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SUMMARY 

 

 Earthquake ground motion can induce out-of-phase vibrations between adjacent 

structures due to differences in dynamic characteristics, which can result in impact or 

pounding of the structures if the at-rest separation is insufficient to accommodate the 

relative displacements. In bridges, seismic pounding between adjacent decks or between 

deck and abutment can result in localized deck damage, bearing failure, damage to shear 

keys and abutments, and even contribute to the collapse of bridge spans. 

 This study investigates pounding in bridges from an analytical perspective. A 

simplified nonlinear model of a multiple-frame bridge is developed in MATLAB 

incorporating the effects of inelastic frame action, nonlinear hinge behavior and 

abutments. The equations of motion of the bridge response to longitudinal ground 

excitation are assembled and solved using the fourth-order Runge-Kutta method. 

Pounding is simulated using contact force-based models such as the linear spring, Kelvin 

and Hertz models, as well as the momentum-based stereomechanical method. In addition, 

a Hertz contact model with nonlinear damping (Hertzdamp model) is also introduced to 

model impact.  

 The primary factors controlling the pounding response are identified as the frame 

period ratio, ground motion effective period ratio, restrainer stiffness ratio and frame 

ductility ratio. Pounding is most critical for highly out-of-phase frames. Impact models 

without energy dissipation overestimate the stiff system displacements by 15%-25% for 

highly out-of-phase, elastic systems experiencing moderate to strong ground excitation. 

The Hertzdamp model is found to be the most effective in representing impact.   



 xxiv

 Traditional column hysteresis models such as the elasto-plastic and bilinear models 

underestimate the stiff system amplification and overestimate the flexible system 

amplification due to impact, when compared with stiffness and strength degrading 

models. Strength degradation and pounding are critical on the stiff system response to 

near field ground motions, for highly out-of-phase systems. Current design procedures 

are adequate in capturing the nonlinear hinge response when the bridge columns are 

elastic, but require revisions such as the introduction of time dependent reduction factors, 

and a frame design period to work for inelastic situations. Finally, a bilinear truss element 

with a gap is proposed for implementing energy dissipating impact models in commercial 

structural software. 

 



 1

CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Description 

 Bridges are the lifeline of a highway transportation network and past earthquakes 

have illustrated that they are vulnerable to severe damage and/or collapse during 

moderate to strong ground motion. Among the possible structural damages, seismic-

induced pounding has been commonly observed in several earthquakes. Seismic 

pounding is the impact between bridge decks, between deck and abutment in the 

longitudinal direction, or transverse collision between two closely spaced superstructures 

during an earthquake. Impact occurs when the relative displacement between adjacent 

decks or deck and abutment exceeds the gap between them. Pounding is a result of out-

of-phase motion between adjacent components in a bridge having different dynamic 

characteristics.  

 The multiple-frame bridge and the multi-span simply supported bridge are most 

susceptible to pounding damage due to numerous independent components and lack of 

continuity in the structure. In a multiple-frame bridge, the interaction between adjacent 

frames can result in pounding at the intermediate hinge locations or at the abutments. 

Pounding of girder ends at the pier locations and end abutments can occur in a multi-span 

simply supported bridge.  

 The 1994 Northridge earthquake revealed substantial impact damage at the expansion 

hinges and abutments of standing portions of the connectors at the Interstate 5/State Road 

14 interchange which were located at close proximity to the epicenter (EERI, 1995a). 
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Reconnaissance reports from the 1995 Kobe earthquake identify pounding as a major 

cause of fracture of the bearing supports and potential contributor to the collapse of the 

bridge decks (EERI, 1995b). Hammering at the expansion joints in some bridges resulted 

in damage to shear keys, bearings and anchor bolts during the 1999 Chi-Chi earthquake 

in Taiwan (EERI 2001a). Cracking and spalling at expansion joints of concrete bridges 

were observed during the 2001 Nisqually, Washington earthquake (EERI 2001b). More 

recently, pounding of adjacent simply supported spans resulting in failure of girder ends 

and bearing damage was observed during the 2001 Bhuj earthquake in Gujarat, India 

(EERI 2002).  

 Seismic pounding is known to cause localized deck damage, bearing failure, damage 

to shear keys and abutments, and even contribute to the collapse of bridge spans. Current 

design specifications may not adequately account for the large forces generated during 

bridge deck impact. This study investigates the pounding phenomenon in bridges from an 

analytical perspective by identifying the bridge parameters controlling impact, determines 

effective ways to model impact and evaluates the adequacy of code specifications in 

representing the distribution of forces and deformations due to bridge deck impact.  

 

1.2 Objectives and Scope of Research 

 The goal of this study is to determine the effect of pounding on the global response of 

bridges through the development of various analytical models. The multiple frame bridge 

is considered as the representative bridge structure and a simplified analytical model is 

developed in MATLAB including the effects of inelastic frame action, nonlinear hinge 

behavior and abutment action. Pounding is simulated using various impact models. Soil-
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structure interaction, non-uniform support motion and traveling wave effects are not 

investigated in this study. Effects of vertical ground motion and torsion due to curvilinear 

bridge geometry are not examined.   

 The specific objectives of this research are: 

• Investigate the critical factors affecting the longitudinal pounding response.  

• Explore the pounding response of the bridge using several existing impact 

models. 

• Evaluate the performance of a Hertz contact model with nonlinear damping 

(typically used in robotics) in predicting deck impact. 

• Determine the effect of column hysteretic behavior on the pounding response of 

the bridge. 

• Determine the efficacy of code specifications in accounting for pounding. 

• Develop a simplified contact model for impact simulation and use in bridge 

analysis programs. 

 

1.3 Outline of Dissertation 

This dissertation is organized into 9 chapters with the following contents: 

Chapter 2 presents an overview of seismic pounding. Various analytical models used to 

simulate impact are presented. The capability of current design specifications in 

representing bridge deck impact is discussed. Past research on seismic pounding is also 

summarized. 

 The development of a numerical, analytical model of a multiple-frame bridge in 

MATLAB, including the effects of column behavior, restrainers, bearings, abutments and 
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pounding is presented in Chapter 3. The model is verified by benchmarking the results 

against those from DRAIN-2DX wherever possible.  

 Chapter 4 investigates the critical factors affecting the pounding response of bridges. 

Results from parameter studies on effects of frame period ratio, frame yielding, 

restrainers, and ground motion characteristics on the pounding response are presented. 

 The limitations of existing impact models are discussed and a Hertz contact model 

with hysteresis damping for pounding simulation is introduced in Chapter 5. A parameter 

study comparing the model response with existing impact models is performed for a suite 

of ground motions. 

 Chapter 6 investigates the effect of frame restoring force characteristics on the 

pounding response of the bridge. Several hysteretic models are considered for the bridge 

columns including the bilinear, Q-Hyst (stiffness degrading) and pivot hysteresis 

(strength degrading) models. The effect of near field ground motions is examined through 

a case study. 

 Chapter 7 evaluates the adequacy of current design procedures in representing the 

distribution of forces and deformations due to bridge deck impact. Deficiencies in the 

current guidelines are identified and recommendations suggested. 

 Simplified contact models for simulating pounding in bridges are proposed in Chapter 

8. Gap elements with piecewise linear springs that can account for energy loss during 

impact are presented. The contact models are verified by comparing their response with 

those from the Hertz contact model with nonlinear damping.  

 The findings from the study are summarized and areas of future research suggested in 

Chapter 9.   
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CHAPTER 2 

OVERVIEW OF SEISMIC POUNDING 

 

 The advent of an earthquake can induce out-of-phase vibrations in adjacent structures 

due to differences in dynamic characteristics, which can result in impact if the at-rest 

separation is insufficient to accommodate the relative displacements. This impact, 

commonly referred to as seismic pounding, generates high magnitude and short duration 

acceleration pulses that can cause structural damage. Furthermore, seismic pounding can 

amplify the global response of the participating structural systems. The highly congested 

building system in many metropolitan cities constitutes a major concern for seismic 

pounding damage. In the case of bridge structures, impact can occur between bridge 

decks or between deck and abutment in the longitudinal direction. There is also a 

possibility of transverse impact between narrowly separated bridge superstructures.  

 

2.1 Observed pounding damage in past earthquakes 

 Earthquakes during the past four decades have illustrated several instances of 

pounding damage in both building and bridge structures. During the 1964 Great Alaskan 

earthquake, parts of the Anchorage Westward hotel were damaged due to pounding with 

the adjoining three-storey ballroom (National Academy of Sciences, 1964). Severe 

structural damage was observed due to impact between the outside towers and the main 

building of the Olive View Hospital, during the 1971 San Fernando earthquake (Mahin et 

al., 1976). Impact between bridge deck and abutments caused extensive damage to 

highway bridges with seat type abutments, during the same earthquake (Jennings, 1971). 
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After the 1985 Mexico City earthquake, pounding damage was reported in over 40% of 

the collapsed or severely damaged buildings. In at least 15% of the damaged buildings, 

pounding was the primary cause of collapse (Bertero, 1987). 

 During the 1989 Loma Prieta earthquake, pounding of adjacent unreinforced masonry 

(URM) buildings resulted in shear failure of the brickwork leading to partial collapse of 

the wall. Cases of veneer spalling were also reported from buildings in downtown San 

Francisco (EERI, 1990).  Pounding of the lower roadway and columns supporting the 

upper deck of the Southern viaduct section at the China Basin, California occurred due to 

the height differences between the neighboring bridge members (Priestly et al., 1996). 

After the 1994 Northridge earthquake, significant pounding damage was observed at the 

expansion hinges and abutments of standing portions of the connectors at the I-5/SR-14 

interchange which were located at close proximity to the epicenter (EERI, 1995a). 

Pounding at expansion hinges of the San Fernando-Simi Valley Freeway (SR118) and the 

Santa Clara River Bridge was also observed during the same earthquake. 

 Reconnaissance reports from the 1995 Kobe earthquake identify pounding as a major 

cause of fracture of the bearing supports and potential contributor to the collapse of 

several bridge decks (EERI, 1995b). Impact between a six-story building and two-story 

building in Golcuk, Turkey during the 1999 Kocaeli earthquake contributed to column 

failure above the third floor slab in the taller building and shear failure of two second-

floor piers in the smaller building (EERI, 2000). In other cases, columns were lost 

completely due to impact with adjacent buildings. Pounding of abutments and deck joints 

were also observed in several of the highway bridges during the same earthquake.  The 
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1999 Chi-Chi earthquake in Taiwan revealed hammering at the expansion joints in some 

bridges which resulted in damage to shear keys, bearings and anchor bolts (EERI, 2001a).  

 Masonry wall damage in buildings and concrete spalling damage at the expansion 

joints of concrete bridges were reported after the 2001 Nisqually, Washington earthquake 

(EERI 2001b). Pounding of adjacent simply supported spans was observed in the Old 

Surajbadi highway bridge, India Bridge and several other bridges on National Highway 

8A during the 2001 Bhuj (Gujarat, India) earthquake (EERI, 2002). Structural damage 

included the failure of girder ends, superstructure dislocation and bearing damage. 

 Based on the observations from past earthquakes, closely spaced buildings can 

experience infill wall damage, column shear failure and possible column collapse due to 

pounding. Pounding in bridges can lead to local crushing and spalling of concrete, 

damage to column bents, abutments, shear keys, bearing pads and restrainers and possible 

deck collapse. Figures 2.1 and 2.2 illustrate some instances of pounding damage, ranging 

from the superficial to complete collapse.  

 

 

Figure 2.1: Pounding damage in bridges: (a) barrier rail damage during the 1994 

Northridge earthquake; (b) connector collapse during the 1994 Northridge earthquake.  

(a) (b)
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Figure 2.2: Pounding damage in buildings: (a) loss of column from impact during the 

1999 Kocaeli earthquake; (b) wall collapse during the 1989 Loma Prieta earthquake.  

 

 

2.2 Analytical models for impact 

 Pounding is a highly nonlinear phenomenon, which leads to several uncertainties in 

its mathematical modeling. Researchers have primarily used two approaches to model 

dynamic impact; namely the contact element approach and the stereomechanical 

approach. A brief summary of the various modeling techniques is presented below. 

 

2.2.1 Contact element approach 

The contact element approach is a very widely used formulation because of its easy 

adaptability and logical nature to model impact. The impact forces generated during the 

collision of two adjacent structures can readily be thought as being provided by a contact 

(b)(a) 
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element, which is activated only when the structures come into contact. The collision 

forces are assumed to act in a continuous manner. The contact element is usually a spring 

of very high stiffness, which may be used in conjunction with a damping element. The 

high spring stiffness is necessary to provide a realistic estimate of the impact force, 

ensure small impact duration and limit the penetration or overlapping of the colliding 

structures. Various contact elements have been used in the past including the linear spring 

element, Kelvin-Voigt element and the Hertz contact element. 

 The linear spring element illustrated in Figure 2.3(a) is the simplest contact element 

used to model impact. The spring comes into effect when the gap between the adjacent 

bodies closes and is representative of the force developed during impact. Maison & Kasai 

(1990a, 1992a) have extensively used this model to study pounding between adjacent 

buildings. However, the linear spring cannot account for the energy loss during impact.  

 The Kelvin-Voigt element represented by a linear spring in parallel with a damper, as 

shown in Figure 2.3(b) has been used in some studies (Wolf and Skrikerud, 1980; 

Anagnostopoulos, 1988; Anagnostopoulos and Spiliopoulos, 1992; Jankowski et al., 

1998). The linear spring represents the force during impact and the damper accounts for 

the energy loss during impact. The damping coefficient (ck) can be related to the 

coefficient of restitution (e), by equating the energy losses during impact.  

 

                                              (2.1) 

 

                                                 (2.2) 



 10

m m
1 2

Ug (t)
..

u u21

k 1 2

c c1 2

k
Kl

gp

 

lK

cF

u1u 2gp
 

(a) Linear spring element 

 

m m
1 2

Ug (t)
..

u u21

k 1 2

c c1 2

k

Kk

ck

 

cF

u1u 2gp

Kk

 

(b) Kelvin-Voigt element 
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(c) Hertz nonlinear spring element 

Figure 2.3: Various impact models and their contact force relations. 
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where kk is the stiffness of the contact spring and m1, m2 are the masses of the colliding 

bodies. 

 Alternatively, a nonlinear spring based on the Hertz contact law can be used to model 

impact, as depicted in Figure 2.3(c). The impact force can be expressed as 

 

F(t) = R[x(t) – g] n       ; x(t) ≥ g 

                                                      = 0                        ; x(t) < g                                      (2.3) 

 

where R is the impact stiffness parameter that depends on the material properties of the 

colliding structures and the contact surface geometry, g is the at-rest separation and n is 

the Hertz coefficient, typically taken as 1.5. Several analysts have adopted this approach, 

including Davis (1992), Jing and Young (1991), Pantelides and Ma (1998), Chau and 

Wei (2001) and Chau et al. (2003). However, the Hertz contact law is representative of 

static contact between elastic bodies and fails to include energy dissipation during 

impact.  

 The contact element approach has its limitations, with the exact value of spring 

stiffness to be used, being unclear. Uncertainty in the impact stiffness arises from the 

unknown geometry of the impact surfaces, uncertain material properties under loading 

and variable impact velocities. The contact spring stiffness is typically taken as the in-

plane axial stiffness of the colliding structure (Maison and Kasai, 1990a). Another 

reasonable estimate is twenty times the stiffness of the stiffer structure (Anagnostopoulos, 

1988). However, using a very stiff spring can lead to numerical convergence difficulties 

and unrealistically high impact forces. The solution difficulties arise from the large 
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changes in stiffness upon impact or contact loss, thus resulting in large unbalanced forces 

affecting the stability of the assembled equations of motion.  

 

2.2.2 Stereomechanical approach 

 The stereomechanical approach, also known as the coefficient of restitution approach, 

is a macroscopic attempt to model dynamic impact. Impact is assumed to be 

instantaneous. The principle of momentum balance and the coefficient of restitution are 

applied to modify the velocities of the colliding bodies after impact. The coefficient of 

restitution (e) is defined as the ratio of the separation velocities of the bodies after impact 

to their approaching velocities before impact (Goldsmith, 1960). 

 

                                                    (2.4)       

 

where v1
’, v2

’ are the velocities after impact and v1, v2 are the velocities before impact, as 

shown in Figure 2.4. The value of e ranges from 0 (for perfectly plastic impact) to 1.0 

(for elastic impact). The coefficient of restitution depends on the material properties of 

the colliding structures and their relative shapes and masses. Equations (2.5) and (2.6) 

give the velocities of the colliding bodies after impact.  

 

(2.5) 

 

 (2.6) 
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Figure 2.4: Stereomechanical impact: (a) Pre-impact state; (b) Post-impact state. 

 

 

This approach has been used to model impact by several researchers including 

Papadrakakis et al. (1991), Athanassiadou et al. (1994), DesRoches and Fenves (1997a) 

and Malhotra (1998). It has been shown that the variation in (e) has a relatively minor 

effect on the structural response due to pounding (Athanassiadou et al., 1994; DesRoches 

and Fenves, 1997a).  

 The stereomechanical approach though relatively efficient is limited in its application 

because of the unknown duration of contact. If the impact duration is large enough so that 

significant changes occur in the configuration of the system, the assumption of 

instantaneous impact is no longer valid. The theory assumes a direct, central impact and 

does not consider transient stresses and deformations in the impacting bodies. 

Furthermore, this approach cannot be implemented in commercially available software.  

 

2.3 Design methods and tools 

 The response of a bridge retrofitted with restrainers is nonlinear, even if the columns 

and foundations remain elastic. This is because the restrainers are tension-only devices 
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with an initial slack, which engage only after the slack is exhausted. Furthermore, bridge 

deck impact is a highly nonlinear phenomenon that cannot be rigorously solved through 

simplified means.  

 In order to permit equivalent elastic solutions to the bridge response, several 

assumptions are necessary. Typically two linear, dynamic models are used to bound the 

nonlinear response of the bridge – a tension model and a compression model (Caltrans, 

1990; FHWA 1995). The tension model reflects the response of the bridge when the 

superstructure joint elements, including the abutments are released longitudinally. There 

is no restraint in the longitudinal direction except for that provided by restrainers. A 

compression model represents the state when impact occurs and the superstructure joints 

are closed. The restrainers are inactivated and a rigid element connects the impacting 

structures, mobilizing the abutments if needed. An illustrative sketch of the two linear 

models is shown in Figure 2.5.  

 

 

 

Figure 2.5: Linear bounding models: (a) Tension model; (b) Compression model. 
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 The maximum of the component forces obtained from either model is taken as the 

bounding force for that component. For a strength-based design, the component yield 

forces are determined by dividing the elastic forces with response modification factors. 

The American Association of State Highway and Transportation Officials (AASHTO) 

provides response modification factors based on the general framing types and 

component location and/or function, which are independent of the period of the system 

(AASHTO, 1995). For instance, the response modification factor is 2 for wall-type piers 

and 3 single columns. Caltrans provides period-dependent Z factors to account for 

ductility and risk (Caltrans, 1993), as shown in Figure 2.6. However, the Caltrans Z 

factors decrease with increasing period, while studies have shown that reduction factors 

increase with increasing period (Miranda and Bertero, 1994; Cuesta et al., 2003). The 

application of the design yield forces is expected to limit the bridge ductility demands to 

designer specified values. 

 

 

 

Figure 2.6: Caltrans Z factors to account for ductility and risk (Caltrans, 1993) 
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 The inelastic demand is known to be sensitive to the period. The use of pre-set, 

period-independent reduction factors may not provide a correct estimate of the bridge 

ductility demands, especially for short periods. Several studies have shown that the 

response modification factor is a function of the period and the target demand (µ) for a 

particular frame force-deformation relationship (Krawinkler and Nassar, 1992; Vidic et 

al., 1994; Miranda, 2000). Preliminary investigations reveal that although the bounding 

models provide adequate bounds for the element forces in the bridge, they are unable to 

provide bounds for the bridge ductility demands (DesRoches and Fenves, 1997a).  

 

2.4 Review of previous studies 

 Impact between adjacent structures during an earthquake is a phenomenon that has 

attracted considerable research interest in the recent past. The following sections 

summarize some of the important contributions in seismic pounding research. 

 

2.4.1 Analytical studies 

 Several analytical studies have focused on pounding between inadequately separated 

buildings. Anagnostopoulos (1988) studied the effects of seismic pounding in a 

continuous building system, by idealizing each building as a single degree-of-freedom 

(SDOF) structure with a bilinear force-deformation relationship. Pounding was modeled 

using the Kelvin element with an impact stiffness of twenty times the stiffness of the 

stiffest adjacent structure. The coefficient of restitution (e) was taken as 0.65. The initial 

gap size was taken as 10 mm. Different configurations of buildings in a row were 
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considered and the effect of gap size, relative mass and impact spring stiffness on the 

system response were studied. 

The results indicated that exterior systems exhibited mean displacement 

amplifications due to pounding greater than one for all period ratios, while the interior 

systems exhibited substantially lower amplifications. Furthermore, an increase in the gap 

size resulted in a decrease in displacement amplifications due to impact. A larger mass 

ratio between adjacent systems produced greater displacement amplification. The effects 

of changes in system damping and the impact spring stiffness were not significant. 

 Maison and Kasai (1992) investigated the pounding response of two flexible, high 

rise buildings using the contact element approach. The buildings (15 storey and 8 storey 

steel moment resisting frames) were modeled as linear elastic, with 3 degrees-of freedom 

at each level. Pounding was assumed to occur only at the floor level between the roof of 

the shorter building and Level 8 of the taller building. A linear spring of stiffness 50,000 

kip/in was used to model impact. The response quantities of interest were story 

deflections, drifts, shears and overturning moments.  

A preliminary study revealed that pounding increased the peak responses of the taller, 

lighter building and decreased the peak responses of the shorter, heavier building. Further 

parametric studies indicated that an increase in the mass ratio between the taller and 

shorter buildings resulted in increases of all the lighter building responses with impact. A 

building separation based on the square root of the sum of squares (SRSS) combination 

of the no-pounding peak building responses at the pounding location was found effective 

in reducing the likelihood of impact. The study concluded that the pounding responses 

were invariant to the impact spring stiffness provided a high stiffness value was used. 
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Pantelides and Ma (1998) studied the effects of one-sided pounding between a 

flexible, damped single degree of freedom structure and an adjacent rigid structure, due 

to earthquake motion. Both elastic and inelastic behaviors of the SDOF structure were 

considered. For the inelastic system, an elasto-plastic shear displacement relationship was 

used. Pounding was modeled using a Hertz contact element, with an impact stiffness 

parameter (R) of 80 kN mm-3/2. The gap was taken as 25 mm. 

The authors observed that the level of pounding damage in the elastic system was 

dependent on the period of the flexible structure. For the inelastic structure with a 

ductility of 4, pounding increased the peak displacement by 16% and increased the peak 

acceleration four fold, when compared to the no-pounding case. A comparison of the 

elastic and inelastic system for the same set of parameters revealed that the maximum 

displacement of the inelastic structure was greater than that of the elastic structure. But 

the maximum acceleration, pounding force and number of impacts were considerably less 

for the inelastic case.  

Papadrakakis et al. (1991) treated pounding as a frictionless contact without sliding 

and proposed a Lagrange multiplier method, based on a variational formulation. The 

basic condition of contact that no material overlap occurs was treated as a geometric 

compatibility condition. The static equilibrium equations were derived by invoking the 

stationarity of the total potential function subject to the no penetration geometric 

constraint, which was then transformed to an unconstrained optimization problem of a 

Lagrangian functional. The dynamic formulation was obtained by using the procedure for 

static analysis and including the effects of inertia and damping forces.  
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The integration of the equations in the time domain was carried out using the 

Newmark method (Newmark, 1959). For the case of elastic impact, the values of the 

Newmark parameters β = γ = ½ exactly correlated with the momentum balance and 

energy dissipation criteria of the stereomechanical method. However, it was difficult to 

correlate the values of β, γ with the post-impact conditions for inelastic contact. Hence, 

the compatibility of displacements during contact was enforced using Lagrange 

multipliers and the post-impact velocities were modified using the stereomechanical 

approach.  

The Lagrange multiplier method was then applied to a three-dimensional simulation 

of pounding between adjacent two-storey buildings (Papadrakakis et al., 1996). Different 

building configurations were considered including combinations of a stiff and a flexible 

building adjacent to each other and three buildings in orthogonal directions in plan with 

the stiff building at the corner. Elastic analyses performed using the El Centro and 

Kalamata motions revealed that pounding had an amplification effect on the response of 

the stiff structure for all cases and a mitigation effect on the flexible building in most 

cases.  

Valles and Reinhorn (1995) introduced the concept of Pseudo Energy Radius (PER) 

to study the effect of pounding in buildings. The response of a single degree of freedom 

system in the state space plane, subjected to seismic input was related to the elastic 

structural energy (Ee) of the system through the Pseudo Energy Radius as follows. 

 

                                           (2.7) 
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where m is the mass of the structure, w is the frequency of the ground motion, Eemax is the 

maximum elastic structural energy of the system (P.E + K.E) and rPER is the pseudo 

energy radius (PER). The Pseudo Energy Radius being expressed as units of 

displacement could be used to determine the critical gap to preclude pounding (gcr) 

between adjacent structures, as shown below. 

(2.8) 

where ρ is the correlation coefficient, and r1, r2 is are the pseudo energy radii 

corresponding to the energy levels of the two structures. Pounding occurred when the 

pseudo energy radii overlap and the initial separation between the structures (gp) was less 

than the critical gap (gcr). The impact of the structures was assumed to occur at their 

respective maximum energy levels imposed by the earthquake. The stereomechanical 

approach was then used to determine the post impact states of the colliding masses. The 

ratio of post impact PER to pre impact PER was an estimate of the amplification effects 

due to pounding. 

 However, the concept of PER is based on the maximum elastic structural energy (Ee) 

of the system. No adjustments are made to include the effects of yielding, which may 

alter the structural energy of the system considerably, depending on the period of the 

system and characteristics of the input motion. 

Other studies have investigated the effects of dynamic impact in bridge structures. 

Jankowski at al. (1998) performed an analysis of pounding in an isolated bridge 

superstructure subject to a propagating seismic wave. High Damping Rubber Bearings 

(HDRBs) modeled in a nonlinear fashion based on the shear strain and shear strain rate 

were used for seismic isolation purposes. The bridge model consisted of five 
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superstructure segments, with the neglected segments being simulated using spring 

dashpots. Impact between the superstructure segments was simulated using the Kelvin 

element. The stiffness and damping of the impact element were 3.5 x 109
 N/m and 1.8 x 

107 kg/s respectively. 

A response analysis revealed that pounding patterns significantly altered the bridge 

behavior. Two gap sizes of 10 mm and 110 mm were studied. The largest deformations, 

shear and pounding forces were observed for the larger gap, even though there were 

fewer collisions. The displacement response for the smaller gap was smaller than the 

bridge response without pounding. The authors concluded that the optimal separation gap 

between the superstructure segments should be either too small (less than 10 mm, in 

which case internal forces due to thermal expansion might occur) or large enough to 

avoid collisions. 

Malhotra (1998) investigated seismic pounding at the expansion joints of multispan 

concrete bridges by formulating the problem as collinear impact between concrete rods of 

the same cross section but different lengths. A free vibration analysis of the axial 

responses of the rods was performed using the mode superposition method and 

frequency-independent damping. The force during impact was shown to be directly 

proportional to the compression wave velocity of concrete and the approach velocity of 

the impacting rods. The duration of impact was found to equal the fundamental period of 

axial vibration of the shorter rod. The coefficient of restitution that accounts for energy 

loss was determined as a function of the length of the rods and the damping ratio.  

The results of the analysis were used to study the impact response of a 300m long 

multi-span concrete box girder bridge modeled as a two degree-of-freedom system with 
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linear, elastic columns. The findings indicated that pounding reduced the column 

deformations and impact forces generated in the superstructure were not transmitted to 

the columns and foundations. 

Maragakis et al. (1991) studied the effect of impact between the bridge deck and 

abutments on the dynamic response of the bridge during strong ground motion. A 

simplified model of the bridge was developed with appropriate mass and stiffness values 

for the deck and abutment. All the springs were assumed as linear and impact was 

modeled using the stereomechanical approach. Since, the stereomechanical approach is 

difficult to implement in bridge analysis software, another model of the bridge was 

developed with the abutments represented as spring-damper systems with no mass. A 

reasonable estimate of the abutment damping was obtained by equating the energy loss 

from the stereomechanical method with the energy loss in the damper. The authors 

concluded that the important parameters affecting the impact response were the abutment 

gap, mass ratio between bridge deck and abutment, abutment stiffness and the coefficient 

of restitution.   

 Zhu et al. (2002) developed a three-dimensional contact friction model for studying 

arbitrary impact between bridge deck girders. Pounding was visualized as an impact 

between a contactor node k and a rigid, plane contact surface abcd as shown in Figure 

2.7. Point p was the physical contact position on the target surface. The Kelvin model 

with dashpots in both normal and tangential directions to the target surface was utilized. 

The nature of contact could be either stick or slide depending on the following conditions 

                                                      : | |k t s k nStick F Fµ<                                               (2.9) 

                                                      : | |k t s k nSlide F Fµ≥                                             (2.10)  
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where Fk|n, Fk|t are the normal and tangential components of the contact force, Fk to the 

target surface, respectively and µs is the coefficient of static friction. The contact forces at 

node k were determined separately for stick and slide conditions and were then 

interpolated to the four nodes (a, b, c, d) of the target surface using a linear interpolation 

matrix.   

 Shaking table experiments were conducted to verify the pounding model by studying 

impact between a model girder and an abutment, and two model girders. Sinusoidal input 

with varying angles of excitation was used. Good agreement was observed between the 

experimental and analytical results of displacement responses in both the longitudinal and 

transverse directions. The experiments helped identify the restitution coefficients in the 

normal and tangential directions as 0.4 and 0.9, respectively. The static and kinetic 

friction coefficients were found to be 0.2 and 0.15, respectively. 

 

 

 

Figure 2.7: (a) Arbitrary contact between adjacent girders; (b) 3D contact friction model 

(Zhu et al., 2002) 

(b) 
(a) 
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 The three-dimensional model was then adapted to model pounding in a three-span 

simply supported steel bridge, with rubber bearings used for base isolation in both 

longitudinal and transverse directions. The Takatori record from the 1995 Kobe 

earthquake was used in the analysis. Pounding reduced the longitudinal displacement, 

increased the rotational response and did not affect the transverse displacements of the 

center span. The effects of tangential friction on the girder response were found to be 

negligible and the responses in the main directions were not sensitive to variation in the 

friction coefficients.  

 

2.4.2 Experimental studies 

 Although several theoretical studies have been performed on seismic pounding, very 

few experiments have been conducted to investigate the effects of impact. van Mier et al. 

(1991) studied the concrete-to-concrete impacts between breakwater armor elements 

through a series of dynamic experiments on various contact surface geometries. The test 

apparatus consisted of a prestressed concrete pile with crossection 250 mm x 250 mm and 

length 20 m, and a concrete striker of variable mass (290 kg, 570 kg) hung in an overall 

frame, as shown in Figure 2.8. The concrete pile served as a measuring device and a 

prismatic concrete specimen was attached to the top of the pile. The striker was raised to 

a certain height (to ensure a specified velocity at impact) and then released. A total of 24 

dynamic tests were conducted with the impact velocity and mass of the striker, concrete 

strength and contact surface geometry as the variables. The surface of the target 

specimens was either planar or corrugated and the striker surface geometries were either 

spherical, conical or truncated conical. 
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Figure 2.8: Apparatus for dynamic impact experiments (van Mier et al., 1991) 

 

 

The load-time histories during contact were determined from the experiments and an 

impact stiffness parameter (Ke) was calculated using the Hertz law (Goldsmith, 1960). 

The impact stiffness ranged from 2 kN/mm3/2 to 80 kN/mm3/2. The choice of contact 

surface geometry had a significant influence on the load-time response, with the largest 

stiffness being observed when a truncated conical specimen collided with a planar target.  

A decreasing stiffness and a longer impact time were observed for the 

spherical/planar, spherical corrugated and conical/planar contact surfaces. The pressure-

time history of the contact zone was also fitted to a simple elastoplastic model with input 

parameters based on the contact stiffness Ke, critical stress and size of the contact surface 

and the unloading stiffness, which were determined from the dynamic tests. However, the 

experiments were performed on relatively small specimens and translation to large-scale 

situations is subject to further research.  

Papadrakakis et al. (1995) performed shaking table experiments on pounding between 

two-storey reinforced concrete buildings with zero gap separation, subject to sinusoidal 
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excitation. The test structures were designed to remain elastic under an excitation with an 

acceleration design spectrum of 1.0 g. A plan view of the test set up is shown in Figure 

2.9. A shaking table test was conducted with a ramped sinusoidal displacement signal 

having a peak displacement of 0.13 cm and at resonance with the fundamental frequency 

of the flexible structure (f = 4.1 Hz). Both pounding and no-pounding cases were studied.  

 The results indicated that pounding amplified the displacement responses of the 

stiffer structure and reduced the responses of the flexible structure. A six fold increase in 

the acceleration peaks due to impact was recorded. A consistent penetration at the contact 

locations was also observed. Comparison of the experimental results with analytical 

predictions using the Lagrange multiplier method showed good agreement.  

 

 

 

Figure 2.9: Test set up for investigations into seismic pounding (Papadrakakis et al. 1995) 
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 Filiatrault et al. (1995) conducted shaking table tests on dynamic impact between 

adjacent three and eight storey steel frames (1/8 scale model), with 0 mm and 15 mm gap 

separations, subject to the 1940 El Centro earthquake. The structures remained elastic 

during the ground shaking. Both floor-to-floor impact and floor-to-column impact were 

considered and the results showed significant acceleration levels at the roof of the three 

storey frame, sometimes as high as 30g for the floor-to-column pounding.  

 The experimental results were then compared with analytical results from two 

pounding analysis programs – SLAM-2 (Maison and Kasai, 1990b) and PC-ANSR 

(Maison, 1992), where impact was modeled using a linear spring element. The amplitude 

and phase of the displacement and impact forces obtained from the experiment were well 

predicted by the analytical models. However, the accelerations at the contact locations 

were not well predicted.  

 Kajita (2000) performed collision tests on steel girders to assess the pounding 

behavior in bridges and to examine the effectiveness of laminated fiber reinforced rubber 

over natural rubber as a shock absorbing device. The collision test was performed using a 

horizontal hydraulic high-speed loading machine with a loading capacity of 1000 kN and 

a maximum speed of 3 m/s. The test set-up is illustrated in Figure 2.10. Initial velocities 

of 1 m/s, 2 m/s and 3 m/s were applied to the colliding specimen, which then impacted 

with the stationary collided specimen.  

 Steel H-beams with a length of 1000 mm, width of 200 mm, height of 200 mm, web 

thickness of 8 mm and flange thickness of 12 mm were used to study the pounding 

behavior. Rectangular solid steel bars 1000 mm long, 200 mm wide and 200mm high 
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were employed to assess the performance of the shock absorber. The impact force during 

collision and the velocities of the bodies before and after collision were measured.  

 

 

 

Figure 2.10: Experimental set-up to study pounding behavior (Kajita, 2000) 

 

 

 The test results showed that the law of conservation of momentum was satisfied in all 

cases. For the test with no shock absorber, 30% to 40% of the energy was lost during 

collision. The maximum impact force during impact increased with an increase in the 

collision velocity. The test also demonstrated that for collision velocities greater than 0.7 

m/s, the maximum impact load on the laminated reinforced rubber was half of the impact 

load on natural rubber.  

 The experimental results were then compared with results from a one-dimensional 

spring-mass-dashpot model with impact modeled using a linear spring, and a three-

dimensional finite element model. The finite element model was able to account for the 

stress wave during collision and was used to evaluate the impact load precisely. The 
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study concluded that the simplified analysis using the spring-mass-dashpot model was 

effective in capturing the motion of the bodies before and after collision. 

 Chau et al. (2003) performed shake table tests on pounding between two steel towers 

subject to sinusoidal ground motions, as illustrate in Figure 2.11. The natural frequency, 

damping, the stand-off distance between the towers and the forcing frequency were 

varied during the experiment. The steel towers remained elastic during the duration of 

shaking. Under sinusoidal excitations, impacts were either periodic (one impact within 

each excitation cycle or within every other excitation cycle) or chaotic. A group of non-

periodic impacts repeating themselves periodically were also observed in some cases. 

Chaotic motions dominated when there was a large difference in the natural frequencies 

of the two towers. It was observed that pounding amplified the response of the stiffer 

structure and reduced the flexible tower response. The maximum relative impact velocity 

was found to occur at an excitation frequency between the natural frequencies of the two 

towers. 

The experimental findings were then compared with results from an analytical model 

where impact was modeled using the Hertz contact law (Chau and Wei, 2001). The 

region of excitation frequency within which impact occurred was well predicted by the 

analytical model. The estimated relative impact velocity and the maximum stand-off 

distance to prevent pounding agreed qualitatively with the experiments. However, 

discrepancies did exist in many cases.  
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Figure 2.11: Theoretical model and experimental setup to study pounding between two 

steel towers (Chau et al., 2003) 

 

 

2.5 Conclusions 

 Recent earthquakes have indicated that seismic pounding can cause infill wall 

damage and column failure in buildings and result in damage to piers, abutments and 

possible span collapse in bridges. Based on a review of the literature, the critical 

parameters affecting seismic pounding include the relative stiffness of the participating 

systems, gap between adjacent structures and ground motion characteristics. Typically, 

bilinear or stiffness degrading models have been used to describe the behavior of the 

participating systems. Impact has been modeled using contact based elements such as a 

linear spring, Kelvin-Voigt element and Hertz nonlinear spring, or a stereomechanical 
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approach based on momentum balance and energy dissipation using the coefficient of 

restitution.  

 The general trend is amplification in the stiffer structure response and de-

amplification in the flexible structure response, as a result of pounding. To better 

understand the parameters affecting seismic pounding in bridges, a simplified bridge 

model needs to be developed and parameter studies conducted. The effectiveness of 

various analytical models used to simulate impact also needs to be examined, since the 

linear spring and Hertz contact elements cannot account for energy dissipation and the 

Kelvin-Voigt model results in sticky tensile forces acting on the bodies during separation. 

Moreover, the nature of impact (linear or nonlinear) is not well understood. Some 

analytical models like the stereomechanical method and the Kelvin model are difficult to 

incorporate in standard analysis software. Strength degradation in the participating 

systems could prove to be a critical factor in the system response and needs to be 

investigated. The adequacy of current design procedures in accounting for bridge deck 

impact also needs scrutiny. 

 The following chapters of this dissertation focus on the development of a simplified 

analytical model for a multiple-frame bridge with impact modeled using a Hertz 

nonlinear spring with a nonlinear hysteresis damper for energy dissipation. Parameter 

studies on the effects of various impact models and strength degrading columns on the 

bridge response are presented. Design guidelines that account for seismic pounding in 

bridges are reviewed and revisions recommended. Finally, a simplified contact model 

that accounts for energy loss during impact and which can be easily incorporated in 

bridge analysis software is discussed.  
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CHAPTER 3 

SIMPLIFIED NUMERICAL MODEL FOR THE ANALYSIS OF MULTIPLE-

FRAME BRIDGES  

 

 A multiple-frame bridge is a widely used bridge form in the United States, often 

favored for freeway connectors and highway interchange structures. A typical multiple-

frame bridge consists of deck elements separated by expansion joints (intermediate 

hinges) and supported on columns and end abutments, as illustrated in Figure 3.1. 

Intermediate hinges allow for post tensioning the superstructure, facilitate the 

construction process and accommodate stress-free thermal expansion. Elastomeric 

bearing pads support the decks at the intermediate hinge and shear keys limit transverse 

displacement. For bridges with short hinge seats, tension-only cable restrainers tie the 

decks together and prevent excessive longitudinal displacement.  

 Past earthquakes have shown that the multiple-frame bridge is very susceptible to 

seismic pounding damage at the abutments and intermediate hinge locations. In this 

study, the multiple-frame bridge is considered as the representative bridge structure to 

study the effects of pounding. The opening and closing of intermediate hinges, yielding 

of bridge frames and engaging of cable restrainers, bearings and abutments constitute 

nonlinearities inherent with the interaction of adjacent bridge frames during strong 

ground motion. A nonlinear model incorporating these effects needs to be developed to 

adequately study the response of the bridge subject to longitudinal ground motion. Since 

the primary goal is to focus on the pounding effects and conduct parameter studies, a 

simplified numerical bridge model is developed in this study.  
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Figure 3.1: Typical multiple-frame bridge – general elevation and hinge detail 

 

 

3.1 Problem formulation and solution strategy 

 The objective of this study is to develop a better understanding of the effects of 

pounding on the global response of the bridge when subjected to a suite of ground 

motions. A compromise between accuracy and efficiency is necessary given the scope of 

the problem being addressed. The crux of the analytical model is to focus on the impact 

phenomenon while representing all major behavioral characteristics of the bridge. Hence, 

a simplified planar nonlinear analytical model of a multiple-frame bridge is developed, as 

shown in Figure 3.2. The modeling of the various components of the bridge will be 

discussed in the next section. The equations of motion for the bridge system consisting of 

n frames subject to horizontal ground motion can be expressed as: 
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where mi is the mass of each frame, ci is the frame damping coefficient, FFi is the 

inelastic restoring force for each frame based on the hysteretic relation chosen, FRi is the 

force from restrainer Ri, FBi is the force in bearing Bi, FIi is the force due to impact 

between frames i and i+1 and FAi is the force in abutment Ai; üi, iu& and ui (i = 1 to 4) 

represent the frame acceleration, velocity and displacement relative to the ground; u0, 

un+1 are abutment displacements obtained using static condensation and üg represents the 

horizontal ground motion applied to the bridge. 

 

 

 

Figure 3.2: Analytical bridge model used in the study 
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 Since several studies have shown that damping is not a significant factor in the 

pounding response, modal damping of 5% is assigned to each frame. The solution for 

equation 3.1 can be obtained in the time domain using a numerical time stepping 

algorithm. Several algorithms are available such as the Newmark, Wilson-Theta and 

Runge-Kutta methods. The Newmark and Wilson-Theta methods are popular for single 

degree-of-freedom systems. However, these are computationally demanding for inelastic, 

higher degree-of-freedom systems, as they involve iteration at every time step. Moreover, 

they are difficult to implement for nonlinear and coupled system of equations. 

 On the other hand, the classical fourth-order Runge-Kutta method for solving first-

order differential equations is well suited for computational solution. It needs no special 

starting procedure, makes light demand on storage, and repeatedly uses the same 

straightforward computational procedure. It is also numerically stable and can be easily 

extended to systems with higher order differential equations. Hence, the classical fourth-

order Runge-Kutta method is adopted as the equation solver in this study.  

 The numerical solution of a simple first-order differential equation shown in equation 

3.2 is obtained by applying equations 3.3-3.8 over the number of time steps, N-1.  

                                                     ( ) 0 0, ; ( )dy f t y y x y
dt

= =                                             (3.2) 

                                                            ( )1 ,n nk hf t y=                                                     (3.3) 

                                                 2 1
1 1,
2 2n nk hf t h y k = + + 

 
                                           (3.4) 

                                                  3 2
1 1,
2 2n nk hf t h y k = + + 

 
                                          (3.5) 

                                                      ( )4 3,n nk hf t h y k= + +                                              (3.6) 
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                                                              1n nt t h+ = +                                                        (3.7) 

                                            ( )1 1 2 3 4
1 2 2
6n ny y k k k k+ = + + + +                                        (3.8) 

where x0, y0 are the initial conditions, h is the time step and k1, k2, k3, k4 are evaluations 

used to determine the final function value (yn+1) at each time step. In each step, the 

derivative is evaluated four times: once at the initial point (yn), twice at trial midpoints, 

and once at a trial end point. The final function value (yn+1) shown as a filled dot in 

Figure 3.3 is then calculated, based on an effective slope. The effective slope is the 

weighted mean of the four derivatives, with the two midpoint values being the dominant 

contributors. 

 However, Equation 3.1(a) is a second-order differential equation system, which needs 

to be reduced to a first-order system by writing vector functions {y} and {f}, whereas t 

remains a scalar variable. Equation 3.1(a) can be rewritten in matrix form as follows: 

                        
[ ] ( ){ } [ ] ( ){ } ( )( ){ } ( ) ( )( ){ }

( ) ( )( ){ } ( ) ( )( ){ } [ ]{ } ( )1

F R j i

B j i I j i g

M u t C u t F u t F u t u t

F u t u t F u t u t M u t

+ + − −

− − + − = −

&& &

&&
                (3.9) 

where [.] denotes a matrix, {.} denotes a vector and i, j represent adjacent degrees-of-

freedom. Making the substitutions, (3.10), (3.11), (3.12), equation 3.9 can be written as a 

first-order system given by (3.13).  

                                                               { } { }1y u=                                                       (3.10) 

                                                          { } { } { }2 1y y u= =& &                                                 (3.11) 

                                                         { } { } { }3 2y y u= =& &&                                                  (3.12) 
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Figure 3.3: Fourth order Runge-Kutta method – function evaluation 

 

 

                          

{ } { }
{ } { } [ ] [ ]{ } [ ] { } [ ] { }
[ ] { } [ ] { }

1 2

1 1 1
2 2

1 1

1 g F R

B I

y y

y u M C y M F M F

M F M F

− − −

− −

=

= − − − +

+ −

&

& &&                 (3.13) 

 The Runge-Kutta method can now be applied to the above set of equations to get a 

numerical solution. Pounding occurs when the gap between the adjacent masses (i, j) 

closes, as given by (3.14).  

                                                             0i j pu u g− − >                                                 (3.14) 

The contact force (FI) depends on the choice of the impact element selected. The contact 

force for the linear spring, Kelvin solid and Hertz models are given by equations (3.15), 

(3.16) and (3.17) respectively. 

                                  ( )I l i j pF k u u g= − −   ;  0i j pu u g− − ≥                                  (3.15a) 

                             0IF =                          ;   0i j pu u g− − <                                 (3.15b) 

            ( ) ( )I k i j p k i jF k u u g c u u= − − + −& &    ;  0i j pu u g− − ≥                                  (3.16a) 



 38

        0IF =                                               ;   0i j pu u g− − <                                 (3.16b) 

                          ( )
3

2
I h i j pF k u u g= − −        ;   0i j pu u g− − ≥                                 (3.17a) 

                     0IF =                                  ;   0i j pu u g− − <                                 (3.17b) 

where kl, kk, and kh are the impact stiffness parameters and ck is the damping coefficient 

for the Kelvin model that is given by equations (2.1), (2.2). The contact force (FI) for the 

stereomechanical model is taken as zero, since it is not a force based approach. However, 

the velocities of the colliding masses are adjusted after impact, as shown in equations 

(2.5) and (2.6).  

 The system of equations is implemented in MATLAB1 based on the above 

discussions. Using MATLAB as a platform for implementation offers the advantages of 

simplicity in coding a variety of inbuilt functions for matrix analysis and graphical 

functions for the visualization of results. However, the analysis would be inefficient time-

wise as the resulting code is not pre-compiled.  

 The program uses an input file “bridge.inp” which contains information on the 

number of bridge frames, properties of frames, restrainers, bearings, abutments and 

impact elements, ground motion details and time interval for analysis. From this 

information, the bridge model is created and the system matrices are assembled as 

described in (3.1). A nonlinear time history analysis is performed using the Runge-Kutta 

routine illustrated earlier. The output of the time-history analysis is vectors containing the 

structure states at every time step specified. Post processing of the results includes plots 

of element deformations and force-displacement relations.  

                                                 
1 MATLAB is a registered trademark of The Mathworks Inc., 24 Prime Park Way, Natic, 
MA 01760-1415 
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3.2 Structural bridge modeling 

 This section provides a description of the various bridge components and discusses 

the development of analytical models for these components.  

 

3.2.1 Bridge frames 

 Bridge frames consist of the deck slab supported by piers. In general, piers are 

designed to sustain superstructure dead and live loads and transmit all loads to the 

foundation. For most piers, concrete is the material of choice. However, steel and to a 

lesser extent timber have also been used. The basic types of piers popular in highway 

bridges are shown in Figure 3.4. In the case of multiple-frame bridges, single column 

bents support the superstructure as illustrated in Figure 3.5.  

 

 

 

Figure 3.4: Basic types of highway bridge piers (Tonias, 1995) 
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Figure 3.5: Single column bents in a multiple-frame bridge (Tonias, 1995) 

 

 The response of bridge columns during intense ground shaking can deform into the 

inelastic range and exhibit nonlinear behavior. Experimental studies on column 

specimens have shown that the cyclic behavior of reinforced concrete is characterized by 

constantly changing stiffness, strength degradation and a reduction in the energy 

absorption capacity (Takeda et al., 1970; Saatciaoglu and Ozcebe, 1989; Dowell et al., 

1998). Several analytical models have been developed to capture the nonlinear dynamic 

response of a reinforced concrete column subjected to base excitation (Clough and 

Johnston, 1966; Takeda et al., 1970; Saiidi and Sozen, 1979; Dowell et al., 1998). 

 For this study, each bridge frame is idealized as a single degree-of-freedom yielding 

system with an assumed frame force-deformation relationship. The hysteretic models 

considered include the bilinear, stiffness degrading (Q-Hyst) and strength degrading 

(pivot hysteresis) models shown in Figures 3.6 and 3.7. A description of the properties of 

the various models can be found in Chapter 6.  
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Figure 3.6: Frame force-deformation relations (a) Bilinear; (b) Q-Hyst 
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Figure 3.7: Strength envelope for the Pivot hysteresis model (Dowell et al., 1998) 
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3.2.2 Restrainers 

 The 1971 San Fernando earthquake led to a re-evaluation of the design procedures for 

bridges, after a number of bridge collapses were observed (Murphy, 1973). Following the 

earthquake, the California Department of Transportation suggested a retrofit scheme, 

whereby steel cable or bar restrainers were provided between adjacent spans to prevent 

excessive relative displacement and unseating of the spans. The spans were either tied 

together or tied to the substructure. Although several restrainer failures were observed 

during the 1994 Northridge earthquake, restrainers had some success in controlling large 

movements of the spans (Schiff, 1995). 

 Typical restrainers used in California are ¾ inch (19 mm) diameter steel cables with 

an area of 0.22 square inch (143 mm2) made of 6x19 strands, galvanized with a wire 

strand core, a right regular lay and made of improved plow steel (Scalzi and McGrath, 

1971; Section 83-2.02A, Standard Specifications). The restrainer assembly is composed 

of cables with swagged fittings, studs, nuts and turnbuckles, all of which should be 25% 

stronger than the cable (Yashinsky, 1992). Figure 3.8 illustrates a typical restrainer unit 

assembly. Under cyclic loading, the cables have a yield strength of 39.1 kips (174 kN), 

which corresponds to a yield stress of 176 ksi (1210 MPa) and an initial modulus of 

elasticity of 10,000 ksi (69,000 MPa). The ultimate strength per cable is 53 kips (235 

kN). The force deformation relationship for a typical cable restrainer is shown in Figure 

3.9. Figures 3.10 and 3.11 illustrate the various ways of connecting restrainer rods or 

cables to the pier. 

 In this study, twenty foot long, ¾ inch diameter cables that stretch approximately 4.22 

inches at yield are considered. The slack of the cables is assumed to be ½ inch as 
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specified for typical bridges. Restrainers are modeled at the intermediate hinge locations 

only, using a bilinear spring element with a slack that resists only tensile forces. A strain 

hardening ratio of 5% is assumed as shown in Figure 3.12. 

 

 

Figure 3.8: Typical cable restrainer assembly 

 

 

 

Figure 3.9: Load deformation relationship for restrainers (Caltrans, 1990) 
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Figure 3.10: Restrainer connection in steel bridges: (a) between deck and pier; (b) deck to 

deck 

 

 

 

Figure 3.11: Restrainer connection between decks in concrete bridge 
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Figure 3.12: Analytical model for cable restrainer 

 

 

3.2.3 Elastomeric Bearings 

 Bridge bearings are mechanical devices that transmit loads from the superstructure to 

the substructure and allow thermal expansion, contraction and rotational movement of the 

superstructure. Bearings are grouped in two types; fixed bearings and expansion bearings. 

Fixed bearings resist translation but permit rotation of the superstructure, while expansion 

bearings allow both rotation and translation. Most bearings are constructed of either steel, 

neoprene, PFTE (Teflon), bronze or a combination of these materials.  

 Elastomeric bearings have been used in highway bridge superstructures that undergo 

large deformations due to thermal expansion. They are made of elastomer (synthetic 

rubber) that develops adequate strength to support bridge loads. Two types are available 

as shown in Figure 3.13; plane pads consisting of elastomer only and reinforced bearings 

that have layers of elastomer and carbon steel molded into a solid void-free mass. When 

the bearing is loaded under compression, the elastomeric material tends to bulge as 
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illustrated in Figure 3.14 (a). For unreinforced pads, the bulging restraint is provided by 

friction between the pad and the bearing surface. In the case of the steel reinforced 

bearing, the steel laminates provide the bulging restraint under large compressive loads.  

 Shear deformation of the bearing can also occur as shown in Figure 3.14 (b) due to 

creep, shrinkage or thermal expansion of the bridge superstructure. The rotation from the 

girder ends can cause an uneven bulge as depicted in Figure 3.14 (c) that can lead to 

stability problems if excessive rotations occur. Elastomeric bearings present an attractive 

alternative to traditional steel bearings, as they limit forces to the substructure, are less 

susceptible to corrosion and provide more flexibility in terms of both functionality and 

maintenance. However, the shear stiffness of elastomeric bearings is a function of 

temperature, with higher stiffness at extremely low temperatures (Roeder et al., 1990). 

This could potentially lead to a brittle failure when installed in bridges exposed to cold 

winters. 

 

 

 

Figure 3.13: Typical elastomeric bearings (Roeder et al., 1991) 
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Figure 3.14: Deformation of elastomeric bearings (Roeder et al., 1991) 

 

 

 The elastomeric bearings are modeled using a bilinear element based on Kelly’s 

model with three parameters, the elastic stiffness (K1), strain hardening stiffness (K2) and 

the characteristic strength (Q) as shown in Figure 3.15(a) (Naeim and Kelly, 1999). 

Experimental tests on elastomeric bearings produced a shear force-deformation 

relationship as shown in Figure 3.15 (b) (Roeder et al., 1987). From the graph, it can be 

seen that the ratio of K1/K2 is around 3.0.  

 

 

 

Figure 3.15: (a) Bilinear model for elastomeric bearings; (b) Experimental shear force-

displacement relation (Roeder et al., 1987) 
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 The effective stiffness of the bearings can be calculated as: 

                                                                eff
GAK
h

=                                                      (3.18) 

where A is the area of the elastomeric bearing, G is the shear modulus of the elastomer, 

taken as 100 psi (Skinner et al., 1993), and h is the height of the elastomer. The effective 

stiffness can be related to other parameters, as shown below 

                                                            2eff
QK K
D

= +                                                    (3.19) 

where D is the maximum design deformation in the bearing, typically taken equal to the 

height of the elastomer. The yield displacement can be expressed in terms of the primary 

parameters as, 

                                                             
1 2

y
QD

K K
=

−
                                                  (3.20) 

The yield displacement is typically taken to be one-tenth the maximum deformation (D). 

Thus, all the primary parameters can be calculated from Equations 3.18-3.20 given the 

bearing dimensions. In this study, elastomeric bearings are modeled at the intermediate 

hinge and abutment locations. Table 3.1 presents the properties of elastomeric bearings 

used herein. 

 

 

Table 3.1: Properties of elastomeric bearings considered in study 

Dimensions (in) D (in) Dy (in) Keff (kip/in) K1 (kip/in) K2 (kip/in) 

12 x 8 x 4 4 0.4 2.4 6.0 2.0 

18 x 12 x 6 6 0.6 3.6 9.0 3.0 
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3.2.4 Abutments  

Abutments are the end supports of a bridge whose function is to transfer the reactions 

from the superstructure to the foundation and to retain the earth embankment of the 

approach roadway. Abutments consist of a back wall that serves as the principal retaining 

component, a bridge seat composed of either free-standing pedestals or a continuous 

breastwall and wingwalls that confine the earth behind. Figure 3.16 illustrates the various 

types of abutments.  

 

 

 

Figure 3.16: Various types of abutments: (a) gravity abutment; (b) U-abutment; (c) spill-

through abutment; (d) pile bent abutment (Xanthakos, 1996) 
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 A gravity abutment is constructed of concrete or stone masonry and resists the 

horizontal earth pressure with its own dead weight. The U-type abutment has wingwalls 

perpendicular to the backwall, an arrangement that improves overall stability. A spill-

through abutment consists of two or more vertical columns with a cap beam on top that 

supports the bridge seat. The soil is allowed to spill through the open spaces between the 

columns so that only a portion of the embankment is retained by the abutment. The pile 

bent abutment consists of a pile cap that acts as the bridge seat, supported by rows of 

piles. Batter piles are provided to prevent overturning. 

 Abutments play an important role in the seismic response of a bridge, as they attract a 

large portion of the earthquake loads and many design guidelines require their inclusion 

as equivalent linear springs (Caltrans, 1999; AASHTO-83, 1988). Pile bent abutments are 

considered in this study. The resistance in the passive direction (compression) is provided 

by both the soil and piles but the resistance in the active direction (tension) is provided by 

the piles alone. The stiffness of the piles is taken as 40 kips/in/pile based on the Caltrans 

recommendation. The analytical model for abutments developed in this study is shown in 

Figure 3.17. Linearized springs are employed with different stiffness in the active and 

passive directions. Inertial effects due to the abutment mass are not considered. 
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Figure 3.17: Analytical model for abutment action 

 

 

3.2.5 Impact elements 

 Seismic pounding of bridge decks at the intermediate hinges and abutments can alter 

the response of the bridge significantly. The various analytical models used to account for 

bridge deck impact were discussed in Section 2.2. All the analytical models described 

therein are considered for modeling impact, including the linear spring, Kelvin model, 

Hertz nonlinear spring and the stereomechanical approach. A Hertz spring with hysteresis 

damper introduced in Chapter 4 is also evaluated.  

 In this study, seismic pounding is accounted for at the intermediate hinge locations 

only. Impact between the bridge deck and abutments is not explicitly considered. This is 

because, several of the impact models including the stereomechanical approach and 

Kelvin-Voigt solid need to know the masses of the colliding bodies. In this work, 

abutments are modeled as linearized springs with no mass. Since, pounding at the 
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abutment will induce high passive pressures, the effect of deck impact is considered 

indirectly by including a high passive stiffness in the abutment model.  

 

3.3 Validation of the numerical MATLAB model 

 In this section, the numerical model is validated by comparing its responses with 

those from DRAIN-2DX (Prakash et al., 1992), a popular software for planar nonlinear 

dynamic analysis of structures. A multiple-frame bridge with two frames is considered, as 

depicted by Figure 3.18 with frame weights of 2880 k and 7080 k. The properties of the 

various bridge components are listed in Table 3.2. To enable comparison with DRAIN-

2DX, a bilinear force-deformation relation, with 5% strain hardening is chosen for the 

frames and Rayleigh damping is used with a damping ratio of 5%. The restrainers are 

designed according to the design procedure suggested by DesRoches and Fenves 

(DesRoches and Fenves, 2001). The restrainer slack is assumed as ½ in.  
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Figure 3.18: Multiple-frame bridge used in test case study 

 



 53

Table 3.2: Properties of various elements in the bridge model 

Element Component Initial stiffness 
(kips/in) 

Yield strength 
(kips) 

Period (s) 

F1 1333 814 0.47 Frame F2 577 853 1.12 
 

Element Component Initial stiffness 
(kips/in) 

Yield strength 
(kips) 

Strain 
hardening (%) 

Restrainer R1 850 935 5 
B1 6 2.4 33 Bearing B0, B2 2600 1560 33 

 
Element Component Active stiffness 

(kips/in) 
Passive stiffness (kips/in) 

Abutment A1, A2 10 2600 
 

 

 The bearings at the abutment locations are designed to have a stiffness proportional to 

the passive stiffness of the abutment. The active stiffness of the abutment is taken 

proportional to the typical hinge bearing stiffness. Pounding is modeled using a linear 

spring with a stiffness, Kl = 25,000 kip/in. Two cases are considered for comparison; 

Case 1, where the hinge gap is set large so that pounding does not occur and Case 2, 

where the hinge gap is taken as ½ inch and pounding occurs. The bridge is subjected to 

the 1940 El Centro record, which has a peak ground acceleration of 0.35 g.  

 Figures 3.19-3.21 present the comparison of results from the numerical procedure 

with DRAIN-2DX, for the no-pounding case. The comparisons for the pounding case 

(Case 2) are presented in Figures 3.22-3.24. All the responses show excellent agreement, 

thus validating the solution strategy of the numerical model. 
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Figure 3.19: Comparison of numerical model results with DRAIN-2DX for inelastic two-

frame bridge; Case 1 (no pounding) – 1940 El Centro record 
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Figure 3.20: Comparison of displacements at DOFs 0, 3 for inelastic two-frame bridge; 

Case 1 (no pounding); 1940 El Centro record 
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Figure 3.21: Comparison of restrainer and bearing (B1) force-deformation relationships 

for inelastic two-frame bridge; Case 1 (no pounding) - 1940 El Centro record 
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Figure 3.22: Comparison of numerical model results with DRAIN-2DX for inelastic two-

frame bridge; Case 2 (with pounding) – 1940 El Centro record 
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Figure 3.23: Comparison of restrainer and bearing (B1) force-deformation relationships 

for inelastic two-frame bridge; Case 2 (with pounding) - 1940 El Centro record 
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Figure 3.24: Comparison of impact element force-deformation relation for inelastic two-

frame bridge; Case 2 (with pounding) – 1940 El Centro record 
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CHAPTER 4  

PARAMETERS AFFECTING THE BRIDGE POUNDING RESPONSE 

 

 In order to mitigate pounding damage in bridges, it is important to determine the 

factors affecting the pounding response. Past research has shown that the forces acting on 

the piers and deck deformations increase as a result of pounding (Jankowski et al., 1998; 

Pantelides and Ma, 1998). However, a study by Malhotra (1998) showed that a multi-

span concrete box girder bridge with an adjacent frame stiffness ratio of 1.14 had a 

reduction in response due to pounding. Other researchers have suggested that pounding 

generally reduces the response of the bridge frames because of the energy dissipated 

during pounding and because pounding disrupts the buildup of resonance (Priestly et al., 

1996).  

 Other studies have evaluated mitigation strategies for pounding in bridges. Kim et al. 

(2000) found that restrainers reduce the relative displacements between pounding frames 

and prevent the collapse of spans. Several researchers have shown that shock absorbers, 

connectors with high damping or stiffness and energy dissipation devices are effective in 

mitigating the pounding effects in bridges (Kawashima & Yabe, 1996; Jankowski et al., 

1999; Kawashima and Shoji, 2000). 

 As mentioned, the effect of pounding on bridge response has led to conflicting 

results. A comprehensive study is performed in this chapter to better understand the 

parameters affecting pounding, and to investigate the effects of restrainers and yielding 

frames on the demands in bridges. The stereomechanical approach is used to simulate 

impact, with the coefficient of restitution (e) being taken as 0.8.  
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4.1. Preliminary investigations into dynamic impact 

 A sample pounding analysis is performed to comprehend the effects of deck impact 

on the bridge response. The seismic response of adjacent frames in a typical multiple-

frame bridge shown in Figure 4.1 is considered.  The bridge is subjected to the 1940 El 

Centro earthquake, scaled to 0.70g to coincide with typical design response spectra. To 

simplify the analysis and better understand the factors affecting pounding, only single-

sided pounding is considered (i.e., effects of abutments or adjacent frames are ignored). 

The effects of bearings and restrainers are also not considered. 

 

 

 

Figure 4.1: (a) Typical multiple-frame bridge; (b) model idealization 
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 Two cases are evaluated: a case with a frame period ratio of T1/T2 = 0.32, and a case 

with a frame period ratio of T1/T2 = 0.71. Case 1 represents the response of highly out-of-

phase frames, and case 2 represents the response of slightly out-of-phase frames. In both 

cases, the modes are assigned 5% critical damping, and the frames have a gap of 12.5 

mm (½ in). The frames are designed to have an individual displacement ductility demand 

of µ = 4.0, for the scaled 1940 El Centro record.  

 Figure 4.2 presents the time history of frame displacements for the no-pounding and 

pounding studies for case 1 (T1/T2 = 0.32). The comparison shows that pounding 

significantly increases the maximum displacement of the stiff frame from 15 mm for the 

no-pounding case, to over 40 mm for the case when the frames are pounding. Conversely, 

for the flexible frame, pounding reduces the displacement from 130 mm in the no-

pounding case to 90 mm when the frames pound. The flexible frame, which has a larger 

displacement, pounds the stiff frame increasing its response. Similarly, the stiff frame 

acts as a barrier to the flexible frame, thereby limiting the flexible frame response.  

 Figure 4.3 shows the same analysis, except the stiffness of frame 1 has been modified 

such that the frames now have a frame period ratio of T1/T2 = 0.71. A comparison of the 

pounding and no-pounding response shows that the effect of pounding is considerably 

reduced in this case. For the stiff frame, pounding increases the response from 72 mm to 

100 mm. For the flexible frame, the pounding and no-pounding maximum absolute 

displacements are nearly identical (approximately 125 mm). 
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Figure 4.2: Time history of frame displacements for the pounding and no-pounding 

studies. Inelastic frames (T1/T2 = 0.32); El Centro record scaled to 0.7 g 

 

 

 

 

Figure 4.3: Time history of frame displacements for the pounding and no-pounding 

studies. Inelastic frames (T1/T2 = 0.71); El Centro record scaled to 0.7 g 
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4.2. Identification of the parameters affecting seismic pounding 

 The case study performed in the previous section illustrated the dramatic effect of 

frame period ratio on the response of pounding bridge frames. However, it is not clear 

what effect other parameters, such as ground motion characteristics, have on the response 

of pounding frames. In addition, bridges that have been retrofitted with restrainers may 

have a different pounding response than those without restrainers. Past research has 

shown that frame stiffness ratios, earthquake loading, hinge gap, frame yield strength and 

restrainer stiffness are important factors in determining the effects of pounding in bridges 

(DesRoches and Fenves, 1997a). Secondary factors that affect the pounding response 

include the coefficient of restitution, relative masses of impacting structures and the 

impact spring stiffness. It has been shown that the relative mass does not play a 

significant role as long as the differences in the structure periods result from the 

differences in stiffness (Athaniassiadou et al., 1994; Trochalakis, 1997).  

 In order to identify the primary factors affecting the pounding response of adjacent 

bridge frames, a two degree-of-freedom system with frame stiffnesses, K1, K2 and 

restrainers is considered, as shown in Figure 4.1(b). The equations of motion governing 

the system response due to seismic input can be written as: 
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where mi is the mass of each frame, ci is the frame damping coefficient, FFi is the frame 

restoring force, FR1 is the force in the restrainer and üg is ground acceleration. Pounding 

is modeled using the stereomechanical approach, with e = 0.8. Dividing each equation by 

the respective frame yield displacement, 
i yiy F iu F K= gives 
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where 
ii i yu uµ = is the frame displacement ductility factor. Equation 4.2 is divided by 

m2 and the following terms are defined: mass ratio, 1 2m mλ = ; frequency ratio, 

2 1ω ωΩ = ; normalized force-deformation relation, ( ) ( )
i i yiF i F i FF F u Fµ =%  ; frame 

strength ratio, 
maxyii F i gF m uη = && ; and the normalized ground acceleration, 

( )
maxg g gu t u u=%&& && && . Using the standard expressions, i i iK mω = , and ci = 2ξimiωi, 

equation (4.2) becomes: 
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To simplify the normalized restrainer term in the above equation, the restrainers are 

assumed to be elastic. This simplification is justified because design procedures require 

the restrainers to remain elastic. The restrainers engage after the slack, s, is exhausted and 

the restrainer force can be expressed as: 

                                                     ( )
1 2 1R rF K u u s= − −                                                 (4.4) 

where Kr is the restrainer stiffness. Substituting equation 4.4 into (4.3) and isolating the 

restrainer term in the normalization, the normalized restrainer force is given by, 

                                                 ( )
1

2 1
2
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r
R

y

KF u u s
m u

= − −                                             (4.5) 

Further normalization of (4.5) results in:  
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where 1 2η η η=% is the ratio of the frame strength ratios. In order to involve both the 

frame stiffnesses in the above equation, the numerator and denominator are divided by 

the flexibilities of the two frames, 
mod 1 2
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= + which results in the following: 
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where κ = Kr/Kmod.  

 From equations 4.3 and 4.7, it can be observed that the frequency of frame 2, ω2, is 

the only term that is not normalized. This is rectified by relating ω2 (or T2) to the 

characteristic period of the ground motion, Tg. The characteristic period of a ground 

motion is defined as the period at which the input energy of a 5% damped linear elastic 

system is a maximum (Miranda and Bertero, 1994). Based on the above normalizations, 

the primary parameters affecting the pounding response are identified as the mass ratio, λ, 

the frame period ratio, T1/T2 (or frequency ratio ω2/ω1), ground motion period ratio, 

T2/Tg, restrainer stiffness ratio, κ, and the frame ductility ratio, µ. The ratio of frame 

strength ratios (η% ) can be related to the frame ductility ratios, µ1, µ2, as shown below.  

                                                             1 2
2

2 1

1u
u

µη
µ

=
Ω

%                                                     (4.8) 

In addition, the hinge gap is also considered and is expressed in terms of a gap ratio 

parameter, χ, as given in equation 4.9.  

                                                                         *g Dp npχ=                                                                 (4.9) 
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where Dnp is the relative displacement of the hinge when pounding of the frames does not 

occur. χ = 1.0 corresponds to the critical gap; i.e. the gap which is just sufficient to 

preclude pounding. 

 

4.2.1. Effect of principal parameters on the pounding response – A case study 

Having determined the factors affecting pounding, a case study is conducted with the 

simplified model shown in Figure 4.1(b), to evaluate the effect of various parameters on 

the system response. The mass ratio of the frames (λ) is taken as unity and elastic frames 

are considered (µ = 1). Restrainers are not included (κ= 0). Table 4.1 lists the values of 

all parameters used in this case study.  

 Previous earthquakes have shown the relative hinge displacement in bridges subject 

to strong ground motion ranges from 5 in. to 15 in. (DesRoches and Fenves, 1997a). 

Since typical hinge gaps are approximately ¼ - ½ in., this results in a range of gap ratios 

from 0.02 to 0.10. Preliminary studies showed small differences in bridge response for 

gap ratios in this range. Therefore, to simplify the analysis, the gap parameter, χ, is set at 

0.02 for further investigations.  

 

 

Table 4.1: Pounding parameters and range of values for case study 

Parameter Values 
Frame mass ratio, λ 1.0 
Frame stiffness ratio, K1/K2 1.05, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 
Ground motion period ratio, T2/Tg 0.25, 0.35, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 

2.5, 2.75, 3.0, 3.25, 3.5, 4.0, 4.5, 5.0 
Gap ratio, χ 0.02 
Frame ductility ratio, µ 1.0 
Coefficient of restitution, e 0.8 
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 The frames are subjected to the set of ground motions listed in Table 4.2. All the 

records are scaled to 0.7g peak ground acceleration, to coincide with typical design 

response spectra. The input records cover a wide range of characteristic periods (Tg), and 

peak ground accelerations (PGA), and are of magnitude six or greater. The effect of 

pounding is expressed in terms of the displacement amplification (γ), which is the ratio of 

the maximum pounding frame displacement to the maximum frame displacement if 

pounding does not occur. 

 

 

Table 4.2 Free-field ground motions used in study 

No. 
 
(1) 

Earthquake record 
 

(2) 

Location 
 

(3) 

Ms
a 

 
(4) 

PGAb 
(g) 
(5) 

Tg
c 

(sec) 
(6) 

1 1940 Imperial Valley El Centro* 6.9 0.35 1.00 
2 1989 Loma Prieta Saratoga 7.1 0.47 0.40 
3 1989 Loma Prieta Holister* 7.1 0.37 1.03 
4 1992 Landers Baker Fire 7.5 0.11 1.70 
5 1994 Northridge Sylmar* 6.7 0.83 1.60 
6 1994 Northridge Taff 6.7 0.22 0.90 
7 1994 Northridge Pacoima Dam* 6.7 0.50 0.42 
8 1994 Northridge Lake Hughes 6.7 0.27 0.50 
9 1994 Northridge Lake Obrego Pk. 6.7 0.45 0.41 
10 1995 Kobe Kobe* 6.9 0.85 0.88 
11 1995 Kobe Osaka 6.9 0.08 1.17 

aMagnitude; bPeak Ground Acceleration; cCharacteristic Period; * - used in inelastic 
analyses 
 

 

 Figure 4.4 presents the average amplification in frame displacements, as a function of 

the stiffness ratio (K1/K2) and the ground motion period ratio (T2/Tg), for the ground 

motions records specified in Table 4.2. For lower T2/Tg ratios (T2/Tg < 1), the stiff frame 
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response is amplified due to pounding and flexible frame response is reduced. However, 

for higher T2/Tg ratios, the flexible frame amplification is greater than one. Furthermore, 

seismic pounding amplifies both the frame responses when T2/Tg is around 1.5 and K1/K2 

is greater than 3. These observations are in contradiction with the general trend that 

pounding amplifies the stiff frame response and reduces the flexible frame response, and 

needs further investigation.  
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Figure 4.4: Average amplification in the frame response due to pounding; χ = 0.02; 11 

ground motion records  

 

 

4.3. Parameter study  

 The earlier section identified the important parameters affecting the bridge pounding 

response as the frame stiffness ratio (K1/K2) or period ratio (T1/T2), the ground motion 

period ratio (T2/Tg), restrainer stiffness ratio, κ, and the frame ductility ratio, µ. To the 
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author’s knowledge, this is the first study that recognizes the ground motion period ratio 

as a significant pounding parameter. A case study conducted earlier with K1/K2 and T2/Tg 

as parameters, illustrated pounding trends that are contrary to the general expectations. 

Hence, a thorough parameter study is conducted herein, to better understand the effects of 

the various parameters on the pounding response. Both elastic and inelastic systems are 

considered, with the Q-Hyst model being used for the frame force-deformation relation. 

The following values are used for the various parameters: λ = 1, K1/K2 = 2, 4, 8, 10, T2/Tg 

= 0.25 – 5.00 with 0.05 increments, χ = 0.02, µ = 1, 4, κ = 0, 0.5, and 1.0, e = 0.8. The 

ground motion records listed in Table 4.2 are used for analyses.  

 

4.3.1. Elastic response 

 The pounding response of elastic systems with no restrainers is considered first. The 

displacement amplification due to pounding as a function of T1/T2 and T2/Tg is 

investigated. Figure 4.5 shows a plot of the mean displacement amplification as a 

function of T1/Tg and T2/Tg for four values of T1/T2. Thin dashed lines indicate the 

variability in response, in terms of mean ± 1 standard deviation. 

 Pounding reduces the frame response when vibrating at a period near the 

characteristic period of the ground motion record (Tg). For example, when T2/Tg = 1, the 

response of the flexible frame is reduced, while the response of the stiff frame is 

amplified. The significant reduction is observed since pounding prevents the build-up of 

resonance energy in the frame subjected to input at its resonant frequency. Similarly, at 

T1/Tg = 1, the response of the stiff frame (Frame 1) is reduced while that of the flexible 

frame (Frame 2) is amplified.  
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Figure 4.5: Mean ± 1 standard deviation displacement amplification for elastic frames – 

11 earthquake records scaled to 0.7g. 

 

 

 The displacement amplification plot has three distinct zones. In Zone I, where T2/Tg < 

1, the stiff frame amplification is greater than one and the flexible frame amplification is 

less than one. The mean response of the stiff frame is increased by as much as 180% and 

the flexible frame’s mean response is reduced by 30% in Zone I, for T1/T2 = 0.32. In 

Zone III, when T1/Tg > 1, the flexible frame response increases and the stiff frame 

response is reduced. In Zone II, T1/Tg < 1< T2/Tg the frame displacement amplification is 

slightly greater than one for both the frames. The coefficient of variation (COV) defined 

as the ratio of the standard deviation to the mean can be as high as 57% for the stiff frame 

and 52% for the flexible frame when T1/T2 = 0.32. In general, the displacement 

amplification decreases as the frame period ratio approaches unity, for all values of T2/Tg, 
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as shown in Figure 4.5. For the case with T1/T2 = 0.71 (K1/K2 = 2.0), only slight 

displacement amplifications of the stiff frame are observed for the entire range of T2/Tg 

values. The maximum increase in the stiff frame’s mean response is 43% which is much 

less than that observed for T1/T2 = 0.32.  

 

4.3.2. Effect of frame yielding  

 The response of any structure subjected to strong ground shaking often extends into 

the inelastic range and can be significantly different from the corresponding linear 

response. The inelastic behavior of the frame is characterized by a force-deformation 

relationship, which is an idealization of the actual behavior of the frame during cyclic 

load. The yield force of the frame (Fy) is established by dividing the elastic force demand 

(Fe) by a yield reduction factor Ry, in order to obtain a specified target ductility (µ), using 

a constant ductility spectrum.  

 To adequately represent the frame period ratio for all the yielding frames, the frame 

period is written using the effective stiffness, Keff, where Keff = K/µ. Therefore, the 

effective frame period ratio, T2eff can be written as: 

                                                          

                              (4.10) 

where T2 is the period of the flexible frame in the elastic range. In order to enable 

comparison with the linear behavior of the frames, both the frames are designed for the 

same target ductility of µ = 4. Thus, the frame period ratio remains as T1/T2 and is varied 

as done in the linear study. The ground motion effective period ratio T2eff/Tg is varied 

from 0.25 to 5.0 s in increments of 0.05 s. The reduction factors necessary to maintain a 
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constant frame ductility depend on the frame period. An iterative procedure is used to 

determine the reduction factors required to give µ = 4 for the individual frame response. 

The frames are subjected to five ground motion records, as indicated in Table 4.2. Figure 

4.6 presents the pounding and no-pounding responses for inelastic frames with no 

restrainers, bearings or abutments. Displacement amplification and ductility demand are 

presented. 

 

 

 

Figure 4.6: Mean and variation in displacement demand for inelastic frames; five 

earthquake records scaled to 0.7g. 
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 As observed in the linear case, pounding is more critical for highly out-of-phase 

frames. Pounding reduces the frame response when the effective frame period (Teff) is 

close to the characteristic period of the earthquake (Tg). The displacement amplification 

curves due to pounding can once again be classified into three zones depending on the 

effective ground motion period ratio. 

 Zone I covers the region where T2eff/Tg ≤ 1.0. The stiff frame ductility demand is 

increased by as much as 300% and the flexible frame ductility demand is reduced by 

approximately 40% in Zone I, for T1/T2 = 0.32 (K1/K2 = 10). The maximum COVs for 

the stiff and flexible frames are 57% and 58% respectively. The elastic frames had a 

corresponding Zone I displacement increase of 180% for the stiff frame and a reduction 

of 30% for the flexible frame.  

 Zone II exhibits an increase in both frame ductility demands, as observed for the 

displacement amplification in the linear study. Zone III shows similar behavior to the 

elastic cases. However, the increase in the flexible frame demand is slightly less in the 

inelastic behavior of the frames than exhibited in the corresponding linear study. This 

effect is attributed to yielding and hysteretic damping. The yielding of the frames results 

in a smaller relative velocity before impact than if they were elastic, and thus the 

pounding response is reduced. The hysteretic behavior of the frames in the nonlinear 

range results in significant energy dissipation that could also affect the pounding 

response. The effects of pounding are less pronounced when K1/K2 = 2.0 (T1/T2 = 0.71), 

similar to the elastic case. 
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4.3.3. Effect of restrainers 

 Cable restrainers are often used at intermediate hinges as a retrofit measure to limit 

relative hinge displacement and prevent unseating during an earthquake. However, the 

presence of restrainers alters the behavior of adjacent frames by transferring forces as the 

frame opening exceeds the slack in the cable. While it has been shown that pounding can 

increase the linear and nonlinear response of the frames, it is not clear how the restrainers 

affect pounding in nonlinear frames. Hence, the effect of restrainers on pounding is also 

evaluated for yielding frames.  

 In the earlier section, the restrainer stiffness (Kr) was normalized by Kmod, the sum of 

flexibilities of the adjacent frames, based on effective stiffness properties. Thus, the 

normalized stiffness (κ) was given as κ = Kr/Kmod. For yielding frames, Kmod can be 

expressed as: 

                                                

                                           (4.3) 

where K1 and K2 are the elastic stiffnesses of the frames and µ is the design ductility 

demand. Values of κ = 0, 0.5 and 1.0 are considered for this study, where κ = 0 

corresponds to the case with no hinge restrainers. The restrainer slack is assumed to equal 

the hinge gap gp. The frames are subject to the suite of 5 ground motion records used in 

the inelastic study.  

 The effect of restrainers on the frame pounding response is illustrated in Figure 4.7. 

The addition of restrainers helps in reducing the frame response in Zone I but increases 

the stiff frame demand in Zone II. Overall, the effect of restrainers on the frame response 

is observed only for highly out-of-phase frames and is marginal for other stiffness ratios. 
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For T1/T2 = 0.32, the addition of restrainers reduces the stiff frame response by 

approximately 25% in Zone I for κ = 1.0 and T2eff/Tg = 0.2. The flexible frame response 

is reduced by 23% in Zone III for κ = 1.0 and T2eff/Tg = 5. However, the presence of 

restrainers does not alter the general frame displacement trends due to pounding, thus 

underlining the importance of the pounding effect over the restrainer effect in the 

response of bridge frames. 

 

 

 

Figure 4.7: Mean amplification in displacement demand for 5 earthquake records: 

inelastic frames with and without restrainers; target ductility µ = 4; SF – Stiff Frame; FF 

– Flexible Frame; Restrainer stiffness ratio, κ = 0, 0.5, 1.0. 
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4.4. Conclusions 

 This chapter investigates the effects of pounding and restrainers on the global demand 

of bridge frames in a multi-frame bridge. The primary factors affecting the pounding 

response are identified as the frame stiffness ratio (K1/K2) or period ratio (T1/T2), ground 

motion effective period ratio (T2eff/Tg), restrainer stiffness ratio, κ, and the frame ductility 

ratio, µ.  Unlike earlier studies which only accounted for the system period ratio in 

studying the pounding response, this is the first study that identifies T2eff/Tg as an 

important pounding parameter. 

 Parametric studies using simplified 2-DOF models show that pounding is most 

critical for highly out-of-phase frames. Pounding reduces the frame response when 

vibrating near the characteristic period of the ground motion (Tg). The amplification in 

frame response as a function of T2eff/Tg, and T1/T2 falls into three regions. In Zone I 

(T2eff/Tg < 1), the stiff frame demand increases and the flexible frame demand decreases 

due to pounding. In Zone III (T1eff/Tg > 1), the flexible frame pounding response is 

increased while the stiff frame pounding response is reduced. In Zone II (T1eff/Tg < 1 & 

T2eff/Tg > 1), pounding slightly increases both frame responses.  

 Inelastic behavior (frame design ductility, µ = 4) shows greater stiff frame 

amplification in Zone I when compared to the linear case. The yielding of frames also 

results in smaller response amplification for the flexible frame in Zone III, when 

compared to elastic behavior. It can be concluded that the response of bridge frames due 

to pounding is much less pronounced for K1/K2 = 2.0 (T1/T2 = 0.71) irrespective of the 

ground motion period ratio. The effect of restrainers on the pounding response of bridge 
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frames is also evaluated, for inelastic frames. The results show that restrainers have very 

little effect on the demands on bridge frames compared with pounding.  
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CHAPTER 5 

HERTZ MODEL WITH HYSTERESIS DAMPING FOR DYNAMIC IMPACT 

 

 The aspect of seismic pounding in bridges is essentially a problem of dynamic 

impact. A clear understanding of the impact phenomenon is intrinsic for the analysis and 

design of bridge structures. The forces created by collision act over a short period of 

time, where energy is dissipated as heat due to random molecular vibrations and the 

internal friction of the colliding bodies. Usually, contact is modeled using either a 

continuous force model or via a stereomechanical (coefficient of restitution) approach, as 

described in Chapter 2. With several models available for the investigation of dynamic 

impact, there is a need to perform an evaluation and comparison of all the models to 

determine their applicability and efficacy in accurately capturing the pounding 

phenomenon. More importantly, the stereoemechanical model needs to be compared with 

other contact force-based models, to ascertain the effect of impact modeling methodology 

on the response of participating systems.  

 In this chapter, the limitations of the various impact models are discussed and a 

contact force model based on the Hertz law, with hysteresis damping is introduced to 

simulate impact. The performance of the new contact model in comparison with the 

existing impact models is evaluated. Parameter studies are then conducted with two 

degree-of-freedom linear and nonlinear models to ascertain which pounding models are 

effective in simulating bridge deck impact. Finally, a case study is performed on a 

multiple-frame bridge with restrainers, bearings and abutments to determine the 

differences in the global bridge response, when impact is simulated using various models. 
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5.1. Limitations of existing impact models 

 Past research has shown that the linear spring element is a popular choice for 

modeling impact. This contact-based approach is relatively straightforward and can be 

easily implemented in commercial software. However, the linear spring element is 

incapable of modeling energy loss during impact, as observed by the absence of a 

hysteretic loop in Figure 5.1(a). Hence, the Kelvin-Voigt solid consisting of a linear 

spring in parallel with a damper has been used in some studies (Wolf and Skrikerud, 

1980; Anagnostopoulos, 1988; Jankowski et al., 1998). 

 In the Kelvin model, the relative motion during impact is represented as a half 

damped sine wave. The force during contact is given by a half-ellipse as illustrated in 

Figure 5.2(a). However, this is contrary to the expected shape of the hysteresis loop due 

to a compressive load that is applied to and removed from a body within its elastic range 

at a slow rate, as shown in Figure 5.2(b).  
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Figure 5.1: Impact-penetration relation for (a) Linear spring; (b) Hertz contact element 
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Figure 5.2: (a) Hysteresis loop from the Kelvin-Voigt model; (b) Hysteresis loop for the 

application and removal of compressive load. 

 

 

 Hunt and Crossley (1975) have shown the Kelvin-Voigt model to be unrepresentative 

of the physical nature of energy transfer. It results in “sticky” tensile forces acting on the 

bodies just before separation that lengthen the period of contact and reduce the separation 

velocities of the colliding bodies. The Kelvin-Voigt model also results in a coefficient of 

restitution that is independent of the impact velocity (Marhefka and Orin, 1999). 

However, Goldsmith (1960) has shown that for most materials in the linear elastic range 

and for low values of the impact velocity, v, the coefficient of restitution can be 

expressed as: 

                                                                 1e vα= −                                                        (5.1) 

where α is a constant that depends on the type of material. It can be shown that the 

energy loss during impact (∆E) is proportional to the cube of the impact velocity v (Hunt 

and Crossley, 1975). However, the half-ellipse loop from the Kelvin-Voigt model results 
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in an energy loss that is proportional to the square of the impact velocity v, thus making it 

untenable.  

 Other studies have used the Hertz contact model, which uses a nonlinear spring, as 

illustrated in Figure 5.1(b) to represent impact (Davis, 1992; Pantelides and Ma, 1998; 

Chau et al., 2003). However, the Hertz model fails to account for energy dissipation 

during impact. The stereomechanical method is limited in its application because of the 

unknown duration of contact, as noted in Chapter 2. Furthermore, since it involves 

modification of the velocities of the colliding bodies at the instant of impact, the 

stereomechanical method cannot be implemented in existing bridge analysis programs. 

Hence, a comprehensive impact model needs to be developed which is representative of 

the nature of impact and can be easily incorporated in commercial structural software. 

 

5.2. Proposed contact model 

  The contact forces during direct central impact of two isotropic elastic bodies with 

perfectly smooth surfaces can be described using the Hertz law of contact (Goldsmith 

1960).  In general, an impact can be considered to occur in two phases – the compression 

phase and the restitution phase, as shown in Figure 5.3. The colliding bodies undergo 

local deformation in the direction normal to the impact surface during the compression 

phase. The relative velocity of the centers of mass reduces to zero at the end of the 

compression phase. The restitution phase begins after the compression phase and lasts 

until the separation of the colliding masses. When the curvatures of the contacting 

surfaces are large, the contact becomes concentrated at a point and Hertzian theory 

predicts a nonlinear contact spring as shown below (Goldsmith, 1960): 
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c hf k δ=

 

Figure 5.3: Stages of Impact – Poisson’s Hypothesis 

 

 

(5.2) 

where fc is the contact force, δ is the local relative penetration between the center of 

masses of the two bodies, kh is the spring constant which depends on the material 

properties and radii of curvature of the bodies and n is taken as 3/2. 

 The Hertz model suffers from the limitation that it cannot represent the energy loss 

during contact. Hence, an improved version of the Hertz model is proposed, whereby a 

hysteresis damper is used in parallel with the nonlinear spring element. The contact 

model can be represented as:  

                                                            n
c h hf k cδ δ= + &                                                    (5.3) 

where ch is the damping coefficient of the hysteresis damper, δ is the local deformation 

andδ&  is the penetration velocity. A nonlinear damping coefficient is proposed so that the 
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hysteresis loop of the damper matches the one shown in Figure 5.2(b). The damping 

coefficient is taken as: 

                                                                 n
hc ζδ=                                                         (5.4) 

where ζ is the damping constant. The hysteresis loop for the Hertz model with nonlinear 

damping can be represented as shown in Figure 5.4(a). 

 

 

Figure 5.4: (a) Hysteresis loop for Hertz contact model with nonlinear damping; (b) 

penetration versus time for proposed model. 

 

 

Using the stereomechanical approach, the energy loss as a result of impact (∆E) can 

be expressed in terms of the coefficient of restitution and the approach velocities of the 

colliding bodies, as follows: 
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where m1, m2 are the masses of the colliding bodies, e is the coefficient of restitution and 

v1, v2 are the approaching velocities of the masses. The energy dissipated by the damper 

is the shaded area shown in Figure 5.4(a) and can be evaluated as: 

                                                 n
hE c d dδ δ ζδ δ δ∆ = =∫ ∫& &                                            (5.6) 

 In order to evaluate the energy loss from Equation 5.6, the penetration velocity δ&  

must be expressed as a function of the penetration δ at any time t during the period of 

contact. The variation of penetration with time is illustrated in Figure 5.4(b), where t-, tm 

and t+ denote the initial time of contact, time of maximum penetration and the time of 

separation of the colliding bodies. At the end of the compression phase, the two bodies 

move with a common velocity V12.  Assuming the energy dissipated during impact to be 

small compared to the maximum absorbed elastic energy, an energy balance between the 

start and end of the compression phase gives: 

                                          ( )2 2 2
1 1 2 2 1 2 12

1 1 1
2 2 2 mm v m v m m V U+ = + +                                  (5.7) 

where Um is the maximum strain energy stored. A momentum balance during the same 

period results in the following: 

                                                   ( )1 1 2 2 1 2 12m v m v m m V+ = +                                            (5.8) 

Based on (5.7) and (5.8), the maximum strain energy stored can be expressed as: 

                                                   
( ) ( )21 2

1 2
1 2

1
2m

m mU v v
m m

= −
+

                                          (5.9) 

The elastic strain energy absorbed equals the work done by the Hertz contact force from 

the instant of impact (δ = 0) to the state of maximum penetration (δ = δm) and can be 

evaluated as: 
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Equating (5.9) and (5.10) results in an expression for the relative velocity at the onset of 

impact (v1-v2), in terms of the maximum penetration (δm). 

                                            ( ) ( ) 1
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                                  (5.11) 

By repeating the preceding steps between the onset of impact (t-) and an intermediate 

time t  ( t- ≤ t ≤ tm), the penetration velocity δ&  can be related to the penetration, δ, at any 

time t,  as follows: 

                                           
1

2 1 2
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( ) 2
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n
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&                               (5.12) 

 The above expression is for penetration velocity during the compression phase. If we 

assume that the penetration velocities during the compression and restitution phases are 

approximately equal, the energy loss expression in (5.6) reduces to: 

                                     
( )

( )
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n m m n
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                           (5.13) 

Substituting for δm from (5.11) and equating the energy losses from (5.13) and (5.5), an 

expression for the damping factor (ζ) can be found in terms of the spring stiffness (kh), 

the coefficient of restitution (e) and the relative approaching velocity (v1 – v2) as follows: 

                                                           
( )2

1 2

3 1
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hk e
v v

ζ
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=
−

                                                 (5.14) 

Hence, the force during contact in (5.3) can be expressed as: 
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Now, all the parameters of the model are known and the Hertz model with nonlinear 

damping can now be used in impact analysis. Similar models have been used in other 

areas such as robotics and multi-body systems (slider-crank mechanisms) to analyze 

contact (Lankarani and Nikravesh, 1990; Marhefka and Orin, 1999; Hunt and Crossley, 

1975). The nonlinearity associated with impact and the energy losses are both accounted 

for in the proposed model. The use of the elastic Hertz law beyond the limits of its 

validity is justified as it appears to predict with reasonable accuracy most of the impact 

parameters that can be experimentally verified (Goldsmith, 1960).  

 

5.3. Comparison with existing impact models 

The efficacy of the proposed model in predicting the pounding response of adjacent 

structures needs investigation. In this regard, the two-DOF system shown in Figure 5.5 is 

subjected to the El Centro record (N-S component) from the 1940 Imperial Valley 

earthquake. The record has a Peak Ground Acceleration (PGA) of 0.35g. The properties 

of the system are assumed to be elastic, as specified in Table 5.1. With a view of focusing 

solely on the pounding response, the presence of restrainers, bearings and abutments is 

ignored. Two cases are evaluated; Case 1, where the separation between the models (gp) 

is very large to preclude pounding and Case 2, where gp is small so that pounding can 

occur. The gap between the models in Case 2 is taken as: 

                                     ( ) ( ){ }
2 1 2 1

max
Casep np Case

g D u t u tχ χ= = −                            (5.16) 
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Figure 5.5: Simplified model used to test the proposed impact model 

 

 

Table 5.1: Properties of two-DOF system used for impact model comparisons 

Parameter Value 

m1, m2 3.6 kip-s2/in 

c1, c2 based on 5% damping ratio 

T1, T2 0.25 s, 0.50 s 

Force-deformation Elastic 

kl, kk 25000 kip/in 

kh 25000 kipin-3/2 

e 0.6 

ck 68 kip-s/in 

χ 0.5 
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where χ is the gap ratio parameter and Dnp is the maximum relative displacement from 

Case 1.  

 Pounding is implemented using the proposed Hertz contact model with nonlinear 

damping. The proposed contact model will be referred to as the Hertzdamp model 

throughout the rest of the dissertation. The contact force for the Hertzdamp model is 

given by Equation 5.17. 

                  ( ) ( ) ( )
23

2
1 2 1 2

1 2

3(1 )1
4c h p

eF k u u g u u
v v

 −
= − − + − − 

& &      1 2; 0pu u g− − ≥        (5.17a) 

                  0cF =                                                                        1 2; 0pu u g− − <       (5.17b) 

where u1 – u2 – gp is the relative penetration and 21 uu && − is the penetration velocity. For 

comparison, the linear spring, Kelvin, Hertz and stereomechanical models are also 

evaluated for this particular record. The coefficient of restitution is assumed as 0.6, where 

applicable. The stiffness parameters of the various impact models are assumed to be the 

same for consistency, as listed in Table 5.1. The gap ratio parameter is taken as 0.5, 

which results in a gap of 0.85” for Case 2. Figure 5.6 presents the responses when 

pounding is represented using the Hertzdamp model. 

 The time history of displacements for the pounding and no pounding cases shows that 

pounding increases the maximum displacement of DOF1 (stiffer system) from 0.58 in to 

0.71 in. Conversely, for DOF2 (flexible system), impact reduces the maximum 

displacement from 2.04 in to 1.65 in. The nonlinearity and energy loss associated with 

impact are clearly illustrated by the impact force vs. relative displacement plot in Figure 

5.6. For completeness, the variation of impact force as a function of time is also presented 

for one instance of impact.  



 88

Time (s)

0 2 4 6 8 10

D
is

pl
ac

em
en

t (
in

)

-1.0

-0.5

0.0

0.5

1.0
No pounding
Pounding

No pounding max. = 0.58 in

Pounding max. = 0.71 in

DOF1: T1 = 0.25 s

Time (s)

0 2 4 6 8 10

D
is

pl
ac

em
en

t (
in

)

-3

-2

-1

0

1

2

3

No pounding
Pounding

No pounding max. = 2.04 in

Pounding max. = 1.65 in

DOF2: T2 = 0.5 s

 

u1 - u2 (in)

0.6 0.8 1.0 1.2

Im
pa

ct
 fo

rc
e 

(k
)

0

1000

2000

3000

4000

5000

Hertzdamp model
Kh = 25000 kin-3/2

e = 0.6

 Time (s)

4.77 4.78 4.79 4.80 4.81 4.82

Im
pa

ct
 fo

rc
e 

(k
)

0

500

1000

1500

2000

2500

3000

Figure 5.6: Effect of pounding on two-DOF linear system with T1/T2 = 0.5; e = 0.6; El 

Centro record (10 seconds); clockwise from top – time history of displacements (DOF1), 

time history of displacements (DOF2), hertzdamp impact force vs. time (one instance), 

hertzdamp impact force vs. relative displacement. 

 

 

 To compare the performance of the Hertzdamp model, the maximum pounding 

responses of the two-DOF system using the other impact models are normalized with 

respect to the no-pounding response. Figure 5.7 presents the amplification in 

displacement and acceleration relative to the ground for DOF1 (stiffer system), and the 

maximum impact force from the various models. The hysteresis loops during impact for 
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the force-based models are presented in Figure 5.8. Clearly, the models which cannot 

represent energy loss (linear spring and hertz models) overestimate the displacement 

amplification due to pounding. The hertzdamp and stereomechanical model displacement 

amplification are very similar. The displacement amplification from the Kelvin model is 

the smallest. This can be attributed to a larger hysteretic loop and the presence of some 

impact force even as the bodies just touch each other (relative displacement = gpCase2), as 

illustrated in Figure 5.8.  

 The amplification in the acceleration response of DOF1 and the maximum impact 

force is much higher for models based on a linear spring. The hertzdamp model provides 

the lowest impact force among force-based models. The stereomechanical model is not a 

force-based model. Hence, there is no impact force and consequently, no amplification in 

the acceleration response.  
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Figure 5.7: Comparison between various impact models; L-R displacement amplification 

– DOF1, acceleration amplification – DOF1, maximum impact force. 
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Figure 5.8: Comparison of contact models – impact force vs. relative displacement. 

 

 

 This case study illustrates the effects of energy loss, nonlinearity in impact stiffness 

and compares the performance of the various impact models, for one ground motion 

record. However, the effects of ground motion characteristics, system period ratio and 

system inelastic behavior on the pounding response using the various impact models need 

to be studied. In the following section, a parameter study investigating these effects is 

presented.  
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5.4. Parameter study to assess the performance of various impact models 

With several analytical methods available to investigate seismic pounding, it is 

important to address the limitations of various models and identify effective ways to 

model impact. The two degree-of-freedom model shown in Figure 5.5 is selected for 

study, with equal masses of 7.8 kip-s2/in and 5% modal damping. Both elastic and 

inelastic systems are considered. Pounding is analyzed using several impact models, such 

as the linear spring, Kelvin, Hertz, stereomechanical and Hertzdamp models. The impact 

parameters are tabulated in Table 5.2.  

The stiffness of the linear contact spring is chosen proportional to the axial stiffness 

of the deck (EA/L). Typical values of E, A and L for bridge decks range from 3000 to 

4500 ksi, 70 to 100 sq. ft, and 200 to 500 ft, respectively. This results in a deck axial 

stiffness of 5040 kip/in to 27,000 kip/in. Several studies have shown the system response 

to be insensitive to changes in the impact spring stiffness by one order of magnitude 

(Anagnostopoulos, 1988; Maison and Kasai, 1992). Hence, a value of 25,000 kip/in is 

chosen as the impact spring stiffness in this study. The effects of restrainers, bearings and 

abutments are not considered so that the differences in system responses can be directly 

attributed to the impact models. 

The system period ratio and ground motion characteristics were recognized as critical 

parameters affecting the pounding response, in Chapter 4. In this section, three cases are 

considered with system periods of (0.18 s, 0.60 s), (0.30 s, 0.60 s) and (0.42 s, 0.60 s) 

corresponding to period ratios (T1/T2) of 0.3, 0.5 and 0.7, respectively. A suite of thirty 

ground motion records with peak ground accelerations (PGAs) varying from 0.1g to 1.0g 

are selected, as listed in Table 5.3. The characteristic periods of the records are carefully 



 92

chosen such that the ground motion period ratio (T2/Tg) falls within Zone I (see Chapter 

4). The effect of pounding is expressed in terms of response amplification, which is the 

ratio of the maximum response when pounding occurs to the maximum response when 

there is no pounding. The hinge gap in the simplified model is set very large for the no-

pounding analysis and assumed as ½ inch for the pounding analysis.  

 

 

Table 5.2: Impact parameters selected for the various models 

Impact Model Parameters 

Linear spring Kl = 25,000 kip/in 

Kelvin-Voigt Kk = 25,000 kip/in; e = 0.6. 1.0* 

Hertz Kh = 25,000 kipin-3/2 

Stereomechanical e = 0.6, 1.0 

Hertzdamp Kh = 25,000 kipin-3/2; e = 0.6. 1.0* 

* - when e = 1.0, the Kelvin-Voigt reduces to the linear spring model and the Hertzdamp 

reduces to the Hertz model. 
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5.4.1. Two degree-of-freedom elastic system 

 The effects of various pounding models on the elastic system response are discussed 

in this section. Mean values of displacement amplification and acceleration amplification 

due to pounding, as a function of the peak ground acceleration (PGA) are presented in 

Figures 5.9 – 5.12, for different values of the coefficient of restitution (e). Three ground 

motion records are used at each PGA level. The expected Zone I trend of increase in the 

displacement response of the stiff structure and decrease in the flexible structure 

response, as a result of impact is clearly observed. The displacement amplifications get 

closer to one with an increase in the period ratio, as observed in Chapter 4. 

 The stereomechanical and contact force-based models predict similar displacement 

responses, even though they use different methodologies to account for impact. 

Differences in displacement amplifications between various impact models are larger for 

highly out-of-phase frames (T1/T2 = 0.3) and more pronounced for lower values of e (e = 

0.6). For instance, when T1/T2 = 0.3 and e = 1.0, the differences in stiff frame 

displacement amplifications between the Kelvin and stereomechanical models are 17% 

and 18% for PGAs of 0.7g and 0.9g, respectively. The differences between the 

Hertzdamp and stereomechanical models for the same set of parameters are 21% and 

17%. For the flexible frame, with T1/T2 = 0.3 and e = 1.0, the differences between the 

Kelvin and stereomechanical models are 11% and 16% for PGAs of 0.5g and 0.9g, 

respectively. The differences between the Hertzdamp and stereomechanical models for 

the same set of parameters are 20% and 16%. 

 Differences in displacement amplifications between the Kelvin and Hertzdamp 

models are under 10% for all values of PGA and both values of e. The variation of 
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displacement amplification with PGA shows no clear trend, for any impact model. 

Lowering the coefficient of restitution (e) from 1.0 to 0.6 reduces displacement 

amplifications of both systems, on the average. 

 Pounding amplifies the acceleration response of both systems, when simulated using 

contact force-based methods such as the Kelvin and Hertzdamp models. The acceleration 

amplifications from the stereomechanical model follow the corresponding displacement 

trends, and are much smaller than those from the contact force-based models. The contact 

force models predict acceleration amplifications as high as 5 for the stiff frame, when 

T1/T2 = 0.5 and PGA = 0.8g. This corresponds to an acceleration pulse of nearly 5g that 

can potentially damage sensitive equipment placed on the structure.  

 Contrary to the displacement amplification trends, the acceleration amplifications 

from the contact models increase as the period ratio approaches unity. This is because 

higher period ratios (T1/T2) are achieved by increasing T1, while keeping T2 constant and 

for stiff system periods considered herein (T1 = 0.18, 0.30 and 0.42 seconds), the spectral 

acceleration values typically increase with increasing period. The acceleration 

amplifications are reduced significantly when e is lowered from 1.0 to 0.6. On the 

average, the Hertzdamp model provides the least acceleration amplification among the 

contact force based models.  

 To more closely examine the effect of energy loss on the system response, the percent 

difference in response between the Hertz (e = 1.0) and Hertzdamp (e = 0.6), the linear 

spring (e = 1.0) and Kelvin (e = 0.6) and the stereomechanical (e = 1.0) and 

stereomechanical (e = 0.6) models are expressed as a function of PGA. Figures 5.13 and 

5.14 present the results. The Hertzdamp model shows the least variation with respect to 
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changes in the coefficient of restitution (e). Differences in response between the Hertz 

and Hertzdamp models are under 20% for displacements and less than 35% for 

accelerations, when e is changed from 1.0 to 0.6. This indicates that using a spring with 

nonlinear stiffness might be the most effective way to represent impact.  

 The models without energy dissipation such as the linear spring, stereomechanical (e 

= 1.0) and the Hertz models are ill-suited to represent impact, as they overestimate the 

response amplifications due to impact. It is surprising to note the large differences in the 

stereomechanical model response with respect to changes in e, for some PGA values. 

This could be attributed to the fact that at lower values of e, the bodies tend to “stick” 

resulting in several impacts within a short period of time as opposed to one impact. 

 Overall, the Hertzdamp model appears to be the most effective in modeling pounding, 

as it exhibits the least variation with changes in the coefficient of restitution and also 

predicts lower acceleration amplifications when compared to other contact models. 

However, for a period ratio (T1/T2) of 0.7, the contact models provide high acceleration 

amplifications and hence the stereomechanical model is better suited to model impact. 
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Figure 5.9: Mean displacement amplification due to pounding – DOF1 – elastic systems; 

T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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Figure 5.10: Mean displacement amplification due to pounding – DOF2 – elastic systems; 

T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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Figure 5.11: Mean acceleration amplification due to pounding – DOF1 – elastic systems; 

T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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Figure 5.12: Mean acceleration amplification due to pounding – DOF2 – elastic systems; 

T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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5.4.2.  Two degree-of-freedom inelastic system 

To determine if the observed trends of impact model performance are the same for 

yielding systems, the two degree-of-freedom system shown in Figure 5.5 is re-considered 

with the Q-Hyst model used for the inelastic response. The suite of earthquake records 

listed in Table 5.3 is used for analysis. The system yield forces for each ground motion 

record are obtained by dividing the maximum elastic forces by a constant reduction 

factor, Ry = 3. Figures 5.15-5.18 present the displacement and acceleration amplification 

for various values of PGA and e. The displacement amplifications get closer to one with 

increasing period ratio, as observed for linear systems. The stereomechanical and contact 

force models predict similar displacement amplifications, for all cases considered. 

Linear systems exhibited larger differences in displacement amplifications for highly 

out-of-phase frames, which became marginal with increasing period ratio. However, the 

differences in displacement amplifications between various impact models are smaller for 

yielding systems. This can be explained by observing that the period ratio for the yielding 

system is actually, 1 1 2 2T Tµ µ , where µ1, µ2 are the ductility demands of system 1 and 

2, respectively. The ductility demand for both systems will be different even though the 

same reduction factor is used for both.  With T1 being less than T2, µ1 will be greater than 

µ2, for any given earthquake record. This implies that the yielding system is essentially 

more in-phase than its linear counterpart. Thus, the differences in displacements between 

the various models are less for yielding systems. 

As observed for the linear case, variation of displacement amplification with PGA 

shows no clear trend for all the impact models. Lowering the coefficient of restitution, 

once again reduces the displacement amplification of both systems. The acceleration 
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amplifications are smaller compared to the linear case but exhibit similar trends to those 

observed in the linear study. The contact force models predict large acceleration 

amplifications, with the Hertzdamp model having lower amplifications than the Kelvin 

model. But now, there is a difference in how the acceleration amplifications vary as a 

function of T1/T2. The acceleration amplifications reduce with increasing period ratio, as 

yielding lowers the acceleration spectrum values and also increases the system period, 

thereby shifting the acceleration response on the spectrum more to the right. In fact, for 

T1/T2 = 0.7, the acceleration amplifications from the Hertzdamp model are comparable to 

those from the stereomechanical model for e = 0.6.  

The effect of energy loss is presented in Figures 5.19 and 5.20. Once again, the 

Hertzdamp model displays the least variation to changes in e, with differences in 

displacements under 15% and differences in acceleration under 20%, for all period ratios. 

For a period ratio of 0.7, the stereomechanical and Hertzdamp models are the most 

effective and energy loss is not significant.  
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Figure 5.15: Mean displacement amplification due to pounding – DOF1 – inelastic 

systems – Qhyst (Ry = 3); T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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Figure 5.16: Mean displacement amplification due to pounding – DOF2 – inelastic 

systems – Qhyst (Ry = 3); T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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Figure 5.17: Mean acceleration amplification due to pounding – DOF1 – inelastic systems 

– Qhyst (Ry = 3); T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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Figure 5.18: Mean acceleration amplification due to pounding – DOF2 – inelastic systems 

– Qhyst (Ry = 3); T1/T2 = 0.3, 0.5, 0.7; e = 1.0, 0.6; 30 ground motions 
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5.5. Effect of impact models on the global bridge response – A case study 

 The previous section performed a comparison of various pounding models for a two 

degree-of-freedom system without restrainers, bearings and abutments. The system 

responses using various impact models were fairly similar, for a given coefficient of 

restitution (e). However, the addition of bearings, restrainers and abutments could induce 

greater differences in the pounding response of the bridge, through interaction of the 

various components. Hence, a case study is performed with a four-frame bridge model 

shown in Figure 5.21. Frame weights of 2880 k, 7080 k, 7080 k and 2880 k are selected 

for frames 1 through 4 and 5 % modal damping is assigned to the individual frames. The 

properties of various bridge components are listed in Table 5.4. The Q-Hyst model is 

selected as the frame-force deformation relation. The hinge gap is taken as ½ inch at all 

intermediate hinge locations. The Saratoga record from the 1989 Loma Prieta earthquake, 

having a PGA of 0.5g is chosen for analysis. 

 

 

R3R2R1

I3 I2 I1 

B3 B2B1

u5u4 u3u2u1 u0 

A2 

F4 F3F2F1 
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B0 B4 
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c1 c2 c3 c4 

gp gp gp 

Figure 5.21: Four-frame bridge used in case study comparing various impact models 
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Table 5.4: Properties of various bridge components 

Element Component Initial stiffness 
(kips/in) 

Yield strength 
(kips) 

Period (s) 

F1, F4 1333 774 0.47 Frame F2, F3 577 1824 1.12 
 

Element Component Initial stiffness 
(kips/in) 

Yield strength 
(kips) 

Strain 
hardening (%) 

R1, R3 200 840 5 Restrainer R2 100 420 5 
B1, B2, B3 6 2.4 33 Bearing B0, B4 2600 1560 33 

 
Element Component Active stiffness 

(kips/in) 
Passive stiffness (kips/in) 

Abutment A1, A2 10 2600 
 

 

 The maximum frame displacements and accelerations when pounding is simulated 

using various models are presented in Figures 5.22 and 5.23. The models without energy 

dissipation such as the stereomechanical (e = 1), linear and hertz models overestimate the 

stiff frame displacement (Frames 1 and 4), as observed in the parameter studies. 

Differences can be as large as 25% for Frame 1 when the Hertzdamp model is used.  

However, the energy dissipating models predict higher flexible frame displacements 

than the models without energy dissipation, contrary to what was observed earlier. This is 

because the flexible frame undergoes two-sided impact in this case and also interacts with 

restrainers and bearings. The contact force-based models – Kelvin and Hertzdamp predict 

high frame accelerations due to pounding with larger accelerations for e = 1. The impact 

acceleration can reach as high as 2.8g for Frame 4, when the Kelvin model is used and e 

= 1.0. The Hertzdamp model predicts the least impact accelerations among the contact 

models.  
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Figure 5.22: Maximum frame displacements using various impact models – Coyote Lake 

Dam record, 1989 Loma Prieta earthquake (PGA = 0.5 g) 

 

 

The Kelvin model shows the least variation in the displacement response due to 

changes in e. However, the Hertzdamp model shows smaller variation for differences in 

accelerations. Moreover, the Hertzdamp model provides the least impact forces among 

contact models as illustrated in Figure 5.24, because the penetration is less than one inch 

and impact is modeled using a nonlinear spring. Thus, it can be concluded that the 

Hertzdamp model is the most effective contact-based model. 
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Figure 5.23 Maximum frame accelerations using various impact models – Coyote Lake 

Dam record, 1989 Loma Prieta earthquake (PGA = 0.5 g) 
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Figure 5.24: Maximum impact forces from various contact models 
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5.6. Conclusions 

The cogency of various impact models in representing the pounding response of 

closely spaced structures is investigated in this chapter. Existing impact models such as 

the linear spring, Kelvin, Hertz and stereomechanical models are considered for analysis. 

In addition, a contact model based on the Hertz law and using a nonlinear hysteresis 

damper (Hertzdamp model) is introduced for pounding simulation. A case study is 

conducted to compare the performance of the impact models in simulating dynamic 

impact between two closely spaced adjacent structures modeled as a two degree-of-

freedom elastic system. The results indicate that the pounding models without energy 

dissipation overestimate the stiff system response by as much 15%, when impact is 

modeled using a linear spring.  

A parameter study is then performed using two degree-of-freedom linear and 

nonlinear systems to study the efficacy of various impact models for three system period 

ratios (T1/T2) – 0.3, 0.5, 0.7 and two values of the coefficient of restitution, e = 0.6, 1.0. 

Thirty ground motion records with PGAs varying from 0.1g to 1.0g are used in the 

analysis. The displacement results indicate that the stereomechanical and contact force-

based models show similar trends, even though they use different methodologies to 

represent impact. For linear systems, the differences in displacement amplifications 

between various impact models are larger (up to 20%) for highly out-of-phase frames. 

Smaller differences (up to 10%) are exhibited for nonlinear frames.  

Lowering the coefficient of restitution from 1.0 to 0.6, reduces both the displacement 

and acceleration amplifications due to impact. For linear systems with T1/T2 = 0.3 and 

PGA = 0.7g, the stiff frame displacement amplification is reduced by 50% for the 
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stereomechanical model and 25% for the Kelvin model, when e changes from 1.0 to 0.6. 

The corresponding reduction in acceleration amplifications is around 60% for both 

models. The Hertzdamp model appears to be the most effective contact-based model as it 

shows the least variation due to changes in e and also provides the lowest acceleration 

amplification and impact force, for both linear and nonlinear systems.  

The results from the parameter study confirm that energy loss during impact is not 

significant for systems with a period ratio of 0.7. At a period ratio of 0.7, the 

stereomechanical model is found to be the most effective for linear systems and the 

stereomechanical and hertzdamp models provide better results, for nonlinear systems. 

Finally, a case study is conducted with a four-frame bridge to investigate the differences 

in bridge response when impact is represented using various models. The results show 

good agreement with the findings from the parameter study.  
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CHAPTER 6 

EFFECT OF FRAME RESTORING FORCE CHARACTERISTICS ON THE 

POUNDING RESPONSE  

 

 Past research into seismic pounding has primarily focused on determining the factors 

affecting pounding (DesRoches and Fenves, 1997a), modeling the impact phenomenon 

(Jankowski et al., 1998; Malhotra, 1998), and developing mitigation strategies for 

pounding hazard reduction (Kawashima and Shoji, 2000). Typically, the participating 

structural systems have been modeled using bilinear or stiffness degrading models. 

However, experimental tests on concrete columns have shown that strength degradation 

occurs under increased cycles of loading, which is accelerated under the presence of axial 

compressive loads (Saaticioglu and Ozcebe, 1989). To the author’s knowledge, no study 

has yet considered the effects of strength degradation on the pounding response of bridge 

frames.  

 In this chapter, the influence of column hysteretic characteristics, such as stiffness 

degradation, strength deterioration and pinching on the pounding response is studied. 

Several analytical models are considered including the bilinear, Q-Hyst (stiffness 

degrading) and pivot hysteresis (strength degrading) models. Parameter studies are 

performed using two degree-of-freedom systems with varying period ratios subject to a 

suite of far-field ground motion records, to ascertain if the pounding trends observed in 

Chapter 4 are valid for all hysteretic models. A case study is then conducted to assess the 

pounding response of the various hysteretic models in the presence of near-field 
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earthquakes. Finally, the effect of hysteretic model type on the global responses of a 

multiple-frame bridge system is highlighted through an example.  

 

6.1. Hysteretic models for reinforced concrete columns 

 Reinforced concrete bridge columns can develop inelastic deformations and exhibit 

nonlinear behavior under moderate to strong base excitation. In the past, elasto-plastic 

and bilinear models were used due to their simplicity in concept and numerical 

implementation. Stiffness degradation in concrete was first accounted for with the 

introduction of a degrading stiffness approach (Clough and Johnston, 1966). Subsequent 

experimental tests on both small-scale and full-scale column specimens have shown that 

cyclic behavior of reinforced concrete is characterized by constantly changing stiffness, 

strength degradation and a reduction in energy absorption capacity (Takeda et al., 1970; 

Saatcioglu and Ozcebe, 1989; Dowell et al., 1998). 

 A typical lateral load-deflection hysteretic relationship for a reinforced concrete 

column is shown in Figure 6.1. The general hysteretic characteristics can be summarized 

as follows: 

 Reduction in stiffness occurs due to the increased loading cycles, which can be 

attributed to the flexural cracking in concrete and the Bauschinger effect in steel.  

 The peak strength attained in each cycle decreases with increased loading cycles. 

This strength degradation is a result of the disintegration of core concrete. 

 The hysteretic loop exhibits pronounced pinching effects, which can be attributed 

to high shear stress reversals and slippage of the longitudinal reinforcement 

within the anchorage area.  
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Figure 6.1: Lateral load-deflection relation for a reinforced concrete column obtained 

from experiment (Saatcioglu and Ozcebe, 1989) 

 

 

 The hysteretic characteristics of reinforced concrete are dependent on the loading 

history.  

 Several hysteresis models have been developed to capture the nonlinear dynamic 

response of reinforced concrete columns subjected to base excitation. These range from 

relatively simplistic models such as the elasto-plastic and bilinear models, to more 

rigorous models, such as the Takeda (Takeda et al., 1970), Park (Kunnath et. al., 1990) 

and the Pivot hysteresis models (Dowell et al., 1998). Other models such as the Clough 

model (Clough and Johnston, 1966) and the Q-Hyst model (Saiidi and Sozen, 1979) have 

also been popular. A brief discussion of the hysteretic models considered in this study is 

outlined below.  
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Elasto-plastic model 

 This is a simple model defined by three rules. The backbone curve is defined by an 

elastic stiffness (k) which represents cracked-section behavior and a post-yield portion 

with zero stiffness, as shown in Figure 6.2. The unloading stiffness is taken to be the 

same as the elastic loading stiffness. This model is a very poor representation of the 

hysteretic behavior of concrete as it does not represent stiffness deterioration with 

increasing displacement amplitude reversals. However, it has been extensively used 

because of its simplicity in modeling. 

 

 

 

Figure 6.2: Elasto-plastic hysteresis model 

 

 

Bilinear model 

 This is very similar to the elasto-plastic model, but it also accounts for the strain 

hardening effect in steel using a non-zero post yield stiffness, as shown in Figure 6.3. 

Stiffness and strength degradation effects cannot be represented. Both the elasto-plastic 
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and bilinear models do not consider hysteretic energy dissipation for small displacements. 

Many studies evaluating the effects of pounding have used bilinear models to represent 

the behavior of adjacent structures (Anagnostopoulos, 1988; Pantelides and Ma, 1998; 

Kim et al., 2000). 

 

 

 

Figure 6.3: Bilinear hysteresis model 

 

 

Q-Hyst model (Saiidi and Sozen, 1979) 

 The Q-hyst model is defined by four rules and closely represents the response from a 

Takeda model, which is a more realistic representation of the cyclic behavior of 

reinforced concrete columns. The backbone curve used is bilinear with strain hardening 

as shown in Figure 6.4. Stiffness degradation is accounted for at unloading and load 

reversal. The unloading stiffness is defined by Kq = K(Dy/D)0.5, where K is the initial 

elastic slope, D is the largest absolute deformation and Dy is the yield deformation. The 

re-loading stiffness, Kp, is defined as the slope of the line connecting the intersection of 
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the latest unloading branch with the displacement axis (point A) to the maximum 

absolute displacement (point B), as shown in Figure 6.4. The Q-Hyst model is much 

simpler than the Takeda model.  However, both the Q-Hyst and Takeda models do not 

account for the effect of column axial loads and strength degradation in concrete. 
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Figure 6.4: Q-Hyst model for reinforced concrete 

 

 

Pivot hysteresis model (Dowell et al., 1998) 

 This model is governed by three simple rules and has the ability to capture the 

dominant nonlinear characteristics of concrete under cyclic load. The backbone curve 

used for positive and negative loading is shown in Figure 6.5. The first and second 

branches of the strength envelope represent cracked-section stiffness and strain hardening 

stiffness, respectively. Strength degradation from shear failure or confinement failure is 

represented by the third branch. The fourth branch allows for a linearly decreasing 

residual strength.  
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Figure 6.5: Strength envelope for the pivot hysteresis model 

 

 

 Primary pivot points P1 through P4 control the amount of softening expected with 

increasing displacement, using parameters α1, α2 as shown in Figure 6.5. Pinching pivot 

points PP2 and PP4 fix the degree of pinching following a load reversal, through 

parameters β1
*, β2

*. The response follows the strength envelope as long as no 

displacement reversal occurs. Once the yield displacement is exceeded in either direction, 

a modified strength envelope is defined by the lines joining PP4 to S1 and PP2 to S2, as 

illustrated in Figure 6.5. The pinching pivot points start moving toward the origin of the 

force-deformation relation, once strength degradation occurs. The pinching parameters, 

β1
*, β2

* are given by following equations. 
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where β1, β2 define the degree of pinching for a ductile flexural response before strength 

degradation occurs. Displacements dimax and dti represent the maximum displacement and 

strength degradation displacement, respectively, in the “i” direction of loading. Fimax and 

Fti represent the force levels corresponding to dimax and dti, respectively. 

 The set of rules defining loading and unloading in the various quadrants are 

graphically portrayed in Figure 6.6. The four quadrants are demarcated by the 

deformation axis and the elastic loading lines as indicated by the bold lines in Figure 6.6.  
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Figure 6.6: Graphical representation of loading/unloading rules for pivot model 
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Loading is defined as +∆d for quadrants Q1, Q4, and -∆d for quadrants Q2, Q3. Unloading 

is defined as -∆d for quadrants Q1, Q4, and +∆d for quadrants Q2, Q3. The condensed set 

of rules can be expressed as follows 

1. For quadrants 1 and 3, loading and unloading are directed away from or toward 

point Pn, respectively. 

2. For quadrants 2 and 4, loading is directed toward point PPn. 

3. For quadrants 2 and 4, unloading is directed away from point Pn.  

The loading and unloading rules are followed only when the force-deformation path 

leaves the strength envelope.  

 The primary advantage of the pivot hysteresis model compared to the other models is 

its ability to represent effects of cyclic axial load, unsymmetrical sections and strength 

degradation. Unlike other models, the pivot model recognizes that yielding in one 

direction does not soften the member in the opposite loading direction. For instance, if 

the yield strength is exceeded in the positive loading direction, unloading occurs and the 

member reloads in quadrant Q2 towards PP2, the response will follow the initial elastic 

loading line if yielding has not yet occurred in the negative loading direction. 

 

6.2. Comparison of hysteretic model response 

 A single degree-of-freedom (SDOF) system shown in Figure 6.7 is considered to 

study the differences in frame response when various hysteretic models are used. The 

system has an initial stiffness, k = 295 kips/in, damping ratio, ξ = 5% and a period, T = 1 

second. The Saratoga – Aloha Avenue record with a peak ground acceleration (PGA) of 

0.51g, from the 1989 Loma Prieta earthquake is chosen for analysis. The yield strength 
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for the system is selected such that the target ductility, µ equals 4, when the Q-Hyst 

model is used as the force-deformation relation. Five percent strain hardening is used 

wherever applicable. 
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Figure 6.7: Single degree-of-freedom system used to compare hysteretic model responses 

 

 

 The pivot hysteresis model is considered with and without strength degradation. The 

case without strength degradation will be compared with the Q-Hyst model results. The 

parameters of the pivot model used in analysis are tabulated in Table 6.1. Parameters, α 

and β are selected from the recommended values for flexure dominant columns (Dowell 

et al., 1998).  
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Table 6.1: Hysteresis parameters for the pivot model 

Parameter No strength 
degradation 

With strength 
degradation 

Pivot parameters, α1, α2 4.00 4.00 

Pinching pivot parameters, β1, β2   0.55 0.55 

Yield strengths (kips), Fy
+, |Fy

-|  459 459 

Yield displacements (in), dy
+, |dy

-| 1.56 1.56 

Strength degradation displacements (in), dt
+, |dt

-| 5* dy
+ 2* dy

+ 

Residual strength (kips), Fd
+, |Fd

-| N/A 0.5* Fy
+ 

Residual strength reduction displacements (in), dd
+, |dd

-| 7* dy
+ 4* dy

+ 

Failure displacements (in), df
+, |df

-| 10* dy
+ 10* dy

+ 

 

 

 Figure 6.8 presents the time history of displacement responses for the various 

hysteresis models. The responses from all the models are identical for the first 6.2 sec, as 

nonlinear deformations have not yet occurred. However, once the yield force has been 

exceeded, the elasto-plastic and bilinear model responses exhibit more permanent 

deformations, with a pronounced shift in the equilibrium position. This is because neither 

of the two models considers hysteretic energy dissipation for small displacements. The 

absolute maximum displacements and ductility ratios from the various models are listed 

in Table 6.2. Figure 6.9 presents the hysteresis loops for the various models.  

 The Q-Hyst response is larger than the bilinear response, as stiffness degradation in 

the Q-Hyst model produces less damping per cycle. However, despite major differences 

in the force-deformation relations, the absolute peak responses are similar for the Q-Hyst  
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Figure 6.8: Time history displacements from various hysteresis models – 1989 Saratoga-

Aloha Avenue record 

 

 

Table 6.2: Maximum displacement responses from various hysteretic models 

Hysteretic model Umax (in)a µb 

Elastoplastic 6.30 4.0 

Bilinear 5.15 3.3 

Q-Hyst 6.29 4.0 

Pivot hysteresis (no strength degradation) 4.76 3.0 

Pivot hysteresis (with strength degradation) 4.97 3.2 

a – maximum absolute displacement; b – displacement ductility (µ) = umax/uy  
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Figure 6.9: Hysteresis loops for SDOF system - 1989 Saratoga- Aloha Avenue record 

 

 

and elasto-plastic models. Typically, the Q-Hyst response is expected to be larger than 

the elasto-plastic response due to a smaller hysteretic loop for the Q-Hyst model. But for 

this particular ground motion, the elasto-plastic model shows large excursions along the 

post yielding branch, which could account for the peak responses being identical. The 

lack of strain hardening in the elasto-plastic model could be a factor as well. 

 The pivot (without strength degradation) and Q-Hyst models exhibit similar peak 

responses in the positive loading direction (4.75 inches), but the peak response in the 

negative loading direction is 6.29 inches for the Q-Hyst model and 4.75 inches for the 
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pivot model. One reason for the discrepancy is that the hysteretic parameters for the pivot 

model (α1, α2, β1, β2) have not been matched with the Q-Hyst model parameters, which 

results in the pivot model having a slightly larger hysteretic loop than the Q-Hyst model. 

However, the major contributor to the difference in response is the assumption in the 

pivot model that yielding in one direction does not soften the member in the opposite 

loading direction. After the maximum displacement in the positive direction (umax
+) is 

reached, the member unloads and reloads in the negative direction. The Q-Hyst response 

then proceeds toward -umax
+ in the negative direction, but the pivot model follows the 

elastic loading line in the negative direction after crossing PP2. The effect of strength 

degradation appears to increase the system ductility ratio, as evident in Figure 6.9.  

 The results of this comparison confirm that the elasto-plastic and bilinear models 

show poor correlation with more complex models like the Q-Hyst and pivot models. The 

force-deformation relations for the traditional models exhibit major differences with 

respect to shape and the amount of energy dissipated, and the time history responses 

show a pronounced shift in the equilibrium position. Next, the hysteretic parameters of 

the Q-Hyst and pivot models will be matched so that their model responses without 

strength degradation are similar to one another.  

 

6.2.1. Correlation of Q-Hyst and Pivot model hysteretic parameters 

The hysteretic parameters for the Q-Hyst model are the initial stiffness, K, strain 

hardening ratio, γ*, yield strength, Fy, unloading stiffness Kq and reloading stiffness, Kp. 

For the pivot model without strength degradation, the hysteretic parameters include the 

initial stiffness, K, strain hardening ratio, γ*, yield strength, Fy, pivot parameters, α1, α2 
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and the pinching pivot parameters, β1, β2. For simplicity, let α1 =α, α2 = α and β1 = β, β2 

= β. The initial stiffness, strain hardening ratio and the yield strengths for the two models 

are assumed to be the same.  

The unloading stiffnesses of the two models are shown in Figure 6.10. For the Q-Hyst 

model, the unloading stiffness, KqQH can be expressed as: 

                                                     
QH

y
q

m

D KK K
D µ

= =                                                 (6.3) 

where µ is the ductility ratio from the Q-Hyst model. From Figure 6.10(b), the unloading 

stiffness for the pivot model, KqPH can be written as: 
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KK
γ γ µ α
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                                           (6.4) 

where α is the pivot parameter. Equating (6.3) and (6.4), an expression for the pivot 

parameter, α, can be found in terms of the strain hardening ratio, γ*, and the ductility 

ratio, µ of the Q-Hyst model, as given below. 

                                                     ( )*1 1α µ γ µ = − +                                             (6.5) 

Figure 6.11 sketches the reloading stiffnesses for the two models. From the Q-Hyst 

model, the reloading stiffness, Kp can be written as: 
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                                        (6.6) 

The pinching pivot parameter, β can be expressed as:  
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where Xr is x-coordinate of point A in Figure 6.11(b),  as expressed in (6.8). 
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where Fy is the yield strength of the system and K is the initial elastic stiffness. 

Substituting for Kp from (6.6) and Xr from (6.8) into (6.7), the pinching pivot parameter, 

β can be simplified to: 

                                

*3* * * 2
*

*

*

11 2
1

11
1

γ µ
µ γ µ γ µ γ µ

γ
β

γ µ
µ µ µ

γ

  −
− − + +   −   =

 −
− + +   − 

                        (6.9) 

It should be noted that the pivot model assumes that yielding in one direction does not 

soften the member in the opposite direction. Thus, the response proceeds towards point C 

from point PP4, if the yield deformation has not been exceeded in the negative loading 

direction, in Figure 6.11(b). On the other hand, the response from the Q-Hyst model will 

proceed toward point B, the largest absolute displacement. This implies that in most 

cases, the maximum response from the pivot model will either be equal to or smaller than 

the maximum Q-Hyst model response.  

 To confirm the validity of above statement, the hysteretic model comparison 

performed in the earlier subsection is repeated for the Q-Hyst and pivot models, with 

correlated hysteretic parameters. For a target ductility of µ = 4, and a strain hardening 

ratio, γ* = 5 %, parameters α and β are determined as 1.70 and 0.43, respectively. The 

model responses are presented in Figure 6.12. The maximum displacement response from 
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the Q-Hyst model is found to be greater than the response from the pivot model by 

around 15%.  
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Figure 6.12: Time history responses and hysteretic loops – 1989 Saratoga-Aloha record 

 

 

 Figure 6.13 presents the results when the SDOF system is subjected to the Rio Dell 

Overpass record (PGA = 0.39g) from the 1992 Cape Mendocino earthquake. The yield 

strength of the system is taken as 493.5 kips, which results in a ductility, µ = 4 for the Q-

Hyst model. Much better correlation between the maximum responses can be observed 

for this case. The percent difference between the maximum responses of the Q-Hyst and 

pivot models reduce from 25% when the hysteretic parameters are uncorrelated to 15% 

when the parameters are correlated. The maximum responses can also be identical 

depending on the ground motion record. Thus, for the purposes of comparing the 

maximum displacement response, the correlation of hysteretic parameters between the Q-

Hyst and the pivot models given by (6.5) and (6.9) appears to be satisfactory. 
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Figure 6.13: Time history responses and hysteretic loops – 1992 Rio Dell overpass record 

 

 

6.3. Parameter study to compare the impact response of various hysteretic models 

 The previous section illustrated the effects of various hysteretic models on the column 

response, using a single degree-of-freedom system. The elasto-plastic and bilinear model 

responses did not compare very well with the Q-Hyst and pivot model responses. The 

hysteretic parameters of the Q-Hyst model and pivot model without strength degradation 

were correlated to get good agreement in their maximum displacement responses. The 

effect of strength degradation appeared to increase the system’s ductility demand. 

However, the effect of various hysteretic models on the impact response of closely 

spaced adjacent structures needs to be examined. For instance, strength degradation in 

bridge columns when combined with pounding could have an adverse effect on the 

response of adjacent bridge frames. Hence, a parameter study is conducted with the two 

degree-of-freedom system shown in Figure 6.14, to examine the effects of column 

restoring force characteristics and pounding, on the displacement response of the system.  
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Figure 6.14: Two degree-of-freedom system used for hysteretic model parameter study 

 

 

 The parameter studies conducted in Chapter 4 revealed that the system displacement 

amplification due to pounding could be classified into three zones depending on the 

ground motion effective period ratio (T2eff/Tg). Impact was found to be most detrimental 

in Zone I (T2eff/Tg < 1), where the stiff system response was amplified by 300% and 

flexible system response reduced by 40%, on the average, when the system period ratio 

(T1/T2) was 0.32. Thus, in the following study only Zone I responses from the various 

hysteretic models are considered, with three values for the system period ratio (T1/T2), 

0.3, 0.5 and 0.7. The flexible system period is fixed at 0.40 second and the stiff system 

period is varied to get the desired period ratio. The initial stiffness, yield strength and 

strain hardening ratio (if applicable) are assumed to be the same for all hysteretic models.  

 Ten far-field ground motions recorded on medium soil (Tg = 0.6 – 1.2 sec) are 

selected for analysis, as listed in Table 6.3. The pseudo acceleration response spectrum 

for the suite of ground motion records is illustrated in Figure 6.15. Each record is scaled 

such that the spectral acceleration at fundamental period equals the mean spectral 
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acceleration of the suite of records at the fundamental period of the system. The yield 

strengths of the hysteretic models are selected such that the stand-alone ductility of each 

degree-of-freedom (µ) equals 4, when the Q-Hyst model is used as the force-deformation 

relation. An iterative scheme is used to obtain the requisite yield strengths for each 

ground motion record at the various system periods. The characteristic periods of the 

records ensure that the effective ground motion period ratio, T2eff/Tg lies in Zone I. 

 

 

Table 6.3: Suite of far-field records used in parameter study comparing hysteretic models 

No Earthquake Station Φ° PGA (g) Tg (s) 

1 San Fernando, 1971 Pasadena 000 0.09 0.85 

2 Morgan Hill, 1984 Gilroy Array #3 000 0.19 1.10 

3 Morgan Hill, 1984 Gilroy Array #6 090 0.29 1.20 

4 N. Palm Springs, 1986 5070 N Palm Springs 210 0.59 1.10 

5 Loma Prieta, 1989 WAHO 000 0.37 0.85 

6 Loma Prieta, 1989 Saratoga – W Valley Coll. 270 0.33 1.20 

7 Loma Prieta, 1989 16 LGPC 090 0.61 0.80 

8 Northridge, 1994 LA - Wonderland Avenue 095 0.11 0.80 

9 Northridge, 1994 LA – Hollywood Stor 360 0.36 0.85 

 10 Northridge, 1994 Old Ridge Route 090 0.57 0.80 

Φ° - Component; PGA – Peak Ground Acceleration; Tg – Characteristic period 
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Figure 6.15: Pseudo acceleration spectra of 10 far-field records used in analysis 

 

 

 For consistency with Chapter 4, the stereomechanical method, with a coefficient of 

restitution, e = 0.8, is used for simulating impact. The effect of pounding is expressed in 

terms of displacement amplification (γ), which is the ratio of the maximum pounding 

displacement to the maximum displacement if pounding does not occur. The hinge gap is 

set very large for the no-pounding analysis, and is assumed as ½ inch for the pounding 

analysis. 

 The strength degradation parameters selected for the pivot model are specified in 

Table 6.4. The parameters are carefully chosen such that strength degradation does not 

occur during the no-pounding analysis. The correlation of the α and β parameters with 

the Q-Hyst model parameters, ensures that the ductility of each degree-of-freedom when 
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the pivot model is used and when no pounding occurs is less than or equal to 4. Thus, 

differences in displacement amplifications between the Q-Hyst and pivot models can be 

directly related to the effects of strength degradation.  

 

 

Table 6.4: Strength degradation parameters for pivot model 

Parameter Value 

Pivot parameters, α1, α2 1.70 

Pinching pivot parameters, β1, β2   0.43 

Strength degradation ductility, µt
+, |µt

-| 4 

Residual strength ratio, Fdr
+, |Fdr

-| 0.7 

Residual strength reduction ductility, µd
+, |µd

-| 8 

Failure ductility, µf
+, |µf

-| 100 

            Fdr = Residual strength (Fd)/ Yield strength (Fy) 

 

 

 Figure 6.16 presents the mean plus one standard deviation of the displacement 

amplification due to pounding for the various hysteretic models as a function of the frame 

period ratio (T1/T2), for effective ground motion period ratios in Zone I (T2eff/Tg < 1). In 

general, the elasto-plastic and bilinear models (traditional models) underestimate the stiff 

system amplification and overestimate the flexible system amplification, when compared 

to the Q-Hyst and pivot models (sophisticated models). For instance, at T1/T2 = 0.3, the 

stiff system mean displacement amplification predicted by the sophisticated models is 
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30% more than that predicted by the traditional models. The traditional models 

underestimate the flexible frame displacement amplification by 20%, when T1/T2 = 0.3. 

The differences become smaller with increasing period ratio. At T1/T2 = 0.5, the 

differences between the traditional and complex model responses are 20% for the stiff 

system and 10% for the flexible system. For essentially in-phase frames (T1/T2 = 0.7), the 

deviations are only 5% and 2% for the stiff and flexible systems, respectively. Moreover, 

the traditional models predict a higher stiff system amplification at T1/T2 = 0.7 than at 

T1/T2 = 0.5, contrary to the earlier observed trend that displacement amplification 

decreases with an increase in the system period ratio. 
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Figure 6.16: Mean plus one standard deviation of displacement amplification due to 

pounding from various hysteresis models – 10 far-field ground motion records. 

 

 

 While comparing the Q-Hyst and pivot models, the strength degradation effect 

imposes no additional demands on the response of the system. The pivot model shows 
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only a 7% increase in the mean displacement amplification when compared to the 

stiffness degrading only (Q-Hyst) model, for T1/T2 = 0.3. In fact, at T1/T2 = 0.5, the stiff 

system amplification from the pivot model is smaller than the Q-Hyst model response by 

around 12%. All of the hysteretic models correctly predict the impact response when the 

system is essentially in-phase (T1/T2 = 0.7). The coefficient of variation (COV) defined 

as the ratio of the standard deviation to the mean ranges from 55% at low period ratios 

(T1/T2 = 0.3) to 14% at high period ratios, for the pivot hysteresis model. The COVs for 

the Q-Hyst model range from 34% to 14%, for low to high system period ratios.  

 This study shows that the effects of pounding are highly dependent on the hysteretic 

model chosen for the participating systems. The selection of traditional models like 

elasto-plastic and bilinear models can result in lower impact amplifications for the stiff 

system and higher impact amplifications for the flexible system when compared to more 

sophisticated models, especially for highly out-of-phase systems. Including the effects of 

strength degradation in predicting the pounding response of closely spaced adjacent 

structures does not produce a significant change in the impact response as long as 

stiffness-degradation is modeled. A case study is presented in the following subsection, to 

study the effects of strength degradation and pounding in the presence of near field 

ground motions.  

 

6.3.1. Effect of near source ground motions 

 Near field earthquake motions are characterized by high peak ground accelerations 

and velocity pulses with a long period component (Yang and Agrawal, 2002). Such 

characteristics may greatly amplify the dynamic response of multiple-frame bridges, 
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resulting in severe damage. Recent earthquakes such as the 1994 Northridge, 1995 Kobe, 

1999 Kocaeli, and 2001 Chi-Chi earthquakes have demonstrated the damage that can be 

caused by near field ground motions. To study the effects of near field ground motion on 

the pounding response of strength-degrading systems, ten near source records are selected 

for analysis, as listed in Table 6.5.  

 The near field records are chosen such that their characteristic periods are between 

0.6 and 1.2 seconds. The parameter study conducted in the earlier section is repeated 

using the two degree-of-freedom system shown in Figure 6.14. The system yield 

strengths at various periods for each ground motion record are obtained such that the 

system ductility demands when using the Q-Hyst model equal four. All records are scaled 

to the mean spectral acceleration at the fundamental period of the system. Figure 6.17 

presents the pseudo acceleration response spectra for the near field records. The mean 

spectral acceleration at the fundamental period (T = 0.40 s) is 0.83g.  

 The mean plus one standard deviation of the displacement amplification due to 

pounding for the various hysteretic models is presented in Figure 6.18. As observed for 

the far-field records, the traditional models (elasto-plastic and bilinear models) 

underestimate the stiff system amplification and overestimate the flexible system 

amplification, when compared to the more sophisticated models (Q-Hyst and pivot 

models). However, when using near source records, the differences between the 

traditional and sophisticated models persist even when the system is essentially in-phase, 

unlike earlier. At T1/T2 = 0.7, the traditional models underestimate the stiff system 

displacement amplification by 20% and overestimate the flexible system amplification by 

15% when compared to the more rigorous models.  
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Figure 6.17: Pseudo acceleration spectra of 10 near-field records used in analysis 
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Figure 6.18: Mean plus one standard deviation of displacement amplification due to 

pounding from various hysteretic models – 10 near-field records. 
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 The biggest difference in using near-field records is that strength degradation and 

pounding significantly affect the system response, especially when the system is highly 

out-of-phase. For example, the pivot model results in a mean stiff system displacement 

amplification of 5.8 as opposed to 2.6 for the Q-Hyst model. Thus, accounting for 

strength degradation increases the stiff system demand by 125%. This implies that 

utilizing a bilinear or stiffness-degrading only model while analyzing pounding effects 

will grossly underestimate the displacement demands when compared with a strength 

degrading model, for highly out-of-phase systems. 

 The earlier study using far-field ground motions indicated that the system 

amplifications get closer to unity as the period ratio becomes higher. The pivot model 

showed a stiff system amplification of 1.07 and a flexible system amplification of 0.95, at 

T1/T2 = 0.7. However, for near field ground motions, the system amplifications show 

greater discrepancy from unity. In the latter case, the corresponding pivot model 

amplifications are 1.3 and 0.85 for the stiff and flexible systems, respectively. 

 

6.4. Effects of strength degradation and pounding on the global bridge response 

 In this section, the differences in the global responses of a multiple-frame bridge 

system, due to various hysteretic frame models are investigated. The bridge considered 

consists of four frames connected at three intermediate hinges. The hinge gap is taken as 

½ in. at all intermediate hinge locations. The simplified bridge model, as shown in Figure 

6.19 is developed with frame weights of 2880 k, 7080 k, 7080 k and 2880 k, for frames 1 

through 4 respectively. The damping ratio for each frame is taken as 5%. The properties 

of various elements used in the model are listed in Table 6.6. 
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Figure 6.19: Four-frame bridge used in case study comparing various hysteretic models 

 

 

Table 6.6: Properties of various bridge components 
Element Component Initial stiffness 

(kips/in) 
Yield strength 

(kips) 
Period (s) 

F1, F4 1333 877 0.47 Frame F2, F3 577 750 1.12 
 

Element Component Initial stiffness 
(kips/in) 

Yield strength 
(kips) 

Strain 
hardening (%) 

R1, R3 200 840 5 Restrainer R2 100 420 5 
B1, B2, B3 6 2.4 33 Bearing B0, B4 2600 1560 33 

 
Element Component Active stiffness 

(kips/in) 
Passive stiffness (kips/in) 

Abutment A1, A2 10 2600 
 

 

 The hysteretic models discussed earlier namely, the elasto-plastic, bilinear, Q-Hyst 

and the pivot hysteresis models are used to describe the frame behavior, with all models 

having the same initial stiffness and yield strength. The bilinear and Q-Hyst models 

assume a strain hardening ratio of 5%. The pivot hysteresis model is assumed to have the 
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same properties in both loading directions with dt = 2*dy, dd = 4*dy and df = 6*dy. 

 The restrainers are designed according to the design procedure suggested by 

DesRoches and Fenves (DesRoches and Fenves, 2001). The restrainer slack is assumed 

as ½ in. The properties for the elastomeric bearings at the hinge locations are calculated 

based on the bearing dimensions (12 in. X 8 in. X 4 in., LXWXH). The bearings at the 

abutment locations are designed to have a stiffness proportional to the passive stiffness of 

the abutment. The active stiffness of the abutment is taken proportional to the stiffness of 

the hinge bearing. The coefficient of restitution (e) for impact is assumed as 0.8. The 

bridge is subjected to horizontal ground motion from the 1989 Loma Prieta earthquake. 

The Saratoga record is used, which has a peak ground acceleration of 0.5g, and a 

characteristic period (Tg) of 1.8 second.  

 To study the effect of pounding on the bridge response, two cases are considered; 

Case 1, where the hinge gap is set very large so that pounding does not occur and Case 2, 

where the hinge gap is set at ½ inch and pounding occurs. Figure 6.20 presents the 

displacement time-history of frame 1 for the various hysteresis models. The 

corresponding hysteresis loops for the pounding and no-pounding cases are shown in 

Figure 6.21.  

 The no-pounding responses for the various models are very similar, because there are 

not too many excursions into the nonlinear range and the displacement ductility (µ) is 

small (µ≈ 2). However, for Case 2, seismic pounding amplifies the displacement response 

of frame 1 by 100% to 173% depending on the hysteresis model. The maximum 

displacement from the Q-Hyst and bilinear models is around 2.0 in, for the pounding 

case, while the pivot hysteresis model response is 3.0 in.  
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 The results indicate that strength degradation in bridge columns has a significant 

influence on the pounding response of frame 1. Strength degradation with increased 

loading cycles combined with the interaction of adjacent frames increases the stiff frame 

displacement demand by 50%, when compared to other hysteresis models. This example 

serves to highlight the importance of correct hysteresis modeling in capturing the 

pounding response of closely spaced adjacent structures. The use of traditional models 

like the elasto-plastic and bilinear models can underestimate the severity of the pounding 

effect in a multiple-frame bridge.  
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Figure 6.20: Time history of frame 1 displacement– 1989 Saratoga record (PGA = 0.5g) 
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Figure 6.21: Hysteresis loops for Frame 1 – 1989 Saratoga record (PGA = 0.5g) 
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6.5. Conclusions 

 The effect of column hysteretic characteristics, such as stiffness degradation, strength 

deterioration and pinching on the impact response of adjacent frames is studied in this 

chapter. Traditional analytical models such as the elasto-plastic and bilinear models, and 

more sophisticated models such as the Q-Hyst and pivot models are considered for 

analyzing the hysteretic behavior of participating structural systems. A case study 

performed with a single degree-of-freedom system reveals that the hysteretic responses of 

the various models are different from one another. The traditional models exhibit 

markedly different force-deformation loops and show pronounced permanent 

deformations when compared with more rigorous models. The hysteretic parameters of 

the Q-Hyst and pivot model without strength degradation are adjusted such that the 

maximum displacement responses from both the models are similar.  

 Parameter studies conducted on two degree-of-freedom systems subject to ten far 

field earthquake records show that the traditional models underestimate the stiff system 

amplification and overestimate the flexible system amplification, when compared to the 

sophisticated models, for moderate to highly out-of-phase systems. At T1/T2 = 0.3, the 

traditional models under predict the stiff system pounding response by 30% and 

overestimate the flexible system response by 20%. The effect of various hysteresis 

models is not significant for in-phase frames (T1/T2 = 0.7). 

 For far field ground motions, the strength degradation effect imposes no additional 

demands on the pounding response as long as stiffness degradation is modeled. However, 

strength degradation increases the stiff frame displacement demand by 125% when 

compared to stiffness-degrading only systems, for highly out-of-phase systems, in the 
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presence of near field records. Moreover, the system amplifications show greater 

discrepancy from unity for near field ground motions, with a stiff frame amplification of 

1.3 and a flexible frame de-amplification of 0.85, for  T1/T2 = 0.7. 

 A case study conducted on a four-frame bridge with the 1989 Saratoga record (PGA = 

0.5g) indicates that strength degradation in bridge columns combined with pounding can 

increase the stiff frame displacement response by 50%, when compared to other 

hysteresis models. The traditional models underestimate the stiff frame response, in good 

agreement with the findings from the parameter study using a two degree-of-freedom 

system. 
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CHAPTER 7 

EVALUATION OF LINEAR BOUNDING MODELS IN CAPTURING THE 

POUNDING RESPONSE OF BRIDGES 

 

  Impact between bridge decks during seismic loading is a highly nonlinear behavior 

that is not directly accounted for in the design of bridge structures. The American 

Association of State Highway and Transportation Officials (AASHTO) and the California 

Department of Transportation (Caltrans) recommend the use of two linear dynamic 

models - a tension model and a compression model, to bound the nonlinear response of 

the bridge (FHWA, 1995; Caltrans, 1990). The application of these linear models is 

expected to provide reasonable bounds on the pier forces and ductility demands.  

 A considerable amount of research has been devoted to the analytical modeling of 

pounding. However, no study has yet concentrated on the implications of seismic 

pounding on bridge design. In particular, the performance of code-suggested bounding 

models in capturing the pounding response has not been investigated. This chapter 

evaluates the efficacy of the bounding models through a comprehensive study. A two-

dimensional nonlinear analytical model of a typical multiple-frame bridge is developed 

using DRAIN-2DX and is used as a benchmark. Pounding is simulated using the linear 

contact spring element. The bounding models are then developed and their seismic 

responses compared with those from the nonlinear analytical model for a suite of ground 

motion records, to determine if they provide adequate bounds.  
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7.1. Linear bounding models 

 The interaction of adjacent frames in a multiple-frame bridge plays an important role 

in its seismic response. During an earthquake, adjacent bridge frames can vibrate out-of-

phase resulting in two kinds of interaction, as illustrated in Figure 7.1. The first 

interaction relates to the opening of the intermediate hinge resulting in the engagement of 

cable restrainers installed across the joint. The second interaction relates to the closing 

action of the hinge joint, which results in seismic pounding of the bridge decks. The 

impact forces from pounding can increase the frame displacement demands, beyond what 

is typically assumed in design. Moreover, pounding can increase the relative hinge 

opening, resulting in the requirement of a longer seat length to support the decks 

(Ruangrassamee and Kawashima, 2001).  

 

 

(a)

 

(b)

 

Figure 7.1: Interaction of adjacent frames during an earthquake; (a) Opening action; (b) 

Closing action (pounding) 
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 Current design practice in the United States advocates the use of two dynamic models 

to capture the nonlinear hinge response of the bridge. The tension model is assumed to 

reflect the response of the bridge when the hinges are open. There is no restraint in the 

longitudinal direction except for that provided by restrainers. A compression model is 

used to represent the state when impact occurs and the hinges are closed. A rigid element 

connects the impacting structures and hence prevents any relative displacement at the 

hinges. An illustrative sketch of the bounding models is shown in Figure 7.2.  

 

 

 

Figure 7.2: Linear bounding models; (a) Tension model (b) compression model 

 

 

 The maximum of the frame forces obtained from either model is taken as the 

bounding force for a particular frame. Using a strength-based approach, the design yield 

force for each frame is determined by dividing the bounding force by a response 

modification factor. The principle of using response modification factors is explained in 

the following subsection. AASHTO provides response modification factors based on the 

general framing types, component location and/or function, as detailed in Table 7.1, 

C T

Abutment
Spring

(b) 

Restrainer
Element

(a) 
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which are independent of the period of the system. Caltrans provides period dependent Z 

factors to account for ductility and risk. The Z factors used in the Caltrans Bridge Design 

Specifications are illustrated in Figure 7.3. The application of these response 

modification factors to obtain the design yield forces is expected to limit the frame 

ductility demands to designer specified values.  

 

 

Table 7.1: AASHTO (1995) Response Modification Factors (R-Factors) 

Substructure R 
Wall-type pier 2 
Reinforced concrete pile bents – Vertical piles only 3 
Reinforced concrete pile bents – One or more batter piles 2 
Single Columns 3 
Multiple-column bent 5 
Connections of columns or piers to foundations 1 

 

 

 

Figure 7.3: Caltrans Z factors to account for ductility and risk (Caltrans, 1993) 
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7.1.1. Response modifications factors used in strength-based design 

 The response of any structure during intense ground shaking often deforms into the 

inelastic range and can be significantly different from the corresponding linear response. 

The inelastic behaviour of the structure is characterised by a force-deformation 

relationship, which is an idealisation of the actual behaviour of the structure during cyclic 

load, as shown in Figure 7.4. The yield force of the idealised representation of the system 

is Fy and Fe is the elastic force demand. The yield force is established by dividing the 

elastic force demand by a yield reduction factor Ry, in order to obtain the specified target 

ductility.  

 The response modification factor Ry is defined as the ratio of the elastic strength 

demand to the yield strength required to maintain the displacement ratio below a 

specified target ductility, as shown below. 

                                                           
( )

e
y

y i

FR
F µ µ

=
=

                                                 (7.1) 

The displacement ductility ratio (µ) for any system is given by Equation 7.2. 

                                                                max

y

D
D

µ =                                                         (7.2) 

where Dmax is the maximum deformation of the inelastic system due to ground motion 

and Dy is the yield displacement as shown in Figure 7.4. 

 In seismic design, structures are usually designed for a target displacement ductility 

(µ) ranging from 2 to 8, depending on the performance goal and characteristics of the 

system. The target ductility ratio depends on the type of material and strength properties 

of the structure. For design purposes, an inelastic design spectrum is often developed for 

a specified ductility ratio. The response spectrum is referred to as a constant ductility 
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response spectrum and is a function of the ground motion, system period, damping ratio 

and the type of force-deformation relationship used. An interpolative procedure is often 

necessary to obtain the yield strength of an inelastic system for a specified target 

ductility, since the response of a system with arbitrarily selected yield strength will 

seldom correspond to the target ductility (Chopra, 2000). 

 

 

 

Figure 7.4: Idealized force-deformation relationship for an inelastic system 

 

 

 Several research studies have determined response modification or strength reduction 

factors (Rys) for limiting the peak ductility demands of simple single degree-of-freedom 

(SDOF) systems. The reduction factors are estimated based on the computed responses of 

a large number of SDOF oscillators, subject to a suite of ground motion records. The 
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results indicate that strength reduction factors are a function of the system period (T) and 

target ductility (µ), for a given force-deformation relation and structural damping. Several 

Ry-µ-T relationships have been developed including Ridell and Newmark (1979), Lai and 

Biggs (1980), Hidalgo and Arias (1990), Krawinkler and Nassar (1992), Vidic et al. 

(1994), Miranda (1993, 2000) and Cuesta et al. (2003). Some of the relationships are 

graphically portrayed in Figures 7.5 and 7.6.  

 Krawinkler and Nassar (1992) proposed the following expression to estimate strength 

reduction factors. 

                                                       ( )
1

1 1 cR cµ µ= − +                                                  (7.3) 

with 

                                                        ( )*,
1

a

a

T bc T
T T

γ = +
+

                                             (7.4) 

where µ is the target ductility demand and γ* is the strain hardening ratio. The parameters 

a and b are listed in Table 7.2.  

 

 

Table 7.2: Parameters used in Krawinkler and Nassar (1992) strength reduction model 

γ* a b 

0.00 1.00 0.42 

0.02 1.00 0.37 

0.10 0.80 0.29 
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Figure 7.5: Strength reduction factors for SDOF systems (Krawinkler and Nassar, 1992) 

 

 

 

Figure 7.6: Strength reduction factors, Rµ as a function of period (T) for SDOF systems 

on rock and alluvium sites (Miranda and Bertero, 1994) 
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 Most strength reduction relations do not include the frequency content of the ground 

motion in their relations. The relation developed by Vidic et al. (1994) and later modified 

by Cuesta et al. (2003) addresses this deficiency. The simplified expression for Ry 

outlined by Cuesta et al. is given below: 

                              ( )1 1 1; 1y
g g

T TR c
T T

µ= − + ≤                                         (7.5a) 

                                                    ( )1 1 1; 1y
g

TR c
T

µ= − + >                                            (7.5b) 

where µ is the target ductility demand, Tg represents the characteristic period of the 

ground motion record, and c1 = 1.3 for systems with limited stiffness degradation and c1 

= 1.0 for systems with substantial stiffness degradation. The above expressions are based 

on the response of SDOF systems with µ ≤ 8, damping ratio (ζ) between 2% and 10%, 

strain hardening ratio,  γ*  ≤ 10 and system period, T ≤ 3 seconds. 

 The Z factors used by Caltrans decrease as the system period increases, as shown in 

Figure 7.3. This is in contradiction with the findings of research studies which suggest 

that response modification factors increase with increasing period. The AASHTO 

response modification factors are independent of the period of the system. 

 

7.2. Nonlinear analytical bridge model used for benchmarking 

 To evaluate the efficacy of linear bounding models in capturing the pounding 

response, an eleven span, 1680 ft long bridge with reinforced concrete box girder 

superstructure is considered, as shown in Figure 7.7. Four frames with single column 

bents are connected at three intermediate hinges. The spans range from 60 ft to 205 ft and 

the column heights vary from 40 ft to 60 ft. Some of the section and material properties 
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of the bridge are taken from the Northwest Connector model developed by DesRoches 

and Fenves (1997b). Table 7.3 gives the properties of the bridge deck and columns.  

 

 
40

'
12

.2
m

60
'

18
.3

m

150' 150' 150'60' 30' 175' 150' 125' 25' 200' 200'

Frame 1 Frame 2 Frame 3 Frame 4

175' 30' 60'
18.3m 45.7m 9.1m 53.3m 45.7m 45.7m 38.1m 7.6m 61m 61m 53.3m 9.1m 45.7m 18.3m

Abutment
C1 C2 C3 C4 C5 C6 C7 C8

C9 C10

X

Z

Figure 7.7: Multiple-frame bridge considered for bounding model study 

 

 

Table 7.3: Section properties for the bridge superstructure and columns. 

Columns Deck C1, C2, C9, C10 C3 – C8 
Ea 

(ksi) 
Idyy

b
 

(ft4) 
Aeff

c 
(ft2) 

E 
(ksi) 

Iyy
d

 
(ft4) 

Aeff 
(ft2) 

E 
(ksi) 

Iyy
d

 
(ft4) 

Aeff 
(ft2)  

3420 491 65.5 3420 95 67.5 3420 80 62.4 

aModulus of elasticity; bMoment of Inertia about transverse axis of deck; cEffective Area; 
dMoment of Inertia about weak axis of column. 
 

 

 A two dimensional nonlinear analytical model of the bridge is developed in DRAIN-

2DX, as shown in Figure 7.8. The mass of the superstructure and columns is calculated 

based on the self weight of the various structural members. The model uses 132 frame 

elements for the deck and columns, 20 elements to represent friction, abutments and rigid 
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connection elements between the deck and columns, and 5 nonlinear compression link 

elements to represent dynamic impact. The superstructure is assumed to be linear, elastic 

and the columns are modeled using a bilinear moment-curvature relationship, as shown. 

The gap at the intermediate hinges is taken as ½ inch. The gap between the end deck and 

abutment is assumed to be 2 inches. Pounding is modeled using a linear impact spring of 

stiffness, Kc = 25,000 kip/in (twice the axial stiffness of the superstructure). 

 The effects of elastomeric bearing pads are assumed negligible and only the friction 

developed by the girder as it slides off the bearing is modeled. An elasto-plastic spring 

with yield force equal to the friction force is used. The friction yield force is estimated to 

be 200-400 kips based on a gravity load analysis of the bridge and assuming a kinetic 

coefficient of friction between the bearing pads and concrete surface to be 0.20. The 

abutments are modeled as link elements, which are capable of resisting only axial forces. 

The abutment capacity and stiffness are determined using the Caltrans procedure 

(Caltrans, 1999). Effects of restrainers at the intermediate hinges are not considered, as 

the focus of the study is on seismic pounding.  

 The bounding models are developed as per the design specifications with linearized 

properties for columns and abutments. The abutment stiffness in tension and compression 

is calculated using a secant stiffness approach. The effects of friction are not considered 

in the linear models. The hinges remain open in the tension model and the compression 

model is developed by locking together all the frames and abutments with rigid links. 

Parameter studies are then conducted to compare bounding model responses with 

responses from the nonlinear pounding model. The numerical analysis program DRAIN-

2DX is used with 5% modal damping assumed in all cases (Prakash et al., 1992).  
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7.3. Results from analytical studies 

 The adequacy of linear bounding models in capturing the opening and closing of 

intermediate hinges is evaluated in this section. A suite of 10 ground motion records 

listed in Table 7.4 is used for the analysis. All records are scaled to 0.7g peak ground 

acceleration, to coincide with typical design response spectra. The period ratio of 

adjacent frames in the nonlinear analytical model (pounding model) is 0.40. The 

compression model period is 0.97 s. The fundamental longitudinal periods of the flexible 

and stiffer frames in the tension model are 1.68s and 0.66 s, respectively. The first part of 

the study compares elastic frame responses from the bounding and nonlinear pounding 

models. The latter part deals with frame ductility demands, where the frame yield forces 

are calculated from the bounding model forces using a strength-based approach.  

 The elastic frame overturning moments (sum of the column base moments in each 

frame) obtained from the various models is shown in Figure 7.9. Figure 7.10 presents the 

displacements at the top of columns (C2, C3, C6, and C9) for various models. The 

bounding model forces are almost always greater than the pounding model forces, except 

for the response of Frame 1 to the 1995 Osaka record. Similar observations can be made 

for the column displacements. Furthermore, it can be observed that the compression 

model provides bounds for the stiffer frame responses (Frames 1 and 4) in all cases. For 

flexible frames 2 and 3, the governing model depends on the ground motion record. 

Overall, it can be concluded that the linear bounding models provide reasonable bounds 

on the elastic column forces and displacements. 
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Table 7.4: Suite of ground motion records used for evaluating the bounding models 

No. Earthquake record Location Ms
a PGAb (g) Tg

c (sec) 

1 1940 Imperial Valley El Centro 6.9 0.35 1.00 

2 1989 Loma Prieta Holister 7.1 0.37 1.03 

3 1992 Landers Amboy 7.5 0.15 2.29 

4 1992 Landers Baker Fire 7.5 0.11 1.70 

5 1994 Northridge Lake Hughes 6.7 0.27 0.50 

6 1994 Northridge Lake Obrego Pk. 6.7 0.45 0.41 

7 1994 Northridge Pacoima Dam 6.7 0.50 0.42 

8 1994 Northridge Sylmar 6.7 0.83 1.60 

9 1995 Kobe Osaka 6.9 0.08 1.17 

10 1995 Kobe Kobe City 6.9 0.85 0.88 

aMagnitude; bPeak Ground Acceleration; cCharacteristic Period. 

 

 

 In order to estimate the frame ductility demands, the bounding force for each frame is 

calculated first. The frame bounding force is taken as the maximum of the frame forces 

from the linear compression and tension models. The yield force for each frame is then 

obtained by dividing the bounding force by a response modification factor (Ry). The 

Caltrans Z factors are not considered as studies have shown them to be incorrect 

(Miranda and Bertero, 1994). Hence, the period-independent AASHTO response 

modification factors (R-Factors) are used for all frames. The recommended R-factor for 

single columns is 3. Thus, Ry = 3 is chosen in order to obtain a target ductility of µ = 3 
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for each frame. The frame yield forces are then utilized in the nonlinear pounding model 

to ascertain if the desired ductility demands are reached.  
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Figure 7.9: Comparison of elastic frame forces between various models 

 

 

 To calculate the ductility demand on each frame, a target node is defined at the center 

of mass of each frame. The ductility demand is then calculated as the ratio of absolute 
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maximum displacement at the target node to its yield displacement. The yield 

displacement is taken as the target node displacement corresponding to the time at which 

yielding is first observed in the columns. The frame displacement demands from the 

nonlinear analytical model using yield forces derived from the bounding models are 

shown in Figure 7.11. 
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Figure 7.10: Comparison of top of column displacements between various models 
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Figure 7.11: Frame ductility demands from the nonlinear model using a constant 

reduction factor (Ry = 3) to obtain the yield forces. 

 

 

  At first glance, it can be observed that the design procedure performs a reasonable 

job in limiting most frame demands under the target ductility demand (µ = 3). The frame 

demands from the 1994 Sylmar, 1992 Baker, 1994 Lake Obrego and 1995 Osaka records 

are greater than the target demand (µ = 3). The stand-alone periods of the stiff and 

flexible frames in the bridge are 0.66 sec and 1.68 sec, respectively. The corresponding 

strength reduction factors from the Nassar and Krawinkler relation (Equations 7.3 and 

7.4) are 3.11 and 3.23. Thus, using a constant reduction factor, Ry =3 provides a 

conservative estimate for the yield force, resulting in the reasonable performance of the 
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design procedure. However for lower frame periods, the requisite reduction factor will be 

less than 3. Hence, the use of the thumb rule, Ry = µ, in combination with pounding can 

result in frame ductility demands greater than the target demands.  

 

7.4. Modified design procedure 

 Results from the earlier section indicate that the current design procedure is adequate 

in providing bounds for the pounding response of the bridge when the frames are elastic. 

The use of bounding model forces in conjunction with AASHTO R-Factors had 

reasonable success in limiting the inelastic frame demands to target demands for the 

multiple-frame bridge chosen. However, some revisions are necessary at lower frame 

periods, where the thumb rule, Ry = µ, is not applicable. Improperly chosen reduction 

factors combined with seismic pounding can result in frame demands well over the target 

ductility demand. Hence, some modifications are suggested herein, with the introduction 

of a frame design period and the utilization of period dependent reduction factors. The 

steps are outlined below: 

Step 1: Determine the bounding force for each frame as the maximum of frame 

forces from the compression and tension models.  

Step 2: Determine the frame yield force by applying a reduction factor to the 

bounding force for each frame. Select the reduction factor based on a design period 

and the desired target ductility for each frame. The design period is defined as the 

period of the frame in the governing bounding model. For example, the design period 

for the stiffer frame is the period of the compression model, since the compression 

model always controls for the stiff frame. The design period for the flexible frame is 
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either the stand-alone period of that frame in the tension model (if the tension model 

governs), or the period of the compression model (if the compression model governs). 

The reduction factors are best obtained using a relation that accounts for the 

frequency content of the ground motion, such as the revised Vidic et al. relation 

(2003). 

Step 3: The frame yield forces obtained in Step 2 are expected to provide adequate 

bounds for the frame ductility demands. 

 The suggested method is now applied to the suite of ground motion records, listed in 

Table 7.4. The response modification factors for each record are calculated using the 

revised Vidic et al. relation, which incorporates the frequency content of ground motion 

in its relation. Table 7.5 illustrates the application of the procedure for selected 

earthquake records. Figure 7.12 presents the frame ductility demands from the nonlinear 

analytical model.  

 The proposed method does a reasonable job in limiting most frame demands well 

below the target demand (µ = 3).  In a few cases, the target ductility ratio is exceeded by 

5-25% (Frame 1 - 1995 Osaka, Frame 3 - 1989 Pacoima Dam, Frame 3 - 1989 Lake 

Obrego). However, it should be noted that the bounding models could not capture the 

nonlinear hinge response for the 1995 Osaka record, even when the columns were elastic. 

In the case of the Pacoima Dam record, the actual reduction factors obtained through 

iteration are 2.85, 3.15, 3.15 and 2.85 for Frames 1 through 4. Equation 7.5 predicts 3.60, 

3.60, 3.60 and 3.60 for the reduction factors, which will result in higher ductility 

demands for the frames.  
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Figure 7.12: Frame ductility demands using the proposed method 

 

 

7.5. Conclusions 

 The advent of an earthquake can induce seismic pounding of the bridge decks due to 

the interaction of adjacent frames in a multiple-frame bridge. The impact forces from 

pounding can increase the frame displacement demands, beyond what is typically 

assumed in design. While past research has concentrated on examining the causes and 

effects of seismic pounding, no effort has been made in reviewing the existing design 

procedures that account for dynamic impact. 

 This chapter examines the adequacy of current design procedures in accounting for 
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pounding. A nonlinear analytical model of a typical multiple-frame bridge including the 

effects of friction, abutments and pounding is developed for this purpose. The stand-alone 

periods of the stiff and flexible bridge frames are 0.66 s and 1.68 s respectively. An 

investigation reveals that the code-suggested linear compression and tension models 

adequately capture the nonlinear hinge response, when the columns remain elastic. For 

inelastic situations, the use of a constant, period independent reduction factor for all 

frames, as per AASHTO recommendations works reasonably well in limiting most frame 

demands below the target demands. However, the linear models may not perform 

adequately when applied to bridge frames having lower periods.  

  Hence, the current design procedure is revised by adopting period dependent 

reduction factors based on the calculation of a design period from the governing 

bounding model. The response modification factors are obtained using the revised Vidic 

et al. relation, which includes the frequency content of ground motion in its relation. The 

modified procedure is shown to work reasonably well for the multiple-frame bridge 

chosen. Application of the revised guideline is expected to limit frame demands to target 

demands with reasonable success, for all ranges of bridge frame periods.  
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CHAPTER 8  

SIMPLIFIED CONTACT MODELS WITH ENERGY DISSIPATION FOR 

POUNDING SIMULATION 

 

 The analytical models available for the simulation of seismic pounding include 

contact force-based models such as the linear spring, Kelvin and Hertz models, and a 

momentum-based stereomechanical approach that uses a coefficient of restitution to 

account for energy dissipation during impact. Chapter 5 addressed the limitations of the 

existing impact models and introduced a Hertz contact model with hysteresis damping 

(Hertzdamp model) for simulating impact. A comparison of the various impact models 

revealed that the models without energy dissipation such as the linear spring and Hertz 

models overestimated the system responses due to impact. Furthermore, the Hertzdamp 

model was identified as the most effective contact-based model. 

 Most commercial software packages provide the linear spring element with a gap to 

model impact. The nonlinear Hertz spring can be approximated using a multi-linear 

spring with a gap. However, it is difficult to implement the energy dissipating impact 

models. The Kelvin model requires a damping element with a gap, which may not be 

available in several packages. The stereomechanical approach is also not favored, since it 

involves the modification of the velocities of the colliding bodies at the instant of impact. 

Thus, there is a need to develop a contact-based model which accounts for the impact 

energy loss in a rational manner, and which can be easily implemented in commercial 

structural software.  
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 In this chapter, two simplified contact force-based models are developed for 

implementation in existing analysis programs. One idealization is an inelastic truss 

element with a gap and the other is an inelastic truss in parallel with a linear link element. 

Both models are based on the Hertzdamp contact model and are implemented in DRAIN-

2DX. The model parameters such as the stiffness properties and the yield deformation are 

calculated by assuming an effective stiffness based on the Hertz contact law, and by 

equating the element hysteresis area to the energy dissipated during impact. A case study 

is then conducted to determine the most effective contact model. Finally, the simplified 

contact model is used to simulate pounding in a multiple-frame bridge subjected to ten 

ground motion records. The differences in the bridge responses when considering energy 

dissipation during impact, as opposed to using a linear impact spring are highlighted.  

 

8.1. Simplified impact models 

 This section presents the development of simplified analytical models that account for 

the energy loss during seismic pounding. Two contact force-based models are proposed - 

a bilinear truss element with a gap, and a bilinear truss in combination with a linear link 

element. In order to determine the model parameters such as initial stiffness, yield force 

and strain hardening stiffness, an expression for the energy dissipated during impact 

needs to be developed first. 

 Using the stereoemechanical approach, the energy loss during impact (∆E) can be 

expressed as follows: 

                                              ( )( )221 2
1 2

1 2

1 1
2

m mE e v v
m m

∆ = − −
+

                                      (8.1) 
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where m1, m2 are the masses of the colliding bodies, e is the coefficient of restitution and 

v1, v2 are the approaching velocities of the masses. In Chapter 5, during the development 

of the damping coefficient for the Hertzdamp model, it was shown that relative velocity 

at the onset of impact (v1-v2) can be related to the maximum penetration (δm) during 

impact, as shown below: 

                                            ( ) ( ) 1
2 1 2

1 2
1 2

2
1

n
h mm m kv v

m m n
δ ++   

− =    +  
                                    (8.2) 

where kh is the impact stiffness parameter used in the Hertz model and n is the Hertz 

coefficient, typical taken as 3/2. Substituting (8.2) into (8.1), the energy dissipated during 

impact (∆E) can be simplified to: 

                                                    
( )1 21

1

nk e
h mE

n

δ + −
∆ =

+
                                               (8.3) 

Further discussion on the development of each analytical model is presented in the 

following subsections.  

 

8.1.1. Inelastic truss element with a gap 

A bilinear truss contact model is considered for representing impact between closely 

spaced adjacent structures, as illustrated in Figure 8.1. The desired force-deformation 

relation from the truss model is shown superimposed over the force-deformation curve 

resulting from the Hertzdamp model. The parameters of the truss contact element are the 

initial stiffness, Kt1, strain hardening stiffness, Kt2, and yield deformation δy. The above 

mentioned parameters need to be determined such that impact responses of the 
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participating systems using the truss element matches the impact responses obtained from 

the Hertzdamp model.  
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Figure 8.1 (a) Inelastic truss contact element for impact simulation; (b) Parameters of the 

inelastic truss model 

 

 

Equating the maximum impact force (Fm) from the truss and Herzdamp models, the 

effective stiffness of the truss element, Keff, can be obtained as: 

                                                             eff h mK K δ=                                                     (8.4) 

where Kh is the impact stiffness parameter from the Hertz model and δm is the maximum 

penetration observed during impact. The effective stiffness, Keff, can be related to Kt1 and 

Kt2, as shown below. 

                                                ( )
1 2eff m t y t m yK K Kδ δ δ δ= + −                                         (8.5) 
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The area under the force-deformation relation for the truss model (Ahys) can be expressed 

in terms of the initial stiffness (Kt1), strain hardening stiffness (Kt2), yield deformation 

(δy) and maximum penetration (δm), as given by (8.6) 

                                                 ( ) ( )
1 2hys t t y m yA K K δ δ δ= − −                                         (8.6) 

 Assuming that the area under the truss force-deformation relation, Ahys, equals the 

energy dissipated during impact, ∆E, and relating the yield deformation (δy) to the 

maximum penetration (δm) by (8.7), the stiffness parameters for the inelastic truss 

element can be obtained as follows: 

                                                                y maδ δ=                                                          (8.7) 

                                                           
1 2t eff

m

EK K
aδ
∆

= +                                                   (8.8) 

                                                      
( )2 21t eff

m

EK K
a δ
∆

= −
−

                                               (8.9) 

where ∆E is the energy loss during impact given by (8.3) and Keff is the effective stiffness 

as specified in (8.4). For the strain hardening stiffness (Kt2) to be greater than zero, the 

yield parameter (a) must satisfy the following relation: 

                                                           ( )221 1
5

a e< − −                                                  (8.10) 

where e is the coefficient of restitution. For the values of e considered in this study – 0.6, 

0.8, the yield parameter (a) should be less than 0.744. Thus, given the Hertz stiffness 

(Kh), the maximum penetration (δm) and the yield parameter (a), the properties of the 

bilinear truss model can be obtained using equations (8.3), (8.4) and (8.7)-(8.9). 

 To evaluate the performance of the simplified contact model, the inelastic truss 

element is used to simulate impact between two single degree-of-freedom oscillators, as 
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shown in Figure 8.2. The model is developed in DRAIN-2DX, using zero-length (Type 4) 

elastic elements for the participating systems. The impact element is modeled using a 

rigid link (Type 9) in series with a zero-length inelastic truss (Type 4) having a near zero 

yield strength in tension. The rigid link is activated only after the gap between the 

adjacent bodies close. The model is subjected to the 1940 El Centro record, which has a 

Peak Ground Acceleration (PGA) of 0.35g. The properties of the oscillators and impact 

element are listed in Table 8.1. The impact element properties are calculated by assuming 

the Hertz impact parameter, Kh = 25,000 kip-in-3/2, and the yield parameter, a = 0.1. The 

maximum penetration (δm) during impact is equated to the maximum overlap obtained 

when the MATLAB-based Hertzdamp model is used to simulate impact for the same set 

of conditions. 

 

 

1 2

Ug
..

u u21

k1 2

c c1 2

k

m m
IT RL

gp

IT - Inelastic Truss

RL - Rigid Link
(Zero length)

(gap = gp)

 

Figure 8.2: Two degree-of-freedom model in DRAIN-2DX – inelastic truss element with 

a gap used for impact. 
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Table 8.1: Properties of DRAIN-2DX model used to test the truss impact element 

Property Value 

System periods, T1, T2 0.47 s, 1.12 s 

System damping, c1, c2 based on 5% damping ratio 

System force-deformation Elastic 

Hinge gap, gp 0.5 inch 

kh 25000 kipin-3/2 

E 0.8 

δm (from Hertzdamp model) 0.63 inches 

Kt1 48030 kip/in 

Kt2 16535 kip/in 

A 0.1 

 

 

 Figure 8.3 compares the system displacements from the inelastic truss contact model 

with those obtained from using the Hertzdamp model for impact. The hysteresis loops 

during impact are shown in Figure 8.4. The system displacements from the two impact 

models are very similar, with a 2% difference in the maximum displacement of the stiff 

frame and a 10% difference in the maximum response of the flexible frame. The area 

under the truss element reasonably matches the energy loss from the Hertzdamp model, 

even though the force levels are different. Selecting a low value for the yield parameter 

(a) allows energy dissipation even for small overlaps, consistent with the Hertzdamp 

element behavior.  



 181

 

Time (s)

0 2 4 6 8 10

D
is

pl
ac

em
en

t (
in

)

-4

-2

0

2

4
Hertzdamp model
Inelastic truss model

TRUSS MAX = 2.41"

HERTZDAMP MAX. = 2.37"
STIFF SYSTEM

 Time (s)

0 2 4 6 8 10

D
is

pl
ac

em
en

t (
in

)

-4

-2

0

2

4

Hertzdamp model
Inelastic truss model

HERTZDAMP MAX. = 3.66"TRUSS MAX. = 3.99 "

FLEXIBLE SYSTEM

 

Figure 8.3: Comparison of system displacement responses when using the inelastic truss 

contact model as opposed to the Hertzdamp model for pounding simulation 
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Figure 8.4: Impact force vs. relative displacement hysteresis loops for the MATLAB-

based Hertzdamp model and the DRAIN-based inelastic truss model. 
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However, further study is required to determine the most effective value for the yield 

parameter (a). 

 

8.1.2. Inelastic truss with a gap in parallel with an elastic link element 

The truss model considered earlier has a linear effective stiffness (Keff) with two 

branches for loading (Kt1, Kt2) and two branches for unloading (Kt1, Kt2). In order to better 

approximate the nonlinear hysteresis from the Hertzdamp model, a higher order model is 

considered, as shown in Figure 8.5, with two loading branches (KL1, KL2) and three 

unloading branches (KUL1, KUL2, KUL3). A truss element with a gap is combined in parallel 

with an elastic link element, as shown in Figure 8.6, to obtain the required hysteresis 

loop. The parameters of the higher order model (truss-link model) are the truss element 

initial stiffness, KT, strain hardening stiffness, KTH, the truss yield deformation δy and the 

link element stiffness, KL. 

 The area under the force-deformation relation for the higher order element (Ahys) can 

be expressed in terms of the stiffness parameters, KL1, KL2, KUL1, KUL2, KUL3, and the 

deformation parameters, δy and δm, as shown below. 

                            ( ) ( )1 2 1 3 1 3

2

2
y

hys L L UL UL y m L ULA K K K K K K
δ

δ δ= − + − + + −                  (8.11) 

While deriving the above expression, it has been assumed that KL2 = KUL2. The yield 

deformation (δy) can be related to the maximum penetration (δm) through the yield 

parameter, a, as follows: 

                                                                 y maδ δ=                                                       (8.12) 
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Figure 8.5 (a) Higher order contact element for impact simulation; (b) Parameters of the 

truss-link model 
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Figure 8.6: Higher order model using a combination of elements in DRAIN-2DX 
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The maximum impact force (Fm) can be expressed in terms of the loading stiffness 

parameters, KL1, KL2, as given below. 

                                                  ( )
1 2m L y L m yF K Kδ δ δ= + −                                          (8.13) 

Equation (8.14) relates the maximum impact force to the unloading stiffness parameters, 

assuming that KL2 = KUL2. 

                                          ( )
3 2 1

2m UL y L m y UL yF K K Kδ δ δ δ= + − +                                (8.14) 

Equating (8.13) and (8.14) results in: 

                                                      
1 2 1 3L L UL ULK K K K+ = +                                            (8.15) 

Substituting (8.12) and (8.15) into (8.11), the expression for the hysteresis area can be 

simplified to: 

                                                ( )( )1 3

21hys L UL mA a a K K δ= − −                                       (8.16) 

 Assuming the shaded area in Figure 8.5(b) equals half the hysteresis area (Ahys), KL1 

can be related to the backbone stiffness Kb1 as follows: 

                                                           
1 1 2

hys
L b

m

A
K K

aδ
= +                                                  (8.17) 

The loading stiffness (KL2) can be related to the backbone stiffness (Kb2) by equating the 

maximum impact force levels and using (8.17) for KL1, as given below. 

                                                     
( )2 2 21

hys
L b

m

A
K K

a δ
= −

−
                                              (8.18) 

The unloading stiffness (KUL3) can then be obtained by substituting (8.17) into (8.16). 

                                                     
( )3 1 21

hys
UL b

m

A
K K

a δ
= −

−
                                             (8.19) 

Using (8.15), the unloading stiffness KUL1 can be expressed as: 
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1 2 2

hys
UL b

m

A
K K

aδ
= +                                                 (8.20) 

Now, the parameters of the truss and link elements can be related to stiffness parameters, 

KL1, KL2, KUL1, KUL2, KUL3, through equations (8.21) – (8.25) 

                                                                
1T LK K=                                                        (8.21) 

                                                           
2TH L LK K K+ =                                                  (8.22) 

                                                           
1T L ULK K K+ =                                                   (8.23) 

                                                     
2 2TH L UL LK K K K+ = =                                             (8.24) 

                                                               
3TH ULK K=                                                     (8.25) 

The backbone stiffness terms, Kb1, Kb2 can be related to the Hertz stiffness parameter, Kh, 

the yield parameter, a, and the maximum penetration, δm, as follows: 

                                                            
1b h mK K aδ=                                                   (8.26) 

                                                     
( )

2

3
21

1b h m

a
K K

a
δ

−
=

−
                                           (8.27) 

Equating hysteresis area (Ahys) to the energy dissipated during impact, ∆E, the properties 

of the truss and link elements can be obtained using the equations below: 

                                                      2T h m
m

EK K a
a

δ
δ
∆

= +                                              (8.28) 

                                                 
( ) 21TH h m

m

EK K a
a

δ
δ

∆
= −

−
                                        (8.29) 

                                                             
1

h m
L

K
K

a
δ

=
+

                                                  (8.30) 

where ∆E is the energy loss during impact given by (8.3).  
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 For the strain hardening stiffness (KTH) to be greater than zero, the following 

condition must be satisfied: 

                                                           ( )1 2.5 1e a a> − −                                         (8.31) 

Thus, for values of the yield parameter (a) ranging from 0.1 – 0.5, the coefficient of 

restitution should be greater than 0.54. The range of e considered in this study is 0.6 – 

1.0, satisfying the above constraint.  

 The higher order model is then used to simulate pounding between two single degree-

of-freedom oscillators in DRAIN-2DX. The analytical model sketched in Figure 8.7 is 

developed using zero-length (Type 4) linear elements for the participating systems. The 

impact element is modeled using a combination of an elastic link (Type 9) in parallel 

with a finite-length inelastic truss (Type 1) having a near zero yield strength in tension. 

The combination is then connected in series with a rigid link, which is activated only 

after the gap between the adjacent bodies closes. The oscillator properties used in the 

earlier subsection are retained, herein.  

 Based on a Hertz impact stiffness, Kh = 25,000 kip-in-3/2, the yield parameter, a = 0.1, 

and a maximum expected penetration, δm = 0.62 inches (obtained from the Hertzdamp 

model), the properties of the truss and link elements can be calculated using equations 

(8.28)-(8.30) as: KT = 34571 kips/in; KTH = 3075 kips/in; δy = 0.062 inches; KL = 14956 

kips/in. The responses of the DRAIN-2DX model with the truss-link impact element are 

matched with those from MATLAB, which uses the Hertzdamp impact model, as shown 

in Figures 8.8 and 8.9. 

 Clearly, the higher order truss-link model closely represents the impact response from 

the Hertzdamp model. The system displacements from the two impact models are nearly 



 187

identical, with only a 3% difference in the maximum response of the stiff system. The 

maximum flexible system displacements are identical (3.65 inches). The hysteresis area 

under the truss-link element closely matches the energy loss from the Hertzdamp model. 

Thus, the higher order model shows improved performance over the earlier used truss 

model. However as mentioned earlier, the most effective value for the yield parameter (a) 

needs to be selected before deciding on which simplified contact model to use. 
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Figure 8.7: Two degree-of-freedom model in DRAIN-2DX – inelastic truss element with 

a gap in combination with an elastic link to model impact. 
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Figure 8.9: Impact force vs. relative displacement hysteresis loops for the MATLAB-

based Hertzdamp model and the DRAIN-based inelastic truss-link model. 
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8.1.3. Selection of effective contact model 

This subsection identifies the simplified contact model that better represents energy 

dissipation during impact.  Both the truss and truss-link models have a yield parameter 

(a) which relates the yield deformation of the truss element to the expected maximum 

penetration during impact. During the determination of the various truss model 

properties, the yield parameter (a) was constrained to be less than 0.74. For the truss-link 

model, the yield parameter was limited between 0.1 and 0.5, for e = 0.6, 0.8. A parameter 

study is conducted with the two degree-of-freedom system shown in Figure 8.10, to 

determine the best value for the yield parameter. Impact is modeled by both the truss and 

truss-link models. The maximum expected penetration is determined from the impact 

response of the Hertzdamp model, for the same set of conditions.  
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Figure 8.10: Two degree-of-freedom model used to evaluate the simplified contact 

models 
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 The system response is assumed elastic and the oscillator periods are 0.18 and 0.60 

seconds, which results in a period ratio, T1/T2 = 0.3. The hinge gap is taken as ½ inch. 

Two values for the coefficient of restitution are considered namely, e = 0.6 and 0.8. Only 

Zone I (T2/Tg < 1) responses are considered, where the stiff system response is amplified 

and the flexible system response is de-amplified, as a result of pounding. A suite of ten 

ground motion records listed in Table 8.2 is used for analysis, with all records being 

scaled to 0.5 g PGA. The Hertz impact stiffness (Kh) is taken as 25,000 kip-in-3/2. The 

yield parameter (a) is varied from 0.1 to 0.5, for both the simplified models. 

 

 

Table 8.2: Ten ground motion records used in study evaluating simplified contact models 

No Earthquake Station Φ° PGA (g) Tg (s) 

1 Whittier Narrows, 1987 E Grand Avenue 180 0.30 0.70 

2 Landers, 1992 Joshua Tree 090 0.28 0.70 

3 Morgan Hill, 1984 Gilroy Array #6 090 0.29 1.20 

4 Loma Prieta, 1989 WAHO 000 0.37 0.85 

5 Northridge, 1994 Mulhol 009 0.42 0.85 

6 Cape Mendocino, 1992 Rio Dell Overpass 270 0.39 0.65 

7 Northridge, 1994 Old Ridge Route 360 0.51 0.95 

8 Loma Prieta, 1989 Coyote Lake Dam 285 0.48 0.65 

9 Northridge, 1994 W Lost Cany 270 0.48 0.70 

 10 Loma Prieta, 1989 Saratoga – Aloha Avenue 000 0.51 1.80 

Φ° - Component; PGA – Peak Ground Acceleration; Tg – Characteristic period 
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 The impact responses from the simplified contact models are normalized with those 

from the Hertzdamp model. Figures 8.11 and 8.12 present the results for the truss model 

and the responses from the truss-link model are shown in Figures 8.13 and 8.14. The 

responses from the simplified models show smaller deviation from the Hertzdamp model 

responses for lower values of the yield parameter (a). This is understandable, as smaller 

yield parameter values allow for energy dissipation even during small overlaps, 

consistent with the behavior of the Hertzdamp model. For the truss model, a = 0.1 yields 

the best results, with the differences in model responses being under 10% for both values 

of e. The percent difference in responses between the truss-link and Hertzdamp models is 

under 5%, for a = 0.1. 

 Thus, it can be concluded that both the simplified models predict the impact response 

from the Hertzdamp model with reasonable accuracy, for a = 0.1. The inelastic truss 

model, with yield parameter, a = 0.1 is proposed for implementation in bridge analysis 

programs, as it is the simpler of the two models. An estimate of the maximum penetration 

(δm) can be obtained by observing the amount of overlap allowed by the linear impact 

spring under the same conditions.  
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Figure 8.11: Ratio of maximum frame displacement responses between DRAIN-2DX 

(truss impact element) and MATLAB (Hertzdamp model) for different yield parameter 

(a) values - 2 DOF linear system (T1/T2 = 0.3; e = 0.8); 10 records scaled to 0.5 g. 
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Figure 8.12: Ratio of maximum frame displacement responses between DRAIN-2DX 

(truss impact element) and MATLAB (Hertzdamp model) for different yield parameter 

(a) values - 2 DOF linear system (T1/T2 = 0.3; e = 0.6); 10 records scaled to 0.5 g. 
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Figure 8.13: Ratio of maximum frame displacement responses between DRAIN-2DX 

(truss-link element) and MATLAB (Hertzdamp model) for different yield parameter (a) 

values - 2 DOF linear system (T1/T2 = 0.3; e = 0.8); 10 records scaled to 0.5 g. 
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Figure 8.14: Ratio of maximum frame displacement responses between DRAIN-2DX 

(truss-link element) and MATLAB (Hertzdamp model) for different yield parameter (a) 

values - 2 DOF linear system (T1/T2 = 0.3; e = 0.6); 10 records scaled to 0.5 g. 
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8.2. Implementation of the inelastic truss element for pounding simulation in a 

multiple-frame bridge 

The simplified contact model is now adopted to simulate pounding in multiple-frame 

bridges. The DRAIN-2DX nonlinear analytical bridge model developed in the previous 

chapter (bounding model study) is considered, as shown in Figure 8.15.  The properties 

of the bridge are assumed the same as earlier. Cable restrainers are now modeled at the 

intermediate hinge locations with the properties specified in Table 8.3. The yield 

moments for the columns are calculated based on a moment-curvature analysis of the 

column cross sections. The yield moments for columns in Frame 1 (C1, C2) and Frame 4 

(C9, C10) are taken as 3.59E+05 kip-in. The yield moments for columns in Frame 2 (C3-

C5) and Frame 3 (C6-C8) are taken as 3.10E+05 kip-in. The suite of ground motion 

records listed in Table 8.2 is used for analysis, with all records scaled to 0.5 g PGA. 

To illustrate the effect of energy loss during impact, two cases are considered – Case 

1, where pounding is modeled using a linear spring of stiffness, KL = 25000 kip/in, and 

Case 2, where the inelastic truss element with a gap is used with a Hertz stiffness 

parameter, Kh = 25000 kipin-3/2 and e = 0.6. The maximum penetration (δm) allowed by 

the linear spring model at each impact location is utilized to calculate the stiffness 

properties of the simplified contact element. The yield parameter (a) is taken as 0.1. 

Figure 8.16 compares the frame impact responses for both Case1 and Case 2.  

The results indicate that the linear spring element overestimates the impact 

responses, when compared to the inelastic truss element. The effects are more 

pronounced for the stiffer Frame 1. The linear spring element overestimates the 

displacement response of Frame 1 by as much as 18% when compared with the inelastic  
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Table 8.3: Properties of cable restrainers used at the intermediate hinges 

Location Initial stiffness (kips/in) Yield strength (kips) Strain hardening (%)

H1, H3 200 840 5 

H2 100 420 5 
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Figure 8.16: Comparison of frame displacements when using linear spring for impact as 

opposed to the inelastic truss contact element (10 earthquake records scaled to 0.5 g). 
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truss element for the 1992 Joshua tree record. On the average, neglecting energy 

dissipation during impact overestimates the frame displacements by 12%, 7%, 2% and 

8% for Frames 1 through 4, respectively.  

 

8.3. Conclusions 

 Most commercial structural software programs provide the linear spring element with 

a gap to model seismic pounding. Implementation of energy dissipating impact models, 

such as the Kelvin model and stereomechanical approach is often difficult. This chapter 

presents the development of a simplified contact model that accounts for energy 

dissipation during impact, and which can be readily implemented in commercial 

structural software. Two simplified contact force-based models for pounding simulation 

are proposed. The first model is a bilinear truss element with a gap and the second is an 

inelastic truss in parallel with a linear link element (truss-link model). Both models are 

based on the Hertzdamp contact model. The model parameters such as the stiffness 

properties and the yield deformation of the truss element and the stiffness of the linear 

link are determined using the Hertz contact law for the effective stiffness and by equating 

the element hysteresis area to the energy dissipated during impact.  

 A case study conducted with a two DOF system in DRAIN-2DX reveals that both the 

models capture the impact performance with reasonable accuracy, when compared to the 

Hertzdamp model. The truss-link model is the more accurate of the two, with only 5% 

differences in the system displacements, whereas the truss model shows differences up to 

10%. The inelastic truss model being the simpler of the two models is then proposed as 
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the simplified model. The maximum expected penetration can be obtained by observing 

the amount of overlap allowed by the linear impact spring for the same set of conditions.  

 Finally, the simplified contact model is used to simulate pounding in a four-frame 

bridge model developed in DRAIN-2DX and subjected to ten ground motion records. On 

the average, energy dissipation during impact is found to reduce the frame responses by 

12%, 7%, 2% and 8% for Frames 1 through 4 respectively.  
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

 

 Seismic pounding between adjacent frames in multiple-frame bridges and girder ends 

in multi-span simply supported bridges has been observed in several recent earthquakes. 

Pounding results in high magnitude and short duration acceleration pulses that can induce 

local crushing and spalling of concrete at the impact locations. More importantly, 

pounding can amplify the bridge displacement demands beyond those typically assumed 

in design. Past earthquakes have illustrated that the consequences of pounding include 

damage to column bents, abutments, shear keys, bearing pads and restrainers, and 

possible collapse of deck spans.  

 The objectives of this research were to identify the bridge parameters controlling 

impact, determine effective ways to model impact, and evaluate the adequacy of code 

specifications in representing the distribution of forces and deformations due to bridge 

deck impact. The multiple-frame bridge is considered as the representative bridge 

structure. A simplified nonlinear analytical model is developed in MATLAB to study the 

response of an n-frame bridge subject to longitudinal ground motion. The opening and 

closing of intermediate hinges, yielding of bridge frames and the engaging of cable 

restrainers, bearings and abutments are considered.  

 Several hysteretic models are chosen for the frame response including bilinear, 

stiffness degrading (Q-Hyst) and strength degrading (pivot hysteresis) models. Seismic 

pounding is represented using contact force-based models such as the linear spring, 

Kelvin and Hertz elements, and a stereomechanical approach which uses momentum 
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balance and a coefficient of restitution for energy loss. The equations of motion for the 

bridge system subjected to horizontal earthquake input are assembled and numerically 

solved using the 4th order Runge-Kutta method.  

 In order to mitigate the pounding damage in bridges, the factors affecting the 

pounding response are determined first. Previous research into the effects of seismic 

pounding on the bridge response has shown conflicting results. While some studies have 

shown that the forces acting on the piers and deck deformations increase as a result of 

pounding, others have suggested that pounding generally reduces the response of the 

bridge frames because of the energy dissipated during pounding, and because pounding 

disrupts the buildup of resonance.  

 The equations of motion for the longitudinal response of two adjacent frames 

subjected to earthquake ground motion are first expressed in a non-dimensional form. 

Subsequently, the primary factors affecting the pounding response are identified as the 

frame stiffness ratio (K1/K2) or period ratio (T1/T2), ground motion effective period ratio 

(T2eff/Tg), restrainer stiffness ratio, κ, and the frame ductility ratio, µ. Unlike earlier 

studies which only accounted for the system period ratio in studying the pounding 

response, this is the first study that identifies T2eff/Tg as an important pounding parameter. 

 Parametric studies using simplified 2-DOF models and a stereomechanical approach 

(e = 0.8) show that pounding is most critical for highly out-of-phase frames. Pounding 

reduces the frame response when vibrating near the characteristic period of the ground 

motion (Tg). The amplification in frame response as a function of T2eff/Tg, and T1/T2 falls 

into three regions. In Zone I (T2eff/Tg < 1), the stiff frame demand increases and the 

flexible frame demand decreases due to pounding. In Zone III (T1eff/Tg > 1), the flexible 
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frame pounding response is increased while the stiff frame pounding response is reduced. 

In Zone II (T1eff/Tg < 1 & T2eff/Tg > 1), pounding slightly increases both frame responses.  

 Inelastic behavior (frame design ductility, µ = 4) shows greater stiff frame 

amplification in Zone I when compared to the linear case. The yielding of frames also 

results in smaller response amplification for the flexible frame in Zone III, when 

compared to elastic behavior. It can be concluded that the response of bridge frames due 

to pounding is much less pronounced for K1/K2 = 2.0 (T1/T2 = 0.71), irrespective of the 

ground motion period ratio. This supports the Caltrans design recommendation that the 

period ratio of adjacent frames be greater than 0.7 to mitigate the effects of pounding. 

The effect of restrainers on the pounding response of bridge frames is also evaluated, for 

inelastic frames. The results show that restrainers have very little effect on the demands 

on bridge frames compared with pounding.  

The cogency of various impact models in representing the pounding response of 

closely spaced structures is then investigated. In addition to the existing impact models, a 

contact model based on the Hertz law and using a nonlinear hysteresis damper 

(Hertzdamp model) is introduced for pounding simulation. A suite of thirty ground 

motion records, with PGAs varying from 0.1g to 1.0g is selected for analysis. 

 Parameter studies conducted using two degree-of-freedom oscillators with varying 

system period ratios (T1/T2 = 0.3, 0.5, 0.7), and coefficients of restitution (e = 0.6, 1.0) 

reveal that the displacement responses from the stereomechanical and contact force-based 

models are similar, even though they use different methodologies to represent impact. For 

linear systems, the differences in displacement amplifications between various impact 
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models are larger (up to 20%) for highly out-of-phase frames. Smaller differences (up to 

10%) are exhibited for nonlinear frames.  

Impact models without energy dissipation overestimate the displacement and 

acceleration amplifications due to impact. For linear systems with T1/T2 = 0.3 and PGA = 

0.7g, the stiff frame displacement amplification is reduced by 50% for the 

stereomechanical model and 25% for the Kelvin model, when e changes from 1.0 to 0.6. 

The corresponding reduction in acceleration amplifications is around 60% for both 

models. 

The Hertzdamp model appears to be the most effective contact-based model as it 

shows the least variation due to changes in e and also provides the lowest acceleration 

amplification and impact force, for both linear and nonlinear systems. Energy loss during 

pounding is found to be insignificant for in-phase systems (T1/T2 = 0.7). The responses of 

a four-frame bridge system with pounding implemented using various impact models 

show good agreement with the findings from the parameter study.  

 The effect of column hysteretic characteristics, such as stiffness degradation, strength 

deterioration and pinching on the impact response of adjacent frames is also studied in 

this research. Traditional analytical models such as the elasto-plastic and bilinear models, 

and more sophisticated models such as the Q-Hyst and pivot models are considered. The 

hysteretic parameters of the Q-Hyst and pivot model without strength degradation are 

adjusted such that the maximum displacement responses from both the models are 

similar.  

 Parameter studies conducted on two degree-of-freedom systems subjected to ten far 

field earthquake records show that the traditional models underestimate the stiff system 
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amplification and overestimate the flexible system amplification due to impact, when 

compared with the sophisticated models, for moderate to highly out-of-phase systems. At 

T1/T2 = 0.3, the traditional models under predict the stiff system pounding response by 

30% and overestimate the flexible system response by 20%. The effect of various 

hysteresis models is not significant for in-phase frames (T1/T2 = 0.7). 

 Strength degradation increases the stiff frame displacement demand by 125% when 

compared to stiffness-degrading only systems, for highly out-of-phase systems, in the 

presence of near field records. For far field ground motions, the strength degradation 

effect imposes no additional demands on the pounding response as long as stiffness 

degradation is modeled. Furthermore, at T1/T2 = 0.7, the system amplifications show 

greater discrepancy from unity for near field ground motions, with a stiff frame 

amplification of 1.3 and a flexible frame de-amplification of 0.85. 

 A case study conducted on a four-frame bridge indicates that strength degradation in 

bridge columns combined with pounding can increase the stiff frame displacement by 

50%, when compared with other hysteresis models. The pounding responses of the stiff 

frame using the traditional models are smaller than those from the more complex models, 

in good agreement with the findings from the parameter study using a two degree-of-

freedom system. 

 While past research has concentrated on examining the causes and effects of seismic 

pounding, no effort has been made in reviewing the existing design procedures that 

account for dynamic impact. Hence, the adequacy of code-specified linear bounding 

models in capturing the nonlinear pounding response is explored. A nonlinear analytical 

model of a typical multiple-frame bridge including the effects of friction, abutments and 
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pounding is developed in DRAIN-2DX, and used as the benchmark. The individual 

periods of the stiff and flexible bridge frames are 0.66 s and 1.68 s, respectively. An 

investigation reveals that the code-suggested linear compression and tension models 

adequately capture the nonlinear hinge response, when the columns remain elastic. For 

inelastic situations, the use of a constant, period independent reduction factor for all 

frames, as per AASHTO recommendations works reasonably well in limiting most frame 

demands below the target demands. However, the linear models may not perform 

adequately when applied to bridge frames having lower periods.  

  Hence, the current design procedure is revised by adopting period dependent 

reduction factors based on the calculation of a design period from the governing 

bounding model. The response modification factors are obtained using the revised Vidic 

et al. relation, which includes the frequency content of ground motion. The modified 

procedure is shown to work reasonably well for the multiple-frame bridge chosen. 

Application of the revised guideline is expected to limit frame demands to target 

demands with reasonable success, for all ranges of bridge frame periods.  

 Most commercial structural software programs provide the linear spring element with 

a gap to model seismic pounding. Implementation of energy dissipating impact models, 

such as the Kelvin model and stereomechanical approach is often difficult. Hence, two 

simplified contact force-based models accounting for impact energy dissipation are 

proposed. The first model is a bilinear truss element with a gap and the second is an 

inelastic truss in parallel with a linear link element (truss-link model). Both models are 

based on the Hertzdamp contact model. The model parameters such as the stiffness 

properties and the yield deformation of the truss element and the stiffness of the linear 
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link are determined using the Hertz contact law for the effective stiffness and by equating 

the element hysteresis area to the energy dissipated during impact.  

 A case study conducted with a two DOF system in DRAIN-2DX reveals that both the 

models capture the impact performances with reasonable accuracy, when compared to the 

Hertzdamp model. The truss-link model is the more accurate of the two, with only 5% 

differences in the system displacements, whereas the truss model shows differences up to 

10%. The inelastic truss model being the simpler of the two models is then proposed as 

the simplified contact model. 

 Finally, the simplified contact model is used to simulate pounding in a four-frame 

bridge subjected to ten ground motion records. The maximum expected penetration is 

obtained by observing the amount of overlap allowed by the linear impact spring for the 

same set of conditions. On the average, energy dissipation during impact is found to 

reduce the frame responses by 12%, 7%, 2% and 8% for Frames 1 through 4 respectively.  

 

9.1. Recommendations for further study 

 The present study could be complemented with additional research in the following 

areas: 

 Experimental shake-table testing of scaled bridge models to study the effects of 

pounding. These tests will validate the effectiveness of the Hertzdamp impact 

model. In addition, dynamic testing will help in identifying the values of impact 

spring stiffness and coefficient of restitution to be used in analysis. 
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 Effects of torsion due to curvilinear bridge geometry need investigation. Seismic 

pounding at skewed hinges can increase the lateral displacement and rotation of 

bridge girders, thereby increasing the potential for unseating.  

 Spatial variability in ground motion input, non-uniform support motion and 

traveling wave effects on the pounding response of long multi-span bridges need 

to be studied using a spectral or random vibration approach. Pounding between 

adjacent frames of similar dynamic characteristics can occur under such 

conditions. 

 The relevance of soil-structure interaction on the pounding response of inelastic 

bridge piers needs introspection. This will help in evaluating the degree of 

approximation inherent in studies which neglect the effects of soil flexibility. 

 Further investigation is required to determine the effect of large acceleration 

pulses in forward-directivity near field ground motions on the pounding trends 

of closely spaced adjacent structures. 

 The efficacy of pounding reduction devices such as shock absorbers and 

additional dampers between superstructure segments needs to be examined using 

analytical methods and validated using experimental techniques. 
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