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S U M M A R Y 

A s i n g l e m o t o r uni t ( S M U ) h a s b e e n d e f i n e d a s a " s i n g l e m o t o r -

n e u r o n a n d a l l the m u s c l e f i b e r s that it i n n e r v a t e s . " M o n i t o r i n g m u s c l e 

a c t i v i t y w i t h s u r f a c e e l e c t r o d e s a n d u t i l i z i n g b i o f e e d b a c k p r o c e d u r e s , 

s u b j e c t s ( S s ) v o l u n t a r i l y c o n t r o l l e d m o t o r u n i t s , p r o v i d i n g a r e s p o n s e 

w h i c h i s n o r m a l l y b e n e a t h the S_'s c o n s c i o u s l e v e l of a w a r e n e s s . 

R e a c t i o n t i m e ( R T ) a n d a c c u r a c y of S M U d i s c h a r g e s w e r e e x a m ­

i n e d u n d e r c o n d i t i o n s of v a r y i n g f o r e p e r i o d s ( F P s ) of 2 , 5 , a n d 1 0 s e c ­

o n d s , a n d S M U r e s p o n s e s c o m p a r e d w i t h g r o s s f i n g e r m o v e m e n t s ( G M R s ) . 

R T s w e r e e x a m i n e d a c c o r d i n g to (1 ) s i z e of i m m e d i a t e F P , (2 ) s i z e of 

p r e c e d i n g F P , a n d (3 ) r e l a t i v e s i z e of p r e c e d i n g F P t o i m m e d i a t e F P . 

S i x S s p r o d u c e d a c c u r a t e S M U d i s c h a r g e s on 6 3 p e r c e n t o f t r i ­

a l s in the l a s t t w o s e s s i o n s . E x a m i n a t i o n of G M R R T s s h o w e d tha t 

i m m e d i a t e F P s i z e w a s a m a j o r i n f l u e n c e in R T but no t in S M U r e ­

s p o n s e s . P r e c e d i n g F P s i z e a n d i n t e r a c t i o n of p r e c e d i n g F P to i m m e ­

d i a t e F P s i z e d id not i n f l u e n c e G M R o r S M U R T s . 

V a r i a b l e s w h i c h m a y h a v e l e d t o c o n f l i c t i n g r e s u l t s of S M U r e ­

s p o n s e s w h e n c o m p a r e d to o t h e r S M U R T s t u d i e s a n d to g r o s s m e a s u r e s 

of R T a r e d i s c u s s e d . S u c h v a r i a b l e s m a y i n c l u d e : (1 ) t y p e of m o n i t o r ­

ing e l e c t r o d e s , (2 ) d e g r e e of r e s p o n s e c o n t r o l , (3 ) s u b j e c t p o p u l a t i o n , 

a n d (4 ) h i g h R T v a r i a b i l i t y b e t w e e n S s a n d a c r o s s s e s s i o n s . 
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C H A P T E R I 

I N T R O D U C T I O N 

Motor responses usually are defined operationally by the occur­

rence of some relatively large environmental event, e. g. , pressing a 

key, activating a voice key, or maneuvering a hand or foot control 

(Bahrick & Noble, 1966). In certain situations these responses m a y 

have the disadvantage of being confined to a specific location on the or­

ganism (Sutton &: K i m m , 1970) or of failing to measure low level muscle 

activity initiated long before detection of the gross response (Davis, 

1959). Attempts to quantify this low level muscle activity often have 

utilized integrated measures of the electromyogram (EMG). These at­

tempts, however, are limited by the specific recording methods and 

techniques selected. A s a result, interpretation and comparison of dif­

ferent E M G findings have been difficult (Close, 1964; Basmajian, 1967b; 

Green, Walters, Green, & Murphy, 1969; Kahn, Bloodworth, & Woods, 

1971). 

Single Motor Unit Responses 

Because of the problems associated with interpretation of differ­

ent E M G findings, the single motor unit (SMU) discharge has been pro­

posed to study low level motor activity (Basmajian, 1967b; Kahn, et al. , 
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1971). A S M U consists of a single motorneuron centrally located in gray 

matter of the spinal cord together with all muscle fibers that it activates 

(Liddell & Sherrington, 1925). When a motorneuron discharges, a m u s ­

cular electrophysical event is produced (as a result of near simultaneous 

discharge of all muscle fibers synapsed to that motorneuron) that has a 

characteristic waveform, amplitude and duration (Basmajian, 1967a; 

Bucthal, I960; Close, 1964). Detection of activity by electrodes placed 

in or over the muscle provides a means whereby S M U discharges can 

be monitored or utilized as responses. 

Research in the field of voluntary control over S M U discharges 

has led to several observations. Normally, control over an isolated S M U 

discharge is beyond a subject's (S's) ability because it is not within his 

level of conscious awareness (Basmajian, 1963). Biofeedback methods 

in which amplified muscle activity is returned to Ŝ  via visual and/or au­

ditory channels have enabled S to control S M U discharges selectively 

while suppressing other S M U discharges within pick-up range of the 

electrodes. 

S M U Discharge Characteristics 

Certain characteristics of S M U discharges make them useful as 

responses in research on motor activity: 

(1) having a specific waveform, constant amplitude, and constant 

duration enables reliable detection of response occurrence (Buchthal, 
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I 9 6 0 ; B u c h t h a l , G u l d , & R o s e n f a l c k , 1 9 5 7 a ) ; 

(2 ) b e i n g a n a l l - o r - n o n e r e s p o n s e and h a v i n g a o n e - t o - o n e r e l a ­

t i o n s h i p w i t h m o t o r n e u r o n d i s c h a r g e s p r o v i d e s a m o r e p r e c i s e p i n p o i n t ­

ing o f t i m e in w h i c h a r e s p o n s e i s i n i t i a t e d ( K a h n , e t a l . , 1 9 7 1 ) ; 

(3 ) b e i n g the s m a l l e s t f u n c t i o n a l uni t o f m u s c l e a c t i v i t y ( E c c l e s &; 

S h e r r i n g t o n , 1 9 3 0 ) , S M U r e c o r d i n g r e t a i n s i n f o r m a t i o n ( c h a n g e s in r e ­

s p o n s e f r e q u e n c y ) tha t o f t e n i s l o s t in i n t e g r a t i v e E M G m e a s u r e s ( C l o s e , 

1 9 6 4 ) ; a n d 

( 4 ) b e i n g p r e s e n t a t r e s p o n s e l e v e l s b e l o w S ' s a w a r e n e s s i n c r e a s e s 

t h e s e n s i t i v i t y o f m e a s u r e s and e x t e n d s the r a n g e o f m e a s u r a b l e b e h a v i o r 

t o i n c l u d e c o v e r t r e s p o n s e s ( C l o s e , 1 9 6 4 ; B a s m a j i a n , 1 9 6 7 a ; G r e e n , et 

a l . , 1 9 6 9 ; K a h n , e t a l . , 1 9 7 1 ; H e f f e r l i n e , 1 9 6 4 ) . 

S M U r e c o r d i n g a l s o h a s s o m e l i m i t a t i o n s . A t h i g h l e v e l s o f m u s ­

c l e a c t i v i t y ( e s p e c i a l l y w h e n S M U a c t i v i t y i s r e c o r d e d w i t h s u r f a c e e l e c ­

t r o d e s ) , t he t e n d e n c y of S M U d i s c h a r g e s t o s u m m a t e d e c r e a s e s t he d i s ­

t i n c t i v e n e s s o f w a v e f o r m s ( C l o s e , 1 9 6 4 ; B a s m a j i a n , 1 9 6 7 b ; G r o s s m a n & 

W e r n e r , 1 9 6 6 ) . F u r t h e r m o r e , if a v o l u n t a r y S M U r e s p o n s e i s d e s i r e d , 

s p e c i a l t r a i n i n g p r o c e d u r e s a r e r e q u i r e d f o r S t o l e a r n t o a c t i v a t e a s e ­

l e c t e d S M U . 

P r e s e n t S M U R e s e a r c h 

R e s e a r c h i n v o l v i n g S M U r e s p o n s e s i s b e g i n n i n g t o f a l l i n to t w o 

c a t e g o r i e s : 
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(1) ,S has muscle activity monitored so as to describe some com­

plex motor act, such as efficient learning of a musical or athletic skill 

(Basmajian, 1972) or to correlate with other obtained measures, e.g., 

degrees of tension as inferred from dynamometer readings (Kirkpatrick, 

1972) and measures of personality, emotions, mental activity or un­

conscious behavior (Jacobson, 1930, 1931; Hefferline, 1962; Hefferline, 

Bruno, & Davidowitz, 1971; Hefferline & Perera, 1963; Budzynski, 

Stoyva, & Adler, 1970; Kahn, Swint, & Bowne, 1972); and 

(2) S! is required to attain voluntary control over S M U firings as 

a prerequisite to its use as a response. The latter category requires 

that training procedures utilizing externalized feedback be incorporated. 

Applications of S M U research using this procedure have included as­

sessing the effects of drugs (Sutton & K i m m , 1970) and external stimu­

lation, e.g., temperature (Wolf, 1973) on fine motor performance; the 

shaping of responses to control external devices such as stepping 

motors in prosthetic devices for rehabilitation of amputees (Basmajian, 

1972); the correlating of m o r e precisely defined peripheral events to 

central events via evoked potentials (McLeod, private communication; 

Kahn, et al. , 1972) and assessing simple reaction time (RT) of S M U 

discharges (Quigley, 1968; K i m m , 1969; Sutton & K i m m , 1969, 1970; 

Thysell, 1969). 
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Simple R T and S M U Discharges 

This thesis pursues the second line of research by examining fur­

ther simple R T of S M U discharges. R T is a classical method that has 

been used to infer complexity of central processes from amount of time 

required for Ŝ  to react to a presented stimulus (Woodworth & Schlosberg, 

1954; Teichner, 1954). 

One interest in R T studies has involved isolating those variables 

that alter S_'s expectancy for stimulus occurrence. T w o such variables 

identified by K l e m m e r (1956) include: (1) S/s time-keeping ability and 

(2) response signal variability within a set of R T trials. By providing 

iS with a ready signal that precedes the response stimulus and by vary­

ing fore period (FP) size (time interval between the ready signal and 

response stimulus), certain systematic changes in R T latencies have 

been observed. A summary of these findings shows: 

(1) R T is inversely proportional to the size of immediate FP, 

i. e. , R T is longer on trials having short F P s and shorter on trials hav­

ing long F P s (Telford, 1931; Klemmer, 1956; Karlin, 1959; Drazin, 

1961); 

(2) R T is not affected by absolute size of preceding F P s (Zahn, 

Rosenthal, & Shakow, 1963; Sanders, 1966); and 

(3) R T is inversely proportional to size of preceding F P relative 

to immediate F P size, i. e. , R T is longer on trials having a long F P 

preceded by a trial with a short F P and shorter on trials having a short 
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F P preceded by a trial with a long F P (Klemmer, 1956; Karlin, 1959; 

Zahn, et al_. , 1963). The difference in the second and third findings 

suggests that it is relative interaction of preceding F P size which affects 

R T . Selective findings from the literature on the effects of F P size on 

R T are reviewed in the next chapter. 

Purpose of Thesis 

This thesis proposes to investigate F P effects on S M U R T using 

surface electrode monitoring and to compare these effects with effects 

of a variable F P size on G M R R T . Three hypotheses will be tested 

when the response is a G M R and when the response is a S M U discharge: 

Hypothesis One: 

R T is inversely proportional to immediate F P size. 

Hypothesis Two: 

R T is not affected by absolute value of preceding F P size. 

Hypothesis Three: 

R T is inversely proportional to interaction between preceding 

F P and immediate F P size. 
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C H A P T E R II 

R E V I E W O F L I T E R A T U R E 

Introduction 

The relevant literature covers two broad areas: simple R T stu­

dies and S M U studies. The simple R T studies relate primarily to the 

effects of F P size on R T of G M R responses. Those findings showing 

R T differences due to a varying F P are of particular importance. 

The main focus of the selected literature on S M U s is the use of 

the S M U discharge in psychological procedures. This review includes 

studies leading to development of the concept of the S M U , some of the 

structural and functional properties of the S M U , and some of the proce­

dures used in obtaining voluntary control over S M U discharges. Vari­

ous methods used in assessing performance of voluntary S M U behavior 

and the variables found to affect S M U performance are cited. 

The last portion of the review includes those studies in which 

the S M U response has been used in simple R T paradigms. Variables 

affecting S M U R T and effects of F P size on S M U R T are analyzed. 

Simple Reaction Time 

Organization of R T Research 

Simple R T , time required for Ŝ  to respond to a presented stimu-
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lus with some predesignated response, has had a long history in psychol­

ogy as a measure of a person's performance. Reviews of R T by John­

son (1923), Woodworth (1938), Woodworth & Schlosberg (1954), and 

Teichner (1954) are structured around three components: a sensory com­

ponent, a central component, and a motor component. These reviews 

have pointed out how such variables as sensory modality involved, and 

how the intensity and duration of the stimulus and the onset and cessation 

of the stimulus m a y affect the sensory component of R T performance, 

and how the type of response required and function of responding m e m ­

ber affect the motor component. Since sensory and motor components 

have been assessed by measuring the time for a signal to travel from a 

peripheral organ to some central component and from a central compo­

nent to some responding m e m b e r , differences in R T s have been attri­

buted to complexity of information processed by central structures 

(Woodworth & Schlosberg, 1954). In the present review, central fac­

tors are discussed in terms of S_'s motivation, practice, fatigue, drug 

effects, and expectancy ("set") for the response signal. The last 

area, expectancy of the response signal, provides the focus of the re­

view. 

Expectancy and R T 

The role of expectancy in R T studies is probably best under- • 

stood in terms of the procedures used. T w o signals normally are used 

in a R T study, a response signal and a ready signal. The response sig-
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nal is a stimulus for to respond with some predesignated response 

(e.g., a key press, finger movement, voice response, etc.). A m o n g 

the variables associated with this signal that have been found to affect 

R T latencies are its intensity, duration, and the sensory mode involved 

(Teichner, 1954; Woodworth & Schlosberg, 1954). When a ready signal 

precedes the response signal, the interval between is designated as the 

fore period (FP). The purpose of the ready signal is primarily to give 

S_ some warning that the response signal is forthcoming so that he m a y 

prepare himself to respond. Recent research has shown that some para­

meters of the ready signal also affect R T performance. These para­

meters include its intensity (Behar & A d a m s , 1966; Karlin, 1959; 

Stilitz, 1972), its duration (Behar & A d a m s , 1966; Karlin, 1959), and 

sensory modality involved (Botwinick & Brinley, 1962). Moreover, 

interactive effects of ready signal intensity with response signal inten­

sity have been reported by Stilitz (1972). The interactive effects of 

ready signal intensity and F P size are not as clear. Significant inter­

actions were reported by Botwinick (1969) and Botwinick & Storandt 

(1972) but not by Behar & A d a m s (1966). 

In R T studies of signal expectancy (Teichner, 1954; Klemmer, 

1957; Sanders, 1966), the temporal relationship (FP) between ready 

signal and response signal has received m o r e attention than other para­

meters. T w o primary areas of research have included the search for 

an optimum F P size and effects of a varying F P on R T performance. 
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Optimum F P size. Studies of the temporal relationship between 

ready signal and response can be traced to the report of an optimum 

F P size of 2 sees by Woodrow (1914). Earlier, Breitwieser (1911) had 

found the optimum F P size to fall in a range of 1. 0 to 4. 0 sees but to 

differ for individual Ss. Teichner (1954) extended the range up to 8.0 

sees. 

K l e m m e r (1956) pointed out that an optimum F P size has mean­

ing only when a homogeneous set of F P s are used, i.e., F P size remains 

constant for each trial in a set. In homogeneous sets, R T s have been 

shown to increase positively with an increase in F P size (Telford, 1931; 

Klemmer, 1956; Karlin, 1959; Drazin, 1961; Naatanen, 1963) because 

of S's imperfect time-keeping ability (Klemmer, 1956). Informational 

measures relating R T with time uncertainty have been given by Hick 

(1952), K l e m m e r (1957), and Thomas (1967, 1970). This relationship 

does not hold for small FPs; if F P size is made less than 0. 5 sec, R T s 

do not continue to decrease. In this refractory period, a separate phy­

siological process is thought to govern R T performance (Telford, 1931; 

Welford, 1952, 1959; Poulton, 1950; Davis, 1956; Klemmer, 1956). 

Variability of F P sizes. A heterogeneous set of R T trials (pro­

duced by varying F P size in successive R T trials) reduces the number 

of anticipatory errors (S responds before the response signal is pre­

sented) because Ŝ  cannot rely solely on his time-keeping ability to pre­

dict the occurrence of the response signal (Klemmer, 1956). Varying 
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F P size about some average value has the general effect of producing 

longer RTs than found in a homogeneous set having constant FPs of that 

value (Klemmer, 1956; Drazin, 1961; Naatanen, 1970). The difference 

in overall R T s becomes larger when the range of F P sizes in the 

heterogeneous set is increased (Klemmer, 1956; Karlin, 1959; Drazin, 

1 961; Naatanen, 1970) or when the average F P size about which the 

F P s vary is decreased (Klemmer, 1956; Drazin, 1961; Karlin, 1959). 

A m o r e important finding than the increase in R T is the nature 

of the relationship of R T s to F P size in heterogeneous sets. A s noted 

in the preceding section, homogeneous sets produce longer R T s when 

F P size is increased. This finding does not hold in heterogeneous sets. 

Instead, shortest F P s yield the longest R T s while the longest FPs yield 

the shortest R T s (Klemmer, 1956, 1957; Karlin, 1959; Drazin, 1961; 

Telford, 1931; Teichner, 1954; Sanders, 1966; Naatanen, 1963, 1970; 

Zahn, et al. , 1963). 

In addition, the effect is more pronounced when the effects of 

the F P size of the immediately preceding trial are analyzed. The long­

est R T s result from a short F P preceded by a trial with a long F P while 

the shortest R T s result from a long F P preceded by a trial with a short 

F P (Klemmer, 1956, 1957; Karlin, 1959; Zahn, et al. , 1963; Botwinick 

& Brinley, 1962; Sanders, 1966; Thomas, 1967). 

For a heterogeneous set of R T trials, R T latency on a given 

trial is dependent on the F P size of that trial and on the relative F P 
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size of the preceding trial. A possible explanation for this interaction 

is that S_ adapts to the set of the preceding trial. For example, if a 

short F P is followed by a longer one, will ready himself more quickly 

and maintain the readiness. A s time passes, the probability that the 

signal will occur increases (Naatanen, 1970; Karlin, 1959). If a F P is 

long and a short F P follows, S> will be "caught napping," resulting in a 

longer R T (Karlin, 1959). This "surprise effect" has been found to be 

particularly striking in certain populations thought to be deficient in 

ability to change sets quickly, e. g. , schizophrenia (Cancro, Sutton, 

Kerr, & Sugerman, 1971; Huston, Shakow, & Riggs, 1937; Mowrer, 

1941; Nideffer, et al. , 1971; Rodnick & Shakow, 1940; Shakow, 1962; 

Wells & Kelley, 1922; Zahn & Rosenthal, 1965; Zahn, Rosenthal, & 

Shakow, 1961, 1963; Zahn, Shakow, & Rosenthal, 1961). 

Recent evidence has shown that R T performance is also depen­

dent on the manner in which F P sizes are distributed within a set of R T 

trials (Baumeister & Joubert, 1969; Mowbray, 1964; Stilitz, 1972; 

Naatanen, 1970; Zahn & Rosenthal, 1966; Requin & Granjon, 1969). All 

results that have been presented thus far are based on symmetrical dis­

tributions (each F P size appears an equal number of times in a set). 

By adding m o r e trials having a certain F P size, S's expectation for a 

given F P size can be altered, producing changes in R T . However, the 

effects of these skewed distributions go beyond the extent of this study 

except that they give support to findings that Ŝ  tends to adopt a "set" 
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w h i c h i s i n p a r t d e t e r m i n e d b y F P s i z e o f p r e c e d i n g t r i a l s . 

S i n g l e M o t o r U n i t ( S M U ) R e s p o n s e 

C o n c e p t o f S M U 

S i g n i f i c a n t f i n d i n g s i n t h e f i e l d o f m u s c l e p h y s i o l o g y c i t e d b y 

L i d d e l l & S h e r r i n g t o n ( 1 9 2 5 ) t h a t l e d t h e m t o t h e c o n c e p t u a l i z a t i o n o f t h e 

S M U i n c l u d e : ( 1 ) G a l v a n i ' s d i s c o v e r y i n 1 7 9 1 t h a t m u s c l e s c o n t r a c t u p ­

o n s t i m u l a t i o n ; ( 2 ) B o w d i t c h ' s a n d L u c a s ' s r e s p e c t i v e f i n d i n g s t h a t t h i s 

m u s c l e c o n t r a c t i o n i s a l l - o r - n o n e i n h e a r t a n d s k e l e t a l m u s c l e ; ( 3 ) 

M i n e s ' s c o n c l u s i o n t h a t a s t e p w i s e m u s c u l a r r e s p o n s e i s d u e t o e x c i t a ­

t i o n o f n e w n e r v e f i b e r s w h i c h a c t i v a t e s a l l m u s c l e f i b e r s s u p p l i e d b y 

t h e m ; ( 4 ) P i p e r ' s d e m o n s t r a t i o n t h a t a n e l e c t r o m y o g r a m r e p r e s e n t s a c ­

t i o n p o t e n t i a l s g e n e r a t e d d u r i n g v o l u n t a r y c o n t r a c t i o n o f a m u s c l e ; a n d 

( 5 ) G a s s e r a n d N e w c o m e r ' s o b s e r v a t i o n t h a t a c t i o n p o t e n t i a l s f r o m a 

m u s c l e a r e f a i r l y a c c u r a t e c o p i e s o f a c t i o n p o t e n t i a l s i n a m o t o r n e r v e 

f i b e r . 

S h e r r i n g t o n ( 1 9 2 9 ) d e s c r i b e d t h e S M U a s " a n i n d i v i d u a l m o t o r 

n e r v e - f i b r e t o g e t h e r w i t h t h e b u n c h o f m u s c l e f i b r e s i t a c t i v a t e s . " 

E a c h S M U i n c l u d e d a n e r v e c e l l c e n t r a l l y l o c a t e d i n t h e g r a y m a t t e r o f 

t h e s p i n a l c o r d s o t h a t a g r o u p o r " p o o l " o f t h e s e c e l l s r e p r e s e n t e d t h e 

m u s c l e i n t h e s p i n a l c o r d , E c c l e s & S h e r r i n g t o n ( 1 9 3 0 ) a r g u e d t h a t 

t h i s a r r a n g e m e n t w a s s u c h t h a t i t c o u l d b e c o n s i d e r e d a s i n g l e f u n c ­

t i o n a l e n t i t y . 
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Structural Properties of S M U s 

Studies reviewed by Basmajian (1967b) and Harrison (1961) over 

a thirty-year period primarily attempted to describe the structural and 

functional characteristics of S M U s . These characteristics include: (1) 

number of muscle fibers innervated by a single motorneuron; (2) number 

of S M U s in a single muscle with the ratio of motor fibers to muscle fi­

bers being called the innervation ratio; (3) area over which the fibers of 

a S M U are distributed (its territory); and (4) degree to which S M U s are 

interdigitated within a muscle. 

Anatomical and electrophysiological procedures have been used 

to study the physiology of the S M U . The anatomical approach examines 

the S M U with microscopic dissection. This procedure is hindered, how­

ever, by the complex interdigitation of muscle fibers from several units 

and by the tedious effort required to dissect out muscle fibers that usu­

ally extend the entire length of a muscle. 

The electrophysiological approach examines muscle action po­

tentials under various types of nerve fiber stimulation. This procedure 

has been aided by the Buchthal electrode, which consists of a needle in­

serted in the cross section of a SMU's muscle territory and contains 

within it twelve separate electrodes spaced only 1 m m apart, each ref­

erenced to the grounded needle. Several characteristics have been in­

ferred by using this electrode arrangement which permits the examina­

tion of discharges of individual motor fibers over precise topographical 
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areas (Buchthal, et_ al. , 1957a, 1957b). 

One of the most important findings from these studies is the dis­

covery that S M U waveforms can be characterized by their duration, 

waveshape, and amplitude --all of which remain constant under most 

conditions (Kahn, et al. , 1971; Basmajian, 1967a; Basmajian & Cross, 

1971; Buchthal, I960; Close, 1964; Petersen feKugelberg, 1949). The 

range of values which these parameters m a y take, however, is heavily 

influenced by the method of signal detection used (Kahn, et̂  al. , 1971). 

Voluntary Control of S M U Discharges 

Several studies have been influential in developing methods 

whereby a S M U discharge m a y be voluntarily controlled. Adrian & 

Bronk (1928) developed a method by which an audio output of muscle ac­

tivity could be obtained by amplifying muscle action potentials and using 

them as an input to an audio amplifier. In a series of studies at Harvard 

University laboratories (Smith, 1934; Lindsley, 1935; Gilson & Mills, 

1940, 1941; Norris &c Gasteiger, 1955), several observations of the re­

lationship between S M U discharges and voluntary muscle contractions 

were made. First, S M U discharges are absent when a muscle is relaxed. 

Second, the rate of a S M U discharge increases with harder contractions. 

Moreover, other S M U s are activated (recruited) when muscle contrac­

tion is increased further. T w o quantitative measures for describing on­

going muscle activity that emerged from these studies were (1) fre­

quency of a S M U discharge and (2) number of S M U s being discharged. 
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Harrison & Mortensen (I960, 1962) described human Ss who 

could selectively activate and control specified S M U potentials. These 

findings and the development of fine-wire bipolar electrodes (Basma­

jian & Stecko, 1962) have led Basmajian and his colleagues to develop 

and refine methods for controlling S M U discharges (Basmajian, 1963, 

1967a, 1972; Basmajian, Baeza, & Fabrigar, 1965; Simard & Basma­

jian, 1967). 

S M U Methodology Used for Acquiring Voluntary Control 

Methods enabling Ŝ  to acquire control over S M U discharges fall 

in the general category of biofeedback studies. The standard procedure 

involves monitoring (recording) some biological event, amplifying that 

event if necessary, selecting some portion of the signal and presenting 

it back to jS via some sensory channel as externalized feedback. Obtain­

ing this information about on-going biological activity enables S to alter 

that activity. In the last ten years, a growing number of studies have 

appeared in the literature indicating that an organism can voluntarily 

control physiological processes which normally are beyond conscious 

control. S o m e of the complex processes cited by Nowlis, Kamiya, 

Ornstein, & Criswell (1970) that have been controlled are E E G activity, 

heart rate, E M G , skin temperature, blood pressure, vasodilation, 

GSR, and blood flow in certain organs. 

The training procedure developed by Basmajian for producing 

voluntary control over the S M U discharge has several stages: (1) fa-
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miliarization with feedback for various degrees of muscle contraction; 

(2) relaxation of muscle to show absence of S M U activity; (3) contraction 

of muscle at low levels of tension to produce distinct S M U discharges; 

(4) selection of one S M U discharge (as characterized by its distinct 

waveform or sound) to control; (5) altering the rate of S M U discharges 

with changes in muscle contraction; (6) suppression of other S M U dis­

charges by changing degree of contraction or by altering position of 

limb; (7) activation of the selected S M U upon command; (8) production 

of different patterns (single discharges, double discharges, etc.); and 

(9) control over more than one S M U discharge that is recorded by the 

electrodes. 

The literature reports that voluntary control can be demon­

strated under the following conditions: 

(1) A n S M U has been controlled on an on-off basis producing an 

isolated discharge of the unit (Gilson h Mills, 1940, 1941; Harrison & 

Mortensen, I960, 1962; Basmajian, 1963). 

(2) Simple patterns of discharge of an S M U have been produced, 

such as double, triple, and quadruple groupings (Harrison & Mortensen, 

I960, 1962; Basmajian, 1963, 1967a; Basmajian, et al., 1965; Simard & 

Basmajian, 1967; Quigley, 1968; Powers, 1969; Zappala, 1970). 

(3) Multiple S M U discharges (3-12) have been individually iso­

lated and brought under pattern control (Harrison & Mortensen, I960, 

1962; Basmajian, 1963, 1967a, 1972; Basmajian, jet al., 1965; Simard & 
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Basmajian, 1967; Wagman, Pierce, & Burger, 1965). 

(4) Given a period of practice at isolating individual S M U s during 

which time S learns to identify individual S M U discharges in the popula­

tion.(3-12) by waveform shape, a specific S M U discharge from the popu­

lation can be recruited on demand (Basmajian, 1963, 1967a, 1972; 

Basmajian, et al. , 1965; Petajan, 1969; Petajan & Philip, 1969). 

(5) With training, some S>s have recalled a selected S M U dis­

charge when they have been deprived of the extrinsic sensory auditory 

and visual feedback information that was originally used to gain control 

over the S M U (Harrison & Mortensen, 1962; Basmajian, 1963, 1967a, 

1972; Carlsoo & Edfeldt, 1963; Basmajian, et al. , 1965; Quigley, 1968). 

(6) S M U discharges have been controlled in respect to a time 

signal. Most of these studies were primarily involved in measurement 

of R T of S M U discharges (Quigley, 1968; K i m m , 1969; Sutton & K i m m , 

1969, 1970; Thysell, 1969). 

(7) T w o S M U discharges have been individually isolated and then 

controlled in a time-locking relationship, one to another (Powers, 1969). 

(8) Since the earliest studies (Adrian & Bronk, 1929; Smith, 

1934), electrical silence was maintained prior to activation of an S M U 

under control. 

Variables Affecting Voluntary Control of S M U Discharges 

The search for variables which affect voluntary control m a y be 

divided into two categories: (1) Ŝ  characteristics, and (2) situational 
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variables. Basmajian (1963) has roughly categorized Ss according to 

their ability to control S M U discharges as related to the complexity of 

task performed, the speed with which control is obtained, and the con­

sistency in control over time. Several characteristics have been stud­

ied regarding variables which m a y facilitate or interfere with control. 

Apparently age, sex, manual skill, education, intelligence, and person­

ality do not consistently affect S M U performance, although there are ex­

ceptions. One study (Zappala, 1970) reported that more males were 

able to reach a control criterion than females. Untrained females m a d e 

m o r e errors (35 per cent) than trained females, untrained males, and 

trained males combined (20 per cent). Basmajian (1965, 1967a, 1972) 

reported that "nervousness" tended to affect S M U performance although 

some "nervous" Ss showed good control and some "relaxed" S_s showed 

poor control. S o m e decrement in performance, both in the size of the 

S M U discharge amplitude and the control exhibited over S M U s , was re­

ported by Ss having ischemia (Simard, Basmajian, & Janda, 1968) and 

by thalidomide children (Simard & Ladd, 1969). Simard (1969) showed 

that although children could isolate S M U discharges, they had a de­

creased ability to maintain fine motor control over long periods of time. 

The situational factors that m a y affect S M U performance center 

primarily around: (1) training procedures used; (2) type of external­

ized feedback used; (3) electrode configuration used; and (4) muscle 

site selected. 
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R T of S M U Discharges 

The simple R T task has been utilized as one quantitative mea­

sure for assessing S M U control because of procedural simplicity for 

and because basic stimulus and response parameters, which are fairly 

well known on overt responses, provide a frame of reference for com­

parative studies (Thysell, 1969). Studies investigating R T of S M U fir­

ings have had as their goals the (1) investigation of fine control capa­

bilities of S M U discharges (Quigley, 1968; K i m m , 1969; Thysell, 1969); 

( 2 ) comparison of control parameters and differential effects on S M U 

discharges within different muscle groups (Quigley, 1968; K i m m , 1969; 

Sutton & K i m m , 1969); and (3) testing of the effects of alcohol on fine 

motor performance (Sutton & K i m m , 1970). 

Results of these studies follow two primary dimensions: a com­

parison of S M U R T with G M R R T and the determination of the effects of 

experimental and procedural variables on S M U R T . 

Comparison of S M U R T with G M R R T 

All except one S M U study (Thysell, 1969) have shown longer 

S M U R T than G M R R T latencies. The special control process required 

for S M U discharge has been suggested as a reason for slower S M U R T s 

(Sutton & K i m m , 1969). In addition, large variability has been noted: 

trials occurred in which S M U R T was as slow as 1 sec and as fast as 

the fastest G M R R T . Requiring Ss to rehearse S M U firings between 

trials (a method of maintaining control throughout an experimental ses-
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sion) lowers measures of R T central tendency and reduces variability 

(Kimm, 1969; Sutton & K i m m , 1969). 

One study (Thysell, 1969) found bimodal S M U R T distributions. 

When S M U R T and G M R R T distributions were compared, one S M U 

peak occurred below and the other above the median G M R R T . Adequate 

controls showed that this result was not due to inadvertant cueing of S s 

by relays preceding the visual response signal, leading Thysell to hypo­

thesize two underlying processes for S M U R T . One process which gen­

erates S M U R T s slower than G M R R T s was accompanied by some ante­

cedent movement of the little finger, hand, or arm; the second process, 

which generates S M U R T s faster than G M R RTs, was an "automatic" 

one in which the S M U discharge somehow "becomes conditioned" to re­

sponse signal. He is now using delayed auditory feedback and refrac­

tory period designs to explore these hypotheses. 

Sutton & K i m m (1969, 1970) suggest that the simple R T task 

which utilizes a S M U discharge is not simple R T because Ŝ  must select 

one given S M U from among the population of quiescent S M U s in the m u s ­

cle. Slower S M U R T s are a result of m o r e complex functioning within 

the central nervous system as a result of the requirement to discrimi­

nate among and suppress these other S M U discharges. 

Variables Found to Influence S M U R T s 

Alcohol. Sutton & K i m m (1969) found that S M U R T following al­

cohol consumption shifted median R T latency from 273 msecs to 352 
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msecs. Although variability of R Ts did not change, R T distributions 

had fewer brief R T s and a larger number of long R T s in all Ss and m u s ­

cle sites tested. Their conclusions were that S M U R T and E M G R T 

(time elapsed between response signal and electromyographic recording 

of a finger movement) measures taken together produce more sensitive 

measures of alcohol effects than measures obtained from G M R s (key 

presses) alone. 

Modality of Externalized Feedback. Quigley (1968) found that 

auditory feedback was superior to all forms of visual feedback even 

when auditory feedback was delayed up to 100 msecs. This is in agree­

ment with Ŝ 's preference for auditory feedback from all other S M U 

studies. 

Recording Sites Utilized. Sutton & K i m m (1969) studied the dif­

ferences between biceps brachii and triceps brachii and found that S M U 

discharges from triceps consistently had shorter R T latencies and less 

variability than those from biceps. Quigley (1968) reported even briefer 

R T latencies in abductor pollicis brevis when compared to flexor pollicis 

brevis. Sutton & K i m m (1969) reported that S M U discharges in abductor 

pollicis brevis have briefer R T s than S M U s in biceps brachii, triceps 

brachii, and extensor digitorum communis. K i m m (1969) did not find sig­

nificantly different results in R T latencies between abductor pollicis brevis 

and adductor pollicis muscles. Sutton & K i m m (1969) found it difficult 

to establish a basis for R T differences among muscles although limited 
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data on innervation ratios of these muscles suggest that shorter R T la­

tencies occur in muscles with higher innervation ratios. Differences 

in muscle spindle populations within muscles were deemed unlikely be­

cause there does not appear to be a high density of muscle spindles in 

proximal musculature. 

Type of S M U Response Required. Instructing Ŝ  to produce one 

S M U discharge, two rapid discharges of the same S M U (doublet), or 

other patterns with the selected S M U resulted in longer R T latencies 

and variability than either E M G responses or key presses in the same 

muscle (Quigley, 1968). M e a n inter-spike-interval between the two dis­

charges of a doublet, however, was m u c h shorter than activation of the 

first S M U in the response, indicating that once an S M U has been acti­

vated, further activation of that S M U requires less central processing 

time. Inhibition of a chain of S M U responses is faster than activation 

of a S M U . K i m m (1969) found median R T latency for stopping repetitive 

discharges to be 178 msecs as compared to 383 msecs for activation of 

the same S M U . K i m m asserts that inhibition often occurred as quickly 

as 75 msecs following stimulus presentation. 

Method of R T Analysis. Because he found that multiple re­

sponses had shorter median RTs, Quigley (1968) recommended that R T s 

from correct R T trials (activation of only one selected S M U ) be analyzed 

separately from trials in which more than one unit was fired. Sutton & 

K i m m (1969) reported that repetitive discharges of the S M U occurred 
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frequently when continued to attempt to reduce S M U R T . A s did 

Quigly, they reported shorter median S M U R T s for trials with multiple 

S M U discharges. 

Effects of F P Size on S M U R T 

Sutton & K i m m (1969; 1970) did not use a ready signal but var­

ied intertrial intervals from 1 sec to 1 5 sees. They reported Ss were 

sometimes unable to produce a S M U discharge after the longer inter-

stimulus intervals. This they attributed to kinesthetic or proprioceptive 

factors associated with extended periods of quiescence. 

Only one study (Thysell, 1970) systematically tested for F P ef­

fects on S M U R T . Thysell combined R T s at each of three F P sizes 

used (500, 1000, and 1500 msecs) in his exploration for contaminating 

variables that m a y have produced bimodal R T distributions. However, 

the resulting R T distributions were all bimodal, leading him to conclude 

that F P size did not have a significant effect on the distribution. 
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C H A P T E R I I I 

M E T H O D S 

Subjects 

T w o male and four female human subjects (Ss) participated in 

the R T study. One other Ŝ  was unable to complete three sessions and 

was not included in the results. Sis' ages ranged from 20 yrs to 48 yrs 

with an average age of 29. 8 yrs. All Ss had extensive knowledge of S M U 

performance but differed in the amount of actual training. Most S_s had 

some prior experience with S M U training using intramuscular electrodes, 

but only two Ss previously had attempted to isolate S M U s with surface 

electrodes. Their amount of previous experience ranged from a period 

of 1 week to 16 yrs. Three Ss had practiced in a R T paradigm with 

S M U responses, one Sousing surface electrodes and the other two using 

intramuscular electrodes. 

No S_ reported an intake of alcohol or medications in the 12-hr 

period preceding each session. T w o Ss reported drinking one or two 

cups of coffee prior to each session. 

Procedure 

Each IS participated in three sessions lasting from 1 hr and 15 

mins to 2 hrs and 45 mins. Each session consisted of two sets of 
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G M R R T trials and five sets of S M U R T trials. Each set consisted of 

30 trials with 10 trials having 2-sec FPs, 10 trials having 5-sec FPs, 

and 10 trials having 10-sec FPs. FPs were ordered so that each F P 

size was preceded by the three F P sizes an equal number of times. 

Orders of F P s were preprogrammed into a P D P - 1 2 computer so that 

each trial was automatically controlled. Number and length of F P s 

were not revealed to S_. 

The purpose of the experiment was explained to Ŝ , and a consent 

form was signed at the beginning of the first session. Personal histo­

ries revealing information about age, recent drug intake, and prior 

S M U experience also were obtained. 

Standardized instructions which included procedures on elec­

trode placement, S M U isolation, practice, and R T trials were read to 

each _S. The general procedures of S M U isolation and training set forth 

by Basmajian and his colleagues (Basmajian, 1963, 1967a, 1972; 

Basmajian, et^al., 1965; Simard & Basmajian, 1967) were used, al­

though individual instructions and training techniques often became nec­

essary during S M U isolation and practice periods. 

Physical Setting 

S was located in a room adjacent to equipment room and was 

seated in a padded reclining chair with a r m rests. Angle of chair was 

adjusted for each S_ so that he was comfortable and experienced no strain 

in viewing either R T stimuli or the oscilloscope used in providing feed-
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back of muscle activity. Light from an adjacent room produced diffuse 

lighting. 

T w o stimulus lights used in the R T task were located approxi­

mately 5 ft in front of S_. The ready signal (a red light) was located to 

the left of the response signal (a white light). A digital display for R T 

feedback was directly below both lights. The oscilloscope on which vis­

ual feedback appeared was to the right of the display, approximately in 

the two-o'clock position and about 3 ft from S's eyes. Audio feedback 

of muscle activity was presented through a loudspeaker located about 

2 ft directly behind S_. There was no competition between oscilloscope 

and R T stimuli during the R T tasks since visual feedback was presented 

only during the isolation and training sessions. 

Ŝ  was always in audio contact with experimenter (E) through a 

two-way intercom located on S's left side. It was necessary only for -S 

to speak to be monitored by E. E was unable to observe S_ during the 

R T trials. 

Apparatus in the equipment room was located in a semicircular 

arrangement. F r o m left to right, apparatus consisted of a teletype­

writer, P D P - 1 2 computer, Hewlett-Packard 14-channel F M tape re­

corder, an 8-channel Grass polygraph, and a rack including a storage 

oscilloscope and a custom-built amplitude threshold detector. The ar­

rangement allowed one person to supervise the experiment and to moni­

tor any activity that would require manual intervention over the other-
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wise automatic operation. E was able to monitor the oscilloscope dur­

ing both F P and response interval and had sufficient time to view results 

from the previous trial that appeared on the teletypewriter. 

Electrode Preparation 

Beckman miniature bipolar surface electrodes were placed over 

the abductor digiti quinti (AD-V) muscle of the preferred hand using a 

modification of the "skin-drilling" technique described by Schackel 

(1 959). The outer layer of skin was scrubbed with a gauze containing 

Offner electrolytic paste to remove the cornified layer of skin. The 

use of a sterile lancet to prick the skin directly below the center of 

each electrode was a departure from the Schackel procedure. The 2-

m m diameter of each electrode well was filled with Offner electrolytic 

paste and secured over the skin with adhesive collars. Electrodes 

were always attached in a plane longitudinal to the length of muscle 

fibers with a center-to-center distance between electrodes of 1. 2 cm. 

"Skin-drilling" has two distinct advantages over conventional surface 

electrodes: (1) an improvement of signal quality and (2) guides for 

electrode placement in the next sessions from two distinct marks left 

by drilling. Electrode leads taped to back of the hand allowed freedom 

of hand movement without interfering with electrode placement. A 

small 1-1/2-in by 3-in silver-plated brass plate was attached to lower 

a r m for optimum grounding. The ground lead was connected to the 

Grass preamplifier signal ground terminal. 
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Following electrode placement, SI was seated in the testing room. 

To insure that muscle activity was present on the monitors, electrode 

placement was checked by having Ŝ  abduct the small finger in a hori­

zontal place away from the hand. The amount of activity with finger 

extensions and flexions also was noted. Noise interference was mini­

mized by either adjusting the position of electrode leads or the electrodes 

themselves. 

£3 relaxed his hand to provide a quiescent baseline and a measure 

of the amount of system noise present. The Background Threshold Gain 

on the threshold discriminator was adjusted so that no logic pulses were 

generated for signals occurring below the quiescent baseline. Logic 

pulses generated for pulses above the baseline were treated as muscle 

activity, although not necessarily S M U discharges. 

G M R R T 

G M R R T sets were given before isolation of S M U responses and 

after S M U trials. Pilot data dictated that G M R R T sets not be inter­

spersed with S M U R T trials because of difficulty in reisolation of pre­

viously trained motor units. 

was given audio and visual feedback of amplified muscle activ­

ity via loudspeaker and oscilloscope, respectively. Prior to R T trials, 

S practiced abducting the small finger to activate the monitored muscle 

and to become familiar with feedback. Muscle activity from gross 

movements of the finger appeared as a burst of spikes as in "integrated" 
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electromyograms. Except in slight movements, distinct S M U discharges 

could not be identified. 

Signals used in the G M R R T task consisted of onset of ready sig­

nal and onset of response signal. Ready signal remained on throughout 

the variable F P , and both ready signal and response signal remained on 

during the 2-sec test interval. Neither light was on during the 8-sec 

intertrial period. When the muscle was activated by movement, the 

first distinct pulse above the quiescent baseline generated a logic pulse 

that was detected by the P D P - 1 2 computer, which in turn activated a re­

lay to present R T in msecs on the digital counter. Thus, S received 

immediate knowledge of his R T results. 

The following instructions were given for the G M R R T task: 

This is a task to determine how fast you can react to light with a 
movement of your small finger. The two lights in front of you 
will be turned on in a specific order. The red light will always 
come on first and is a signal for you to keep the muscle relaxed, 
that is, you will not hear any muscle activity in the loudspeaker. 
Any activity detected when the red light is on alone will be con­
sidered an error. At a short period later, the white light will 
come on. This time between the two signals will not always be 
the same. The white light is a signal to activate the muscle as 
quickly as possible by moving your small finger outward (_E demon­
strates). The time required to make the movement to the light will 
appear on the digital counter. The time will be in milliseconds so 
that your reaction time in seconds will be the total score divided by 
1 0 0 0 . Your objective is to make the reaction time as small as 
possible, making sure you do not move before the white light comes 
on. In addition, failure to respond within two sees after the onset 
of the white light is considered an error. Are there any questions? 

Ten practice trials were given to insure that the instructions were un­

derstood and to give Ŝ  an opportunity to ascertain the amount of m o v e -



31 

m e n t w h i c h w o u l d p r o v i d e o p t i m u m R T s . 

T h e f o l l o w i n g m e a s u r e s w e r e c o l l e c t e d f o r e a c h o f 3 0 t r i a l s i n 

a G M R R T s e t a n d d i s p l a y e d o n t h e t e l e t y p e w r i t e r d u r i n g t h e i n t e r t r i a l 

i n t e r v a l : ( 1 ) t h e n u m b e r o f p u l s e s d i s c h a r g e d d u r i n g t h e F P ; ( 2 ) t h e 

t i m e t h e f i r s t p u l s e ( i f a n y ) w a s d i s c h a r g e d d u r i n g t h e F P ; ( 3 ) t h e n u m ­

b e r o f p u l s e s d i s c h a r g e d d u r i n g t h e t e s t i n t e r v a l ; a n d ( 4 ) t h e t i m e o f t h e 

f i r s t p u l s e d u r i n g t h e t e s t i n t e r v a l ( S ' s R T ) . 

A c o r r e c t t r i a l c o n s i s t e d o f a F P h a v i n g n o d i s c h a r g e s a n d a 

t e s t p e r i o d w i t h a t l e a s t o n e d e t e c t e d m u s c l e s p i k e . A n " a n t i c i p a t i o n " 

e r r o r w a s a t r i a l c o n s i s t i n g o f o n e o r m o r e m u s c l e s p i k e s d u r i n g t h e 

F P . A " n o r e s p o n s e " e r r o r w a s a t r i a l i n w h i c h n o m u s c l e s p i k e s w e r e 

d e t e c t e d i n e i t h e r t h e F P o r t e s t i n t e r v a l . 

S M U I s o l a t i o n 

S M U i s o l a t i o n i n v o l v e d t h e s e l e c t i o n o f o n e m o t o r u n i t f r o m 

a m o n g t h o s e m o n i t o r e d b y e l e c t r o d e s . A l l S s w e r e t h o r o u g h l y a c ­

q u a i n t e d w i t h B a s m a j i a n 1 s m e t h o d o f S M U i s o l a t i o n , b o t h f r o m p r e v i ­

o u s S M U t r a i n i n g a n d f r o m e x p e r i e n c e a s l a b o r a t o r y p e r s o n n e l . 

S M U i s o l a t i o n p r o c e e d e d t h r o u g h s e v e r a l s t a g e s d e s i g n e d t o 

s h a p e g r o s s m u s c l e c o n t r a c t i o n s i n t o v o l u n t a r y d i s c h a r g e s o f a S M U . 

T h e p r o c e d u r e w a s c a r r i e d o u t i n t h e p r e s e n c e o f b o t h a u d i o a n d v i s u a l 

f e e d b a c k o f t h e a m p l i f i e d m u s c l e a c t i v i t y , w h i c h p r o v i d e d S w i t h i m p o r ­

t a n t i n f o r m a t i o n r e g a r d i n g m u s c l e a c t i v i t y . S t a g e s i n v o l v e d i n S M U 

i s o l a t i o n i n c l u d e d m u s c l e r e l a x a t i o n , m u s c l e a c t i v a t i o n a n d f e e d b a c k 
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correlation, S M U selection, and S M U control. 

Ideally, during the muscle relaxation stage, S relaxed the small 

finger, providing a quiescent baseline that appeared as a straight line 

trace on the oscilloscope and silence from the loudspeaker. When sys­

tem noise was detectable, the oscilloscope was not a straight line and a 

"60-Hz buzz" was heard over the loudspeaker. This noise was easily 

differentiated from muscle activity. 

When relaxation was achieved, Ŝ  was instructed to increase con­

tractions in the A D - V muscle by slowly abducting the small finger. At­

tention was focused on the increase in muscle activity present in the 

feedback as a larger abduction was made. S abducted and relaxed the 

finger several times to become familiar with the level of muscle activity 

present during different movements. S then concentrated on making 

finer movements which resulted in distinct S M U discharges rather than 

the integrated E M G spikes seen in harder contractions. 

Once distinct discharges were being produced, Ŝ  s task was to 

select one S M U from among those being discharged and to suppress the 

others. When suppression of other S M U s was achieved, the selected 

S M U was m a d e to discharge at a constant rate. The oscilloscope showed 

distinct spikes, having either a monophasic, biphasic, or polyphasic 

waveform, appearing on the baseline at intervals corresponding to fre­

quency of S M U discharges. Distinct "pops" appeared over the loud­

speaker each time the S M U was fired. The basic criterion used in identi-
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fication of the discharge as a S M U was the reliability of its waveform in 

successive firings and the compatibility with S M U parameters given by 

Basmajian (1967b), Buchthal (1960), Close (1964), and Kahn, et al. , 

(1971). 

When Ŝ  had difficulty suppressing other motor activity other than 

the selected S M U discharge, one or m o r e of the techniques below were 

employed: (1) Ŝ  completely relaxed the muscle and then made maximal 

contractions and relaxations in an alternating fashion; (2) he tried iso­

lating the S M U with the hand in different positions; or (3) he attempted 

to isolate a different S M U . A s a last resort, electrodes were placed 

on a different location over the A D - V muscle. The particular method 

used to suppress other motor activity was an individual procedure. 

Following suppression of extraneous S M U discharges, ^prac­

ticed voluntary control over the selected S M U discharge. Rate of S M U 

discharges was varied by increasing and decreasing the frequency of 

firings. Ŝ  then concentrated on slowing down the rate to a single firing 

once every 1 or 2 sees. Finally, Ŝ  started with a relaxed baseline, 

fired the selected S M U , and returned to the relaxed muscle state. 

Several tasks were employed to make the S M U discharge more 

nearly approximate the response signal required in the R T task. First, 

^practiced turning the S M U "on" and "off," i.e., starting at a relaxed 

state, discharging the S M U once, and returning to the relaxed state. If 

Ŝ  failed to turn the S M U discharge "off, " more than one discharge of 
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t h a t u n i t o c c u r r e d , p r o d u c i n g a m u l t i p l e n u m b e r o f d i s c h a r g e s . I f o t h e r 

S M U d i s c h a r g e s w e r e n o t s u p p r e s s e d , m o r e t h a n o n e S M U w o u l d b e d i s ­

c h a r g e d . S p r a c t i c e d t h r o w i n g t h e u n i t s i n g l y , f i r s t u p o n h i s o w n s i l e n t 

c o m m a n d a n d t h e n u p o n a v e r b a l c o m m a n d b y _E_. A f t e r 10 t r i a l s o f 

h a v i n g S_ t h r o w t h e u n i t o n a v e r b a l c o m m a n d b y E_, Ŝ  i n d i c a t e d w h e n h e 

w a s r e a d y t o p r o c e e d t o t h e R T p r a c t i c e t r i a l s . 

T h e t i m e o f t h e i s o l a t i o n p e r i o d w a s r e c o r d e d a l o n g w i t h o t h e r 

s p e c i a l p r o c e d u r e s u s e d , s u c h a s c h a n g i n g S M U s , h a n d p o s i t i o n s , o r 

e l e c t r o d e p o s i t i o n s . 

F o l l o w i n g t h e s e l e c t i o n o f a n S M U t o b e u s e d a s a r e s p o n s e , 

c o n t r o l s o f t h e a m p l i t u d e t h r e s h o l d d i s c r i m i n a t o r w e r e s e t t o p r o v i d e 

a n o u t p u t l o g i c p u l s e o n t h e o c c u r r e n c e o f t h a t S M U d i s c h a r g e . A n y 

o t h e r S M U s f i r e d a b o v e t h e q u i e s c e n t b a s e l i n e b u t n o t w i t h t h e s e l e c t e d 

S M U ' s w i n d o w g e n e r a t e d l o g i c p u l s e s o n a n o t h e r c h a n n e l . T h e r e f o r e , 

o c c u r r e n c e s o f S M U f i r i n g s o f b o t h t h e s e l e c t e d S M U a n d o t h e r S M U s 

w i t h i n p i c k - u p r a n g e o f t h e e l e c t r o d e s w e r e o b t a i n e d i n o r d e r t o (1) d e ­

t e r m i n e t h e n u m b e r o f f i r i n g s d u r i n g F P a n d t e s t i n t e r v a l s o f t h e R T 

t a s k a n d ( 2 ) p r o v i d e c o n t r o l p u l s e s t o a c t i v a t e r e l a y s t h a t p r o v i d e a d d i ­

t i o n a l f e e d b a c k t o Ŝ  a b o u t h i s o n g o i n g p e r f o r m a n c e . A m p l i t u d e , d u r a ­

t i o n , a n d w a v e f o r m c h a r a c t e r i s t i c s o f e a c h s e l e c t e d S M U d i s c h a r g e 

w e r e r e c o r d e d a l o n g w i t h l o g i c s e t t i n g s f o r t h e b a s e l i n e t h r e s h o l d , 

u p p e r a n d l o w e r t h r e s h o l d s f o r s e l e c t e d S M U d i s c h a r g e s , a n d g a i n s e t ­

t i n g s o n b o t h p r e a m p l i f i e r a n d d r i v e r a m p l i f i e r . A P o l a r o i d s n a p s h o t 
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of the S M U waveform was taken after it was "captured" on a storage os­

cilloscope. 

S M U R T 

The format of the five S M U R T sets in each session was the same 

as that employed for G M R s with the exception of type of response re­

quired and additional measures obtained. At the onset of ready signal 

and during the FP, Ŝ  was required to maintain muscle silence. At the 

onset of the response signal, S was required to discharge the selected 

S M U once, being careful to suppress all other extraneous S M U discharges 

during the test interval. During the 8-sec intertrial period, £5 could ei­

ther practice firing the selected S M U , stretch his hand, or remain re­

laxed. 

The P D P - 1 2 computer counted, stored, and displayed on the 

teletypewriter ( 1 ) the number of times both the selected S M U and other 

S M U s were discharged in both the F P and test interval; ( 2 ) the time 

elapsed between the onset of the ready signal and the discharge of the 

selected S M U and/or other SMUs; and ( 3 ) the time elapsed between the 

onset of the response signal and the discharge of the selected S M U 

(S's R T ) and/or other S M U s . 

The printout was used for an off-line classification of S M U re­

sponses. All trials could be sorted into two main classes: correct and 

incorrect responses. A correct response was one with no muscle ac­

tivity detected in FP, the selected S M U fired only once in the 2-sec 
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test interval, and no other S M U discharges detected during the test 

interval. All other trials were considered incorrect (or discarded in 

case of equipment malfunction). Four types of incorrect responses 

were identified. "Anticipatory" errors (detection of muscle activity 

in F P ) and "no response" errors (failure to detect muscle activity in 

either F P or test interval) were defined the same as in G M R R T trials. 

T w o additional types of errors were recorded. A "multiple" response 

was defined as m o r e than one discharge of the selected S M U in the test 

interval, i. e. , Ŝ  was unable to "turn the unit off" after the first dis­

charge. A n "extraneous" trial was one in which one or m o r e S M U s 

other than the selected S M U was discharged during the test interval. 

Apparatus 

A functional description of the apparatus used in this study is 

presented below under six categories: ( 1 ) transducing and amplifying 

equipment, ( 2 ) muscle and R T feedback equipment, (3) stimulus equip­

ment, ( 4 ) logic and control equipment, ( 5 ) monitoring equipment, and 

( 6 ) storage equipment. A m o r e complete description of individual 

devices m a y be found in Appendix B. 

Transducing and Amplifying Equipment 

The transducing and amplifying apparatus monitored the electri­

cal activity of the muscle and amplified the signal to a level sufficient 

for ( 1 ) providing feedback of that activity to S; ( 2 ) detecting the occur-
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rence of S M U discharges within the muscle activity; and (3) monitoring 

and storing the signal. 

Muscle and R T Feedback Equipment 

Feedback devices provided Ŝ  with information needed to control 

the voluntary discharges of S M U s and to determine the speed of muscle 

response ( G M R or S M U ) to the response signal used in the R T task. 

Signal Lights 

The signal lights were two 5-watt Neon bulbs powered by a 5-

volt D C dry cell battery and mounted horizontally to each other in a 

custom-built aluminum frame. 

Logic and Control Devices 

The logic and control devices served two primary purposes: 

(1) to detect S M U discharges from ongoing electromyographic signals 

and to provide digital logic representations of those events, and (2) to 

synchronize environmental stimuli to S^s behavior so as to properly 

assess R T performance. 

Monitoring Devices 

The monitoring devices provided E_ with immediate information 

about muscle activity and a visual means of correlating muscle activity 

with stimulus events in the environment. 

Storage Devices 

The storage devices provided permanent storage of real-time 

experimental data and descriptions of R T performance and accuracy. 
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Storage was on three media: paper, magnetic tape, and Polaroid film. 
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C H A P T E R IV 

R E S U L T S 

Selection and Analyses of Data 

Selection of Data for R T Analysis 

Data excluded from R T analyses included (1) trials from the 

first session, (2) first trial in each set, and (3) trials with incorrect 

responses. Apparently the first session served as a training proce­

dure for four Ŝ s (SI, S2, S4, and S6) as indicated by their extremely 

low percentages of correct trials (26.2 per cent) over the first three 

sets. In addition, there was an unequal number of F P combinations in 

the first session which biased an analysis of the effects of preceding 

F P size toward some of the F P combinations. For two Ss (S2 and S3), 

data from G M R s were unavailable. For these reasons, only data from 

the last two sessions were included in all analyses. 

The first trial from each set was excluded from analyses be­

cause there was no preceding trial and because R T s often were longer 

in relationship to other trials in the set. 

Following the recommendation of Quigley (1968), trials were 

separated into correct and incorrect trials. A gross comparison of 

R T s of correct trials with R T s of incorrect trials showed that Ss re-
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sponded differently over the three sessions with R T s becoming shorter 

for correct trials and longer for incorrect trials. 

Grouping of Trials by F P Combinations for Hypothesis Testing 

The statistical treatment of S M U and G M R responses was the 

same. First, for each S, correct trials from all sets in each of the 

last two sessions were separated according to nine F P combinations 

presented (2/2, 5/2, 10/2, 2/5, 5/5, 10/5, 2/10, 5/10, and 10/10). A 

F P combination designates F P size of a trial and F P size of preceding 

trial, e.g., the F P combination 5/2 indicates a trial having a 2-sec F P 

size preceded by a trial with a 5-sec F P size. 

Basic Unit of Measurement for R T Speed and Accuracy 

For the testing of F P Condition and Session effects of each hypo­

thesis, median R T s for each S in each of the last two sessions were cal­

culated for each F P condition and used as the basic measure of response 

speed. Median R T s were used instead of m e a n R T s because of the 

large number of S M U R T s that were over 1 sec. Percentage of correct 

responses under each F P condition was used as the basic unit of re­

sponse accuracy. The number of correct trials per session was con­

verted to percentages because S2 received only four sets of 30 trials in 

Session Three and because there was a small inequality in number of 

trials under each condition. 

A randomized block factorial A N O V A (RBF-332) (Kirk, 1969, 

Pp. 237-241) was used to test for differences among F P conditions and 
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sessions of each dependent variable. Tests for symmetry of variance-

covariance matrices (Kirk, 1969, p. 139) and additivity of block and 

treatment effects (Kirk, 1969, p. 137) were conducted to insure that 

the assumptions of the model were upheld. In instances where the 

variance-covariance matrix lacked symmetry, a Geisser-Greenhouse 

Conservative F test (Kirk, 1969, p. 142) was conducted. Results from 

these A N O V A s for both G M R and S M U responses are described in the 

following sections. For each test, a probability less than .05 was se­

lected as the basis for rejection of the null hypothesis. 

F P Effects on G M R R T s 

Absolute Effect of F P Size (FP), Preceding F P Size (PFP), and 

Their Interactions (RFP) 

Median R T s of each F P combination of the last two sessions for 

each S are shown in Table 1. 

R T s from correct G M R trials (those with no muscle activity in 

F P ) grouped by size of immediate F P are shown in Figure 1. R T s of 

correct G M R trials grouped by size of preceding trials are shown in 

Figure 2. R T s from correct G M R trials grouped by relative F P sizes 

of successive trials are shown in Figure 3. 

G M R R T A N O V A is shown in Table 2. Significant differences 

were found due to size of immediate F P (Treatment A ) and to sessions 

(Treatment C) but not due to size of preceding F P (Treatment B) nor 
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Table 1. Median G M R R T Latency (in msecs) 
for Each F P Combination of Last T w o Sessions 

Size of Preceding F P 
Subject T w o Seconds Five Seconds Ten Seconds 

Sn 2 Sn 3 Sn 2 Sn 3 Sn 2 Sn 3 

Two-•Second Immediate F P 

1 231 208 246 237 234 278 
2 348 278 325 340 382 342 
3 419 284 307 271 324 338 
4 307 286 323 348 317 293 
5 388 368 393 328 354 304 
6 322 298 327 306 291 297 

Five -Second Immediate F P 

1 212 210 209 224 222 218 
2 380 277 298 291 324 313 
3 312 262 310 252 265 269 
4 258 286 420 276 348 292 
5 322 323 318 298 342 289 
6 290 301 275 234 239 263 

Ten--Second Immediate F P 

1 241 227 228 205 244 229 
2 277 293 293 271 287 320 
3 253 300 268 235 280 252 
4 295 272 293 298 375 315 
5 326 245 283 272 346 242 
6 278 270 248 279 346 279 



Figure 1. Effects of Immediate F P Size 
on R T of G M R and S M U Responses 
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Table 2. Analysis of Variance for G M R R T 

Source df M S F 

Subjects (S) 5 20499.16 12.80* 

Treatments 17 

Immediate F P (A) 2 12672.12 9. 15* 

Preceding F P (B) 2 746.93 0. 59 
Sessions (C) 1 14630.08 14.28* 
A X B 4 935.87 0.46 
A X C 2 87. 19 0. 04 
B X C 2 57. 33 0. 03 
A X B X C 4 2194.82 1. 37 

Residual 85 
A X S 10 1384.58 0.86 
B X S 10 1257.72 0.79 
C X S 5 1024.39 0. 64 
A X B X S 20 2021.57 1.26 
A X C X S 10 2001.71 1.25 
B X C X S 10 1827.09 1. 14 
A X B X C X S 20 1601.50 

Total 107 

* p < .05. 
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their interactions (Treatment A B ) . No treatment by Ŝ  interactions were 

found to be significant. 

A test for linearity of trend found the linear component to be 

significant for immediate F P size (F = 14.47, df = 1, 10). 

F P Effects on S M U R T s 

Absolute Effect of F P Size (FP), Preceding F P Size (PFP), and 

Their Interactions (RFP) 

Median R T s of each F P combination of the last two sessions for 

each <S are shown in Table 3. 

R T s from correct S M U trials (those with no muscle activity in 

F P and only the selected S M U fired once during the test period) grouped 

by size of immediate F P size are shown in Figure 1. R T s of correct 

S M U trials grouped by F P size of the immediately preceding trial are 

shown in Figure 2. R T s from correct S M U trials grouped by relative 

F P sizes of successive trials are shown in Figure 3. 

S M U R T A N O V A is shown in Table 4. There were no significant 

differences due to immediate F P (Treatment A ) , preceding F P (Treat­

ment B), their interactions (Treatment A B ) , nor to sessions (Treat­

ment C). Overall Ss by sessions (Treatment CS) interaction was signi­

ficant. 

Tests for linear trend did not show any significant differences. 
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Table 3. Median S M U R T Latency (in msecs) 
for Each F P Combination of Last T w o Sessions 

Size of Preceding F P 
Subject T w o Seconds Five Seconds Ten Seconds 

Sn 2 Sn 3 Sn 2 Sn 3 Sn 2 Sn 3 

Two- Second Immediate F P 

1 682 578 584 521 723 534 
2 640 676 662 630 709 642 
3 611 450 571 510 667 476 
4 633 600 593 824 775 601 
5 499 552 504 441 523 480 
6 440 447 394 526 404 393 

Five • -Second Immediate F P 
1 744 362 666 491 595 468 
2 517 637 558 581 545 705 
3 565 412 588 512 822 305 
4 571 474 792 497 624 591 
5 424 378 510 433 475 390 
6 403 418 382 371 498 378 

Ten -Second Immediate F P 
1 626 471 594 472 551 466 
2 636 639 471 646 458 634 
3 571 369 952 572 494 605 
4 867 1002 887 363 644 748 
5 410 354 469 411 433 385 
6 359 412 445 338 386 359 
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T a b l e 4 . A n a l y s i s o f V a r i a n c e f o r S M U R T 

S o u r c e d f M S F 

S u b j e c t s ( S ) 5 1 7 . 53 7 . 6 7 * 

T r e a t m e n t s 17 

I m m e d i a t e F P ( A ) 2 2 . 3 0 1. 9 8 

P r e c e d i n g F P ( B ) 2 0 . 0 9 0 . 16 

S e s s i o n s ( C ) 1 1 2 . 0 9 3 . 15 

A X B 4 0 . 6 7 0 . 6 9 

A X C 2 0 . 9 9 2 . 1 8 

B X C 2 0 . 1 9 0 . 4 1 

A X B X C 4 2 . 31 1 . 9 1 

R e s i d u a l 8 5 

A X S 1 0 1 . 1 5 0 . 9 6 

B X S 1 0 0 . 5 4 0 . 4 4 

C X S 5 3 . 8 4 3 . 1 7 * 

A X B X S 2 0 0 . 9 6 0 . 8 0 

A X C X S 1 0 0 . 4 5 0 . 3 7 

B X C X S 1 0 0 . 4 6 0 . 3 9 

A X B X C X S 2 0 1 . 2 1 

T o t a l 1 0 7 

* P < . 0 5 . 
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Rank Analysis of S M U R T s 

Because S M U R T distributions of F P conditions showed peaks 

often occurred in the same order as peaks in G M R R T distributions, 

and to eliminate some of the effect of larger variances found in S M U R T 

distributions, Friedman two-way A N O V A by ranks was performed for 

each F P condition. A probability less than .05 was selected for rejec­

tion of the null hypothesis. 

For each S_, size of immediate F P having the shortest median R T 

was assigned the rank of one and immediate F P size having the longest 

median R T was assigned the rank of three. A Chi square of 4. 152 

(df = 2) was not significant. Likewise, size of preceding F P having the 

shortest median F P was assigned the rank of one and preceding F P size 

having the longest median R T was assigned the rank of three. A Chi 

square of 1.15 (df = 2) was not significant. These tests support the find­

ings obtained from the R B F A N O V A described above. 

Rank Correlation of G M R R T s with S M U R T s 

Ranks were assigned to all nine conditions in both G M R and S M U 

responses with the shortest median R T given a rank of one. Spearman's 

coefficient of rank correlation p = 0. 56 was obtained between the two 

sets of measures. This correlation was not statistically significant 

(t_ = 1.79, df = 7). There were insufficient grounds for saying that F P 

size affects S M U and G M R R T s in the same manner. 
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F P Effects on Accuracy of S M U Responses 

Over the last two sessions, 62.6 per cent of all S M U trials had 

correct responses. To determine whether absolute size of FP, absolute 

size of F P of preceding trials, and relative size of successive F P s af­

fected accuracy of S M U responding, a randomized block factorial 

A N O V A was used. Percentage of correct trials of each S in each ses­

sion was used as the basic unit of measure. 

Percentages of correct S M U trials for each F P condition appear 

in Table 5 and Figures 4, 5, and 6. Results of the A N O V A are shown 

in Table 6. Significant differences were shown for immediate F P (Treat­

ment A ) , but not for preceding F P (Treatment B) nor their interaction 

(Treatment A B ) . Within Ss preceding F P by Ss (Treatment BS) and ses­

sions by Ss (Treatment CS), interactions were significant as were Ss 

overall (Treatment C ) . 

A test for linear trend for immediate F P condition was signifi­

cant (F_ = 14.438, df - 1, 10). Tests for linear trend did not show signi­

ficant results in either preceding F P (PFP) nor their interaction (RFP). 

Accuracy of G M R Responses 

In the last two sessions, over 90 per cent of all G M R trials were 

correct responses. Because of this high percentage of correct responses, 

the effects of different F P conditions on accuracy were not tested with 

the randomized block factorial A N O V A as was done with S M U responses. 
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Table 5. Percentage of Correct S M U Trials 
for Each F P Combination of Last T w o Sessions 

Size of Preceding F P 
Subject T w o Seconds Five Seconds Ten Seconds 

Sn 2 Sn 3 Sn 2 Sn 3 Sn 2 Sn 3 

T w o -Second Immediate F P 
1 93 93 61 83 60 53 
2 75 87 61 61 50 80 
3 67 60 71 77 80 63 
4 73 40 59 40 40 73 
5 67 93 44 100 60 87 
6 67 62 67 69 60 71 

Five -Second Immediate F P 

1 75 56 80 53 72 78 
2 83 62 50 40 80 40 

CO 69 87 87 53 78 89 
4 62 56 60 40 67 28 
5 37 69 47 93 44 79 
6 56 67 60 59 50 59 

Ten-•Second Immediate F P 

1 71 47 75 81 73 53 
2 50 59 61 69 77 53 

CO 65 69 12 73 50 85 
4 53 47 50 25 50 60 
5 41 76 50 75 33 87 
6 53 63 37 61 33 76 
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Figure 6. Effects of Relative Size of Preceding F P (P) 
to Immediate F P (I) on Accuracy of S M U Responses 
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Table 6. Analysis of Variance for S M U Accuracy 

Source df_ M S F 

Subjects (S) 5 849.49 3. 79* 

Treatments 17 
Immediate F P (A) 2 851.03 7.41* 
Preceding F P (B) 2 193.70 1. 74 
Sessions (C) 1 867.00 0.60 
A X B 4 97.81 0. 56 
A X C 2 547.86 2.35 
B X C 2 101.86 1.21 
A X B X C 4 137.06 0. 61 

Residual 85 
A X S 10 114.78 0. 51 
B X S 10 111.28 0.49 
C X S 5 1442.96 6.43* 
A X B X S 20 173.89 0. 78 
A X C X S 10 232.75 1. 04 
B X C X S 10 84. 17 0.37 
A X B X C X S 20 224.32 

Total 107 

*p < . 05. 
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C H A P T E R V 

DISCUSSION 

R T s of G M R Responses 

Initial Observations 

The present study, using an abduction of the small finger of pre­

ferred hand as a response, found a longer median R T to a visual stimu­

lus (c. 300 msecs) than Woodworth & Schlosberg (1954, p. 16) reported 

as typical for practiced adult subjects (c. 180 msecs). The present 

finding is also inconsistent with that of Sutton & K i m m (19*70), who re­

ported that E M G recordings of gross muscle movements are equivalent 

to measures of R T latencies and distributions of R T s of gross key 

presses. Listed below are several conditions found by other investi­

gators to lengthen R T . In that these conditions were present in the pro­

cedure of this experiment, they m a y in part account for longer median 

R T s . 

(1) Sets of R T trials with varying F P s (a heterogeneous set) 

produce longer R T latencies than R T trials with F P s all of the same 

size (Botwinick & Brinley, 1962; Karlin, 1959; Klemmer, 1957). 

(2) Heterogeneous sets of R T trials with a large range of F P 

sizes produce longer R T latencies than heterogeneous sets with a short 
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range of F P sizes (Drazin, 1961; Klemmer, 1956; Naatanen, 1970). 

The range of F P s in this study was from 2 to 1 0 sees. A smaller 

range, e.g. , 2 to 4 sees or 8 to 10 sees, would have produced shorter 

R T latencies. 

(3) Ss were required to maintain a relaxed muscle at the site of 

recording during the F P of each trial. Normally when key presses are 

used as responses, silence of E M G activity is not required during F P s . 

Studies by Davis (1970), Freeman (1938), Freeman & Kendall (1940), 

Katzell (1948), Kennedy & Travis (1947a, 1947b), and Travis & Kennedy 

(1947) have shown electromyographic tension present that builds up from 

onset of ready signal to onset of response signal both at proximal site 

of response and in distal musculature. Speed of response was directly 

related to amount of tension present in F P . Requiring Ŝ  to inhibit this 

tension at the primary recording site might have resulted in increased 

R T s because initiation of response was delayed until after response 

signal was presented. 

(4) Responses involving abduction produce longer R T s than 

flexions. 

(5) Reaction to onset of a stimulus has on occasion produced 

longer R T latencies than reaction to offset of a stimulus (Teichner, 

1954). . 

(6) Trials at beginning and end of a session often contain "warm-

up" and "fatigue" effects which increase R T latencies (Woodrow, 1914; 
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Karlin, 1959). G M R trials were used in the first and last set of each 

session so that intervening sets would be successive sets of S M U re­

sponses, in order to minimize the chance of losing control over the 

selected S M U discharge used as a response. 

Although these conditions m a y have resulted in increased over­

all R T latencies, the effects should have been constant for both types of 

responses, G M R s and S M U discharges. There seems to be a reliable 

trait of reaction time present in different degrees in different indivi­

duals (Baxter, 1942). Whether differential F P effects of the nature 

described in the literature occurred for both G M R and S M U responses 

presents a m o r e important question. 

F P Effects on G M R Responses 

The primary hypotheses tested regarding F P effects on R T 

latencies were: (1) R T is inversely proportional to immediate F P size; 

(2) R T is not affected by absolute value of preceding F P size; and (3) 

R T is inversely proportional to interaction between preceding F P and 

immediate F P size. The first two hypotheses were confirmed by the 

results of the G M R R T A N O V A and provided a positive indication that 

the present procedure could be used to assess the effects of F P s on 

S M U R T latencies. It also produced a baseline of performance from 

which S M U R T performance could be compared. 

Failure to replicate previous findings regarding the interaction 

between preceding F P and immediate F P size (Klemmer, 1956; Karlin, 
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1959; Zahn, et al. , 1963) is evidenced by the high variability between 

Ŝ s and their inconsistencies from Session T w o to Session Three. Al­

though four S_s (S_l, S2, S3, and S4) showed R T patterns in Session Three 

consistent to literature findings, i. e. , longest R T s occur when a long 

F P size precedes a short F P size, this pattern was seen only for S2 and 

S5 in Session Two. Another possible reason for failing to replicate 

Hypothesis Three was that the number of E M G trials for each F P com­

bination was too small to obtain a representative measure of central 

tendency for R T latency. 

R T s of S M U Discharges 

Initial Observations 

In determining the effects of F P size on R T speed and accuracy 

when S M U discharges were used as a response, several observations 

can be reported. First, it was possible to record electromyographic 

activity using surface electrodes. The recordings, after amplification, 

had characteristics of S M U discharges recorded with surface electrodes 

(Kahn, et al. , 1971) and by other types of electrodes (Basmajian, 1967; 

Buchthal, I960; Close, 1964). Successive recordings of selected S M U 

discharges were reliable as measured by overlapping triggered record­

ings on a storage oscilloscope, by photographic records of oscilloscope 

recordings, and by polygraph records. 

Second, Ss were able to isolate one S M U discharge from among 
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discharges recorded by surface electrodes. A quiet baseline was first 

obtainable by requiring a relaxed muscle. Unit isolation was obtainable 

by methods described by Basmajian and his colleagues (Basmajian, 

1963, 1967a, 1972; Basmajian, et al. , 1965; Simard & Basmajian, 

1967). The time required for Ŝ s to obtain voluntary control over a 

selected S M U was highly variable. Some Ss were able to isolate and 

control a S M U discharge within seconds after receiving augmented feed­

back; others required up to an hour. Changes in limb position, selec­

tion of a different S M U to control, and changes in electrode placement 

were sometimes necessary for JS to produce a usable response. 

Third, Ss were able to produce a correct response to response 

signal under test conditions on over 60 per cent of all trials in the last 

two sesssions. This was as high as 90 per cent for some Ss over an 

entire session. Improvements were m a d e in accuracy following the 

first session, but performance in the third session did not always exceed 

that in the second. 

Finally, automatic electronic detection of S M U discharges from 

an electromyographic recording was possible and digital outputs were 

obtainable to represent the S M U discharge selected for control and for 

other S M U discharges that were treated as errors. These digital out­

puts were usable for computer inputs in detection of S M U occurrence, 

recording R T latencies, determining accuracy of a trial, and triggering 

R T latency feedback on a digital counter to S after each trial. Changes 
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in skin conductance which resulted in slight shifts in recorded waveform 

amplitudes could be compensated for by on-line adjustments of the 

threshold detector during the experiment. 

These initial observations gave confidence that the response to 

be analyzed in the R T experiment was being produced, recorded, and 

detected for adequate assessment of F P effects on R T . 

Median S M U R T s 

Median S M U R T s in the present study were about 500 msec 

whereas median R T s in previous S M U studies ranged from 200-350 

m s e c (Kimm, 1969; Quigley, 1968; Sutton k K i m m , 1969, 1970; Thysell, 

1969). Several possible variables m a y have accounted for this large 

difference in median R T s . 

(1) The present study utilized surface electrodes while each of 

the previous studies utilized intramuscular electrodes. 

(2) Previous experience by Ss with intramuscular electrodes 

produced negative transfer when surface electrodes were used. This 

is supported by the fewer number of long R T s from the two Ss who had 

not previously used intramuscular electrodes (S5 and S6). 

( 3 ) Although the attempt was m a d e to m a k e the basic training 

procedures in the present study the same as those utilized in previous 

S M U R T studies, there is always the possibility of differences in indi­

vidual instruction. 
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F P Effects on S M U Responses 

Results showed immediate F P size, preceding F P size, and 

relative size of two successive F P s not to affect speed or accuracy of 

S M U discharges. Several results suggest that other conditions present 

m a y have masked F P effects. First, median R T s for S M U responses 

were large, suggesting that Ss did not have good control of the response. 

Second, range and variability of R T s in S M U discharges were large, 

indicating that voluntary discharge of S M U s was a relatively complex 

response under these test conditions. Third, Ss were without muscle 

feedback during the F P of each trial, resulting in a significantly larger 

number of errors on trials having immediate F P s of 1 0 sees and possi­

bly increasing R T s on those trials. This is consistent with earlier find­

ings (Harrison & Mortensen, 1962; Basmajian, 1972) which reported 

that although Ss can recall a selected S M U discharge when deprived of 

extrinsic sensory feedback information, performance is poorer and 

dependent on length of time in which feedback has been removed. 

Comparison of F P Effects on R T s 

in S M U and G M R Responses 

A N O V A s showed immediate F P size to have significant effects 

on G M R R T s but not to have significant effects on R T s of S M U discharges. 

Results from the Friedman two-way A N O V A by ranks and Spearman co­

efficient of rank correlation between G M R and S M U R T s insured that it 
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was not the absolute size of the median R T s which masked this lack of 

significance. Examination of individual performance showed the effects 

of immediate F P size on G M R R T s was consistent from Session T w o to 

Session Three in all but S4. Furthermore, the 2-sec F P condition pro­

duced the longest R T s in all Ss on both sessions except S>4 in Session 

T w o . This was not true for the S M U responses. A F P length was not 

likely to have the same effect on different Ss nor the same effect in the 

second session as in the third session for a given S. 

The results of the present study did not support the initial pre­

diction that F P effects would be in the same direction when R T s of S M U 

discharges were used as a response as when G M R R T s were used. 

However, this is not to imply that the present study showed S M U s and 

G M R s to obey different principles, as the present study failed to reject 

the null hypotheses. The most parsimonious conclusion is that until 

further research shows R T s of voluntary discharged S M U s and G M R s 

(such as those controlling finger movements) have similar properties, 

we cannot legitimately apply conclusions based on R T research to S M U 

discharges monitored by surface electrodes. 



A P P E N D I X A 

I N S T R U C T I O N S 
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A P P E N D I X A 

I N S T R U C T I O N S 

Session One 

This is a study to determine the effects of F P size on S M U R T 

to a visual stimulus. The general procedure is as follows: (1) surface 

electrodes will be attached to the abductor digiti V muscle of the pre­

ferred hand; (2) one motor unit will be isolated from among those being 

recorded and you m a y practice with that unit until you feel you have it 

under voluntary control; (3) a short number of R T trials will be given 

to familiarize you with the procedure and to obtain a baseline of R T 

performance. 

This is a description of a single R T trial. A red light will go on 

to indicate that the trial is beginning. During the period when only the 

red light is on, you should maintain a quiet baseline of muscle activity. 

Any motor unit activity detected will be considered an error. A white 

light will go on at various times after the red light. The white light is 

a signal for you to discharge the selected S M U as quickly as possible, 

without activating any surrounding units. The same unit should be fired 

on each trial and not switched during a given set of trials. Discharging 

the unit correctly will stop the digital counter and your reaction time 
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will appear. If the unit is not fired, the counter will not stop counting 

until it reaches 2 seconds. After you have discharged the unit correctly, 

wait until both the red and white lights go out before firing any other 

units. When both lights are out, you m a y practice firing the selected 

S M U or m o v e your hand to a m o r e comfortable position. There will be 

approximately 8 seconds between trials. 

The following types of responses will be considered as errors 

for a given trial: (1) firing the unit selected for control more than once 

during the response period when the white light is on; (2) firing any 

other units while the white light is on; (3) failing to fire the selected 

S M U during the 2-second response period; and (4) firing any unit during 

the F P when only the red light is on. 

After each set of trials is completed, a short rest period will 

be given. You m a y practice discharging the unit, sit silently, or walk 

about. A n intercom is provided so that you m a y communicate with the 

experimenter. All you need to do is to talk into the receiver. 

R e m e m b e r that the length of F P is varied from trial to trial. 

You will be unable to anticipate the onset of the response signal. Are 

there any questions? 

Sessions T w o and Three 

The procedure in this session will be the same used in the last 

session. Let m e review that procedure for you. First, electrodes will 
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be placed over the same muscle site. You will begin with a set of 

G M R RTs, followed by five sets of S M U RTs, and concluded with a set 

of G M R R T s . 

During the set of G M R RTs, you will discharge a burst of m u s ­

cle activity when the white light comes on. This activity should occur 

as fast as possible without regard about which motor units are being 

discharged. R e m e m b e r to keep a quiet baseline when only the red light 

is on. 

After the G M R trials, you will isolate one S M U from among 

those being recorded. Practice with this unit until you feel it is under 

control. 

Use the same R T procedure during each of the S M U R T trials. 

Remain quiet when the red light is on, and discharge the selected S M U 

when the white light comes on. If the S M U was correctly discharged, 

R T will be displayed on the counter. You m a y practice control over 

the unit between trials. R e m e m b e r to discharge only the selected S M U 

during the response period and to suppress other S M U activity sur­

rounding this unit. Are there any questions? 



A P P E N D I X B 

A P P A R A T U S 
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A P P E N D I X B 

A P P A R A T U S 

This appendix is designed to give a m o r e complete description 

of individual devices used in this study. They are presented under six 

functional categories. 

Transducing and Amplifying Equipment 

The transducing and amplifying apparatus monitored the elec­

trical activity of the muscle and amplified the signal to a level suffi­

cient for (1) providing feedback of that activity to !3; (2) detecting the 

occurrence of S M U discharges within the muscle activity; and (3) moni­

toring and storing the signal. 

Beckman Surface Electrodes 

T w o Beckman miniature skin electrodes, Model Number 650437, 

were used for bipolar recording of muscle activity. Each electrode 

consisted of a silver-coated chloride pellet and specially shielded high 

impedance leads that terminated with a male connector compatible with 

the Grass Selector Panel. 

Grass Selector Panel 

The Grass Selector Panel, Model 6E5825B, contained input jacks 

that routed the signal through shielded cables to the Grass Wide Band 
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A C Pre-amplifier in the adjacent equipment room. Input Jacks P3 and 

P 4 were used for muscle activity and Jack Al was used to ground a 

silver-coated brass plate serving as a ground electrode. 

Grass Wide Band A C Pre-amplifier and Integrator 

The pre-amplifier presented a high input impedance to the differ­

ential input. Its settings were fixed for a low frequency cutoff of 3 Hz. 

The amplified signal was internally routed to the D C Driver Amplifier. 

Grass D C Driver Amplifier 

The D C Driver Amplifier, Model 7DAC, was used to further a m ­

plify the signal and the high frequency cutoff of 3K Hz was used. Control 

dials allowed E_ to select signal polarity, control D C baseline shift, and 

set the proper amount of amplification. A 60-Hz filter was utilized to 

reduce the noise and improve signal-to-signal noise ratio. 

Muscle and R T Feedback Equipment 

Feedback devices provided IS with information needed to control 

the voluntary discharges of S M U s and to determine the speed of muscle 

response ( G M R or S M U ) to the response signal used in the R T task. 

Grass Audio Monitor 

The Grass Audio Monitor, Model A M 4 A , provided feedback of 

the amplified muscle activity in the audible range. Control dials in­

cluded a noise suppressor at 60 H z and an output level potentiometer 

for controlling gain. 
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Tektronix Oscilloscope 

A Tektronix 545B Oscilloscope with 1A1 Dual Trace plug-in units 

was used to provide visual feedback of the amplified muscle activity to 

i3. Sweep speed was set at 10 msecs; amplitude scale was set so that 

the selected S M U covered 3 to 5 cm; and intensity was set to a level de­

sired by S_ for easy detection of S M U discharges. 

Hewlett-Packard Frequency Counter 

A H-P Frequency Counter contained a digital display providing 

immediate visual feedback of the response R T in msecs. The counter 

was operated in the Time Interval A - B Mode. Input A, generated by 

the P D P - 1 2 computer when the response signal occurred, started the 

counter running at a 1-msec rate. A second relay closure, generated 

when the P D P - 1 2 detected the correct response, stopped the count. 

Monitoring Devices 

Monitoring devices provided E with immediate information about 

muscle activity and a visual means of correlating muscle activity with 

stimulus events in the environment. 

Grass Polygraph Strip Chart Recorder 

The Grass Polygraph, Model 7, provided an ink-written record 

of eight channels plus a timing marker every second. Monitored rec­

ords included amplified muscle activity, logic output for the selected 

S M U discharge and other S M U discharges, and binary levels for relays 
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marking the onset of F P and response intervals. Since the inkwriter 

does not duplicate muscle activity accurately because of slow pen iner­

tia (Basmajian, 1963), the polygraph record was used primarily as 

back-up and for permanent storage to provide easily read information 

regarding the synchrony of muscle responses and logic output. 

Tektronix Storage Oscilloscope 

The Tektronix Storage Oscilloscope, Type RM564, had a dual 

trace with 3B3 Time Base plug-in modules. It was used by E_ as the 

primary monitoring device for observing muscle activity and setting 

controls of the logic devices. Sweep speed was set to 10 msecs, and 

amplitude scale was set so that the selected S M U discharge was 3 to 5 

c m high. 

P D P - 1 2 Teletypewriter 

The P D P - 1 2 Teletypewriter, Type ASR-33, consisted of an in­

put keyboard, output printer, tape reader, and tape punch. As a moni­

toring device, the teletypewriter printed out results of each R T trial 

during the 8-sec intertrial interval, thus allowing E_ to obtain immedi­

ate feedback of R T latencies and accuracy. The ASR-33 was connected 

internally to the I/O bus of the P D P - 1 2 computer. 

Logic and Control Devices 

The logic and control devices served: (1) to detect S M U dis­

charges from on-going electromyographic signals and to provide digital 
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logic representations of those events, and (2) to synchronize environ­

mental stimuli to SJs behavior so as to properly assess R T performance 

Amplitude Threshold Detector 

The amplitude threshold detector was a custom-built device for 

detecting spiked events (e.g., S M U discharges) from an analog signal 

(e.g., electromyogram) and for providing digital output pulses on either 

of two channels depending on amplitude of events detected. Adjustment 

of the Background Threshold Gain, Lower Amplitude Threshold Gain, 

and Higher Amplitude Threshold Gain provided: (1) no digital output for 

signal noise, (2) digital outputs on one channel for the selected S M U dis 

charge, and (3) digital outputs on the other channel for other S M U dis­

charges. 

P D P - 1 2 Computer 

The Digital Equipment Company P D P - 1 2 Computer was a small 

(4096 words of m e m o r y ) on-line computer used to control environmental 

devices as well as to provide detection, computation, monitoring, and 

storage functions. P D P - 1 2 controls were through its programmable 

peripherals: ASR-33 teletypewriter, A D 12 analog input channels, 

D R 1 2 relays, D W 1 2 real-time clock, and TD12 LINCtape. 

Each set of R T trials was under complete software control which 

had provisions for (1) initiating each set via teletypewriter keyboard in­

put; (2) turning ready and response lights on via relays and real-time 

clock; (3) detecting, counting, and classifying digital inputs represent-
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ing selected S M U and extraneous S M U discharges via AD converter; 

(4) calculating R T in msecs via real-time clock; (5) displaying R T to S 

on digital counter via relays; (6) printing trial-by-trial results to E_ on 

teletypewriter printer; and (7) storing results on LINCtape for further 

off-line analyses. 

Signal Lights 

The signal lights were two 5-watt Neon bulbs powered by a 5-volt 

D C dry cell battery and mounted horizontally to each other in a custom-

built aluminum frame. A red plastic cap was used over the ready signal 

while the response light was covered with a white translucent cap. 

Storage Devices 

The storage devices provided permanent storage of real-time 

experimental data and descriptions of R T performance and accuracy. 

Storage was on three media: paper, magnetic tape, and Polaroid film. 

Grass Polygraph Strip Chart Recorder 

A description of the Strip Chart Recorder and signal recorded 

and stored is found under Monitoring Devices. 

Hewlett-Packard F M Magnetic Tape Recorder 

A Hewlett-Packard F M Magnetic Tape Recorder, Model 3955A, 

was a 14-channel recorder containing 14 Model 3535A F M record ampli­

fiers and 14 Model 3538A F M reproduce amplifiers. Recordings were 

m a d e of the same signals recorded on the Strip Chart Recorder. 
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P D P - 1 2 Teletypewriter 

A description of the P D P - 1 2 teletypewriter and its data printout 

is found under Monitoring Devices. 

P D P - 1 2 LINCtape 

Following each set of R T trials, the teletypewriter printout was 

stored permanently on LINCtape in digital form. Each set was stored 

under a unique file name to allow for retrieval and off-line analysis of 

R T s . 

Tektronix Oscilloscope Camera 

A Tektronix oscilloscope camera, mounted over the face of the 

Tektronix Model R M 5 6 4 storage oscilloscope, provided permanent 

analog waveform storage of selected S M U discharges. 
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