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SUMMARY

The safety record of aviation operations has been steadily improving for the past

few decades, however, accident rates in General Aviation (GA) have not improved

significantly compared to scheduled commercial airline operations. According to the

Federal Aviation Administration (FAA), the demand for air travel and traffic is pre-

dicted to grow steadily for the next two decades at a rate of approximately 1.8%

annually with GA set to receive a much-needed revitalization. However, safety re-

mains a major hurdle and with such a large increase in expected operations, there is

an ever-increasing demand for improving safety of GA operations.

Various data-driven safety programs such as Flight Data Monitoring (FDM) that

exist in commercial aviation domain have percolated in GA with the aim of improving

safety. These programs typically feature a continuous cycle involving data collection

from on-board recorders, retrospective analysis of flight data records, identification

of operational safety exceedances, design and implementation of corrective measures,

and monitoring to assess their effectiveness. While these programs have been shown to

be effective in reducing accident rates, there are certain obstacles in their widespread

implementation in the GA domain. The variability in recorded parameters in GA

flight data recorders (FDR), heterogeneity in GA fleet, different missions flown, etc.

are some of the important hurdles. Additionally, existing techniques of analysis such

as exceedance detection are designed to identify known unsafe conditions but are

potentially blind to safety-critical conditions that may be captured in flight data

records but are not present in the set of predefined safety events. With the availability

of recorded data in the GA domain, there is an opportunity to improve safety through
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the use of more quantitative techniques.

The overarching objective of this dissertation is to develop a methodology that

can provide objective metrics for quantifying GA flight safety, enable automatic iden-

tification of anomalous operations, and provide predictive capabilities that will com-

plement existing approaches. The use of recorded flight data from GA operations is

central to developing algorithms that are robust and applicable to the heterogeneous

GA domain. The first objective of this dissertation is to obtain objective metrics

for quantifying flight safety in GA operations. The development of metrics is pur-

sued within the constraints imposed by GA FDR and through the examination of

past criteria and historical data for identifying important parameters available for

defining metrics. The dissertation presents the use of energy-based metrics as objec-

tive currency that can be used for quantifying flight safety across the heterogeneous

GA fleet. These metrics satisfy some of the important criteria that are desired in

metrics - parsimony, safety-relevance, and generalizability. The second objective of

the dissertation is enabling automatic identification of anomalous operations. In or-

der to facilitate this, an anomaly detection framework is developed using the defined

safety metrics for identifying different types of anomalies (flight-level and instanta-

neous) in GA operations. The same general framework is adapted to identify both

types of anomalous operations and understand their relationship with each other.

The third objective of the dissertation is to provide predictive capabilities to improve

the quality of the safety assessment task. To that end, models of aerodynamic and

propulsion performance are utilized for obtaining unrecorded quantities of interest.

A novel technique of calibrating these aircraft performance models starting from a

generic GA model is developed. Different options for calibration depending on the

type of calibration data available are proposed and tested to be applicable in multiple

scenarios.

The completion of the research effort yielded a methodology that encapsulates the

xx



essence of all three research objectives and provides a platform for retrospective safety

assessment. The application of this methodology in a case study on real-world flight

data enabled obtaining safety insights into the operations from the data set. The

ability to define flexible thresholds for identifying abnormal operations from within

any given data set reduces the analysis time and provides specific flights or opera-

tions for subject-matter-experts to focus on. This accelerates the first step in the

retrospective safety analysis process. Thereafter, the review of the identified anoma-

lies by subject-matter experts or safety analysts will complete the safety assessment

process and result in conclusions regarding unsafe events. Similarly, the methodology

is equally applicable for training purposes to demonstrate student pilots what consti-

tutes significant deviations from nominal operations and how to proactively prevent

being in potentially unsafe situations.
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CHAPTER I

MOTIVATION

1.1 What is General Aviation?

According to the Federal Aviation Administration [55], General Aviation (GA) is

“That portion of civil aviation that does not include scheduled or unscheduled air

carriers or commercial space operations”.

Similarly, the International Civil Aviation Organization (ICAO) [76] defines GA as -

“all civil aviation operations other than scheduled air services and non-scheduled air

transport operations for remuneration or hire”. GA is thus used as a catch-all term

for any operations that do not fall under commercial operations, major military, or

cargo operations. However, this encompasses a broad range of diverse applications

including but not limited to overnight package delivery, emergency medical evacu-

ation, agricultural applications such as crop dusting, or flying for business, leisure,

sports etc. Other than diversity in intended application, GA also exhibits significant

diversity in the types of vehicles. The heterogeneity in fleet is evident from the fact

that GA includes everything from light sport and experimental aircraft, single and

multi-engine fixed wing aircraft, as well as helicopters and other rotorcraft. GA has

a sizable impact on the economy as well as the aviation community.

According to recent (2017) statistics the US has one of the largest and most diverse

GA communities and flies more than 20 million hours each year. This includes more

than 90% of the roughly 220,000 civil aircraft registered in the United States [15].

About 560 U.S airports are certified for scheduled airline service (for airplanes with

seating capacity for more than 30 passengers) whereas GA can access all 19,600

public and private landing facilities in the United States. The fleet of GA aircraft
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Figure 1: Typical GA aircraft. (Source: http://www.pilotfriend.com/)

is the mainspring of a $20 billion a year industry. It generates more than $150

billion in economic activity [15]. Thousands of communities benefit because of the

positive ripple effects GA airports and operations have on the local economy. All

these statistics point to the vital importance of GA to the community as well as the

economy.

1.2 Aviation Safety Levels and Trends

The safety record of aviation operations has been steadily improving for the past

50 years [22]. The National Transportation Safety Board (NTSB) statistics indicate

that aviation accounted for less than 2% of transportation-related fatalities in 2013 in

the U.S. [109]. Advancements in technology, focused efforts of government, manufac-

turers, and operators through various safety-improvement programs, and increased

awareness of safety has resulted in continued improvement in safety in terms of almost

all metrics.

According to the Federal Aviation Administration (FAA), the demand for air

travel and traffic is predicted to grow steadily through 2036 at a rate of approximately

1.8% annually [52]. As seen in Figure 2, commercial operations are expected to double

in the next twenty years. For GA operations, various factors such as the prices of

fuel, liability issues, age of pilot population, safety, and others have played a part

2



in declining numbers for GA hours flown in recent years [141]. Despite declining

numbers for GA activity in recent years, the FAA forecasts an optimistic outlook that

GA operations are expected to gain a revitalization in the coming years (Figure 2b).

(a) Predicted growth in commercial operations (b) Predicted growth in GA hours flown

Figure 2: Source: FAA aerospace forecast [52]

Additionally, the density of the airspace is expected to increase due to Unmanned

Aircraft Systems (UAS) potentially operating in the already crowded airspace. With

such a large increase in expected operations and complexity, there is an ever-increasing

demand for maintaining and improving safety of all aviation operations.

1.3 Current Issues in GA

While the overall safety record in aviation has improved, despite the best efforts of

regulators and safety practitioners, GA safety continues to lag behind commercial

aviation. A significant fraction of accidents that do occur in aviation operations are

within the GA domain [109]. As seen from Figure 3, the overall number of GA

accidents (both fatal and non-fatal) has decreased steadily over the past few decades

as has the accident rate per 100,000 flight hours. However, this improvement has

tapered off in recent years with the rate and number of accidents still an order of

magnitude higher than commercial operations [109].

Therfore, improving GA safety has been among the top priorities for various

regulatory bodies as evidenced by it consistently being featured on the NTSB’s Most
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Figure 3: GA accident rates 1980 – 2012 [14]

Wanted list of critical improvements to the transportation system over the past several

years [110]. The FAA have identified some of the top causes of fatal GA accidents as

Loss of Control Inflight, Controlled Flight Into Terrain, System Component Failure

Powerplant, Low Altitude Operations, and others.

1.3.1 Category of Aircraft and Operations Considered

(a) Types of aircraft flown in GA (b) Accidents and fatalities by aircraft class

Figure 4: Source: 2012 Nall Report [14]
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While the accident rates for GA flight operations are higher than those in commer-

cial aviation, it is noted that GA contains a heterogeneous fleet and operations. This

risk of accident is further accentuated in GA owing to this diversity in operations,

pilot experience, fleet composition, and airfields (towered and non-towered). As seen

from Figure 4a, GA operations include single and multi-engine piston, turboprop,

turbojet powered aircraft as well as helicopters and experimental aircraft. However,

accident and incident rates, number of active aircraft, and proportion of hours flown

are not uniform across all the aircraft classes within GA. Historically single-engine

piston aircraft make up a significant proportion of the entire fleet (≈ 69%) and the

number of accidents (≈ 74%) and fatalities (≈ 53%) as seen in Figure 4b. Therefore,

it is of particular importance to examine operations of this class of aircraft within

GA and to improve its safety record. Most of these aircraft typically belong to the

normal category under the FAA airplane categories (14 CFR Part 23.3 [2]). The nor-

mal category is limited to airplanes that have a seating configuration, excluding pilot

seats, of nine or less, a maximum certificated takeoff weight of 12,500 pounds or less,

and intended for non-acrobatic operation [2]. Following are some of the important

characteristics that distinguish the category of aircraft and operations which form the

focus of this thesis:

1. Smaller sized aircraft

2. Less weather-tolerant aircraft

3. Limited or no flight data recording

capability

4. Highly variable and heterogeneous

mission profiles

5. Variability in pilot certificate and

experience level (number of hours

flown)

6. Greater variety of airports of oper-

ations

7. Operations mostly under Visual

Flight Rules (VFR)

8. Large number of instructional

flights
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All of these factors present important challenges for improving safety of GA operations

in this category. Therefore, existing mature methods from commercial operations

need to be tailored to this category of GA operations or entirely new methods need

to be developed.

1.3.2 Ongoing Efforts and Programs

The problem of improving aviation safety has been acknowledged by many regula-

tory bodies who have taken strides in the right direction by the initiation of several

safety enhancement programs. While majority of these programs are for commercial

aviation, recently many of them have also made their way into GA operations. These

programs typically include reporting and archiving of incidents, accidents, safety de-

viations, etc. reported using qualitative or quantitative metrics. Some of them are

voluntary while others are official reports of accidents/incidents. Some of these pro-

grams and databases are listed here along with their purpose:

1. Aviation Safety Action Program (ASAP) is a joint FAA/industry program

that allows employees to self-report safety violations to air carriers and FAA

while being protected from legal or disciplinary consequences.

2. Air Traffic Safety Action Program (ATSAP) is an agreement between the

FAA, the National Air Traffic Controllers Association (NATCA), and the Na-

tional Association of Government Employees (NAGE) that fosters a voluntary,

cooperative, non-punitive environment for FAA air traffic employees to openly

report safety concerns.

3. Flight Operational Quality Assurance (FOQA) alternatively known as

Flight Data Monitoring (FDM) involves collection and analysis of routine flight

data and has been widely adopted in commercial operations [4].

4. Aviation Safety Information Analysis and Sharing (ASIAS) [53] program

6



partners with the Commercial Aviation Safety Team (CAST) and General Avi-

ation Joint Steering Committee (GAJSC) to monitor known risks, evaluate the

effectiveness of deployed mitigation, and detect emerging hazards. ASIAS aims

to connect a number of safety databases in order to facilitate integrated queries

across multiple safety databases.

5. Aviation Safety Reporting System (ASRS) [130] is a system established by

the FAA and NASA that enables anonymous (and voluntary) reporting of avia-

tion incidents from pilots, air traffic controllers, flight attendants, maintenance

staff, and eye witnesses

6. NTSB Accident Database [109] is a publicly-available database maintained

by the NTSB which investigates and reports findings from accidents that occur

in the U.S. The findings from the investigations are disseminated in the form

of textual reports (summary and factual reports) and coded information in an

accident database.

While many of these and other programs started off for commercial operations, they

have trickled into GA operations as well. Specifically within GA, the General Aviation

Joint Steering Committee (GAJSC) is a government and industry group that uses the

same approach as the CAST on the commercial operations side. The GAJSC analyzes

GA safety data to develop intervention strategies to prevent or mitigate problems

associated with accident causes, called Safety Enhancements (SE) [63]. Research

efforts such as the Partnership to Enhance General Aviation Safety Accessibility

and Sustainability (PEGASAS) [54] are also aimed at improving the safety of GA

operations. The work presented in this thesis is expected to contribute to the ongoing

active research in these areas and offer additional capabilities.
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1.4 Summary

Driven by the high accident and incident rates, the GA industry is currently look-

ing for innovative and sustainable methods for assessing and improving the safety

record. Safety analysts in the GA domain face significant challenges due to some of

the limitations identified in this chapter. While there are many ongoing efforts from

government, industry, and academia to address these issues, new methods are sought

that can advance the state of practice. These observations lead to the overall research

objective:

Research Objective:

Develop a quantitative data-driven methodology that will enhance safety assessment

of GA operations by providing metrics for quantifying flight safety, enabling iden-

tification of non-standard operations, and providing predictive capabilities that will

complement existing approaches

The rest of the document is organized as follows:

� Chapter 2 presents the literature review of the existing methods for quantitative

safety assessment from various domains and their applicability to GA

� Chapter 3 presents the identified problems, research questions, hypotheses, and

proposed experiments to address these questions

� Chapters 4, 5, and 6 provides details of the developed method including the

metrics, algorithms, and techniques developed for quantitative safety assessment

� Chapter 7 outlines the results of a case study conducted using real-world data

obtained from GA operations

� Chapter 8 contains the conclusions, contributions, and impact of the work un-

dertaken in this dissertation
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 Definitions

Prior to presenting the background and literature review of existing methods, the

definitions of some important recurring terms in the safety literature are established

and their context/application within this thesis is elaborated. While these terms

may have different interpretations outside the scope of aviation safety, the following

definitions established within the International Civil Aviation Organization (ICAO)

Safety Management Manual [76] have been utilized in the present work.

� Safety – “The state in which the possibility of harm to persons or of property

damage is reduced to, and maintained at or below, an acceptable level through a

continuing process of hazard identification and safety risk management”

� Hazard – “A hazard is defined as those conditions which could cause or con-

tribute to unsafe operation of aircraft or aviation safety-related equipment, prod-

ucts and services.”

� Safety Risk – “The projected likelihood and severity of the consequence or

outcome from an existing hazard or situation.”

� Flight Safety – “Flight Safety is defined as the aspect of operational safety

associated with the aircraft while it is actually flying.” Therefore, it excludes

operations such as taxiing, ground operations, etc.

While prediction and analysis of risk and hazard identification are important in im-

proving the overall safety record of GA, the focus of this thesis is the flight safety
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aspect of GA operations, specifically, methods or metrics for quantifying the flight

safety compared to other flights.

2.2 Current Safety Practice

Traditionally, the aviation industry has followed a reactive approach to safety assess-

ment and hazard identification. This includes monitoring the number or frequency of

accidents, incidents, and fatalities for a specific time period. In the past, incidents,

accidents, and/or fatalities have been the primary triggers for identifying problems

and developing mitigation strategies [94]. However, such a reactive approach to safety

enhancement is not conducive to the early detection of potential issues.

Figure 5: Different types of safety hazard identification methodologies

The industry is now moving towards a more proactive and predictive approach.

In the proactive approach, potential unsafe events are identified beforehand and mit-

igation strategies are implemented in order to prevent accidents and loss of life. This

is achieved by the safety assurance function through audits, evaluations, employee

reporting, and associated analysis. In the predictive approach data obtained from

routine operations as well as accident and incident data is monitored to identify

possible negative future outcomes. The different safety programs outlined earlier

in Chapter 2 are geared towards enabling the industry’s objective of proactive and

predictive safety assessment and hazard identification.
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In the past, several researchers and safety organizations have relied on qualita-

tive data such as historical accident or incident data in their efforts to improve or

characterize safety. These efforts have ranged from systems level analyses in com-

mercial operations [105], identification of high-risk occurrence chains in helicopter

accidents [125], comparison of hazardous states and trigger events in helicopter ac-

cidents and incidents [126], weather-related fatal accidents in GA [61], development

of pro-active methods of data collection via pilot interviews [139], etc. While valu-

able information is gained from these studies, the potential availability of additional

quantitative data can further enhance the quality of insights by opening up different

avenues for analysis.

2.3 Quantitative Safety Assessment

Safety is a concept that may be difficult to quantify, because it is associated more

with the absence of something rather than its presence [128]. However it may be

approximated using metrics calculated from available data [114]. Previous accident

studies (particularly in GA) concluded that lack of information is sometimes a major

hurdle in performing accident analyses, and methods to obtain richer data from flight

operations should be sought [67]. To that end, the capabilities of Digital Flight Data

Recorders (DFDRs) have increased tremendously over the past few decades. Quick

Access Recorders (QAR) are similar in performance to DFDRs, but they are usually

mounted in an easily reachable location on the aircraft and have removable media.

Therefore, this leads to increase in data proliferation as it can be easily accessed and

downloaded for further analysis.

Figure 6 shows the evolution of the capabilities of DFDRs over the past 60 years.

The capability of recording parameters has increased significantly such that modern

day transport aircraft can record thousands of parameters at a high frequency. Ad-

ditionally, transport category airplanes have certain minimum requirements related
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Figure 6: Evolution of flight data recorders from Campbell [30]

to DFDRs set by the FAA for U.S carriers [1]. This includes a minimum set of

more than 90 parameters related to the state, attitude, control surface deflections,

engine information, environmental conditions, Global Positioning System (GPS) in-

formation, and others. On the other hand, for the GA aircraft considered in this

work, there are no such stringent requirements on DFDR parameters [3]. Therefore,

GA flight data recorders (if present) typically record much fewer parameters due to

prohibitive costs [73]. More recently, certain GA aircraft have been equipped with

glass cockpits displays such as the Garmin G1000 [65] that allow recording of more

parameters. Even then, these capabilities fall short of those in commercial opera-

tions (missing important parameters such as flap deflection, mixture lever position,

weight, etc.). However it is worth exploring the techniques that are currently used

on recorded flight data from commercial operations in order to understand which of

these may be adapted for GA.

The availability of additional information can augment safety enhancement pro-

cess in reactive, proactive, as well as predictive approaches. This information can

be in the form of more recorded parameters, use of performance models developed

offline to estimate or predict unrecorded parameters of interest, estimation of param-

eters based on the measured values of certain combinations of parameters, weather
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data collected by a source other than the aircraft and so on. Methods for quantita-

tive safety assessment within this dissertation are those that utilize data from actual

flights in order to assess/quantify the level of flight safety at which the system is

operating. This may be expressed in the form of various metrics, safety envelopes,

deviations from nominal operations etc. While there are various ways of obtaining,

organizing, and analyzing flight data, Flight Operational Quality Assurance (FOQA)

is perhaps the most systematic and widespread method currently in existence. The

subsequent section explores this in further detail.

2.4 FOQA/ FDM Programs

The most common and widespread programs in existence for quantitative safety as-

sessment are Flight Operational Quality Assurance (FOQA) [4] or Flight Data Mon-

itoring (FDM) [28]. It is defined as:

“The systematic pro-active use of digital flight data from routine operations to

improve aviation safety within a non-punitive and just safety culture”

In the United States, FOQA is promoted by the FAA as a voluntary program. Data

collected from FOQA efforts by individual fixed-wing commercial airlines have been

integrated into ASIAS since 2007. While the specific implementation may differ

slightly from operator-to-operator, the process generally involves the same set of typ-

ical steps which are - a continuous cycle of data collection from on-board recorders,

retrospective analysis of flight data records, identification of operational safety ex-

ceedances, design and implementation of corrective measures, and monitoring to as-

sess their effectiveness. FOQA programs typically also contain some ability to replay

the flight that happened using the positions, attitudes and accelerations recorded in

flight. Figure 7 shows the various steps in a typical FOQA process.

British Airways was one of the first operators to adopt a FOQA program in the

1970s and experienced significant reduction of hull losses since its adoption [57]. Since
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Figure 7: Flight Operational Quality Assurance program components. (reproduced
from [28])

Figure 8: Number of Operators using FOQA from Campbell [30]

then, the number of commercial operators using FOQA has increased tremendously

over the past few decades [30]. With the demonstrated effectiveness of FOQA in
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fixed-wing commercial airlines for several decades there have been efforts in recent

years to promote its adoption among smaller operators, particularly in GA. Through

the analysis of GA flight data, significant insight can be gained into the current GA

flight safety trends. Mitchell et al. [103] have explored the obstacles that need to be

overcome to implement a GA-FOQA program. Kuo et al. [82] conducted studies on

the type of recording equipment that could facilitate a FDM implementation for GA.

The data obtained from FOQA programs can be analyzed in various ways. How-

ever, prior to introducing the details of analysis methods, it is important to under-

stand the nature of the data obtained from flight data recorders as this has an impact

on the techniques that can be used to analyze the data. FDR typically contains dif-

ferent channels that record discrete, continuous, and categorical data at a specified

frequency (e.g., once per one second interval). Therefore, in analysis, the data is

used as a multi-variate time series for flight records, which are typically of different

duration. As noted previously, the number of parameters in this multi-variate time

series can be as low as 20 – 30 in GA operations to a number as high as thousands

in commercial operations. The data obtained for FOQA implementation from FDR

can be analyzed in many different ways. Based on the type of analysis performed,

the important methods of analyzing FDR data for safety assessment are grouped as

shown in Figure 9. It is noted that this is not the only way in which these methods

can be classified, but one of the ways which provides a broad sweep of all techniques

relevant to this dissertation. The subsequent subsections elaborate on each of these

methods in further detail.

Figure 9: Typical methods of quantitative safety assessment using FOQA data
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2.4.1 Exceedance Detection

Exceedance detection is the most common analysis using FOQA data currently in

existence. An exceedance is the deviation of a single parameter beyond an established

threshold. An event is defined by one or more parameter exceedances that take place

concurrently over a specified period of time. This approach is thus used to monitor for

pre-defined events that might be operationally undesirable. The events/exceedances

are typically defined by subject matter experts and may correspond to the flight

envelope, standard operating procedures, regulations, or previous experience from

accident investigations. Individual operators may choose to alter established limits.

Typical exceedances and events correspond to significant deviations from Standard

Operating Procedures (SOPs). Some examples of exceedances as defined by the FAA

Advisory Circular are shown in Figure 10. Hurst et al. [75] recommend that a range

of thresholds should be included to generate events when parameters exceed preset

values in order to classify events based on their severity. A three-level scheme (low,

medium, high) is found in many applications [28,73].

Observations

This approach performs well on known safety issues but is sometimes blind to safety-

critical conditions that may be captured by flight data records but are not in the

set of pre-defined safety events. That is because it is designed to provide answers

to questions that the domain experts have thought to ask. Setting up the events

and exceedances requires extensive subject matter expertise and long periods of fine-

tuning, which can result in decreased performance before the system is brought to its

full capabilities. Most often, small GA operators do not have the engineering resources

available for such a task and this reduces the amount of fine-tuning possible. On the

other hand, greater fleet heterogeneity and types of missions in GA can increase

chances of missed detection or false alerts without fine-tuning. On the other hand,

as shown by Fala and Marais [56], events defined for a particular aircraft may not be
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Figure 10: Examples of exceedances and events as defined by FAA FOQA advisory
circular [4]

directly applicable to other similar aircraft and would therefore, need to be adjusted or

tuned to prevent false alerts or missed identifications. In exceedance detection, each

flight is monitored as a standalone data point and compared to the defined limits.

No information from other flights that might be available gets directly incorporated.

This might result in the loss of insights that might be gained from analyzing a larger

data set.

2.4.2 Statistical Analysis

Statistical analysis refers to a variety of techniques currently in use and being devel-

oped to work with larger data sets. In this approach, information regarding specific

parameters/points of interest is aggregated over the entire data set available for anal-

ysis. This information is then synthesized and presented in the form of distributions

of parameters/events. This analysis enables the operator to gain a more complete

picture of the operations based on the distribution of all flights. Statistical analysis

enables presenting a high-level summary which the operator can use to evaluate the
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overall state of operational performance. Statistical analysis can be performed us-

ing different types of data and is not necessarily restricted to quantitative data from

FOQA programs. There exists a body of literature in commercial as well as GA op-

erations dedicated to improving safety insights using statistical analysis of collected

data.

Campbell [30] has suggested looking at distribution of altitude at which landing

flaps are set as shown in Figure 11. Sherry et al. [140] performed a big data analysis

of 21 days of surveillance track data to analyze frequency of occurrence of aborted

approaches and their safety implications. Cokorilo et al. [39] conducted a statistical

study that compares aircraft accidents in relation to the characteristics of the aircraft,

environmental conditions, route, and traffic type. Subramanian and Rao [144] have

used deep neural networks along with NASA’s ASRS database to forecast possibility

of go-around events in the NAS. Netjasov and Janic [107] have conducted a review of

safety and risk modeling in commercial operations.

Figure 11: Altitude at which landing flap is set from Campbell [30]

In previous work (Puranik et al. [118]) statistical distributions of various param-

eters during GA approach and landing operations were analyzed which might be
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of interest to the operator – such as the touchdown velocity shown in Figure 12.

Archer [17] has looked at a statistical comparison between rounded base turns versus

traditional rectangular turns in pattern landings to determine if rounded base turns

provide increased safety with respect to angle of attack. Other researchers have used

incident, accident data from NTSB and other sources to perform a qualitative sta-

tistical analysis. Boyd [23] has conducted a statistical study of GA accidents related

to exceeding the weight or center of gravity limits of the aircraft using NTSB acci-

dent database. Major et al [97] have investigated perceptions of deficiencies in pilot

training based on VFR-into-IMC accident data.

Figure 12: Distribution of touchdown velocity from Puranik et al. [118]

Observations

Statistical analysis, like exceedance detection, requires a watch-list of key parameters

and operating conditions. It is very useful for trend analysis of parameters or opera-

tions which are known to have a potential impact on operational safety. Comparison

of an individual flight record can then be done with respect to the entire data set

in order to understand how it fared compared to other flights in similar situations.

While this offers an added layer of information over exceedance detection, it typically

performs well on known issues but remains blind to emerging risks.
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2.4.3 Anomaly Detection

Data mining and anomaly detection techniques for safety analysis, incident examina-

tion, and fault detection have garnered increased interest in the aviation community.

The objective of anomaly detection techniques is to detect abnormal flights within

routine flight data without any prior knowledge of safety events. They involve the

use of various machine learning algorithms (clustering, classification etc.) on FDR or

accident data to identify emerging risks. Typically, the data obtained from FDR is

pre-processed to generate features that can be used in the algorithms. These features

are generated from the recorded parameters using the temporal nature of the data

as well as distinction in different phases of flight [41, 89, 99]. Anomalous flights ob-

tained (sometimes as ordered lists based on their ‘anomalousness’) are then further

analyzed by experts for potentially dangerous/unsafe conditions. In recent years,

due to the availability of data and increased computational resources, there has been

a tremendous increase in the application of these techniques in the aerospace do-

main. Gavrilovski et al. [67] have provided a comprehensive survey of data-mining

and anomaly detection techniques applied to flight data. Some of the seminal work

in the application of anomaly detection techniques to FDR data as well as upcoming

techniques are summarized here.

Majority of the existing literature in this domain is dedicated to data obtained

from commercial aviation operations. The literature identifies two main types of

anomalies in aviation data – Flight Level Anomalies in which the entire flight record

or phase of flight considered are off-nominal, and Instantaneous Anomalies in which

only an instant or small part (a few seconds) of the flight record is off-nominal.

Within each type of anomaly considered, three techniques are typically observed –

supervised, semi-supervised, and unsupervised techniques. Supervised techniques rely

on a labeled training set consisting of typical system behaviors as well as anomalous
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behaviors to train algorithms which can then be used on new flight data. Semi-

supervised techniques only require a set of training data that contains mostly nominal

behaviors. Finally, unsupervised techniques operate under the assumption that the

given data set may contain anomalous as well as normal operations in any proportion.

Figure 13: An example of anomaly detected in flight data using MKAD [41]

There have been quite a few studies on identification of flight level anomalies us-

ing FDR data. SequenceMiner [27] is a software used to detect anomalies in discrete

parameter sequences by learning from a model of normal switching. This technique

detects flight-level anomalies but is limited to discrete data. Das et. al. [41] have

developed Multiple Kernel Anomaly Detection (MKAD) which applies a one-class

support vector machine for anomaly detection. MKAD identifies flight level anoma-

lies well in data that contains discrete and continuous parameters. However, the

normalized Longest Common Sub-sequence (nLCS) kernel used may result in the loss

of some finer features for continuous data. Smart and Brown [143] used a data-mining

approach using a number of one-class classification algorithms to identify anomalies

in the descent phase for airliners. They tested their method on a labeled data set

containing abnormal flights. Li et al. [89] have developed ClusterAD – an algorithm
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that uses density-based clustering for anomaly detection on pre-processed flight data

parameters to identify abnormal operations. One of the issues in this method can

be that it isolates each sample in each signal as a unique feature, when in fact, the

change over that time may be an important factor. Another potential issue is the

fact that anomalies identified are purely mathematical artifacts and may need sub-

ject matter expertise to validate them. Despite these potential limitations, MKAD

and ClusterAD represent the state-of-the-art for anomaly detection in the aviation

domain and have shown to be very effective at uncovering a host of anomalies that are

missed by traditional approaches. Matthews et al. [99] have discussed and summarized

the aviation knowledge discovery pipeline using various state-of-the-art algorithms.

While these techniques have primarily been in the commercial aviation domain, there

have been recent efforts in the GA domain as well. Clachar [38] has used supervised

and unsupervised approaches on GA-FOQA data followed by subject-matter-expert

filtering to identify atypical flights.

Typically techniques that are used to identify instantaneous anomalies are dif-

ferent than those used to identify flight-level anomalies. Amidan and Ferryman [11]

have utilized Singular Value Decomposition (SVD) to identify instantaneous anoma-

lies. They mapped the five seconds before and after each recorded data point and

fit a linear regression model to it. The coefficients of the regression model were then

used to create a mathematical signature for each recorded data point which was used

to identify outliers. Mugtussidis [106] has used Bayesian classification to distinguish

between typical data points, that are present in the majority of flights, and unusual

data points that can be only found in a few flights. Orca [18] is a technique that uses

scalable k-nearest neighbor approach to detect anomalies in data with continuous and

discrete features. Since each data point is a sample in time and treated as indepen-

dent by the algorithm, Orca struggles to detect anomalies with temporal signatures.

Supervised learning methods such as Inductive Monitoring System (IMS) [77] rely
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on a training set consisting of typical system behaviors which is compared with real-

time data to detect anomalies. Each point is monitored standalone and therefore, the

temporal aspect of anomalous sub-sequences is lost when identifying anomalies. Li et

al. [90] developed ClusterAD - Data Sample, which is a technique leveraging a mix-

ture of Gaussian models to identify probability of a sample being anomalous during

take off, approach, and landing. However, this method also treats each data sample

independently and uses additional context to identify whether a particular gaussian

component is appropriate at a given time. This could result in missing anomalies

with temporal signatures.

Observations

Anomaly detection techniques have been shown to be very effective at uncovering a

variety of different abnormalities without any pre-specified limits. They are able to

harness the information available in the entire data set in a systematic way. However,

in most aviation applications, they have been demonstrated on a fleet of the same

aircraft (sometimes at the same airport). Therefore, it is unclear how well it general-

izes and allows for comparisons with flights conducted at different locations and with

different aircraft. Additionally, most approaches in literature are pure data-mining

based in that they only utilize the recorded data and therefore do not use any ad-

ditional domain expertise. One of the difficulties associated with anomaly detection

techniques is in validating the results obtained. Most of the data from routine op-

erations is expected to contain non-anomalous data. There appears to be consensus

in the literature that performance of anomaly detection techniques can be improved

by including domain-specific knowledge in the data-mining task as this will increase

the chances of identifying truly anomalous conditions [66]. Finally, few applications

of anomaly detection have been demonstrated on GA flight data.

23



2.4.4 Model-based Analysis

In model-based analysis, data obtained from routine operations is typically used in

one of two ways. It can be used to train models for various purposes [37, 69, 100].

In these type of models, a relationship is assumed between the inputs and outputs

of the recorded data and the models are trained by estimating the parameters using

common techniques such as linear regression or least squares. This approach is similar

to the well known field of System Identification (SysID) [78].

Alternatively, the flight data can be used in conjunction with models developed

independently from first principles to identify safety issues. Typically, physics-based

approaches are an alternative to data-driven approaches when sufficient data is not

available or the available data is insufficient for safety analysis. Physics-based ap-

proaches have been previously used for fault analysis [153], monitoring, and helicopter

FDM [66].

Figure 14: An example of data-driven model based anomaly detection using flight
data – from Melnyk et al. [100]

For models trained using flight data, most of the times, their use in safety anal-

ysis is closely tied with anomaly detection techniques. Gorinevsky et al. [69] have
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described an application of data mining technology called Distributed Fleet Monitor-

ing (DFM) to Flight Operational Quality Assurance data. This application consists of

fitting a large scale multi-level regression model to the data set and finding anomalies

using these built models. The algorithm is able to identify anomalies within a flight

record (instantaneous), abnormal flight-to-flight trends (flight level anomalies) and

abnormally performing aircraft. While this framework is capable of identifying in-

stantaneous anomalies, it is limited to models fitted in the clean configuration. Also,

most of the anomalies detected are in the estimation of aerodynamic or propulsion

parameters or gross weight. Chu et al. [37] have proposed an approach for detect-

ing anomalies from aircraft cruise flight data using a model trained using historical

data of a fleet of aircraft. Anomalies are detected as outliers that exceed the scatter

caused by turbulence and the modeling error. Melnyk et al. [100] have treated each

multivariate time series using a vector auto-regressive exogenous model. Dissimilar-

ity between two flights is measured as the residuals obtained by using the model of

one flight on the data of another. Outliers are identified using Local Outlier Factor

(LOF) which is a nearest neighbor based anomaly detection method. This method

requires that a different model be trained for each flight record being analyzed (as

seen in Figure 14) and that inputs-outputs be recorded which may not necessarily

be the case for GA. For models generated from first principles, Gavrilovski [66] has

used both static performance models and a nonlinear dynamic simulation to improve

the detection performance of safety events in helicopters. Harrison et al. [71] have

developed a non-linear dynamic model of GA aircraft that can be used in conjunction

with flight data records to identify loss-of-control safety margins.

Other than the two types of models described above, another category of model-

based analysis consists of using either qualitative or quantitative data to generate

models of flight-safety, risk, hazard, or accident chains. There is a wealth of literature

that exists on quantifying and assessing risk in aviation. Some of the recent work is
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identified here. Netjasov [107] have conducted a review on risk and safety modeling in

civil aviation, Rao [124] has proposed a new method for modeling helicopter accidents,

Luxhoj and Coit [96] have modeled low probability/high consequence events using an

aviation safety risk model, etc.

Observations

For data-driven models, the model is a local approximation with a limited or dimin-

ishing capability away from condition at which it is identified. Additionally, many of

the models currently developed are for the clean configuration whereas most accidents

in GA operations occur in approach and landing which is typically associated with

varying levels of flap usage and therefore aerodynamically dirty configurations [109].

Data-driven models typically require a rich data set consisting of inputs-outputs which

is usually not available in GA FDR as noted previously. Where data-driven models

fall short, physics-based models may be used as they have the ability to relate mea-

surements to unobserved quantities that might be of interest. They are of particular

interest for data sets which have limited number of recorded parameters such as those

in fixed wing GA. However, predictions made using basic first principles models can

suffer from error due to epistemic uncertainty (inadequacy of the model). Therefore,

they need to be well-calibrated and the uncertainty associated with predictions from

these models needs to be quantified.

2.4.5 Monitoring

This type of analysis usually involves monitoring the mechanical systems for vibra-

tion levels and other signals and alert operators to unsafe increases that might signal

deterioration of components. Maintenance is scheduled to coincide with actual deteri-

oration of the part and eliminate premature replacement or unsafe usage. Monitoring

aims to establish nominal levels of variance in the monitored signals and generate

alerts when these are exceeded. The core technique used here is Statistical Process
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Control (SPC). The most common type of monitoring in the aviation domain is Health

and Usage Monitoring Systems (HUMS) used in the rotor-craft domain. Other simi-

lar techniques also exist such as fault diagnosis which deal with monitoring the data

from specific components and not FOQA data.

Figure 15: Example of control chart used for monitoring processes (Image Source:
http://www.processma.com/resource/spc.php)

Observations

Romero et al. [131] studied the feasibility of using HUMS in rotor-craft operations.

They concluded that the flight trial program generally demonstrated a high level of

reliability in monitoring the rotor system, engines, drive train, and life-limited com-

ponents. More recently, Delgado et al. [45] conducted a survey of current rotor-craft

propulsion health monitoring systems. Monitoring is typically available on advanced

systems with on-board capability to monitor and record data from sensors mounted

to the dynamic components. There are frequently very well-specified limits on allow-

able vibration or noise spectrum available to the operators. Monitoring systems are

one of the few online applications where alerts might be generated while the system

is in operation. However, these systems are primarily used for maintenance schedul-

ing and tracking deterioration of components. Also, they are similar in function to

exceedance detection as the set-point about which monitoring is happening and the

allowable variances are determined a-priori. In GA, applicability of HUMS would be

limited to high-end GA aircraft with the capability of recording required parameters.
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Also, applicability of HUMS processes in literature is limited to propulsion system

and structural components where vibrations can be easily measured.

2.5 Overarching Observations

1. Need for data-driven safety environment in GA:

FOQA is considered an essential aviation safety tool, with wide adoption and

demonstrated safety benefits among airline operators. It was identified ear-

lier, that one of the major hurdles in accident analyses is the lack of recorded

information from flight operations. Some issues faced in adoption of FOQA

in GA are sociological and cost-related [73] which are not addressed in this

research context. However, it is known that GA pilots almost exclusively main-

tain and improve skills on their own, and their conduct of safe flight depends

more on individual abilities and judgment, potentially leaving them unprepared

for situations [109]. Therefore, a data-driven approach using data from actual

operations will benefit GA pilots and operators by alerting them of potential

unsafe behaviors or excursions outside the safety space. Thus there is a need for

a data-driven safety assessment approach from the reactive as well as proactive

and predictive safety assessment philosophies. No universal approach currently

exists for safety assessments of GA operations with associated heterogeneity

in mission profiles, data recording capability, and types of aircraft. Therefore,

there is a need for an approach that can utilize GA flight data and provide

greater level of safety analysis and insights than is currently in existence.

2. Data sources for GA flight data:

It is noted previously that GA aircraft typically have a lower level of sophisti-

cation in terms of their flight parameter recording and logging capability. This

can range from anywhere between a Personal Electronic Device (PED) such

as an iPad to a Garmin G1000 glass cockpit [65]. The number of parameters,
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frequency, accuracy, latency, etc. of these devices can vary significantly. Re-

search has been conducted [73, 82] into the type of recording capabilities that

would be required to implement a full-scale GA-FOQA program. Therefore,

new techniques that might be developed should be cognizant of this variability

in data quality and the potential ways of combining information from multiple

sources. Care needs to be taken while using data-fusion techniques to account

for the additional uncertainty and error that might be introduced due to such

operations.

3. Metrics for safety assessment:

In order to enable safety assessments across a heterogeneous fleet, operations,

and data recording capabilities, appropriate metrics need to be used that are

comparable in these differing scenarios. Safety metrics that are not dependent

on the size of the aircraft would be suitable for such a task. Additionally, it is

desired that the metrics used for quantifying flight safety be related to those

that have had an impact on historical accidents/incidents. Therefore, previous

accident databases such as those maintained by the NTSB or existing criteria

for safe operations such as the Stabilized Approach Criteria (SAC) [51, 60] by

the FAA need to be leveraged.

4. Existing FDM approaches:

Exceedance detection is designed to provide answers to questions that the do-

main experts have thought to ask. There can be a lack of traceability in event

definitions and a need to continuously fine-tune safety events. Moreover, events

are defined in limited number of dimensions, which usually correspond to the

most critical parameter(s) and are not well established for improbable condi-

tions. Greater fleet heterogeneity and types of missions in GA can increase

chances of missed detection or false alerts without fine-tuning [56]. Therefore,

29



approaches that complement event-based detection must be sought to enhance

safety assessments.

Anomaly Detection or discovery-based approaches have proved useful in identi-

fying abnormal flights without prior knowledge of events. However, their appli-

cability has been shown on fleet of similar aircraft at a particular airport. Most

of the existing safety approaches use only the raw flight data as features in the

anomaly detection task. These algorithms are highly sensitive to the features

used. Therefore, appropriate features that correspond to the safety margins of

the aircraft need to be selected for anomaly detection. There appears to be

a consensus in the literature that including domain-specific knowledge in the

anomaly detection task improves the chances of identifying truly anomalous

conditions. Different algorithms have been shown to have different strengths.

Therefore, rather than using a single algorithm, combining the strengths of

different algorithms may provide improved results.

5. Data-driven versus Model-based safety assessment:

Purely data-driven techniques are preferred when a sufficient quantity of rich

data is available (e.g. Commercial FOQA), and model-based techniques are pre-

ferred when certain aspects are not well represented in the data and/or there

is limited data availability (e.g. Helicopter FDM). With regard to the avail-

ability of flight records from routine operations, GA lies in between these ex-

tremes (as GA flight data records are not as rich as commercial aircraft FDR)

and therefore a hybrid approach would be best suited: using a data-driven

approach augmented with predictions from basic physics-based performance

models. However, the use of first principles models exhibits its own set of limi-

tations or errors because all the input parameters required to accurately predict

outputs or metrics of interest might not be recorded in flight. Therefore, cali-

brating models using real flight data records and/or data in the public domain
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literature might provide better accuracy. In the presence of such uncertainties,

models that provide reasonable or sufficient estimates of quantities of interest

at acceptable computational cost are sought.

6. Retrospective nature of safety assessments:

Even though current safety trends are moving towards proactive and predictive

metrics, all existing analysis is still retrospective in nature. While the techniques

developed monitor and attempt to proactively prevent future incidents, they

are still inherently retrospective in nature. Developing models offline that can

provide approximate predictions online would allow assessments to be real-time.

7. Limits of operations

Analyzing routine operations will only yield data that is within the normal

operating envelope. Using simulation models to sample the behavior near edges

of the operational envelope or at known hazardous conditions can help obtain

information about these situations in order to avoid them.

Developing techniques that address some of the gaps from the observations and ad-

ditional ones made during the course of the implementation and analysis form the

foundation upon which the technical approach undertaken in this dissertation is based.
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CHAPTER III

PROBLEM FORMULATION

3.1 Research Objective

Given the need for enhancing the safety of GA operations identified earlier in chap-

ter 1 and the challenges, existing work, and opportunities for improvement presented

in chapter 2, the overarching research objective of this dissertation is stated as follows:

Research Objective:

Develop a quantitative data-driven methodology that will enhance safety assessment

of GA operations by providing metrics for quantifying flight safety, enabling iden-

tification of non-standard operations, and providing predictive capabilities that will

complement existing approaches

There are certain assumptions and constraints under which the methodologies devel-

oped in this dissertation are applicable. These have been identified here.

1. Flight Data: The first assumption is the availability of actual or simulated

flight data records. In the work presented in this dissertation, flight data from

over two thousand training flights conducted on a Cessna C172S and Piper

Archer PA28 aircraft equipped with Garmin G1000 [65] glass cockpit displays

is utilized. Each data record contains information about aircraft state charac-

teristics such as altitude, true airspeed, indicated airspeed, latitude, longitude,

and engine RPM among others, collected at a one second interval. It is noted

that all the data used in this disseration is de-identified in accordance with typ-

ical FOQA procedures. In addition to data recorded by flight data recorders,
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Personal Electronic Devices (PED) such as iPads have become increasingly pop-

ular within GA for recording flight data using applications such as the freely

available GAARD app developed by MITRE [104] as well as devices (such as

the STRATUS [16]) that can be used to display vital information in-flight. It

is noted that while the G1000 represents the higher end of instrumented GA

aircraft currently around, the dissertation will address potential limitations of

the methods developed and solutions in the case of data obtained from sources

that might be less accurate (such as PEDs).

2. Simulated Data: In addition to this, a flight simulation model capable of

simulating the dynamics of the aircraft using a MATLAB/Simulink model which

is connected to FlightGear Flight Simulator [58] to allow visual rendering of the

motion of the aircraft is available. Further details of the simulation model can

be found in Chakraborty et al. [33]. The simulation model has been modified

to output a data record in the same format as the Garmin G1000. Thus it can

be utilized to generate additional flight data records which can be included in

the data set with the data records from actual flights. The simulated flight

data can enable exploration of potentially unsafe or abnormal conditions which

might not be easily available in routine data.

3. Performance Models: Finally, the availability of basic aircraft performance

models for modeling the aerodynamic and propulsion characteristics is assumed.

The model for the aerodynamics includes a lift and drag polars for an aircraft

using empirical build-up methods such as the one presented in Min et al. [102]

and can be modified for similar aircraft. The propulsion model on the other hand

is one which can provide the thrust and torque curves for a propeller such as

the method presented by Harrison et al. [72]. The assumption of availability of

these models does not necessarily mean that they are accurate for all the aircraft
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being considered. In fact, as demonstrated later calibration of performance to

the data available is a necessary step prior to their use in safety analysis as

demonstrated later in the dissertation (Ch. 6).

Figure 16: Distribution of accidents by phases of flight in GA

4. Phases of Flight: While improving GA safety across all flight regimes is

the aim of this and other work in literature, it is noted that not all phases

or regimes of flight pose the same amount of risk. For instance take-off and

approach/landing are considered among the highest risk phases of flight. For

instance, approach and landing account for about 2% of the total flight time, but

account for almost 50% of the total accidents [108]. During approach and land-

ing, the aircraft is flying at a reduced airspeed, in a landing configuration, and

closer to the ground, compared to its airspeed and altitude during cruise, and

therefore requires more precision and focus from the pilot. Errors or deviation

from the prescribed flight path during approach and landing are likely to end in

accidents or incidents as they have a small safety margin owing to the limited

time for a pilot to correct an error or react to a deviation. Similarly take-off

is a phase of flight with high number of accidents per time flown. According

to a report by AOPA [5] on accidents during instructional flights, more than
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50% of all accidents occur during take-off, landing, or go-around. Take-off and

landing phases also require clearing obstacles such as tall buildings, windmills

etc. Therefore, it is clearly evident that these two phases of flight are among

the most critical in terms of targeting safety improvements for GA operations.

Due to all these reasons, the methodology developed in this thesis is primarily

applied to these two phases of flight with the understanding that it could be

extended to other phases as well.

5. Data Noise: It is noted that flight data obtained from GA FDR can have

noise as well as bias in it. While this dissertation utilizes techniques for data

smoothing and filtering such as moving window average or local regression based

smoothing, it is acknowledged that more sophisticated techniques may exist for

certain types of data. For example, Seimbiring et al. [138] have demonstrated

performing data compatibility check might as an explicit way of accounting for

systematic biases/ epistemic error. It is not within the scope of this dissertation

to explore these techniques.

3.2 Research Questions

The stated research objective may be realized by addressing three major research

questions which are identified in the following section. The statement of the research

objective is broken down into three constituent parts and each is analyzed here.

These three parts are – (1) metrics for quantifying flight safety, (2) identification of

non-standard or anomalous operations, and (3) providing predictive capabilities.

3.2.1 Safety Metrics

It was noted earlier in the observations (Sec. 2.5) that there is a need to develop a

data-driven safety assessment framework for GA operations. However, due to the

heterogeneity of the fleet, operations, and data recording capabilities, there does not
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currently exist a universal methodology that is able to take all of these factors into

account. The different methods of analyzing FOQA data and their strengths and

weaknesses were reviewed in Sec. 2.4. Events purely based on certain parameters

and pre-defined limits have a tendency to be inconsistent and aircraft–specific [56].

Therefore, these observations motivate the first major research question:

Research Question 1:

What are metrics or figures of merit corresponding to safety margins and safe opera-

tions in GA which are readily estimable from recorded data in GA operations?

In order to identify safety metrics that can be used for quantifying flight safety, it is

necessary to look into what have been the causes of incidents and accidents histori-

cally, existing criteria for events, and the parameters that are recorded in-flight and

available to define different metrics. Using the information from these three sources

will enable formulation of useful metrics. This leads to the following research sub-

question:

Research Question 1.1:

What are the important parameters that can be used to define potential safety metrics

of interest in GA operations?

It is important that metrics used in assessing flight safety of GA operations corre-

spond to actual performance and limits of the aircraft and its systems. Different

quantitative safety programs such as FOQA in commercial operations define events

or exceedances in their Standard Operating Procedures (SOPs). These events are

typically identified using a set of recorded parameters and limits which are based on
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historical accidents/incidents as well as subject-matter-expert opinions. While sim-

ilar literature is limited in GA operations, recent efforts have been made to address

this issue [56,73]. The parameters identified in these efforts and the lessons learnt are

incorporated. There have been efforts by the FAA such as the stabilized approach cri-

teria (SAC) [51] which outline the limits on certain parameters for conducting a safe

and ‘stable’ approach and landing. The flight safety foundation (FSF) have identified

energy management and associated parameters as among the important causes of un-

stabilized approaches [59]. On the other hand, various safety databases currently in

existence such as the NTSB accident database or the NASA ASRS database contain

a wealth of information about deviations in parameters that led to GA accidents or

incidents. The parameters and criteria thus observed can then be utilized in defin-

ing metrics of interest or reusing existing parameters/metrics which raises the next

research sub–question:

Research Question 1.2:

What safety metrics can be defined using typically available important parameters

and criteria that correspond to limits of GA aircraft operations and performance?

The parameters whose deviations might have been the cause of accidents or inci-

dents are identified in the previous research sub-question. The information from

these parameters as well as past safety criteria need be used in defining safety metrics

of interest. The first important consideration in defining metrics is related to the

nature of GA operations and limitations of recording capabilities. It is desired to

have parsimony in the number of safety metrics that eventually get defined and used.

This parsimony is desired not only in terms of how many metrics are used (due to

computational cost) but also in terms of what parameters need to be recorded to

evaluate these metrics (due to data recording limitations). Secondly, metrics that
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have actual relevance from the point of view of flight safety are desirable. There-

fore, a mapping of how different metrics correspond to or help in the identification of

historically risky situations or specific GA events is desired. Thirdly, safety metrics

that have no loss of generality in the characterization of aircraft states and safety

boundaries across the GA fleet and operations under consideration are sought. Based

on these considerations the following hypothesis for research question 1 is formulated:

Hypothesis 1: Energy-based metrics such as those quantifying the energy state, rates

of change of energy, and their margins and deviations are useful metrics that corre-

late to safety margins and safe operations in GA and can be readily estimated from

recorded data.

The relevance of the metrics is partially addressed by a literature survey and the

usefulness in a retrospective safety analysis setting during actual use of the metrics

in the developed methodology. A summary of research question 1, hypotheses, and

experiments is shown in Figure 17.

Figure 17: Summary of Research Question 1, Sub-questions, and Experiment
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3.2.2 Non-standard/Anomalous Operations

Identification of usable safety metrics is the first step in retrospective safety analy-

sis of GA operations. As previously noted in the literature review, the availability

of recorded flight data opens up avenues for quantitative analysis that were earlier

unavailable in GA operations. Techniques that are able to leverage large volumes

of data and provide insightful results are sought. Similarly, methods that require

minimal a priori input for identifying anomalous operations are preferred since they

would complement the existing static methods such as exceedance detection. This

leads to the statement of the second research question:

Research Question 2:

How can GA flight records be analyzed using energy metrics to automatically identify

nonstandard or anomalous operations without a priori knowledge of safety events?

There are typically two types of anomalies associated with multi-variate time-series

data such as that encountered in aviation operations – Flight Level Anomalies in

which the entire flight record or phase of flight under consideration are anomalous,

and Instantaneous Anomalies in which only a small part (a few seconds) of the flight

record is anomalous. In general, different types of techniques need to be used to

identify each type of anomaly and it is important to be able to identify each in order

to compare them. Existing techniques that have been shown to be effective on flight

data can be utilized or tailored to data obtained from GA operations. Due to the

desire to obtain non-standard operations without a priori knowledge of safety events,

unsupervised techniques are utilized. It is also desired that a quantification of the

‘anomalousness’ be provided based on information from all the flight data available.

All these requirements lead to the following hypothesis for research question 2:
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Hypothesis 2: Using the defined energy metrics as features in a general anomaly de-

tection framework with appropriate techniques will enable the detection of both types

of anomalies.

It is noted that while a general anomaly detection framework is suitable for iden-

tifying anomalies, different techniques need to be utilized for each type of anomaly.

For flight-level anomalies, an entire flight or phase of flight is identified as anomalous

and as such it would work only on well-defined phases of flight. Therefore, as noted

earlier, the take-off, approach and landing phases are chosen for the development

of this technique. The research sub-question formulated to help identify flight-level

anomalies is stated here:

Research Question 2.1:

How can a general anomaly detection framework be modified to identify flight-level

anomalies in GA take-off, approach and landing operations using energy metrics?

Techniques used for flight-level anomalies do not necessarily work well for instan-

taneous anomalies as the unit of analysis is the entire phase of flight rather than

an instant or a few seconds. Therefore, within the same general anomaly detection

framework, different algorithms and pre-processing need to be used for identifying

instantaneous anomalies. This leads to the following research sub-question:

Research Question 2.2:

How can the general anomaly detection framework be modified to identify instanta-

neous anomalies in GA operations using energy metrics?
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Experiment 2.1 and 2.2 are designed to test the detection of different types of anoma-

lies in routine flight data, whereas experiment 2.3 is designed to test and determine

the performance of the the method in the presence of limited flight data capturing ca-

pability or model generalization. The success of these experiments will depend upon

identifying anomalies without specifying what is anomalous a priori. In addition to

identifying anomalies from routine flight data, the ability to identify most of the ex-

isting exceedances defined in FOQA literature is also investigated. The experiments

are described here in brief and details can be found in Chapter 5.

Experiment 2.1: Detection of flight-level anomalies

Using an appropriate combination of machine learning techniques and defined en-

ergy metrics, identify anomalous operations from within a given set of almost three

thousand actual flight data records as well as some simulated flight data records. Ad-

ditionally, visualize the obtained anomalous flights in comparison to other flights in

terms of their energy metrics as well as flight data parameters. In order to facilitate

validation, simulate a normal and an unstabilized final approach and landing and

verify whether each gets captured as such using the implemented method. For flight

level anomalies, take-off, approach and landing are the two phases of flight considered.

These phases are chosen since historically, a majority of accidents in GA domain have

occured during these phases [108]. A combination of two popular anomaly detection

algorithms developed in the methodology is used in this experiment - density-based

clustering (DBSCAN [50]) and one-class support vector machine (SVM). MATLAB

is used to analyze the flight data records, evaluate energy metrics, and implement

the anomaly detection algorithms because of ready availability of versions of the al-

gorithms in the public domain [98].
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Experiment 2.2: Detection of instantaneous anomalies

Using appropriate machine learning techniques and defined energy metrics, identify

instantaneous anomalies within a flight record. Information from all flight records will

be utilized in training the model used in detection. Visualize instantaneous anomalies

using probability of anomaly at every point in the flight record. Additionally, compare

instantaneous anomalies to available sample exceedance detection events available

from Higgins et al. [73] to check for overlap between developed and existing methods.

For instantaneous anomalies all phases of flight can be considered since the techniques

do not require well-defined phases however, the demonstration is restricted to the

phases most relevant to this dissertation – take-off, approach, and landing for the

sake of comparison. A novel sliding window-based technique is utilized in conjunction

with Gaussian Mixture Models (GMM) for anomaly detection. MATLAB is used

to implement anomaly detection due to the ready availability of GMM algorithm

implementation.

Experiment 2.3: Generalization of methodology

In order to test the generalization of the methodology, two scenarios will be tested.

These scenarios will enable testing of the methodology for variability in flight data

recorder capabilities and the ability to train models to predict anomalies in data

not used in training. First, the flight-level anomaly detection algorithms are imple-

mented using different subsets of energy metrics that require fewer number of param-

eters/models. This will enable understanding of which anomalous flight records are

potentially missed due to lack of certain recorded parameters. Second, flight level

anomalies will be detected using SVM trained on only a subset of the flight data

records. The trained model will be used to identify anomalies within the entire data

set. This will enable identification of whether the trained models are able to general-

ize on new flight data that might come in and will be used in retrospective analysis.
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These efforts will enable assessing the generalization and widespread application of

the methodology developed in this dissertation.

Figure 18: Summary of Research Question 2 and Experiments

A summary of research question 2, hypotheses, and experiments is shown in Figure 18.

3.2.3 Model Calibration

Previous studies have concluded that lack of information is often a hurdle in accident

and incident analyses. While the capabilities of flight data recorders have improved

significantly over the years, their adoption in GA has still not been widespread mainly

due to the associated costs. As recognized previously, using predictions from physics-

based models can help estimate quantities of interest that might not be recorded

in actual flight data but are of importance in safety analysis. In the context of

this dissertation, performance model for an aircraft refers to the steady state point

performance of the aircraft in terms of lift and drag characteristics for the airframe

as well as thrust and torque characteristics of the propeller for that aircraft which

may be queried at specific conditions of interest. Such performance models can be

necessary in the evaluation of some energy metrics used in safety analysis as seen later

in Ch. 4. Performance models such as those developed by Harrison et al. [72] and Min

et al. [102] may be used as a starting point for this purpose. However, such models

developed for specific aircraft can suffer from aleatory and epistemic uncertainty when
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using in different contexts and therefore need to be calibrated to the specific aircraft

in question.

Usually, aside from flight test data (which is very difficult to obtain), the only

sources of aircraft performance behavior in the public domain are Pilot Operating

Handbooks (POH). While the tables given in the POH are idealized performance

that a brand new aircraft can theoretically attain under specified flight conditions, it

is nevertheless a good source of initial information to calibrate performance models.

For generating performance models of new aircraft that are similar to the one already

available, a calibration technique that is repeatable and fast is desired. These con-

siderations motivate the next research question:

Research Question 3:

How can basic empirical models of aerodynamic and propulsive performance of a

generic GA aircraft be calibrated to predict energy metrics at conditions of interest

for a specific aircraft?

As noted throughout this dissertation, any technique that is to be applied to the GA

domain has limitations on the data that is available for developing the technique as

well as in its application. Therefore, calibration of performance models of GA aircraft

will be different for different types of calibration data available. The eventual aim

of aerodynamic and propulsion models is to be able to predict the lift, drag, thrust,

torque, and weight of the aircraft with enough accuracy as to allow using them in the

evaluation of energy metrics or usage in a flight simulation model.

Two different cases are identified in this dissertation based on typical forms of

data that might be available. In the first case, calibration is carried out using data

available in the public domain literature, such as a POH. This corresponds to the

case where performance models thus calibrated would be used for safety analysis on
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flight data recorded using the lower end of the data recording capability spectrum.

This case motivates the first research sub–question:

Research Question 3.1:

How can basic empirical models of aerodynamic and propulsive performance of a

generic GA aircraft be calibrated using data only available in the public domain to

predict energy metrics at conditions of interest for a specific aircraft?

As it is hard to validate performance models without actual flight data, it is assumed

that a limited amount of flight data is available to validate the calibrated models

from this step. The validation is carried out in terms of a predicted energy metric of

interest. The hypothesis for the first sub-question of research question 3 is stated as

follows:

Hypothesis 3.1: Using tables and conditions in the Pilot Operating Handbook to cal-

ibrate the performance models results in a process that will yield models for a specific

aircraft which can be used for predicting energy metrics of interest.

Experiment 3.1: Performance model POH calibration

Using performance tables for different phases of flight as well as critical limits of the

aircraft (such as stall speeds) identified from the POH, calibrate models using cali-

bration factors to minimize error metric or metrics that represent mismatch between

POH performance and predicted performance. Since each phase of flight will yield a

different error metric, in general the calibration will be a multi-objective optimization

problem. The calibration-optimization is carried out in MATLAB with calibration

factors from each discipline as the control variables and the vector of error metrics as

the objectives. The well-known Non-Dominated Sorting Genetic Algorithm (NSGA)
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II [44] multi-objective optimization algorithm will be utilized for the calibration.

Points along the pareto-front thus obtained will be candidate models to be used in

the actual application. The choice of one calibrated model versus the other will be

dictated by the performance quality of prediction for the intended application.

While calibrating the model to POH does provide performance predictions for

that aircraft, it can still suffer from a number of shortcomings. For example – the

performance reported in POH is for a brand new aircraft at certain conditions flown

by an expert test pilot. The deterioration of the airplane components with use, pi-

loting skill, variations in aircraft model, modifications/maintenance that might have

been made to that aircraft, actual gross weight of operations on that particular day,

environmental conditions, and noise in recorded parameters are just some of the fac-

tors that might cause uncertainty in estimates obtained from a simpler model. While

there are some components of these uncertainties that are aleatory (irreducible), oth-

ers (such as those which are aircraft specific) are epistemic (reducible). The second

case of data availability in performance model calibration assumes calibration flights

from routine operations with specific parameters are available. The assumptions are

based on the higher end of the GA data recording capability spectrum. These obser-

vations lead to the next research question:

Research Question 3.2:

How can basic empirical models of aerodynamic and propulsive performance of a

generic GA aircraft be calibrated using limited GA flight data to predict energy

metrics at conditions of interest for a specific aircraft?

The reducible parts of the uncertainty in the models are those related to the specific

make and model of the aircraft. Calibration of performance models to flight data will

help reduce this uncertainty and improve the performance predictions. The hypothesis
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for the second sub-question of research question 3 is stated as follows:

Hypothesis 3.2: Using specific total energy rate metric from flight data to calibrate

the performance models results in a process that yields models for a specific aircraft

which can be used for predicting energy metrics of interest.

Experiment 3.2: Calibration of performance models to flight data records

In order to calibrate to a flight data record(s), a candidate flight record which has

annotated flaps from the available data set is chosen. While the POH calibration

contained many performance tables and points for calibration, the actual flight record

contains a limited number of points. Therefore, for flight-data-driven calibration,

a particular energy metric is chosen as the calibration metric and the discrepancy

between the computed and actual values of this energy metric at each point during

the flight is evaluated. The aggregation of this residual in the form of root mean

square (RMS) error is then minimized.

Figure 19: Summary of Research Question 3, and Experiments

In addition to the research questions raised in the previous sections, the entire

methodology developed is tested on a large data-set in a case study. The specific

questions raised during this application are addressed in the chapter on the results

from the case study (Ch. 7). A summary of all research questions, experiments, and

their relationship to each other is presented in Figure 20.
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3.3 Developed Methodology

A top-level overview of the quantitative data-driven methodology is depicted in Fig-

ure 21. The components highlighted in blue color represent the aspects of the method-

ology that are developed in this dissertation. On the other hand, the components in

white color are external inputs that have been incorporated from previous efforts in

literature in the GA domain.

Figure 21: A top level overview of the information flow in the developed methodology

The development of various components of the methodology along with the experi-

ments performed to address the hypotheses are described in further detail in subse-

quent chapters.
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CHAPTER IV

SAFETY METRICS (RESEARCH QUESTION 1)

It is necessary to identify appropriate metrics in order to facilitate quantitative safety

assessment. While the concept of safety is inherently subjective and therefore dif-

ficult to quantify, it may be approximated using safety metrics. In the context of

GA safety assessment, some desirable characteristics of good metrics are identified

as follows: First, they must be estimable using available recorded data - this implies

that the parameters used for the metrics should be typically recorded using on-board

recorders. Second, it is desirable that metrics are usable across different aircraft.

Therefore, metrics are invariant with size or weight of the aircraft are preferable.

Third, the chosen metrics should correspond to safety or performance margins of the

aircraft in some way. This ensures that information relevant to safe operations is em-

bedded or captured when these metrics are used in practice. All these considerations

are captured in the statement of the first research question which is reproduced below:

Research Question 1:

What are metrics or figures of merit corresponding to safety margins and safe opera-

tions in GA which are readily estimable from recorded data in GA operations?

In order to address the research question, it is broken down into two important

components. Before defining the metrics that are going to be used for retrospective

safety analysis, it is important to understand what data or parameters are available

for defining the metrics. Metrics that provide a good quantification of safety but

require the recording of parameters beyond the capabilities of GA FDR would not be

useful in this context.
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Figure 22: Various sources of information used in determining important parameters

4.1 Parameters – Research Question 1.1

GA FDRs are typically constrained by the number, quality, and type of parameters

that they can record. There are different sources from which parameters that are

important in defining safety metrics can be understood. These are explored in order

to answer the first research sub-question:

Research Question 1.1:

What are the important parameters that can be used to define potential safety metrics

of interest in GA operations?

Identifying important parameters to be used in safety analysis can draw upon several

different sources of data available in the public domain. Figure 22 provides an outline

of the three different criteria used in this dissertation. Each of the choices outlined

in the figure are explored further.1

1The research described in this section is also documented in the following publication:

– Rao A.H., and Puranik, T.G., Retrospective Analysis of Approach Stability in General Aviation
Operations, accepted for publication in 18th AIAA Aviation Technology, Integration, and Operations
Conference, Atlanta, GA, June 2018. [127]
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4.1.1 Existing Criteria

There are various criteria currently in existence for defining safe operations in com-

mercial aviation. Some of these criteria are being brought over into GA with the

availability of additional flight data. Stabilized Approach Criteria (SAC) are

well documented in commercial aviation safety literature [51, 60]. The FAA defines

a stabilized approach as: “ [...] characterized by a constant-angle, constant-rate of

descent approach profile ending near the touchdown point, where the landing maneu-

ver begins” [51]. A stabilized approach is viewed as one of the key features of safe

approaches and landings in air carrier operations. The specific criteria for classifying

an approach as a stabilized approach are presented in Table 4.1.1.

Table 1: Elements of a Stabilized Approach [51,60]

1 The airplane is on the correct tracka

2 The airplane is in the proper landing configuration

3

After glide path intercept, or after the final approach fix (FAF), the pilot
flying requires no more than normal bracketing correctionsb to maintain the

correct track and desired profile (3◦ descent angle, nominal) to landing
within the touchdown zone

4
The airplane speed is within the acceptable range specified in the approved

operating manual used by the pilot (Typically not more than VREF+20 knots
indicated airspeed and not less than VREF

5
The rate of descent is no greater than 1000 Feet Per Minute (FPM). If an

approach requires greater than 1000 FPM, a special briefing should be
conducted

6
Power setting is appropriate for the landing configuration selected, and is
within the permissible power range for approach specified in the approved

operating manual used by the pilot

aA correct track is one in which the correct localizer, radial, or other track guidance has been
set, tuned, and identified, and is being followed by the pilot

bNormal bracketing corrections relate to bank angle, rate of descent, and power management

Several researchers have analyzed commercial aviation accident data and flight data
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records to understand the causes for unstable approaches [88,99,105,140,149]. Payan

et al. [115] have classified helicopter approaches into various levels of stability using

important parameters. Sherry et al. [140] analyzed 21 days worth of approach and

landing trajectory data into Chicago O’Hare (ORD). Their analysis revealed that,

on average, there were 7.4 aborted approaches per 1,000 approaches. Further, they

reviewed 467 incident reports published in the Aviation Safety Reporting System

(ASRS). Issues with the airplane (e.g., on-board malfunctions, failures), traffic sepa-

ration issues, poor weather, runway issues, and interaction between Air Traffic Con-

trollers (ATC) and pilots were among the top reasons for go-arounds. In related work,

Wang et al. [149] analyzed 8,219 landings for Runway 22L at Newark Liberty Inter-

national Airport (EWR) for a given commercial operator. They evaluated stability

criteria (i.e. glide-path, rate of descent, speed change, and acquisition of the runway

centerline) at 1,000 ft, 750 ft., and 500 ft. above ground level (AGL). They found

that, in general, flights converged towards stable approaches as they approached the

runway threshold—66.1% of flights at 1000 ft. AGL, 78.7% of flights at 750 ft. AGL,

and 87.2% of flights at 500 ft. AGL satisfied all four stability criteria.

While SAC are not perfect, they have proved to be useful in defining standard op-

erating procedures for airlines. An unstabilized approach may result in a low altitude

state at flare or touchdown, a higher ground speed at touchdown, or a high energy

state at touchdown, thus leading to landing short, a risk of runway overrun, or a hard

landing. While the parameter variations, limits, and some procedures for stabilized

approaches as defined for commercial operations may not directly carry over to GA,

it is nevertheless valuable to identify the important parameters that are considered

in these criteria. Therefore, based on Table 4.1.1, the important parameters utilized

in stabilized approach criteria are listed here:

1. Track Angle 2. Configuration (Flap Setting, Land-

ing Gear)
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3. Descent Profile (Altitude)

4. Airspeed (Vref )

5. Rate of Descent

6. Power Setting

The ability to incorporate these parameters in some form into the eventual metrics

developed will prove to be valuable in addressing the relevance of the metrics being

developed.

The next set of existing criteria considered are events or exceedances currently

defined and in use. An exceedance is the deviation of a single parameter beyond

an established threshold. An event is defined by one or more parameter exceedances

that take place concurrently over a specified period of time. GA safety events can

be hard to standardize because of how GA aircraft and pilots fly, and the subjective

nature of the notion of risk and safety. That being said, there have been attempts in

GA to define safety events [73] and to gain insights into how these might be useful

for improving safety. A complete list of safety events for GA operations identified

by Higgins et al. [73] is provided in Appendix B. The following list of parameters is

extracted from the event definitions as those being monitored:

1. Airspeed

2. Vertical Speed

3. Bank Angle

4. Pitch Angle

5. Flap Setting

6. Cylinder Head Temperature

7. Power

8. Fuel Quantity

9. Oil Temperature

10. Oil Pressure

11. Centerline Deviation

12. Vertical g-loads

While the criteria explored here are not exhaustive, they represent parameters ex-

tracted from various subject-matter-expert drawn limits. Combining these findings
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with historical data and availability of parameters in GA will provide valuable in-

sights into which parameters need to be included (implicitly or explicitly) in defining

safety metrics.

4.1.2 Historical Data

Other than existing criteria such as stabilized approach, exceedances, events, etc.,

historical accident and incident data also provide a good source of information about

parameters related to safe operations. There are various databases publicly available

which contain information from investigations of accidents or voluntary reporting of

incidents. Previous studies of accident and incident data have provided important in-

sights into understanding and improving safety. Rao and Marais [125] identified high-

risk occurrence chains in helicopter accidents by analyzing NTSB accident data. The

current dissertation focuses primarily on quantitative data from routine operations,

nevertheless it is of value to explore accident and incident databases for commonly

occurring parameters related to accidents. While a causal analysis of accidents and

incidents requires a more in-depth analysis, querying the databases for incidents and

accidents related to the phases of flight and operations under consideration in this

dissertation can provide important insights.

A brief survey of accident and incident data using two publicly available databases

is undertaken to identifyg recurring parameters. The first is the NTSB accident

database. The NTSB investigates and reports findings from GA accidents that occur

in the U.S. The findings from the investigations are disseminated in the form of

textual reports (summary and factual reports) and coded information in an accident

database. The NTSB maintains a publicly-available aviation accident database, which

includes fields such as aircraft type, FAR part, geographical location of the accident,

injuries and damage, events in accidents, and narratives. This database is leveraged

to find parameters which may frequently result in accidents in take-off or approach
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and landing phases. Similarly, in an effort to improve aviation safety, the FAA and

NASA established the Aviation Safety Reporting System (ASRS). The system enables

anonymous (and voluntary) reporting of aviation incidents from pilots, air traffic

controllers, flight attendants, maintenance staff, and eyewitnesses. While the ASRS

database can provide valuable insight into situations that did not result in accidents,

it is not suitable for statistical analysis. As noted by Bhargava and Marais [21],

the tendency for incidents to be under-reported is one of the key reasons for not

using incident data for statistical analysis. Both of these databases are queried for

accident and incidents in the category and phase of flight of operations considered in

this dissertation. The narratives obtained are examined for some of the important

parameters identified from criteria provided in the previous section for overlap.

It is observed that among the parameters mentioned earlier, airspeed, altitude

or glide path deviations, vertical speed deviations are often important contributors

in approach and landing accidents. Additionally, poor energy management, center-

line deviations, and unstabilized approach also get frequently cited in the narratives

among both accidents as well as incidents.

4.1.3 Parameter Recording Capabilities

As noted earlier in the document, the capabilities of flight data recorders have been

improving steadily for the past few decades. While this has been the general trend,

GA has typically lagged behind commercial aviation due to constraints on cost. In

the development of any new methods of safety analysis for GA domain, the capabil-

ities of flight data recording devices is one of the most important limitations. The

spectrum of possible parameters being recorded in GA is fairly wide and heteroge-

neous. There has been recent research into investigating the use of low-cost PEDs

for data collection and safety analysis. While the typical GA aircraft typically lacks

an installed avionics system, the use of PEDs such as tablet computers by GA pilots
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Figure 23: Different categories of data availability in flight data recorders

has become increasingly popular. These can provide access to the GPS position of

the aircraft which includes latitude, longitude, and altitude data alongside heading

and ground speed. If in addition the pilot utilizes an external attitude and head-

ing reference system (AHRS), such as the commercially available Stratus [16], then

additional flight data can be collected by the PED. Similarly, at the higher end of

the spectrum are glass cockpit systems such as the Garmin G1000 [65] which are

able to log many more parameters accurately. However, they may not record other

important factors such as control inputs, weight, flap deflection, etc. Figure 23 sorts

the flight data recording capabilities into different categories based on the parameters

from various systems that are typically recorded. The capabilities are sorted into four

categories from one to four, with decreasing number of recorded parameters and fi-

delity for higher-numbered categories. The parameters are also divided into different

types loosely based on systems in the aircraft. This chart is intended to provide a

notional example of each data category - specific recorders may provide more or less

capability.

A brief description of the types of parameters in each system is provided here. At-

mospheric data refers to data gathered from pitot tubes, barometers, thermometers,
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etc. It includes airspeed, wind speeds, pressure altitude, atmospheric temperature,

etc. Attitude data refers to roll, pitch, yaw angles and their corresponding rates and

accelerations. GPS data contains the latitude, longitude, altitude, and related rates.

Engine data contains RPM, Exhaust Gas Temperatures (EGT), Cylinder Head Tem-

peratures (CHT), oil temperature and pressure, fuel flow rates, fuel quantities, etc.

Control data contains the deflection of flaps, elevator, aileron, rudder, etc. Commu-

nication data includes details about the communication status of the vehicle, such as

the comm frequency. Finally, navigation data includes information on any waypoint

guidance or autopilot features.

Figure 23 provides a general idea of the spectrum of possible parameters that

can be recorded but does not specifically indicate where GA aircraft typically lie.

A brief survey of parameters recorded in GA indicates that the actual parameters

that can be recorded by typical GA FDRs is rarely at the sophistication of category

1. Commercial aircraft have a certain number of minimum required parameters that

need to be recorded as mandated by the FAA [1]. This results in most commercial

flight data recorders being in category 1 of the classification provided. There is no

such regulatory requirement for GA and therefore, data recorded from GA operations

considered in this work fall under categories 2,3,4. The higher end of the GA spectrum

such as G1000 can be considered category 2, whereas more common among GA

airplanes would be category 3/4 recording capability. It is also noted that some GA

aircraft may lack any data recording capability. Therefore, it is noted that while the

causes of accidents and events might be related to various sets of parameters, there

is a specific constraint on which parameters can be used to define safety metrics in

GA operations under consideration in this dissertation.
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4.1.4 Summary

Based on the observations from the three sections presented, it is evident that GA

FDR are limited in terms of the parameters recorded that can be used for retrospective

analysis. Nevertheless, when flight data records are available, some set of recurring

parameters are important. The various parameters listed in the previous section are

related to different systems of the aircraft.

Some of them relate to the aircraft at the macro level and are a manifestation of

the state that the aircraft is in. These are parameters such as ground track, descent

profiles (or glide slope), or those related to the energy state of the aircraft such as

altitude, airspeed, vertical speed, and associated rates, etc. Others are related to the

pilot’s inputs or the direct consequences of inputs such as pitch and bank angles, flap

setting, RPM (or power setting). Finally, there are some parameters related to the

health of the airplane systems such as oil temperatures and pressures, exhaust gas

temperatures, fuel quantities, etc.

On the other hand, the different categories of FDR and the type of parameters

recorded in those are provided in Figure 23. Metrics that are applicable across the

different categories of data recorders yet are able to capture the effects of most of the

noted parameters are desired. Deviations in parameters that are overlapping among

the different sources investigated here would point to potential safety issues and need

to be accounted for by the safety metrics.
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4.2 Energy Metrics (Research Question 1.2)

While limited, the parameters recorded in GA can prove to be useful for retrospective

safety assessment if utilized in the right manner. Using the parameters identified in

the previous subsection various metrics can be defined. The usefulness of the metrics

can depend on various factors and motivates the next sub-question which is stated

below:

Research Question 1.2:

What safety metrics can be defined using typically available important parameters

and criteria that correspond to limits of GA aircraft operations and performance?

In terms of usage in a retrospective safety assessment setting, certain desirable qual-

ities are – parsimony, safety relevance, and generalizability. While there are other

qualities that might be important, these three are considered important with the

overall objective of the research in mind. This leads to the overarching hypothesis for

the first research question:

Hypothesis 1: Energy-based metrics such as those quantifying the energy state, rates

of change of energy, and their margins and deviations are useful metrics that corre-

late to safety margins and safe operations in GA and can be readily estimated from

recorded data.

4.2.1 Motivation for Energy-based Metrics

This section provides arguments for energy-based metrics to be used for safety as-

sessment based on their appropriateness with respect to the desirable qualities for

metrics.
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4.2.1.1 Parsimony

The first of the important qualities of metrics is parsimony, i.e., the ability to define

the required metrics with a limited number of parameters. This is especially critical in

GA safety assessment because of the limitations of flight data recorders. A parsimo-

nious set of parameters used to define metrics as well as a parsimonious set of metrics

bring two advantages – (1) it enables flight data collected from various data recorders

to be used in the same general framework and (2) it saves on computational time in

the case of analysis techniques that do not scale well with higher number of metrics.

The energy-based metrics considered in this dissertation are obtained from such a

parsimonious set of parameters and others derived from this set. Certain metrics

which require extra parameters or information never exceed the requirements of cat-

egory 2 capability outlined in previous sections. Therefore they are good candidates

from the point of view of parsimony.

4.2.1.2 Safety Relevance

Metrics generated from recorded parameters should have relevance to safe operations

and safety as identified in the previous sections. Therefore, concepts that corre-

late well with safety during take-off, approach and landing are preferred since they

satisfy the requirement of having relevance. Energy state awareness and energy man-

agement are critical concepts in the characterization, detection, and prevention of

safety-critical conditions. The FAA has recognized Loss of Control (LoC) and Con-

trolled Flight Into Terrain (CFIT) as the leading causes of fatal accidents in GA [6].

Previous studies have shown that improper or poor energy management and loss of

energy state awareness (LESA) are among the top contributors to LoC and CFIT

accidents [19]. Ironically, energy state awareness and energy management have been

addressed almost exclusively in commercial aviation where the concepts are intrinsic

in operational safety and have been the subject of much research but not in GA. The
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Commercial Aviation Safety Team (CAST) has identified several safety enhancements

that address energy state awareness [32, 134]. The General Aviation Joint Steering

Committee (GAJSC) has identified several safety enhancements for new and current

GA aircraft intended to improve energy state awareness such as angle of attack sys-

tems, stall margin indicators, and stabilized approach indicators [62]. Therefore, it is

asserted that energy-based metrics, namely those that characterize the energy state

and safety boundary conditions of the aircraft, hold significant potential for improving

GA operational safety because they explicitly address poor energy management and

state awareness. Similarly, studies from accidents and incidents presented earlier and

in literature point to parameters and narratives that further support the relevance of

energy-based metrics.

4.2.1.3 Generalizability

The final desirable characteristic of good metrics is that they should be generalizable.

Generalizability can be in conflict with parsimony because smaller set of metrics

inherently limit how well they are generally applicable or comparable for different

aircraft. However, it is asserted that energy-based metrics have no loss of generality

in the characterization of aircraft states and safety boundaries across the GA fleet

because most of the metrics are normalized by weight and therefore do not depend on

the size or weight of the aircraft. Therefore, these metrics may be preferable to flight

parameters such as angle of attack, velocity, or rate of descent. Safety boundaries or

events expressed with such flight parameters change from one aircraft to another and

may need to be modified [56]. This may result in states not being directly comparable.

However, energy metrics provide a common and objective currency that is broadly

applicable across a heterogeneous GA fleet.
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4.2.2 Existing and Newly Defined Metrics

This section provides details of existing and newly developed metrics and the aspect

of operations each metric is useful in. The overall argument for the energy metrics

based on their appropriateness with respect to the important parameters noted in the

previous section is also presented. The literature on energy management outlines two

fundamental objectives at the highest level - improving safety and efficiency [101].

Prior to their use in safety analysis, energy metrics were primarily used for analysis

of fighter aircraft performance [24, 135, 146, 156]. A classification of the literature on

energy metrics based on the aircraft category, phases of flight, and intended purpose of

implementation can be found in previous work [117,119]. Based on the classification

it is evident that energy management concepts and some energy metrics have found

use in a variety of applications such as development of cockpit displays for alerting

pilots [8, 10, 64, 87, 147, 156], control system based on energy management [33, 83–85,

87], trajectory optimization for unmanned vehicles [12], energy management during

descent in commercial operations, [43,59,142,147,148,150–152] etc.

The work presented in this dissertation is focused mainly on take-off, approach,

and landing phases in GA operations and its intended purpose is retrospective safety

analysis in a data-driven environment. Such an application of energy-based metrics

has not previously been demonstrated. All the energy-based metrics utilized in this

dissertation are summarized in Figure 24. Progressively from left to right, the metrics

listed in Figure 24 represent increasing information requirement for evaluation.

The metrics in the first column that can be completely evaluated using basic flight

data alone. With respect to the categories of flight data introduced earlier (Figure 23),

this would refer to any of category 2/3/4 data recording capability. Therefore, this

set of metrics is estimable from a broad range of data recorders and satisfies the

requirement of generalizability and parsimony for metrics. The metrics in the middle

column are contained those metrics for which bulk flight data needs to be available in
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Figure 24: Summary of existing and newly implemented energy metrics utilized in
this dissertation

addition to the earlier recording capability of basic flight data. While the parameters

recorded might be the same, large amounts of data are required to be able to make

statistical inferences and nominal/reference profiles for variation of flight parameters.

The final column of metrics on the far right requires the most information in terms

of recorded parameters, aircraft performance models, and other derived parameters.

This subset is estimable only using category 1/2 flight data recorders (such as the
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Figure 25: Energy reservoir analogy (adapted from Amelink et al. [10])

Garmin G1000).

The metrics listed in Figure 24 are calculated instantaneously during the flight.

Therefore, they characterize an instantaneous energy state of the aircraft. Other

metrics provide measures of energy states, or compliance with nominal states, aggre-

gated over a time period. For instance, the mean of the absolute value of energy error

measures how well a pilot followed a certain energy profile over a particular phase of

flight [64]. For the application considered in this dissertation (which is retrospective

safety analysis), instantaneous metrics have been given more importance as the focus

is on deviations from safe states. Aggregated metrics are utilized where appropriate

but are not defined separately as they are aggregations of instantaneous metrics over

a period of time. The remaining part of this section focuses on the formulas and

definitions of existing and newly defined energy metrics.

The energy reservoir analogy that was introduced by Amelink et al. [10] is an

important concept in the understanding of the origin of many of the energy metrics.

The aircraft is visualized as a system comprising of two reservoirs (potential and
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kinetic energies). Together these reservoirs represent the total energy state. The

energy flow into the system is provided through the throttle (engine) and the energy

flow out of the system occurs through the dissipative effects of aerodynamic drag. The

net energy flow is the result of the difference between the two, which is then distributed

over the kinetic and potential energy flows into and out of the reservoir. The throttle

is the energy flow control into the system and the elevator is the valve controlling

its distribution. The following metrics are related to the rate, distribution, margins,

of various quantities from the energy reservoir. These metrics are manifestations of

the energy state of the aircraft as a result of pilot control actions as well as external

factors (atmospheric).2

1. Specific Total Energy (STE):

Specific total energy is the total mechanical energy of the aircraft per unit

weight. It is given by:

STE = h+
V 2

2g
(1)

This is one of the most widely used metrics in literature [20, 24, 83, 101, 156].

This metric has nothing to do with the size or the weight of the airplane (thus,

specific), and depends purely on two kinematic quantities. It has been used

in a cockpit display concept, in a graphical method to determine the optimum

flight profile for an aircraft to reach a certain speed and altitude, in the Energy-

Maneuverability Theory to generate “sky-maps” for candidate aircraft.

2The research described in this section is also documented in the following publications:

– Puranik, T., Harrison, E., Min, S., Jimenez, H., and Mavris, D., Energy-Based Metrics for
General Aviation Flight Data Record Analysis, in 16th AIAA Aviation Technology, Integration, and
Operations Conference, 2016. Paper No. AIAA 2016-3915, doi:10.2514/6.2016-3915 [117]

– Puranik, T. G., Jimenez, H., and Mavris, D. N., Energy-Based Metrics for Safety Analysis of
General Aviation Operations, Journal of Aircraft. Vol. 54, No 6. November-December 2017 [119]
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2. Specific Potential Energy (SPE):

Specific Potential Energy is defined as the potential energy per unit weight of

the aircraft. It is given by:

SPE =
mgh

W
= h (2)

3. Specific Kinetic Energy (SKE):

Specific Kinetic Energy is defined as the kinetic energy per unit weight of the

aircraft. It is given by:

SKE =
1
2
mV 2

W
=
V 2

2g
(3)

4. Specific Total Energy Rate (STER):

Specific Total Energy Rate is defined as the rate of change of Specific Total

Energy. It is given by:

STER =
d(STE)

dt
= ḣ+

V × V̇
g

(4)

It is also called Specific Excess Power [24, 101] and can be alternatively repre-

sented as:

STER =
(T −D)V

W
= Ps (5)

Equation 4 is the energy rate from the aircraft kinematic point of view (alti-

tude and velocity), whereas Eq. 5 is from the discipline point of view (Propul-

sion/Thrust and Aerodynamics/Drag). This metric is perhaps the most im-

portant out of all those listed here due to its usage in multiple parts of this

dissertation.
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5. Specific Potential Energy Rate (SPER):

Specific Potential Energy Rate is defined as the rate of change of potential

energy and is given by:

SPER = ḣ = V sin γ (6)

6. Specific Kinetic Energy Rate (SKER):

Specific Kinetic Energy Rate is defined as the rate of change of kinetic energy

and is given by:

SKER =
d(V

2

2g
)

dt
=
V V̇

g
(7)

7. Potential Flight Path Angle (PFPA):

The Potential Flight Path Angle is the theoretical maximum flight path angle

that the aircraft can attain at the current throttle setting and configuration. It

is given by:

PFPA = γp = γ +
V̇

g
=
T −D
W

(8)

It is related to the specific total energy rate as:

γp =
STER

V
(9)

PFPA has been widely used in literature as an energy metric for cockpit displays.

Adami et al. [8] and Tadema et al. [145] have used PFPA in their cockpit

display concepts. Lambregts et al. [86] have used PFPA and PFPA-max in

their work on investigating use of full lateral and vertical control authority for

UAV conflict resolution. Lambregts [85] and Kurdjukov et al. [83] have used

PFPA in the formulation of the Total Energy Control System. PFPA has been
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used under the name Total Energy Angle by van den Hoven et al. [147] and

Amelink et al. [10] in the description of the Total Energy Based Perspective

Flight Path Display. PFPA can be considered as an important metric with

respect to the recoverability of the aircraft from certain conditions by rapidly

exchanging kinetic and potential energies.

8. Energy Rate Distribution (ERD):

Energy Rate Distribution is one of the new metrics defined in this dissertation.

It is given by:

ERD = sign

(
SKER

SPER

)
× exp

(
−|SKER
SPER

|
)

(10)

This metric provides an idea of how the energy (incoming or outgoing) is being

distributed among kinetic and potential energy reservoirs (refer Figure 25. It

can take values between negative and positive one. When the value is negative,

it means that one of the energies is increasing and the other is decreasing. A

value close to zero indicates kinetic energy rate is much higher than potential

energy rate and a value close to unity (positive or negative) vice versa.

9. Specific Total Energy Error (STEE):

Specific Total Energy Error is defined as the difference in specific total energy

in actual flight to that of a reference profile. It is given by:

STEE = (STE)act − (STE)ref = hact − href︸ ︷︷ ︸
SPE Error

+
V 2
act − V 2

ref

2g︸ ︷︷ ︸
SKE Error

(11)

This metric is very widely used for commercial aircraft, especially in descent

and landing where a reference energy profile is available. Williams et al. [152]

have used specific energy error to compare various descent trajectories. Jong et

al. [43] have used specific energy error as a metric in developing a planning and
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guidance concept for optimizing aircraft trajectories during descent. Amelink

et al. [10] have used total energy deviation and kinetic energy deviation in

the formulation of their Total Energy Based Perspective Flight Path Display.

Lambregts [87] has used it in his Energy Management Primary Flight Display

concept. This metric is very useful for defining deviations from a reference

trajectory when such a trajectory is available.

10. Specific Potential Energy Error (SPEE):

Specific Potential Energy Error is defined as the difference in specific potential

energy in actual flight to that of a reference profile. It is given by:

SPEE = (SPE)act − (SPE)ref = hact − href (12)

11. Specific Kinetic Energy Error (SKEE):

Specific Kinetic Energy Error is defined as the difference in specific kinetic

energy in actual flight to that of a reference profile. It is given by:

SKEE = (SKE)act − (SKE)ref =
V 2
act − V 2

ref

2g
(13)

12. Normalized Specific Energy Error (NSEE):

Normalized Specific Energy Error is the specific total energy error normalized

by a tolerance on the specific total energy error. It is given by:

NSEE =
(STE)act − (STE)ref

(STE)tol
(14)

This metric has been used by Gandhi et al. [64] in the development of their

“Energy Monitor” display concept. The tolerance in energy error (Etol) is up-

dated dynamically as the aircraft tries to follow a reference approach profile.

The authors have developed a crew alerting system which provides various cues

when the normalized error exceeds a certain threshold.
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13. Specific Total Energy Error Rate (STEER):

Specific Total Energy Error Rate (STEER) is one of the existing metrics that

has been modified to provide more meaningful insights. It is given by:

STEER = sign(STEE)× δ(STEE)

δt
(15)

The rate of change of specific total energy error is multiplied by the sign of the

error. Therefore, a negative value of STEER is always preferred as this will mean

that the error is being driven towards zero. While it is understood that STEER

will not always be zero, it is desirable to have this metric within reasonable

bounds. It should not be positive for extended periods of time which would

indicate that the current energy profile is deviating away from the reference

energy profile.

14. Energy Rate Efficiency (ERE):

Energy Rate Efficiency is a measure of how closely an aircraft is following the

commanded energy profile of an approach trajectory. It is given by:

ERE = ηSTER =
STERref

STERact

=
VrefW (γref +

˙Vref

g
)

Vact(T −D)
(16)

The Energy Rate Efficiency has been used by van den Hoven et al. [147] to

analyze approach trajectories. When this metric is equal to unity, the aircraft is

following the commanded trajectory exactly. A value higher than unity indicates

a deficit of total energy and value lower than 1 indicates excess total energy than

what is required by the approach profile. This metric does not yield meaningful

results when there is no ascent/descent or acceleration (such as steady level

flight). However, during approach and landing operations in GA, at many points

in time the actual total energy rate can be zero. This causes the energy rate

efficiency to have sharp peaks and even be undefined at some places (division
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by zero). Therefore, in this dissertation, this metric is modified by taking its

inverse. It is assumed that the reference profile will never have an actual total

energy rate equal to zero during approach and landing.

IERE =
STERact

STERref

=
Vact(T −D)

VredW (γref +
˙Vref

g
)

(17)

15. Maximum Potential Flight Path Angle:

Maximum Potential Flight Path Angle is the theoretical maximum flight path

angle that the aircraft can attain at the max thrust while maintaining current

speed and configuration. It is given by:

PFPAmax =
Tmax −D

W
(18)

16. Minimum Potential Flight Path Angle:

Minimum Potential Flight Path Angle is the theoretical minimum flight path

angle that the aircraft can attain at the idle thrust while maintaining current

speed and configuration. It is given by:

PFPAmin =
Tidle −D

W
(19)

17. Thrust Margin (TM):

The thrust margin metric indicates the margin existing between the current

thrust magnitude and the theoretical maximum thrust available at that flight

condition. It is given by:

TM = 1− T

Tmax

(20)

The thrust margin is an indicator of the amount of energy that can enter the

system. Operating at higher margin would mean that the aircraft can escape
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possible low-energy scenarios by the aggressive addition of energy. On the other

hand, a lower value of this margin would indicate that the capability to add

energy is lower. However, it should be noted that high thrust margin does not

necessarily indicate a safe flight condition, since it may also be the result of an

engine-out situation..

18. Energy Rate Margin (ERM):

Energy Rate Margin is another newly developed metric in this dissertation that

is defined as the ratio of the actual specific energy rate to the specific energy

rate using the theoretical maximum thrust value for the same configuration. It

is given by:

ERM =
W (γa + V̇a

g
)

Tmax −D
(21)

During approach and landing, the actual specific energy rate is expected to be

negative whereas the maximum specific energy rate will be positive. Therefore,

a small negative value (greater than -1) would indicate that the specific energy

rate is negative but can be made positive at the current configuration by in-

creasing the thrust. A value less than -1 would indicate that the specific energy

rate is negative and the aircraft does not have sufficient margin to make this

rate positive. A value greater than zero would indicate that the aircraft has a

positive specific energy rate instead of negative. The theoretical upper limit on

this metric is +1.

Similarly, during take off, both the actual and maximum specific energy rates are

expected to be positive. Therefore, a small positive value of this metric would

mean that the aircraft has the ability to increase the energy rate substantially.

A larger value (less than 1) would indicate a diminished ability to increase the

specific energy rate. A negative value would mean that the aircraft is losing

73



energy instead of gaining it during the take-off phase.

19. Energy Rate Demand (ERDm):

Energy Rate Demand is the maximum energy dissipation that the aircraft can

attain at the current speed and configuration. This is used when the aircraft is

descending. It is given by:

ERDm =
W (γc + V̇c

g
)

Tidle −D
Descending flight (22a)

ERDm =
W (γc + V̇c

g
)

Tmax −D
Ascending flight (22b)

When the Energy Rate Demand goes above unity, it indicates that the aircraft,

in its current configuration, cannot fly the commanded trajectory. Energy Rate

Demand has been used in literature by van den Hoven et al. [147] and Amelink

et al. [10]. It has also been used as a constraint by Vormer et al. [148] to

ascertain which profile can and cannot be flown by an aircraft during flexible

descent trajectory optimization.

All the metrics mentioned in this section are implemented in the current dissertation.

In the absence of a reference energy profile, for those metrics that require a reference

profile, a data-driven approach can be used to define nominal or reference energy

profiles using available data such as the approach presented in Puranik et al. [118]

and in the appendix. A summary of all implemented metrics, their formulae, and

data required for computation is included in Table 11 (Appendix A).
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4.3 Summary

Based on the observations in section 4 and the literature surveyed, the following over-

arching hypothesis for the first research question is proposed:

Hypothesis 1: Energy-based metrics such as those quantifying the energy state, rates

of change of energy, and their margins and deviations are useful metrics that corre-

late to safety margins and safe operations in GA and can be readily estimated from

recorded data.

The ability to estimate metrics using varying levels of flight data parameters is quan-

tified in the previous section. Varying levels of richness of data can be used for

evaluating different types of metrics which are usable across a heterogeneous fleet of

GA aircraft and operations. The relevance of energy metrics to safety is innate as the

execution of safe approach and landing as well as take-off is tied closely with manag-

ing the aircraft’s energy. In addition to this qualitative argument, Table 2 provides

a mapping of some common events or maneuvers in GA and their mapping to the

relevant energy metrics.

It is hypothesized that deviations in those metrics would be able to capture the

corresponding event to which they are mapped and would thus enable quantitative

safety assessments. Appendix D provides a table of different metrics and ability to

estimate them from recorded parameters. Therefore, the literature search provides

the justification and addresses part of the hypothesis and research question related to

their relevance. However, it does not, by itself, completely attest to the usefulness in a

retrospective safety analysis setting. This can be ascertained by using them in a safety

assessment framework and obtaining meaningful conclusions. This is addressed in the

next two sections where the metrics are used for identifying non-standard operations

in GA and are also used in calibrating GA aircraft performance models for use in
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Safety Event/Parameters Relevant Metrics

Unstabilized Approach SKE, SPE, STE, STER
Excess Vertical Speed SKE, SKER
Low RPM at Rotation TM, ERM
Airspeed SKE
Pitch Attitude SPER, ERD
Flap Angle at Lift-off STER
Bank Angle –
Lateral g-loads SKER, SPER
Glide slope deviation SPE, SPER
Centerline Deviation –
Vertical Speed SKER
Flap Position STER
Recoverability and Margins TM, PFPA-Max, ERD
Adherence to Prescribed Profiles MTEER, IERE

Table 2: Mapping of some events in take-off, approach, and landing to related energy
metrics

safety analysis.
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CHAPTER V

NON-STANDARD/ANOMALOUS OPERATIONS

(RESEARCH QUESTION 2)

Having identified energy-based metrics as viable candidates for safety analysis metrics

in GA operations, the next part of the research focuses on the methods that can be

used to identify non-standard or anomalous operations. This is aimed at answering

Research Question 2:

Research Question 2:

How can GA flight records be analyzed using energy metrics to automatically identify

nonstandard or anomalous operations without a priori knowledge of safety events?

It is noted that in the context of this dissertation, non-standard operations can refer

to a variety of things. It could refer to exceedances and events defined by operators

or regulatory bodies, deviation from standard operating procedures set by operators,

actions leading to incidents or accidents, adverse weather conditions, unique events

such as airshows, etc. These non-standard operations are not necessarily unsafe.

They simply represent a deviation from nominal sufficiently high enough that further

investigation might be warranted. In a data-driven quantitative safety assessment

environment, it is important to be able to identify non-standard behavior without

any prior knowledge. This enables handing the decision-maker or analyst with the

most relevant information for making judgments or proposing solutions.

Methods for identifying non-standard or anomalous operations are abundant in

literature within aviation as well as outside. Some of the relevant methods were
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surveyed earlier in the literature review section. Gavrilovski et al. [67] provided a

taxonomy of techniques from the data-mining and machine learning domain which

can and are applied to different problems in aviation safety. The present work focuses

on identifying non-standard operations from within routine operations data without

a priori information. This is a problem well-suited for the class of unsupervised and

semi-supervised techniques encompassed in the anomaly detection domain.

Background research revealed that anomaly detection techniques have shown great

potential for identifying safety-related issues without any prior knowledge of events.

Offline analysis of data offers the ability to analyze and discover something new or off-

nominal and gain a holistic understanding of events. Anomaly detection is defined

as – the task of obtaining patterns in data that do not conform to a well defined

notion of normal behavior [35]. Anomaly detection has been widely implemented

in a variety of domains generally with a high degree of success [35, 91]. Anomaly

detection is important because offline detection of these anomalies allows preventive

measures that can save lives whereas online detection of the anomalies is critical

for fault diagnosis. Anomalies can stem from various reasons, some of them could

be harmless such as faulty calibration and non-standard equipment/sensors whereas

others could have serious safety implication such as system malfunctions, incorrect

landing configuration etc. Identifying anomalies that are operationally significant and

can contribute to the implementation of proactive measures is the main aim of using

anomaly detection techniques on aviation data.

Unlike other applications of data mining or anomaly detection, aviation data is

typically not labeled. This means that there is no knowledge a priori as to which

flight records (if any) are actually anomalous. Also, there is no universal definition

for what constitutes an anomaly in this context. Therefore, unsupervised or semi-

supervised algorithms need to be used to identify anomalies. Chandola [34] looked at

the general anomaly detection problem for symbolic sequences and time series data.
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Identifying anomalies as outliers of a clustering algorithm is useful way of anomaly

detection as it allows the possibility of multiple standard patterns. Alternatively,

one-class learning algorithms can also be used for identifying outliers. There are a

number of ways in literature by which the “anomalousness” (or anomaly score) of

an outlier can be quantified. Some anomaly detection algorithms directly provide

an anomaly score while others use an external metric such as Local Outlier Factor

(LOF) [25] to provide the anomalousness. Campos et al. [31] have provided a review

of some of these scores using different data sets to quantify their relative performance.

In most cases, the performance of an anomaly score is dependent on the type of data.

It was identified here (and also seen in other work such as [89, 91, 99, 100]) that

there are two main types of anomalies observed in multi-variate time series data –

collective or flight-level anomalies and point or instantaneous anomalies. In flight-

level anomalies, an entire flight or phase of flight is abnormal or deviant. This type of

anomaly therefore can be typically defined only for well-defined phases of flight such

as take-off, approach, and landing. On the other hand, instantaneous anomalies refer

to a small subset or instant(s) within a flight that are abnormal and as such can be

defined in any phase of flight. Both types of anomalies are very important as they

correspond to different aspects of flight safety.

In general, different types of techniques are more effective in identifying different

types of anomalies [35]. Various ‘no free lunch’ theorems have been proved in literature

which state that for any algorithms or techniques, elevated performance over one class

of problems is offset by degraded performance over another class [154]. In the GA

flight safety domain, techniques that will have elevated performance and generalize

well within the GA fleet are desirable and their generalization to other classes of

problems is not necessarily of interest, especially since other applications such as

commercial aviation already have bespoke techniques and algorithms.

Some of the major hurdles in anomaly detection techniques include availability
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of actual data, computational cost, selection of appropriate methods, interpretation

of obtained anomalies, etc. In the work presented in this dissertation, availability

of flight data is assumed. On the other hand, the use of energy metrics as features

in anomaly detection will enable better interpretation of the identified anomalies as

they can be related to the energy state of the aircraft. Within the aviation safety

literature, several factors have been identified that can affect the choice of anomaly

detection technique. Table 5 lists some of the important factors and choices that an

analyst has. Depending on the specific problem at hand, these choices get limited

prior to the analysis.

Factor Choices

Type of Data Categorical, Discrete, Continuous
Features Used Raw Parameters, Derived Metrics
Types of Anomalies Detected Instantaneous, Flight Level, Contextual
Algorithm Supervision Supervised, Semi-supervised, Unsupervised
Fleet Heterogeneity Single aircraft Type, Multiple Aircraft Types

Table 3: Factors affecting choice of anomaly detection technique (those applied in
this dissertation are underlined)

Data obtained from GA operations consists of multi-variate time series of varying

duration. Because of the variability in data recording capabilities (categories 2–4), the

fidelity of data and the number of parameters obtained from different flights may not

necessarily be consistent. Almost all parameters recorded correspond to the outputs

or effects of different actions (pilot actions, weather, etc.) on the system. Due to the

lack of data corresponding to inputs or actions taken in the cockpit, it is typically

much harder to attribute causes while analyzing GA flight data.

Based on the observations in literature and the nature of the problem at hand the

following over-arching hypothesis is proposed for research question 2:
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Hypothesis 2: Using the defined energy metrics as features in a general anomaly de-

tection framework with appropriate techniques will enable the detection of both types

of anomalies.

In the second hypothesis mentioned above, the word enable is used in a specific con-

text. While the use of energy metrics as features is not a requirement for a general

anomaly detection framework, in this particular context, using the metrics results in

the possibility of a broad spectrum of data recorders, aircraft, and operations be-

ing included. Therefore, the generalizable metrics allow all the heterogeneity to be

included in a single framework and thus ‘enable’ identification of both types of anoma-

lies. A general anomaly detection framework as adapted for the current dissertation

is shown in Figure 26. The elements of this framework are consistent with other

anomaly detection applications such as those surveyed by Chandola et al. [35]. The

overall framework remains the same for identification of both types of anomalies, but

the components in each module are modified according to the problem requirements.

Figure 26: General framework for anomaly detection including the enumeration of
specific techniques utilized within this dissertation

There are two external inputs to the framework that are not usually present in the

anomaly detection framework from the literature surveyed – performance models and

reference profiles. Further details on performance models are provided in Chapter 6.

It was identified previously that obtaining additional information can enhance the
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effectiveness of the safety analysis task. Predictions provided by aircraft performance

models add this value to the analysis. Reference profiles are nominal variations of

energy metrics over certain phases of flight, which can be used to calculate certain

energy metrics in those phases of flight. In some cases, these profiles are readily

available. For example: the altitude profile that aircraft try to follow during final

approach and landing consists of a nominal (3◦) glide slope. This corresponds to a

certain variation of the specific potential energy profile. On the other hand, when

such profiles are not as easily available, they can be calculated using a data-driven

approach by averaging over a large number of flight records to get nominal profiles

which can be used as a reference. This approach has been elaborated in prior work

(Puranik et al. [118]) and the associated calculations and logic for reference profiles

and other derived parameters are provided in Appendix C. The following sections will

elaborate on appropriate techniques for each of the two types of anomalies and the

corresponding analyses performed.

It should be noted that, throughout this dissertation, the terms “anomalous” or

“abnormal flights” refer to flights that differ significantly from the majority in terms

of certain critical parameters and metrics. This does not necessarily mean that the

flights are inherently unsafe. Whereas some of these may be benign flights that sim-

ply followed different procedures, others could point to potential safety issues, which

are of interest to safety analysts. The identification of these emergent outliers is

one of the aims of this work. The main purpose of identifying these anomalies is

the retrospective safety analysis of flight data from heterogeneous GA operations.

The methodology presented in this research can aid industry experts and GA oper-

ators in better understanding and identifying unsafe practices. It could be used to

improve flight training and instruction for student pilots, as well as deployed on a

large database of flights, such as the National General Aviation Flight Information

Database (NGAFID), to understand trends and behaviors.
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5.1 Flight-Level Anomalies – Research Question 2.1

The first type of anomaly considered in this dissertation is flight-level anomaly. The

associated research sub-question is stated as follows:1

Research Question 2.1:

How can a general anomaly detection framework be modified to identify flight-level

anomalies in GA take-off, approach and landing operations using energy metrics?

For identifying flight-level anomalies, well-defined phases of flight are considered. Due

to the heterogeneity in operations in GA, sometimes the phases of flight are not very

easy to define. Goblet et al. [68] have provided definitions for common phases of

flight in GA operations and their identification based on recorded parameters. The

releveant definitions from this paper have been reproduced in the Appendix C. In GA

operations it was noted earlier that a large percentage of the total accidents occurs

during take-off, approach and landing phases [6]. These two phases can also be defined

in a relatively straightforward manner. Therefore, in this dissertation identification of

flight-level anomalies is focused mainly on these two phases of flight. The subsequent

sections outline the details of each of the steps of the anomaly detection framework

in Figure 26 as applied to identification of flight-level anomalies. The choices made

for each step and the modifications or improvements made for GA flight data include

the core of the developed methodology for this research sub-question.

1The research described in this section is documented in the following publications:

– Puranik, T. G., and Mavris, D. N., Anomaly Detection in General-Aviation Operations using
Energy Metics and Flight-Data Records, in Journal of Aerospace Information Systems, Vol. 15, No.
1, pp 22–35, January 2018, doi:10.2514/1.I010582. [120]

– Puranik, T. G., Jimenez, H., and Mavris, D., Utilizing Energy Metrics and Clustering Techniques
to Identify Anomalous General Aviation Operations, in AIAA SciTech Forum, 2017. Paper No.
AIAA 2017-0789, doi:10.2514/6.2017-0789 [122]
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Step 1 (Flight Data):

The flight data obtained from the DFDR (Digital Flight Data Recorder) are a mul-

tivariate time series, whose lengths typically vary between records due to varying

duration of flight. The number of parameters can vary from around 20 (in GA op-

erations) to thousands (commercial operations). These parameters are recorded at a

specific frequency (e.g., once per one second interval). Typically this contains data

from routine operations such as personal flying, pilot training, etc. The experience

level of GA pilots is highly variable, ranging from just a few hours of experience to

thousands of hours of flying. The aircraft typically have different make/model/tail

number but generally belong to the same normal category as defined by the FAA [2].

Each data record contains approximately 30 continuous parameters related to the

state, attitude, basic engine information, environmental conditions, GPS, and others

(categories 2–4 from the previous section). Typically, due to the presence of only

continuous data in the set, feature generation and pre-processing are streamlined and

made uniform across all parameters, and metrics and special techniques requiring

the handling of heterogeneous (binary, continuous, categorical, etc.) data are not

required. The parts of the flight data record that correspond to takeoff or approach

and landing are extracted for further analysis.

Step 2 (Pre-processing):

In all techniques in literature, the raw data obtained from flights is pre-processed to

obtain data suitable for anomaly detection. Noise that may be present in the original

data is smoothed using a simple moving average filter to remove spikes that are caused

due to noisy sensor readings. Following that, relevant phases of flight are extracted

from the flight data – take-off, approach and landing. It is noted that in GA flight

data records, the exact touchdown point of the aircraft on the runway is not recorded
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(in commercial DFDR it is recorded as a binary parameter Weight-on-Wheels). Pre-

vious work done on flight data analysis and extracting derived parameters from flight

records (Puranik et al. [118]) addressed this issue by using altitude difference between

successive points in the flight data along with combinations of other parameters to

obtain the touchdown point on the runway. The process of obtaining the touchdown

point along with a demonstration of the implementation is provided in Appendix C.

Step 3 (Feature Generation):

In anomaly detection algorithms for flight-level anomalies, the flight data records or

phases of flight are characterized using features. These features are typically derived

from the data obtained from the flight record and account for the temporal aspect

of data. Anomaly detection algorithms then compare features of different flights to

each other to find anomalies. There are two important requirements on these feature

vectors – Firstly, the feature vector generated must have the same dimensions for all

flights. Secondly, the corresponding elements of the vectors of different flights should

be comparable. These two requirements give rise to multiple ways of mapping the

multivariate time series to a single vector.

Das et al. [41] use the technique of Symbolic Aggregate ApproXimation (SAX) [92]

to convert a continuous time series of parameters during approach into discrete sym-

bols by averaging the data over a number of seconds into a single symbol. An ad-

vantage of this type of approach is that approach profiles of varying duration can be

incorporated as the total number of symbols is fixed. However, approximating contin-

uous time series by discrete symbols usually results in loss of information due to down

sampling. Also, this approach works well when the time series associated with the

phase of flight is of a large duration (which is not the case for GA approach and land-

ing or take-off). Another approach used by Li et al. [89] is to anchor the flight data

record at certain significant points (example – application of take-off power in take-off
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and touchdown on runway in approach and landing). From the anchor point, the mul-

tivariate time series in take-off are re-sampled at a fixed temporal interval whereas in

approach and landing, they are re-sampled based on the distance remaining to touch-

down. The reason for re-sampling in approach and landing based on distance rather

than time is that many of the procedures in this phase are distance specific. This

approach is advantageous because each feature vector thus obtained is of the same

dimension without down-sampling or loss of information. A potential disadvantage

of this approach is that this requires the ground-track distance of the approach and

landing phase to be approximately similar in each case. Other approaches to fea-

ture generation include Piecewise Aggregate Approximation (PAA) which is similar

to SAX except that the down-sampled series is not converted to a series of symbols.

This approach would suffer from similar issues to the SAX approach.

In the current dissertation, the anchor point of take-off phase is the application of

take-off power, while for the approach and landing it is the touchdown point on the

runway. Since both the touchdown point and ground track distance remaining are not

explicitly recorded in GA flight data, they are estimated using different techniques

shown in Appendix C. The detailed approach followed in this dissertation for feature

generation is shown in Figure 27.

Figure 27: Process of feature vector generation from flight data
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The reparametrized time series for the phase of flight in consideration in used to

evaluate the energy metrics at each point. Therefore, each flight record has a fixed

number of points at which each energy metric is evaluated. This ensures that the

dimensionality of each feature vector will be exactly the same. The feature vector

for each flight record can be represented by a single vector by concatenating the

contribution from each metric as:

f =

m(1)
1 ,m

(1)
2 , ...,m(1)

p︸ ︷︷ ︸
Metric 1

,m
(2)
1 ,m

(2)
2 , ...,m(2)

p︸ ︷︷ ︸
Metric 2

, ...,m
(k)
1 ,m

(k)
2 , ...,m(k)

p︸ ︷︷ ︸
Metric k

 (23)

where mi
j is the value of the ith metric at the jth distance-based location or time-

stamp in the approach and landing or take-off. Thus, the jth element of each vector

is now comparable to every other vector. Even though all the feature vectors have

the same length, different metrics have different magnitudes. Therefore, each metric

is normalized such that it has a zero mean and unit variance. This is achieved using

z-score normalization. Let m
(i)
j,1,m

(i)
j,2, ...m

(i)
j,n be the values of a particular metric i for

all n flights at a particular distance j from the runway. The z-score normalized values

are given by:

m
(i)
j,1 =

m
(i)
j,1 −m

(i)
j

σ(m
(i)
j,1...n)

(24)

where σ denotes the standard deviation of observations. The feature vectors obtained

can contain hundreds of dimensions. However, while identifying outliers and clusters,

the variability is typically embedded in a smaller number of dimensions. Principal

Component Analysis (PCA) is a linear transformation that is used to transform data

into a new orthogonal coordinate system [74]. The coordinates in the new system

are ranked in descending order of the amount of embedded information (variance)

they contain. Dimensionality reduction is achieved by only retaining the first few

components that explain majority of the variance (in this method the number is
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chosen such that 99% of the variance is captured). If the reduced dimensional vector

contains p elements, each flight record can now be represented as:

f ’ =
[
m′1,m

′
2, ...,m

′
p

]
(25)

The dimensionality reduction comes at the cost of losing the physical meaning of the

components of the vectors thus obtained. Dimensionality reduction techniques such

as PCA become intractable when the size of the data set becomes larger [11,89]. The

number of energy metrics is typically much smaller than the number of parameters

recorded (even in GA flight records). Therefore, this step may be skipped for this ap-

proach if the size of the data set becomes intractable. It is noted that, while PCA or

other dimensionality reduction techniques may speed up computational time, there

should be minimal to no loss of information regarding which flights are identified

as anomalous. To that end, a comparison is made of the set of anomalous flights

obtained with and without PCA for the same feature vector choice. Details of this

comparison are provided in Appendix E.

Step 4 (Anomaly Detection):

The next step in the framework is to use the feature vectors thus generated in an

anomaly detection algorithm. A number of anomaly detection algorithms have been

proposed in the literature for different types of problems. Various considerations

need to be taken into account when selecting the most appropriate anomaly detection

techniques. Since the data obtained from routine operations is not labeled, there is no

prior knowledge of anomalies in the flight data (if there exist any at all). Therefore,

only semi-supervised or unsupervised learning techniques may be utilized. However,

even with these techniques, the number of anomalies is expected to be a small fraction

of all the flight data records. This information should be utilized in tuning the

parameters of the algorithm. In the literature, classification (in the form of one-class
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learning) [40, 41, 99] and clustering [18, 27, 89, 99] have been utilized extensively for

anomaly detection in flight data records. In the current work, both clustering and

classification have been used together to identify anomalous flight data records.

In clustering-based approaches, a clustering algorithm is applied on the feature

vectors using a function to compare the dissimilarity between feature vectors. One

of the most common functions used in clustering literature is the euclidean distance.

Let the feature vectors corresponding to two flight records be f1 = [m1,m2, ...,mp]

and f2 = [n1, n2, ..., np]. Then, the euclidean distance between f1 and f2 is given as:

D(f1, f2) =

√√√√ p∑
i=1

(mi − ni)2 (26)

Other measures of distance or dissimilarity may also be used. In typical GA op-

erations, the number of clusters present in the data is difficult to predict a priori.

Therefore, algorithms which automatically identify the number of clusters (such as

density-based clustering) are preferred over those which require specification of the

number of clusters (such as k-means, k-medoids etc.) In the current work, the pop-

ular density-based clustering algorithm DBSCAN is used [50]. Given a set of points

(flight data records), DBSCAN groups together instances that are closely packed to-

gether while marking points in low-density regions as outliers. A cluster forms when

there are at least a minimum number of points (hereafter called MinPts) within a

user specified threshold (hereafter called ε) of a given point. Clusters grow when

additional points satisfy the density criterion specified by the algorithm until all the

points have been allotted to a cluster or labeled as outliers.

There are two parameters that need to be supplied to DBSCAN - ε and MinPts.

ε depends heavily on the similarity function used, normalization of data, and other

factors. In many cases, rather than providing ε, its value is varied from the minimum

distance observed among all flights in the data set to the maximum distance observed.

Instead of ε, the user provides the proportion of flights that will be marked as outliers.
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This number has a direct correlation with the value of ε but is more intuitive to the

user of the methodology. MinPts on the other hand, depends on the homogeneity of

operations and how similar flights are to each other in terms of the features chosen.

Typically, MinPts has a less significant effect on the algorithm than ε if it is within

a nominal range of values [50,89].

The main advantage of DBSCAN is that it has the ability to automatically de-

termine the number of clusters and also detect outliers (anomalies) based on a user

specified threshold. One of the drawbacks of DBSCAN is that its performance can

suffer if there are multiple clusters with varying densities. Another drawback is that

the algorithm needs to calculate the pairwise distance between all flights which can

be computationally intensive. Also, in order to get a specific proportion of flights as

outliers, the algorithm needs to try out different values of ε. Despite these limitations,

the algorithm’s most important quality of automatically determining the number of

clusters will be utilized in this work. The algorithm provided by Ester et al. [50] is

implemented in MATLAB for use in this work.

For classification-based approaches, a one-class classification model is trained as-

suming the available data set as nominal. One of the most powerful algorithms that

is widely used is one-class Support Vector Machines (SVM) [136]. SVMs compare

feature vectors using functions known as kernels. Kernel functions map pairs of fea-

ture vectors to the similarity between those vectors, with a value of 1 indicating

maximum similarity and 0 indicating no similarity. Das et al. [41] used normalized

Longest Common Subsequence (nLCS) kernel on discrete data and SAX-discretized

data (which converts a continuous time series of parameters into discrete symbols by

averaging the data over a number of seconds into a single symbol). The limitations of

this approach were highlighted previously in the feature generation step. Therefore,

in this work, Radial Basis Function (RBF) kernel, one of the most popular kernel

functions, is used. Let the feature vectors corresponding to two flight records be
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f1 = [m1,m2, ...,mp] and f2 = [n1, n2, ..., np]. The RBF kernel is given by:

K(f1, f2) = exp

(
−||(f1 − f2)||

2σ2

)
(27)

σ is a parameter that defines the scale of the classifier. The one-class SVM then

uses this kernel function to find a decision boundary (by solving an optimization

problem) to detect outliers. If the decision function predicts a negative label for a

given test point z, then it is classified as an outlier. One of the main advantages

of training a SVM model is that upon training, the prediction of anomalies is much

quicker as it only has to use a fraction of the training points (called support vectors)

in the prediction stage. The balance between model complexity and over-fitting can

be managed by varying the proportion of points retained as support vectors. Details

of the optimization problem and SVM implementation can be found in Schölkopf et

al [136]. In the current work, the one-class SVM implementation in MATLAB is

utilized and tuned for the GA flight data [98].

Figure 28: Use of anomaly detection algorithms in this dissertation

Figure 28 shows how the algorithms are used in the current work for identifying flight-

level anomalies. Compared to clustering methods, model-based methods like classifi-

cation can be computationally more efficient in the detection stage by not requiring

comparison of the new flight data record with each existing record in the database.

In the present work, both DBSCAN clustering and one-class SVM are utilized. On an

existing set of flight data records, DBSCAN is used to identify the approximate num-

ber of clusters in the existing data set. Each flight data record in the data set is then

assumed to have a label of the cluster to which it belongs and this information is used

to train a support vector machine model for each cluster identified. The trained SVM

model(s) are then used to identify outliers from each class. The anomalousness of any
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existing or new flight data records can thus be directly obtained using the SVM score.

Using both algorithms in this manner provides a consensus and enables combining

the strengths of both algorithms while trying to overcome their individual weaknesses.

Step 5 (Post-processing):

Once the anomaly detection algorithm has identified flight level anomalies, the post-

processing step involves visualizing them and organizing according to their severity.

One of the main advantages of using large amounts of data is that statistical infer-

ences can be drawn more reliably. Visualizing the performance of each flight record

compared to every other flight can provide valuable insights for training pilots. Since

each energy metric provides information about a different dimension of the safety

space, plots of the energy metrics can provide a more holistic view of the safety state.

Combinations of energy metrics going outside permissible bounds could be poten-

tially more dangerous than the exceedance of individual metrics/parameters. The

anomalousness of each flight data record can be visualized using anomaly scores such

as LOF [25] for clustering algorithms, whereas for one-class classification, the sup-

port vector machine model provides an anomaly score for each record which can be

visualized for this purpose. In the present work, the anomaly score provided by each

one-class SVM is utilized for post-processing and visualization.
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5.2 Experiment 2.1

The steps outlined in the previous section enable building the methodology for iden-

tification of flight-level anomalies in GA operations. In order to demonstrate the

implementation of the methodology and address the research sub-question 2.1, the

experiment described in this section is performed.

5.2.1 Purpose of Experiment:

The following are identified as the main objectives of this numerical experiment:

1. Demonstrate the usage of energy metrics in a retrospective safety assessment

setting, in this case identification of flight-level anomalies

2. Demonstrate automatic identification of flight-level anomalies in take-off, ap-

proach and landing phases

3. Demonstrate identification of known anomalous flights inserted into the data-set

using a flight simulation model

4. Provide a flight data record anomaly-severity score that can help prioritize

critical anomalies compared to benign ones

5. Demonstrate flexibility in developed methodology by allowing identification of

anomalies at different levels of significance based on available data-set

In order to facilitate validation efforts listed in point 3, artificial flight data records

using a flight simulation model are generated. These simulated records are flown by

a private pilot and consist of three approaches and landings corresponding to (1) a

nominal approach (2) an unstabilized approach with poor energy management and a

(3) high approach. Simulations (2),(3) will enable identification of known anomalies,

whereas application of the algorithm to simulation (1) will verify whether it is indeed

classified as normal. Similar validation has previously been done by Chu et al. [37]
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at NASA using a flight simulator for commercial aircraft operations. This method of

using simulated flight data is useful because routine operations are not expected to

contain a lot of unsafe situations as all data is from flights that have landed safely.

Using simulated data enables performing some amount of validation while working

within cost and safety constraints.

5.2.2 Experiment Setup:

The setup of this experiment consists of around three thousand flight data records

obtained from two different flight schools and collected during routine operations.

The data is from two different types of aircraft (Cessna 172S and Piper Archer) op-

erated at multiple GA airports. There are multiple tail-numbers of each aircraft type

within the data-set. The data is pre-processed using the techniques developed in this

methodology and additional derived parameters are obtained using techniques men-

tioned in Appendix C. The features used in this experiment consist of the complete

set of energy metrics surveyed earlier. Anomaly detection using a limited number of

metrics and their effect on results is explored in a later experiment.

5.2.3 Results:

The first step in flight-level anomaly detection is identifying the approximate number

of clusters that are present in the data set under consideration. One of the reasons for

using energy metrics rather than raw parameters is that the metrics are expected to

serve as an objective currency across different aircraft. Therefore, in GA operations

using similar aircraft such as those under consideration, it is expected that using

energy metrics will yield a single main cluster of flights along with outliers.

5.2.3.1 Clustering Results

Figure 29 shows the results obtained from density-based clustering in the approach

and landing phases using (a) Energy Metrics and (b) Raw Parameters.
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(a) Landing - Energy Metrics (b) Landing - Raw Parameters

Figure 29: Sensitivity of clustering algorithm to tuning parameters and number of
unique clusters obtained

It is observed that, for all values of MinPts, as the value of ε increases from

the minimum to the maximum value, the proportion of flights that are identified as

outliers steadily decreases. This is expected as more points will be included in the

clusters when the cluster radius is increased. The curves for different values of MinPts

eventually collapse almost into a single curve as ε is increased further. For the type of

data dealt with in aviation safety, the proportion of anomalous or abnormal flights is

expected to be very low (as seen from the low accident and incident rates per million

flight hours, even in GA). Therefore, at the values of ε that correspond to low outlier

percentages, any value of MinPts from the set chosen gives almost equivalent results.

This important observation leads to the conclusion that the value of MinPts can be

set to a default of ten for the purpose of this work.

The second set of curves (red) from Figure 29 corresponds to the number of unique

clusters at each setting of ε and MinPts. The trend observed is that, as the value

of ε increases, the number of clusters settles at one after the initial oscillation. One

reason for this oscillation is the nature of the DBSCAN algorithm itself, in particular,

the manner in which it starts forming clusters. At lower values of the neighborhood
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(a) Take-off - Energy Metrics (b) Take-off - Raw Parameters

Figure 30: Sensitivity of clustering algorithm to tuning parameters and number of
unique clusters obtained

distance, individual points in dense neighborhoods start their own cluster by becom-

ing ‘core’ points. As the distance increases, clusters consolidate until a new core

has enough points around itself to start its own cluster. This process of new cluster

formation and consolidation causes the initial oscillations, as seen in Figure 29. How-

ever, at the outlier significance levels of interest (≈ 5% or less), there is only a single

cluster present among the current set of flight data records as noted by the annota-

tion in the figures. It is understood that this may change as more flights are added

to the set from other aircraft/ airports, etc. Therefore, the clustering algorithm can

be periodically rerun to update this and select the appropriate number of clusters.

For the one-class SVM, all the flights will be given a default label of one prior to

fitting the model (since the clustering experiment has indicated that there is roughly

a single cluster present among the data). The outliers from this SVM will thus be

the anomalies of interest identified for further inspection.

It is noted that in the clustering parameter sensitivity experiment, higher fluctua-

tion is observed in the earlier parts for the raw parameter feature vector usage. This

is because, there is expected to be more variability in the raw parameters even for

such similar aircraft. However, at the significance levels of interest, this variability
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tapers away to form a single major cluster. Similar to approach and landing, the

clustering experiment can also be performed for the take-off phase using the same

methodology. The results from application of DBSCAN clustering in take-off phase

are shown in Figure 30.

The results from the take-off phase follow trends mostly similar to those of ap-

proach and landing with the exception that the number of clusters remains more than

one for more neighborhood distance options than approach and landing. However,

once again, at the significance levels of interest, a single cluster forms when using

energy metrics and raw parameters.

5.2.3.2 Score Comparison

Once the approximate number of clusters is identified for both take-off and approach

and landing, a one-class SVM can be trained for each cluster identified. Any new

flight data that needs to be analyzed can then be evaluated for belonging to any of

these defined clusters. SVM for both phases of flight are trained and the outlier scores

for each flight are evaluated. The outlier score obtained using support vector machine

can be directly used to predict anomalous flights or a different measure can be utilized.

LOF [25] is one of the popular alternative method of obtaining the outlier score in a

data-set by directly comparing the distance between different flights using a defined

measure (e.g. Euclidean distance). Therefore, a comparative assessment is provided

between the LOF score and SVM score for quantifying the severity of the anomaly.

While the SVM score provides a clear boundary between normal and anomalous

(values less than zero are anomalous and greater than zero are normal), the LOF

score works in a different manner. A higher LOF score indicates an outlier whereas

scores closer to unity are considered normal. Figure 31 provides a comparison of the

LOF and SVM anomaly scores obtained for all flights in the take-off and approach

and landing phases.
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(a) Take-off (b) Approach and Landing

Figure 31: Scatter-plot showing comparison of LOF outlier score and anomaly score
obtained from SVM for take-off and approach-and-landing phases

As is evident from the figure, there is a high negative correlation between the two

ways of scoring anomalies as is expected. The anomalous flight records (red dots)

from SVM also score high on the LOF anomaly score. As the SVM score decreases

(more anomalous), the LOF score increases for all flights. However, as the LOF score

does not provide a natural boundary for anomalies like the SVM score it introduces

subjectivity in choosing the cut-off threshold. The addition of any new flight data to

the existing set would require evaluating its distance from each flight which can add

to the computational burden as the size of the data set increases. SVM score on the

other hand does not require a lot of computational resources in the prediction phase

as a linear (or non-linear) model has already been trained. Therefore, while either

of these scoring systems may be used, the score directly obtained from the SVM is

utilized in this work. For the results of the remainder of the experiment, one section

each for take-off and approach-and-landing each are presented.
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5.2.3.3 Approach and Landing Phase

After training the SVM model, it can be used for prediction of anomalies within the

current data set. The approximate level of outliers can be specified while fitting the

model. When new data becomes available, the trained model can be directly used for

prediction. The anomaly scores for all flights in the approach and landing phase using

SVM are shown in Figure 32. The horizontal dashed line at score of zero represents

the boundary between normal and anomalous flights. The scores for a specific set of

flights are annotated in the figure. These include two simulated anomalous flights,

one simulated nominal flight, two sample anomalous flights from data set with low

anomaly score and potential safety implications.

Figure 32: Anomaly scores in approach and landing phase for all the flights in the
data set

As is evident from the negative scores, the algorithm is correctly able to identify

the two known abnormal simulated flights (unstabilized and high) as anomalous.

Similarly, it is also able to put the simulated nominal flight data record into the

nominal category. This indicates that both abnormal and normal simulated flights
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inserted into the data set are identified as such. In the absence of actual known

anomalous flights, this enables verification of the fact that the algorithm is able

to identify known anomalies. The scores obtained for each flight enable automatic

identification of flight-level anomalies in the approach and landing phases of flight as

negative scores indicate anomalous flights. The magnitudes of the scores indicated

in Figure 32 are indicative of the severity of the anomaly as compared to all flights

in the data set. Assuming that the entire data set is used in training the SVM,

the approximate proportion of outliers expected in it can be specified a-priori. This

provides a flexibility to the analyst to set outlier significance level and manage the

number of anomalies identified. The anomalies identified using the SVM can be

post-processed in a number of ways. Plotting the variation of various energy metrics

and parameters during the phase of flight can help understand why the flight was

considered an anomaly and compare how it performed relative to the entire data set.

Two sample anomalies are post-processed in this section to provide further insight

and corroboration of their identification as anomalies. For post-processing the same

style of plots is presented for energy metrics, parameters, and (in later sections)

instantaneous anomaly probability. In each figure, the dark grey bands represent 50th

percentile of all flight records and the light grey bands represent the 95th percentile

of all flight records. The solid black line represents the specific flight data under

consideration. Overlaying it on the percentile bands enables comparative assessment

of how a particular flight performed at each instant compared to every other flight in

the data set. The distance remaining to the displaced runway threshold in each case is

displayed on the x-axis. Since each flight lands at a different point on the runway, the

approach phase is not considered beyond the runway threshold. However, the effect

of different types of approaches (anomalous or not) on the touchdown performance

are important and are explored later in chapter 7.
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Case: Anomaly from flight data

One of the anomalous flights from the data set is visualized in Figures 33 and 34. The

variation of some critical energy metrics and flight parameters during the approach-

and-landing phase for the anomalous flight, along with the bands for nominal variation

within the data set, can be seen in the figures. From the energy metrics, it can be

seen that the specific potential energy around the 2.5 miles remaining mark starts

deviating away from the nominal bands. The specific total energy rate, which should

be negative or zero in approach and landing goes over zero for a patch (between 2.5

and 2 miles remaining), so the airplane is gaining energy instead of losing it. The

modified total energy error rate is positive in this region indicating that the gain in

energy is not required to correct the airplane’s energy profile. At the end of this

region, a precipitous drop in kinetic energy (along with a high kinetic energy rate

magnitude) attempts to correct the flight profile. Due to the deviation of several

such metrics from nominal, the flight data record gets identified as anomalous.

Similar to the energy metrics, Figure 34 shows the variation of some raw flight

parameters captured by the recorder. The altitude and true airspeed profiles follow

similar trends to their normalized versions in the energy metrics (potential and ki-

netic energy). The pitch and vertical speed profiles indicate deviations from normal

variation in the region where the energy metrics also demonstrated deviations. Simi-

larly, because the airplane is too high, the RPM drops (power is reduced) for the end

part of the approach. The roll angle variation towards the end of the approach in-

dicates high bank angles at the end which indicate some elements of an unstabilized

approach. Refering to the definitions of exceedances in appendix B, the flight has

several level 1 (≈ 27) and level 2 (≈ 19) exceedances.

Case: Simulated Anomalous Approach (High and Fast)

Due to the lack of actually unsafe operations expected from routine operations data
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Figure 33: Variation of energy metrics during approach and landing for anomalous
flight data record

such as the data used in this work, simulated flight data records with artificial flight-

level anomalies were inserted into the data set. One such simulated anomalous ap-

proach and landing is visualized in Figures 35 and 36. This flight data was flown by a
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Figure 34: Variation of raw flight parameters during approach and landing for anoma-
lous flight data record

private pilot instructed to fly a high and fast approach. As expected, the score of this

flight data record is in the anomalous region. The variation of energy metrics seen in
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Figure 35: Variation of energy metrics during simulated anomalous approach and
landing

Figure 35 indicates the large deviations from normal values for all three energy com-

ponents (potential, kinetic, and total). Because of the persistent high values (kinetic

and potential), abrupt corrections are made towards the end of the approach prior
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Figure 36: Variation of raw flight parameters during simulated approach and landing

to landing. Therefore large negative values for energy rates result in the end of the

approach towards the landing. The pilot is able to correct the kinetic energy profile

but still ends up crossing the runway threshold at a higher altitude than normal.
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The variation of raw flight data parameters visualized in Figure 36 shows adher-

ence to the normal regions for vertical speed, pitch, and roll for most part of the

approach other than the end where the rapid corrections are made prior to touch-

down. Similar to the previous flight, RPM drops towards the end (power reduced)

to correct for the high altitude profile. This flight data record also contains a some

level 1 (≈ 2) and high number of level 2 (≈ 26) exceedances. This case of simulated

anomaly is able to demonstrate the ability of the methodology to capture known

unsafe events successfully in the absence of actual unsafe data.

5.2.3.4 Take-off Phase

For the take-off phase of flight, a separate SVM model is trained and used to predict

the anomaly scores for each flight. The scores for all flights in the take-off phase using

SVM are shown in Figure 37.

Figure 37: Anomaly scores in take-off phase for all the flights in the data set

The first difference evident for the take-off phase compared to the approach and

landing is that the magnitude of the scores for anomalies is typically less severe. This

is a trend that is expected because take-off typically has more uniformity in operations
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compared to approach. For example, approaches can be straight-in or through a

traffic pattern. Higher variation of power settings is expected for approach phase than

take-off. Since there isn’t as much variation in take-off, the anomalies identified for

take-off are not expected to be as obvious or as significantly deviating from nominal

as approach phase unless it was an actual anomaly or a training flight with some

demonstration. The following two cases describe sample anomalies obtained during

the take-off phase along with the visualization of their energy metrics and flight

parameters similar to the approach phase. It is noted that the x-axis in this case is

time instead of distance because the anchor point in the take-off phase is application

of take-off power. Each take-off is compared for the first two minutes after application

of take-off power as significant variation in flight profiles is observed beyond that point

to draw any meaningful conclusions.

Case: Sample take-off anomaly 1

Figures 38 and 39 show visualization of energy metrics and raw flight parameters

for a sample take-off anomaly. The variation of energy metrics indicates deviation

in the specific potential energy metric as well as the specific potential energy rate.

The take-off is executed at higher rate of climb compared to other flights from the

data set. Thus, the kinetic energy in the initial stages of the climb out is lower than

usual as a steep climb is executed. The specific potential energy rate is also higher

towards the latter part of the climb causing the potential energy profile to deviate

further away from the nominal variation.

Turning attention to the raw flight parameters, it is seen that the pitch and

vertical speed are higher initially, and the true airspeed is lower than the best climb

speed. Vertical speeds exceed nominal variations (sometimes even above 1000 fpm)

throughout the climb. The variation of most other parameters, however, is within

normal bounds. It is noted that a lightly-loaded airplane with a powerful engine can
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Figure 38: Variation of energy metrics during during take-off for sample anomalous
flight data record 1

climb faster and/or sharper, especially on a cold day.
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Figure 39: Variation of raw flight parameters during take-off for sample anomalous
flight data record 1
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Case: Sample take-off anomaly 2

Figure 40: Variation of energy metrics during during take-off for sample anomalous
flight data record 2

A different example of a take-off anomaly is visualized in Figures 40 and 41. The
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Figure 41: Variation of raw flight parameters during take-off for sample anomalous
flight data record 2

variation of energy metrics for this take-off indicates deviations for several parameters.

The specific kinetic energy is much higher than most flights in the data set almost

throughout the take-off. The specific potential energy on the other hand is within
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bounds for half the time and subsequently is much lower than majority of the flights.

The specific total energy rate during the latter part of the take-off is lower (and even

below zero). This indicates that the flight is losing energy instead of gaining it. A

very high thrust margin for large part indicates that the aircraft is generating small

proportion of the thrust it could generate in the latter part of the take-off.

The variation of raw flight parameters corroborates the findings from the energy

metrics. Vertical speed, pitch, altitude, and true airspeed deviations are observed for

the flight. The RPM falls to a very low value before returning to normal towards

the end of the take-off indicating power being cut-off (possible for an engine-out

simulation).

5.2.4 Summary

This experiment demonstrated the automatic identification of flight-level anomalies in

take-off, approach and landing phases. Scores provided by SVM algorithm enable the

severity of identified anomalies to be ranked. A natural boundary (at zero) between

normal and anomalous flights is provided by the algorithm’s score. The identification

of known unsafe and anomalous flight data records inserted in the data set using

a flight simulation model provided some validation in the absence of actual unsafe

operational data. Similarly, a nominal approach inserted using the simulation model

is also identified as normal. The demonstration of sample anomalies in the take-off

and approach phases enables focusing safety assessment and training efforts on the

important flights when a large amount of flight data is available. The reparametriza-

tion and alignment of flight records in both phases allows for comparison of different

flights at the same (or similar) instants during their respective phases. This allows

comparisons of data points that are inherently similar to each other and thus allows

easier detection of deviations. Finally, visualization of energy metric and parameter
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plots for anomalous flights enable the automatic identification, isolation, and under-

standing of anomalies and how they deviate from normal operations. The results

from this experiment thus fulfill the purpose of the experiment and more broadly,

that of research question 2.1.
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5.3 Instantaneous Anomalies – Research Question 2.2

The second type of anomaly considered in this dissertation is instantaneous anomaly.

The associated research sub-question is stated as follows:2

Research Question 2.2:

How can the general anomaly detection framework be modified to identify instanta-

neous anomalies in GA operations using energy metrics?

The main limitations of flight level anomaly detection techniques is that only well-

defined phases of flight are considered. Also, the techniques aim to identify those

flight data records that significantly deviate from nominal operations over a long

period of time. However, it is not necessary that the whole data record be anomalous

– only a few seconds or small part of the data record may be anomalous. Techniques

for identifying instantaneous anomalies address some of these issues.

In many of the approaches in literature each point is monitored as a standalone

independent sample and therefore, the temporal aspect of anomalous sub-sequences

may be lost [77, 90]. This is also the case in FDM event analysis, where parameter

values exceeding certain thresholds are flagged as exceedances without necessarily

considering their context [4]. Moreover, in many anomaly detection applications

for time series (including flight-level anomalies seen in Sec. 5.1) the multivariate

time series is converted into a univariate series or a high dimensional vector thereby

causing some information to be lost. In some cases of monitoring, the time-series

is only compared to reference thresholds (such as in exceedance detection) or data

2The research described in this section is documented in the following publication:

– Puranik, T.G., and Mavris, D.N., Identifying Instantaneous Anomalies in General Aviation Op-
erations, in 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. Paper
No: AIAA-2017-3779. doi:10.2514/6.2017-3779 [123]
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within the same time-series losing out on potential insights that can be gained from

similar data available. The existing anomaly detection techniques deal with data

in which no relationship is assumed among the data points which is not necessarily

true for flight parameters at each point. In some fields other than aviation safety,

sliding-window based approaches are used along with SAX approximation to identify

anomalous sub-sequences [80]. However the assumption in their approach is that the

time series are stationary (i.e. the mean value does not change over time). These

assumptions are not necessarily true for most parameters in flight data. Moreover,

they are demonstrated only for univariate time series.

The methodology outlined in this subsection aims to address these limitations

while continuing to remain within the same general framework outlined earlier in

Figure 26. The adaptation of the general framework for instantaneous anomalies is

elaborated here.

Step 1 (Flight Data):

The flight data obtained from DFDR is a multivariate time series, usually of a differ-

ent length. The parameters are recorded at a specific frequency (e.g., once per one

second interval). The characteristics and limitations of the flight data used in this

step are similar to those for flight-level anomalies mentioned earlier in Sec. 5.1.

Step 2 (Pre-processing):

Sensor noise that may be present in the original data is smoothed using a simple

moving average filter. Care is taken to not over-smooth the data as it would result in

the loss of finer features in the data. In addition to basic noise removal similar to flight-

level anomaly detection, the main pre-processing required for instantaneous anomaly

detection is breakdown of the time-series into windows. One of the shortcomings of

existing techniques identified earlier was that information about the temporal aspect
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of instantaneous anomalies may be lost when data points are treated as stand-alone

samples. It is of interest to capture the variation of key metrics before and after

the sample under consideration. Therefore, to explicitly address this shortcoming,

the present work proposes a window-based pre-processing for the data similar to that

undertaken in other domains [35,80]. The multivariate time-series is broken into fixed

length sub-sequences or windows. Features at each data point use information from

the data within the sliding-window and are treated as a unit of analysis. The window

length is the only parameter needed for pre-processing in this type of approach.

Figure 42: Notional depiction of sliding window across a metric

For each instant, the data contained within the entire window is utilized rather

than just the instant under consideration. As noted in literature, the main advan-

tage of window-based techniques is that they need only one intuitive parameter (the

window length) as opposed to others that can require 3-7 parameters [80]. There

are various factors that can affect the choice of length of the window such as total

duration of the time series, typical response time of the system, computational con-

cerns, etc. Due to all these factors, there is no consensus in the literature as to the

appropriate length of the window [34]. In the present work, five seconds (two seconds

before and after the current point, except at the end of the record) is used as the win-

dow length. An important distinction between existing window-based techniques in

other domains and the application in this dissertation is that window-based anomaly

detection typically tries to find anomalous windows in a time series based on the data
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in that time series itself. On the other hand, the current method aims to also leverage

the additional information available from the rest of the data set.

Step 3 (Feature Generation):

Similar to Sec. 5.1, features used for anomaly detection are generated from the en-

ergy metrics evaluated at each point in the window. The overall process of feature

generation is shown in Figure 43. The feature generation step is perhaps the most

important step in any anomaly detection application because the success or failure

of the application depends upon the use of appropriate features [35]. Usually, these

features are derived from the manipulation of the raw data collected. This can be as

simple as using the raw data directly, to more complex steps involving calculation of

new metrics using a combination of the recorded data and external information.

Figure 43: Process of feature vector generation for each window

Since this analysis is not performed for any specific phase of flight, the energy met-

rics which compare deviation from reference profiles for a particular phase of flight

cannot be used in this approach. In order to obtain features of each window, the

values of energy metrics at the current point along with their variability within the

window is calculated. This allows the temporal aspect of instantaneous anomalies to

be preserved while detecting anomalies. A similar window-based approach was used
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by Amidan and Ferryman [11], however, their approach consists of fitting a linear re-

gression model to each window and identifying anomalies based on the mathematical

signature generated by the coefficients of the regression. In the current approach, the

original value of the energy metric is retained as one of the features and additional

dimensions corresponding to the variability of the metric within the window are gen-

erated. Specifically, the range of the metric values within the small window is used

as a measure of its variability. Thus, for example, if the window size is 5 seconds,

and there are k metrics being used, then the feature vector for that window will con-

tain 2× k values (the value of each metric (m) and its variability (v)). Equation 28

shows the feature vector for each window which is then subsequently used in anomaly

detection.

f =

m(1), v(1)︸ ︷︷ ︸
Metric 1

,m(2), v(2)︸ ︷︷ ︸
Metric 2

, . . . ,m(k), v(k)︸ ︷︷ ︸
Metric k

 (28)

Each feature vector is thus generated by concatenating the value of all the energy

metrics at that point along with its variability within the sliding window. Thus, each

point in the time series is transformed into a corresponding feature vector which can

then be used for anomaly detection.

Step 4 (Anomaly Detection):

The next step is to use the features generated for each point within an anomaly

detection algorithm. It is noted previously that most anomaly detection techniques for

instantaneous anomalies did not deal with multivariate data explicitly and converted

it into univariate data prior to analysis. However, it is desirable to use algorithms that

deal with multivariate data directly. Therefore, a Gaussian Mixture Model (GMM) is

used for clustering and anomaly detection. The GMM can cluster normal operations

together and help identify anomalies along with their probability based on the data
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set. One of the main advantages of using a GMM is that it does operate directly on

the multivariate series and does not transform it into a univariate series. The other

advantage is that GMM allows multiple standard operations to simultaneously exist.

This is very important for algorithms that are not specific to a particular phase of

flight as the variation of parameters and energy metrics during two different phases

of flight is expected to be quite different.

A GMM is a parametric probability density function represented as a weighted

sum of Gaussian component densities. Each component in the mixture is a type of

standard observation or behavior of the system (example, one component for each

phase of flight). The number of components, k, in the GMM determines number of

sub-populations or clusters. The relation between predictor variables (or features) is

captured in the form of a covariance matrix Σ. If each member of the population

(in this case each feature vector) is an m-dimensional vector, then the GMM with k

components and a covariance matrix Σ is given by

p(x|λ) =
k∑

i=1

wig(x|µi,Σi) (29)

where g(x|µi,Σi) indicates each of the components of the mixture model which is a

multivariate gaussian model and wi indicates the weighing of the component. The

trained GMM is completely defined by the three parameters (wi, µi,Σi) and the num-

ber of components k. The parameters of the GMM are typically obtained via an

Expectation-Maximization (EM) algorithm using the data set available [46]. This

technique is utilized in this dissertation. However, there are a few other important

decisions that need to be made regarding the nature of the model before the EM al-

gorithm can be used. These are (i) the nature of covariance matrix (full or diagonal),

(ii) whether parameters among gaussian components are shared or not, and (iii) the

number of components k. Due to the large computational cost of full covariance ma-

trices, diagonal covariance matrix is used and the parameters are not shared among
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different gaussian components in order to maximize the goodness of fit of the obtained

models. Finally, the number of components can be set based on prior knowledge or

it can be obtained using statistical metrics. Information theoretic metrics such as

Akaike Information Criterion (AIC) [137] or Bayesian Information Criterion (BIC)

have been used to identify the optimal number of components in the past [90]. These

information theoretic metrics try to provide a balance between model complexity and

overfitting. On the other hand, many internal clustering validation measures (such

as Calinski-Harabasz index [29], silhouette criterion, Davies Bouldin index [42], etc.)

rely on information within the data to provide a measure of the goodness of a clus-

tering structure. They are typically based on two important criteria – compactness

and separation. Objects within same clusters (or components) are closely related or

similar to each other (compactness) and how distinct clusters (or components) are

from each other [93]. In the present methodology, the Calinski-Harabasz (CH) index

has been used to determine the optimal number of components. The number of com-

ponents is progressively increased and the C-H index is measured. The number of

components with the highest value of the index is chosen. While this particular met-

ric is chosen in the current implementation, it is understood that alternative metrics

may also be utilized for this purpose.

The advantage of using GMM for clustering is that it can provide statistical in-

ferences about the underlying distributions. Therefore, once the required GMM has

been trained using the existing data, it can be used to detect outliers or anoma-

lies among the dataset. Using the values of the parameters obtained for the GMM

(wi, µi,Σi) the posterior probabilities of any component p for an observation x can

then be calculated as:

p(x ∈ p) = g(x|µp,Σp) (30)

The estimated probability density function for each observation is then obtained as
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a sum over all components of the component density at that observation times the

component probability.

Step 5 (Post-processing):

In the post-processing step for instantaneous anomalies, using the estimated proba-

bility density function of each observation, a profile of the probability density over

the entire duration of the flight as shown in Figure 44 can then be constructed.

Using appropriate thresholds for the probability enables identification of anomalous

sub-sequences or instantaneous anomalies. This threshold can be varied to obtain

different number of instantaneous anomalies. The safety analyst can then decide

this threshold based on the trade-off between workload and missed detection. Once

instantaneous anomalies are identified, plots of variation of flight parameters and en-

ergy metrics can be used to visualize and understand the reason for identification of

this anomaly. This flexibility enables the analyst to focus attention on a limited num-

ber of important anomalies as opposed to a large untenable data set. The identified

anomalies can also be compared against traditional exceedance events such as those

defined in Table 12 in the appendix.

Figure 44: Notional depiction of probability density at each point during a flight
record and the detection threshold
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5.4 Experiment 2.2

The steps outlined in the previous sub-section enable building the methodology for

identification of instantaneous anomalies in GA operations. In order to demonstrate

the implementation of the methodology and address the research sub-question 2.2,

the numerical experiment described in this section is performed. While instantaneous

anomalies can be identified in all phases of flight, it is of interest to focus on take-

off and approach-and-landing phases as these phases have maximum proportion of

accidents. It is also possible to then compare instantaneous anomalies with flight-level

anomalies and exceedance events in these phases to provide a comparative evaluation.

Therefore, this section primarily focuses on these two phases with the understanding

that the technique can be applied in the exact same manner for other phases.

5.4.1 Purpose of Experiment

The following are identified as the main objectives of this numerical experiment:

1. Demonstrate the usage of energy metrics in a retrospective safety assessment

setting, in this case identification of instantaneous anomalies

2. Demonstrate automatic identification of instantaneous anomalies without a pri-

ori input

3. Provide a continuous probability of anomaly for any flight record as opposed to

existing discrete metrics like exceedances

4. Demonstrate flexibility in identification of instantaneous anomalies with user-

defined thresholds for anomalies

The artificial anomalies inserted in the previous section are also included in this

section and the instances of unstabilized approach within these flights are examined

for instantaneous anomalies. A detailed comparison between instantaneous anomalies

and exceedance events is provided later in Chapter 7.
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5.4.2 Parameters

One of the important parameters in instantaneous anomaly detection identified in the

previous section is the length of the window used for pre-processing. The definition of

how small an interval of time qualifies as instantaneous is not always clear in literature.

For example, there is a chance that gusty/turbulent conditions can result in a lot of

flags for instantaneous anomalies. An airplane caught in a thermal/downdraft/wind-

shear, etc. may exhibit rapid changes in airspeed or vertical speed. Instantaneous

anomalies should be able to identify these conditions while being insensitive to ran-

dom (unavoidable) noise in sensor measurements. Introducing the variability of the

metric in a window helps avoid some of these false flags due to noise in the data set.

Additionally, since the Gaussian Mixture Model used in this dissertation is able to

cluster and provide a probability score for each point which is a continuous function

over the flight record, sudden gusts/noise will not be able to perturb this measure as

easily.

5.4.3 Experiment Setup

The setup of this experiment is similar to the previous experiment. It consists of

around three thousand flight data records obtained from two different flight schools

collected during routine operations. The data is from two different types of aircraft

(Cessna 172S and Piper Archer) operated at multiple GA airports. There are multiple

aircraft of each type (different tail numbers) within the data-set. The data is pre-

processed using the techniques developed in this methodology and additional derived

parameters are obtained using techniques mentioned in Appendix C. The features

used in this experiment consist of the complete set of energy metrics surveyed earlier.

5.4.4 Results

The first step in instantaneous anomaly detection is identifying the approximate num-

ber of components that will be used in the Gaussian Mixture Model. As noted in the
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previous section, this number is typically obtained using sensitivity analysis based on

some information-theoretic indices and depends upon the data set that is available.

Identifying the appropriate number of components using sensitivity analysis can be

accomplished using different internal clustering criteria. The different internal clus-

tering criteria use the distance between different points (usually Euclidean distance)

to provide a measure of quality. This measure is based on various factors like total

dispersion, within-cluster similarity, and between-cluster dissimilarity. With internal

clustering criteria rugged topography might be more important in decision-making

than the magnitude of the criterion itself. The choice of which criterion to use is

dependent on the nature of the data set available and its properties. Definitions of

various indices and their applicability is provided by Desgraupes [47]. In the current

work, different indices are explored and the one with the clearest landscape of the

plot is chosen for making the decision on the number of clusters. This criterion is the

Callinski-Harabascz index (C-H index). C-H index is most suitable for cases where

clusters are more or less spherical and close to normally distributed..

For this step, the GMM is trained with steadily increasing number of components

and the C-H index is measured for each trained model. The model with components

that gives the highest C-H index is the one displaying the best internal clustering

structure and is chosen for this application. This sensitivity analysis is performed for

both the take-off and approach-and-landing phases. The results obtained are shown

in Figure 45.

Based on this sensitivity analysis, the number of components chosen for the GMM

for both takeoff and approach-and-landing cases is four as this number has the high-

est value of the C-H index. The mean and variance of each gaussian component and

the mixing probabilities for the trained GMM with four components are then used

in further analysis. These parameters are then utilized to calculate the posterior

probability density of being nominal at each point in the appropriate phase of flight
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(a) Take-off (b) Approach and Landing

Figure 45: C-H index sensitivity with increasing number of components for different
phases of flight

using equation 30. Once a posterior probability is obtained for each point, different

thresholds can be set of detecting instantaneous anomalies. Instantaneous anomalies

are identified as those points for which the probability falls below the selected thresh-

old. The detection threshold for anomalies can be varied depending on the trade-off

between missed detection and excessive analysis workload. Since the data is obtained

from routine operations, there is no ‘ground truth’ available to compare anomalies,

however, it is expected that the number of anomalies (if any) will be a small fraction

of the total data. The next two sub-sections demonstrate the probability plots, pa-

rameter and energy metric plots for a few sample instantaneous anomalies identified

in the take-off and approach and landing phases. It is noted that while this technique

to identify anomalies is applicable for all phases of flight, these two phases of flight

provide ease in visualizing the data of a particular flight compared to all others in the

data set as the time-series/distance-series can be aligned in these phases (in addition

to the fact that these are the phases with higher accident and incident rates). It

also provides the opportunity to compare the two different types of anomalies with
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each other (presented later in Chapter 7). The following sub-sections provide specific

examples of the anomalies identified in approach and take-off.

5.4.4.1 Approach and Landing

Case: Flight with two instantaneous anomalous windows

Figure 46: Probability density at each point during approach and landing for a flight
record with instantaneous anomaly and the detection thresholds

In this section, an example of an instantaneous anomaly during approach and

landing phase identified from the data set is presented. Figure 46 shows the varia-

tion of the probability density as a function of the distance remaining to the runway

threshold for the flight record. The probability density is depicted as a natural log-

arithm of the actual density due to the low values typically observed with so many

components in the GMM model and the amount of data in the set. Higher values of

the probability indicate that the particular point was normal when compared to the

entire data set. Lower values indicate abnormalities at that instant or instants. The

blue and red colored lines in the figure indicate respectively the different thresholds

for anomaly detection (0.05% and 0.1%). A point with a probability below the blue

dotted line has a probability lower than 0.1% of all the points in the data set. Sim-

ilarly, a point below the red dotted line has a probability lower than 0.05 % of all
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Figure 47: Variation of energy metrics during approach and landing for a flight
record with instantaneous anomalies

the points in the data set. The presented instantaneous anomalies in Figure 46 are

detected under both thresholds as it has a precipitous drop in probability density in

the regions of the anomaly. This representation of the anomaly allows for focusing

on the specific section of the flight record where the anomaly occurs and the severity
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Figure 48: Variation of flight parameters during approach and landing for a flight
record with instantaneous anomalies

based on the probability score. It can be further analyzed by visualizing the energy

metrics and flight parameter plots in this window and comparing them to all other

flight records as well as exceedance events.

Figure 47 shows the variation of the energy metrics for the flight record under

128



consideration. In the first anomalous window, there is a large negative specific total

energy rate where the high and fast approach is sought to be corrected. Large changes

are observed over multiple metrics. On the other hand, in the second anomalous win-

dow, the kinetic energy has fallen below the nominal variation and is being rapidly

corrected at the expense of potential energy. The changes are not as sharp as the pre-

vious window, hence the probability value for this window is slightly better than the

other one. In terms of flight parameters, the first window has unusual vertical speeds

(in excess of 1,000 ft/min rate of descent) and a drop in the RPM and airspeed as

well. On the other hand, the second window exhibits fluctuations in true airspeed and

altitude, in addition to the roll angle reaching 20 degrees. Looking at the exceedances

defined in the appendix and focusing on the regions of instantaneous anomalies, it is

observed that the first anomalous window of seven points has one level-1 exceedance

and four level-2 exceedances. On the other hand, the second anomalous window of

five points has zero level-1 and five level-2 exceedances.

Case: Flight with one instantaneous anomalous window

Figure 49: Probability density at each point during approach and landing for a flight
record with instantaneous anomaly and the detection thresholds
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Figure 50: Variation of energy metrics during approach and landing for a flight
record with instantaneous anomalies

In this section, a flight data record with a single instantaneous anomaly window is

presented. Figure 49 shows the variation of the probability density as a function of

the distance remaining to the runway threshold for the flight record. The variation of

probability indicates a flight with nominal variation for most parts of the flight other
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Figure 51: Variation of flight parameters during approach and landing for a flight
record with instantaneous anomalies

than the window identified. The anomaly is identified under both detection thresholds

mentioned in the previous section. Figure 50 represents the variation of the energy

metrics for the flight with a single instantaneous anomalous window. The figure

clearly indicates fluctuations in several metrics during the instantaneous anomaly,
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notably, potential, kinetic energies, and kinetic energy rate. The profiles indicate a

quick recovery to the nominal variations for these and other metrics after the small

instantaneous window. Visualizing the raw flight parameters for this flight record it

is evident that the RPM suddenly drops to well below its previous value and in order

to maintain the altitude profile, the pitch angle is raised to a high value. Vertical

speed also becomes greater than zero in this phase which is unusual for approach

and landing. On a different note, the high kinetic energy and true airspeed all the

way through to the end of approach indicate that the flight landed very fast and may

have been a landing with no flaps. For this particular flight record, flap position is

recorded in the data set and this hypothesis is confirmed as the flap position remains

zero throughout the approach and landing. Upon examining the exceedances for this

flight record, it is observed that of the fourteen points in the instantaneous anomaly,

there are two level-1 exceedances and nine level-2 exceedances.

Artificial Anomaly

Prior to exploring instantaneous anomalies in the take-off phase, it is of interest to

revisit the artificial flight-level anomaly inserted in the data-set earlier. The prob-

ability density for this flight record is shown in Figure 52. As is evident from the

figure, while the flight record displayed a flight-level anomaly, it does not meet the

threshold for instantaneous anomalies and therefore indicates that the corrections

applied to correct the flight path were gradual enough to not get captured as instan-

taneous anomalies. The region where the corrections are applied (near the end of the

approach) does display a drop in the probability density below nominal levels, but

not precipitous enough to also be an instantaneous anomaly. Detailed analysis of this

kind in the relationship between flight-level and instantaneous anomalies is provided

subsequently in Chapter 7.
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Figure 52: Probability density at each point during approach and landing for a
simulated flight record with flight-level anomaly and the detection thresholds

5.4.4.2 Take-off instantaneous anomaly

Instantaneous anomalies identified in the take-off phase can be analyzed and visual-

ized using probability plots and metrics variations. Similar to flight-level anomalies in

take-off, the probabilities of anomaly are lower for instantaneous anomalies in take-off

compared to approach and landing due to higher homogeneity.

Similarly, as is evident later in Figures 53 and 56 the initial parts of the take-off

phase have a higher overall probability than the remaining sections. One of the rea-

sons for this is that this part of the take-off has much higher homogeneity than even

the rest of take-off. This is attributed to the fact that all take-off phases in the initial

part are characterized by high power, increasing speeds (and kinetic energy), altitude

gain (positive potential energy rate), etc. These similar conditions cause the cluster

to be tightly knit and subsequent high probabilities.

Case: Flight with one instantaneous anomalous window
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Figure 53: Probability density at each point during take-off for a flight record with
instantaneous anomaly and the detection thresholds

Figure 53 shows the variation of probability density at each point during the take-off

phase for the flight record under consideration. It is observed that the instantaneous

anomaly occurs in the initial part of the take-off phase where there is a large drop

in probability density. Exploring the variation of energy metrics during this flight in

Figure 54 it is observed that during the anomalous window, the potential and kinetic

energy rates display fluctuations out of nominal bounds. The potential energy rises

faster than nominal in the initial part which is being sought to be corrected during the

window. The variation of raw flight parameters shown in Figure 55 paints a similar

picture. The altitude is leveled off by rapid reduction in pitch to gain some airspeed

but it results in a negative vertical speed that causes the window to be detected as

anomalous.
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Figure 54: Variation of energy metrics during take-off for a flight record with instan-
taneous anomaly
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Figure 55: Variation of flight parameters during take-off for a flight record with
instantaneous anomaly
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Figure 56: Probability density at each point during take-off for a flight record with
instantaneous anomalies and the detection thresholds

Case: Flight with two instantaneous anomalous windows

The second example of instantaneous anomaly in take-off phase is demonstrated in

Figure 58. As observed from the figure, this flight contains two anomalous windows

in the take-off phase with low probability scores.

The visualization of energy metrics variation is shown in Figure 57. In the first

anomalous window, there is a large drop in the kinetic energy and a highly negative

kinetic energy rate. The total energy rate is also negative in this part indicating that

the airplane is losing energy rather than gaining it. The very high thrust margin

jump in this window indicates a decrease in the thrust being produced possibly due

to power being cut off. The visualization of raw parameters shown in Figure 58.

As expected, there is a precipitous drop in RPM at the beginning of the anomalous

window accompanied by a drop in true airspeed. It is interesting to note that other

parameters including pitch and vertical speed remain high while the speed is decreas-

ing indicating that the airplane is creeping closer to its stall margin due to the high

pitch and reducing airspeed.
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Figure 57: Variation of energy metrics during take-off for a flight record with instan-
taneous anomalies

In the second anomalous window, the airplane recovers to the nominal variation

of energy profiles by trading the potential energy for kinetic energy and reduction

of thrust margin (meaning producing closer to maximum thrust). The variation of

parameters also provides information about negative vertical speed in this phase in
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Figure 58: Variation of flight parameters during take-off for a flight record with
instantaneous anomalies

order to recover the airspeed. Being the take-off phase, negative vertical speeds fall

outside the nominal variations. If the aircraft re-entered the pattern for another

landing, negative vertical speeds would be expected, but the variation of the roll

angle suggests against this and therefore, this could be a safety issue or a simulated
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safety event.

It is noted here in the second example that the second instantaneous anomalous

window resulted because the airplane is attempting to recover from the effects seen

in the first anomalous window. However, the algorithm does not have the ability to

differentiate between the two. The variation of metrics in this window is abnormal

for this stage of take-off and therefore it gets identified as an anomaly.

5.4.5 Summary

The experiment presented in this section outlines the application of a novel method for

identifying instantaneous anomalies in GA flight data. This method utilized energy-

based metrics as features in an anomaly detection framework. A sliding-window based

pre-processing technique is formulated to ensure that the temporal aspect of features

is captured. A mixture of gaussian models is trained using the available flight data

for cluster analysis and outlier detection. Multivariate series are explicitly treated in

GMM and it also allows for multiple standard operations which explicitly addresses

some of the limitations identified previously.

This experiment demonstrated the application and usefulness of energy metrics for

automatically identifying instantaneous anomalies in flight data. The main advantage

of using these methods is that the expert review process is cut down due to the

specific windows identified. The probability density function provides a convenient

metric to distill and focus on points or specific regions of interest within the flight.

It also allows dynamic thresholds to be placed by subject-matter-experts which can

enable striking a balance between missed detection (too stringent thresholds) and

excessively high anomalies (too loose thresholds). The results from this experiment

and the demonstration of flights with instantaneous anomalies in both take-off and

approach and landing thus fulfill the purpose of the experiment and more broadly

that of research question 2.2.
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5.5 Experiment 2.3 (Generalization)

In order to further test the capabilities of the methodology, two types of general-

ization scenarios are explored. These scenarios will enable testing of the flight-level

anomaly detection methodology for variability in flight data recorder capabilities and

the ability to train models which can predict anomalies in data not used in training.

The results demonstrated in this section are for the approach and landing phase as

very similar trends are observed for the take-off phase.

5.5.1 FDR Capabilities

Earlier sections have outlined the development of the flight-level anomaly detection

methodology as well as the experiment to demonstrate their implementation. In this

sub-section, an important question regarding limitation of the methodology due to

flight data recorder capabilities is addressed.

5.5.1.1 Purpose of Experiment

Which anomalous flight data records can be identified using the developed methods in

the presence of decreasing flight data recorder parameter availability?

5.5.1.2 Experiment Setup

In this scenario, effect of variability in flight data recorder capabilities on the flight-

level anomalies detected is measured. GA FDRs can have varying data recording

capabilities and it is desired that data obtained from multiple types of recorders be

utilized in the same unified environment. In order to facilitate this, the defined energy

metrics are divided into three types of feature vectors based on increasingly fewer

data recorder requirements. This is achieved by omitting additional parameters in

the feature vector options to indicate less-sophisticated recorder options. The exact

parameters that are included can be seen in Table 15 in the appendix. The flight

level anomaly detection algorithm is then run using each feature vector (in addition

141



to not using energy metrics at all - Feature Vector 1 in Table 15) to compare resulting

anomalous flights obtained. In each case, the top anomalous flights are selected from

the entire data set of around three thousand flight records. The total amount of

overlap in the anomalous flights is then obtained to identify how many flight records

get missed when limited information is available or when energy metrics are not used

at all. Since there is no truth value to compare against, it is desired that the set of

flights identified as anomalous is largely invariant with respect to the feature vectors

employed.

5.5.1.3 Results

The overlap of anomalous flights among the different feature vector options identified

by the methodology is shown in Figures 59 and 60. The two figures represent the

overlap at two different significance levels (3% and 5%)

Figure 59: Overlap at 3 % outlier significance level

At the 3% significance level, 102 anomalies are identified among the data whereas
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Figure 60: Overlap at 5 % outlier significance level

for the 5% significance level, 170 anomalies are identified. Pre-determining the pro-

portion of anomalies this way ensures that while using each type of feature vector

the same number of anomalies are obtained. The overlap is shaded darker for higher

number of flights. A few interesting trends are apparent from the figure. Firstly,

there is a fair amount of overlap among the different feature vector options for both

significance levels. The most significant overlap of anomalies is common to all fea-

ture vector approaches (≈ 58% for the 3% significance level and ≈ 52% for the 5%

significance level). This set is not only observed in all the approaches but is also the

set with the worst anomaly scores across all feature vector options. Therefore, the

most significant anomalies observed in the existing data set are captured by energy

metrics from all levels of sophistication as well as raw flight parameters.

The next observation is related to different feature vectors obtained from energy
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metrics (2,3,4). The overlap of anomalous flights obtained from energy-metrics fea-

ture vectors is ≈ 75% for both the 3% and 5% significance levels. Therefore, even with

limited amount of information available for evaluating energy metrics, the method-

ology is able to recover 75% of the same anomalies. This implies that even if flight

data records with limited amount of parameters are included in the data set, there is

a good probability of identifying anomalous ones (especially those with high anomaly

scores) among these flights. Another important observation from the figures is that

there is a set of flights (≈ 16% in both) that are identified as anomalous by the

energy metrics approach alone. These flights are identified as anomalous using the

extra capabilities provided by predictive models and corresponding metrics defined.

It is noted that there are some flights that do not get recognized with energy

metrics but do get recognized with flight parameters (≈ 30% of the records for both

significance levels in FV 1 section). The anomalies detected by FV 1 only correspond

to unusual variations of parameters that are not explicitly used in the energy-metric

definitions [e.g., roll angle, latitude, longitude, heading, track, fuel quantity, oil tem-

perature, cylinder-head temperature (CHT), etc.]. The anomalies detected by FV 1

only can be of different types: flights that land at a different runway/airport (anoma-

lous due to latitude, longitude, track, etc.); flights that follow different procedures

(to enter the traffic pattern for instance); and flights that have abnormalities in other

parameters not used in energy metrics (oil temperature, CHT, etc.). While these

types of flights differ in terms of their parameter variations, it does not necessarily

indicate deviations in terms of their energy metrics and therefore do not get identified

as anomalous in the energy metrics based approach. However, even for identifying

anomalies that are significant for safety analysis, the recording capability for these ad-

ditional parameters needs to be available for all the aircraft (which, as argued earlier,

it is not). Therefore, if the necessary data is available from the flight data record, it is

possible to use FV1 to complement the demonstrated energy metrics based approach,
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to further increase the probability of detecting truly anomalous events.

Finally, for each feature vector, there are a few stray flights which get identified as

anomalous which can be considered as a consequence of the algorithm forcing a fixed

number of total anomalous flights to be identified in each case. The main appeals of

the energy-metric approach (FVs 2-4) are the requirement of a parsimonious set of

parameters, (relative) invariance to the size (weight) of the aircraft, and applicability

to multiple airports/runways.

5.5.2 Model Generalization

Apart from data recorder limitations, it is also important to gauge the generalization

capability of the SVM itself on this type of problem. SVMs have been shown to be

powerful algorithms for classification, however, as with any other machine learning

algorithm, their performance can suffer if the parameters are tuned too much to the

available data (resulting in the phenomenon known as ‘overfitting’ in the machine

learning community).

5.5.2.1 Purpose of Experiment

Does a support vector machine model trained on a subset of an existing data set predict

the same anomalies that would be predicted had the entire data set been used to train

the model?

This situation can arise in deployment of this methodology when the entire data-set

may not be available to any operator for generating the model or when the models

generated on a data set need to be used for identifying anomalies for a different data-

set where the data cannot be shared but the trained model can be. In these situations

it is useful to know how well the methodology and models can generalize.
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5.5.2.2 Experiment Setup

Typically, cross validation is the technique used in classification problems to test how

well a technique will generalize to an independent data set. One of the common im-

plementations of cross validation is k-fold cross validation [129]. In this technique,

the data set is partitioned into k distinct equal sized sets. One of the sets is held

back for validation and the model is trained on the remaining k-1 sets. This pro-

cess is repeated k times until each set has been used exactly once for validation.

However, cross-validation typically used in classification problems cannot be used in

the same way for a one-class learning problem as there are no truth values available

to compare the performance of the algorithm on the validation set. Using existing

benchmarks such as exceedance detection would limit the algorithms to only identify

known anomalies and hinder its potential for discovering anomalies that are not al-

ready defined in the exceedance set. Therefore, in this dissertation, a slightly different

approach is used.

The ability of the algorithm to identify anomalous flights using only a subset

of the total available flight records is obtained. For this purpose, progressively lower

numbers of flights are chosen to train the model and the ability of the trained model to

identify the same anomalous flights as that identified by the full data set is evaluated.

In each case, a random subset of the flights is chosen to train the model and this

trained model is used to predict anomalies on the entire data set. Since the smaller

subset can be chosen in many different ways, the SVM algorithm is run multiple times

at each setting and the results for overlap of anomalous flights are averaged.

5.5.2.3 Results

It can be seen from Figure 61 that when progressively lower number of flights are

used to train the model, the overlap of anomalous flights decreases slightly from

100% (full data set used in training) to around 92% (10% flights used in training).
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Figure 61: Generalization capability of trained one-class SVM during approach and
landing

This trend is seen across different outlier significance levels indicating that whatever

the overall proportion of anomalies assumed in the data set, using a smaller set of

data to train the model does not significantly reduce the ability to identify anomalies.

This shows that the ability of the model to capture important features of anomalous

flights is robust and it can generalize well to situations where the trained model is to

be deployed on a different set without sharing the flight data itself.

5.5.3 Summary

This experiment has demonstrated the generalization capability of the developed

methodology in two different scenarios. While limitations imposed by the flight data

recorder capabilities are more restrictive than the limitations of SVM model general-

ization, in both cases a reasonable level of capability is still retained when the specific
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restrictions of each scenario are imposed. The three experiments described in this

chapter enable addressing research question 2. It is reiterated that while the anoma-

lies are automatically identified by the methodology developed in this work, they are

not necessarily unsafe flights. The goal of the anomaly detection framework is to serve

as the first step in the retrospective safety analysis process. Thereafter, the review of

the identified anomalies by subject-matter experts or safety analysts will complete the

safety assessment process and result in conclusions regarding unsafe events. The goal

of this dissertation, however, is to demonstrate techniques pertaining to the former

step, and not the latter.
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CHAPTER VI

MODEL CALIBRATION (RESEARCH QUESTION 3)

The retrospective safety analysis pursued in this dissertation depends on availability of

reasonable performance models. However, using performance models created by fairly

simple methods are subject to uncertainty and error. Therefore, a formal technique

for calibrating these models to known performance data can improve their predictive

value and enable analyses for multiple aircraft.

6.1 Motivation for Model Calibration

The section provides motivation for use of performance models to gain predictive

capabilities in retrospective safety assessment, existing models, and limitations.

6.1.1 Performance Model Uses

The development and use of performance models is ubiquitous in a broad range of per-

formance studies. One of the main advantages of using performance models in safety

analysis tasks is the ability to use recorded data and predict unrecorded quantities

of interest. For example, accurate predictions of thrust and drag utilized with the

kinetic and potential energy rates from flight data may enable inference regarding flap

usage in flight. This is a very important piece of information that may be utilized in

retrospective safety analysis to identify incorrectly configured approach and landings

etc. Similarly, accurate estimation of thrust and drag enables the calculation of some

of the energy metrics identified earlier in Figure 24. The quality of results obtained

from anomaly detection techniques depends on the availability of well-calibrated per-

formance models. Performance models can also be used in a flight simulation model

such as that presented in Chakraborty et al. [33] to simulate various conditions for
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GA aircraft. Simulated flight data generated using the models calibrated in this work

is used earlier in anomaly detection. Use of such simulated data to test unsafe or

unusual conditions helps understand the boundaries or limits of safe operations and

validate developed algorithms to some extent as seen in previous sections. While

these and other uses of performance models can be envisioned, the primary interest

in performance models in this dissertation is for the accurate prediction of energy

metrics.

6.1.2 GA Performance Models and Uncertainties

Harrison et al. [72] and Min et al. [102] demonstrated the development of performance

models for propulsion and aerodynamic characteristics of typical GA aircraft using

publicly available data and handbook methods. These models consisted of variations

of typical non-dimensional quantities relevant to aircraft performance such as lift and

drag coefficients, thrust coefficient, propeller efficiency, etc. Due to lack of actual

flight data, these models were individually validated against publicly available data

such as engine handbooks, pilot operating handbook, manufacturer’s manuals, other

published literature etc. Such models can be used along with information of flight

conditions to provide estimates of the performance of the aircraft. However, empirical

models such as these can suffer from uncertainties and errors.

The uncertainties in the performance models can stem from various sources. There

are two main types of uncertainty [133] – aleatory uncertainty due to inherent vari-

ation (irreducible) and epistemic uncertainty due to lack of knowledge (reducible).

Even when dealing with performance models for the same GA aircraft, there can still

be several reasons due to which the performance actually observed can differ from

predicted performance. These errors arise due to the cumulative effect of unmodeled

factors and random effects on the estimate. In the context of the present models,
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some of the important factors that can cause a difference in actual versus predicted

performance are:

� Variations in aircraft gross weight between flights and the fact that gross weight

is most often unknown (epistemic)

� Degradation in performance of aircraft systems (such as engine etc.) with age

(epistemic) or additional drag due to unclean surfaces, insect accretions, etc.

� Changes or modifications made to aircraft that affect its aerodynamic behavior

(epistemic)

� Variation in aircraft model (C172S versus C172R - epistemic)

� Model Inadequacy (epistemic)

� Unknown/Inaccurate model parameters (epistemic)

� Piloting skill (epistemic)

� Noise in recorded data (aleatory)

� Environmental conditions (aleatory)

As noted by Kennedy and O’Hagan in their seminal paper [79] – to use a model to

make predictions in a specific context it may be necessary to first calibrate the model

using some observed data. These observations had motivated Research Question 3

which is restated here:1

1The research described in this chapter is documented in the following publication:

– Puranik, T.G., Harrison, E.H., Min, S.M., Chakraborty, I.C., and Mavris, D.N., A Frame-
work for General Aviation Aircraft Performance Model Calibration and Validation, in 18th AIAA
Aviation Technology, Integration, and Operations Conference, Atlanta, GA, 2018. Accepted for
publication [116]
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Research Question 3:

How can basic empirical models of aerodynamic and propulsive performance of a

generic GA aircraft be calibrated to predict energy metrics at conditions of interest

for a specific aircraft?

Calibration can mean different things according to the context it is used in. Model

calibration is defined as “the process of adjusting numerical or physical modeling pa-

rameters in the computational model for the purpose of improving agreement with

experimental data” [9]. The overall process of calibrating computational models has

been outlined by Oberkampf et al. [112, 113] and has been reproduced in Figure 62.

The process consists of comparing the predictions from computational models with

some benchmark data. The comparison is usually made in terms of certain critical

output parameters called validation metrics by Oberkampf [112]. The accuracy re-

quirement for models is externally imposed and is generally related to the context

in which the model is to be applied for prediction. In the type of calibration un-

dertaken here, the form of the model is assumed to be fixed and the parameters are

varied to achieve accuracy of model predictions. In such cases, that the values of

context-specific inputs and variables are unknown or uncertain and the observations

or benchmark data are used to tune these parameters. There exist other types of

model calibration frameworks such as system identification [78] or Bayesian Calibra-

tion [79] in which the model form is not assumed to be fixed which are not considered

here as they require more detailed input-output data which is typically not available

for GA performance and safety studies.
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Figure 62: Calibration of computational models and use for prediction (reproduced
from Oberkampf and Barone [112])

6.1.3 Existing efforts and limitations in GA

Aircraft performance model calibration literature is relatively sparse and, when avail-

able, it is problem-dependent. There have been previous efforts in aircraft perfor-

mance model calibration in different domains such as trajectory optimization, per-

formance monitoring, etc. Most of them have been performed on commercial aircraft

operations. For example, Bronsvoort et al. [26] have performed real-time trajec-

tory prediction-calibration using Base of Aircraft Data (BADA) [111] performance

models. Their calibration involves static corrections (bias) as well as dynamic ones

(operational changes etc.). The ‘kinetic’ calibration undertaken results in a calibra-

tion factor for each segment thereby establishing a calibration function. The work

in this dissertation is aimed at establishing a single calibrated model for an aircraft-

type/tail-number and does not propose varying the calibration factors within a flight.

However, the need for static calibration corroborates the ideas introduced in the ear-

lier section about errors and uncertainties in model predictions compared to actual

performance. Krajcek et al. [81] have performed calibration or performance degra-

dation estimation using fuel-flow calculations. Their approach for calibration allows

distilling out contributions of individual models to the total performance degradation
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Figure 63: Contributions to total performance degradation [81]

as shown in Figure 63. While this approach requires predictions from engine models

beyond the capabilities of GA FDR, it is worthwhile to note the quantification of

the differences expected in theoretical and actual aircraft performance. The previous

studies indicate the value of performance models as well as the need to calibrate them

to be useful for making accurate predictions.

6.2 Model Calibration Framework

The discussions in the preceding sub-section lead to the development of the 2–level

model calibration framework developed in this dissertation and presented here. The

overview of the framework is presented in Figure 64. As noted previously, many of

the decisions made in GA safety analysis depend upon the availability of data. The

previous empirical models developed for GA operations ( [72, 102]) utilized public

domain data due to lack of flight data. These models were independently calibrated

against available benchmarks. However, rarely are such performance models used

in isolation. Sometimes, metrics that are not estimable using a single model alone

can be estimated using predictions from a combination of models. While this could

add uncertainty to the prediction, it opens up new avenues to test, calibrate, and

fine-tune model parameters. Similarly, in the event of availability of some amount of

flight data, a method needs to be developed to utilize that information to improve

model predictions. Therefore, two levels of calibration-data availability are defined

154



(publicly available data and flight data) and make up the corresponding two

levels of the developed model calibration framework.

Figure 64: Overview of 2–level model calibration framework developed in this dis-
sertation

In the context of this dissertation, an aircraft performance model consists of two

individual disciplinary models - aerodynamics and propulsion. The various inputs

and constituents of the framework are described here and the implementation of each

level is described in the subsequent sections.

6.2.1 Aircraft Data

Basic data about the geometry of the aircraft along with publicly available perfor-

mance data for calibration and validation is gathered. Manuals published by the

manufacturer of the aircraft such as the Pilot Operating Handbook (POH) are use-

ful in this regard. The POH is a document developed by the airplane manufacturer

and approved by the FAA, which lists important information regarding the design,

operations, and limitations of the aircraft, as well as its performance characteristics.

Although the performance tables listed in the POH are idealized capabilities that a
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brand new aircraft can theoretically attain under ideal conditions and expert pilot-

ing, it is nevertheless a very valuable source of information for calibrating models.

As the POH is also readily available for most aircraft, it would enable a calibration

process that is easily repeatable. The data from the performance tables in the POH

is collected in comma separated variable (CSV) format and used for calibration.

6.2.2 Empirical Models

Figure 65 shows the flow of information in the individual discipline models used in

this work. Given a set of inputs and environmental conditions, it is of interest to

predict the aerodynamic and propulsive performance of a GA aircraft in terms of

certain non-dimensional coefficients.

Figure 65: Information flow in aircraft performance models

6.2.2.1 Propulsion

Among currently operated GA vehicles, the most common means of propulsion is a

propeller driven by an internal combustion engine. Following this trend, the propul-

sion model is similarly divided into individual models of internal combustion engine
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performance and propeller performance, which combined yield a propulsive model

that is appropriate for a large subset of the GA fleet. Many approaches for engine

modeling exist within the literature, and a short survey and implementation of some

notable methods can be found in Harrison et al. [72] In that work it was seen that

a detailed modeling of the engine’s cycle produces accurate results, though a large

number of input parameters must be specified and a high computational cost is in-

curred. This expense can however be avoided while maintaining a similar level of

accuracy by using published relationships for engine power lapse as functions of lo-

cal atmospheric density ratio, such as that given by Gudmundsson [70]. This latter

approach from engine modeling is chosen. Alongside the engine model, a model of

propeller performance was implemented which predicts the efficiency characteristics

of a given propeller geometry. As an input, the model requires propeller geometry in

the form of blade chord lengths and pitch angles at several intervals along the length

of the propeller blade. This geometric data is combined with airfoil aerodynamic data

computed using XFOIL [48], an open-source 2-D aerodynamic prediction program.

To generate the 3-D performance of the full propeller, the geometric and 2-D aerody-

namic properties are passed to a open-source analysis tool for propeller and windmill

analysis called QPROP [49]. When combined with the engine model, this propeller

model yields a prediction of the propulsive performance of the desired GA aircraft

over a wide range of operating conditions.

6.2.2.2 Aerodynamics

A variety of aerodynamic modeling methods for a fixed-wing aircraft exists rang-

ing from first order approximations to high-fidelity computational fluid dynamics

tools. Among the existing aerodynamic performance prediction methods, a theoretical

empirical-based modeling method is the most appropriate method for developing an

aerodynamic model for a fixed-wing general aviation aircraft because it only requires
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a minimal set of information that is publicly available and provided by authoritative

and reliable sources. Min et al. reviewed, implemented, and comparatively evaluated

some of the most well-known physics-based modeling methods for aerodynamic per-

formance prediction as applied to a representative general aviation aircraft [102]. The

inputs for the aerodynamic model developed by Min et al. are aircraft geometric in-

formation from pilot’s operation handbook, publicly available empirical data [7,132],

and typical operating conditions. The outputs provided by the developed model are

lift curves and drag polars for flap-deployed configuration as well as clean configu-

ration. Although this aerodynamic model is validated against some reference data

published in literature, the main limitation of this modeling method is the difficulty

of acquiring reliable reference data for model validation.

6.2.3 Parameterization

The empirical models available are in the form of curves that can be queried for the

flight at the conditions of interest. In order to calibrate these models, it is neces-

sary to parameterize the curves using appropriate factors to provide flexibility to the

calibration process. In the calibration process, these factors are varied to modify

the nature of the curves as desired. These so-called calibration factors correspond to

certain physical characteristics of the aircraft. Therefore, factors for aerodynamics

would be related to the lift-curve slope for airfoil, wing, and aircraft, the drag coef-

ficient increment for different flap settings, scaling of intercepts for different curves,

etc. Similarly for the propulsion models, sample parameters could be sectional airfoil

characteristics of the propeller, slope shift of the propeller pitch, scaling of propeller

chord, etc. The advantage of parameterizing in this manner is that it allows for

an easier setup for optimization that needs to be performed for calibration and also

allows modifying individual curves without affecting others.

A total of thirty calibration factors are included in the calibration process and a
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detailed list of each factor, their description, and range of possible values is included

in Appendix F. For each calibration factor, judgment is used in determining whether

its effect should be additive or multiplicative on the curve. Similarly, the upper and

lower limits also need to be chosen carefully so as not to defy physics-constraints of

the problem.

Figure 66: Spread of possible lift curves and drag polars using proposed parameter-
ization

Figure 67: Spread of possible curves for thrust coefficient and efficiency of propeller
using proposed parameterization

Figures 66 and 67 provide a visualization of the spread of possible curves that can
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be obtained using the proposed parameterization in Appendix F. The baseline curves

(in blue color) in each case correspond to the empirical models from Harrison et al.

and Min et al. The grey curves represent 10,000 possible curves obtained when the

calibration factors are varied randomly within the limits prescribed for them. As is

evident from the figures, the parameterization provides a large possible spread for each

performance curve and thus enables covering a big portion of the design space. The

curves for aerodynamics shown here correspond to clean aerodynamic configuration.

For each such clean configuration, there are multiple flapped configurations with

corresponding lift and drag characteristics. The spread of these curves is included in

the appendix. The propulsion curves are generated assuming a generic GA propeller

as the baseline and varying the parameters of the propeller according to the ranges

in the appendix. The variation of the thrust coefficient and propeller efficiency with

advance ratio is demonstrated in Figure 67.

6.2.4 Calibration Setup

In order to adapt the model calibration framework developed in this dissertation to

the standard framework presented in Figure 62, four important components need to

decided in each level of the calibration. These components have been enumerated

here and described in further detail in the description of each level:

1. Benchmark Data

2. Discrepancy Metric

3. Calibration Factors

4. Optimization

6.3 Calibration to POH Data – Research Question 3.1

The first research sub–question for model calibration based on data available in the

public domain can now be stated as:
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Figure 68: Information flow in calibration of aircraft performance models

Research Question 3.1:

How can basic empirical models of aerodynamic and propulsive performance of a

generic GA aircraft be calibrated using data only available in the public domain to

predict energy metrics at conditions of interest for a specific aircraft?

Figure 68 shows the overall process of calibration of models to POH data developed

in this methodology. The four important components identified earlier are elaborated

further in order to develop the hypothesis.

1. Benchmark Data:

As it is of interest to develop a repeatable way of calibrating aircraft performance

models, benchmark data for level-1 calibration should be sought from performance

data about the aircraft available in the public domain. A good available source of air-

craft performance is the Pilot Operating Handbook (POH) of the aircraft. In addition

to performance characteristics, the POH can be used to identify or obtain values of

certain input parameters such as those relating to the geometry of the aircraft. As the

POH is also readily available for most aircraft, it enables a calibration process that is
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readily repeatable. As both aerodynamic and propulsion models are being calibrated

simultaneously, the benchmark data in the POH that require both estimates can be

used in calibration. This leads to the following hypothesis for research sub–question

3.1:

Hypothesis 3.1: Using tables and conditions in the Pilot Operating Handbook to cal-

ibrate the performance models results in a process that will yield models for a specific

aircraft which can be used for predicting energy metrics of interest.

2. Discrepancy Metrics:

The POH contains performance tables that can be used to compare the model out-

put and the expected output at the conditions specified in the tables. While some

variation in the format of data presented is expected between different POHs, most

POH have some common performance tables – those related to rate of climb, cruise

performance, stall speeds etc. In addition, the POH typically also identifies best glide

speeds, speed for best rate of climb etc. All of these conditions can be used to cal-

ibrate the performance models. For the purpose of this dissertation, the conditions

specified in Table 17 have been utilized.

The performance tables/condition in some cases have multiple points for compar-

ison (such as cruise, rate of climb) and in other cases have a single scalar value to

compare (glide angle, best glide speed). Therefore, the root mean square (RMS) error

metric is computed for conditions having multiple calibration points so that a single

value of error metric is obtained for each performance condition. Therefore, as seen

from Figure 68, each calibration vector results in multiple error measures as repre-

sented in the table. Further details on how each metric is mathematically computed

and the data used from POH are provided in Appendix G.
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Table 4: Various conditions from POH used in level–1 model calibration

Calibration Factors
Utilized From

Phase of Flight/
Condition

Discrepancy Metric

Aerodynamics,
Engine, Propeller

Rate of Climb
(ROCpred−ROCPOH)

ROCPOH

Engine, Propeller
Cruise RPM
Imbalance

(RPMpred−RPMPOH)
RPMPOH

Aerodynamics,
Propeller

Cruise Thrust-Drag
Imbalance

(T−D)
T

Aerodynamics Stall Speeds
(V spred−V sPOH)

V sPOH

Aerodynamics Glide Angle
(FPApred−FPAPOH)

FPAPOH

Aerodynamics Best Glide Speed
(V bgpred−V bgPOH)

V bgPOH

3. Calibration Factors:

The calibration vector contains various factors that correspond to the physical as-

pects of the performance curves whose values may or may not be accessible from

literature. There are a total of 30 calibration factors are defined to parameterize the

models (Table 17 in Appendix F). Each combination of calibration factors results in a

unique performance model which can then be tested at various conditions. However,

to effectively calibrate using a factor, there must be benchmark data available. Oth-

erwise, changing the value of the factor will not have any effect on the calibration.

For example, if the POH does not contain reference data for flights with flaps set at

10 degrees, the effect of varying the calibration factors which affect the aerodynamic

characteristics of that configuration on the discrepancy metrics cannot be ascertained.

Therefore, those factors for which there is no benchmark data are not varied in level-1

calibration in order reduce computational time and avoid erroneous results.
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4. Optimization:

The discrepancy metrics resulted in a vector of errors for each calibration vector based

which quantify the differences between performance as predicted by the performance

models and actual published performance figures. The calibration process involves

tuning the calibration vectors to minimize the discrepancy. Therefore, it raises the

following methodology research question:

Methodology Research Question: Does there exist a unique calibration vector

that minimizes all the errors calculated from the POH conditions?

Hypothesis: There is, in general, no unique calibration vector that simultaneously

minimizes each error metric for each flight condition, and therefore, multi-objective

rather than single-objective optimization should be pursued in the calibration approach

While the perfect model would ideally simultaneously minimize the error for all POH

conditions, due to the epistemic uncertainty in the models it is expected that different

phases of flight will have different errors. One of the most likely reasons for this

is the fact that the models themselves have different fidelity in different operating

conditions. For example, a drag polar from empirical build-up methods for clean

configuration is expected to be more accurate than that for a configuration with flaps

down, due to the inherent additional complexities involved (such as non–linearity,

flow separation, flap geometry etc.) Therefore, a numerical experiment is conducted

to test this hypothesis.

Experiment:
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Purpose: The main purpose of this experiment is to ascertain whether the same cali-

bration vector can simultaneously minimize different discrepancy metrics from POH.

This will facilitate a decision regarding whether single or multi-objective optimization

techniques would need to be used for level-1 calibration.

Setup: Due of the relatively low cost of generating the performance models and

computing the POH performance errors for each calibration vector, a Monte Carlo

simulation is conducted by varying the components of the calibration vector. The

values of each calibration vector is varied around its baseline values of the original

individual models. A total of 10,000 distinct combinations of calibration factors (i.e.

10,000 calibration vectors) are evaluated and the performance errors with respect to

POH are calculated for each.

Results: The resulting distribution of errors is visualized in Figure 69. Along with the

distribution of each error metric, the calibration vector which minimizes each of the

other three error metrics is noted and its error for the metric under consideration is

marked. Therefore, in each error distribution, the optimum value for the other three

errors is plotted with vertical lines. As clearly seen from Figure 69, there is no single

calibration vector that can minimize the error across all four error metrics considered.

Furthermore, the best performing models for each case are noticeably poor in terms

of their performance for some other metrics. Therefore, this experiment confirms the

hypothesis that there is, in general, no unique calibration vector that simultaneously

minimizes each error metric for each flight condition. Therefore, a multi-objective

optimization algorithm is used for calibrating the performance models to the POH

performance tables. Suitable calibrated models can then be selected from the pareto

frontier resulting from the multi-objective optimization.

Since it is not known a priori which POH discrepancy metric would correspond to
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(a) (b)

(c) (d)

Figure 69: Distribution of calibration errors for different conditions and optimum
solutions for other conditions

a model which provides good predictions on flight data, multi-objective optimization

enables a pareto-optimal set of models to be obtained. The well known algorithm

NSGA-II is utilized for multi-objective optimization [44]. The NSGA-II optimization

algorithm is used to drive the MATLAB-based performance model calibration setup

to find the pareto front of calibrated models.

6.4 Experiment 3.1

The steps outlined in the previous section provide details on the methodology used

for calibrating models to POH data. The methodology experiment enabled identify-

ing that a multi-objective optimization framework is necessary for POH calibration.
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This experiment will enable answering research question 3.1 and demonstrating the

calibration of empirical models for GA safety analysis.

6.4.1 Purpose of experiment

The following are identified as the main objectives of this numerical experiment:

1. Demonstrate level-1 calibration (using POH data) using the same framework

for two common GA aircraft (Cessna 172 and Piper Archer)

2. Test calibrated models using limited flaps-annotated flight data and the specific

total energy rate metric

The main reason this experiment is set up in this manner is that it ensures that

all information available from a POH gets utilized. It is also a low-cost option that

does not require any flights to be flown in order to get reasonable calibrated mod-

els. The multi-objective optimization framework provides flexibility and ensures that

whichever conditions for calibration are available for a particular aircraft type in the

POH can be included in the calibration.

6.4.2 Experiment Setup

The experiment is performed for each aircraft type. The data from Cessna and Piper

handbooks is saved in the form of comma separated values in spreadsheets that are

read into MATLAB. The multi-objective optimization is set up up in MATLAB us-

ing the native NSGA-II algorithm. The discrepancy metrics noted in the previous

section are optimized for in the calibration. The embedding of the model parame-

terization, creation of new models for each unique calibration vector, and evaluation

of discrepancy is handled using developed MATLAB functions for each. Those cali-

bration factors for which performance conditions are not available are frozen at their

baseline value. For this experiment, one annotated Cessna 172 flight is assumed to

be available in addition to a few Piper Archer flights.
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6.4.3 Experimental Metrics

In terms of metrics being tracked, the errors with respect to the POH conditions are

used in the calibration and also in the visualization of the obtained set of calibrated

models at the end of calibration. For choosing the best out of the pareto-optimal

set of aircraft, some flaps-annotated flight data is used to evaluate the error between

the predicted and actual time histories of the specific total energy rate metric. This

metric is useful for basic validation as it can be evaluated using models and flight

data independently. More details on the appropriateness of this metric are provided

later in level-2 calibration.

6.4.4 Results

The following section contains results from the calibration of performance models to

POH data. In the multi-objective optimization, the different error metrics identified

earlier are minimized to obtain a set of pareto-optimal aircraft models. Following

that, this set of models is tested using limited flight data available to obtain error in

the energy metric of interest. Not knowing take-off weight can add extra uncertainty

to the model predictions, described further in Appendix C.

6.4.4.1 Cessna 172 Results

Figure 70 shows a visualization of the pareto-optimal set of models obtained after

POH-calibration of the Cessna 172 aircraft. Each point in the figure is non-dominated

with respect to a discrepancy metric or the other. The metrics in the figure are the

POH discrepancy metrics listed in Table 4. As is evident from the figure, there is

no obvious choice for the appropriate model to be selected for use in prediction. In

such situations, it is difficult to make a choice for the appropriate model and in the

absence of further information, multiple models may be used to make predictions.

However, it is rarely the case that models are going to be developed as a stand-alone

exercise. These models are developed to be used in a data-driven safety assessment
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Figure 70: Scatter of pareto-optimal models obtained from level-1 calibration for
Cessna 172

framework. Therefore, some amount of additional information is assumed to be avail-

able to make the decision. A limited number of flight data records may be assumed to

be available for validation and to aid in down-selecting the most appropriate model.

Figure 71: Distribution of STER metric residual for all pareto-optimal models ob-
tained from level-1 calibration

In this section, the most minimal case of a single flight data record from an
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actual Cessna 172 aircraft is used. The next section on the Piper Archer will be

demonstrated with additional available data. When GA flight data is available, the

specific total energy rate metric used in earlier sections for anomaly detection can be

used to validate the model (or in this case, select the most appropriate model). One

of the main reasons this type of model selection technique is used is because of the

limited number and type of parameters available even from actual flight data. Specific

total energy rate is one of the few metrics that can be independently evaluated from

models and flight data.

For the current experiment, this metric is evaluated independently using the flight

available and each model from the pareto-optimal set. The residual between the

metric value is calculated throughout the flight data record and a distribution of

RMS of the residual for each pareto-optimal model is obtained. The main reason

the residual (and not the relative error) is used directly is to prevent numerical ill-

conditioning as the metric value may often be zero. Thus, each pareto-optimal model

will now yield a single RMS error for discrepancy of this metric for the flight record

available. The histogram of this RMS error for all models from the pareto-optimal

set is shown in Figure 71. With the availability of this additional information, the

choice can be made for the POH-calibrated model. The model with the lowest RMS

error on the actual flight data record is chosen as the calibrated model to be used for

prediction. This model is also indicated in Figure 70 as a red dot.

Once the actual model to be used has been selected, it is useful to visualize how

the individual aerodynamics and propeller curves for the model changed from the

generic GA baseline model. This can be visualized in a series of curves shown in

Figure 72. The figures indicate that the chosen calibrated model has a slightly higher

lift coefficient for the same angle of attack at all configurations. Similarly, the general

trend in the drag polars is that the drag coefficient is higher than the baseline model

for the same value of lift coefficient. On the propeller side, the calibrated model has a
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(a) Aerodynamics - Lift (b) Aerodynamics - Drag

(c) Propeller - Thrust (d) Propeller - Efficiency

Figure 72: Changes in discipline models before and after calibration

lower thrust coefficient and slightly higher efficiency at the advance ratios of interest.

Since the flight data record is also available it is useful to visualize the data trace

of the quantity being compared and used for selection of the model (Specific Total

Energy Rate) over the duration of the flight. This can be seen in Figure 73. It is

observed from the figure that the calibrated model is able to capture the overall trace

of the metric well and has a low RMS of the residual (actual minus predicted) of 0.86
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Figure 73: Variation of specific total energy rate metric – actual and predicted
(Cessna 172)

for the flight. The residual of the metric is also visualized as a distribution shown

in Figure 74. It is observed that the overall residuals are low and approximately

normally distributed with a mean close to zero.

Figure 74: Distribution of STER metric residual for calibration flight (Cessna 172)
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6.4.4.2 Piper Archer Results

Similar to the previous sub-section, POH-calibration is also undertaken and demon-

strated for the Piper Archer aircraft. Figure 75 shows a visualization of the pareto-

optimal set of models obtained after POH-calibration. Like the previous example,

there is no obvious candidate model that is better than every other model in terms

of all the metrics under consideration. Any of these models can thus be used for

prediction of Piper Archer performance. When additional information in the form

of a limited number of flight data records is available, it can be used to make the

final selection of the model. It is noted that while the flight data is used to guide

the decision on which model to select, it is not used in in level-1 calibration for the

creation of the calibrated models themselves.

Figure 75: Scatter of pareto-optimal models obtained from level-1 calibration for
Piper Archer

While calibration for the Cessna could only be tested on a single flight data record

due to limited data availability, more flights were available for the Piper Archer.

Therefore, for each model from the pareto-optimal set, the RMS error in metric
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Figure 76: Distribution of STER metric residual for all pareto-optimal models ob-
tained from level-1 calibration

residual is evaluated over the entire set of flight records available for validation. Thus,

each pareto-optimal POH model will have a vector of RMS errors – one for each

validation flight. The RMS of this vector of errors is calculated yielding the overall

RMS error which is shown in Figure 76. The model with the lowest overall RMS error

over the entire validation set is then chosen for prediction.

The changes in the actual aerodynamics and propulsion models is seen below in

Figure 77. There are downward shifts and slope decreases for each of the lift curves

whereas, the drag polar changes are not consistent throughout. At low lift coefficient

values, the drag is slightly higher, but it is lower in the higher lift coefficient regions.

The calibrated thrust coefficient is lower than that for the generic baseline and the

efficiency is lower at low advance ratios and higher close to advance ratios of unity.

The calibrated model can be used to predict the energy metric for all the flights

in the validation set. The distribution of RMS errors for all the flights in the vali-

dation set using the chosen calibrated model is shown in Figure 78. As seen in the

distribution, the overall errors of the chosen model are low compared to the errors

generated using other models in the pareto-optimal set. There is a spread observed in

the distribution indicating that even the calibrated model is not uniformly effective
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(a) Aerodynamics - Lift (b) Aerodynamics - Drag

(c) Propeller - Thrust (d) Propeller - Efficiency

Figure 77: Changes in discipline models before and after calibration (Piper Archer)

over all the flight data records available and that it performs better for some flight

records than others. This is due to the various epistemic uncertainties mentioned

previously related to actual flight data.

As more flight data is available for the Piper Archer, data traces of the predicted

and actual energy metric can be visualized for some flight data records. Two sample

flights are visualized in the following figures. It is noted that there is some variability

175



Figure 78: Distribution of metric RMS error for the entire set of flights using chosen
calibrated model (Piper Archer)

Figure 79: Data traces of STER metric for sample flight record 1 (Piper Archer)

as well as error in the traces for the Piper data, one of the reasons for this is that the

actual take-off weight of the aircraft is known for the Cessna flight but is unknown

for all the Piper flight data records. Additionally, the epistemic uncertainty due to

various sources plays a part in the aircraft-to-aircraft variation. The data traces

shown in this section are from representative flights that have different levels RMS

error of the residual.

The first flight data record has an overall RMS of residual of 1.11 and is shown
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Figure 80: Distribution of STER metric residual for sample flight record 1 (Piper
Archer)

in Figure 79. The distribution of the metric residual (actual minus predicted) is

visualized in Figure 80. As is evident from the histogram, the calibrated model while

predicting close to the actual flight data record tends to under-predict in some regions

while it over-predicts in other regions of the flight.

The data traces for a second flight data record with RMS of residual of 0.88 are

shown in Figure 81. Along with low residual RMS error for this flight, the distribution

of residual shown in Figure 82 indicates that for this flight the calibrated model also

under and over-predicts the metric slightly in different regions. However, the RMS

as well as the overall residuals are low for both the flight records shown here.

Similar to the Cessna energy metric traces, the level-1 calibrated model is able

to capture the overall variation of the metric well throughout the flight for different

flights shown here. The data traces of the metric for the two sample flights show

varying levels of errors that can be attributed to different types of uncertainty. Overall

it is noted that the level-1 calibrated model for the Piper Archer tends to over-predict

when the STER metric is close to zero, while it tends to under-predict when the

metric’s absolute value is higher.
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Figure 81: Data traces of STER metric for sample flight record 2 (Piper Archer)

Figure 82: Distribution of STER metric residual for sample flight record 2

6.4.5 Summary

Through this experiment, it is demonstrated that performance data available in the

public domain, such as those in a Pilot Operating Handbook can be used to calibrate

empirical performance models of a generic GA aircraft to a specific aircraft. This

calibration is able to improve accuracy of predictions of unrecorded quantities and

provides some predictive capabilities for retrospective safety analysis in GA. The re-

sults indicated in this experiment thus address research question 3.1 corresponding

to level-1 calibration. The main advantage of using level-1 calibrated models is that
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when additional flight data is available that is not as rich in the set of recorded pa-

rameters, the calibrated models can be used to provide predictions for energy metrics

of interest to be used in retrospective safety analysis. Similarly, in the event that

flight data records cannot be shared between entities for various reasons, calibrated

models that are validated on such flight records can be transferred between different

users for retrospective analysis.

6.5 Calibration to Flight Data – Research Question 3.2

Though the POH calibration results in improved predictions for the energy metric of

interest, certain discrepancies are still observed. One of the main reasons for this is

that, in the POH calibration, only a limited number of conditions are available for

calibration. This does not allow the calibration of all calibration factors but only

those for which the POH provides directly relevant performance data. Most notably,

POH performance data pertaining to aerodynamically dirty configurations is sparse,

and thus calibration factors associated with the aerodynamic characteristics for such

configurations cannot be tuned in the calibration process.

Despite calibration to POH, models are expected to suffer from uncertainties. For

example - Longmuir et al. [95] have demonstrated that something as simple as un-

washed exteriors on commercial aircraft can increase drag up to 1%. GA aircraft are

known to have much more deformities, non-flush sitting doors, scratches, etc. that

can cause significant increases in drag. Similarly, higher surface roughness can lead

to degraded aerodynamic performance. Therefore, the second level of the model cali-

bration framework seeks to improve model predictions using limited flight data. The

research sub–question motivated for this is reproduced below:
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Research Question 3.2:

How can basic empirical models of aerodynamic and propulsive performance of a

generic GA aircraft be calibrated using limited GA flight data to predict energy

metrics at conditions of interest for a specific aircraft?

1. Benchmark Data

The benchmark data for level-2 calibration is a limited number of flights with certain

key additional parameters recorded. Revisiting the categories of flight data intro-

duced earlier in the dissertation, this refers to category 2 data which is considered

higher end of the GA spectrum. This data could be thought of as obtained from a

G1000-type recorder. An important piece of information assumed to be available is

the position of the flaps at each point during the flight. This type of flight data is not

required for all flights on which the models will be deployed but only for a handful

of calibration flights. The information about flaps can recorded by other means such

as by manually recording the deployment flaps. It should be noted that this is only

required for a limited number of flights intended to aid calibration, and allows the

development of the novel method presented in this section. The remaining parame-

ters recorded during the calibration flights are assumed to be the same as previously

outlined.

2. Discrepancy Metric

The availability of data from actual GA flights presents an interesting question about

the discrepancy metric that can be used for calibration. It is noted that even with

the highest level of data recording capability typically available on GA aircraft, the

main outputs of the performance models – thrust, drag, lift, etc. cannot be directly
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measured or recorded. However, as noted in earlier sections, there are certain energy-

based metrics which can be estimated using performance models and flight data,

among them, the specific total energy rate (STER).

STER =
(T −D)V

W︸ ︷︷ ︸
From Performance Models

= ḣ+
V × V̇
g︸ ︷︷ ︸

From Flight Data

(31)

Unless the weight of the calibration flight is explicitly recorded, there might still be

uncertainty in the weight (W ) on the left side of Eq. 31. For cases when it is not

explicitly recorded, the methodology will assume a reasonable estimate for the weight

that is explained later. The quantification of this uncertainty is demonstrated in

Appendix C. These observations motivate the following hypothesis:

Hypothesis 3.2: Using specific total energy rate metric from flight data to calibrate

the performance models results in a process that yields models for a specific aircraft

which can be used for predicting energy metrics of interest.

A brief explanation of the discrepancy metric and the type of calibration is provided

here. As seen from Figure 83, the metric can be evaluated using the combined outputs

of the aerodynamics and propulsion models. Similarly, the rates of change of altitude

and velocity data can also be used to evaluate the metric directly from recorded data.

This method of calibration is different than what is done in commercial operations

because of the constraints imposed by GA flight data. As noted in the figure, it

introduces the possibility of additional uncertainty due to the potential propagation

of uncertainty in the original models and/or data. However, it also enables bringing

in additional predictive capabilities into the analysis with the limited data available

which can prove to be valuable.
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Figure 83: Schematic of indirect calibration setup for level-2 calibration

3. Calibration Factors

Unlike level-1 calibration using POH data, where the calibration factors are restricted

to those for which test conditions exist in the manual, level-2 calibration can use the

entire set of calibration factors assuming the flaps have been used at least once in the

calibration flights. Therefore, all thirty calibration factors can be varied within their

range in the level-2 calibration. While this increases the dimensionality of the space

being explored, it enables sweeping a larger possible spread of performance curves

(details presented in Appendix F).

4. Optimization

Unlike level-1 calibration, the level-2 calibration setup uses only a single discrepancy

metric. This metric is calculated at each point in the flight data record(s) available

for calibration. Therefore the root mean square of this discrepancy over the entire

flight is calculated and used. In case multiple flights are available for calibration, the

RMS over all the flights can be used. Since this is an indirect calibration process, an

evolutionary optimization algorithm is chosen. Additionally, as the calibration flight

will only have limited flight conditions at which to test the discrepancy, there may

be multiple local minima. Therefore, a genetic algorithm is used as the optimization

algorithm of choice to ensure that the best possible calibration model is obtained.
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In terms of implementation details, the initial starting point of the algorithm

can be chosen randomly within the ranges of calibration factors or using informa-

tion from prior efforts. In particular, the pareto-optimal set of calibration vectors

obtained from level-1 calibration can be used to ‘warm start’ optimization in level-2

calibration. This could help the algorithm converge faster and provide better results.

The implementation of GA in MATLAB is utilized for this purpose.

6.6 Experiment 3.2

The steps outlined in the previous section provide details on the methodology used

for flight data calibration. The experiment outlined in this section enables answering

research question 3.2 and demonstrating calibration of empirical models using limited

annotated flight data.

6.6.1 Purpose of experiment

The following are identified as the main objectives of this numerical experiment:

1. Demonstrate level-2 calibration using the model calibration framework for two

common GA aircraft (Cessna 172 and Piper Archer)

2. Test calibrated models using available flaps-annotated flight data and the spe-

cific total energy rate metric

6.6.2 Experiment Setup

Unlike the level-1 calibration, this setup does not have multiple discrepancy metrics

and therefore, a single-objective genetic algorithm is used for calibration. The spe-

cific total energy rate metric is evaluated over the entire flight data record and the

RMS error is calculated. Typically, it is expensive to fly dedicated flights for use

in calibration and as such not many flight data records are expected for calibration

purposes. On the other hand, data from routine operations which need not be at
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the level of parameter-recording sophistication of the calibration flights may be more

easily available. It is noted that the information about the take-off weight of the

aircraft is only available for the Cessna 172 flight data and the uncertainty that may

be introduced due to unknown weight is addressed in Appendix C. Similar to level-1

calibration, this experiment is set up in MATLAB and exploits its native capabili-

ties in terms of optimization algorithms and visualization. All the calibration factors

are varied in this level as data is available corresponding to all flapped aerodynamic

configurations.

One of the advantages of level-1 (POH) calibration is that it does not require

any flight data records. The resulting calibrated aircraft obtained from this step

are shown to have good predictive capability. Therefore, for level-2 calibration it is

useful to start the optimization from the POH-calibrated model chosen in the previous

step. This can accelerate the convergence of the calibration and produce models that

have improved performance over the models from level-1 calibration. Starting from a

level-1 calibrated model that performs well on the flight data record available ensures

that the predictive capability of the model is already good. Therefore, the changes in

calibration factors necessary for optimization are less drastic than when starting from

any random point in the feasible space. An important difference noted previously is

that the quantities being predicted by each model are not individually recorded in

the flight data. Rather an energy metric that uses the difference between predictions

from the two models is used. Therefore, simultaneously varying both models that

are already providing good predictions might cause the optimization to move away

from the minimum. Therefore, in level-2 calibration approach starting from level-1

optimum, the aerodynamics and propulsion models are varied one at a time and the

optimization is performed in an iterative manner till it converges. The calibration

factors are appropriately separated into aerodynamics and propulsion specific factors

and inactive factors are held to their level-1 optima or optima from the previous
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iteration. This does not apply if level-2 calibration does not start from the level-1

optima, in which case level-2 optimization starts from the baseline model.

6.6.3 Experimental Metrics

For basic validation, similar to level-1 experiment, some flaps-annotated flight data

is used to evaluate the error in the same energy metric. For the Cessna model, this

is the same flight used for calibration, whereas for the Piper model(s) it would be all

other flights available that are not used in calibration. These restrictions arise due

to the availability of data and do not affect the manner in which the methodology is

deployed. The RMS of the residual of the metric is used as the optimization objective

in level-2 calibration.

The level of accuracy for the model calibration is typically dependent on the

intended application and quality of available data [79]. The primary use of the models

calibrated in this work is for anomaly detection using energy metrics and within the

flight simulation model for generating simulated flight data. Therefore, the overall

residuals that are acceptable for calibrated models should be lower than the values

of the metric that separate nominal and anomalous records. A few examples of the

variation of the calibration energy metric for anomalous flights are demonstrated in

order to understand the applicability of the level-2 calibrated models for anomaly

detection.

6.6.4 Results

The results from level-2 calibration of performance models using a single Cessna 172

flight data record with known weight and a number of Piper Archer flight data records

with unknown weight is demonstrated in this section.
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6.6.4.1 Cessna 172 Results

For the Cessna 172 aircraft, the single flight data record available with known take-

off weight is used to perform level-2 calibration. The resulting model obtained after

convergence of the optimization is shown in Figure 84. Since there is no choice in the

data used for calibration, the algorithm outlined in the previous section is applied

using the available data. The model obtained from the convergence of the calibration

is shown in this section along with its predictions on the same flight data record.

As seen from the figures, the changes in aerodynamics models indicate that the

level-2 calibrated model has higher lift at the same angle of attack for all configu-

rations and slightly higher drag for the same lift coefficients for all configurations.

The thrust curve for regions below advance ratios of unity is similar, but it is slightly

higher for higher advance ratios. A similar trend to the thrust curves is observed in

the propeller efficiency curve.

The visualization of the data trace of the STER metric can be seen in Figure 85.

The RMS of the residual drops from 0.85 for level-1 model to 0.81 for level-2 cal-

ibrated model. The level-2 calibration process corrects for the places in the flight

record where the earlier model performs poorly. It is also of interest to visualize

the distribution of the actual residual of the metric over the entire flight. Figure 86

contains this residual and it is observed that the residual is symmetrically distributed

about zero with the mean approximately at zero. Therefore, the calibrated model

is neither over-predicting nor under-predicting and therefore does not display any

systematic bias. It is of interest to look at the difference between the residual of the

metric at each point in the flight to be able to visually confirm and also quantify the

improvement from level-1 to level-2 calibration. Therefore, the difference between the

absolute value of the residuals from level-1 and level-2 calibrated models is visualized

in Figure 87. It is evident from the skew of the distribution towards the left of zero

that the residuals from the level-2 calibration are in general lower than those from

186



(a) Aerodynamics - Lift (b) Aerodynamics - Drag

(c) Propeller - Thrust (d) Propeller - Efficiency

Figure 84: Changes in discipline models between level-1 and level-2 calibration
(Cessna 172)

level-1 calibration. Therefore, it is evident that the calibration framework is able to

produce a model capable of predicting the energy metric of interest more accurately

after level-2 calibration.
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Figure 85: Variation of STER metric – actual and predicted (Cessna 172)

Figure 86: Distribution of STER metric residual for calibration flight (Cessna 172)

6.6.4.2 Piper Archer Results

Level-2 calibration is also undertaken for the Piper Archer aircraft using flight data

records available. It should be noted that the flight data records for the Piper Archer

do not have take-off weight recorded. Therefore, there is additional epistemic uncer-

tainty for this aircraft. However, using the fuel flow rate data that is recorded and

intelligent estimates of take-off weight, level-2 calibration can still be carried out. The

uncertainty introduced due to unknown weight is quantified and its effect on the cal-

ibration metrics is shown in Appendix C. For the current implementation, there are
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Figure 87: Difference between absolute value of STER metric residual between level-2
and level-1 calibrated models

multiple flight data records available which can potentially be used for calibration.

The requirements for calibration flight data records stem from the nature of the

calibration metric and the different curves that are being modified during calibration.

It is noted that while thrust and drag are estimated by the models, the weight needs

Figure 88: Distribution of STER metric RMS for all flights in the validation set
using calibrated models from three different calibration flights
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to be recorded. Therefore, ideally, data records for which the take-off weight (TOW)

is known should be used. As TOW is not available for the data set being used an

estimate based on the POH data and typical occupancy can be made. Secondly, as

there are four different aerodynamic curves, one for each flapped configuration, the

calibration flight should have points that correspond to all levels of flap usage. This

enables exercising all the calibration factors available to the optimization. Thirdly,

multiple cycles of flap usage from different ambient conditions within the calibration

flight enables choosing calibration factors that are robust to variations not explicitly

captured in the modeling process. Finally, data records that have less noisy flight

data are preferred over those that have a high amount of noise in the sensor record-

ings. While the ideal situation is flying a dedicated flight profile containing multiple

flap cycles with known take-off weight, this may not always be possible or feasible

and therefore, the methodology should be able to work at different levels of data

availability.

In the case of the current work, multiple flights are available but all with unknown

TOW. The handful of flight data records that satisfy most of the requirements for

calibration flights from the previous paragraph are short-listed and the calibration is

carried out using each flight individually. Due to the differences from one aircraft to

another and other uncertainties, the RMS error of the metric over all the flights in

the validation data set varies if calibration is performed using different flights. As an

illustration, Figure 88 shows the distribution of RMS errors for the calibrated models

using three different flights. As is evident from the figure, using different calibration

flights can provide varying levels of RMS error on the validation set. Therefore, the

calibrated model with the lowest average RMS error is chosen. The spread in the RMS

error values for the validation set is due to the fact that even though the validation

set contains data from Piper Archer aircraft, there are more than twenty unique tail

numbers which introduces variability. When information regarding the tail number
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of a flight data record is available, the calibration can be further fine-tuned based on

each tail number. This is demonstrated later in Appendix H.

Similar to earlier results, a visualization of the changes in the actual models is

shown in Figure 89. A general trend similar to Cessna level-2 models is observed

in that the lift curves have a higher intercept and shallower slope, drag polars have

(a) Aerodynamics - Lift (b) Aerodynamics - Drag

(c) Propeller - Thrust (d) Propeller - Efficiency

Figure 89: Changes in discipline models between level-1 and level-2 calibration for
Piper Archer
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Figure 90: Distribution of metric RMS error for the entire set of flights using chosen
level-2 calibrated model (Piper Archer)

Figure 91: Difference between absolute value of STER metric residual between level-2
and level-1 calibrated models (Piper Archer)

increased drag (especially for flapped configurations), and thrust and efficiency are

slightly higher than the level-1 calibrated models (especially at higher advance ratios).

The actual distribution of RMS error for the metric is visualized in Figure 90

along with the difference between level-1 and level-2 calibrated models in Figure 91.

As is evident from Figure 91, there is a noticeable improvement from level-1 to level-2

calibrated model performance over the entire validation data set. The majority of the
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Figure 92: Data traces of STER metric for sample flight record 1 (Piper Archer)

distribution from Figure 91 being to the left of zero indicates that for almost all the

flights in the validation set, the level-2 calibrated model provided improved average

performance.

Figures 92 and 93 show the data traces and residual distributions for the same

sample two flights that were visualized for level-1 calibration of Piper Archer aircraft

earlier. For the first flight data record, the RMS error reduces from 1.11 to 0.89. The

level-2 calibrated model improves predictions, especially in regions where the metric

values are higher. This was the region where level-1 calibrated models were found to

be deficient in the earlier experiment and research question. The distribution of the

metric residual shown in Figure 93 indicates a more symmetric distribution of the

residual throughout the flight with a slight tendency of the model to over-predict.

Figure 94 shows the data traces for the second sample flight data record from the

validation data set. For this data record, the RMS residual dropped from 0.88 for

level-1 model to 0.75 for level-2 calibrated model. Figure 95 shows the distribution

of the residual for this flight data record.

Figure 96 shows the distribution of the residual for all points from all flight data

records in the validation set. This figure shows good overall agreement with the
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Figure 93: Distribution of STER metric residual for sample flight record 1 (Piper
Archer)

Figure 94: Data traces of STER metric for sample flight record 2 (Piper Archer)

actual trace using the level-2 calibrated model, with a slight tendency towards over-

prediction.

6.6.5 Summary

Through this experiment it is demonstrated that using limited flaps-annotated flight

data for calibration of performance models using the level-2 framework improves ac-

curacy of predictions of energy metrics of interest. This improvement is demonstrated
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Figure 95: Distribution of STER metric residual for sample flight record 2

Figure 96: Distribution of STER metric residuals over all points in the validation
data set

for both aircraft types considered. Testing the calibrated models using available val-

idation data indicates that calibration yields models that can be used for predicting

energy metrics of interest despite the uncertainty present in the analysis due to un-

known take-off weight of the aircraft. The results of the experiment thus address the
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research question 3.2. The intended use of calibrated models in this dissertation is for

two different purposes. The first one is to enable the evaluation of some energy met-

rics used in the anomaly detection task presented previously in the dissertation. In

order to examine the usability of calibrated models for evaluation of energy metrics

and anomaly detection, anomalies are separately identified for a particular feature

vector option using STER metric evaluated from the data side and the model side.

The anomaly score in each case is obtained and the anomaly-status of each flight is

compared in the two cases. The results are shown in Figure 97.

Figure 97: Anomaly score obtained using metric evaluated from data-side and model-
side

As is evident in the figure, there is a high positive correlation between the two

scores indicating that the calibrated models are able to provide sufficient level of

accuracy for energy metric prediction and anomaly detection. The most important

observation from this experiment is that the anomaly status of all flights remains the

same whether the model is used or the data is used to evaluate the metric.

The second use is in the flight simulation model which can subsequently be used

to generate anomalous/unsafe simulated flight data records. For the second use, while
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the calibrated models should be for an aircraft similar to the ones under consideration,

it need not match existing flight data records exactly as the simulated flights can be

considered to be from another aircraft. Since one of the main pillars of the dissertation

is use of multiple types of aircraft, this would still fit within the framework. For the

first usage of models in energy metrics estimation, it is desired that detection of

anomalies should not be affected by the uncertainty in performance models. To that

end, the deviations of metric values in anomaly detection for abnormal flights should

be larger than the residual in calibration errors. As is observed from the residuals and

RMS distribution of errors, the deviations of STER metric in both types of anomalies

are typically higher than the maximum values of the residuals and therefore, the

calibrated models can be used to predict metrics in anomaly detection.
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CHAPTER VII

CASE STUDY

The individual components of the methodology, their corresponding research ques-

tions, and the experiments conducted to test various hypotheses were presented earlier

in Chapters 4, 5, and 6. In this chapter, the methodology is deployed on a real-world

data set consisting of flight records from two distinct aircraft operating at different

airports. The insights obtained, comparison to existing benchmarks, and advantages

and limitations of the developed methodology are presented. A high-level road-map

for implementing the different components of the methodology is shown in Figure 98.

Also, from the perspective of any scientific effort, the ability to replicate the results in

another setting is important. The different components of the developed method are

disparate and a set of guidelines for the order and manner in which to implement them

is essential. Therefore, a step-by-step process of the order of implementation of the

components of the methodology is presented. This is meant to provide guidelines for

repeating the efforts presented here in a different setting or improving the developed

techniques. Due to the data-driven nature of each step as well as the requirements

for multiple pieces of information in each step, an accompanying example is not pre-

sented. However, for each step, the appropriate section of the thesis is referenced to

provide context and implementation details.

The first step of the methodology is data collection. The data required and used in

this methodology is of different forms. Flight data collected from routine operations

using different data recorders is required for analysis. The information contained

within the POH for each aircraft in the flight data set is also required. Dedicated cal-

ibration flights with the required parameters recorded, if available, are also collected.
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Figure 98: Important steps of the methodology

Following the collection of data, the next step is basic pre-processing operations to fil-

ter noise, obtain touchdown point [118], extract phases of flight [68], estimate weight,

etc. Once these operations have been performed successfully performed, the third

step is level-1 calibration using only publicly available data (from the POH). Sec. 6.3

provides the details of the level-1 model calibration framework demonstrated in this

thesis. Following level-1 calibration, if dedicated calibration flights are available, level-

2 calibration is pursued to improve the predictive capability of the models. Sec 6.5

provides the details of level-2 calibration process demonstrated in this thesis.

After model calibration is complete, the requisite tools necessary for evaluation of
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all possible energy metrics are available. Step 4 of the methodology involves evaluat-

ing energy metrics. The formulas and details of each metric are provided in Sec. 4.2.2.

Statistical averaging and nominal variations of metrics can also be evaluated at this

stage using all the flight data records available. Once all the possible metrics are

evaluated, anomaly detection can be implemented. Implementation of each type of

anomaly detection is independent and can be pursued concurrently. Sec. 5.1 pro-

vides details of flight-level anomaly detection whereas Sec. 5.3 provides the details

of instantaneous anomaly detection. The final step of the process is post-processing

anomalies. In this step, parameter and energy-metric charts can be visualized along

with anomaly scores or probabilities. Sec. 7.2 contains details of the different types

of post-processing charts used in this thesis and their interpretations. While the

steps presented here are high-level, they are meant to provide a road-map for the

implementation of the methodology rather than the details.

Table 5 presents a summary of some of the important facts about the data set

used in the case study.

Table 5: Summary of the current data set

Total number of flights 3,402
Number of airports of take-off and landing 2
Number of unique aircraft 2
Total number of unique tail numbers in data set 37
Number of flights with flaps annotated 1,903 (≈ 55 %)
Approximate number of parameters in each data record 30

As seen from Table 5, the data contains a heterogeneous set of flight records with

respect to the aircraft, airports, landing patterns, etc. The methodology developed in

this dissertation is one of the few quantitative safety applications on such a large and

varied real-world data set from GA operations. A variety of meaningful insights can

be drawn from application of the methodology to this set which would not have been

otherwise possible. The following sections provide details of some of the analyses that
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are possible because of the techniques and algorithms developed in the quantitative

data-driven methodology developed in this work. The first section contains details of

application of anomaly detection using energy metrics (research questions 1 and 2)

and comparison to existing benchmarks and the next sections presents the application

of model calibration (research question 3) on a real-world problem other than those

already explored in this work.

7.1 Anomaly Detection Case Study

This section outlines the results and insights gained from application of the developed

methodology on a large data-set (≈ 3,400 flights). Various trends observed during

comparison of different types of anomalies to existing benchmarks, segmentation of

anomalies by types of operations, effect of anomalous approach on touchdown perfor-

mance, etc. are highlighted. The case study is a demonstration of the ways in which

the methods developed in this dissertation can be applied.

7.1.1 Relation between types of anomalies

In this section, the relationship between flight-level and instantaneous anomalies is

examined. Some of the pertinent questions that arise during application of anomaly

detection include:

1. What is the number of flights with instantaneous anomalies at different proba-

bility thresholds?

2. What is the overlap of flights with instantaneous and flight-level anomalies in

take-off and approach and landing at different levels of significance?

3. Do flights with instantaneous anomalies have a higher chance of also being

identified as flight-level anomalies or vice versa?

In order to answer the first question, the instantaneous anomaly detection al-

gorithm is run at different probability thresholds and the proportion of flights with
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instantaneous anomalies is obtained. The results obtained for both phases of flight are

visualized in Figure 99. The x-axis on this plot represents the probability percentile

threshold. It means the threshold is based on the percentile value of the probability

scores of all instants from all flights put together. Therefore, while a 1 % threshold

in flight-level anomalies will imply 1 % of all flights are identified as anomalous, the

threshold for instantaneous anomalies does not have to be linear in the same way as

a single flight can have multiple anomalies.

Figure 99: A plot showing proportion of flights with instantaneous anomalies with
varying detection threshold

Two important observations can be made from this plot. First, while it is obvious

that the proportion of flights with anomalies will increase as the threshold of proba-

bility percentile is relaxed (increased), the overall proportion of flights with anomalies

even with the highest percentile considered in this work (3 %) the number of flights

with anomalies is still just about 50 % of the data set for both phases. This will be

contrasted later in the chapter with exceedance detection, where more than 95 % of

the data set contains some exceedance or the other. The second observation is with

regard to the higher homogeneity of take-off operations noted earlier. The anomaly
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percentage for the curve for take-off instantaneous anomalies is lower than the ap-

proach and landing curve indicating that even at relaxed thresholds, more anomalies

are being identified in the same flights than in newer flights. Unless otherwise spec-

ified, the anomalies considered in this case study are usually between the 0.1 – 0.5

percentile threshold. This corresponds to approximately 1 – 10 % of the flights having

instantaneous anomalies. This threshold is however flexible and can be modified as

required by the user of the methodology.

The rest of the questions raised earlier in the section can be directed at both the

phases of flight under consideration. Therefore, the following sub-sections present

the answers for the above questions and others raised during implementation of the

methodology for both phases of flight.

7.1.1.1 Approach and Landing

In the approach and landing phase, flight-level anomalies are first identified at the

1%, 3%, and 5% significance levels. The list of flight data records obtained as anoma-

lous from these experiments are first explored for presence of instantaneous anomalies.

Since the threshold for instantaneous anomalies is also flexible, this relationship is ex-

plored for multiple threshold levels. For each detection level of the flight-level anomaly

detection, the number of flights that also contain instantaneous anomalies at three

different detection thresholds are obtained. Figure 100(a) depicts the proportion of

flight-level anomalies that also contain instantaneous anomalies. As evident from the

figure, a large percentage of flight-level anomalies generally also contain instantaneous

anomalies. This overlap increases with increasing instantaneous anomaly threshold

for the same flight-level anomaly threshold. On the other hand, Figure 100(b) depicts

the reverse relationship, i.e. the proportion of flights with instantaneous anomalies

that also contain flight-level anomalies at different thresholds. As is evident from the

figure, the trends are similar to the earlier one but the magnitude of overlap is much
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smaller. Thus, while the specific flights that contain both type of anomalies are the

same number in each case, the instantaneous anomaly set contains many other flights

whereas the flight-level anomaly set contains few others.

(a) Proportion of flight-level anomalous flights
that also have instantaneous anomalies in ap-
proach and landing phase

(b) Proportion of flights with instantaneous
anomalies that are also flight-level anomalies in
approach and landing phase

Figure 100: Overlap of anomalous flights - approach and landing phase

In order to quantify the correlation between the two types of anomalies, the flight-

level anomaly detection score at 3 % significance level and the averaged instantaneous

probability score of each flight are plotted in Figure 101. The clear positive correlation

indicates what is observed in the earlier figure with regard to flight-level anomalies –

that flight-level anomalies on an average have lower instantaneous probability scores

which results in most flight-level anomalies also having at least one instantaneous

anomalous window.

7.1.1.2 Take-off

Similar to approach and landing, a comparison between anomaly types and scores

can be made for the take-off phase. The overall trends observed in the overlap (Fig-

ure 102) are similar to those in approach and landing. The main difference is that
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Figure 101: Correlation between average instantaneous anomaly score and flight-
level anomaly score in approach and landing

the magnitude of overlap in flight-level anomaly detection drops more rapidly in take-

off than in approach and landing. This observation is consistent with others made

throughout the dissertation that there seem to be fewer deviations among take-off

phase and therefore, at higher percentage thresholds, the algorithm might start iden-

tifying flights as anomalous simply because it is forced to select a certain percentage

of flights.

Figure 103 shows the correlation between the average instantaneous anomaly score

for each flight and the flight-level anomaly score at the 3 % detection threshold. A

distribution similar to approach and landing phase is observed, albeit with a tighter

spread among the scores of normal flights, which points to more uniformity.

7.1.1.3 Summary

Through this section, the relationship between flight-level and instantaneous anoma-

lies for both phases of flight is explored. It is observed that flight-level anomalies are

expected to usually also have at least one instantaneous anomalous window whereas

the relationship is not as strong in the other direction. This confirms the need to
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(a) Proportion of flight-level anomalous flights
that also have instantaneous anomalies in take-
off phase

(b) Proportion of flights with instantaneous
anomalies that are also flight-level anomalies in
take-off phase

Figure 102: Overlap of anomalous flights - take-off phase

Figure 103: Correlation between average instantaneous anomaly score and flight-
level anomaly score in take-off

develop two separate anomaly detection techniques for identifying non-standard op-

erations.
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7.1.2 Comparison to Exceedance Detection

Exceedance detection is identified previously as the current technique most widely

used for identifying exceedances and safety events. While this technique has lim-

itations which are also outlined in previous chapters, it is nevertheless of value to

compare the flight data records with anomalies against already defined exceedances

or events. This can provide insight into the ability of anomaly detection using energy

metrics to identify some generally accepted exceedance events. It should be noted

that in many cases, the exceedance limits are set arbitrarily or based on gut-feel and

are therefore susceptible to error and inaccuracies in identifying conditions that really

matter. The main reason exceedances from [73] are used is that it is currently one

of the few publicly available set of exceedances. In the present section, comparison

with exceedance detection is only provided for approach and landing phase as take-off

phase has few documented exceedances as seen from the table in the appendix.

Total types of exceedances considered (From Table 12) 28
Proportion of Flights with at least one level-1 exceedance 92.5 %
Proportion of Flights with at least one level-2 exceedance 76.9 %
Average of number of level-1 exceedances per flight 11.55 (7.65%)
Average of number of level-2 exceedances per flight 16.22 (10.74%)
Median of number of level-1 exceedances per flight 10 (6.62%)
Median of number of level-2 exceedances per flight 6 (3.97)

Table 6: Summary of exceedance events in approach-and-landing phases in the cur-
rent data set

It is important to understand why exceedance detection is limited in its applicability

in addition to the reason than that event definitions might not be transferable between

different aircraft. For that purpose, all the flights in the data set are examined for

exceedances as defined in Higgins et al. [73]. Each point in the flight data record is

examined as a standalone point to identify any level-1 or level-2 exceedance events

that are occurring. The summary and some statistics for the total number of events
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for the approach and landing phase is presented in Table 6.

(a) Level-1 Exceedance (b) Level-2 Exceedance

Figure 104: Distribution showing % of points in approach and landing phase with
exceedances for each flight

As is evident from the table, a high number of flights from the current data set

have at least one level-1 exceedance (≈ 92.5 %) or at least one level-2 exceedance

(≈ 76.9 %). This indicates that based on the exceedances defined in Table 12 a

high number of flights have at least one exceedance event. Despite the flight data

being collected from routine operations and training flights, a high number of flights

returning with exceedance events is not ideal. The distribution shown in Figure 104

depicts the distribution of the proportion of points in the approach and landing phase

which have exceedances for each flight. Thus, while a high proportion of flights have

at least one point with an exceedance, the total proportion of approach and landing

points with exceedances is usually not high (on an average around 7.65 % for level-1

and 10.74 % for level-2 exceedances). The number of points with level-1 exceedances

on an average are lower than level-2 but the median is higher for level-1 exceedances

compared to level-2 exceedances. This implies that in general, flights have more level-

1 than level-2 exceedances, but there are certain flights which have a high number of
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level-2 exceedances which causes the distribution to be skewed.

Figure 105: Frequency of different types of level-1 exceedance events in approach
and landing

Examining the exceedances more closely, the different type of exceedances and

their frequency at level-1 and level-2 is shown in Figures 105 and 106. As is evident

from the figures, some types of exceedances occur much more often than others.

Exceedances related to vertical speed, high and low airspeed, centerline deviation,

gilde angle, and pitch attitude at touchdown are among the most commonly occurring

exceedances in the data set. It is noted that the calculation of airspeed exceedances

that is also dependent on flap configuration are only evaluated for those flight data

records that have flap angle recorded. They are estimable for only two-thirds of the

entire data set.

Apart from the high number of flights that are identified as having an exceedance,

another issue with this technique is that many of the exceedance definitions require

parameters to be recorded that are not usually available in GA flight records (for

example: flaps setting). Therefore, for such flights, there is no way to evaluate
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Figure 106: Frequency of different types of level-2 exceedance events in approach
and landing

detection of all exceedances despite having a data record. Nevertheless, the overlap

of exceedance detection with different types of anomalies is of interest because it

helps understand the strengths and weaknesses of the two types of anomaly detection

techniques and where each can provide insights for safety. In the next two sections, the

overlap between each type of anomaly and number of exceedance events is compared.

Since most flights have at least one event, it does not make sense to compare for

simple overlap as this would not provide very large agreement between the two but

not any meaningful insights.

7.1.2.1 Flight-level anomalies

For comparison of exceedance detection with flight-level anomalies, the proportion of

points with exceedances in the approach and landing phase is noted for each flight data

record and compared with the anomaly status of that flight data record at a particular

significance level. Figures 107 and 108 show the distribution of the percentage of
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exceedances in anomalous and normal flights at two different significance levels (3 %

and 5 %) of flight-level anomaly detection.

(a) Distribution of number of level-1 exceedances
at 3% anomaly significance level

(b) Distribution of number of level-1 exceedances
at 5% anomaly significance level

Figure 107: Distribution of percentage of level-1 exceedances in anomalous and non-
anomalous flights

(a) Distribution of number of level-2 exceedances
at 3% anomaly significance level

(b) Distribution of number of level-2 exceedances
at 5% anomaly significance level

Figure 108: Distribution of percentage of level-2 exceedances in anomalous and non-
anomalous flights
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The figures clearly indicate that for both anomaly significance levels, the percent-

age of exceedances is higher for flight-level anomalies compared to non-anomalous

flights. This distinction is more marked in level-2 anomalies (Figure 108) than in

level-1 anomalies as noted by the skewed distribution and the shift of the median of

the distribution. This indicates that anomalous flights identified by the algorithm

are better differentiated from normal flights in terms of level-2 anomalies than level-1

anomalies. It also suggests that level-1 anomaly definitions in this case might need

be more stringent in order to identify actual issues. This conjecture would however,

have to be supported by subject-matter-expert reviews. Therefore, while analyz-

ing flights obtained from flight-level anomaly detection, anomalies are more likely to

have a higher percentage of level-2 exceedances than normal flights. The percent-

age of level-1 exceedances is expected to be similar for both normal and anomalous

flights. The conclusions drawn here are based on the exceedance definitions currently

available from literature. It is noted that operators or users sometimes modify the

definitions based on experience and in those cases, the overlap should be evaluated

separately. The overall trends, however are expected to be similar as the thresholds

for exceedances are usually modified, not the event types.

7.1.2.2 Instantaneous anomalies

Similar to flight-level anomalies, the relationship between instantaneous anomalies

and exceedances can be explored using the data set. Initially, the average instanta-

neous probability for different types of points in the entire data set is obtained as

shown in Table 7. It is observed that the average log probability of level-2 exceedance

points (-51.08) is lower than level-1 exceedance points (-49.17), which is lower than

points with no exceedances (-46.36). Figure 109 shows the distribution of instan-

taneous anomaly score for level-1 exceedance points, level-2 exceedance points, and

those points with no exceedances along with the median for each distribution. Points
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with lower instantaneous anomaly score are considered worse in the algorithm.

Type of Point
Average Instantaneous
Probability (logarithm)

Points with no exceedance – 46.36
Points with level-1 exceedance – 49.17
Points with level-2 exceedance – 51.08

Table 7: Average instantaneous probabilities for different types of points in flights

These results indicate that there is an overall correlation between the instan-

taneous anomaly score and the different exceedance levels. Those points with no

exceedances typically have better instantaneous anomaly score than those with ei-

ther type of exceedances. The skew towards the left in the level-2 exceedance score

indicates that many points with level-2 exceedances have a markedly lower instan-

taneous anomaly scores than other points. Despite the shift in the distribution for

exceedance points versus non-exceedance points, there is still a significant overlap

between all three distributions. The typical thresholds for different levels of instan-

taneous anomaly detection are also shown in Figure 109. This leads to the following

conclusion: a point with an exceedance may not necessarily be an instantaneous

anomaly, but a point with instantaneous anomaly likely has at least one exceedance.

7.1.2.3 Summary

In this section, an existing method for quantitative safety analysis (exceedance de-

tection) is compared with the developed methodology. It is observed that in general

exceedance detection returns a large proportion of flights with at least one exceedance

event, even though this is not expected from routine operations. The number of points

that exhibit exceedances per approach phase are however smaller. Upon further ex-

amination, the specific exceedance events that get frequently identified for both level-1

213



Figure 109: Distribution of probabilities of level-1, level-2, and no-exceedance points

and level-2 exceedances are related to vertical speed, high and low airspeed, center-

line deviation, gilde angle, and pitch attitude at touchdown. Exceedance detection is

limited in its applicability due to the requirements for some parameters such as flaps

to be recorded.

Comparison of exceedance detection to both types of anomaly detection is also

presented. It is observed that in general, points or flights with anomalies also tend

to have a number of exceedances. This correlation is more pronounced for level-2

rather than level-1 exceedances. There is not an equivalent converse relationship,

that is, exceedance points may not necessarily be instantaneous anomalies or be part

of a flight-level anomaly. Thus, while overlap is seen in anomalies and exceedance

detection, it is not always conclusive. This can be due to several reasons such as

vatiations in exceedance definitions from aircraft to aircraft, lack of recorded infor-

mation for identifying exceedances, inadequate or incomplete exceedances list, etc.

However, traditional exceedance detection can definitely be used to complement the
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demonstrated energy-metrics based anomaly detection techniques. The main appeal

of the anomaly detection approach is its usability in a variety of situations, with

different aircraft, with multiple types of data recorders, etc. Anomaly detection is

also aimed at providing a smaller, focused list of flights/regions to examine rather

than the large set of points that might be obtained from exceedance detection. Thus,

anomaly detection as it is undertaken in this dissertation is able to provide incisive

insights into the deviating flights and are more usable than the existing benchmark

technique of exceedance detection.

7.1.3 Segmentation of Anomalous Flights

While it is interesting and insightful to isolate anomalies and compare them to ex-

ceedances, it does not provide the complete picture for safety analysis. The algorithms

operate on the recorded metrics and provide anomalies that are mathematical arti-

facts. The deviations in performance during approach and landing or take-off that

are identified using anomaly detection or exceedance detection usually do not take

into account operational aspects of the flight data record. This can be an important

factor that can provide insight into the reason or causality behind the identification of

flight record as anomalous. Within GA flight data records, it is difficult to ascertain

the causality due to the fact that a number of important parameters are not recorded

even in the more advanced GA recorders (such as the Garmin G1000). Prominent

among these parameters are the pilot’s control inputs, prevailing weather conditions,

flap position, etc. Therefore, it is difficult to pinpoint whether the observed devia-

tions are due to piloting error or unusual/inclement weather conditions or some other

cause. However, it is possible to segment the identified exceedances based on different

known operational characteristics of the flights to understand whether a particular

type of operation has higher chance of exhibiting anomalous behavior. These oper-

ational aspects are deemed to be important enough to warrant segmentation of the
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data but not significant by themselves (according to the algorithm results) to get

separated into different clusters during anomaly detection. Two examples of such op-

erational differences are demonstrated here. It is noted that depending on other data

being available, more such scenarios may be explored. The main idea behind these

segmentations is that when each subset has sufficient number of flights, the anomaly

rates within that subset should roughly equal that of the super-set. If a particular

subset of flights that is separated operationally exhibits higher rate of anomalies, then

flights in that operation might be worth further examination or separate analysis.

7.1.3.1 Straight-in v/s pattern approaches

(a) Approach entering through traffic pattern (b) Straight-in Approach

Figure 110: Difference between approach profiles for straight-in versus pattern-entry
approaches

In GA operations under VFR, there might be differences in the approach profiles

for a straight-in approach versus an approach entering through the airport traffic

pattern (as seen in Figure 110). Since the two type of approaches differ in the typical

tasks undertaken, it could be expected that one or the other type of approach is

more difficult from an energy management perspective for student pilots or private

pilots with less flying experience. In the present data set of 3,402 approaches, 449

are identified as straight-in approaches and the remaining 2,953 are pattern-entry

approaches. Therefore, it is evident that a higher proportion (86 %) of the current

data set consists of pattern-entry approaches. During application of the anomaly

detection algorithms, no distinction is made between these two type of approaches as

the clustering carried out as the first step points to only a single cluster. However,
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Figure 111: Proportion of different types of approaches within anomalous flights at
various significance levels

in the post-processing step, the anomalies from each type of operational scenario are

separated and examined.

Figure 111 shows the proportion of straight-in and pattern approaches identified

as anomalous at different flight-level anomaly detection thresholds. As seen from

the figure, the proportion of straight-in anomalous flights is low (≈ 15 %) at all

significance levels. However, this could be due to the fact that the data set being

training flights, there are a lot more pattern approaches than straight-in approaches

in this data set (≈ 86 % pattern and ≈ 14 % straight-in).

Therefore, in Figure 112, the number of anomalous approaches at each significance

level is normalized by the total number of approaches of that type in the data set. If

a particular type of approach is more susceptible to being anomalous, then the pro-

portion of anomalous flights in Figure 112 would be quite higher than the anomaly

significance level in each case. The results indicate that for each type of approach,

approximately the same proportion of flights from that approach type are anoma-

lous as the overall signigicance level. This indicates that despite pattern approaches

following a slightly different operational routine, there is not a tendency for higher

anomalies in this type of approach compared to straight-in approach

For instantaneous anomalies, the probability density for the two different types
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Figure 112: Proportion of anomalous flights within each type of approach at different
significance levels

Figure 113: Distribution of probabilities for points from straight-in and pattern
approaches
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of approaches are also plotted, however, as evidenced from Figure 113, there is little

noticeable difference in the overall probability distributions during approach between

straight-in and rectangular pattern approaches either in terms of the median, or the

spread of the distributions. The difference between the variation of metrics and raw

parameters between the two types of approaches can be visualized in the next four

figures (Figures 114, 115, 116, 117).

As seen from the variation of the metrics, the main difference between the two

types of approaches is in the specific potential and kinetic energies. The spread of

potential energy during straight-in approaches is lower than rectangular pattern ap-

proaches as is expected due to clear sight of the runway from earlier in the approach.

The spread and average of most of the other metrics is quite similar for the two ap-

proach types. Similarly, examining the raw flight parameters, the roll angle variation

is markedly different due to the turns in pattern approaches. Similarly, as flights in

the pattern approaches tend to intercept the glideslope from above, the pitch varia-

tion is more negative towards the end of pattern approaches where the flight path is

steeper than three degrees. Finally, it is noted that pattern approaches have a larger

spread in the RPM values indicating that more power corrections are required in pat-

tern approaches than in straight-in approaches where the aircraft can be configured

earlier.

Thus, this subsection demonstrated that while straight-in and pattern approaches

differ operationally and have some differences in the distribution of certain metrics,

either type of approach does not have higher tendency of being identified as anomalous

(either flight-level anomaly or instantaneous anomaly).
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Figure 114: Variation of energy metrics for straight-in approaches
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Figure 115: Variation of energy metrics for pattern approaches
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Figure 116: Variation of raw parameters for straight-in approaches
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Figure 117: Variation of raw parameters for pattern approaches
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7.1.3.2 Flap Configuration

The use of high-lift devices or flaps in final approach and landing can impact the

anomaly detection because the energy profiles for flights are expected to be quite

different with and without flaps extended. Because of the limitations in the current

data set ≈ 60% of the flights have flap angle recorded. Therefore, for this sub-

section, only those flight data records are focused upon to gauge the relationship

between anomalies and flap usage in final approach and landing. Table 8 provides

a summary of the different approaches with full, partial, and no flaps. In each case,

the total number of flights, and the number of anomalous flights from that subset is

provided. The term in parenthesis in each case represents what percentage of flights

from that subset are anomalous.

No. of
Flights

No. of
flight-level
anomalies

(1%)

No. of
flight-level
anomalies

(3%)

No. of
flight-level
anomalies

(5%)

Full Flaps 662 6 (0.90%) 12 (1.81%) 22 (3.32%)
Partial Flaps 931 12 (1.29%) 36 (3.86%) 60 (6.44%)
No Flaps 395 7 (1.77%) 22 (5.57%) 41 (10.37%)

Table 8: Summary of flights with full, partial, and no flaps during approach and
anomalous flights among them

The results from Table 8 indicate that the number of full flaps approaches is

smaller than those with partial or no flaps. Comparing the anomalies within the

three types of approaches it is observed that the proportion of anomalies within a

particular type increases from full to partial to no flaps. This indicates that at the

same anomaly detection level, a higher proportion of anomalies are obtained within

the subsets that have progressively lower flap usage. This distinction becomes more

marked as the overall anomaly significance level changes from 1 % to 5 % (from left-

to-right in the table). For example, when the overall significance level is 5 % (last
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column of the table), the proportion of full flaps anomalies is just 3.32 % compared

to 10.37 % for no flaps. Ideally this number would be close the 5 % for each of the

subsets. Therefore, this suggests that the segmentation of flight data set according to

flaps usage is a useful operational segregation of the flights as it pin-points to some

subsets that have higher rate of anomalies.

In order to understand this further, the variation of different energy metrics for full,

partial, and no flaps configurations during approach is visualized in Figures 118, 119,

and 120. As is evident from the figures, the variation of specific kinetic and total en-

ergy is quite different for the three figures. This is due to the fact that for approaches

with partial or no flaps, the speeds have to be higher in order to avoid drifting close to

the stall speed. For flights with lower flap setting, the spread is also higher for specific

potential energy metric. Flights with full flap setting also have lower kinetic energy

rates than the lower flap setting. Thus, overall, it can be concluded that flights with

no flap usage or partial flap usage have higher rates of flight-level anomalies and also

exhibit some differences in their metric variation.

Comparing instantaneous anomaly scores for approaches with different amount of

flap usage is shown in Figure 121. As is evident from the figure, the distribution of

no-flap anomaly scores is to the left of partial-flap anomaly score which is further to

the left of full-flap anomaly scores. Therefore, on an average, reduced flap setting

has a slightly higher likelihood of instantaneous anomaly than higher flap usage.

However, the difference between the distributions is not significant enough to draw any

conclusions. Understanding the nature of the operational difference between different

flap configuration approaches, it is not expected that there will be any significant

differences in their instantaneous anomaly score as this score looks for sudden changes

rather than a systematic difference such as different flap configuration throughout the

approach and landing.
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Figure 118: Variation of energy metrics during approach for flights with full flaps
usage

7.1.3.3 Summary

In this sub-section the current data set was segmented into different types of sub-

sets based on certain operational characteristics. In each case it is observed that

the typical characteristics of that operational difference manifest themselves in the
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Figure 119: Variation of energy metrics during approach for flights with partial flaps
usage

variation of some metric associated with the operational difference (e.g. potential

energy profiles for straight-in and pattern or kinetic energy profiles for different flap

configuration). While the straight-in and pattern approaches did not exhibit much

difference in the anomaly detection rates, segmenting by the usage of full, partial, or
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Figure 120: Variation of energy metrics during approach for flights with no flaps
usage

no flaps during approach revealed slight differences in the anomaly rates. Thus, this

section demonstrated the benefits of using subject-matter knowledge such as type of

approach or landing configuration in the anomaly detection post-processing to gain

insights.
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Figure 121: Distribution of probabilities of for points from full-flap, partial-flap, and
no-flap approaches
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7.1.4 Touchdown Performance

A poorly executed approach is likely to end with a poor landing. An assessment of

landing and touchdown operational safety with FDM can be realized by segregating

the portions of one (or more) flight data records corresponding to these phases of

flight, and comparing each data points against aircraft states of interest. There can

be various measures of flight quality and safety during landing and touchdown that

can be extracted from flight data records. For example, the touchdown distance is

important because landing too close to the runway threshold could lead to a higher

risk of a controlled-flight-into-terrain (CFIT) accident, and landing too far down the

runway could lead to a runway overrun. Similarly, large deviations from the center line

could lead to a runway veer-off. Similarly, rate of descent at touchdown is important

as an unstable approach with high descent rate could potentially lead to a hard or

bounced landing. A list of potential metrics of interest is enumerated here:1

1. Touchdown point on runway

2. Touchdown velocity

3. Touchdown vertical speed

4. Touchdown lateral deviation from

centerline

5. Difference between track angle and

runway direction at touchdown

6. Touchdown lateral velocity (should

be zero)

7. Bank Angle at touchdown

8. Aircraft crab angle at touchdown

It is noted that in typical GA flight data recorders, due to the scarcity of recorded

1The research described in this section is also documented in the following publication:

– Puranik, T.G, Chakraborty, I.C., Rao, A.H., and Mavris, D., Safety Analysis of General Aviation
Landing and Touchdown using Approach Performance and Weather Data, in 18th AIAA Aviation
Technology, Integration, and Operations Conference, Atlanta, GA (Accepted for Publication) [121]
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(a) Distribution of touchdown speed for normal
and anomalous flights

(b) Distribution of touchdown vertical speed for
normal and anomalous flights

(c) Distribution of touchdown distance for nor-
mal and anomalous flights

(d) Distribution of touchdown angle-of-attack
for normal and anomalous flights

Figure 122: Distributions of various touchdown parameters for normal and anoma-
lous appraoches

parameters, some of the measures of flight quality identified above may not be es-

timable. A comparison of the correlation between the identified touchdown parame-

ters of interest and anomaly scores during approach will provide additional insights
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as to potentially why the touchdown performance was such. For each of the param-

eters from the list above that are recorded in the data set available, a distribution

is obtained for flight-level anomalies and normal flights to understand if flight-level

anomalies affect touchdown and landing performance. The quantities at touchdown

are evaluated at two points before and after the identified touchdown point and av-

eraged. This is done because the touchdown point itself is not recorded in the flight

data record but estimated using the algorithms described in Appendix C.

The results shown in Figures 122, indicate the differences in some of the touchdown

parameters of interest between normal and anomalous flights as obtained at the 3 %

significance level. The first figure indicates the difference between touchdown speed

for normal and anomalous flights. While there is a range of speeds which overlap for

the two, anomalous flights tend to have a larger spread of speeds at which they touch-

down. There are some flights among the anomalous distribution that land at speeds

higher than 20 knots of the normal median. The second figure shows the distribution

of vertical speed at touchdown. In this case, the distributions are more similar to

each other than the speed distribution. However, a slight rise in the probability is

observed for positive vertical speeds for anomalous flights.

The third chart shows the distribution of touchdown distance from the displaced

runway threshold. In this figure, there is a clear shift of the median and the overall

distribution towards the right for anomalous flights. This indicates that more anoma-

lous flights tend to touchdown long on the runway compared to normal flights. The

distribution of the touchdown angle of attack shown in the fourth figure has a bi-

modal tendency for both normal and anomalous flights indicating two different sets

of flights coming in at a higher and lower angle of attack. There is not noticeable

difference between the normal and anomalous flights with respect to the touchdown

angle of attack.
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7.1.4.1 Summary

In this section, the impacts of a normal or anomalous approach on the touchdown

performance are examined. Mixed results are observed for different parameters, where

an approach anomaly has an effect on some parameters such as airspeed at touchdown

and touchdown distance but does not have noticeable difference on other parameters

such as vertical speed and angle of attack. It is noted that these results are obtained

without true knowledge of the actual touchdown point and are therefore subject to

more uncertainty than other results in this chapter.

7.2 Specific Anomaly Examples

The anomalies identified (flight-level and instantaneous) using the methodology can

be further analyzed by subject-matter-experts or operators to understand and im-

prove safety. As seen in the case study, not all anomalies necessarily correspond to

pre-defined events or exceedances. Similarly there is not necessarily a consensus be-

tween the two types of anomalies either. In this chapter, a few specific flights in the

take-off and approach-and-landing phases are chosen for visualization. The properties

of these flights in terms of their anomaly scores, exceedances, and other important

aspects are listed in separate tables to enable further understanding. Three types of

flights are presented in each section, the first is a flight with instantaneous anoma-

lies but no flight-level anomaly. The second case is a flight with flight-level anomaly

but no instantaneous anomaly. The third is a flight with both types of anomalies.

For every flight, the variation of the instantaneous probability density over the flight

phase, energy metric plots, and flight parameter plots are provided. Commentary and

comparative evaluation is provided for each case. The flight data records presented

in this section can be considered as the end-product of the methodology developed

in this dissertation. Eventually, the aim of the methodology is to aid in quantitative

safety assessment and help regulatory bodies as well as pilots learn and understand
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from data. Therefore, the post-processing presented in this section can be considered

as an end-user using the methodology to understand deviating behavior. A non-

expert on the energy metrics approach can also understand and interpret the results

shown in this section and thus speaks to the methodology’s appeal beyond academic

or scholarly circles.

7.2.1 Approach and Landing

No.

Score
(Flight-level

Anomaly
(Y/N))

No. of
Instantaneous

Anomalies

No. of L-1
Exceedances

No. of L-2
Exceedances

561 30.0 (N) 4 32 20
2184 - 45.8 (Y) 0 50 61
2007 - 38.6 (Y) 3 65 39

Table 9: List of anomalies visualized in approach and landing
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7.2.1.1 Instantaneous Anomaly Only

The first specific type of anomaly considered in approach and landing is represented

in Figure 123. This flight contains an instantaneous anomalous window but does not

get tagged as anomalous for flight-level anomaly detection.

Figure 123: Variation of probability density during approach for flight with instan-
taneous anomaly only

Exploring the location of the instantaneous anomaly further using the energy met-

rics plot provided in Figure 124, it is observed that at the location of the instantaneous

anomaly there is a rapid decrease in kinetic energy and a simultaneous increase in

potential energy. This is possibly because the aircraft comes into the approach with

both kinetic and potential energies higher than normal and is attempting to correct

it in the early stages of the approach. Visualizing the raw flight parameters for this

flight record (Figure 125), the exchange between potential and kinetic energies is con-

firmed with a higher than usual (and positive) pitch angle and vertical speed. The

parameters for the rest of the approach follow nominal variations. Two instances of

roll angle varying indicate that it is likely an approach following the traffic pattern.

The RPM does go higher towards the end indicating the possibility of the flight going
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too low and being corrected for, but it is not unusual enough to warrant a drop in

instantaneous probability density.

Figure 124: Variation of energy metrics for a flight record with instantaneous
anomaly only

Thus for this approach, the corrections made in the early approach set it up for
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Figure 125: Variation of raw parameters for a flight record with instantaneous
anomaly only

nominal variations in all parameters and energy metrics following the instantaneous

anomaly and therefore, the flight-level anomaly score returns positive. This flight

also has 32 level-1 and 20 level-2 exceedances as listed in Table 9.
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7.2.1.2 Flight-level Anomaly Only

The next type of approach anomaly considered here is a flight with flight-level anomaly

but no instantaneous anomalies. The instantaneous probability density for this flight

is visualized in Figure 126. As seen from the figure, this flight has three drops in

instantaneous probability density, however none of them are serious enough to fall

below the thresholds set in the case study.

Figure 126: Variation of probability density during approach for flight with flight-
level anomaly only

Visualizing the variation of energy metrics in Figure 127, it is evident that the

flight starts out with lower potential energy and higher kinetic energy. At the location

of the first drop of probability, the flight is aiming to correct the potential and total

energy profiles, as seen from the negative modified total energy error rate metric.

However, even after intercepting the correct profiles, the aircraft keeps gaining energy

and ends up with a very high total energy towards the landing portion near the runway

threshold.

The visualization of raw parameters (Figure 128) paints a similar picture indicat-

ing RPM drop near the second probability drop where an attempt is made to correct
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Figure 127: Variation of energy metrics for a flight record with flight-level anomaly
only

the overshoot. Vertical speeds for the flight are regularly exceeding nominal bounds

in the early and latter stages of the approach. This flight has 50 level-1 and 61 level-2

exceedances as listed in Table 9.
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Figure 128: Variation of raw parameters for a flight record with flight-level anomaly
only
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7.2.1.3 Flight-level and Instantaneous Anomaly

The final anomaly in approach and landing phase is an flight record with instanta-

neous and flight-level anomalies. The probability density for this flight is depicted in

Figure 129. The flight has one instantaneous anomalous window as well as another

region where there is a drop in probability but which does not fall below the threshold

for instantaneous anomalies. A visualization of energy metrics for this flight record

is provided in Figure 130. As seen from the figure, the flight data record starts at a

much lower kinetic, potential, and total energy value than nominal flights. The initial

part of the approach is spent in recovering towards the nominal variations.

Figure 129: Variation of probability density during approach for a flight with instan-
taneous and flight-level anomaly

However, this recovery overshoots for all the energy metrics by a large amount as

seen from the modified total energy error rate which is positive between 2.5 and 1.5

miles. At around 1.5 miles remaining mark, the deviations have exceeded sufficiently

that measures are taken to recover to the nominal. This is where the instantaneous

anomaly occurs due to the magnitude of the corrective changes as seen by the energy

metrics. Turning attention to the variation of raw parameters seen in Figure 131 it is
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Figure 130: Variation of energy metrics for a flight record with instantaneous and
flight-level anomaly

evident that the corrective measure taken at the instantaneous anomaly is the cutting

off of the power. The pitch angle is still maintained in order to rapidly lose airspeed

which has crept well above 100 knots. Thus, the flight record displays both types of
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anomalies and deviations from nominal operations and might be worth understanding

in order to improve energy management during approach and landing. This flight has

65 level-1 and 39 level-2 exceedances as listed in Table 9.

Figure 131: Variation of raw parameters for a flight record with instantaneous and
flight-level anomaly
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7.2.2 Take-off

For the take-off phase, exceedance detection is not performed due to the limited types

of exceedances in literature and requirement for recorded parameters

No.
Score

(Flight-level
Anomaly/Not)

No. of
Instantaneous

Anomalies

No. of L-1
Exceedances

No. of L-2
Exceedances

119 26.3 (N) 7 – –
381 - 29.4 (Y) 0 – –
2152 - 37.3 (Y) 2 – –

Table 10: List of anomalies visualized in take-off

7.2.2.1 Instantaneous Anomaly Only

Figure 132: Variation of probability density during take-off for flight with instanta-
neous anomaly only

In this subsection, a flight with instantaneous anomaly in take-off but no flight-

level anomaly is described. The probability density for the flight record in this phase

of flight is shown in Figure 132. There is a precipitous drop in the probability in the

initial stages of the take-off which is identified as an instantaneous anomaly under both
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thresholds shown in the figure. Further investigation of the anomaly can be performed

by visualizing energy metric and raw parameter variations in take-off (Figure 133

and 134).

Figure 133: Variation of energy metrics during take-off for flight with instantaneous
anomaly only
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Figure 134: Variation of raw parameters during take-off for flight with instantaneous
anomaly only

The energy metric variation indicates that at the location of the anomalous win-

dow, there is a steep drop in kinetic energy and a high positive potential energy rate.

These magnitudes are unusual for this stage of the take-off where both potential and
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kinetic energy rates are usually positive. The variation of other metrics during the

approach and the anomalous window are within nominal bounds of the data set. The

raw parameter variation indicates a very high pitch attitude and vertical speed as well

as normal acceleration well outside normal bounds at the location of the instantaneous

anomaly.

7.2.2.2 Flight-level Anomaly Only

The next anomaly considered in take-off phase is a flight with flight-level anomaly

only and not any instantaneous anomalous windows. The variation of probability

density for this flight can be seen in Figure 135. As is evident from the figure,

the instantaneous probability, while lower and outside of nominal bounds for the

initial part of the take-off does not fall below the thresholds for this data set at any

point. However, the variation of energy metrics in Figure 136 and raw parameters in

Figure 137 provides the reasoning for why this flight is still identified as a flight-level

anomaly.

Figure 135: Variation of probability density during take-off for a flight with flight-
level anomaly only

The kinetic and potential energies and their rates during the initial parts of the
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Figure 136: Variation of energy metrics during take-off for a flight with flight-level
anomaly only

take-off are outside nominal bounds and keep fluctuating a more than usually ob-

served. This results in an unusual kinetic energy profile for the intitial 40 seconds or

so after the application of take-off power while the airplane is executing the take-off.
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Figure 137: Variation of raw parameters during take-off for a flight with flight-level
anomaly only

Variation of pitch angle and vertical speed in this initial segment also deviate from

normal bounds. It is of interest to note that both lateral and normal accelerations

are noisier and have higher magnitudes for this take-off indicating the possibility of

249



rough weather conditions which might have caused the flight to deviate.

7.2.2.3 Flight-level and Instantaneous Anomaly

Figure 138: Variation of probability density during take-off for a flight with flight-
level and instantaneous anomaly

The final anomaly considered in this subsection is a flight with both flight-level

and instantaneous anomalies. The variation of probability density for this flight is

demonstrated in Figure 138. The instantaneous anomalous window occurs near 60

seconds into the flight. The variation of energy metrics can be seen in Figure 139. As

is evident from the metrics variation, the flight begins to deviate from the nominal

take-off at the location of the instantaneous anomaly window and does not return

to the nominal region all the way through to the end of take-off which results in it

being identified among flight-level anomalies as well. The sudden drop of specific total

energy rate at the beginning of the instantaneous anomaly below a value of zero along

with a simultaneous high thrust margin indicates that the aircraft is producing much

more drag than thrust and the thrust that is produced is nowhere near maximum.

Kinetic energy drops more rapidly than potential energy after the event indicating

that high pitch might be maintained in order to not lose altitude at such an early
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Figure 139: Variation of energy metrics during take-off for a flight with flight-level
and instantaneous anomaly

stage in take-off. Upon examination of raw parameters in Figure 140 it is evident

that the power is cut-off (possibly to simulate engine failure and capture best glide

speed) before it is restored towards the end of the two minutes. While the power
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Figure 140: Variation of raw parameters during take-off for a flight with flight-level
and instantaneous anomaly

gets restored towards the end, if indeed a training exercise, the fact that a simulated

unsafe situation in flight is captured as anomalous with both types of anomalies is

encouraging for the applicability of the algorithm.
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7.2.3 Summary

This section has presented additional examples of the different types of anomalies

and their metric visualizations. Flight records with only one type of anomaly but

not the other as well as those with both types of anomalies are presented. While

it is not possible to definitely say whether any of the anomalies pose flight safety

risks without subject matter expert review, indication of the anomaly severity and

probability density definitely provide some guidance. Flight records with both types

of anomalies and severe scores definitely warrant being examined before other types

when there is no other information available. While some anomalies are possibly

benign, some might point to a safety event or simulation of safety event or proximity

to unsafe conditions.

As noted earlier in the development of the methodology, take-off phase being

more uniform exhibits the possibility of lower number of actual anomalies. Since

the algorithm identifies anomalies as a proportion or percentage, there are bound to

be some anomalies that are benign. The review by subject matter expert or flight

instructors of students can address these issues. It also allows dynamic thresholds

to be placed by subject-matter-experts which can enable striking a balance between

missed detection (too stringent thresholds) and excessively high anomalies (too loose

thresholds).
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CHAPTER VIII

CONCLUSION

This chapter concludes the dissertation with a summary of conclusions from the in-

vestigations performed, a summary of the key contributions, and identification of

possible avenues for future work that can draw upon the work from this dissertation.

During the course of the development of the methodology, a series of experiments

was performed to test and verify capabilities of the methodology. These experiments

helped answer the research questions raised and to bolster the arguments in favor

of the methodology. The experiments and salient conclusions drawn are summarized

here. The first experiment was conducted in the form of a literature survey on met-

rics that could be used in a retrospective safety analysis setting. As a part of this

experiment, various existing criteria for assessing flight safety, historical incidents and

accidents, and parameter recording capabilities in GA were explored. The appropri-

ateness of energy-based metrics as having the necessary qualities of parsimony, safety

relevance, and generalizability was demonstrated. Similarly, adaptation of metrics

used in other settings as well as definition of new metrics was provided.

As a part of experiment 2.1, the automatic identification of flight-level anomalies

in take-off, approach, and landing phase using energy metrics was demonstrated. The

reparametrization and alignment of flight records in both phases allows for comparison

of different flights at the same (or similar) instants during their respective phases. The

SVM model developed provided a natural boundary between normal and anomalous

flights. Additionally, a score which indicates the severity of the anomaly was also

provided by the SVM model developed. The identification of known unsafe flight

data records was verified using flight data generated from a flight simulation model.
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The demonstration of sample anomalies in the take-off and approach phases enabled

focusing safety assessment and training efforts on the important flights when a large

amount of flight data is available. Explanation of specific anomalies identified and

their potential relation to unsafe or unusual events helped understand the power of

anomaly detection techniques.

As part of experiment 2.2, the automatic identification of instantaneous anomalies

in take-off, approach, and landing phase using energy metrics was demonstrated. A

novel-sliding window based pre-processing technique was used in conjunction with a

gaussian mixture model that allowed multiple standard operations. The probability

density function provided a continuous metric for quantifying the normality of each

point or window within the data set and also enabled focusing on regions with low

probability. Demonstration of a set of instantaneous anomalies in take off and ap-

proach phases was made along with the possible reasoning for the behavior of the

flight data record. Both the experiments 2.1 and 2.2 were demonstrated using data

from multiple aircraft at different airports.

As part of experiment 2.3, the generalizability of the anomaly detection techniques

was tested, specifically for flight-level anomaly detection. The first scenario tested

was decreasing amount of flight data parameters being available for energy metric

evaluation. The results revealed that the algorithms are able to identify majority

of the most severe anomalies despite limited data availability. The second scenario

tested the ability of the trained SVM model to identify anomalies in data not used

for training the model. The results indicated that the model generalized very well

and using even a small proportion of data for training is enough to identify majority

of the same anomalous flights.

As part of experiment 3.1, the calibration of performance models from a generic

GA aircraft to a specific aircraft was demonstrated using only publicly available data
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from the POH. The accuracy of the developed models was tested on a set of valida-

tion flights and revealed that the models calibrated for both Cessna 172 and Piper

Archer were usable in other parts of the dissertation. As part of experiment 3.2,

calibration of performance models using limited GA flight data was demonstrated. A

novel method of calibration using the specific total energy rate metric was proposed

and implemented. The calibration was able to produce models that could predict

the energy metric with increased accuracy despite unknown take-off weight of the

aircraft. The calibrated models were used in the previous experiments for inserting

the simulated anomalous flight data record in the data set for validation.

As part of the case study, different aspects of using the developed methodology

in a real-world setting were demonstrated. The relationship between flight-level and

instantaneous anomalies is explored in both phases of flight. It was found that flight-

level anomalies have a high likelihood of also containing instantaneous anomalies

but the converse relationship is not as strong. Evaluation of exceedance detection

revealed that with the current defintions, exceedances occur often, even in routine

flights. Comparing anomalous flights with exceedance detection revealed that the

number (or percentage) of exceedances is typically higher for flight-level anomalies

than normal flights, with the difference being more pronounced for level-2 anoma-

lies. Similarly, exploring the relationship between instantaneous anomalies and ex-

ceedances revealed that points with exceedances have a lower probability of being

normal than points with no exceedances. Segmenting the data set based on opera-

tional differences in two different cases presented different results. The distinction

between straight-in approaches and rectangular pattern approaches was not signifi-

cant from the proportion of anomalies in each type of approach. However, segmenting

the data set according to flaps usage (full flaps, partial flaps, and no flaps) during final

approach and landing revealed that flights with lower flaps usage had a higher propor-

tion of anomalies according to the algorithm. Finally, the performance of normal and
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anomalous flights on the touchdown metrics revealed a difference in performance for

some metrics (airspeed, touchdown distance) but no significant difference for others

(vertical speed, angle of attack).

In summary, these experiments revealed that the developed methodology was ca-

pable of providing safety assessment using quantitative data-driven techniques a level

of detail deemed acceptable for the specific application in GA, and thus partially or

completely supported all hypotheses associated with the three major research ques-

tions.

8.1 Contributions

The primary contribution of this dissertation is the creation and demonstration of a

quantitative, data-driven methodology for retrospective safety assessment. In partic-

ular it allows rapid processing of large amounts of flight data to automatically identify

different types of abnormal or anomalous operations within the data. A salient fea-

ture of the demonstrated approach is that the required initial input from processing

large amounts of data is limited to the thresholds for anomaly detection. This moves

away from traditional methods requiring specific event or exceedance definitions for

each type of aircraft in the data set. This ensures that the processing time gets re-

duced significantly as the analyst, instructor, or user now has to focus a specific set

of important flights or anomalies rather than the entire data set.

The first among the specific contributions within the developed environment is the

usage of energy-based metrics in a retrospective safety analysis setting. These metrics

have previously been used for performance assessments and design studies, but their

use in a safety setting has not been widespread. The adaptation of existing metrics

and definition of some completely new metrics is one of the important contributions

of this work. With an array of metrics available at the disposal of the analyst or user,

different types of insights can be gained. The usage of these metrics for retrospective
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safety analysis explicitly addresses poor energy management and loss of energy-state

awareness which are among top contributors to accidents and incidents. Similarly,

the defined metrics satisfy the desirable qualities of parsimony, safety-relevance, and

generalizability for safety metrics. Applicability of metrics across different aircraft

and heterogeneous flight data recorder capabilities ensures their usefulness in a diverse

data set.

The second set of contributions from this dissertation is the techniques for auto-

matically identifying and isolating different types of anomalies. One of the limitations

of existing approaches identified earlier was that a priori definitions are required to

identify exceedances or events. With the availability of large quantities of flight data,

the shift away from a priori definitions to data-driven thresholds is possible. However,

in order to successfully facilitate this transition, techniques from different domains

need to be adapted for GA operational data. For identification of flight-level anoma-

lies, a two-step approach using density-based clustering and one-class support vector

machine is developed. For identification of instantaneous anomalies a sliding-window

based pre-processing technique is used in conjunction with gaussian mixture model for

anomaly detection. Both these approaches are developed within a general anomaly

detection framework. Demonstration of anomaly detection using multiple aircraft and

airport of operations in the same framework is one of the unique contributions of the

current dissertation. The use of performance models to simulate a few known anoma-

lous flight data records is demonstrated, which facilitates validation of the developed

methodology. Similarly, through both anomaly detection techniques, the entire data

set is utilized in making decisions on outliers. This enables moving away from a priori

static definitions of events or exceedances.

The third set of contributions from this dissertation is related to the calibration

and usage of performance models in the safety assessment methodology. Literature

survey revealed that incorporating additional information in the safety analysis task
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can make the analysis richer and more meaningful. Performance models can be used

to evaluate energy metrics, simulate flight data records containing anomalies or known

unsafe operations, and used for a variety of other purposes. In the current disserta-

tion, starting from a generic GA performance model, calibrated models for specific

aircraft are obtained. A novel 2-level framework is demonstrated with each level

corresponding to different quality of calibration data. Calibration to publicly avail-

able data using the Pilot Operating Handbook is demonstrated in level-1 calibration,

whereas level-2 calibration uses limited amount of flight data records and a novel

method of calibration using the STER energy metric.

In summary, the demonstrated approach fills a hitherto existing gap by facilitating

the rapid investigation, isolation, and visualization of abnormal flight data records

from within a large set of heterogeneous operations in a single unified environment.

The use of quantitative energy-based metrics along with predictive capabilities from

performance models enables gaining insights and comparisons that would not be

possible with traditional exceedance detection techniques. The developed framework

can be deployed as a retrospective safety assessment tool or as a flight training tool

to help pilots understand and improve their piloting techniques during critical phases

of flight.

8.2 Recommendations for Future Work

Improvement of safety in GA operations is an ongoing process. Thus, even though

the hypotheses tested in the current work have been able to answer the identified

research questions and fulfill the research objective outlined at the beginning, there

are ways in which the capability of the developed methodology can be extended

further. Some of these are identified here. There are two main stream of thought

in which the capabilities presented here can be extended. The first is related to the

limitations of the work presented in this thesis. These limitations could be in terms

259



of data recording capability, model calibration framework, anomaly detection, and

other areas. The second stream of potential future work is related to extending the

developed methodology to problems in other domains. Each of these are explored in

this section.

While the data used in this dissertation comes from different aircraft, it is recorded

using a similar data recorder (G1000). The generalization experiment addressed how

the method would be impacted in the presence of limited parameters from within the

same flight logs. However, it is also of interest to investigate how data recorded at

different frequencies and latency can be integrated into the methodology. To that

end, flight data collected from different devices such as PED, iPad, etc. can be

integrated into the data set. This will truly enable addressing the limitations of the

developed method. While majority of the accidents pertained to single engine fixed

gear aircraft, data from other types of aircraft can also be utilized and integrated in

the same manner as the current data set. Model calibration on the propulsion side can

be extended from the current version of single engine naturally-aspirated propeller

engine to other types in order to capture an even wider spectrum of the heterogeneous

fleet. While the aim and scope of this dissertation is limited to retrospective analysis

from the point of view of training and safety, extensions of the methodology can be

envisioned for real-time assessment where pilots could get feedback when the flight

is drifting into an anomalous state. The computational time requirements for the

different steps are low and they are so chosen in order to enable rapid analysis. The

potential advantages of using the data set available to train an offline model that can

be queried online is worth exploring and can directly feed off of the work presented

here. This would require additional efforts to reduce computational time as well as

store standard operations as a surrogate model that can be quickly queried in-flight.

With regard to extension of this methodology to other domains, it was noted

earlier that techniques that generalize well within the GA fleet are sought in this
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work. Nevertheless, energy-based metrics are an inherent property of any aircraft and

as such, this methodology could include other categories of aircraft. In particular,

the same methodology and metrics can be used for commercial aircraft or others. Of

particular interest would be how the metrics can be extended for novel concepts such

as electric aircraft within the same overall framework. Since aircraft performance is

such a deep-rooted part of this methodology, other potential uses of this method in

the design phase can be envisioned in the long term. With the recent push by the

FAA towards reworking the certification standards for small aircraft to performance-

based standards, the safety analysis pursued here can be of additional relevance in

the future.
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APPENDIX A

IMPLEMENTED ENERGY METRICS

Table 11: Summary of implemented energy metrics and data required for computa-
tion

Can be estimated using

Metric Formula
Flight
Data
(FD)

FD +
Ref.

Profile

FD +
Perf.

Model

STE h+ V 2/2g X X X
SPE h X X X
SKE V 2/2g X X X
STER ḣ+ V V̇ /g = (T −D)V /W X X X
SPER ḣ = V sin γ X X X
SKER V V̇ /g X X X
PFPA γ + V̇ /g X X X
ERD sign(SKER

SPER )× exp(−|SKER
SPER |) X X X

STEE hact − href + (V 2
act − V 2

ref )/2g × X ×
SPEE hact − href × X ×
SKEE (V 2

act − V 2
ref )/2g × X ×

NSEE ((STE)act − (STE)ref )/(STE)tol × X ×
STEER sign(STEE)× δ(STEE)/δt × X ×
IERE Vact(T −D)/VredW (γref + ˙Vref/g) × X ×
Max. PFPA Tmax −D/W × × X
Min. PFPA Tidle −D/W × × X
TM 1− T/Tmax × × X
ERM (W (γa + V̇a/g))/(Tmax −D) × × X
ERDm W (γc + V̇c/g)/(Tidle −D) × × X
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APPENDIX B

LIST OF EXCEEDANCE EVENTS

No Event Level 1 Level 2

1 VNE (Never Exceed Velocity) 158 knots 163 knots
2 Vertical g Load 3.0 3.8
3 Vertical g Load - Min -1.0 -1.52
4 Oil Temperature - Max – 245 F
5 Oil Pressure - Min – 20 psi
6 Oil Pressure - Max – 115 psi
7 Max RPM ≥ 2700 1s > 2700 5s
8 Max Cylinder Head Temperature – 500 F
9 Fuel Quantity - Min 8 gal. 5 gal.
10 VFE − 10◦ 108 kt 110 kt.
11 VFE > 10◦ 84 kt 85 kt.
12 Bank Angle 60◦ ≥ 65◦

13 Bank Angle (below 1300 AGL) 50◦ ≥ 55◦

14 Pitch Attitude (positive) 30◦ ≥ 35◦

15 Pitch Attitude (negative) -30◦ ≤ -30◦

16 Vertical Speed Magnitude Below 1000 AGL ≥ 800 fpm ≥ 1000 fpm
17 Airspeed ≤ 200 feet AGL High - Full Flaps 66 kt 2s 71 kt 2s
18 Airspeed ≤ 200 feet AGL High - Zero Flaps 75 kt 2s 80 kt 2s
19 Airspeed ≤200 feet AGL Low - Full Flaps 60 kt 2s ≤56 kt 1s
20 Airspeed ≤ 200 feet AGL Low - Zero Flaps 69 kt 2s ≤65 kt 2s
21 Extended Center-line deviation at 200 feet AGL 2◦ 3◦

22 Glide angle High (Too steep) at 200 feet AGL 4◦ 5◦

23 Glide angle Low (Too shallow) at 200 feet AGL 2◦ 1◦

24 Bank Angle at or below 200 feet AGL 20◦ 25◦

25 Pitch Attitude at Touchdown (High) 10.5◦ 12◦

26 Pitch Attitude at Touchdown (Low) 3◦ 1◦

27 Airspeed at Touchdown (High - Full Flap) 55 knots 60 knots
28 Airspeed at Touchdown (High - No Flap) 63 knots 68 knots

Table 12: Exceedances set for Cessna 172 aircraft in approach and landing [73]

263



The following table lists exceedances for take-off phase. Those that are common for

all phases and listed in Table 12 are excluded.

No Event Level 1 Level 2

1 Heading Variation at Power Application 10◦ 20◦

2 Low RPM Rotation 2200 2000
3 Airspeed Lift-off (Non-soft) 44 kt 40 kt
4 Pitch at Lift-off 10.5 12
5 Bank Angle (Take-off) 20 25
6 Airspeed between 100 and 500 ft 57 kt 52 kt
7 Bank Angle < 400 ft 30◦ 45◦

8 Altitude Drop < 500 ft < 0 fpm 4 < -200 fpm

Table 13: Sample exceedances set for a Cessna 172 aircraft in take-off and climb [73]
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APPENDIX C

DERIVED PARAMETERS

This appendix contains the derivation of additional parameters which are used through-

out the dissertation. Some of the techniques for deriving required parameters are

adapted from existing literature whereas some are developed as a part of this disser-

tation. The section for each parameter contains details for techniques developed in

this dissertation and a summary and reference for techniques adapted from existing

literature.

No Derived Quantity

1 Phases of Flight
2 Touchdown Point
3 Nominal/Reference Profiles
4 Glide Slope
5 Angle of Attack
6 Weight
7 Rates
8 Flap Setting

Table 14: List of parameters derived from basic flight data using different techniques

C.1 Phases of Flight

In GA operations, defining phases of flight may not be as straightforward as commer-

cial operations. For example, pilot training involves maneuvers such as a “touch-and-

go” for landing practice. In such maneuvers it is difficult to define a distinct cruise

phase while the airplane is in the pattern. Similarly, most GA operations involve

higher variability in parameters even during the same phase than commercial oper-

ations. Some of the reasons for this include less experienced pilots, smaller aircraft
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with lower wing-loading being more susceptible to gusts, etc. However, identifying

phases of flight can be of importance as it can help understand safety events, hazards,

and operations associated with higher risk. Goblet et al. [68] have provided a simple

classification of GA flight data into different phases based on commonly-recorded pa-

rameters and adapting prior definitions by NTSB and CAST. The definitions provided

there for take-off, climb, descent, approach, and landing are used in this dissertation.

The parameter values have been reproduced here:

1. Take-off: Engine RPM (>2500 RPM) and Altitude (<35 ft above the runway

elevation)

2. Climb: Change in Altitude (constant increase > 200 feet per minute)

3. Descent: Change in Altitude (constant decrease < 200 feet per minute)

4. Approach: Altitude (constant decrease < 200 feet per minute) and Altitude

(< 1000 ft above runway elevation)

5. Landing: Indicated airspeed (< 60 KIAS) and Altitude (constant decrease

< 200 feet per minute for one minute)

C.2 Touchdown Point and Reference Profiles

The phases of flight identified in the previous section help to narrow down the focus

of the flight data record on the particular phase of interest. However, an important

piece of information typically missing in GA flight data records is the approximate

touchdown point of the aircraft on the runway during the landing phase. In commer-

cial aircraft, a binary parameter called Weight-on-Wheels (WOW) is indicative of the

touchdown point but it is not typically recorded in GA flight records. This parameter

is important as flight data records can be anchored at this point and re-sampled to

facilitate comparison of different flights with each other as well as to obtain reference

266



or nominal variations of parameters during the approach and landing phase. This

section describes the efforts to obtain these pieces of information using manipulation

of recorded parameters and a large data-set.1

Figure 141: Obtaining touchdown point and reference profiles from flight data

The methodology consists of two key analyses - obtaining the touchdown point

1The research described in this section is also documented in the following publication:

– Puranik, T.G, Harrison, E., Min, S., Jimenez, H., and Mavris, D., General Aviation Approach
and Landing Analysis using Flight Data Records, in 16th AIAA Aviation Technology, Integration,
and Operations Conference, 2016. Paper No. AIAA 2016-3913, doi:10.2514/6.2016-3913 [118]

267

http://dx.doi.org/10.2514/6.2016-3913


and obtaining a nominal profile. The entire process is outlined in Figure 141 which

shows the inputs, outputs, and steps involved in each analysis. During analysis,

the flight data is typically anchored at a specific event in time and data from all the

flights is sampled at a fixed temporal or distance-based intervals from this point. This

makes the flight data across a large number of flights comparable to each other. In

approach and landing operations, this is typically the touchdown point on the runway.

The flight data parameters (including altitude and velocity) can be backtracked from

this point at a desired discretization and upto a specific distance. The flight data

needs to be smoothed as it may contain noise in the parameters recorded. Obtaining

the touchdown point involves calculating the root mean square (RMS) error of the

touchdown altitude and reported runway altitude for a large set of flights. The set

of parameters that minimize this RMS error over the entire data set are chosen as

the final parameters and the touchdown point is evaluated for each flight. The flight

data is also smoothed and the runway of landing identified in intermediate steps in

this analysis.

The second analysis involves obtaining statistically averaged nominal profiles. For

achieving this, each flight is sampled based on the distance remaining to the runway

threshold. The nominal profile is then obtained by averaging the altitude and velocity

across a large database of flight records at small intervals of distance from the runway

threshold. Along with a simple average, weighted averages are also explored in this

part. Similar to altitude and velocity, the reference profiles for any recorded or derived

parameter can be obtained in the exact same manner.

C.2.1 Obtaining Touchdown Point

The flight data is smoothed using a local regression with weighted linear least squares

in MATLAB (called “loess” smoothing). Details of the implementation can be found

in the MATLAB documentation [98]. Obtaining the touchdown point accurately
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requires two parameters to be tuned. The span or window of smoothing (hereafter

called smoothing parameter) is one of the parameters used to reduce RMS error. The

touchdown point for the current work is defined as the last point in the final approach

beyond which the altitude difference between successive smoothed data points do not

exceed a certain threshold (example one foot). This altitude threshold is the other

parameter under our control to reduce the RMS error.
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Figure 142: Comparison of different smoothing parameters and their effect on iden-
tification of touchdown point

Vertical speed or altitude difference can both be used as the threshold parame-

ter. The reason for using the altitude difference as opposed to the vertical speed is

the noise of the vertical speed data. Figure 142 shows the effect of the two tuning

parameters on the touchdown point identification algorithm. The horizontal dashed

lines represent the altitude threshold parameter. This parameter is used to specify

the rule for maximum altitude difference permissible between successive points after

the aircraft has touched down. The higher the value of the parameter, the wider is

the gap between the two horizontal lines, which would imply detection of touchdown
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point possibly earlier than the actual touchdown. If the value is too small, then the

touchdown point would be detected too late (or not detected at all due to the noise

in the data). Therefore, it is important to choose this parameter carefully. In the

current work, this parameter is chosen as 1 ft based on an analysis described later in

the section.

For the smoothing parameter, the solid line plots the altitude difference from

the raw data collected from the flights. The altitude difference between successive

points in the raw data does not strictly go to zero even after the aircraft has touched

down on the runway. In some cases, the magnitude of the noise is as high as 7 feet

even after the aircraft has landed. Formulating a general rule for hundreds of data

records that may contain this kind of noise proves to be difficult and error-prone.

Therefore, smoothing using local regression is utilized. The dashed and dotted curves

shown in the Figure 142 indicate the effect of changing the smoothing parameter (the

smoothing window) from 21 to 39. Increasing the smoothing parameter uses a larger

window for smoothing and thereby some of the features are lost. On the other hand,

a smaller smoothing parameter does not smooth the raw data sufficiently and may

retain some of the noise that we want to eliminate from the original data. Therefore,

this factor also plays an important role in implementing a robust strategy that can

be used over a large set of flight records without tuning it separately for each flight

record.

As seen in Figure 142, the touchdown points identified using the raw data and the

different smoothing parameters with an altitude threshold of one foot are highlighted

as black circular markers. It is quite clear that using the noisy raw data can lead

to erroneous touchdown point identification as illustrated in the figure. Smoothing

the data can prevent this error, but excessive smoothing might result in a touchdown

point identification after the actual touchdown (Smoothing Parameter 21 versus 49

in the figure).
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From a set of N flight data records, if the altitude of runway touchdown for flight

number i is hi and the corresponding runway altitude is hr,i, then the touchdown

altitude error for flight i is:

ei = hi − hr,i (32)

Using the error for each individual record, the total RMS error is given by Equation

33

RMS =

√∑N
n=1e

2
i

N
(33)

To observe the effects of each parameter and to aid in the appropriate selection

of particular values for each parameter, an experiment is performed in which each

parameter is varied between certain lower and upper bounds and the RMS error is

calculated.

Figure 143: 3-D Surface plot of the RMS error for different smoothing parameters
and thresholds

Setting the upper bound of the smoothing parameter too large would smooth the
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data too much resulting in lower RMS error but result in touchdown points that are

further along the ground roll than at actual touchdown. This experiment is performed

for a large set of flight records, and the results are shown in Figure 143.

Figure 143 shows the trend of the RMS error on the z-axis with the two param-

eters on the x and y-axis. As we can see from the figure, low values of smoothing

parameters generally result in higher errors as expected. This goes down as the

smoothing is increased. Also, lower values of altitude threshold also tend to increase

the RMS error. High values of altitude threshold may result in premature detection

of touchdown point resulting in higher individual errors for each record. The chosen

point (highlighted in the figure with a white dot), results in the smallest RMS error.

This point corresponds to a parameter pair of altitude threshold = 1 and smoothing

parameter = 27.

C.2.2 Obtaining Reference Approach Profiles

Once the touchdown point is obtained for all the flight data records, they are re-

sampled according to the distance remaining to the touchdown point. It is important

to discretize/sample the flights as a function of distance as this allows the generation of

a statistical average (nominal) profile. The segment leading up to the touchdown point

is obtained by using a spline interpolation of available data points at a discretization

of 0.01 nautical miles. This facilitates efficient visualization of altitude (and other

parameters) for each flight for when it was a certain distance away from the runway

threshold.

Figure 144 shows this approach and landing data visualized for the current data

set. In Figure 144, a reference 3◦ glide slope line (common practice for approach

operations) from the “aim point” on the runway is shown by the solid black line. The

dotted line shows the average altitude profile followed by all the flights. The shaded

regions show the spread of the flight data records, with the dark grey denoting the
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Figure 144: Nominal approach profile - Altitude

50th percentile and the light grey denoting the 90th percentile of data records. The

dotted vertical line is the runway threshold and the horizontal line at approx 1900

feet represents the 1000 feet above ground level marker.

It can be seen that most of the flight records tend to intercept a 3◦ glide slope ap-

proximately one thousand feet above the airport/runway altitude (horizontal dashed

line) as is typical for GA landing operations. This also corresponds to approximately

3 nautical miles out from the runway threshold. The average approach profile and

most of the individual records tend to fly above the reference 3◦ glide slope line. But

we can also see that there is much variation in the altitude profile of different flights

as they approach and land at this runway. While some variation is expected, it is

interesting to note that almost all (90th percentile) of the flights tend to fly above

the 3◦ glide slope. Therefore, it is evident that in GA operations, the altitude profile

followed during approach and landing is not necessarily a simple linear 3◦ slope line.

Therefore, the data presented here clearly indicates that during actual operations,

defining a “reference” trajectory as simply along a 3◦ glide slope to the touchdown
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Figure 145: Nominal approach profile - Velocity

point would be an oversimplification of the actual process. For this reason, it is

proposed to use or define the statistical average profile developed here as the nominal

profile from an operational perspective.

Having already defined a nominal altitude profile, a similar approach can be taken

to look at the velocity profile. Using the same set of flight records and the same tech-

nique of discretizaion and sampling, an average statistical profile for the velocity is

obtained in Figure 145. In this figure, the horizontal line at 110 knots represents

the “no flaps speed” for the current aircraft (obtained from Pilot Operating Hand-

book) [13]. The dotted line is the average and the shaded regions represent the 50

percentile and 90 percentile of the spread. Although there is no crisp reference to

compare against such as the 3◦ profile for altitude, it is again evident that there is a

significant drop in the velocity from the time of interception of the 1000 feet above

ground level (AGL) line to the actual touchdown. The velocity profile during ap-

proach indicates that the average velocity profile drops from around 100 knots to 60

knots from the point of interception of 1000 feet AGL line to the runway threshold.
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Also, there are no noticeable steps in the velocity profile as is typically recommended

during pattern landings.

Once the nominal profiles for altitude and velocity are obtained, these are then

extended beyond the 3 nautical mile distance to further distances to visualize and

understand them better. This extension (upto 6 nautical miles distance) can be

seen in Figure 146a and 146b. From the altitude profile it can be seen that beyond

3 nautical miles, the spread of flight data records increases quite a bit. This can

be attributed to touch-and-go maneuvers that might be executed by the aircraft.

Therefore, the nominal or average profile that is being defined only makes sense upto

3 nautical miles for final approach. Similar spread can be seen in the velocity profiles.

(a) Average/Nominal altitude profile (b) Average/Nominal velocity profile

Figure 146: Visualization of average profiles beyond 3 nautical miles

All the above inferences were purely based on the statistical data of the flight

records in use and are therefore more of operational cut-offs. But they are very

useful in achieving the purpose of defining the nominal approach profiles. Similar to

the altitude and velocity, nominal profiles are obtained for other recorded as well as

derived parameters. For the sake of brevity, only altitude and velocity are presented.

Similar work has been performed in commercial operations by Wynnyk et al. [155]

The other phase of flight focused on in this dissertation is take-off. However,
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the discretization and obtaining of nominal profile is comparatively straightforward

for that phase as there is no requirement to calculate an equivalent of a touchdown

point. The point of application of take-off power (marked by the rise in RPM) is

typically chosen as the anchoring point and flight data sampled from that point

onward. For obtaining the reference profiles, the same steps as approach and landing

can be utilized.

C.3 Glide Slope

Prediction of the glide-slope from recorded data draws upon two typical parameters –

the ground speed and vertical speed. The instantaneous glide slope can be obtained

by taking the inverse tangent of the ratio between the vertical speed and ground

speed. It is interesting to note the variation of actual glide slope for all flights in the

data set and compare it to the prescribed nominal 3◦ glide slope during approach.

Figure 147 shows this visualization for the approach phase.

Figure 147: Visualization of glide slope during approach

It is interesting to note that the typical flight data records from the data set tend

to intercept the 3 degree line mid-way, indicating a shallower approach in the initial
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stages and a steeper slope during the latter stages of the approach.

C.4 Angle of Attack

Obtaining angle of attack is an important step in the use of aerodynamic performance

models because it is the central piece of information required to predict both lift and

drag. The relationship between the angle of attack (α), flight-path angle (γ), and

pitch angle (θ) is as follows:

α = θ − γ (34)

In a category 2/3 GA flight data recording capability, the pitch angle is typically

measured and recorded. The flight path angle can be obtained by taking the inverse

tangent of the ratio between vertical speed and true airspeed. Therefore, equation 34

can be used to calculate angle of attack at any point in the flight data record.

C.5 Weight

Accurate knowledge of the weight of the aircraft at any point during the flight is an

important piece of information which can affect a number of metrics in safety analysis.

Knowledge of the weight can affect calibration of performance models as well as affect

the values of evaluated energy metrics. Some of the exceedances are also related to

weight. In some cases, when the ground truth data is available, purely statistical

models have been used to predict quantities important for aircraft performance. Chati

and Balakrishnan [36] have used Gaussian Process Regression on commercial aircraft

DFDR archives to estimate take-off weight (TOW). Due to availability of ground

truth, their framework uses parameters that are recorded in the DFDR as features

for the statistical model and results in high accuracy for prediction of take-off weight.

In GA operations, ground truth is may not available even for FOQA-type DFDR

data. Whether the take-off weight is available or not, in flight records such as those
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utilized in this work, the fuel-flow rate is recorded. This can be used with the take-off

weight (or an estimate of it) to obtain the instantaneous weight at every point during

the flight. The following two cases of weight-recording sophistication are discussed

– take-off weight is available and fuel-flow rate is recorded, take-off weight is not

available and fuel-flow rate is recorded. In the first case, the following equation is

used, assuming data is collected every one second:

W (i) = TOW − ρ×
i∑

k=1

(FF (k)) (35)

Here TOW represents the take-off weight, FF is the fuel-flow rate, ρ is the density

of the fuel (typically 6 lb. per gallon). If the take-off weight is not available, it

can be estimated using cruise points identified by phase of flight algorithm [68] and

re-arranging the total energy rate metric equation.

W (i) =
(T (i)−D(i))V (i)

˙h(i) + V (i) ˙V (i)
g

(36)

Here i is any cruise point, and all of the terms are evaluated at this cruise point. To get

a robust estimate, multiple cruise points can be used and the take-off weight estimate

obtained from all of these points can be averaged. To provide an estimate of the

uncertainty in important safety metrics due to inaccurate take-off weight information

the following figures are presented. In the Figure 149, the specific total energy rate

metric is evaluated for a flight with known take-off weight. The same metric is then

evaluated using the performance models with three different weight inputs – the actual

weight, 80 % of the actual weight and 120 % of the actual weight. The histogram of

STER metric relative error is shown in Figure 148 and the actual metric values are

plotted over the duration of the flight in Figure 149.

The figures indicate that a variation of the take-off weight has a non-negligible
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Figure 148: Uncertainty in STER metric with unknown weight - histograms

Figure 149: Uncertainty in STER metric with unknown weight

effect on the calculation of the STER metric in certain parts of the flight record.

As is evident from the histogram and the data traces though, the spread in error

from an uncertainty of 20 % in the take-off weight is not significant and the overall

landscape of the metric variation is captured despite take-off weight being uncertain.

It is important to note here that the uncertainty considered is in take-off weight only

– this means a reliable recording of fuel flow rate is assumed to be available and

therefore the effect the take-off weight has in this case is only to shift the curves up
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or down.

In case the take-off weight and fuel flow rate are both unknown, in order to use

the models to predict this particular metric reasonable assumptions would need to be

made about possible take-off weight and typical values of fuel consumption in different

phases of flight. Dealing with this uncertainty is however, outside of the scope of this

work.

C.6 Rates

For many parameters, the value of the raw parameter is recorded but not its the

rate of change. In these situations, simple numerical differentiation can be used to

obtain the rate of change of that parameter. If the noise in the data is not large then

sufficient accuracy can be obtained using this technique.

C.7 Flap Setting

The position of the high-lift devices (flap position) in a GA aircraft is a relevant factor

in the investigation of GA accidents/incidents. However, even for aircraft equipped

with state-of-the-art data-logging capability (e.g., Garmin G1000-type systems), the

flap position is often not one of the logged parameters. The ability to infer the flap

position from flight data records with sufficient accuracy is desirable for this reason.

Incorrectly configured aircraft is one of the reasons for unstabilized approaches and

also possible accident cause in some cases.

Prior work done by researchers at Georgia Institute of Technology (called the

FLAP algorithm) has demonstrated the feasibility of estimating flap position given

basic flight data and accurate performance models of the aircraft.
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APPENDIX D

DIFFERENT FEATURE VECTOR OPTIONS

Table 15: Summary of parameters required for computation of various feature vectors

No Parameter/Model
Feature
Vector 1

Feature
Vector 2

Feature
Vector 3

Feature
Vector 4

1 Altitude X X X X
2 True Airspeed X X X X
3 Indicated Speed X X X X
4 Vertical Airspeed X X X X
5 Outside Air Temperature X X
6 Latitude X
7 Longitude X
8 Altitude (GPS) X
9 Ground speed X
10 Pitch X X
11 Roll X
12 Lateral Acceleration X
13 Normal Acceleration X
14 Heading X
15 Track X
16 Fuel Quantity (Left) X
17 Fuel Quantity (Right) X
18 Fuel Flow Rate X X
19 Oil Temperature X
20 Oil Pressure X
21 RPM X X
22 Cylinder Head Temp. X
23 Exhaust Gas Temp. X X
24 Flight Path Angle X X X
25 Angle of Attack X
26 Reference Profiles X X
27 Aerodynamics Model X
28 Propulsion Model X
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APPENDIX E

PCA STUDY

In this appendix, the effect of dimensionality reduction technique PCA (Principal

Component Analysis) on the performance of anomaly detection algorithms is tested.

It is claimed in Chapter 5 that the value of PCA diminishes if the same or nearly

same results cannot be obtained with and without PCA on various feature vectors.

Therefore, in this appendix, the following numerical experiment is performed: For

various feature vector options the overlap between top anomalous flights at various

outlier significance levels (1%, 3%, and 5%) is examined. Using different options

of feature vectors from energy metrics demonstrated earlier, the list of outliers is

obtained with and without using PCA. The two lists are compared with each other

for each feature vector option independently at each significance level. Therefore, this

experiment indicates the effect of using PCA at a given significance level for a given

feature vector. In each case, the PCA is performed such that 99% of the variability

of the feature vector is retained while still reducing the size significantly. Ideally, the

overlap should be 100% for all the options. Table 16 provides the results obtained.

Proportion of overlap with and without PCA

Outlier Significance Level FV 2 FV 3 FV 4

1% 100.00 % 97.05 % 100.00 %
3% 96.07 % 100.00 % 100.00 %
5% 98.82 % 98.82 % 97.06 %

Table 16: Overlap between sets of anomalous flights obtained using different feature
vectors with and without PCA
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As seen from the table, in majority of the cases, there is little information lost about

the top anomalous flight data records by using PCA for reducing dimensionality as

the overlap between anomalous sets is almost 100%. The few cases where it is not

exactly 100%, indicate a difference of 1 or 2 anomalous flights with and without

PCA. Thus, this experiment demonstrates that for any feature vector option at any

significance level under consideration in this dissertation, using PCA does not result

in any significant loss of information.
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APPENDIX F

LIST OF CALIBRATION FACTORS

Table 17: Description of calibration factors for models

Model Factor Description Range

Engine Engine de-rate factor [0.9 – 1.0] ×

Propeller Vertical shift of airfoil sectional lift curve [–1.0 – 1.0] +
Propeller Scaling of sectional lift curve slope [0.1 – 2.0] ×
Propeller Scaling of sectional minimum drag [–0.001 – 0.001] +
Propeller Scaling of sectional quad. parameters [–0.001 – 0.001] +
Propeller Scaling of sectional lift at min. drag [–0.2 – 0.2] +
Propeller Slope shift of propeller pitch [0.8 – 1.2] ×
Propeller Translational shift of propeller pitch [0 – 15] +
Propeller Scaling of propeller chord [0.5 – 2.0] ×

Aero. Scaling of maximum lift coefficient (Flap 0) [–0.2 – 0.2] +
Aero. Scaling of maximum lift coefficient (Flap 1) [–0.2 – 0.2] +
Aero. Scaling of maximum lift coefficient (Flap 2) [–0.3 – 0.2] +
Aero. Scaling of maximum lift coefficient (Flap 3) [–0.3 – 0.3] +
Aero. Scaling of parasite drag factor (clean config) [0.5 – 1.75] ×
Aero. Scaling of induced drag factor (clean config) [0.5 – 1.5] ×
Aero. Drag polar shifting factor [0.1 – 0.35] ×
Aero. Scaling of parasite drag increment (Flap 1) [0.1 – 1.9] ×
Aero. Scaling of induced drag increment (Flap 1) [0.1 – 1.9] ×
Aero. Scaling of parasite drag increment (Flap 2) [0.2 – 1.8] ×
Aero. Scaling of induced drag increment (Flap 2) [0.2 – 1.8] ×
Aero. Scaling of parasite drag increment (Flap 3) [0.5 – 1.7] ×
Aero. Scaling of induced drag increment (Flap 3) [0.5 – 1.7] ×
Aero. Scaling of lift–curve slope (Flap 0) [0.75 – 1.25] ×
Aero. Scaling of lift–curve slope (Flap 1) [1 – 1.2] ×
Aero. Scaling of lift–curve slope (Flap 2) [1 – 1.2] ×
Aero. Scaling of lift–curve slope (Flap 3) [1 – 1.2] ×
Aero. Scaling of lift–curve intercept (Flap 0) [–0.25 – 0.25] +
Aero. Scaling of lift–curve intercept (Flap 1) [0.5 – 1.5] ×
Aero. Scaling of lift–curve intercept (Flap 2) [0.7 – 1.35] ×
Aero. Scaling of lift–curve intercept (Flap 3) [0.85 – 1.2] ×
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The last column in Table 17 refers to the manner in which the calibration factor is

embedded in the framework. A ‘+’ sign indicates an additive factor and a ‘×’ sign

indicates a multiplicative factor. The decision on whether to make a factor additive or

multiplicative is based on the amount of freedom required for each factor, the range of

possible values, how accurately baseline values are known, etc. Figure 150 shows the

variation of curves of different flapped configurations for a specific clean configuration

model. The three colors represent curves for three different flap settings. Modifying

the ranges of calibration factors will enable making the spread of possible curves wider

or narrower as required.

Figure 150: Spread of possible curves using proposed parameterization for flapped
configurations
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APPENDIX G

POH DISCREPANCY METRICS

This appendix contains details of the discrepancy metrics evaluated for each phase

of flight/condition from the POH used in level-1 calibration. Typical tables from a

sample POH [13], the logic behind selection of particular metrics, and the method of

aggregation is explained for each condition.

G.1 Climb

Figure 151: Sample rate-of-climb table

For calculating climb performance, POH tables such as the one in Figure 151 are

used. For each condition provided in the table, a particular rate of climb is available.

In order to estimate a rate of climb using the performance models, first an RPM

is estimated. This is done using the engine model to obtain power supplied by the

engine and propeller power curve to obtain power absorbed by the propeller at that

advance ratio. The RPM that provides least mismatch is the estimated RPM. Once

the RPM is obtained, the lift, drag, and thrust at that condition are estimated and
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the rate of climb which minimizes mismatch of specific excess power is the model-

predicted rate of climb. This is now compared with the POH table. This discrepancy

metric thus exercises input from all three component models – aerodynamics, engine,

and propeller.

G.2 Cruise

Figure 152: Sample cruise performance table

Two types of cruise metrics are evaluated using typically available cruise perfor-

mance tables from the POH. The first metric is the RPM mismatch in cruise. This

metric utilizes the engine and propeller calibration factors. The steps involved in

calculating this discrepancy metric are to first use %-power from POH cruise table

to determine engine shaft-power output. Next step is to query propeller curves to

determine the RPM at which the propeller absorbs this power. The final step is to
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compare this RPM to the RPM listed in the cruise performance table (Figure 152.

The second discrepancy metric involves longitudinal force imbalance during cruise

and utilizes the calibration factors from aerodynamics and propeller. The steps to

calculate this metric are to first compute predicted thrust from the propeller model at

POH flight condition. The next step is to compute predicted drag from aerodynamics

model at POH flight condition. Finally, the mismatch between these two quantities

is obtained as the discrepancy metric.

G.3 Glide

The POH contains the best glide speed and a glide performance table from which

best glide angle can be calculated. The glide metrics calculate the discrepancy in the

model prediction for both of these quantities and the values reported in the POH.

G.4 Stall

The POH typically contains a table such as that shown in Figure 153 which lists

the speed at which the aircraft at maximum take-off weight is expected to stall for

different flap settings and bank angle. The CL,max of the aerodynamics model and that

obtained using the conditions in the table can be directly compared to calculate and

minimize discrepancy between the two. The stall discrepancy metric also exercises

only the aerodynamics model.

Figure 153: Sample stall speeds table
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APPENDIX H

MODEL CALIBRATION CASE STUDY

One of the important pieces of information which may not always be available during

model calibration is the tail number of the aircraft in the flight data record. This

is important because it is expected that the performance of the flight for the same

tail number will be similar compared to the performance of a flight on a different tail

number at the same conditions. This is due various factors such as the degradation of

engine performance with age of the aircraft, aerodynamic performance changes due

to modifications/surface roughness, etc. It is hypothesized that when a performance

model is calibrated to a particular flight data record, the predictive power of that

model would be inherently better on other flight data records collected on the same

aircraft. To that end, calibration is carried out using a data record from different tail

numbers and the distribution of errors on records from the same flight and errors on

the entire data set are obtained. The distributions for four sample calibrations from

the data set are presented in Figure 154.

The results reveal that, in general, the performance on the same tail number as

that used for calibration is markedly better than the performance on the entire data

set. For all the other cases, similar trends are observed with the magnitude of the

shift in error RMS distribution different for different aircraft. In some cases, such as

flight 3 in the figure, there is no noticeable difference between the specific flight data

record and the remaining data set. Therefore, a unique model for each tail number

can be calibrated and used when such information is available as it would improve

the predictive power. However, in the most general cases, such information may not

be available and in those situations, using a model that provides good predictions on
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(a) Calibration Flight 1 (b) Calibration Flight 2

(c) Calibration Flight 3 (d) Calibration Flight 4

Figure 154: Differences in STER RMS error when measured on same tail number as
calibration flight versus different tail number

the entire data set is preferred.
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