

SPIONs (3 nm) were imaged using a FEI Tecnai G2 F20 X-Twin TEM. Carbon-formvar 

grids were prepared by drop casting a small volume of particles and drying overnight. Prior 

to drop casting, samples were centrifuged at 300 RCF for 2 min, preserving the supernatant, 

to eliminate any overly large particles or aggregates. Then, the samples were centrifuged 

at 1,000 RCF (large PBNCs) or 12,000 RCF (small and medium PBNCs). The pellet was 

sonicated and resuspended in a 1:1 acetone/DIUF solution. Samples were washed at least 

twice and resuspended in water. A small volume was drop cast onto the grid and dried 

overnight. Size distribution of all particles was analyzed using ImageJ software. 
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6.1.4 SQUID Magnetometry 

The magnetic properties of PBNCs and SPIONS were studied using a 

superconducting quantum interference device (SQUID) magnetometer (MPMS-5S, 

Quantum Design). Prior to measurements, samples were concentrated by centrifugation 

using a 50 kDA Millipore regenerated cellulose membrane filter (Fisher Scientific). The 

final concentrations were 8.7 mg/ml for PBNCs (20 nm), and 20 mg/ml for SPIONs (3 nm).  

Each sample was scanned separately. Briefly, 100 µl of the concentrated 

nanoparticle solution was added to a polycarbonate capsule (AGC3, Quantum Design). The 

capsule was sealed with non-magnetic tape and inserted in a non-magnetic straw to be held 

inside the magnetometer. SQUID is commonly used to scan solid powdered samples in 

gelatin capsules; however, polycarbonate capsules were used to prevent dissolution due to 

our liquid samples. A capsule with DI water was used to confirm no significant background 

magnetization. The temperature was set to 5 K, and the magnetic field was varied from 5 T 

to −5 T twice to obtain a hysteresis curve of the magnetic moment. 

6.1.5 MRI relaxometry 

MRI contrast properties were measured using a using a 3T MRI scanner 

(MAGNETOM Skyra 3T MRI, Siemens). A blank tube with DI water, and samples of 

PBNC at 0.1x, 0.25x, 0.5x and 1x concentrations were scanned to determine PBNC 

longitudinal and transverse relaxivities. The 1x concentration contained 0.25 mg/ml of 

PBNCs. Longitudinal relaxivity (R1) was determined using a standard inversion-recovery-

prepared turbo spin-echo (IR-TSE) sequence, and 25 inversion time (TR) values from 0.1 

to 7 seconds while measuring the sample signal intensity. Data were fit to the relevant 
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mono-exponential signal model using a nonlinear least squares (NLS) method to calculate 

the individual exponential rise constant (i.e., T1 relaxation time) of each tube. The 

longitudinal relaxivity R1 is the inverse of the calculated T1 relaxation time. 

Correspondingly, transverse relaxivity (R2) was measured using a standard Carr-Purcell-

Meiboom-Gill sequence (CPMG) with 32 time-to-echo (TE) values from 0.1 to 1.6 

seconds. The individual exponential decay constant (i.e., T2 relaxation time) of each tube 

was calculated with NLS method as before, and the inverse was taken to obtain the 

transverse relaxivities (R2). 

6.1.6 Photostability 

To test photostability, PBNCs were irradiated using a 5-ns pulsed laser. A 1 mm 

diameter glass tube served as the sample holder and was filled with either PBNCs, 

PEGylated gold nanorods (PEG-AuNR), or silica-coated gold nanorods (SiO2-AuNR), 

with absorption peaks between 680 and 700 nm. All samples had an optical density OD = 

1 cm−1. The tube was irradiated using a 5-ns pulsed laser (Quanta-Ray Pro, Spectra-Physics 

K.K.) coupled to an OPO (PremiScan, GWU) tuned to 680 nm. The samples were exposed 

to 900 laser pulses at various fluences ranging from 5 to 28 mJ/cm2, with a 10 Hz pulse 

repetition frequency. The photoacoustic signal was measured using a 1 mm needle 

hydrophone with 4 dB bandwidth of 0.2-15 MHz (Precision Acoustics Ltd., Dorchester, 

UK) and amplified by an ultrasound receiver amplifier (5073PR, Olympus NDT Inc., 

Waltham, MA, USA) connected to a data acquisition oscilloscope card (CompuScope 

12400, Gage Applied Technologies Inc., Lockport, IL, USA). For each fluence, and for 

each different sample, the tube was irradiated with 900 laser pulses and the PA signal was 

recorded. 
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The absorption spectrum stability was further studied by irradiating a 96-well plate 

containing samples of PBNCs or PEG-AuNR with 900 laser pulses of fluences from 3 to 

20 mJ/cm2. After the irradiation experiment, UV-Vis measurements were taken to analyze 

any spectrum variations due to laser exposure. Results were normalized based on 

absorbance before irradiation 

6.1.7 Cell labeling 

Macrophages (J774A.1, sourced from the ATCC) were seeded at 5,000 cells/cm2 

and grown in high-glucose Dulbecco’s modified eagle medium (DMEM, ThermoFisher), 

supplemented with 5% penicillin/streptomycin (Pen-Strep, ThermoFisher) and 10% fetal 

bovine serum (FBS, ThermoFisher). Cells were labeled with PBNCs once they reached 

80% confluency. Human epithelial breast cancer cells (MDA-MB-231) were cultured 

similarly using in DMEM/F-12 medium (ThermoFisher) with Pen-Strep and FBS. Human 

adipose-derived mesenchymal stem cells (MSC) (Lonza) were cultured similarly using 

low-glucose DMEM, Pen-Strep, and FBS (ThermoFisher).  

PBNCs were UV-sterilized for 24 hours prior to cell incubation and dispersed in 

phenol red-free media. The added particle concentration was based on optical density 

(OD). PBNCs at OD = 2 cm−1 were incubated with cells overnight. Cells were 

subsequently washed with phosphate buffered saline solution (PBS, ThermoFisher) three 

times to eliminate free nanoparticles. PBNC-labeled cells were passaged and collected for 

photoacoustic imaging and magnetic delivery experiments. 
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6.1.8 Cell phantom preparation and US/PA imaging 

Cells were incubated with PBNCs for 24 hours and washed as described above. 

PBNC-labeled cells were imaged in a tissue-mimicking phantom to verify successful 

labeling and feasibility of photoacoustic imaging. The phantom base contained 6 w/v % 

gelatin and 0.2 w/v % silica. To prepare the inclusions, PBNC-labeled cells were suspended 

in an equal volume of 12 w/v % gelatin heated to 40 ˚C. A small drop (40 l) of the 

cell/gelatin solution was pipetted onto the solidified gelatin background to form the dome-

shaped imaging inclusions. US/PA images of the gelatin phantom were acquired for 

wavelengths between 680 and 970 nm at an imaging frame rate of 5 Hz. 

6.1.9 Ultrasound and photoacoustic imaging 

A Vevo LAZR (VisualSonics, Canada) imaging system, incorporating ultrasound 

and photoacoustic (US/PA) modalities was used for US/PA imaging experiments. US/PA 

images were acquired using 20 and 40 MHz (LZ250 and LZ550) center frequency, 

256-element transducers. Laser irradiation was delivered by an optical fiber integrated into 

the transducer. The laser source was a Q-switched Nd:YAG laser, pulsing at 20 Hz with a 

7-ns pulse duration.  

6.1.10 Magnetic resonance imaging 

A 7T preclinical MRI system (Bruker PharmaScan) was used to acquire in vivo 

images. The mouse was anesthetized and placed on a cylindrical holder to be inserted in 

the imaging coil. Variations of a FLASH imaging sequence were utilized to identify the 

PBNCs. 
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6.1.11 In vivo animal procedures 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Georgia Institute of Technology. A female nude mouse 

(Nu/Nu, Charles River) was injected subcutaneously in the abdomen with two boli 

consisting of 50% Matrigel matrix (Corning) and PBS, or 50% Matrigel and 20-nm 

dextran-coated PBNCs, OD = 40 cm−1. MRI and US/PA images were acquired 

subsequently. Following imaging experiments the mice were euthanized by CO2 

asphyxiation. 

For the metastatic mouse study, five-week old female nude mice (Nu/Nu, Charles 

River) were inoculated in the right caudal mammary fat pad with 2×106 human breast 

adenocarcinoma cells in 50% matrigel (MDA-MB231-Red-FLuc-GFP, PerkinElmer). 

When the tumor reached 10 mm in diameter, two 100-µl subcutaneous injections of 

200-nm dextran-coated PBNCs, OD = 40 cm−1, were performed: one peritumorally (right 

side) and one on the left caudal mammary fat pad (healthy side). Particles were allowed to 

drain for 24 hours prior to MRI and US/PA imaging. Following imaging experiments the 

mice were euthanized by CO2 asphyxiation. 

6.1.12 Magnetic Delivery and US/PA imaging 

Magnetic trapping experiments were set up by running a 0.062” inner diameter x 

0.095” outer diameter, clear silicone tube (HelixMark®) through a 10×10×10 cm clear 

plastic box. Two ring neodymium magnets (NR0082-45NM, CMS Magnetics, Garland, 

TX) were fixed at opposite ends of the box to apply a magnetic field along the tube and 

initially magnetize the particles. The tube passed through the center of each ring magnet. 
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Several small neodymium brick magnets (N42, K&J Magnetics, Inc., Pipersville, PA) were 

fixed below the center of the tube to produce a gradient for trapping. Cells labeled with 

20-nm PBNCs, concentrated at 5,000 cells/ml, were circulated through the tube at a flow 

rate of 0.5 ml/min. US/PA images were collected along the length of the tube using λ = 

700 nm by connecting a 20 MHz (LZ250) transducer to a 3D translation motor. 

6.2 Size control 

To demonstrate the size control of the synthesized PBNCs, 3, 5, and 10 nm diameter 

Fe3O4 nanoparticles were used as precursors to produce PBNCs measuring 20, 40, and 

150 nm edge length, respectively. Indeed, TEM images show that PBNC size varied 

depending on the SPION precursor size (Figure 28). PBNCs were well dispersed in all 

cases (Figure 28a-c). Small PBNCs with approximately 20 nm edge length resulted from 

3 nm diameter SPION precursors. Medium (40 nm edge length) PBNCs resulted from 5 

nm diameter SPION precursors, and large (170 nm edge length) PBNCs resulted from 10 

nm SPIONs. Thus, the size of resulting PBNCs was dependent on the diameter of SPION 

precursors (Figure 28g). All sample sizes approximated a single-population normal 

distribution (Figure 29). The mean sizes were 3.09 ± 1.04 nm, 6.38 ± 0.941 nm, and 

11.02 nm ± 1.19 nm for the SPION precursors, and 22.61 ± 6.93 nm, 38.48 ± 7.12 nm, and 

171.36 ± 36.40 nm for the resulting PBNCs, respectively.  
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Figure 28 – TEM images of size-controlled PBNCs. (a) 20-nm PBNCs synthesized 

from 3-nm SPION precursors. (b) 40-nm PBNCs synthesized from 5-nm SPION 

precursors. (c) 150-nm PBNCs synthesized from 10-nm SPION precursors. (d-f) 

Images at increased magnification for 20-nm, 40-nm, and 150-nm PBNCs, 

respectively. (g) Scatter plot showing relationship between SPION precursors and 

resulting PBNC size.  

 

Figure 29 – Analysis of particle size distribution. (a-c) Size distribution of SPIONs 

with expected diameters of approximately 3 nm, 5 nm, and 10 nm, respectively. (d-f) 

Size distribution of resulting PBNCs with expected width of approximately 20 nm, 40 

nm, and 150 nm, respectively. 
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The size standard deviation of each population was divided by its respective mean 

to obtain the particle size coefficient of variation. Results suggest that polydispersity of the 

precursor had an effect in the size distribution of resulting PBNCs. Due to challenges of 

size-separating extremely small SPIONs synthesized in house, a wider range of particle 

diameters was present in the 3-nm SPION sample compared to the 5-nm and 10-nm 

SPIONs. The 3 nm SPIONs were more polydisperse based on coefficient of variation, and 

hence led to more polydisperse 20-nm PBNCs (Figure 30). This further demonstrates the 

ability for size control of PBNCs. 

 

Figure 30 – Analysis of particle size coefficient of variation. A wider size distribution 

of SPION precursors causes higher deviation in the resulting PBNCs. 

Energy-dispersive X-ray spectroscopy (EDXS) images showed an even distribution 

of iron, oxygen, potassium and nitrogen. Thus, the nanostructure is not a surface coating 

of SPIONs. At most, the PBNCs may be growing around multiple SPIONs in a structured 

homogeneous manner, but results suggest that structural ‘holes’ of Prussian blue are filled 

with SPIONs.  
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Figure 31 – Energy-dispersive X-ray spectroscopy of a PBNCs shows homogenous 

distribution of elements across the nanocube. 

The magnetic and optical properties of PBNCs were characterized, and various 

applications were tested. For proof-of-concept, 20-nm PBNCs were used in all sections 

below. 

6.3 Magnetic and optical properties 

The magnetism of small 20-nm PBNCs and their 3-nm SPION precursors was 

analyzed using a superconducting quantum interference device (SQUID) as shown in 

Figure 32a. PBNCs exhibited superparamagnetism with a magnetic saturation of 

104.0 emu/g (nanoparticle mass) or 228.6 emu/g (iron mass). SPIONs exhibited a magnetic 

saturation of 20.5 emu/g (nanoparticle mass) or 28.3 emu/g (iron mass). This corresponds 
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to a 5-fold and 8-fold increase in magnetization, when comparing based on nanoparticle 

mass and iron mass, respectively. 

These values also exceed the magnetic saturation of 66 emu/g reported for 20 nm 

SPIONs166. More importantly, previous studies showing modification of magnetite 

nanoparticles usually imply a reduction of their magnetization, compared to pure 

SPIONs158, 167-170. This further suggests that the presented method is not a surface 

modification of the SPION precursors, but a rearrangement into a new nanoparticle 

promoting higher magnetism. 

Superparamagnetism of nanomaterials is dependent on their size, shape, and crystal 

structure.171-172 While magnetization increases with particle size, there is a size limit below 

which particles remain superparamagnetic (i.e. superparamagnetic limit). For Fe3O4, it has 

been reported that particles exhibit superparamagnetism when below 20 nm.172-174 The 

results presented in this study show that the superparamagnetic limit of PBNCs is at least 

as high as that of Fe3O4 and may be limited by the precursor size rather than PBNC size. 

This feature can be valuable whenever larger magnetization and/or particle sizes are 

needed, while preserving superparamagnetic properties. 

In addition to having higher magnetic susceptibility than the clinically used SPION 

counterparts, PBNCs also had a high optical absorption with a peak at 680 nm (Figure 32b), 

which is within the near-infrared (NIR) optical window where tissue allows deepest light 

penetration. These two properties pose the developed PBNCs as attractive multimodal, 

multifunctional agents. 
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Figure 32 – Magnetic and optical properties of PBNCs. (a) Magnetic moment curves 

show a 5-fold increase in magnetization for PBNCs compared to Fe3O4 based on 

nanoparticle mass. (b) UV-Vis spectrometry shows PBNCs’ NIR absorbance peak at 

680 nm. 

6.4 Magnetic resonance imaging 

Relaxometry studies were performed to test PBNCs’ feasibility as MRI contrast 

agents. Using a 3 T clinical MRI scanner (MAGNETOM Skyra 3T MRI, Siemens), a 

standard inversion-recovery-prepared turbo spin-echo (IR-TSE) sequence was performed 

to measure the longitudinal relaxation (T1) and a standard Carr-Purcell-Meiboom-Gill 

sequence (CPMG) to measure transverse relaxation (T2). By plotting the relaxivities versus 

nanoparticle concentration, and using linear regression, the best fit line was calculated, and 

the slope was extracted as the molar relaxivity (Figure 33). 
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Figure 33 – Relaxometry studies to measure (a) T1 relaxation and (b) T2 relaxation of 

PBNCs at 0.25 mg/ml. Relaxivity plots with respect to different iron concentrations 

were used to calculate (c) longitudinal and (d) transverse relaxations. 

Results of molar relaxivity studies are shown in Table 1. The obtained values 

exceed those reported using conventional PBNC synthesis methods under 1.5 T and 7 T 

field strengths175. In addition to the different field strength, this could be attributed to water 

exchange-related differences affecting the relaxivity and fluctuations in the local magnetic 

field, known as inner sphere and outer sphere effects176-179.  
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Table 1 – Longitudinal and transverse molar relaxivity of PBNCs 

 

Longitudinal relaxivity 

r1 (mM-1s-1) 

Transverse relaxivity 

r2 (mM-1s-1) 

Per iron mass 0. 0535 1.948 

Per Prussian blue mass 0.3752 13.656 

While other commercial MRI agents offer better molar relaxivity180-183, 

Shokouhimehr et al.175 have correctly pointed that this can be overcome by using higher 

doses due to the low toxicity of Prussian blue. Indeed, the recommended daily oral dose 

for Radiogardase® in adults is 9 grams up to 20 grams, corresponding to 10.5 up to 23.3 

mmol, with no overdose described. While a recommended dosage has not been stablished 

for IV use of Prussian blue, it could potentially be higher than those of commercial agents, 

such as gadolinium-based Gadavist® (100 µmol/kg, r1 = 5.0 mM−1s−1, r2 = 7.1 mM−1s−1) 

and SPION-based Sinerem®/Combidex® (45 µmol Fe/kg, r1 = 6.58 mM−1s−1, r2 = 127.8 

mM−1s−1). 

6.5 Photoacoustic imaging 

While there are various reports on photoacoustic applications of PBNCs, their 

photothermal stability under pulsed laser irradiation has not been fully characterized. The 

stability of PBNCs was tested using various pulsed laser energies below and above 

American National Standards Institute (ANSI) safety limits184. For each fluence, and for 
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each different sample, the tube was irradiated with 900 laser pulses. The recorded PA 

signals during 26 mJ/cm2 laser irradiation are shown on Figure 34. 

 

Figure 34 – PA signal during laser irradiation at 26 mJ/cm2 shows stable signal 

generation of PBNCs. Progressive degradation after repeated laser pulses was seen 

for PEG-AuNR and SiO2-AuNR 

Unlike the more commonly used gold nanorods (degraded at 8.5 mJ·cm−2) and 

silica-coated gold nanorods (degraded at 13 mJ·cm−2), no degradation in the PA signal was 

observed up to 28 mJ·cm−2 (Figure 35a). Within this range, photoacoustic signal from 

PBNCs scaled linearly with fluence, demonstrating enhanced robustness as opposed to 

gold nanorods, which showed substantial photodegradation with all fluences greater than 

5 mJ·cm−2 (Figure 35a,c). Furthermore, the absorbance spectrum of PBNCs also remained 

stable after irradiation with 900 laser pulses up to 20 mJ·cm−2 (Figure 35b). 

In addition to benefits of magnetism and biocompatibility, the isotropic, non-

plasmonic nature of PBNCs means they are less prone to degradation than anisotropic 

plasmonic particles, such as nanorods. For imaging in the NIR, PBNCs would outperform 
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many commonly used contrast agents including nanoparticles and dyes. PBNCs remain 

stable during repeated laser irradiation, enabling longer term imaging and therapeutic 

applications. This, together with their high molar absorption in the NIR185, demonstrates 

PBNCs’ suitability as photoacoustic agents. 

In vitro PA phantom experiments were performed to further assess whether the 

synthesis method had any effect compared to previously shown schemes. PBNCs were 

used to label cancer cells and were imaged in a tissue-mimicking gelatin phantom. 

Inclusions of 20-nm PBNCs in deionized ultra-filtered water (DIUF) or cell culture media 

were also included to evaluate differences in PA signal upon cellular uptake. 

PBNCs in DIUF did not produce any ultrasound (US) contrast because of their 

small particle size. The same sample generated a strong PA signal; however, because the 

particles remained homogeneously distributed in water, the signal was largely confined to 

the edges of the inclusion (Figure 35di). Cell culture media caused local agglomerations of 

PBNCs, making the particles more visible in ultrasound images compared to the samples 

in DIUF, because larger particle aggregates produced detectable ultrasound scattering. 

These localized agglomerations also introduced inhomogeneities that allowed PA signal to 

be more visible throughout the inclusion rather than limited to the edges (Figure 35dii). 

Cancer cells labeled with 20-nm PBNCs were detectable with both ultrasound and 

PA imaging (Figure 35diii). PA signal appeared throughout the inclusion because cell 

uptake further increased local particle agglomeration. Mesenchymal stem cells were also 

successfully labeled by PBNCs, generating comparable images (Figure 35div). The 
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photoacoustic spectra of the labeled cells (Figure 35e) matched the expected result based 

on the UV-vis spectra of PBNCs in DI water.  

 

Figure 35 – Photothermal stability and photoacoustic imaging of PBNCs. (a) 

Photoacoustic signal from PBNCs, PEGylated gold nanorods (PEG-AuNR) and silica-

coated gold nanorods (SiO2-AuNR) at different fluences. PBNCs remained stable and 

conserve linearity with fluence when exposed to 900 laser pulses beyond 25 mJ·cm−2. 

AuNR showed degradation beyond 5 mJ·cm−2 (b) The absorbance spectrum of 

PBNCs remained stable after 900 laser pulses up to 20 mJ·cm−2. (c) Gold nanorods’ 

spectra showed degradation for all energies between 4 and 20 mJ·cm−2. (d) 

Ultrasound (US, gray scale) and photoacoustic (PA, color map) imaging of 20-nm 

PBNCs in (i) DIUF, (ii) cell culture media, (iii) PBNC-labeled cancer cells, and (iv) 

PBNC-labeled mesenchymal stem cells. (e) Photoacoustic spectrum of cancer cells 

labeled with 20-nm PBNCs. 

Imaging and cell labeling experiments confirmed PBNCs’ performance as stable 

photoacoustic contrast agents when using this synthesis method. In addition, PBNC 

absorption was not affected by cell uptake, as indicated by the measured PA spectra. 
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6.6 In vivo imaging5 

Two in vivo imaging experiments were performed to validate the feasibility of 

PBNCs. First, a bolus of 20-nm PBNCs in Matrigel was injected subcutaneously in the 

mouse abdomen. A control bolus was injected containing PBS in Matrigel. 

US/PA imaging of the injected area showed high contrast on the PBNC-loaded 

bolus and low signal on the control bolus (Figure 36a). The absorption spectra confirmed 

presence of PBNC in bolus 1, and blood in bolus 2. The signal of PBNC bolus at 700 nm 

was approximately 4.5 times fold higher than the control bolus. Figure 36b shows 

normalized spectra for ease of visualization. High skin PA signals were also present, 

indicating the need for multiwavelength spectroscopic analysis to be able to distinguish 

PBNCs from background contrast. 

 

Figure 36 – (a) Photoacoustic images of axial cross section of a mouse abdomen at 700 

nm following subcutaneous injection of PBNC in Matrigel (blue contour) and PBS in 

Matrigel (orange contour). (b) Corresponding normalized absorption spectra on each 

injection bolus. 

                                                 
5 In vivo imaging studies were performed in collaboration with Kelsey Kubelick from the Ultrasound Imaging 

and Therapeutics Research Laboratory at Georgia Tech.  
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Following US/PA, MRI was performed. A Flash sequence with repetition time  

TR = 500 ms and echo times TE 3.3, 10 and 15 ms was performed to assess variations in 

relaxation times due to PBNCs. As TE increases, the weight on T2* contrast increases. 

While the PBNC bolus gets darker, the PBS (blank) bolus remains clear. In this experiment, 

any single TE was sufficient to observe contrast from PBNCs due to their effect on T2* 

relaxation. In cases with lower agent concentration, or when the tissue is dark, the series of 

echos would help assess a rate of decay that could indicate presence of PBNC. 

 

Figure 37 – In vivo MRI imaging of axial cross section of a mouse abdomen injected 

with 50% matrigel mixed with PBS (Blank) or Prussian blue nanocubes (PBNC) as 

indicated by the white arrows. A Flash sequence was used with TR = 500 ms and TE 

of (a) 3.3 ms, (b) 10 ms, and (c) 15 ms. 
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The second in vivo study involved a breast tumor bearing mouse, such as the model 

used in CHAPTER 2. The mouse had two identical subcutaneous injections in two sites. 

First, peritumorally for sentinel lymph node imaging, and then on the ‘healthy’ side of the 

mammary fat pad. Thus, accumulation after drainage to both inguinal lymph nodes could 

be assessed. In this experiment, 200-nm PBNCs were used to maximize US/PA and MRI 

contrast. After 24 hours, US/PA showed negligible accumulation in the metastatic sentinel 

lymph node (Figure 38a). Conversely, the left-side inguinal lymph node showed 

considerable accumulation of PBNCs (Figure 38b). The absorption spectra confirmed that 

the signal from the metastatic lymph node was predominantly from blood, while at the 

healthy node the signal was predominantly PBNCs (Figure 38c). This result resembles 

those presented in CHAPTER 2, indicating that metastasis affects the way nanoparticles 

accumulate in the sentinel lymph node. 

 

Figure 38 – Photoacoustic images of axial cross section at 700 nm, 24 hours after 

subcutaneous injections of 200-nm PBNCs. (a) Metastatic sentinel lymph node does 

not show significant accumulation of PBNCs while (b) the lymph node on the opposite 

healthy side shows high PBNC signal. (c) Normalized spectra confirm the 

predominant photoabsorbers are blood for the metastatic lymph node, and PBNC for 

the healthy lymph node. 
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The same mouse underwent MRI imaging subsequently. Figure 39 displays a 

coronal cross section showing both inguinal lymph nodes. The T2* effect of PBNCs is 

noticed in the healthy lymph node having a darker intensity than the metastatic sentinel 

node, due to increase accumulation of PBNCs in the healthy node.  

 

Figure 39 –MRI of coronal cross section of a tumor-bearing mouse 24 hours after 

subcutaneous injections of 200-nm PBNCs. The metastatic lymph node (orange 

contour) shows a brighter intensity than the healthy inguinal node (blue contour). A 

Flash sequence was used with TR = 400 ms, TE 3.9 ms, and flip angle of 30°. 

The results suggest that PBNCs could be used in the assessment of sentinel lymph 

node metastasis. However, these preliminary findings must be taken carefully. First, 

appropriate number of animals and control groups must be analyzed to determine the 

feasibility of a US/PA/MRI/PBNC platform for SLN metastasis diagnosis. While 

spectroscopic PA imaging protocols have been clearly stablished, MRI sequences are yet 
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to be optimized for detection of PBNCs.  If future studies prove successful, PBNCs could 

pose an excellent alternative to gold nanoparticles on the route to clinical translation. 

6.7 Additional applications in oncology: Image-guided magnetic trapping6 

Due to the superparamagnetism of PBNCs, PBNC-labeled cells can be manipulated 

using external magnetic fields (Figure 40a). The multifunctional utility of the PBNCs was 

demonstrated using a mock cell screening apparatus. Cells labeled with 20-nm PBNCs 

were circulated through a silicone tube with a magnetic trap. Two ring magnets produced 

a homogeneous field to initially magnetize the labeled cells, as previously shown66. A bar 

magnet on the side of the tube applied a gradient to trap cells. Ultrasound and photoacoustic 

images were acquired along the length of the tube and overlaid to show where cells 

collected (Figure 40b insert). The US/PA signals of the tube were represented by gray scale 

and red scale, respectively. A spike in the PA signal was confined to the magnet location 

and corresponded to a 5-fold increase in the PA signal (Figure 40b). 

By using an external magnetic field, PBNCs can be directed to a desired location 

for diagnostic and therapeutic purposes. The potential applications of this feature include 

circulating tumor cell screening, magnetic targeting, and magnetic delivery/manipulation 

of therapeutic agents. Controlled nanoparticle movement can also be used for image 

guidance, such as magnetomotive US/PA imaging. Magnetomotive imaging allows 

sensitive detection of particles by assessing changes in speckle patterns due to particle 

movement upon application of a pulsed magnetic field. 

                                                 
6 Magnetic trapping experiments were performed in collaboration with Kelsey Kubelick from the Ultrasound 

Imaging and Therapeutics Research Laboratory at Georgia Tech 
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Figure 40 – Image-guided magnetic trapping of cells labeled with 20-nm PBNCs. (a) 

PBNC-labeled cells can be manipulated using an external magnet, as opposed to the 

AuNP-labeled cells (control). (b) Insert: ultrasound (gray scale) and photoacoustic 

(color scale) image of capillary tube with PBNC-labeled cells trapped at the bar 

magnet, indicated by the dashed line. The integrated PA signal along the tube length 

shows a 5-fold PA signal increase at the gradient magnet position. 

6.8 Discussion 

In addition to the results shown, PBNCs possess capabilities for numerous 

additional applications. Prussian blue’s high affinity to heavy metals may be exploited 

beyond heavy metal poisoning treatment, its current clinical use. This attribute could 

allowing tagging of PBNCs with compounds such as barium sulfate to enable X-ray 

imaging contrast186. In addition to magnetic manipulation and magnetomotive imaging 
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techniques, PBNC’s magnetic properties could enhance magnetic hyperthermia using 

alternating magnetic fields, potentially improving therapeutic penetration depth187-188, with 

the possibility to be combined with photothermal therapy to augment heating capability189. 

The ability to consistently vary the size of the PBNCs according to SPION 

precursors’ diameter further adds to imaging and therapeutic possibilities. Studies have 

shown that particle size can impact the effectiveness of Prussian blue in treatment of heavy 

metal poisoning190-191. Moreover, it has been shown that the size and shape of single-

domain particles can affect their magnetic properties, which may influence their behavior 

in magnetic manipulation and heating applications. 166, 192-195 

The reaction scheme presented takes advantage of the decades of previous work to 

optimize Fe3O4 nanoparticles. Currently, there are numerous commercial sources of Fe3O4 

nanoparticles that provide monodisperse colloidal aqueous solutions with diameters 

ranging from 5 nm to greater than 50 nm. Furthermore, numerous forms of Fe3O4 

nanoparticles have been FDA approved for various applications, so rigorous protocols for 

large batch production and thorough physicochemical characterization have been 

optimized for the FDA required current Good Manufacturing Practices (cGMP).196 This 

reduces the costs and will allow for quicker clinical translation of Prussian blue 

nanoparticle-based applications.  

While SPIONs are ubiquitous in applications involving nanoparticle-magnetic field 

interactions, such as MRI, magnetically-guided drug delivery, and magnetomotive 

imaging, the developed PBNCs offer the enhanced benefit of NIR absorption while 

maintaining strong magnetization properties. The strong optical absorption alone makes 
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PBNCs a great option for applications including photoacoustic imaging, optical 

microscopy, and photothermal therapy. 

In oncology, PBNCs could be applicable to diagnostic procedures that use MRI, 

taking advantage of whole-body imaging, but would also enable real-time precise imaging 

with the versatility of US/PA. Specifically, the agent could be used in the detection of SLN 

metastasis, as has been already suggested using US/PA and MRI. 

6.9 Conclusions 

A method for size-controlled synthesis of PBNCs using conventional SPIONs as 

precursor was presented. The size of the PBNCs can be controlled by the size of the 

SPIONs. Because highly monodisperse SPIONs are available commercially, this synthesis 

gives researchers a facile method to produce PBNCs with excellent size control. The 

resulting PBNCs possess all of the attractive optical and magnetic properties of PBNCs 

previously shown with conventional syntheses. The utility of PBNCs as imaging agents for 

MRI and photoacoustic imaging was confirmed. Particularly, PBNCs showed feasibility to 

be used in immunofunctional imaging of sentinel lymph nodes. Additionally, magnetic 

properties show potential for novel diagnostic and therapeutic applications such as 

circulating tumor cell screening and magnetically-guided cell delivery. Overall, the novel 

synthesis method represents a tool-box for researchers to easily tailor PBNCs by tuning 

and optimizing the desired nanoparticle size according to the requirements of each 

application, helping to expand the biomedical uses of PBNCs. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

Photoacoustic imaging is becoming widespread in the medical imaging research 

field. Ultrasound systems are ubiquitous in healthcare facilities and, because photoacoustic 

systems share most of the hardware of ultrasound systems, upgrading conventional 

platforms with a laser source would allow to exploit the benefits of PA imaging without 

major infrastructure requirements. Contrast agents increase the utility of US/PA 

significantly; however, novel exogenous materials can also raise safety concerns prior to 

clinical translation, compared with label-free techniques. This translation can be promoted 

by showing the usefulness of US/PA in diagnosing and guiding treatment of diseases that 

have traditionally been difficult to assess with other conventional methods. In this work, 

the goal was to demonstrate that contrast-enhanced US/PA techniques can help in the early 

diagnosis of lymph node metastasis, a significant health problem in the U.S. and the world. 

Chapter 1 introduced the challenges in diagnosis of sentinel lymph node metastasis. 

Sentinel lymph node biopsy, the current clinical standard, has a high accuracy, but the 

procedure still faces disadvantages such as being invasive and requiring multiple 

specialists. Several attempts to assess sentinel lymph nodes non-invasively have shown 

promising results, but many have important drawbacks and costs that are not necessarily 

surpassed by the benefit of non-invasiveness. Various applications of US/PA in oncology 

were introduced as a motivation for the use of this technology.  
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In Chapter 2 the ability for functional diagnosis of lymph node metastasis based on 

nanoparticle-loaded immune cell distribution was investigated. The results showed a 

statistically significant reduction of the lymph node volume occupied by endocytosed 

nanoparticles when the node was metastatic. The technique has the advantage of using a 

nanoparticle with glycol-chitosan as a coating that promotes immune cell uptake, thus not 

needing specific targeting moieties. As such, it is independent of the tumor’s molecular 

characteristics thus the same contrast agent may be applicable to various types of cancer 

such as breast, oral, melanoma, and prostate, among others. Nevertheless, to design 

appropriate treatments, physicians may need to know the molecular characteristics and size 

of metastasis precisely. In these cases, molecular imaging presented in Chapter 3 would 

complement the findings of the immunofunctional assessment. 

Thus, label-free functional imaging, contrast-enhanced functional imaging, and 

contrast-enhanced molecular imaging should be perceived as synergistic techniques, and a 

complement to one another. While this combination can provide greater diagnostic results, 

it is important to avoid cross-talk between contrast agents. If immunofunctional and 

molecular imaging needed to be used in conjunction, different contrast agents would have 

to be used. The photoacoustic/fluorescent agent investigated in Chapter 4 can solve this 

issue by offering a distinct absorption spectrum that can be responsive to a biomarker of 

interest and does not overlap with the spectrum of gold nanoparticles. Additionally, the 

agent’s fluorescence response provides high sensitivity which may be critical in the case 

of small lesions that are otherwise difficult to localize with PA alone. 
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Chapter 5 presented a gold-silica Janus nanoparticle that could also enhance 

sensitivity and provide different absorption spectrum signatures. In addition, this 

nanoparticle can potentially be loaded with drugs to enable therapeutic applications. 

When studying contrast agent and drug development, it is important to note that 

only about 10% of drugs that start Phase I clinical trials make it to FDA approval197  and 

this number is reduced to 5% for oncology-related drugs198. Even when the benefits of 

particular contrast agents are high, safety concerns may still prevent them from getting 

approved. It is thus important to study alternative agents and focus on those with greater 

efficacy and biocompatibility. In Chapter 6, a versatile multifunctional Prussian blue 

nanoparticle, that is also biocompatible and based on FDA-approved materials, was 

studied. The nanoparticle size can be tuned to the needs of each application and offers 

multifunctional capabilities that may be used for assessment and treatment guidance of 

cancer using US/PA, MRI, and magnetomotive techniques. 

Overall, the presented techniques and agents are expected to pave the way for 

accurate non-invasive evaluation of cancerous tissues. Specifically, in the case of sentinel 

lymph node metastasis, successful implementation of these tools may augment and 

potentially replace sentinel lymph node biopsy. 

7.2 Future studies with developed contrast agents 

There is opportunity for more studies in many applications using the contrast agents 

included in this text. Particularly, the use of targeting moieties for detection of specific 

biomarkers would allow a thorough evaluation of the contrast agents’ efficacy. Surface 

modifications of gold and silica using thiols and silane chemistry, respectively, have been 
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studied extensively. In the case of Prussian blue, various surface modifications have been 

demonstrated, but a standard technique has not been stablished199.  

Modifications can also enable therapeutic use. For instance, gold-silica Janus 

nanoparticles can be loaded with drugs or dyes within the silica shell. Preliminary studies 

showed the ability to load a fluorescent dye (ICG) in the silica shells (Figure 41). The 

addition of a fluorescent NIR dye brings two new features: the possibility to track GSJNPs 

prior to endocytosis by targeted cells, and the enhanced imaging sensitivity with the use of 

fluorescence imaging. Moreover, this encourages the possibility for loading drugs on the 

silica half-shell, as has been shown in other studies with silica nanoparticles114, to provide 

image-guided therapy of lymph node metastasis. 

 

Figure 41 – Comparison of silica nanoparticles vs ICG-loaded silica nanoparticles.  

(a) Photoacoustic spectra (b) Fluorescence imaging.  
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7.3 A theranostic paradigm: towards image-guided therapy and outcome 

monitoring 

Early detection of cancer is paramount to increase survival rates. However, 

diagnosis would be futile if it did not influence treatment decision. While research towards 

non-invasive diagnoses intends to decrease patient morbidity, current treatments rather 

than invasive diagnoses are the main cause of iatrogenic morbidity for cancer patients. 

Treatment for cancer is highly dependent on its stage and molecular characteristics. 

In breast cancer, for instance, early stages are usually treated with local therapy, which 

includes surgical removal of the primary tumor, followed by radiotherapy. Local therapy 

is not expected to considerably affect other areas of the body; however, it is not exempt of 

morbidity and side effects200-201. When metastasis is found during SLN biopsy, removal of 

the lymphatic branch via lymphadenectomy is usually performed. This procedure also 

carries morbidity, particularly the risk of swelling and developing lymphedema202. 

Many patients also undergo systemic treatments. Due to heterogeneity of breast 

cancer, the type of drug(s) administered depends on the tumor characteristics, which must 

be obtained from biopsy analysis. These analyses will provide information of the hormone 

(estrogen and progesterone) and growth factor (HER2/neu) receptors present in the 

tumor203. Systemic therapies include chemotherapy, hormone therapy and targeted therapy. 

Chemotherapy is frequently used and causes high morbidity due to side effects such as hair 

loss, digestive problems, and effects in the bone marrow204-205. Certain types of cancer can 

be treated with hormone therapy, which has milder short-term side effects, but increases 

the chance of developing endometrial cancer and blood clots206. Targeted therapy is used 
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in tumors with HER2 receptor overexpression and includes monoclonal antibodies and 

kinase inhibitors. Tumors can become resistant to some of these drugs, which are often 

given along with chemotherapy. Heart damage is among the most serious side effects of 

targeted therapy207. 

None of the treatment options for cancer is free of side effects. Thus, a system to 

design and tune therapeutic plans on a patient-specific basis is needed. Moreover, choosing 

procedures and drugs with minimal side effects and high success rate would be of extreme 

benefit during all stages of breast cancer. 

Future studies should utilize contrast agents that can serve a diagnostic and 

therapeutic purpose. For instance, optically-absorbing nanoparticles, such as gold and 

Prussian blue, can be heated via photothermal effect and used for hyperthermia treatments. 

This allows for greater thermal gradients, protecting surrounding tissue from undesired 

damage. Hyperthermia applications can also benefit from accurate real-time information 

regarding tissue temperature or therapeutic endpoint, thus ultrasound and photoacoustic 

imaging have been studied as tools to monitor temperature during photothermal therapy208-

209. Combining diagnostic and therapeutic imaging techniques, a metastatic lesion could be 

identified and immediately treated under image guidance.  

Finally, longitudinal assessment of treated lesions could be performed 

non-invasively with US/PA. For example, the effect of adjuvant therapy on primary tumors 

and sentinel lymph nodes could be assessed using contrast enhanced functional/molecular 

imaging techniques. Prussian blue nanocubes could be used with MRI when whole-body 

imaging is needed. Then, US/PA could allow precise evaluation of suspicious regions. 
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7.4 Conclusion 

The results presented in this work are promising regarding the use of 

contrast-enhanced ultrasound and photoacoustic imaging in oncology. While the 

experiments focused on US/PA as a diagnostic technique for sentinel lymph node 

metastasis, there is potential for a broader impact in the oncology field as part of 

multimodal/multifunctional theranostic strategies. A collective effort among the medical 

imaging community will help find the optimal imaging modalities and contrast agents for 

each application. Overall, these efforts can aid physicians to enhance and potentially 

replace current clinical methods for effective diagnosis and treatment of cancer with 

reduced patient morbidity. 
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