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Abstract

The theoretical framework of a damage model dedicated to non-isothermal
unsaturated porous media is presented. The damage variable is a second-
order tensor, and the model is formulated in independent state variables.
The behavior laws are derived from a postulated expression of Helmholtz
free energy. The damaged rigidities are computed by applying the Principle
of Equivalent Elastic Energy (PEEE). Internal length parameters are intro-
duced in the expressions of liquid water and vapor conductivities, to account
for cracking effects on fluid flows. The damage model has been implemented
in Θ-Stock Finite Element program. The mechanical aspect of the damage
model is validated by simulating a triaxial compression test on a dry isother-
mal brittle material. Then, a sophisticated model of nuclear waste disposal,
involving two non-isothermal unsaturated porous media, is reproduced. The
results obtained in elasticity are in good agreement with the results presented
in the corresponding reference article. A parametric study on initial damage
is then performed to assess the influence of the Excavated Damaged Zone
(EDZ) on the response of the nuclear waste repository during the heating
phase. The trends meet the theoretical expectations.
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1. Introduction

This study is motivated by the necessity to predict the behavior of the
Excavation Damaged Zone (EDZ) surrounding nuclear waste disposals. The
Geological Barriers, often made of quasi-brittle material like granite or clay-
rock, undergo damage during the excavation phase. Hydro-mechanical in-
teractions may occur in the neighborhood of the Engineered Barrier, which
is generally made of unsaturated compacted clay [1]. Fluids flow inside the
gallery. The span of the transient regime depends on the relative values of
the involved conductivities [2]. Waste is a heating source which can generate
tension, and thus, cracks. The temperature increase tends to reverse the
flow of liquid water, and to transform it into vapor at the inner radius of the
repository. The complex couplings involved in the geological formation make
it necessary to study rock-like quasi-brittle materials as multiphase media.
The authors have developed a damage model dedicated to non-isothermal
unsaturated porous media [3, 4]. The model, named THHMD model in the
following, has been programmed in Θ-Stock Finite Element code [5]. The
present article is focused on the numerical validation and justification of the
THHMD model. Therefore, only the main modeling assumptions and the
most important equations will be exposed in section 2. Then, a numerical
validation of the mechanical aspect of the damage model will be presented in
section 3. Section 4 contains the main new contribution of this article. Sim-
ulations have been performed to model the EDZ at the vicinity of a nuclear
waste repository. All the previous results obtained so far with the THHMD
model were either focused on mechanics or on flow problems (involving tem-
perature and pore pressure degrees of freedom only). In the simulations pre-
sented here, all the degrees of freedom are active and coupled (displacements,
temperature, pore pressures). Moreover, the repository model accounts for
the interactions between two porous media: the engineered barrier and the
geological barrier. The heating phase is simulated in the elastic domain of
the damage model, and the results are compared to the results obtained in
the corresponding reference article. Then, a parametric study on initial dam-
age is performed to assess the influence of the EDZ on the response of the
nuclear waste repository during the heating phase.
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2. Outline of the Model

2.1. Variables

Physically, “damaged” means“altered due to the effect of micro-cracks”.
The constitutive damage model is developed over a Representative Elemen-
tary Volume (REV). It is assumed that cracks do not interact. Under this
assumption, the loss of elastic deformation energy due to cracking in a REV
of volume V containing N cracks is [6]:
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in which E0 and ν0 are the Young’s modulus and Poisson’s ratio of the
undamaged material, respectively. The second-order crack density tensor
Ωij is defined as:
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The Kth crack is characterized by a plane orientation (normal vector nK)
and a typical dimension (lK). The second term of equation 1 represents the
effects of the components of crack displacement vectors that are tangential
to crack planes. These effects may only be represented by resorting to a

fourth order tensor, 1
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. However, Kachanov [6]

showed that this term could be neglected, so that it is possible to model the
degradation of mechanical stiffness due to cracking simply by introducing a
second-order damage variable: Ωij (equation 2). In the present model, the
damage variable is defined as the spectral decomposition of the second-order
crack density tensor Ωij. Physically, it means that the cracks contained in the
REV are gathered in families, according to their plane orientation. Three
principal directions are considered, and therefore, three crack families are
defined. As a consequence, damage is expressed in its principal base, and
only three equivalent cracks represent all the micro-cracks of the REV. It is
assumed that the equivalent cracks are penny-shaped and that a dilatancy
coefficient χ relates the crack thicknesses ek to the crack radii lk [7]. These
geometric assumptions are accounted for to compute the volumetric fraction
of the equivalent cracks in the definition of crack density:
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The REV is made of a solid skeleton, the pores of which may contain water (in
the liquid phase and in the gaseous phase), and air (assumed to be gaseous).
The unsaturated porous medium is modeled by requiring to independent
state variables. Liquid water and air pore pressures are noted pw and pa
respectively. Discussing the choice of the stress variable would be beyond
the scope of this paper. Formulations in net stress (σ”ij = σij − paδij) and
suction (s = pa − pw) independent state variables are justified in [8, 9].
Temperature is accounted for by introducing a scalar thermal stress pT in
the thermodynamic variables [4]. Each stress variable is thermodynamically
conjugate to a strain variable:

εMij
↔ σ”ij

εSv ↔ s

εTv ↔ pT

(4)

in which volumetric strains are denoted with a v subscript. Net stress, suction
and thermal stress being independent, the three strain variables mentioned
in equation 4 may be used to split the total strain tensor. Assuming that
each strain contribution may encompass an elastic (e) and an inelastic (d)
part leads to:

dεij = dεeMij
+ dεdMij

+
1

3
δij
(
dεeSv + dεdSv

)
+

1

3
δij
(
dεeTv + dεdTv

)
(5)

2.2. Free Energy
The free energy breakdown used by Dragon and his coworkers [10] for

damaged dry materials, is generalized and extended to multiphase media:
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2
εTvβT (Ω) εTv are the mechanical,

capillary and thermal degraded elastic energies respectively. They depend re-
spectively on damaged mechanical, capillary and thermal rigidities (De (Ω),
βs (Ω) and βT (Ω) respectively). The capillary rigidity relates suction changes
to void ratio changes. The thermal rigidity relates the stress changes due to
temperature changes to volumetric deformations. gM Ωij εMji

, gS
3
δij Ωji εSv

and gT
3
δij Ωji εTv are residual strain potentials, which quantify the remaining
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openings due to cracks after unloading [11]. gM , gS and gT are rigidity-like
scalar material parameters that quantify the resistance to crack-closure. The
derivation of the free energy Ψs(εM , εSv, εTv,Ω) provides the whole stress/strain
relations [3, 4]: 

σ”ij = Deijkl (Ω) εMlk − gM Ωij

s = βs (Ω) εSv − gS
3
δij Ωji

pT = βT (Ω) εTv − gT
3
δij Ωji

(7)

For a given sate of damage, incremental stresses are related to the incre-
ments of elastic strains as: dσ”ij = Deijkl (Ω) dεeM lk, ds = βs (Ω) dεeSv,
dpT = βT (Ω) dεeTv (for mechanical loadings, this statement is justified in
[12]). The incremental inelastic strains dεdMij, dε

d
Sv and dεdTv are obtained by:

1. deriving the conjugation relations provided in equations 7, 2. introducing
the inelastic strain components (equation 5) in the expression obtained in 1.,
and 3. combining the resulting relationships with the three latter equalities.
As a result, the increments of inelastic strains depend on the increment of
damage:
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To determine the increment of damage, it is necessary to express the damage
driving force conjugate to damage (Ydij). The expression of Ydij is deduced
from the derivation of the free energy (equation 6):

Ydij = −1
2
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2
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(9)

The damage evolution function is assumed to depend on the tensile strains
that develop in the skeleton. These latter may be due to mechanical tension
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(gM ε+Mij
), thermal expansion (gT

3
ε+Tvδij) or pore shrinkage due to suction in-

crease (gS
3
ε−Svδij). The corresponding thermodynamic variable is noted Y +

d1 ij

[4, 13]. Like in many models [10, 14, 15] (among others), a very simple
damage evolution function is used:

fd
(
Ydij,Ωij

)
=

√
1

2
Y +
d1 ij

Y +
d1 ji
− C0 − C1 δij Ωji (10)

C0 is the initial damage-stress rate that is necessary to trigger damage. C1

controls the damage increase rate. The damage evolution law is computed
by an associative flow rule [3, 4].

2.3. Damaged Rigidities

The elastic components of the strain tensor are determined by computing
the damaged rigidities Deijkl (Ω), βs (Ω) and βT (Ω). Damaged stress state
variables are defined (damaged net stress, damaged suction and damaged
thermal stress), by using the fourth-order operator of Cordebois and Sidoroff
[16] (noted Mijkl (Ω)):

Mijkl (Ω) σlk = (δ − Ω)
−1/2
ik σkl (δ − Ω)

−1/2
lj (11)

The Principle of Equivalent Elastic Energy is applied on the three elastic
potentials 1

2
εMji
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, 1

2
εSvβs (Ω) εSv and 1

2
εTvβT (Ω) εTv. The final

expressions of the damaged rigidities are:
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2
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in which D0
e ijkl, β

0
s and β0

T are the mechanical, capillary and thermal rigidities
in the intact state, respectively.

2.4. Damaged Conductivities

The details of the modeling of thermo-hydraulic transfers in intact un-
saturated porous media may be found in [5]. Liquid water flow is governed

6



by an extended Darcy law, and the model of vapor transfer is inspired from
the works of Philip and de Vries [17]:

Vw = −ΨR (θw)

σ(Tref )

dσ(T )

dT
Kw · ∇ (T ) +

1

γw

σ(T )

σ(Tref )
Kw · ∇ (s) −Kw · ∇ (z)

(13)

V∗
vap =

ρvap
ρw

Vvap = −DTvap∇ (T ) + DPvap∇ (s) (14)

Vw and V∗
vap refer to liquid water and vapor relative velocities, respectively.

ΨR, which depends on the water content θw, has the dimension of a pressure
head (in m). It is computed at the reference temperature Tref : ΨR (θw) =
(pw − pa)/γw. σ(T ) is the superficial energy of pore water (in J.m−2). DTvap

and DPvap are the thermal and capillary vapor conductivities, respectively.
Only the intrinsic water permeability Kint (n,Ωij), depending on porosity n,
is related to the behavior of the solid skeleton:

Kw = kT (T ) kr(Sw)Kint (n,Ωij) (15)

The thermal and capillary relative permeabilities kT (T ) and kr(Sw) are re-
lated to heat and to the behavior of pore fluids:

kT (T ) =
µw(T )

µw(Tref )
, kr(Sw) =

(
Sw − Sw,r
1− Sw,r

)3

(16)

in which µw(T ) is the dynamic viscosity of liquid water, and Sw,r is the
residual water saturation degree. The water saturation degree Sw evolves
on a thermo-hydraulic state surface. This latter is defined by mixing the
concept of Bell-shaped space distribution of pores used by Van Genuchten
[18] and the assumption of exponential thermal effects done by Gatmiri [5]:{

Sw =
[
(1− Sw,r) (1 + (α s)n)−1+ 1

n + Sw,r

]
exp (ds (T − T0)) if s ≥ 0

Sw = 1 if s < 0
(17)

The intrinsic liquid water permeability is split in a reversible part and an
irreversible component. The first one quantifies water flow in the reversibly
damaged porous matrix, and the second one (k2

(
nfrac,Ωrs

)
) controls the

flow in the cracks network:

Kintij (n,Ωrs) = kw0 10αw erev δij + k2ij

(
nfrac,Ωij

)
(18)
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kw0 is the reference water permeability of the saturated isothermal porous
medium (in m.s−1), and erev is the void ratio of the reversibly damaged
porous material. Following Shao’s approach [7], k2

(
nfrac,Ωrs

)
is computed

by assuming that the flow in each micro-crack is laminar. The flow is then
homogenized in order to evaluate water transfers in the equivalent cracks
damaging the REV:

k2ij

(
nfrac,Ωrs

)
=

π−2/3 γw
12µw (Tref )

χ4/3 b2

3∑
k=1

(
dk
)5/3 (

δij − nki nkj
)

(19)

b plays the role of an internal length parameter, and may be determined if
water permeability is known for a certain damage state. In the numerical
simulations presented in the following sections, a maximal average damaged
permeability Kmax

wdg is used, which is defined as the damaged permeability

obtained with 95% isotropic damage: Kmax
wdg = 1

3
δijKwji (Ωrs = 0.95δrs). In

expression 14, DPvap and DTvap both depend on an intrinsic vapor conduc-
tivity, which is split in the same manner as the intrinsic water permeability,
as:

Dint, vap = 1.024D0 n
rev + Dint, vap2

(
nfrac,Ωrs

)
(20)

A second internal length parameter is introduced in order to compute the
damage-related intrinsic vapor conductivity Dint, vap2

(
nfrac,Ωrs

)
,which is as-

sumed to depend on the mean damage-related water intrinsic permeability:

Dint, vap2

(
nfrac,Ωrs

)
=

b∗

3
δij k2ji

(
b∗, nfrac,Ωrs

)
(21)

b∗ is computed by using a maximal damaged vapor conductivity Dmax
dg . Air

flow is assumed to be diffusive:

Va = − 1

γa

pa + patm
T + 273.15

Ka · ∇ (T (x)) −Ka · ∇
(
pa
γa

)
−Ka · ∇ (z) (22)

with an air permeability depending on the void ratio e and the saturation
degree Sw:

Ka = ca
γa
µa

[e(1− Sw)]αa ~δ (23)

Heat flux is controlled by diffusive, evaporation and convective contributions:

QT = −λT ∇ (T ) + hfg
(
ρwV

∗
vap + ρvapVa

)
+
[
ρw CPwVw + ρw CPvapV

∗
vap + ρaCPaVa

]
(T − T0)

(24)
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Only the diffusive component λT ∇ (T ), which involves the solid skeleton,
can be influenced by damage. Air and heat diffusive flow directions are as-
sumed not to be affected by the fracture network. The expressions of the
corresponding conductivities are thus kept unchanged from the intact config-
uration. The influence of damage is quantified by the total porosity, which
depends on total volumetric strains, and thus, on inelastic strain compo-
nents. Damage is also accounted for through the degree of saturation, which
depends on suction, and thus, on damaged water conductivities.

2.5. Experimental Determination of the New Material Parameters

The undamaged capillary rigidity β0
s (respectively thermal rigidity β0

T )
may be determined by oedometric tests under suction control (respectively
under temperature control). The damage material parameters that have been
introduced in the THHMD model are: the damage evolution parameters (C0

and C1), the resistances to crack closure (gM , gS and gT ), the dilatance
parameter χ and the two internal lengths b and b∗. Halm and Dragon set
up triaxial compression tests that enable the determination of C0, C1 and
gM [19]. Such tests can be adapted to get gS and gT . χ has been measured
in rocks by Shao’s research team [7]. b may be identified by percolation
tests [20, 21]. These tests have to be adapted to get the internal length
related to vapor flow (b*) [17]. In its present state, the model resorts to
maximum damaged conductivities (Kmax

wdg and Dmax
dg ). Indeed, it is easier

to determine conductivity in a cracked medium than to identify an internal
length experimentally. Kmax

wdg and Dmax
dg are the conductivities measured when

the material is reaching failure, for a conventional isotropic damage of 0.95%.
Introducing the conventional damage value and the maximum conductivities
in equations 19 and 21 makes it possible to compute b and b*.

3. Assessment of Mechanical Damage at the Lab Scale

The aim of the simulation presented in this section is to validate the
mechanical representation of damage proposed in the THHMD model. The
validation has already been done successfully on granite, which is a mate-
rial of interest for nuclear waste disposals [4]. The purpose of this section
is to bring new evidence of the capabilities of the model, by extending the
mechanical validation to another geomaterial. A triaxial compression test
performed on a cylindrical sandstone sample is simulated. The input pa-
rameters of interest for this simulation are provided in Table 1. The values
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Table 1: Main Material Parameters used to Simulate the Triaxial Compression Test on
Vosges Sandstone.

E (Pa) ν e0 gM (Pa) C0 (Pa) C1 (Pa)
1.17 ∗ 1010 0.2 0.2658 −3.2 ∗ 107 2 ∗ 104 2.7 ∗ 105

are taken from the reference study of Dragon’s research team [10]. e0 is the
initial void ratio of the material. In this study, the material is assumed to
be dry, so that the pore pressure degrees of freedom are set to zero during
the simulation. The test is isothermal, so that the temperature degree of
freedom is neutralized as well. Damage can only affect the mechanical rigid-
ity and strains of the sample. The cylinder is 4 cm high and the radius is 2
cm. Only one half of the longitudinal section of the sample is modeled, in
axis-symmetric conditions. The boundary conditions are the following:

• vertical displacements fixed to zero at the bottom (uz = 0)

• radial displacements fixed to zero on the axis (ur = 0)

• external lateral boundary subjected to a constant confining pressure
pc = 15MPa

• top boundary condition subjected to a varying compressive load (σzz =
pc during the confining phase, and σzz = pc + σload in the compression
phase).

The match between numerical results and experimental reference data is
very satisfactory, as can be seen from Fig. 1.a. Axial compression generates
lateral tensile strains, developing equally in r- and θ- directions. This is the
reason why there is no axial damage (Ωzz = 0) and this is also the reason
why both lateral components of damage are equal during all the test (Fig.
1.b). Damage grows with deviatoric stress, which reflects the corresponding
growth of radial and orthoradial tensile strains. Damage predictions are
thus consistent with the theoretical formulation of the model and with the
mechanical loading at stake in this test.
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Figure 1: Triaxial Compression Test on Vosges Sandstone (pc = 15MPa). a. Strain Evo-
lution (dots: experimental results, solid lines: numerical results). b. Damage Evolution.

4. Coupled Heat and Fluid Flows in the EDZ

4.1. Presentation of the FE Model

The following study is based on the works of Gens’s research team on
FEBEX project [1]. The objective is to model nuclear waste disposals. Nu-
clear waste is stored in cylindrical canisters, the radius of which is 0.465m.
A bentonite buffer, 0.7m thick, surrounds the container. The packages are
stored horizontally, in boreholes realized from a deep gallery excavated in
granite. The space between canisters is assumed to be large enough to ne-
glect group effects. An axis-symmetric numerical model is designed to study
the influence of the heating power of nuclear waste on the Engineered Bar-
rier (i.e. the bentonite buffer) and on the Geological Barrier (i.e. the granite
massif). The massif is studied over a large distance from the canister, equal
to one hundred times the thickness of the bentonite buffer (i.e. r=70m).
The model is pseudo-one-dimensional: the thickness of the studied sections
of bentonite and granite is 0.7m long, which is one hundred times lower than
the model’s width. The aim of this study is to contribute to the validation
of the integration of the THHMD model in Θ-Stock, and then, to justify the
use of the THHMD model to study the Excavation Damaged Zone (EDZ).
First, results obtained in elasticity are compared with the results provided
by Gens et al. [1]. Then, a parametric study is performed to assess the in-
fluence of initial damage in the granite massif, which may be cracked during
the excavation of the gallery, before the heating phase.
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Figure 2: Mesh and Boundary Conditions Adopted to Simulate the Heating Phase in a
Nuclear Waste Disposal.

The initial conditions are the following:

• initial stress state: σrr = σzz = σθθ = 5MPa in bentonite, zero initial
stress in granite

• initial temperature in both materials: 12 oC

• initial air pressure in both materials: patm = 105 Pa

• water pressure initialized by inverting the formula of the retention
curve, from the value of the initial degree of saturation: Sw0 = 0.46
in bentonite, Sw0 = 1 in granite.

The boundary conditions adopted for all the simulations are summarized
on Fig. 2. The temperature imposed at the left boundary (contact surface
between the canister and the bentonite buffer) varies as follows:

• the temperature is raised from 12oC to 100oC in 21 days

• then, the temperature is maintained at 100oC during 3 years (which
sets the end of this stage at 1095 days)

• the temperature is decreased exponentially in time during 6 months
(which sets the end of this stage at 1278 days).

All the simulations presented here are performed in elasticity (thus, gM =
gS = gT = 0). In the parametric study, the EDZ is represented by setting
a non zero damage tensor in the initial state, for selected granite elements.
Most of the material parameters are provided in the reference article [1].
According to the formula adopted by Gens et al. for the state surface of the
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Table 2: Main Material Parameters used to model the Granite Bedrock.

E (Pa) ν β0
s (Pa) β0

T (Pa) e0

3.51 ∗ 1010 0.3 2.92 ∗ 1011 2.92 ∗ 1011 0.0101
Sw,r αV G (Pa−1) nV G ds (oC−1)

0 10−5 1.5 0
kw0 (m.s−1) αw χ kmaxwdg (m.s−1)

10−11 0 0.005 10−7

ca αa Dmax
dg (m2.s−1)

10−10m2 0 10−5

λs λw λa hfg αT
(W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (J.kg−1) (oC−1)

3.6 0.6 0.0258 2.5 106 −7.8 ∗ 10−6

CPs CPw CPvap CPa
(J.kg−1.oC−1)

793 4180 1900 1006

void ratio, the intact capillary rigidity β0
s is proportional to the bulk modulus.

Gens et al. also use retention curves obtained with a Van Genuchten model
[18], but without temperature couplings (thus, ds = 0). The internal length
parameters are computed by assuming that Kmax

wdg and Dmax
dg are respectively

10000 times and 100 times higher than the intrinsic water permeability. The
thermal conductivity curve is fitted to the one obtained in Gens et al.’s model
to get the thermal conductivity of the solid phases. αT refers to the thermal
expansion coefficient of the solid grains. More details on the choice of the
material parameters provided in Tables 2 and 3 are available in [13].

4.2. Heating Test in an Undamaged Geological Formation

The problems studied here involves four simultaneous flows: liquid water
flow, vapor flow, dry air flow and heat flow. Each transfer is characterized
by a specific time scale, wich makes it difficult to choose the time step size
that has to be adopted in the successive loading phases. The authors are still
working on time step optimization to avoid oscillation phenomena, like those
observed in Fig. 3 and 5. Radial displacement trends are in agreement with
the results obtained by Gens (Fig. 3). The bentonite buffer expands during

13



Table 3: Main Material Parameters used to model the Bentonite Buffer.

E (Pa) ν β0
s (Pa) β0

T (Pa) e0

2.60 ∗ 107 0.3 2.17 ∗ 109 2.17 ∗ 108 0.6846
Sw,r αV G (Pa−1) nV G ds (oC−1)

0 2 ∗ 10−8 2 0
kw0 (m.s−1) αw χ kmaxwdg (m.s−1)

10−13 0 0.005 10−9

ca αa Dmax
dg (m2.s−1)

10−10m2 0 10−7

λs λw λa hfg αT
(W.m−1.oC−1) (W.m−1.oC−1) (W.m−1.oC−1) (J.kg−1) (oC−1)

1.05 0.6 0.0258 2.5 106 −10−5

CPs CPw CPvap CPa
(J.kg−1.oC−1)

1091 4180 1900 1006

the heating phase, and shrinks during the relaxation period. The orders
of magnitude are respected, but the displacements are about three times
higher with Θ-Stock in bentonite. This may be explained by the difficult
parameter setting for this material. Gens et al. modeled the mechanical
behavior of bentonite by a state surface controlling the evolution of the void
ratio. In Θ-Stock, a linear elastic model governs the mechanical part of
the behavior, and it seems that the bentonite modeled with Θ-Stock is less
stiff than in Gens et al.’s study. Consequently, the granite bedrock is less
loaded than expected, which explains why the radial displacements in the
geological formation are less important in the simulation performed with Θ-
Stock than in Gens et al.’s reference study. The evolution of temperature
is well-reproduced even in the transient stage (Fig. 4), despite the thermal
conductivity model is different from the one used in the reference study. The
trends of water pressure and of the degree of saturation in the contact zone
between both barriers are satisfactory (Fig. 5), even if the desaturation of
the bentonite buffer after the heating phase is more important in Θ-Stock
computations. This discrepancy may be attributed to the complex couplings
involved in the THHMD model, which make it difficult to fit all the retention
parameters, especially when two porous media interact. Generally speaking,
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Figure 3: Radial displacements in the Engineered (a.) and Geological (b.) Barriers. Dots:
reference results from [1]. Solid lines: results obtained with Θ-Stock in the elastic domain
of the THHMD model.

the behavior of the Engineered and Geological Barriers are well-represented,
which justifies a study more focused on damage.

4.3. Heating Test in a Bedrock Damaged by the Excavation

The purpose of the following simulations is to study the influence of the
Excavation Damaged Zone (EDZ) on the response of the Engineered and Ge-
ological Barriers. It is assumed that it is possible to forecast the mechanical
damage induced by excavation. This is justified from the results obtained
in the previous section, which gave evidence that the THHMD model can
reproduce mechanical damage in porous media. The aim of the following
investigation is to perform a parametric study on the influence of initial
damage in an elastic, non-isothermal, unsaturated granite massif. This is
justified from the results obtained in the previous paragraph, which showed
that the subroutines implemented in Θ-Stock for the THHMD model enabled
couped thermo-hydro-mechanical studies on elastic media. The mesh, ma-
terial data, initial and boundary conditions are the same as in the previous
paragraph.
The influence of initial damage is studied by setting a non zero, isotropic
damage state on the elements of the granite formation which are relatively
close to the excavation: Rb ≤ r ≤ 4Rb, in which Rb is the radius of the
bentonite buffer. The presence of cracks in the Geological Barrier lowers the
mechanical, capillary and thermal rigidities of granite, which explains why
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Figure 4: Temperature in the Engineered (a.) and Geological (b.) Barriers. Dots: refer-
ence results from [1]. Solid lines: results obtained with Θ-Stock in the elastic domain of
the THHMD model.
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Figure 5: Water pressure (a.) and degree of saturation (b.) in the Engineered Barrier.
Dots: reference results from [1]. Solid lines: results obtained with Θ-Stock in the elastic
domain of the THHMD model.
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a. b. c.

Figure 6: Influence of initial isotropic damage on radial displacement in the whole barrier
after a. 21 days, b. 1095 days, c. 1278 days.

a. b. c.

Figure 7: Influence of initial isotropic damage on water pressure in the whole barrier after
a. 21 days, b. 1095 days, c. 1278 days.

the amplitude of radial displacements generally increases with initial damage
(Fig. 6). Damage also increases water conductivities in the granite bedrock,
which becomes more affected by the suction effects occurring in the ben-
tonite buffer. Contrary to the reference case with an undamaged bedrock,
the damaged Geological Barrier tends to desaturate (Fig. 7 and 8). This
does not affect much the saturation degree of the bentonite buffer, but this
results in a tremendously lower degree of saturation of the granite bedrock
at the vicinity of the canister (Fig. 9).

5. Conclusion

A damage model dedicated to non-isothermal unsaturated porous media
is presented. Following the assumption of non-interacting cracks, the dam-
age variable is expressed as the spectral decomposition of the second-order
crack density tensor. The model is formulated in mechanical, capillary and
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a. b. c.

Figure 8: Influence of initial isotropic damage on the degree of saturation in the whole
barrier after a. 21 days, b. 1095 days, c. 1278 days.

a. b.

Figure 9: Influence of initial isotropic damage on the degree of saturation at the frontier
between the Engineered Barrier and the Geological Barrier after a. 1095 days, b. 1278
days.
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thermal independent state variables. Correspondingly, Helmholtz free energy
is split in three thermodynamic potentials, each of which being the sum of
a degraded elastic energy and of a residual strain potential. This latter en-
ables the representation of remaining crack openings after unloading without
requiring an additional plastic potential. The increment of damage is deter-
mined by an associated flow rule. The damage evolution function represents
the growth of damage with tensile mechanical strains, compressive capillary
strains and tensile thermal strains. The damaged mechanical, capillary and
thermal rigidities are computed by applying the Principle of Equivalent Elas-
tic Energy (PEEE). Cracking effects are also accounted for in the transfer
rules. Specific conductivities, related to internal length parameters, are in-
troduced in the transfer equations for liquid water and vapor. This is aimed
at modeling the orientation and intensity changes induced by cracking in
fluid flows. Air and heat conductivities depend on volumetric strains and on
the degree of saturation, which depend in turn on damage.
A triaxial compression test performed on a dry isothermal brittle material
is simulated. The match with the experimental reference data is excellent.
This first simulation thus validates the ability of the damage model to rep-
resent the degradation of the mechanical rigidity with cracking. Then, an
elaborate model of nuclear waste disposal is reproduced. It involves two non-
isothermal unsaturated porous media. The heating phase is simulated in the
elastic domain of the damage model, and the results are compared to the
ones presented in the corresponding reference study. The comparison shows
that the program implemented for the damage model enables the represen-
tation of complex thermo-hydro-mechanical couplings. This justifies the use
of the damage model to study the influence of the Excavation Damage Zone
surrounding the repository. A parametric study on initial damage is per-
formed to this purpose. The results are in agreement with the theoretical
assumptions done to develop the model regarding the physical phenomena
at stake. These very encouraging achievements will be completed to perform
further analyses on coupled effects generating cracking (mechanical, capillary
and thermal damage), on the combination of various time and space scales,
and on the long-term effects of damage.
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