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SUMMARY 

The Human Genome Project, initiated in 1990, creates an enormous amount of 

excitement in human genetics—a field of study that seeks answers to the understanding 

of human evolution, diseases and development, gene therapy, and preventive medicine. 

The first completion of a human genome in 2003 and the breakthroughs of sequencing 

technologies in the past few years deliver the promised benefits of genome studies, 

especially in the roles of genomic variability and human health. However, intensive 

resource requirements and the associated costs make it infeasible to experimentally verify 

the effect of every genetic variation. At this stage of genome studies, in silico predictions 

play an important role in identifying putative functional variants.  

The most common practice for genome variant evaluation, the sequence conservation-

based approach, assumes important positions in a DNA or a protein sequence have been 

conserved throughout the evolution. Therefore, the predicted variant effect (deleterious or 

benign) is based on the evolutionary conservation at the mutation site. Nonetheless, 

phylogenetic diversity of aligned sequences used to construct the prediction algorithm 

has substantial effects on the analysis since sequence conservation is not the absolute 

predictor for deleteriousness. 

This dissertation aims at overcoming the weaknesses of the conservation-based 

assumption for predicting the variant effects. The dissertation describes three different 

integrative computational approaches to identify a subset of high-priority amino acid 

mutations, derived from human genome data.  
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For genetic variants found in genomes of healthy individuals, an eight-level Association-

Adjusted Consensus Deleterious Scheme (AACDS) is implemented. It ranks amino acid 

mutations based on suggestive evidence from association studies and conservation-based 

predictors. The ranking scheme has particular utility for the development of 

individualized health profiles. A database-driven web application promotes the utility of 

AACDS by granting access to AACDS data for 68 million amino acid mutations in over 

18,000 human genes.  

For candidate genetic variants of epilepsy disorders, a novel 3-dimensional structure-

based assessment protocol for amino acid mutations is established. It models protein 

structure and contrasts structural characteristics that distinguish between residues altered 

by disease-causing mutations vs. neutral mutations. A structural disruption score (SDS) is 

introduced as a measure to depict the likelihood that a candidate variant is functional. 

SDS is correlated with standard conservation-based deleteriousness, but shows promise 

for improving discrimination between neutral and causal variants at less conserved sites. 

The implementation facilitates variant prioritization for experimental validations. 

For genomic variants that may affect inter-individual variability in drug responses, a 

systematic 3-dimensional screening is performed on key proteins of drug metabolism. 

“SDS Pharmacogenes” is an explicit structure-based predictor that comprises five 

predictive features for structural disturbances. Unlike conservation-based predictors, SDS 

Pharmacogenes is able to annotate VIP variants as functional rather than neutral 

mutations based on the distinguishable characteristic profiles of structural disturbances. 

The systematic variant evaluation pipeline allows efficient structural examination of 

multiple variants, thus provide an opportunity to investigate their joint effects. The 



 
 

xx 
 

implementation of SDS Pharmacogenes and the future development of a database-driven 

web application will offer comprehensive understanding of genetic variants and 

introduces a new approach for aiding optimization of drug therapy 



 
 

1 
 

CHAPTER 1: INTRODUCTION 

Genomic variations of human genomes 

Genetic variation refers to differences in DNA of a person when compared to the DNA of 

a human reference genome. Genome studies indicate that each healthy individual carries 

a large number of genetic variants (Figure 1.1) [1-4]. Single nucleotide variants (SNVs) 

are the most common form. Single nucleotide polymorphisms (SNPs), a subset of SNVs, 

are single base genetic variations observed in at least 1% of the population.  Both SNVs 

and SNPs can be associated with diseases. SNVs may alter gene expression levels via 

regulatory controls. Nonsynonymous SNPs (nsSNPs), also known as missense variants, 

are SNPs that introduce amino acid changes to proteins. The change may affect protein 

function. Both types of genetic variation contribute significantly to disease states: about 

60% and 25% of known disease-causing mutations are nsSNPs and regulatory SNVs, 

respectively [5]. 

 

Figure 1.1: Types and number of genetic variations found per a human genome and 

numbers of known nsSNPs that are associated with diseases. (adapted from [1]) 
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Current challenges in genome studies 

Genome studies have several goals, one of which is to identify genes and genetic variants 

that give rise to diseases. Scientists are now facing several challenges in genome studies 

[6, 7], particularly in the area of identifying candidate genes and/or causal mutations. To 

infer candidate genes, the study requires complete re-sequencing of candidate genomic 

intervals in large population samples [6]. To test the hypothesis that a given SNP is a 

causative factor, the process requires: (1) linkage-disequilibrium studies on a very dense 

SNP map, and (2) comparisons of allele frequencies between affected and unaffected 

individuals [8]. Nevertheless, genetic associations between case and control groups may 

also be due to several discrepancies, most of which are functionally irrelevant. In 

addition, the direct method requires follow-up studies to further examine the genetic 

differences: typically by surveying larger panels of control individuals for the presence or 

absence of exclusive case SNPs [9]. 

The confirmation of true positives for disease-causing mutations entails laboratory testing 

[10]. The process is difficult and expensive. When a genetic variant is found in a well-

known disease-causing gene, causality is difficult to conclude.  For genes without known 

functions, functional assays are not easy to design [6]. Taking into account that some 

researchers do not publish results of failed attempts, a rough estimate on the number of 

truly causative variants from exome sequencing projects is 10-50% of cases [6]. Despite 

the difficulties in establishing causality, the scientific community still shows great 

interest in pursuing genome studies to understand the core of human health and the 

possible discovery of cures for diseases. 
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Roles of bioinformatics for evaluating genome variants 

Major efforts have been made in recent years to identify nsSNPs (missense variants) with 

strong effects because of their prevalence in number and high penetrance of association 

with diseases. Intensive resource requirements and the associated cost make it unfeasible 

to verify the effect of every genetic variation. At this stage of human genome study, in 

silico predictions play an important role in identifying putative functional variants in a 

systematic and efficient manner. Computational tools substitute the current elaborate 

process of in vitro and in vivo experiments. Several approaches have been developed to 

narrow down the list of candidate variants or genes from genome data [11-13]. 

Irrespective of differences in underlying algorithms and scoring functions, most tools 

evaluate nsSNPs as either deleterious (having a strong functional effect) or neutral 

(having a weak functional effect) from the level of DNA or protein sequence 

conservation [14]. The results often indicate a probability that the amino acid substitution 

is damaging. 

Recently, a database named dbNSFP [15] has compiled prediction scores of commonly 

used deleterious predictors into a stand-alone database for easy retrieval of scores. This 

contribution greatly facilitates the evaluation of variant deleteriousness in large genome 

datasets. Scores from six prediction algorithms, with various complimentary 

methodologies were included. They are: conservation-based (SIFT [16], LRT [17], and 

MutationAssessor [18]), conservation- and structure-based (PolyPhen2_HumDiv and 

PolyPhen2_HumVar [19]), and the Bayesian classifier MutationTaster [20].  
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Limitations of sequence conservation-based approaches for predicting 

variant deleteriousness 

While a conservation-based approach is the common practice for assessing the effects of 

nsSNPs, there are still some concerns when it comes to interpreting the results: (1) 

Sequence conservation is not an absolute predictor for deleteriousness— phylogenetic 

diversity of sequences used to infer evolutionary conservation has substantial effects on 

the analysis [14]. (2) The score cut-offs for different levels of variant deleteriousness are 

sometimes not well determined [21]. (3) Predictions from several programs occasionally 

differ; it is quite problematic to represent a consensus result [22]. (4) Some documented 

disease-causing variants may be false positives—prediction programs trained on this data 

set may suffer from the classification error [6]. (5) Some novel variants may be 

misclassified since there is not enough phenotypic information to infer the significant 

effects of nsSNPs [23]. (6) A predicted deleterious variant may result in reduced or 

damaged protein functions; however, the chance that the altered phenotype is observable 

may be small. (7) Variant classification programs which are mature enough for general 

use may have low accuracy for certain genes [24, 25]. 

Integrative analysis of variant effects: a novel approach for personal 

genome interpretations 

Because of advances in sequencing technologies [26], personal genome analysis is now 

being marketed for evaluating disease risk and/or adverse drug responses in healthy 

individuals, or for identifying disease-causing variants in people with diseases. Genome 

interpretation is a complex and time-consuming process. This requires a good knowledge 

of genetic principles and in-depth evaluation of genetic variation. Even if existing 
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deleterious prediction algorithms show a reasonable range of accuracy (~70-80%) [22, 

27] for evaluating nsSNPs, the lack of comprehensive knowledge of protein biology and 

its role in human disease restricts the usage of prediction results in the practical way.                                     

Information from three sources (clinical annotations, protein sequences, and protein 

structures) can be used simultaneously to estimate the functional significance of a variant 

[28]. The integrative approach utilizes prior knowledge of genome biology to define a set 

of genetic variants that are important for an individual’s health. Researchers have begun 

to apply this integrative procedure in variant deleteriousness algorithms [29-32], but the 

implementations have not yet realized their full potential. The reasons include: the 

massive amount of genomic-related data yet to be explored, the insufficient expertise to 

perform certain analyses, and sub-optimal procedures for combining prediction results 

from various predictors. Once the integrative protocol is mature, it will have great impact 

on personal genome interpretation and variant prioritization; that is, promoting the 

comprehensive understanding of genomic variants from interrelated SNP data. 

1) Adding clinical annotations to conservation-based approaches 

Owing to the rapid improvement of sequencing technologies, data on the clinical 

associations with a SNP, a protein residue, or a gene are accessible in many SNP 

databases [11, 13, 30, 33]. However, these functional annotations are quite scattered; the 

search for the clinical effects of a variant may be time-consuming and as a result, obstruct 

the practical analysis of genomic variations. The meaningful combination of interrelated 

data and the extension of existing predictive features to include any prior knowledge will 

support the ease and comprehensive evaluation of genomic data. This remark is 



 
 

6 
 

addressed in the implementation of the Association-Adjusted Consensus Deleterious 

Scheme (AACDS) for categorizing personal genome variations (Chapter 2). 

2) Incorporating protein structures into conservation-based approaches 

An amino acid mutation is caused by a single point mutation of the coding nucleotide. 

Many amino acid pairs have different physicochemical properties, so the mutant residues 

may prompt observable effects on protein functions. The consequence of amino acid 

mutations can be readily predicted by many algorithms, based on protein sequences or 

structures [12, 34]. Some genomic tools have begun to incorporate protein analysis 

algorithms into the traditional conservation-based predictors [13, 35-39]. 

Visual inspections of wild type vs. mutant protein structures can help pinpoint the protein 

residues that are responsible for aberrant protein functions. Success in homology 

modeling alleviates the fundamental limitation of structure-based approach; i.e., the 

limited availability of 3-dimensional (3D) protein structures. Using various sources for 

protein structures, my Structural Disruption Score (SDS) is established. It represents 

predictive features for amino acid mutations that induced by the candidate case missense 

variant for epilepsy disorders (Chapter 4) and by missense variants in pharmacogenes 

(Chapter 5). 

Description of this dissertation 

My dissertation aims to overcome the weaknesses of traditional conservation-based 

predictions for variant deleteriousness. The integration of conservation- and structural-

based approaches with database searches and literature surveys provides a better 
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understanding of protein function, enables the identification of functional protein 

residues, and promotes a more accurate classification of genetic variants with respect to 

overall protein function or disease development. The implementation is applied to three 

disciplines of genome analysis, and restricted to the evaluations of amino acid mutations 

induced by missense variants (nsSNPs) since they are the most prevalent type of genetic 

variations that are closely associated with diseases [5]. 

The first objective is to categorize personal genome variations of healthy individuals into 

distinct classes; each class of nsSNPs reflects the strength of evidence which collectively 

suggest the variants may contribute to adverse gene functions. The implementation of this 

novel variant prioritization scheme, an Association-Adjusted Consensus Deleterious 

Scheme (AACDS), is described in Chapter 2. To promote the utility of this schema, a 

database-driven web application is developed (Chapter 3). 

The second objective is to develop a disease-specific predictor to evaluate missense 

variants found in a set of epilepsy-related genes (Chapter 4). This implementation 

integrates results of conservation-based predictors with the outputs of many protein 

structural analyses. Distinguishable characteristics between documented disease-causing 

and neutral mutations within these genes are used to establish a “Structural Disruption 

Score” (SDS) for epilepsy variants. Using SDS, the candidate variants are ranked based 

on the likelihood that each mutation may disrupt protein structure. The list of high 

priority variants can be used to assist further experimental validations. 

The last objective is to extend the implementation of SDS into an exclusive structure-

based predictor for evaluate missense variants in pharmacogenes (Chapter 5). The “SDS 



 
 

8 
 

Pharmacogenes” consists of 13 predictive features; it can be used to evaluate almost 

every mutated residue within the 45 gene products.   
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CHAPTER 2: AN ASSOCIATION-ADJUSTED CONSENSUS 

DELETERIOUS SCHEME TO CLASSIFY HOMOZYGOUS 

MISSENSE MUTATIONS FOR PERSONAL GENOME 

INTERPRETATION [40] 

Abstract 

Background: Personal genome analysis is now being considered for evaluation of 

disease risk in healthy individuals, utilizing both rare and common variants. Multiple 

scores have been developed to predict the deleteriousness of amino acid substitutions, 

using information on the allele frequencies, level of evolutionary conservation, and 

averaged structural evidence. However, agreement among these scores is limited and they 

likely over-estimate the fraction of the genome that is deleterious. 

Method: This study proposes an integrative approach to identify a subset of homozygous 

non-synonymous single nucleotide polymorphisms (nsSNPs). An 8-level classification 

scheme is constructed from the presence/absence of deleterious predictions combined 

with evidence of association with disease or complex traits. Detailed literature searches 

and structural validations are then performed for a subset of homozygous 826 missense 

mutations in 575 proteins found in the genomes of 12 healthy adults. 

Results: Implementation of the Association-Adjusted Consensus Deleterious Scheme 

(AACDS) classifies 11% of all predicted highly deleterious homozygous variants as most 

likely to influence disease risk. The number of such variants per genome ranges from 0 to 
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8 with no significant difference between African and Caucasian Americans. Detailed 

analysis of mutations affecting the APOE, MTMR2, THSB1, CHIA, αMyHC, and 

AMY2A proteins shows how the protein structure is likely to be disrupted, even though 

the associated phenotypes have not been documented in the corresponding individuals. 

Conclusions: The classification system for homozygous nsSNPs provides an opportunity 

to systematically rank nsSNPs based on suggestive evidence from annotations and 

sequence-based predictions. The ranking scheme, in-depth literature searches, and 

structural validations of highly prioritized missense mutations compliment traditional 

sequence-based approaches and should have particular utility for the development of 

individualized health profiles. An online tool reporting the AACDS score for any variant 

is provided at the authors’ website. 

Background 

Personal genome interpretation is a process of determining the personal genome 

sequences and assessing the likely consequences of an individual’s genetic variation. 

Personalized genome data interpretation can be used, for example, to predict diseases and 

traits, identify mutations for family planning purposes, and guide medical treatments 

based on likely drug responses. Developments in next-generation sequencing 

technologies over the past five years have enabled personal genome interpretation to 

become feasible and affordable [26]. Despite these advances, understanding of the impact 

of specific genetic variants remains limited. Major efforts have been made to identify 

nsSNPs with strong effects because of their collective high prevalence and likelihood that 

many may be clinically actionable [5]. 
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Sequence-based prediction algorithms are commonly used to categorize nsSNPs into 

damaging and non-damaging, and to predict the effects (small or large) of nsSNPs with 

respect to undesirable phenotypes. The algorithms score the amino acid changes from the 

level of sequence conservation observed in homologous sequences or from the degree of 

physicochemical changes. Structure-based predictions evaluate 3-dimensional (3D) 

structural features, e.g., solvent accessibility, stability, number of residue contacts, which 

are altered in the mutant proteins. Approaches that include annotation of biological 

function also support functional assessments of amino acid substitutions. Ng and 

Henikoff (2006) proposed that the combination of all three types of data may provide the 

most accurate assessment of likely deleteriousness [28], which motivates the 

development of the schema proposed in this study. 

A pioneer study in personal genome interpretation stated that the human reference 

genome carries 1104 nsSNPs predicted to have impact on protein functions [41]. A 

similar study indicated that there are 796–837 predicted deleterious nsSNPs per 

individual [17]. This number of predicted damaging nsSNPs is much greater than both 

the theoretically estimated 15–60 damaging nsSNPs per genome [5] and the classified 

disease-causing nsSNP number of 40–100 per genome [42]. These observations highlight 

the complexity of personal genome interpretation and the need for a variant classification 

schema that builds on algorithmic prediction by integrating sound knowledge of the 

biological and structural impact of genetic variants. 

There are many databases that provide useful information about genetic variants. Because 

genetic polymorphisms found in healthy individuals tend to have small effects, further 
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improvement of available resources is required to more accurately define the set of 

variants that are likely to be most important for an individual’s health. In this study, we 

constructed a classification schema (Figure 2.1, Supplementary Figure A.1) to rank 

nsSNPs identified in healthy individuals by their functional significance. Each ranking 

category reflects the strength of evidence that a variant may adversely affect gene 

function from several standpoints, incorporating both database searches and sequence-

based predictions. The newly developed variant classification scheme is designed to 

generate a best estimate of clinical significance for each variant of interest, with the 

intention of focusing attention on the most likely deleterious SNPs. 

 

Figure 2.1: Flow diagram for AACDS classification algorithm. Upon receiving a list 
of homozygous rare missense variants, the nsSNPs were mapped to the corresponding 
amino acid residue within a reference protein (identified with UniProt accession number). 
We use an SQL server to hold SNP-related information from several resources: 
deleterious predictions (from dbSNFP database [15]), known diseases associations of 
each variant and known disease/trait associations of each gene (from MSV3d [43], 
SwissVar [44], and GWAS databases [45]). The AACDS classification algorithm extracts 
relevant fields from the AACDS database to populate the report on the variant category 
(categories 1–6). The output (Supplementary Figure A.1) is converted from an SQL 
data table to the user-defined formats (HTML, text), and is available for download, or 
individual queries can be supported on our server at http://www.cig.gatech.edu/tools.  



 
 

13 
 

Given the very large number of candidate disease-promoting variants per genome, we 

here focus just on the homozygous variants reasoning that highly penetrant effects are 

most likely to be recessive. The methods developed could be applied to all heterozygous 

nsSNPs as well, but this would be a daunting task for manual inspection, which would 

only be warranted given extensive phenotype data and a desire of an individual to receive 

the information. Here we describe homozygous nsSNPs in the genomes of 12 healthy 

participants in a predictive health study, the Emory-Georgia Tech Center for Health 

Discovery and Well Being (CHDWB). Since the IRB consent does not allow 

communication of genetic data, given potential negative consequences of knowledge of 

variants that cannot be acted upon, the identities of the individuals are anonymous and no 

concerted attempt has been made here to link genotypes to phenotypes directly. 

Expanded and appropriately consented studies will be required to evaluate the actual 

utility of the proposed schema as a means of focusing attention on those variants that are 

most likely to influence personalized health behaviors. 

Methods 

Whole genome sequence dataset 

Whole genome sequence (WGS) data was obtained for 12 healthy adult participants in 

the Center for Health Discovery and Well Being (CHDWB) study, including 4 African 

American women, 4 Caucasian women, and 4 Caucasian men. None of the individuals 

has any known complex or Mendelian diseases, but they cover a variety of profiles with 

respect to overall physical and mental health. Prediction of disease risk based on common 

variants and clinical profiles is described for the Caucasians in [46]. The participants 



 
 

14 
 

have provided written consent to publication of their whole genome sequence data for 

research purposes only. They do discuss their clinical profile with a health professional 

following annual visits to the Center, but are not currently permitted to receive the 

genetic data generated during the study. In order to protect participant identities, their 

identifying numbers have been randomized for this study. 

WGS was performed on Illumina HiSeq2000 automated sequencers at the University of 

Washington facility under contract to the Illumina Genome Network. Approximately 125 

billion bases passing the Illumina analysis filter were obtained for each genome. Mean 

non-N reference coverage (after excluding gaps) is ~36X with 95.5% of the positions 

having an average coverage of at least 10X. The genome sequences were aligned against 

the human reference genome assembly (hg19 sequence) using CASAVA (Consensus 

Assessment of Sequence And VAriation, Illumina, Inc, San Diego, CA). On average, 

87% of each individual’s quality filtered reads were aligned. High-confidence variants 

with a quality score above 20 were retained. Accuracy of the generated genome 

sequences was confirmed by comparison with previously determined genotypes from 

Illumina OmniQuad arrays, which showed >99% concordance for all individuals. 

The coding variants were functionally annotated using Variant Annotation Tool (VAT) 

[47] which uses the GENCODE v7 gene annotation set [48]. We identified “homozygous 

rare variants” with allele frequency <10% in the Caucasian or African 1000 Genomes 

dataset, using the data provided by dbNSFP [15]. All homozygous rare nsSNPs relative 

to hg19 were identified for each person, and assigned to two categories: known nsSNPs 

that are present in dbSNP build 137 [49], and private nsSNPs that are absent from dbSNP 
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but found exclusively in each individual. Information on the number of variants of each 

type is provided in Table 1. Minor allele frequencies (MAFs) for all nsSNPs were 

obtained from NHLBI GO Exome Sequencing Project (ESP6500) (June 2012 release) 

[50], Genomic data for known homozygous nsSNPs (n = 826, including 29 private 

variants) were analyzed as a whole and per individual. 

Amino acid indices for the alternate residues were mapped to the corresponding proteins 

using transcript IDs for the major isoform. All protein sequences and related information 

including protein functions and sequence features were obtained from the UniProt 

database [51].
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Table 2.1: Summary of genetic variations in genome sequences of 12 individuals. 

Subject ID Eth, sex 

Total Variants Coding variants Homozygous nsSNPs 

(>q20) (based on Gencode v7) (based on dbSNP build 137) 

SNPs Indels SVs 
SNPs Indels SVs 

#Known  

nsSNPs 
#Unique  

genes 

#de 

novo 
nsSNPs 

#Unique 

genes S MS NS 
Splice Indels Indels Indels 

Overlap 
SVs 

Overlap FS NFS Overlap 

1 Afr, F 4513763 733596 4251 14793 14039 72 98 381 342 137 37 88 77 2 2 
2 Afr, F 4472988 754399 4545 14500 13712 66 106 393 335 147 55 71 63 3 3 
3 Afr, F 4287739 722922 4447 13755 13166 84 79 374 301 120 43 77 71 3 2 
4 Afr, F 4443799 746111 4368 14488 13874 73 104 366 338 142 40 58 56 1 1 
5 Cau, F 3734820 645032 3977 11929 11745 62 90 343 307 123 43 57 40 2 2 
6 Cau, F 3691337 633475 4114 11757 11457 56 90 317 280 106 49 52 45 none none 
7 Cau, F 3691270 632544 4033 11912 11488 65 71 279 304 116 37 50 44 4 4 
8 Cau, F 3722234 641792 4197 11887 11434 64 76 303 299 125 41 55 42 none none 
9 Cau, M 3647944 590064 3828 11619 11255 54 76 311 281 95 38 60 50 2 2 

10 Cau, M 3643046 597363 4011 11814 11480 61 85 289 287 109 31 82 65 2 2 
11 Cau, M 3650690 602744 3916 11560 11285 60 80 342 280 112 32 72 65 5 5 
12 Cau, M 3701558 639005 4739 11842 11708 60 81 334 290 118 37 75 64 5 5 

 #Total = 

797 
#Unique = 

575 
#Total 

= 29 
#Unique = 

25 

Abbreviations: Eth ethnicity, SNPs single nucleotide polymorphisms, SV structural variants, S synonymous, MS mis-sense, NS 
nonsense, FS frameshift, NFS non frameshift.
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Sequence annotation using published algorithms 

Evidence for association of each SNP or gene with diseases or traits was obtained from 

public repositories of amino acid polymorphisms (MSV3d, July 2012 release [43] and 

SwissVar, accessed December 2012) [44], from Online Mendelian Inheritance in Man 

(OMIM) [52], and from the NHGRI genome wide association studies (GWAS) [45] 

catalog. Initially, each nsSNP was assigned as disease-causing, probably disease causing, 

unclassified, or neutral. Functional predictions, and information on disease- and trait-

associations to the gene were collected from dbNSFP [15]. In addition, we used UniProt 

sequence feature records [51] to annotate whether the mutated amino acid is localized to 

any structurally/functionally important sites (molecule processing sites, binding sites, 

modification sites, etc.). 

To annotate deleterious nsSNPs, consensus predictions from several algorithms were 

compared. Pre-computed deleterious scores for each nsSNP were retrieved from dbNSFP 

[15]. To our knowledge, dbNSFP is the first database that provides pre-computed 

functional predictions from multiple algorithms, facilitating interpretation of the 

deleteriousness of variants in large datasets. The database provides the output of six 

different prediction algorithms that have complimentary methodologies. Three are 

sequence-based (SIFT [16], LRT [17], and MutationAssessor [18]), while two are both 

sequence and structure-based (PolyPhen2_HumDiv and PolyPhen2_HumVar [19]), and 

the sixth is the MutationTaster Bayesian classifier [20]). Each of these tools relies 

primarily on the basic assumption that residue functionality dictates sequence 

conservation, which can consequently be used to infer deleteriousness. Raw scores for the 

first five programs were re-scaled to [0, 1] in which a score closer to 1 represents a 
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stronger (deleterious) effect of a nsSNP [15]. A MutationAssessor score of > 3.5 

designates high functional impact [18], hence, “deleterious”. The six prediction programs 

were used to construct the classification scheme of nsSNPs presented in Table 2.2. 

Putative deleterious nsSNPs were identified as nsSNPs reported as “deleterious” by at 

least three out of six prediction programs.
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Table 2.2: AACDS classification of homozygous nsSNPs in 12 genomes. 

Category Features of SNP Subject ID, Ethnicity, Sex 
Total 

#nsSNPs 
Disease-

causing 
Deleterious  

count ≥ 3 
In disease  

genes 
In trait 

genes 
1 2 3 4 5 6 7 8 9 10 11 12 

Afr, F Afr, F Afr, F Afr, F Cau, F Cau, F Cau, F Cau, F Cau, M Cau, M Cau, M Cau, M 

1 X    1 none none none 1 none none 1 1 none 1 none 5 
2A   X  8 7 6 5 6 5 11 7 12 7 10 9 93 
2B  X X  1 none none none 2 2 4 1 2 none 2 none 14 
3A    X 9 24 17 7 6 10 9 10 5 13 16 10 136 
3B  X  X 1 5 none none 1 1 3 4 2 2 none 2 21 
4  X   5 5 8 6 none 5 3 7 4 6 5 4 58 
5   X X 14 21 20 10 8 12 9 11 13 18 20 14 170 
6     68 40 49 42 46 32 33 33 40 56 45 55 539 

Total #unique nsSNPs 88 71 77 58 57 52 50 55 60 82 72 75 797 

The number of homozygous nsSNPs per individual and the number of SNPs in each AACDS category are specified.
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In addition to the deleterious predictions, protein regions under evolutionary constraint 

were detected using three evolutionary conservation-based indicators: GERP++ [53], 

phyloP [54], and SiPhy [55]. We also used Grantham scores [56] to reflect the degree of 

physicochemical differences between pairs of amino acids. These four indicators were 

included in the analysis for comparison purposes but were not utilized for nsSNP 

categorization. 

Other popular variant annotation tools might also be useful but were considered to be 

redundant with respect to our purposes. For example, ANNOVAR [57] has the ability to 

perform variant annotation (intronic, intergenic, untranslated region, exonic: non-

synonymous, synonymous, etc.), but this information was already available from the 

VAT output. At the time of our analysis, ANNOVAR provided dbSNP build 135 

mapping, not the dbSNP build 137 [49] used in our analysis pipeline. Note that gene 

definitions from ANNOVAR refer to the nucleotide reference sequence where a SNP is 

located; the format is not directly applicable for working with records from the two 

selected SNP databases (MSV3d [43] and SwissVar [44]), in which UniProt accessions 

were used to identify gene products. Similar to ANNOVAR, SnpEff [58] is another 

popular program that can assign structural annotations of variants. This function would 

be valuable when one wants to analyze different types of genetic variations within a 

genome. Because we only focused on analysis of missense mutations, the annotation 

feature of SnpEff was deemed unnecessary. 
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Supervised and automated structure-based predictions of variant function 

High quality protein 3D structures are essential to identify functional impacts of nsSNPs. 

Due to the limited availability of experimentally-determined human protein structures 

[59], an assortment of 3D structure sources was used to manually evaluate the effects of 

single point mutations found in specific proteins (Supplementary Table A.1). Crystal 

structures were retrieved from the RCSB Protein Data Bank (PDB) [60]. Homology 

models were retrieved from Protein Model Portal (PMP) [61] repository, or were built 

manually by joining multiple structures into a single model of a protein. Steric conflicts 

found within homology models were resolved by energy minimization with explicit 

solvent using YASARA force field [62]. Structural validation of homology models was 

evaluated by using two independent scores: QMEAN6 [63] and ModFOLD4 [64]. All 3D 

structures were visualized and rendered using Chimera [65]. 

The analysis began with a visualization of wild type proteins in the context of bound 

ligands. Additional variants that are known to be associated with diseases, or affect 

protein functionality and/or stability were also identified for each protein structure. Next, 

we used SDM [66] to compare the protein stability changes upon amino acid mutations 

with the default modeling of a mutant structure using Andante [67]. A mutation is 

classified as affecting protein function (stabilizing or destabilizing) using the stability 

cut-off of ±2 kcal mol-1 [66]. For evaluating the impact of amino acid changes on protein 

stability in a high throughput fashion, we obtained the tertiary classification of protein 

stability changes (increase, decrease, neutral) caused by a SNP from I-Mutant 2.0 [68], 

available from MSV3d [43]. The predictions are based on the protein (or homolog) 

structure or solely on the protein sequence when the structure was unavailable. 
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In order to expand the structure-based predictions to a larger dataset without the 

requirements of manual inspection or in-depth literature searches, we applied a 

combination of database searches and computational predictions to a larger set of 

proteins. In addition to the 6 protein structures described in the main text, we identified 

an additional 25 protein coordinates from PDB [60] (Supplementary Table A.2). We 

assessed these 25 wild type proteins in 4 areas of structural analysis: protein stability, 

ligand binding capability, protein dynamics, and protein-protein interactions. For protein 

stability, we used the aforementioned approach along with predictions of amino acids 

with specialized roles regarding protein stability, namely long-range stabilization center 

(SC) residues and stabilizing residues (SRs). These residues were inferred from the SCide 

[69, 70] and SRide webservers [71], respectively. Ligand binding residues for each 

protein were retrieved from PDBe (www.ebi.ac.uk/pdbe/) or were predicted using 

3DLigandSite [72]. Amino acid residues that are located in or near predicted binding 

pockets are likely to alter the binding capability for ligand(s). As disease-causing 

mutations that do not occur in binding sites or buried sites are predominantly found on 

protein interfaces [36], we used the PatchFinder program [73, 74] to computationally 

predict the most significant cluster of conserved residues on a protein’s surface that may 

indicate possible functional sites of the protein; i.e., sites of protein-protein interactions. 

Changes in protein dynamics were evaluated by the crystallographic B-factor of Cα 

atoms. In addition, we also used PredyFlexy [75] and FlexPred [76, 77] to predict the 

dynamic class of an amino acid residue (rigid, intermediate, flexible), and to estimate 

whether each residue is likely to induce conformational switches within the protein. 
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Assessment of functional enrichment 

The g:Profiler web server [78] was used to detect enrichment of gene functions for genes 

whose nsSNP are homozygous. Functional profiling and statistical enrichment analysis 

were performed with two distinct methods. First, we compared the annotations of 

multiple gene lists, where each list represents the genes with known homozygous variants 

found in an individual, using G:Cocoa (n = 40–77 genes per genome). Then, we analyzed 

a gene list for each individual using G:GOSt. The second analysis was performed in two-

steps: with and without genes harboring private variants. Enriched functions, such as 

common gene ontology, biological pathways, shared transcription factor or miRNA 

binding sites, were reported using the default g:SCS method for significance threshold 

determination. It is worth mentioning that significant enrichment of protein-protein 

interactions, derived from the BioGRID database [79], does not imply that all genes with 

significant enrichment p-value are interacting with each other, but simply indicates which 

query genes are present in the entire BioGRID dataset. The actual number of interactions 

and associated genes can be visualized from the network output. The enriched 

annotations and their gene members were confirmed by literature searches. Furthermore, 

the SNPshot text-mining tool for PubMed abstracts was used to explore if any of the 

private homozygous nsSNP-containing genes have clinical or experimental evidence for 

gene-drug or gene-disease associations [80]. 
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Results and discussion 

Sequence-based variant description in 12 genomes 

A total of 797 known homozygous non-synonymous substitutions was observed in 575 

different genes (Table 2.1). The genomes of the four African individuals harbor on 

average 73 homozygous nsSNPs (range 58–88), while the eight Caucasian genomes have 

an average of 63 homozygous nsSNPs (range 50–82). The slight excess in African 

Americans is not statistically significant (p = 0.18, 2-tailed t-test). 456 of the genes (79%) 

have a single homozygous variant in the 12 genomes, but two genes (HLA-DRB5 and 

ANKRD20A4) have more than 10, detected in at least 6 individuals. 

The vast majority of all of the variants have been observed previously in the 

1000Genomes project, with just 29 private homozygous nsSNPs observed in 25 different 

genes, with a range of 0 to 5 per genome. Private variants were found in 10 out of 12 

genomes of CHDWB dataset and are listed in Supplementary Table A.3. Most are 

predicted to be neutral, though they affect nucleotides with a range of conservation 

levels. Almost one-third of the 25 genes have no defined functions, and only a minor 

proportion of the genes have been previously associated with a disease or trait. 

Among the 575 genes whose nsSNPs are homozygous and present in dbSNP build 137, 

the fractions with known functions, putative functions, and unknown functions are ~47, 

20, and 33%, respectively (Table 2.3). Almost 10% of the homozygous nsSNPs are 

found in four highly represented protein groups: transcriptional regulators, keratin-

associated proteins, odorant receptors, and zinc finger-containing proteins. 
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Table 2.3: Functional annotation of all homozygous nsSNP. 

Gene groups 
Genes nsSNPs Most common proteins 

# % # % (#proteins, #nsSNPs) 

Genes with known 
functions 

268 47% 340 43% Transcriptional regulator proteins (15 proteins, 
17 nsSNPs), Keratin-associated proteins (6 
proteins, 9 nsSNPs) 

Genes with putative 
functions 

118 20% 167 21% Potential odorant receptors (21 proteins, 27 
nsSNPs), Zinc finger-containing proteins, 
potentially for transcriptional regulations (16 
proteins, 22 nsSNPs) 

Genes with unknown 
functions 

189 33% 290 36% - 

Total 575 100% 797 100%  

Six programs were used to predict deleterious variants, and three to indicate the level of 

sequence conservation at the polymorphic site. The results are summarized in Figure 2.2, 

which shows the cumulative number of predicted deleterious (blue) or highly conserved 

(red) scores for each of the 797 variants. Although 58% of all homozygous missense 

variants in the 12 genomes alter conserved sites in all three assessments, almost 40% of 

these (183/463) are predicted to be functionally neutral by all six programs. 45% of the 

homozygous rare variants are predicted deleterious by at least one program, and 11% (88 

variants) by three or more programs. 
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Figure 2.2: Number of deleterious and conserved site predictions. Data labels indicate 
the numbers of homozygous nsSNPs predicted to be damaging or conserved by n 
programs (n = 0-6 for deleterious predictions, and n = 0-3 for conservation predictions.)  

Differences among the deleteriousness prediction algorithms are underscored by the 

cumulative score distribution plots in Figure 2.3. The solid lines in the top half of each 

plot are for the 294 homozygous rare variants in the African Americans (black) and 503 

homozygous rare variants in the Caucasians (blue). The two curves are not significantly 

different, and predict that as many as 28% of variants are deleterious (MutationTaster) or 

as few as 2% (MutationAssessor), with the two most commonly used algorithms, SIFT 

and PolyPhen2, giving intermediate estimates of 80% neutral. The lower curves show 

cumulative distributions for a set of 24,703 disease-promoting non-synonymous variants 

in 1,789 proteins compiled from the MSV3d [43] and SwissVar [44] databases (red 

dashed curve), as well as from subsets of these disease variants found only in the 23 

genes (348 SNPs) harboring homozygous nsSNPs in the four African Americans, or 44 

genes (547 SNPs) in the eight Caucasians in our sample (black and blue-dashed curves 

respectively). All six programs show an elevated tendency to predict known disease-

associated variants in the genes harboring homozygous variants in the African Americans 
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as neutral. This is particularly obvious for the MutationTaster score and least pronounced 

for SIFT. A similar observation of differences among Asians, Caucasians and Africans in 

the fraction of damaging SNPs predicted deleterious was made by [81]. 

 

Figure 2.3: Cumulative distribution plots for the six deleterious prediction scores. 
The X-axis represents the prediction scores, ordered by the deleteriousness. The lowest 
and the highest scores for each prediction algorithm indicate the neutral and damaging 
nsSNP, respectively. For each prediction program, the score threshold for defining 
damaging SNPs is indicated by a vertical dashed green line (threshold for LRT is at 
0.999). Five sets of SNP data are shown in each plot. Black solid lines: data from 
homozygous nsSNPs of four African individuals; blue solid lines: data from homozygous 
nsSNPs of eight Caucasian individuals; red dashed lines: data from all disease-causing 
nsSNPs (n = 24,703 nsSNPs in 1,789 proteins); black dashed lines: data from disease-
causing nsSNPs found in homozygous nsSNP-containing genes of the four African 
individuals (n = 348 nsSNPs in 23 genes); blue dashed lines: data from disease-causing 
nsSNPs found in homozygous nsSNP-containing genes of the eight Caucasian individuals 
(n = 547 nsSNPs in 44 genes). All disease-causing nsSNPs were retrieved from MSV3d 
[43] and SwissVar [44].  

The notable differences in deleterious predictions given a set of disease-promoting 

variants found in African American and Caucasian samples (Figure 2.3, lower curves) 
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suggest these prediction algorithms may have population-specific effects. To further 

investigate that this observation is not an artifact of the small samples, we plotted similar 

curves for a set of 1,789 genes harboring disease SNPs (total 24,703 SNPs). The genes 

were classified into four groups depending upon population bias of their SNPs, using 

%MAF difference cutoff of ± 5% between European American (EA) and African 

American (AA) populations. The four gene groups are: EA bias, AA bias, EA&AA bias, 

and no bias. Unlike Figure 3 where homozygous variants in the African Americans were 

consistently predicted to be more neutral, the larger-sample plots (Supplementary 

Figure A.2) illustrate a small difference in the cumulative scores of population specific-

disease SNPs, with the exception of a noticeable prediction bias of MutationTaster. The 

results highlight the need for development of mutation assessment pipelines that go 

beyond these algorithms, particularly when evaluating homozygous nsSNPs of non-

Caucasian genomes. 

Association-adjusted consensus deleterious scheme (AACDS) for variant 

classification 

Consequently, we developed a ranking system that classifies homozygous nsSNPs into 

eight categories according to the overlap of (i) consensus deleterious prediction, (ii) 

documentation that the SNP causes a disease, and evidence that the SNP is in a gene that 

has been associated with (iii) a disease or (iv) a quantitative trait (Figure 2.1). Category 1 

contains documented disease-causing nsSNPs. Categories 2A and 3A represent nsSNPs 

in genes that have known associations with diseases (2A) or traits (3A), and these are 

sub-divided into categories 2B and 3B if they are also predicted to be deleterious by three 

or more programs. Category 4 comprises nsSNPs that are predicted to be damaging but 
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lie in genes that have no clinical associations. Conversely, Category 5 nsSNPs are located 

in genes that have disease or trait associations, but variants are predicted to be neutral. 

Category 6 represents neutral nsSNPs, whose genes have no clinical relations. Table 2.2 

lists the number of variants in each category from each individual’s genome. 

The list of disease-promoting nsSNPs was retrieved from MSV3d [43] and SwissVar [44] 

and is based on manual curation of evidence that the variant is causal, or probably causal, 

in disease. Most are relatively rare (MAF < 5%) presumed highly penetrant mutations, 

but an unknown fraction may be false positives. Among the 575 genes in our dataset, 93 

harbor disease causal variants (n = 787 nsSNPs). The 797 homozygous nsSNPs in our 

dataset include 4 category 1 “disease-causing” mutations (1 SNP is present in two 

individuals) and another 6 listed as probably pathogenic (Table 2.4). Another 143 are 

classified as having unknown effects, leaving 644 polymorphisms presumed not to cause 

disease in a highly penetrant manner. The 10 probably or known pathogenic missense 

variants were predicted to be deleterious by 0 to 5 programs (Table 2.4).
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Table 2.4: List of all four known disease-causal variants and six probable pathogenic variants. 

SNP type Gene 
Position, Base change 

(AA change) 

rsID 

(%MAF EA/AA/All) 
Disease 

[prediction counts] 
Grantham 

score 
Stability 

change 
Site 

annotations 

Disease-
causal 

ATP6V0A4 7:138417791 rs3807153* 
(4.8/18.5/9.4) 

Distal renal tubular acidosis (dRTA) with preserved hearing 81 Neutral TRANSMEM 

A-->G (M580T) [Del count: 2; Con count: 3] 

MTMR2 11:95569448 rs558018 
(0.02/3.9/1.3) 

Charcot-Marie-Tooth disease type 4B1 (CMT4B1) 46 Decrease DOMAIN 

T-->C (N545S) [Del count: 2; Con count: 3] 

APOE 19:45412079 rs7412 
(5.6/8.7/6.6) 

Lipoprotein glomerulopathy (LPG) 180 Decrease REPEAT 

C-->T (R176C) [Del count: 5; Con count: 3] 

BMP15 X:50658966 rs104894767 
(1.4/0.3/1.0) 

Premature ovarian failure type 4 (POF4) 58 Neutral PROPEP 

G-->A (A180T) [Del count: 0; Con count: 1] 

Probable 
pathogenic 

FRZB 2:183699584 rs7775 
(8.8/28.4/15.4) 

Osteoarthritis type 1 (OS1) 125 Neutral - 

G-->C (R324G) [Del count: 1; Con count: 3] 

HABP2 10:115348046 rs7080536 
(3.9/0.7/2.8) 

[Del count: 5; Con count: 3] 98 Decrease DOMAIN 

G-->A (G534E) 

HNF1A 12:121416650 rs1169288 
(33.5/12.1/26.2) 

Insulin-dependent diabetes mellitus type 20 (IDDM20) 5 Neutral REGION 
(Dimerization) A-->C (I27L) [Del count: 1; Con count: 3] 

XYLT1 16:17564311 rs61758388 
(-/-/1.7) 

[Del count: 0; Con count: 3] 99 Neutral TOPO_DOM 

C-->A (A115S) 

CYP2A6 19:41354533 rs1801272 
(2.5/0.5/1.8) 

[Del count: 1; Con count: 3] 99 Decrease - 

A-->T (L160H) 

ADA 20:43255220 rs11555566 
(6.3/6.8/6.5) 

Severe combined immunodeficiency autosomal recessive 
T-cell-negative/B-cell- negative/NK-cell-negative due to 

adenosine deaminase deficiency (ADASCID)  
[Del count: 1; Con count: 3] 

26 Decrease - 

T-->C (K80R) 

*The first SNP (rs3807153) was observed in two individuals. 
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Table 2.4 (continued) 

The minor allele frequency (MAF) in percent listed in the order of European American (EA), African American (AA), and all 
populations (All), delimited by “/”. Prediction counts indicate the number of deleterious predictions (Del count) and conservation 
predictions (Con count) by six and three programs, respectively. Grantham score determines the similarity in amino acid changes: 
small (score < 60), intermediate (score 60–99), and large (score ≥ 100). Tertiary classification (increase, decrease, neutral) for protein 
stability change caused by a SNP was obtained from I-Mutant 2.0 [68], available from MSV3d [43]. Site annotations list any 
structurally/functionally important sites (molecule processing sites, binding sites, modification sites, etc.) where the altered amino acid 
residue resides. The information was retrieved from UniProt sequence feature records [51].
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Among the 93 disease-associated genes with homozygous nsSNPs in our CHDWB 

genomes, 18 have homozygous variants present in more than one individual, and these 

account for 40 nsSNPs, observed at 33 different sites. Only one of these sites, G56R in 

the MYH6 myosin heavy chain, is predicted to be deleterious. Since it is also associated 

with resting heart rate, it is classified in both categories 2B and 3B. Data for the variant 

categorization in these 18 disease-associated genes is summarized in Supplementary 

Table A.4. Similarly, we also observed 101 genes with trait associations, including 126 

SNPs. Since there are a total of 14 and 21 variants in categories 2B and 3B respectively, 

most of these cases are restricted to a single individual in the sample of 12. Details for 

these predicted deleterious variants are listed in Supplementary Tables A.5 and A.6, 

respectively. On average, each individual carries 3.33 category 1, 2B or 3B homozygous 

variants (range 0 to 7), and although the two individuals with no variants of this type are 

both African Americans, there is no significant difference in prevalence relative to the 

Caucasians (p = 0.21, 2-tailed t-test). All of the remaining predicted deleterious variant 

that do not have disease or trait associations (namely, category 4) are listed in 

Supplementary Table A.7. 

The set of 35 disease- or trait-associated SNPs that are also predicted to be deleterious is 

seven times larger than the set of 5 category 1 “known to be deleterious” mutations. They 

represent 15% of the 93 disease-associated and 136 trait-associated category 2A and 3A 

SNPs. Supplementary Figure A.3 compares the allele frequency distributions of the 

2B/3B SNPs relative to all 2A/3A SNPs and shows a tendency to reduced allele 

frequency, also consistent with them having deleterious effects on fitness. Another 170 

homozygous nsSNPs lie in genes that have been associated with diseases or traits but are 
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not predicted to be deleterious (category 5). Their frequency distribution is approximately 

equivalent to those of the category 2A and 3A SNPs. The vast majority (539) of the 797 

SNPs we have considered are in category 6 and represent the subsets that are least likely 

to be damaging. 

A limitation of our analysis is the uncertainty in the accuracy of phenotypic annotations 

of SNPs, as well as the variable confidence level in annotations of causal SNPs. We 

obtained the list of disease-promoting nsSNPs from MSV3d [43] and SwissVar [44]. 

Most of the variants were classified as either causal variants (to a specific disease), or as 

polymorphisms. In MSV3d, many variants have ambiguous annotations, e.g., probable-

pathogenic, or unknown. In SwissVar, some proteins are noted to have associations with 

diseases, but the list of variants is not provided. 

Supervised structure-based variant evaluation 

Personal genome studies indicate that each healthy individual carries a large number of 

rare homozygous genetic variants [1-4]. While these variants can be found in any 

structural regions along the genome and can have diverse effects on biological function, 

Cooper (2010) estimated that as many as 60% of known disease-causing mutations are 

nsSNPs [5]. This viewpoint simply reflects the more obvious impact of nsSNPs on 

coding regions than regulatory regions: the substitutions tend to alter the amino acid 

sequences of the proteins. Amino acid changes are thought to have profound effects on 

the protein, impacting their structure or function. Furthermore, it is believed that there 

exist some structure-function relationships for each individual amino acid residue within 

a protein chain, and the 3D structure is an ideal resource for investigating this 
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information [82]. Therefore, many algorithms have been developed to assess the effects 

of amino acid changes within the context of protein 3D structures. Numerous structural 

features have been used to explain/quantify the changes [83]. A few successful 

implementations have demonstrated that protein 3D structures add to prediction accuracy 

[35, 39]. In addition, in silico analysis of 3D structures can facilitate variant prioritization 

because it provides systematic screening of nsSNP effects in the context of the protein 

structure and suggests which mutations may critically alter the function of the protein. 

Implementation of the AACDS classification scheme reduces the number of potentially 

deleterious variants to a number per genome that can feasibly be evaluated manually on a 

case-by-case basis. For this purpose, we have devised a further pipeline that involves 

sequence annotations, extracting either X-ray crystal/NMR structures or homology 

models from structure databases, and computing a series of predictions that capture 

protein features. In this way, each of the up to 5 variants in categories 1, 2B or 3B can be 

assessed in the context of the actual protein. While this approach requires that an 

individual with experience in protein structures be engaged in the personal genome 

evaluation, the potential gain in accuracy is likely to be meaningful. 

Our preliminary analysis utilized sequence features for all amino acid residues in each 

protein, obtained from UniProt features records [51]. The entries had been curated and 

are predicted (and compatible with the protein function), experimentally proven, or 

determined by resolution of the protein structure. The analysis was restricted to 62% of 

the nsSNPs, since the remaining fractions do not currently have feature information. 

Figure 2.4 illustrates that although the annotated 494 nsSNPs are found in various 

sequence regions, they are predominately present in transmembrane and protein domains. 
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These proportions are approximately equivalent to the proportions of each of the 9 types 

of annotated protein region for all residues in the included proteins (Supplementary 

Figure A.4). Locations of homozygous variants relative to the length of each sequence 

feature indicate the variants are located throughout the entire sequence length 

(Supplementary Figure A.5). 

 

Figure 2.4: Distribution of homozygous nsSNPs by sequence type. Data labels 
indicate the number (and percentage) of SNPs altering protein residues with each 
specified sequence features. All sequence features were obtained from the UniProt 
database [51]. 

Subsequent detailed analyses involved manual inspection and evaluation of individual 

proteins. The remainder of this section discusses detailed structural evaluations of two 

known causative variants, two predicted deleterious variants in proteins that have been 

associated with a disease or trait, and two predicted deleterious variants for which the 

clinical associations are inconclusive. The first disease causing nsSNP is the well-known 

Arginine to Cysteine substitution at residue 176 (residue 158 if omitting the signal 

peptide) that defines the APOE2 allele of Apolipoprotein 2 (SNP category 1/2B/3B). This 

allele has a major influence on lipid transport and is a protective factor against late-onset 
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Alzheimer’s disease and coronary artery disease [84-86]. Homozygosity for R176C is 

also associated with Type III hyperlipoproteinemia (HLPP3) in approximately 2% of 

cases (though 94% of HLPP3 cases have the genotype) [87]. Onset of the disorder is 

usually only after menopause in women and rarely manifests before the third decade in 

men. Several other rare variants in the gene have been annotated to disease, most of 

which affect intra- and inter-helical salt bridges (Figure 2.5A). With the neutral cysteine 

at position 176 in APOE2 protein, this pattern of salt bridge is eliminated. Although 

Arg176 does not interact with the LDL receptor, the R176C substitution has been shown 

to indirectly reduce the receptor-binding activity of APOE [88]. Stability prediction 

indicates this mutation has neutral effect to the protein stability (∆∆G = -0.46 kcal mol-1). 

  



 
 

37 
 

 

Figure 2.5: Location of variants in six protein structures. A-B describe two causative 
variants, C-D demonstrate two predicted deleterious variants, E-F illustrate two predicted 
deleterious variants whose clinical associations are inconclusive. For all figures, the 
representations are as follows: ribbon for proteins, ball and stick for ligands, mesh for 
ligand binding sites, and sphere for amino acid variants. Amino acid variants caused by 
homozygous or heterozygous nsSNPs are indicated as (***) or (*), respectively. 
Additional variants that are known to be associated with diseases (D), or affect protein 
functionality (F), and/or stability (S) are also identified. A: Apolipoprotein E 
(PDB:2L7B). B: Myotubularin-related protein 2 (PDB:1LW3). C: Thrombospondin-1 
(PDB:1UX6 and homology model). Residues 1–548 are missing from the structure, 
residues 549–829 (brown ribbons) are modeled from human THBS2 (PDB:1YO8), 
residues 848–1169 (white ribbons) are from a crystal structure of THBS1 (PDB:1UX6). 
Coordination complexes of amino acid side chains and Ca2+ ions (green spheres) as seen 
in the crystal structures are indicated with purple lines. The Ca2+ ions with unidentified 
coordination complexes are derived from the superposition of Ca2+ ions in 1YO8 onto 
the homology model. D: Acidic mammalian chitinase (PDB:3FY1). Three homozygous 
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nsSNPs were also identified from the same genome, but only two are present in the 
crystal structure. E: Myosin heavy chain 6 (αMyHC) modeled from Myosin heavy chain 
7 (βMyHC) (PDB:4DB1). The C-terminal (residues 778–1939) is missing from the 
template crystal structure. F: Pancreatic alpha-amylase (AMY2A) (PDB:3OLE). The 
Pro145 is located at the end of the extended β-loop and is part of a binding site for α-D-
glucose. For clarity, only one α-D-glucose binding site is shown. Other variants known to 
affect the enzymatic activities are located around the chloride ion (green sphere) in the 
central vicinity of the protein.  

The second example of causative mutation is in Myotubularin-related protein 2 

(MTMR2), a putative tyrosine kinase that is associated with Charcot-Marie-Tooth disease 

type 4B (CMT4B) [89]. One African individual has an Asparagine to a Serine 

substitution at the position 545 of the protein that has previously been reported as a rare 

variant in patients with CMT disease [90]. This SNP is classified as category 1. The 

minor allele frequency of this nsSNP is reported as 3.88% and 0.02% in African 

Americans, and European Americans, respectively, so the penetrance is much reduced in 

African Americans since disease prevalence of all forms of CMT is just one in 2,500 

[91]. The variant is situated in a conserved site, but only two algorithms predict it to be 

deleterious. The crystal structure places Asn545 in a protein domain, but it is not in close 

proximity with two other causative variants or part of a binding site. This mutation is also 

predicted to be neutral (∆∆G = 0.36 kcal mol-1) (Figure 2.5B). 

One predicted damaging nsSNP was found in Thrombospondin 1 (THBS1), a 

glycoprotein that stabilizes fibrinogen platelet cross-bridges [92]. The homology model 

indicates the substitution of a Serine for Asparagine at residue 700 of THBS1 occurs at a 

critical position in one of the calcium-binding domains (green spheres project 

coordination of CA2+ ions) (Figure 2.5C). This Asn700Ser substitution in THBS1 (SNP 

category 4) has a prevalence of 8-10% in Europeans [93] and is associated with the 
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occurrence of premature (age < 45) coronary heart disease in both homozygous and 

heterozygous individuals [92]. However, a study of Asn702Ser in THBS2 (homologous 

to 700 in THBS1) demonstrated that this variant does not alter calcium-binding 

capability. Instead, it induces a local conformational change leading to destabilization of 

surrounding structures [93], consistent with the computational prediction that the variant 

has a destabilizing ∆∆G of 0.58 kcal mol-1. 

The second example of a predicted deleterious nsSNP is a missense substitution in Acidic 

mammalian chitinase (CHIA), an enzyme that stimulates chemokine production by 

pulmonary epithelial cells. Arg35Trp (SNP category 4) is located in a buried site, where it 

causes changes in residue side chain volume, charge, polarity, and hydrophobicity 

(Figure 2.5D). The substitution was predicted to disrupt the hydrophobicity of the protein 

and increase solvent accessibility of the residue [43]. The individual who is homozygous 

for this variant also carries three heterozygous nsSNPs (N278D, I339V, and V432G). The 

first two of these replacements are parts of disulfide bonds, while the third substitution 

resides in the chitin-binding domain. Interestingly, the Arg35Trp mutation is predicted to 

stabilize the protein (∆∆G = −1.19 kcal mol-1), a finding that may appear counter-

intuitive. However, it is suggested that protein flexibility is crucial for enzyme catalysis 

[66]. The increase in protein stability and the dramatic change in physicochemical 

properties caused by this homozygous nsSNP, along with the disulfide bond reduction 

from heterozygous variants, strongly suggest the possibility for protein malfunction in 

this individual. As far as we are aware, he does not have asthma or an aberrant T-helper 

mediated inflammatory response, but deeper clinical investigation may be warranted. 



 
 

40 
 

The last two examples highlight cases where the variant is predicted deleterious but its 

clinical associations are inconclusive. The first example is a Glycine to Arginine 

substitution at residue 56 of Myosin heavy chain alpha (MYH6) (SNP category 2B/3B). 

As mentioned earlier, this is the only predicted deleterious variant among a set of 18 

disease-associated genes with variants present in more than one individual 

(Supplementary Table A.4). SNP databases indicate six well known causative variants 

in this gene that lead to familial hypertrophic cardiomyopathy and atrial septal defect. 

Although G56R is not one of them, this variant had been previously identified in affected 

individuals but it does not segregate perfectly with the disease in families of probands 

[94, 95]. With regard to the homology model (Figure 2.5E), many of the known variants 

associating with heart disease are located in the coiled-coil regions of this protein 

(missing from the crystal structure) and are not part of the ATPase catalytic site or actin 

binding site. Nonetheless, the G56R found in one of the CHDWB participants is 

particularly interesting, since the mutation occurs in a myosin head-like domain, a key 

component for muscle contraction, and with a large degree of amino acid change 

(Grantham score = 125). Stability prediction also suggests this variant destabilizes the 

protein (∆∆G = 1.10 kcal mol-1). 

The second example of a variant with uncertain functional effect is taken from a set of 

143 SNPs (18% of CHDWB dataset) that do not currently have phenotypic annotations. 

Among these, 117 SNPs have neither disease nor trait association at the gene level. Form 

143 SNPs, we identified 15 variants predicted to be damaging, of which 8 are located in 

genes with no clinical associations. Our example is a Proline to Serine substitution at 

residue 145 of Pancreatic alpha-amylase (AMY2A) (SNP category 4). In addition to one 
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calcium ion and one chloride ion per subunit, the protein is able to bind to several ligands 

throughout the structure. Mutagenesis studies identified several amino acid residues that 

are essential for the protein’s catalytic activity and affinity to calcium and chloride ions, 

but the impact of Pro145Ser has not been established [96, 97]. Despite the limited 

information of the variant, crystal structure indicates Pro145 is part of one, among many, 

binding sites for alpha-D-glucose (Figure 2.5F). In general, amino acids with similar 

physicochemical properties may substitute each other while maintaining the protein’s 

functionality. One study demonstrates some uncommonly predominant inter-species 

amino acid variations, such as serine-proline pairs or glutamic acid-alanine pairs [98]. 

The notable feature corresponds with the proline to serine substitution caused by this 

SNP. It is well known that the proline residue is sterically restricted and that it tends to 

disrupt regular secondary structural elements. Most proline residues are found in very 

tight turns or on protein surface [99]. The unusual occurrence of Pro145, especially in the 

extended β-loop indicates that this residue is essential for proper protein folding. Further 

investigation revealed that this residue is in the cis isomer, a very rare phenomenon since 

proline residues are exclusively synthesized as the trans isomer. In fact, AMY2A 

contains two cis-proline residues (Pro69 and Pro145); both are located in the loop 

regions. It had been suggested that the two residues help accommodate a sharp turn of the 

β-loop [100]. Substitution of proline to serine is predicted to be highly stabilizing for 

residue 145 (∆∆G = −2.77 kcal mol-1), but highly destabilizing for residue 69 (∆∆G = 

5.23 kcal mol-1). In any case, strong stability changes are suggested to cause protein 

malfunction and may lead to disease(s) [66]. 
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Automated structure-based variant evaluation 

To facilitate high throughput evaluation of protein structures, we devised a structural 

analysis pipeline that assesses the functionality of protein residues using data directly 

obtained from the atomic coordinates or from computational predictions. Using this 

approach, a list of potentially deleterious variants from a structural perspective can be 

generated rapidly, providing a way to integrate structural analysis into the variant 

categorization scheme. 

The four areas of automated structure-based variant analysis include stability, flexibility, 

and potential to disrupt protein-protein or protein-small molecule interactions. Many 

mutations disrupt these structural features and as a result, lead to altered protein functions 

or diseases. Our assumption is that the analysis may be able to identify some variants 

with strong effects. The results are summarized in Supplementary Table A.8, which 

indicates that predicted deleterious variants show a wide variety of residue features. In 

general, SNPs that do not cause stability change (∆∆G < ± 0.5 kcal mol-1) tend to be non-

deleterious, but not vice versa. Four amino acid residues have B-factors of Cα atoms 

larger than 60 Å2, a characteristic which may indicate that the atom is disordered due to 

dynamic motion, or may be an artifact of crystal imperfection. However, three out of 

these four amino acids are predicted to be at rigid sites and do not induce conformational 

switches. Another three residues are predicted to lie within a cluster of conserved 

residues on a protein surface, but none is categorized as damaging variants. Lastly, we 

found only one amino acid mutation that is located within the binding site, but the variant 

is in categories 2A and so not predicted to be damaging. 
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Imposing the constraint that the 3D structures must be of high quality, our initial analysis 

was restricted to only 24 experimentally-determined structures and 1 high quality 

theoretical model. Their sequence coverage ranges from 23–100% (average 69%) 

(Supplementary Table A.2). However, the implementation can be further applied to any 

available structures. For example, using the automated Phyre2 homology modeling server 

with single/multiple template methodology [101], we were able to model an additional 77 

full length proteins with high confidence. Each full length protein model has a percentage 

of residues modeled at >90% confidence in the range of 59-99% (average 86%). For 

larger proteins (>1,300 amino acids), we truncated them into smaller domain(s) and our 

modeling attempt returned 10 models with confidence between 96-100%. 

Enrichment for mutations disrupting protein interactions 

As a parallel approach to evaluating the deleterious potential in homozygous protein 

substitutions, we used g:Cocoa [78] to evaluate whether there is an enrichment for 

proteins that have similar functions. The analysis revealed four significant gene 

annotations that include a significant number of the queried genes from more than one 

individual. These four terms are: X-linked recessive inheritance, epithelial cell signaling 

in H.pylori infection, microRNA miR-708 binding sites, and Rho GTPase signaling 

pathway (Supplementary Figure A.6). 

Although 96 homozygous nsSNPs were identified on the X chromosome, only 1 nsSNP 

has been documented as a causal variant (X:50658966 G → A) (Table 2.4). Genes 

involved in X-linked recessive inheritance from the 12 genome data were identified in 

one African female and four Caucasian males (Supplementary Table A.9). We 
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identified only two predicted damaging SNPs. One was found in TBX22 that is associated 

with X-linked cleft palate. The other is located in SYTL5, a trait gene associated with 

erectile dysfunction and prostate cancer treatment. The remaining X chromosome 

variants are predicted as neutral. Two male individuals have the same mutation in the F9 

gene, for which reduced function can result in hemophilia B (HEMB). Unlike hemophilia 

A, symptoms of HEMB are usually milder or can be asymptomatic. Three male 

individuals also carry an identical SNP in FRMD7 gene. Malfunctions of this gene can 

cause nystagmus congenital X- linked type 1 (NYS1), a condition that appears at birth 

and up to three months old. The indications are spontaneous and involuntary ocular 

oscillations. Given that most X-chromosome variants are predicted neutral and there is no 

indication that either of these individuals have these conditions, it is unlikely that the 

associated disease or trait will develop. 

Finally, we used BioGRID [79] to evaluate enrichment for proteins that form physical 

interaction networks, and found that one of the 12 individual’s genomes has 7 mutations 

potentially involved in an unusually high number of contacts (Supplementary Figure 

A.7). Three of these proteins (FHL2, STK17A, and DSP) are linked together by other 

interacting partners. The FHL2 gene encodes a four and a half LIM domain protein that 

acts as a molecular transmitter between signaling pathways and transcriptional regulation. 

The wild type amino acid affected by the homozygous missense variant of the FHL2 gene 

is evolutionarily conserved, but the Arg177Gln substitution is only predicted to be 

deleterious by one program. This variant is not predicted to affect protein stability and the 

protein is not associated with a disease or trait. However, we mention it as an example of 

how this approach may highlight networks of proteins, where subtle modification of 
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multiple partners may result in cumulative disruption that would lead to disease under a 

multiplicative burden of rare variants model. 

Conclusions 

Intensive resource requirements and the associated costs make it infeasible to 

experimentally verify the effect of every genetic variation. At this stage of human 

genome study, in silico predictions play an important role in identifying putative 

functional variants. While a sequence-based approach is the current standard practice for 

assessing SNP effects, there are still some concerns that sequence conservation alone is 

not a reliable predictor of deleteriousness. In this study, we propose the AACDS 

classification scheme using variant annotation and sequence-based predictions. We used 

AACDS to classify homozygous nsSNPs found in the genomes of twelve healthy 

individuals into eight categories according to the consensus sequence-based deleterious 

prediction, types of mutation (disease-associated vs. neutral), and information on disease- 

or trait-associations with the gene. The classification scheme provides a comprehensive 

framework for prioritizing a list of SNPs suitable for detailed evaluation, in this study 

reducing the evaluation space from 826 to 98 variants (in categories 1, 2B, 3B, and 4). An 

online tool for computing the AACDS scores for any variant is provided at 

http://www.cig.gatech.edu/tools. 

Several previous studies have shown that structural information plays an important role in 

understanding the relationship between genetic variation and the structure and function of 

the protein. The addition of 3D structural analysis following AACDS classification 

demonstrates how structure data can complement sequence-based prediction, and 
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highlights how functional interpretation can in some cases be inferred exclusively from 

3D structures. By using a combination of solved structures or high quality homology 

models for all human proteins, we demonstrate that up to 117 of the 575 proteins bearing 

homozygous mutations in our CHDWB dataset are available for detailed SNP evaluation, 

providing detailed analysis of the 150 prioritized variants. 
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CHAPTER 3: AACDS—A DATABASE FOR PERSONAL GENOME 

INTERPRETATION [102] 

Abstract  

Background: Incorporation of diverse data sources add value to genomic studies, 

especially for annotation and categorization of personal genome variation, based on the 

putative functionality of variants. The database for Association-Adjusted Consensus 

Deleterious Scheme (AACDS) and its web application deliver a novel approach to assess 

genetic variation; the schema combines commonly used conservation-based measures of 

deleteriousness with phenotypic and/or disease association statistics to prioritize 

functional assessments.  

Description: The AACDS database covers over 68 million nsSNPs in approximately 

18,000 human genes. The simple but interrelated queries classify each variant into an 8-

level category, according to its consensus deleterious prediction and the presence/absence 

of clinical or phenotypic association data. Retrieval of AACDS classes can be performed 

through a simple search platform. Given a list of single nucleotide variants located at 

chromosomal locations, or within gene or protein sequences, the AACDS web 

application returns the AACDS category for each variant, along with known data. The 

categories can be ranked, enabling straight-forward interpretation of relative likelihood of 

functionality. The ranking thus facilitates improved efficiency in prioritizing further 

detailed evaluation of key variants within a personal genome. 
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Conclusions: The AACDS database is built upon integrated knowledge of variant data, 

with the aim of relating clinical phenotypes to predictions of variant deleteriousness. The 

schema highlights a list of variants in individual genomes that are worth examining. The 

AACDS web application is available at http://cig.gatech.edu/tools. 

Background  

Non-synonymous single nucleotide polymorphism (nsSNP) is one of the most common 

forms of genomic variability. About 60% of known disease-causing mutations are 

nsSNPs [5]. One of the major goals for personal genomics is to identify a subset of 

variants that have the potential to influence an individual’s health. Each individual 

genome is estimated to contain roughly ten thousand nsSNPs [41, 46, 103]. The 

assessment of deleteriousness for SNPs is commonly performed on a per variant basis, by 

using many available computational tools that typically classify each SNP into two 

groups: benign and damaging. Although many prediction programs have been proven to 

have acceptable accuracy, mostly in the range of 70-80% [22], it is deemed an advantage 

to incorporate more data into the assessment [28]. 

In our recent study on interpretation of personal genome data [40], we developed “An 

association-adjusted consensus deleterious scheme” (AACDS) to facilitate variant 

prioritization of personal genome studies. AACDS is constructed from the combination 

of existing databases that implicate the variant in disease or a phenotype, and traditional 

sequence-based predictions. It assigns a variant into an 8-level category. Not only does 

AACDS incorporate the clinical or phenotypic annotations of the genomic variants in an 
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individual, it also narrows down the variants to a subset that is appropriate for further 

follow-up experiments and validation with respect to individualized health profiles. 

To promote the utility of our variant classification schema AACDS, we have 

implemented the assessments in a database-driven web application that allows users to 

search the AACDS categories and relevant information for a list of user-defined variants. 

The AACDS website aims to provide a user-friendly platform for anyone who is 

interested in personal genome interpretation. The database schema was designed to cover 

the annotated list of functional variants (31,092 disease-associated amino acid variants in 

3,363 genes), 4,225 pairs of gene-disease associations, 5,113 pairs of gene-trait 

associations, and all possible coding genomic variants in 18,349 human genes (n= 

68,165,196 nsSNPs). Therefore, our newly developed database-driven web application 

for AACDS can serve as a tool to generate the best estimate of clinical significance of 

each variant from the large and growing accumulation of personal genome data. In 

addition to identifying causal variants or variants in disease- or trait- associated genes 

from a list of genomic variability, the application also allows further functional analyses 

of all SNPs in any gene of interest.  

Although many tools and databases exist for the purpose of variant prioritization and/or 

personal genome interpretation, we are not aware of any tool with similar features as 

ours, especially in the categorization of genomic variants. Our AACDS tool allows SNP 

evaluations to be performed simultaneously on the ground of deleterious predictions, 

direct connections between variants to diseases, and associated traits and diseases to the 

genes. The tool assigns an AACDS class to each individual SNP; it also reports the 

overall AACDS statistics for a given genome. The classification and the ranking of SNPs 
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are particularly significant and original since it assists effortless interpretations of whole 

genome SNP searches. The results facilitate the identification of high impact variants 

within a genome in an effective and efficient manner. 

Compared to aggregative variant association methods such as in VAAST 2.0 [104], our 

tool does not require that users have prior knowledge of various additional genomic 

attributes to perform the search and interpret the results. VAAST requires not only target 

and background genome datasets, but also the user’s defined set of genes and prior 

knowledge of genetic parameters (e.g. inheritance, penetrance, locus heterogeneity, allele 

frequency, etc.) in order to search for causal SNPs or genes [104]. The search pipeline is 

not designed for evaluation of all genomic variants nor to be used as a simple look-up 

utility. 

Two recent genome analysis tools, eXtasy [105] and Phen-Gen (www.phen-gen.com/) 

[106], introduce a new phase of genome interpretation in which the tools link genome 

variants to a specific phenotype. Although both tools have great potential for guiding 

diagnostics of rare disorders through the identification of phenotype-specific causal 

variants, the evaluations are performed on a per disease basis. Most personal genome 

variants are likely to be neutral and contain a minimal number of annotated disease SNPs 

[40, 42]; the individuals are considerably healthy or are unlikely to have noticeable 

clinical phenotypes [46]. These limitations represent a significant challenge for personal 

genome variant annotation for sub-clinical phenotypes, which AACDS is designed to 

help in the interpretation of. 
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Construction and content 

The AACDS site (http://cig.gatech.edu/tools) serves as an interface for queries of the 

AACDS databases, which is built to categorize nsSNPs into an 8-level class, based on the 

consensus predicted deleteriousness and the evidences of disease or complex trait 

associations with a SNP of its gene. The AACDS database includes a set of 68,165,196 

nsSNPs that can be found in a human genome. The AACDS website allows users to 

retrieve the AACDS classification and relevant information of variants in genes of 

interest.  

Data sources 

To facilitate the variant mapping of various data formats (chromosome coordinates, gene 

names, protein names), we chose UniProt [51] as the main database to interrelate with the 

others. UniProt accession numbers represent the unique identifiers for gene products. The 

unique accessions allow a direct lookup of the disease-association data from the selected 

SNP databases: MSV3d [43] and SwissVar [44]. A list of 20,277 reviewed human 

proteins was compiled from UniProt [51] (accessed 11/01/2013). This protein set 

represents the gene products of 19,700 genes. (Some genes have multiple UniProt 

accession numbers due to the presence of multiple protein isoforms, thus explaining the 

differences in the absolute numbers of UniProt accessions and genes.) 

Next, we used dbNSFP v2.1 [15]  (released 10/03/2013) to extract all possible locations 

of SNPs within each gene. The database provides the translation of nucleotide variants 

into alternate amino acids. Amino acid variations were indexed with respects to the 

correspondent proteins. All functional predictions (benign vs. damaging) of a SNP were 



 
 

52 
 

retrieved from the pre-computed scores for six sequence-based deleterious predictors 

available from dbNSFP v2.1 [15]. To resolve discrepancies among prediction algorithms, 

we assigned the level of deleteriousness using the consensus prediction. A variant is 

regarded as “deleterious” if ≥ 3/6 predictors reported the variant as “deleterious” and as 

“non-deleterious” if the predictions suggest otherwise. Later, the initial set of SNPs had 

been filtered such that our AACDS database excludes all variants that do not currently 

have all of the six pre-computed deleteriousness scores available and variants in 

chromosome locations where only transcript IDs are available but cannot be mapped to a 

single gene. The high confidence dataset includes a total of 68,165,196 nsSNP locations 

in 18,349 genes (18,390 gene products). 

Gene-trait associations were retrieved from the NHGRI genome wide association studies 

(GWAS) catalog [107], available from dbNSFP v2.1 [15]. Additional information 

provided at the AACDS website includes essential information of each variant; i.e., 

dbSNP reference SNP ID number (db138 release, downloaded from the NCBI’s FTP site 

at ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/BED/, accessed 1/16/2014), gene 

name and protein name from UniProt database (accessed 11/01/2013) [51]), and 

population-specific minor allele frequencies (retrieved from dbNSFP v2.1 [15]).  

Database construction 

AACDS was designed as a relational database on a MySQL server. The data relationships 

are presented in Figure 3.1. In-house Perl scripts were used to extract variant information 

from the various aforementioned data sources and to prepare the MySQL data structure.  
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Figure 3.1: AACDS database schema. AACDS database constructs its data 
relationships from several sources. Each SNP receives the deleterious predictions of six 
predictors, available from dbNSFP v2.1 [15]. The consensus deleteriousness of the 
variant is assigned; variants with high deleterious count refer to those which are predicted 
to be damaging by at least 3 predictors. Documentation on gene-trait associations from 
GWAS were also obtained from dbNSFP v2.1 [15]. A list of associated diseases to the 
variant or to its gene is populated from publicly available SNP databases (MSV3d [43] 
and SwissVar [44]). The AACDS category for each variant is assigned from whether: the 
variant has a high deleterious count, its gene is associated with a trait, its gene is 
associated with a disease, or the variant is documented as a disease causal variant.  

Our original paper describes the AACDS as an 8-level category (variant categories 1, 2A, 

2B, 3A, 3B, 4, 5, and 6) [40]. However, many SNPs cannot be exclusively defined into 

one class, therefore, a maximum of 12 classes are reported in this implementation to 

represent all distinct conditions possible when joining multiple assigned AACDS 

categories together; e.g. a variant can be in class 1/2B, 1/3B, or 1/2B/3B, etc. (Table 3.1). 

Figure 3.2 illustrates the number of nsSNPs in each of the 12 combined AACDS classes. 
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Table 3.1: Descriptions of the 12 combined AACDSS classes. The original paper 
describes the AACDS as an 8-level category (variant categories 1, 2A, 2B, 3A, 3B, 4, 5, 
and 6), but many variants can belong to multiple classes. Twelve combined AACDSS 
classes are used in this AACDS database to enable the informative description of the 
variants. 

AACDS 

classes 

Features of SNPs 

Descriptions of SNPs Diseasing-

causing 

Predicted 

deleterious 

In disease 

gene 

In trait 

gene 

1 yes no no no 
Disease-causing (but not located in gene with 
disease- or trait-associations nor predicted as 
deleterious by most programs) 

1, 2B yes yes yes no 
Disease-causing, predicted as deleterious by 
most programs, located in gene with disease-
associations (but no gene-trait associations) 

1, 2B, 3B yes yes yes yes 
Disease-causing, predicted as deleterious by 
most programs, located in gene with disease 
and trait-associations 

1, 5 yes no yes yes 
Disease-causing, located in gene with disease- 
and trait-associations (but most programs 
predicted it to be benign) 

2A no no yes no 
Located in gene with disease-associations (but 
no other implications) 

2B no yes yes no 
Predicted deleterious by most programs, 
located in gene with disease-associations (but 
not a causal variant) 

2B, 3B no yes yes yes 
Predicted deleterious by most programs, 
located in gene with disease and trait-
associations (but not a causal variant) 

3A no no no yes 
Located in gene with trait-associations (but no 
other implications) 

3B no yes no yes 
Predicted as deleterious by most programs, 
located in gene with trait-associations (but not 
a causal variant) 

4 no yes no no 
Predicted as deleterious by most programs 
(but no other implications) 

5 no no yes yes 
Located in gene with disease and trait-
associations (but not a causal variant nor 
predicted as deleterious) 

6 no no no no No implications 

Column descriptions: (1) disease-causing: if MSV3d [43] and/or SwissVar [44] indicate 
the variant is a disease-causal; (2) predicted deleterious: ≥ 3/6 programs predict the 
variant to be deleterious; (3) in disease gene: if MSV3d [43] and/or SwissVar [44] 
indicate the gene has disease associations; (4) in trait gene: if GWAS [45] indicates the 
gene has trait associations.  
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Figure 3.2: Number of nsSNPs within each AACDS category. Each variant is 
exclusively defined into one of the 12 combined AACDSS classes.  

The SNP-disease or gene-disease associations were collected from all associations that 

have been documented in either of the SNP databases (SwissVar (accessed 11/01/2013) 

[44] and MSV3d (released 07/29/2012) [43]). It is worth mentioning that the two 

databases employ different formats for clinical annotations, such as the minor differences 

in disease names and the sub-categorization of certain diseases. We did not attempt to 

standardize these terms. Similar association records for a particular SNP or a gene from 

the two data sources were dealt with by reporting only the record which has the most 

detailed descriptions. Some SNPs have ambiguous clinical annotations; for example, 

when one of the two databases documents a SNP as a disease-associated variant, but the 

other suggests it is a polymorphism or has missing data, the intuition we followed was to 

regard the variant to have clinical associations. Such example includes 2,797 and 6,738 

pairs of associations which have only MSV3d [43] or SwissVar [44] annotations 

respectively (21,557 variants have annotations from both sources). 
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In total 31,092 instances of variant-disease associations and 4,225 pairs of gene-disease 

associations were included in our database. The number of genes whose gene-trait 

associations were identified from GWAS is 5,113. 

To ensure that the search results are returned quickly, we performed the computation of 

AACDS for all variants and utilized the assigned categories as the pre-computed variant 

classification during web searching.  

The online service of the AACDS database was implemented in PHP, MySQL, 

JavaScript and Apache. The AACDS website can be accessed at 

http://cig.gatech.edu/tools. All standard browsers are supported. 

Utility and Discussion  

Our AACDS web application allows users to retrieve AACDS classifications and the 

relevant information of variants or variants in genes of interest. Figure 3.3A illustrates 

the three major components of the website: (1) Variant query, (2) Gene query, and (3) 

AACDS-based genome analysis. Users can search the AACDS database via a single 

entry query or a batch query. The batch query permits the practical analysis of personal 

genome data, since users can upload a list of variants of unlimited size and retrieve the 

results in plain text formats (.txt or .csv) for external use. 
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Figure 3.3: Overview of the AACDS web interface. (A) The three query options: 
Variant query, Gene query, and AACDS-based genome analysis. (B-E) Example outputs 
in form and tabular formats. Included in the tabular outputs are the direct links to dbSNP 
[49] and to the original sources [43, 44] of clinical data.  
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Performing the search via a single entry query 

1) Variant query 

Users can search for the AACDS classification of their variant of interest, by providing 

some search parameters. For query by DNA: chromosome number, hg19 coordinate and 

alternative nucleotide. For query by protein: gene name or Uniprot accession number, 

amino acid position, and alternative amino acid. 

The website outputs a variant summary page, which reports the AACDS category of the 

variant and its relevant information, along with any additional variant data (Figure 3.3B). 

Note that all the deleterious and conservation scores reported here are the original scores 

used in their corresponding papers; i.e., we did not perform any re-scaling of the scores. 

2) Gene query 

Users can retrieve a list of variants within a gene whose variants’ characteristics match 

the user’s interest. If a particular AACDS class is specified, the website returns all SNPs 

that belong to the searching AACDS category. If any of the four features (high 

deleterious count, has gene-trait association, has gene-disease-association, and has 

variant-disease association) are specified, a list of variants whose characteristics are 

compatible with the searching feature is returned. The SQL “AND” statement is used to 

extract the list of variants which match multiple search terms; for example, searching for 

variants that are documented as causal variants whereas most of the deleterious prediction 

algorithms suggest it is benign, or searching for variants in disease-associated genes that 

are also predicted to be deleterious by ≥ 3/6 predictors. 
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When more than one variant meets the search criteria, a summary table (Figure 3.3C) is 

returned in addition to the results in form formats, which display up to the first 25 entries. 

The displayed table provides a short description (11 attributes) of the variants; users can 

also download the complete table (37 attributes) through the “download” button. 

Exported file types include .csv and .txt.  

3) AACDS-based genome analysis  

For this search feature, we aim to provide the overall statistics for a set of SNPs found in 

an individual’s genome. Users can perform the AACDS-based genome analysis on two 

levels: (1) Whole genome statistics and (2) Gene-by-gene statistics. Figures 3.3D and 

3.3E demonstrate the output examples from the two analyses, respectively. In either case, 

the schema classifies SNPs into several groups, based on the assigned AACDS classes. 

The results can be ranked by gene names or by AACDS groups. 

In addition to the number of variants within each AACDS class, the tabular output also 

presents the average (and the standard deviation) for all six deleterious scores, three 

conservation scores, and two population-specific minor allele frequencies. Note that the 

raw scores for the first five deleterious predictors were re-scaled to [0, 1] for comparison 

purposes; a score closer to 1 represents a stronger (deleterious) effect of a variant. A 

MutationAssessor score of > 3.5 designates high functional impact, hence “deleterious” 

[18]. The averages of original scores can be obtained via the download link. 

Performing the search using batch query  

For each of the above analyses, a batch search is possible if users provide a .txt file (tab 

delimited) with the required information in specific formats as described in the website’s 
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help page. An example format for a batch search is shown below; other search types will 

have slight differences in the required fields. For the example below, column legends are 

chromosome, coordinate (hg19), reference nucleotide, and alternate nucleotide, 

respectively. 

Chr:10 26781257 T A 

Chr:10 26781257 T C 

Chr:10 26781257 T G 

Conclusions  

The integration of both sequence-based deleterious prediction and clinical association 

data in our AACDS algorithm provides a novel approach to integrative variant 

classification for personal genomes. Manual inspection of a variant for both predicted 

deleteriousness and phenotypic association is possible, but certainly not practical for 

analyzing large genome data. For this reason, the implementation of a database-driven 

web application is considered to be an important tool for promoting the utility of the 

AACDS. We believe that with the scope of our database coverage, both in terms of 

genomic variations and phenotypic data, this web application will help to bring a 

comprehensive framework of personal genome interpretation to a more practical level.  

We will keep on refining the database so that it offers AACDS classes for the most 

complete set of SNPs in a human genome. The improvement may include quality control 

and subsequent addition of variants in the remaining genes once their curated protein 

sequences are available, the inclusion of clinical and trait associations from other data 

sources, the update of medical terminology so that they are consistent with standard terms 
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used by the International Classification of Diseases (ICD) [108], and the implementation 

of an automatic online update with the selected data sources. 

Availability and requirements  

AACDS is publicly available at http://cig.gatech.edu/tools. It supports any standard 

browsers. The current implementation does not have an automatic online update feature, 

but we will regularly check for new releases of our selected external databases. The 

update for AACDS will be performed quarterly and upon major releases of MSV3D [43], 

SwissVar [44], and dbSNP [109]. 
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CHAPTER 4: SDS, A STRUCTURAL DISRUPTION SCORE FOR 

ASSESSMENT OF MISSENSE VARIANT DELETERIOUSNESS 

[110] 

Abstract 

We have developed a novel structure-based evaluation for missense variants that 

explicitly models protein structure and amino acid properties to predict the likelihood that 

a variant disrupts protein function. A structural disruption score (SDS) is introduced as a 

measure to depict the likelihood that a case variant is functional. The score is constructed 

using characteristics that distinguish between causal and neutral variants within a group 

of proteins. The SDS score is correlated with standard sequence-based deleteriousness, 

but shows promise for improving discrimination between neutral and causal variants at 

less conserved sites. 

The prediction was performed on 3-dimentional structures of 57 gene products whose 

homozygous SNPs were identified as case-exclusive variants in an exome sequencing 

study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for 

likely benign variants found in the EVS database, and for positive control variants in the 

same genes that are suspected to promote a range of diseases. To derive a characteristic 

profile of damaging SNPs, we transformed continuous scores into categorical variables 

based on the score distribution of each measurement, collected from all possible SNPs in 

this protein set, where extreme measures were assumed to be deleterious.  A second 

epilepsy dataset was used to replicate the findings. 



 
 

63 
 

Causal variants tend to receive higher sequence-based deleterious scores, induce larger 

physico-chemical changes between amino acid pairs, locate in protein domains, buried 

sites or on conserved protein surface clusters, and cause protein destabilization, relative 

to negative controls. These measures were agglomerated for each variant. A list of nine 

high-priority putative functional variants for epilepsy was generated. Our newly 

developed SDS protocol facilitates SNP prioritization for experimental validation. 

Introduction 

Several prediction programs are available to evaluate missense variants as either 

deleterious (having a strong functional effect) or neutral (having no or only a weak 

functional effect) from the level of DNA or protein sequence conservation [14]. While 

existing sequence-based damaging scores agree for the most deleterious variants, 

predictions for candidate moderate effect variants identified from sequencing studies are 

not much better than chance. Since there is no clear way to truly evaluate the predictive 

accuracy of the scores prior to experimental assessment of function, there is scope for 

development of orthogonal methods for variant prioritization.  Our study explores the 

utility of solely using protein structure-based assessments as a complement to existing 

sequence-based scores. 

Of the commonly used automatic tools for prediction of variant deleteriousness, 

PolyPhen2 [19] already incorporates protein structure information.  It uses an iterative 

greedy algorithm to select certain features from a restricted training set, and then takes a 

Bayesian approach to assign each variant into one of four effect categories: probably 

damaging, possibly damaging, benign, and unknown. However, it does not perform 
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evaluations on the actual protein structure that each variant is found in. Rather, 

PolyPhen2 includes experimentally derived-structures that are available for ~10% of the 

training set. Although the implementation has high accuracy (73-92%) for the 

identification of true positives in cross-validation data, structural data does not directly 

contribute to evaluations of novel genes and it is not clear how efficiently the generalized 

structural characteristic rules used by the algorithm can contrast clinically-associated 

variants from neutral variants in a diverse gene set. 

In this study, we therefore introduce a new approach for assessing the deleteriousness of 

nonsynonymous single nucleotide polymorphisms (nsSNPs). Our newly developed 

protocol uses additional information, that is, protein structure-based assessments applied 

only where the structural solution is available, to complement existing sequence-based 

scores. More specifically, our evaluation pipeline focuses on functionality of protein 

residues derived from 3-dimensional (3D) protein structures.  We also incorporate 

multiple classes of structural assessment, namely measures of protein stability, flexibility, 

protein-protein interaction potential, and small-molecular binding.  As several studies 

[35, 39] have proven that structural information increases classification accuracy of 

SNPs, we hypothesized that by incorporating results from several structure-based 

assessments, it may be possible to generate characteristic profiles that enhance prediction 

of the degree to which a candidate rare variant may disrupt protein function, and lead to 

disease development. 

We applied this newly developed variant assessment protocol to a set of 57 gene products 

harboring homozygous missense variants, discovered in a recent large-scale exome 

sequencing study, that are exclusive to epilepsy patients  [111].  Epilepsy is a highly 
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genetically heterogeneous disease, for which each likely causal variant is observed in a 

small fraction of individuals, likely with variable expressivity and penetrance [112].  As a 

result, it is difficult to ascertain which variants are truly responsible for the etiology of 

disease in individual patients.  None of the case-exclusive variants documented by 

Heinzen et al. (2012) had a high enough prevalence to support statistical association with 

the disease, so experimental tests will be needed to filter putative causal variants.  By 

contrasting the spectrum of structural features of the case variants with positive control 

known causal variants and negative control neutral variants observed in healthy 

individuals for the same proteins, we illustrate the potential for structural assessment to 

prioritize new variants for functionalization.     

Materials and Methods 

Our analysis pipeline applied sequence- and structure-based assessments to missense 

mutations and their 3D protein structures to depict the likelihood that a mutation disrupts 

protein function. Numerous databases and prediction programs were used. The flow 

diagram of the analysis protocol is illustrated in Figure 4.1. 
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Figure 4.1: Flow diagram of the analysis pipeline. The analysis employed sequence-
based deleterious prediction scores, parameters which reflect the nature of amino acid 
changes, and 3D structure-based evaluations. Structural analyses were performed by 
characterizing functionality of mutated protein residues caused by negative and positive 
SNPs (indicated by green and red stick representations, respectively). All analysis results 
were collectively used to evaluate enriched features found predominantly in causal SNPs. 
We then examined these predictors with regard to the case variants. The number of 
deleterious structure predictions per substitution represents a “structural disruption score” 
(SDS), and was used to rank candidate epilepsy variants.  
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Genomic dataset and candidate protein sequences 

The epilepsy-specific amino acid substitutions identified from a recent exome sequencing 

study of epilepsy disorders [111] served as our case variants for which we aimed to 

assess whether or not they are likely to impact protein function. In that study, exome 

sequencing was performed on 118 cases and 242 controls. Follow-up genotyping for 

candidate causal variants included approximately 90% and 65% of individuals with 

European ancestry in the case (n=878) and control (n=1,830) groups, respectively [111]. 

The study identified 72 homozygous variants (68 are nsSNPs) found in 71 genes (“gene 

set 1”) that were exclusive to cases. Among these, 52 nsSNPs were present in more than 

one affected individual.  All genes in this first dataset had been previously characterized 

but not known to cause epilepsy; therefore, we added a second gene set (“gene set 2”) to 

represent genes known to associate with the disorders. We attained the second gene list 

(n=41 genes) from two public repositories of genetic variations: MSV3d  [43] and 

SwissVar [44]; none of the genes overlap with entries from the primary dataset. There are 

373 missense variants in the 41 genes that have been documented to cause epilepsy; 

therefore, we treated them as case variants for gene set 2. 

For both sets of genes, we compiled corresponding negative neutral and positive causal 

variants from the EVS database (retrieved March 201) [50], and MSV3d (July 2012 

release) [43] and SwissVar (accessed February 2013) [44], respectively. Positive controls 

are documented non-epileptic disease-causing nsSNPs found in the same genes (n=134 

nsSNPs from 14 genes of set 1, and n=205 nsSNPs from 41 genes of set 2). Likewise, 

negative controls are variants observed in these genes, but with no clinical associations 

(neutral nsSNPs). Any negative controls already identified as either case or positive SNPs 
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were excluded from the list of neutral SNPs, resulting in 5,281 and 1,490 putatively 

neutral (i.e. negative control) SNPs for sets 1 and 2, respectively. 

Gene and variant annotations  

In order to infer amino acid indices for the altered amino acid residues, nsSNPs were 

mapped to their corresponding protein sequences and structures using transcript IDs. All 

protein sequences (major isoforms) were downloaded from the UniProt database 

(accessed February 2013) [51].  Prior to applying our new variant analysis protocol, we 

performed literature searches on the genes and SNPs in our datasets in order to manually 

annotate their influence on the disease.  In particular, we compared the features of gene 

sets 1 and 2, and recorded relevant findings.  

First we grouped genes by their related biological pathways or biological functions using 

a gene group profiling method [78]. Second, we performed literature searches using 

SNPshot—a text mining tool for PubMed abstracts (accessed December 2012) [80]. 

Third, we assumed that amino acid mutations caused by the rare case SNPs or the causal 

SNPs would locate in the vicinity of functional sites of protein chains. Therefore, we 

utilized UniProt’s sequence feature records (accessed February 2013) [51] to check if the 

mutating amino acids locate in any of the important sites; e.g., molecule processing sites, 

binding sites, modification sites, etc. 

Population-specific minor allele frequencies (MAFs) for all variants were compiled from 

NHLBI GO Exome Sequencing Project (ESP6500) (June 2012 release) [50], available 

from dbNSFP 2.0 (accessed March 2013) [15]. 
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Protein structure dataset 

We used protein 3D structures to determine the structural nature of altered protein 

residues and to evaluate the effects of single point mutations introduced by nsSNPs on a 

specific protein. To ensure that we represent most of the proteins with high quality 3D 

structures, we employed several structural sources. Experimentally derived structures 

were retrieved from RCSB (retrieved April 2013) [60].  Homology models were 

compiled from SAHG (retrieved July 2013) [113] or automatically built using Phyre2 

(accessed April 2013) [101]. Multiple structural candidates representing an overlapping 

protein chain were compared and only one best structure was chosen to represent the best 

non-overlapping protein segment. 

Details of the two approaches for acquiring protein homology models are as follows. 

First, we searched for 3D models from the SAHG database [113], which contains a 

collection of encoded human protein structures, constructed by Modeller software [114]. 

We downloaded only structures having >15% sequence identity to the template. The 

retrieved proteins exhibit either ligand bound (holo) and/or unbound (apo) forms. Second, 

we built protein models by multiple template methodology using the automated Phyre2 

homology modeling server [101]. Structure templates were selected by default and 

models were built from variable numbers of high confidence templates. This multi-

template approach ensures that the model covers most of the protein chain.  Large 

proteins (>1,300 amino acids) were truncated into smaller domain(s) using domain 

boundary information from InterPro [115]. A model representing each shortened 

sequence was built independently using either the single- or multi-template method; there 

was no attempt to join multiple models into a single model for a protein. For models 
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created with the Phyre2 server, we retained the best homology model based on the 

empirical criteria that >50% of the residues were modeled at >90% confidence.  

After the initial homology model selection, the models were further subjected to energy 

minimization with explicit solvent using the YASARA force field [62] to resolve any 

steric conflicts found within the structures. Next, we validated the homology models 

using two independent scores: QMEAN6 [63] and ModFOLD4 [64]. Both scores show 

good ability to distinguish between good and bad models in the recent Critical 

Assessment of protein Structure Prediction (CASP) experiments [116]. To facilitate the 

structural validation step, we selected structures that pass the QMEAN6 threshold for 

subsequent ModFOLD4 evaluations. 

In many cases, we initially selected more than one validated structure to represent an 

identical protein domain. To retain only one best representative structure for a protein 

segment, we used Chimera [65] to visualize all structure candidates and determined the 

structural similarity among them using two parameters: root-mean-square deviation 

(RMSD) of Cα atoms, and quality score (Q-score) that normalizes an RMSD by the 

alignment length. All measurements were performed with Chimera’s MatchMaker tool 

[65]. When several overlapping structures agreed with each other, we selected the one 

with the best ModFOLD4 score. When the structures were in disagreement, we discarded 

them all together. Our retrieval and validation pipeline for protein 3D structures yielded 

114 non-overlapping structures representing 57 gene products from gene set 1, and 51 

non-overlapping structures representing 36 proteins from gene set 2.  
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Table 4.1 summarizes the number of missense variants from our genomic dataset in three 

categories (case, negative, and positive controls), with respect to the presence/absence of 

their corresponding 3D structures. 

Table 4.1: Number of variants within each gene set, classified into three classes 

(cases, negative controls, and positive controls), and numbers of 3D structures used 

in the analysis. 

Gene 

set 

(# of 

genes) 

Number of variants by 

categories* 

Number of 3D structures by types and sources** 

# of 

selected 

structures 

# of genes 

with 

selected 

structures 

Crystal 

structures 
Homology models 

Case Neg Pos RCSB 

Phyre2 

(multi-

template) 

Phyre2 

(single-

template) 

SAHG 

(apo) 

SAHG 

(holo) 

Set 1 
(71) 

30 
(68) 

1674 
(5281) 

100 
(134) 

20 (24) 8 (35) 35 (59) 
20 

(86) 
31 (80) 114 57 

           

Set 2 
(42) 

184 
(373) 

554 
(1490) 

105 
(205) 

2 (2) 3 (19) 5 (17) 
21 

(46) 
20 (38) 51 36 

* Number of variants by categories is indicated by the number of SNPs locate within the 
set of selected 3D structures (114 structures for gene set 1, and 51 structures for gene set 
2), followed by the total number of SNPs with and without 3D structures (number shown 
in parentheses). 

** Number of structures represents the number of selected 3D structures that passed 
quality validation scores. The initial number of structures obtained from each data source 
is much larger, indicated by numbers in parentheses. 

Inferring variant deleteriousness from sequence-based predictors 

We obtained sequence-based predictions for each amino acid variant from dbNSFP 2.0 

(accessed March 2013) [15]. The program provides pre-computed deleteriousness scores 

for six established deleterious prediction algorithms: SIFT [16], PolyPhen2_HumDiv and 

PolyPhen2_HumVar [19] , LRT [17], MutationTaster [20], and MutationAssessor [18]. 

Three evolutionary conservation-based scores were also included: GERP++ [53], phyloP 

[54], and SiPhy [55]. For simplicity, we assigned the level of deleteriousness and 
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conservation to each mutation based on how many predictors reported the mutation to be 

either “deleterious” (maximum score of 6) or “conserved” (maximum score of 3). 

Additional parameters for sequence-based analysis 

In addition to the SNP-based prediction parameters that are derived from multiple 

sequence alignments, some useful information can be analyzed from a single protein 

sequence alone. For example, amino acids with similar physicochemical properties may 

substitute for one another while maintaining the functionality of the protein. Three 

indicators may be used to highlight the most severe changes of amino acid pairs. First, 

Grantham scores [56] reflect the degree of physicochemical difference between pairs of 

amino acids. Second, changes involving any glycine or proline residues are likely to 

affect protein function since these two residues have special roles with regard to protein 

structure: proline has an exceptional conformational rigidity compared to other amino 

acids while glycine is much more conformationally flexible [117]. Third, gain or loss of 

disulfide bonds occurs when variants induce changes in cysteine residues. Disulfide bond 

formation between non-adjacent cysteines can facilitate protein folding; hence, they are 

important for maintaining the structural integrity of the protein [118]. In this context, we 

used DiANNA webserver [119] to predict the disulfide connectivity patterns in the wild 

type protein, and then determined if the amino acid mutation affects the bonding of 

cysteine pairs. 

Inferring variant deleteriousness from structure-based predictors 

A number of currently available protein structural analysis tools have the potential to be 

applied to structure-based variant assessment protocols [34]. To assess the functionality 
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of mutated protein residues, we concentrated on four features of structural analysis: 

protein stability, protein flexibility, protein-ligand binding potential, and protein-protein 

interaction potential. Many mutations disrupt these elements, and as a result, contribute to 

disease etiology. 

1) Protein stability.  For assessment of protein stability, we aimed to first identify amino 

acids with specialized roles in promoting protein stability, and second to determine which 

mutations cause a significant change in protein stability. For the first objective, we used 

SCide webserver [69, 70] and SRide program [71] to identify amino acids with essential 

stability functions. Long-range stabilization center (SC) residues are pairs of amino acids 

having close atomic contact (sum of van der Waals radii <1 Å), but locate at least ten 

amino acids apart on the primary sequence [69, 70]. A subset of SC residues may make 

distinct contributions to protein stability because they are also evolutionary conserved 

and located in the core region of the protein, and/or have many interacting partners. SC 

residues with these two extra properties are referred as stabilizing residues (SRs); they 

are also expected to make key contributions to protein stability [71]. For the second 

objective, we aimed to determine if a particular mutation affects protein stability by 

means of inducing a large magnitude of free energy change (∆∆G). For this purpose, we 

selected PoPMusic 2.1 [120] as our ∆∆G predictor.  

Amino acid changes that increase protein stability (∆∆G < 0) and those associated with 

the destabilizing mutation (∆∆G > 0) are noted. Due to large differences in performance 

of stability change calculations [121], the proper margin for severe stability change can 

be ambiguous. However, it is known that the sensitivity in predicting stabilizing 
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mutations is much less than for destabilizing ones [66], and the correlation between 

predicted stability change (∆∆GP) and measured values (∆∆GM) of our selected program 

is ~1 kcal mol-1 [120]. Therefore, in our study, we followed the suggestions made by 

Dehouck et al. (2011). The stability changes are categorized into four levels: no change if 

∆∆G is between ±0.5 kcal mol -1, mildly stabilizing if ∆∆G is between -0.5 and -2 kcal 

mol -1, mildly destabilizing if ∆∆G is between 0.5 and 4 kcal mol -1, and strongly 

destabilizing if ∆∆G is ≥4 kcal mol -1. 

2)  Protein flexibility.  Protein flexibility is an important protein feature because highly 

dynamic sites are often involved in special functions, such as binding residues that can 

undergo subtle motion rearrangements when a small molecule is bound. Flexible amino 

acid residues permit large protein movements during protein folding and conformational 

switches [122]. For evaluating the levels of residue dynamics within a protein, we 

employed the predicted B-factors (relative vibrational motion) and root-mean-square 

fluctuations (RMSFs) obtained from a prediction program PredyFlexy [75] to classify 

amino acid residues into rigid, intermediate or flexible sites. For predicting protein 

movements of higher amplitudes, such as in conformational switches, we used the 

program FlexPred [76, 77] to determine which amino acid residues are located at 

conformationally flexible sites, indicated by a probability value P(Flexible). 

3) Protein-ligand binding potential.  For a SNP that causes an amino acid change in the 

vicinity of a catalytic site or a ligand binding site, it is possible to determine whether the 

mutation is indeed affecting the catalytic activity or the ligand binding affinity of the 

protein. In silico predictions are possible, but they require extensive computational 
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resources. We utilized two alternative approaches to predict the ligand binding sites or 

catalytic sites from protein 3D structures, and assessed whether or not the altered protein 

residues locate in or near the predictions. The first approach began with the use of 

3DLigandSite [72] to search for ligands present in homologous structures. Then, a cluster 

of amino acids located within a default distance setting of 0.8 Å of the selected ligand 

was predicted as a pocket site, and amino acid residues that make up that pocket site were 

specified as ligand binding residues. In the second method, catalytic sites were predicted 

by scanning for protein residues that are not well optimized. This assumption is based on 

the finding that catalytic sites are generally designed for function rather than stability 

[120]. Low optimality residues are those whose several possible mutations would 

improve protein stability. The program PoPMusic [120] is fast enough that it can 

calculate stability changes (∆∆Gs) of all possible mutations at a given position in the 

protein sequence, and was used to identify non-optimized amino acid residues based on 

the summation of all stabilizing ∆∆Gs. This parameter designates the degree of non-

optimality (Γ) for each amino acid residue along the protein chain. 

4)  Protein-protein interaction potential.  Disease-causing mutations that do not occur in 

binding sites or buried sites are predominantly found on protein interfaces [36];  

therefore, we assessed which of the mutating protein residues may be involved in this 

type of inter-molecular interaction. We used PatchFinder program [73, 74], which 

evaluates evolutionary conservation scores in conjunction with solvent accessibility of 

protein residues to determine the most significant cluster of conserved residues on the 

surface of a protein. This patch indicates possible functional sites of protein-protein 

interactions. 
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Additional parameters for structure-based analysis 

Other information retrieved from the structure-based data includes the type of protein 

secondary structure that each variant interrupts, and the relative solvent accessibility of 

the altered protein residue. We obtained these predictions from PoPMusic [120]. Due to 

the small sample size, we modified the eight reported types of protein secondary structure 

[123] into five groups: (G/H/I), E, (T/B), S, and C. The 3-, 4- and 5-turn helices (groups 

G, H and I, respectively) were grouped jointly as helices. Extended strand in parallel 

and/or anti-parallel β-sheet remains as an individual group (group E). Groups T or B 

correspond to helices or sheets whose hydrogen bonding patterns are too short to form 

proper secondary structures. Lastly, groups S and C denote bend and coil annotations, 

respectively. 

The relative solvent accessibility (RSA) for residue X is expressed as a percentage of that 

observed for an Alanine-X-Alanine tripeptide. This conformation would expose the 

central X residue in the tripeptide as much as would normally be possible in a protein 

[120]. We considered protein residues whose RSA ≤20% as buried sites. Otherwise, they 

are expected to be on the protein surface. 

Statistical comparison of positive and negative SNPs 

We tested which predictions and measures can statistically distinguish between negative 

and positive control SNPs from each gene group. Particularly, we assessed which 

characteristics are most likely to be enriched in positive controls, and therefore imply 

disruption of functionality. After defining thresholds of likely deleterious function, we 

classified the predicted values for negative and positive controls into each different 
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category. The categories for structural indicators, the numerical cutoff values, and the 

numbers of mutations with extreme values from the two datasets are summarized in 

Table 4.2. 

Table 4.2:  Categories for structural indicators, cutoff values for continuous 
numerical parameters, and number of SNPs with extreme measures. All cutoff 
values were defined exclusively for gene set 1. The counts and percentages of variants 
with extreme values in each of the three variant classes are included.  

 Indicators Cut-offs 
#Case (%) 

(n=30) 

#Neg (%) 

(n=1674) 

#Pos (%) 

(n=100) 

Stability 
change 

Stabilizing: ∆∆G between -2 to -0.5 kcal mol -1 0 19 (1%) 0 

Strong stabilizing: ∆∆G ≤ -2 kcal mol -1 0 0 0 

Destabilizing: ∆∆G between 0.5 to 4 kcal mol -1 20 (65%) 830 (50%) 66 (66%) 

Strong destabilizing: ∆∆G ≥ 4 kcal mol -1 0 1 (0%) 0 

Dynamic sites 

Highly rigid: B-factornorm ≤ -0.537 (@2.5 percentile)          0 38 (2%) 3 (3%) 

Highly dynamics: B-factornorm ≥ 1.17 (@97.5 percentile) 1 (3%) 44 (3%) 1 (1%) 

Highly rigid: RMSFnorm ≤ -0.607 (@0.5 percentile) 0 48 (3%) 2 (2%) 

Highly dynamics: RMSFnorm ≥ 1.195 (@99.5 percentile) 1 (3%) 48 (3%) 3 (3%) 

Flexible sites 

Conformationally rigid: P(Flexible) ≤ 0.158 (@2.5 
percentile) 

1 (3%) 34 (2%) 2 (2%) 

Conformationally flexible: P(Flexible) ≥ 0.860 (@97.5 
percentile) 

1 (3%) 52 (3%) 0 

Sequence 
optimality Highly non-optimal: Γ ≤ -5 kcal mol -1 1 (3%) 49 (3%) 5 (5%) 

For continuous parameters, we compared the difference between the means of the 

positive and negative controls using two-tailed unpaired t-tests (Table 4.3). The 

distributions of scores within each SNP group were also illustrated by density plots 

(Figures 4.2-4.3). For non-numerical characteristics, we used Fisher’s exact test to 

determine whether the proportions of negative and positive control SNPs for each of the 

features are significantly different (Table 4.4). For continuous measures, similar analyses 

were performed after first transforming the scores into discrete categories based on pre-

specified thresholds that are most likely to discriminate normal and aberrant residues. 
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Once a series of predictions and measures was generated for all possible variants in a 

gene set, we converted continuous parameters into categorical classes, utilizing both 

literature-based and empirical cutoff values to represent the extremes (Table 2).  

Table 4.3: T-test statistics for gene sets 1 and 2. All tests were performed on a subset 
of SNPs whose protein structures pass quality validations. Significant statistics indicate 
different means between negative and positive SNPs. 

 Parameters 
Prob > |t|, (t ratio), df† 

Set 1 (57 genes) Set 2 (36 genes) 

Sequence-
based 

deleterious 
scores 

SIFT <.0001* (6.60) df 1704 <.0001* (4.61) df 598 

PolyPhen2_HDIV <.0001* (8.15) df 1772 <.0001* (7.38) df 657 

PolyPhen2_HVAR <.0001* (10.22) df 1772 <.0001* (8.70) df 657 

LRT <.0001* (4.19) df 1734 .0066* (2.73) df 654 

MutationTaster <.0001* (9.39) df 1674 <.0001* (5.57) df 631 

MutationAssesssor <.0001* (15.30) df 1772 <.0001* (6.06) df 652 

Sequence 
conservation 

scores 

GERP <.0001* (5.30) df 1772 <.0001* (3.92) df 657 

phyloP <.0001* (4.81) df 1772 0.0010* (3.29) df 657 

SiPhy <.0001* (5.89) df 1771 <.0001* (4.95) df 657 

Structure-
based scores 

∆∆G <.0001* (4.81) df 1772 <.0001* (3.83) df 657 

B-factor .0190* (-2.35) df 1756 .2450 (1.16) df 657 

RMSF .2304 (-1.20)  df 1756   .2264 (1.21)  df 657 

P(Flexible) .1185 (-1.56)  df 1772 .7594 (-0.31)  df 657 

Γ .9090 (-0.11)  df 1772 .2308 (-1.20)  df 657 

RSA .0035* (-2.93)  df 1772 .0658 (-1.84)  df 657 

† Statistic parameters include the two-tailed p-value, value of the t-statistics (t ratio), and 
the degree of freedom (df). Significant p-values (α =.05) are designated with ‘*’. The 
number of “df” equals to n-2 samples used in the analysis. 
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Figure 4.2: Density plots of six deleterious scores for Case, Neutral and Causal 
SNPs. By most of the standard deleteriousness scores, the distributions of cases in gene 
set 1 (Panel A) are closer to the neutral than the causal variants, and the neutral and 
causal variants are significantly different. The “known epilepsy” dataset (gene set 2, 
Panel B) demonstrated similar results. In this gene set, variants documented to cause 
epilepsy were regarded as “cases”, while variants associated with other disease types 
were considered as “causal SNPs (positive control)”. Although three prediction programs 
(SIFT, Polyphen2_HDIV, and Polyphen2_HVAR) suggested case and causal SNPs share 
similar distributions of deleterious scores, the remaining three programs illustrate their 
prediction algorithms do not favor the two types of causal variants equally. More 
importantly, case SNPs (epilepsy-causing SNPs) resemble neutral SNPs more than the 
causal ones.  
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Figure 4.3: Density plots for relative solvent accessibility and free energy change for 
Case, Neutral and Causal SNPs. The two structure-based scores demonstrate that Case 
and Causal SNPs share similar characteristics. Results were obtained from two 
independent sets of genes (Panels A-B).  Note the shift of the blue curves (cases) toward 
the causal SNPs (red) and away from the neutral ones (blue).  
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Table 4.4: Fisher’s exact test statistics for gene sets 1 and 2. High sequence 
conservation (conservation count = 3) is a feature that enriched in causal SNPs of gene 
set 2, but is more likely to be found in neutral SNPs of gene set 1.  

Enrichment 

types 
Significant features 

Fisher's exact test (one-tailed)† 

Set 1 (57 genes) Set 2 (36 genes) 

Enriched in 
causal SNPs 

Deleterious count ≥ 4 < .0001* < .0001* 

Conservation count = 3 
Enriched in  

neutral SNPs 
< .0001* 

Induce large amino acid change (Grantham score ≥ 100) < .0001* < .0001* 

Induce disulfide change NS (p = .6081) < .0001* 

Induce gly/pro change .0003* < .0001* 

Locates in buried site (RSA ≤ 20%) .0109* < .0001* 

Locate in conformationally rigid site (P(Flexible) ≤ 0.74) NS (p = .0558) .0060* 

Locate on protein patch < .0001* < .0001* 

Locate in protein domain .0204* < .0001* 

Strongly reduce protein stability (∆∆G ≥ 4 kcal mol -1) NS (p = 1) .0400* 

Reduce protein stability (∆∆G ≥ 0.5 kcal mol -1) .0009* < .0001* 

Enriched in 
neutral SNPs 

Conservation count = 3 < .0001* 
Enriched in  

causal SNPs 
Locate in highly dynamics site (B-factornorm ≥ 97.5 
percentile) 

NS (p = .2671) .0224* 

Locate in highly flexible site (P(Flexible) ≥ 97.5 
percentiles) 

.0468* NS (p = .1432) 

† Data for gene set 1 includes 100 causal SNPs and 1674 neutral SNPs. Data for gene set 
2 includes 289 causal SNPs (184 epilepsy case variants plus 105 non-epilepsy positive 
control variants), and 554 neutral SNPs. Significant p-values (α =.05) are designated with 
‘*’. Non-significant test statistics are labeled with NS, followed by the correspondent p-
value. 

For protein stability and sequence optimality measures, we followed the suggested 

thresholds from the PoPMusic program [120]. Stability changes were classified into four 

groups (mildly stabilizing, strongly stabilizing, mildly destabilizing, and strongly 

destabilizing) using the aforementioned cutoffs for ∆∆G. Regarding sequence optimality, 

it has been shown that as the threshold for Γ becomes more stringent, the proportion of 

catalytic sites to other sites increases [120]. For our analysis, we selected a cutoff for 
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which residues having Γ ≤ -5 kcal mol -1 are more likely to locate in ligand-binding 

domains.  

For the remaining continuous measures, i.e., B-factor, RMSF, and P(Flexibility),  we 

used empirical criteria to define the extremes. Extreme values for data set 1 and 2 were 

derived independently, but with an identical approach. First, we compared the score 

distributions of each measurement, collected from all possible SNPs in the protein set. 

Then, we selected the thresholds for each parameter so that we captured a handful of 

extreme variants. When applicable, we made sure that our thresholds do not induce large 

numbers of misclassifications. In summary, our empirically-defined thresholds are 

generally set at the top and bottom 2.5 percentiles. B-factor and RMSF predictions were 

classified into either highly rigid (extreme small negative values) or highly dynamic 

(extreme large positive values). Similarly, we denoted residues as conformationally rigid 

if the P(Flexibility) is exceptionally low, or conformationally flexible if the probability is 

notably high. 

Assigning a structural disruption score to candidate epilepsy variants 

After testing for statistically significant differences between negative and positive SNPs, 

we summarized the list of deleterious structure predictions and examined these predictors 

with regard to the case variants. We counted the number of deleterious structure 

predictions per substitution and represented this number as a “structural disruption score” 

(SDS). The scores were ranked and candidate epilepsy variants with a score of ≥ 4 out of 

7 are suggested to be “putative structural disrupted variants”. Further partitioning of this 

list based on the gene’s tolerance of polymorphism (RVIS) [124] yields two subgroups: 
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variants of high tolerance genes (genes that have more variants than expected), and 

variants of low tolerance genes (genes that have less variants than expected). These two 

groups of variants are also discussed in detail with respect to their disease implications. 

To examine the contribution of each selected parameter, especially the sequence-based 

deleterious score, towards our SDS, we compared the values of SDS with the Condel 

composite score [22], derived from three of the deleteriousness measures (SIFT, 

PolyPhen, and MutationAssessor). The evaluation was performed with a step-wise 

procedure. First, we tested for a correlation between the Condel score and SDS—

including all parameters from the sequence-based and structure-based predictions (total n 

parameters). Then, we re-evaluated the correlation using n-1 parameters, by excluding 

one of the SDS components at a time. 

Results 

Candidate gene and variant annotations  

Despite the fact that Heinzen et al. (2012) performed pathway analysis on 1183 genes 

harboring either homo- and/or heterozygous nsSNPs, with a genotype exclusive to the 

case group, no significantly over-represented biological pathways were found [111]. 

Using an alternative gene group profiling method [78], we also did not observe a 

statistical abundance for any biological terms derived from gene set 1.  However, this 

method did reveal that ~40% of genes in set 2 have roles in transmission of nerve 

impulses, ion channel complexes, or ion gated channel activity. A text mining method 

[80] discovered only 1 gene from set 1 that may be linked to epilepsy. This gene codes 

for a ubiquitin-like modifier activating enzyme 2 (UBA2), a drug metabolizing enzyme 
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that plays roles in GABAergic and cholinergic neuronal development [125]. Specifically, 

mutations in ubiquitin protein ligase along with disruptions in the important neuronal 

GABA receptor genes are suggested to induce seizure [126]. By contrast, all genes in set 

2 are suspected to be involved in a wide range of epilepsy disorders [43, 44]. Also note 

that the proportion of variants in cases relative to controls is much lower for genes in set 

1 than in set 2 (Table 4.1). 

Annotation of altered amino acid residues indicated some consistent patterns between 

case and causal variants. When we performed sequence feature searches [51] to compute 

the number of variants localizing in structurally or functionally important sites of a 

protein chain, we observed that more than half of the positive SNPs in both gene sets 1 

and 2 were predicted to locate in transmembrane, topological domain, or repeat regions. 

Similar patterns were found for the case-exclusive epilepsy variants. 

Statistically significant differences between positive and negative SNPs 

Table 4.3 documents that all deleteriousness scores, all conservation scores, and some of 

structure-based scores have significantly different means between negative and positive 

SNPs. The single parameters that best differentiate the groups are the MutationAssesssor 

prediction for gene set 1 and the PolyPhen2_HVAR prediction for gene set 2, but more 

notable is the highly significant differentiation for all of the sequence-based scores. 

Although the t-ratios are consistently lower in set 2 than set 1, the smaller sample of 

genes precludes inference that there is a difference between the two sets.  Notably, three 

of the structure-based measures are also at least nominally significantly different between 

positive and negative control variants in set 1, and trend in the same direction in set 2: 
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∆∆G protein stability, B-factor protein flexibility, and relative solvent accessibility 

(RSA).  

We converted several of the continuous structural measures to categorical ‘normal’ 

versus ‘extreme’ values and compared profiles of disease causal variants with those of 

neutral variations in gene sets 1 and 2. Table 4.4 reports the list of significantly distinct 

sequence/structural features for each variant category based on Fisher’s exact test. Seven 

significant characteristics of causal variants found in the 57 genes in set 1 are: having a 

high deleterious count (≥ 4 out of 6 scores), introducing an amino acid change with large 

physicochemical dissimilarity, inducing glycine or proline change, being situated in a 

protein domain, buried site or on a conserved protein surface, and causing at least mild 

protein destabilization. By contrast, negative control SNPs of this gene set were found to 

be enriched in conserved variants (conservation count = 3 out of 3) and generally locate 

in conformationally flexible sites. 

These findings were validated with a parallel analysis of gene set 2, although in this case 

we gained statistical power by combining the set of epilepsy case variants with the non-

epilepsy positive control SNPs (combined disease-SNPs n=289). Each of the significant 

features detected in gene set 1 replicates in set 2, and additional evidence that disruption 

of disulfide bonds and location in conformationally rigid sites differentiate neutral and 

disease variants were obtained. These findings emphasize that causal variants are likely 

to affect protein functional sites, a conclusion that can only be obtained from structure-

based analysis.  
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Structural features predict deleteriousness of case SNPs 

Next, we asked how the distribution of scores for the putative epilepsy-case variants 

compares with the negative and positive controls.  By most of the standard 

deleteriousness scores, the distributions of cases are closer to the negative than the 

positive controls in both datasets (Figure 4.2). We conclude that there is little evidence 

from standard measures for enriched deleteriousness in the case variants from the 

epilepsy study. Similar observations were found for Grantham score, protein flexibility 

parameters, and a few other structural measures (data not shown).  

However, we determined that the solvent accessibility measure (RSA) and a protein 

stability measure (∆∆G) assign case variants to be more comparable to positive than 

negative controls (Figure 4.3A).  Likewise, the same two structural parameters place 

“known epilepsy” variants in gene set 2 (Figure 4.3B) closer to the distribution observed 

in other disease-causing mutations. This analysis emphasizes the potential for structure-

based deleteriousness measures to generate predictions that are more discriminating than 

those derived from measures of sequence conservation.    

To obtain a list of high-priority functional nsSNPs for epilepsy, we applied the 

deleterious structure predictions enriched in positive SNPs (Table 4.4) to all candidate 

epilepsy variants and identified the ones with high SDSs (score ≥ 4 out of 7). A list of 14 

high-likelihood structure-disrupted variants from 30 missense mutations was generated. 

To account for differences in the burden of mutations among genes, we used the Residual 

Variation Intolerance Score (RVIS) [124] to identify and compare the levels of 

mutational intolerance of each gene in our two datasets. The parameter determines the 
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deviation of observed vs. expected numbers of common variants in a gene. Petrovski et 

al. (2013) found that genes which carry many common mutations (large positive RVISs) 

are less likely to influence disease development. Comparison of average RVIS between 

genes in sets 1 and 2 indicated that the two groups do not have the same tolerance to 

variations (p-value .0011, two-tailed t-test). The average RVIS for gene set 1 is 0.39 

(range 0.11 to 0.67, 95% CI) whereas the value for gene set 2 is -0.40 (range -0.77 to -

0.03, 95% CI). As expected, lower RVISs were observed for the documented disease 

causal genes (gene set 2). The finding is consistent with low RVISs in many OMIM 

genes [124]. Nonetheless, the positive average RVIS for gene set 1 is not surprising; 

among the 57 genes in set 1, 38 genes (67%) are classified as being high tolerance.  

Sub-classification of our 14 high SDS structure-disrupted variants yields 9 and 5 genes 

that are highly acceptable or tolerant of mutations, respectively (Table 4.5).  Although 

variants in genes with low tolerance (negative RVISs) are more likely to be deleterious, 

our structural disruption score focuses at the variant level, and the structural analysis 

potentially provides novel intuition that is not apparent from any sequence- or gene-based 

analysis. Therefore, the indication of many “high tolerance genes” in our dataset does not 

preclude potential functional effects of specific variants. For this reason, we performed 

in-depth literature searches on all 9 and 5 variants of the 2 subgroups, and provide our 

inference of the likelihood that a particular SNP may contribute to the epilepsy disorders 

(Table 4.6). Interestingly, we found that half (4 out of 9) of the SNPs in high tolerance 

genes have potential to promote epilepsy. The proportion is comparable (2 out of 5) for 

variants located in the low tolerance genes. Of the 9 variants in high tolerance genes, one 

has a structural feature that is compatible with those of neutral SNPs, i.e., the variant 
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alters a highly flexible protein site; therefore, we disregarded it as a putative functional 

variant. Similar consideration of the low tolerance genes suggests that just one, 

PPP1R27, is likely to harbor a mutation that promotes epilepsy. This leads to 

prioritization of 9 “high-priority putative functional variants for epilepsy”.  The locations 

of each of these variants with respect to their protein 3D structures are shown in Figure 

4.4, and each is discussed below (variant numbering follows Table 4.5). 
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Table 4.5: Case SNPs with high structural disruption scores. Each candidate epilepsy variant is suggested to disrupt protein 
structure/function if its structural disruptions score (SDS) is high (≥ 4 out of 7). A list of 14 putative structural disrupted variants from 
30 missense mutations is reported, along with the corresponding 7 scores that make up the SDS. The variants are classified into two 
groups, based on the level of polymorphism tolerance of its gene.  

 Variant 

category 
List Gene 

Variant position 

(base change, 

[amino acid 

change]) 

Structural disruption features* 

SDS 

(max 

= 7) 

Additional gene/SNP 

features 

High 

deleterious 

count? 

[Del count, 

max=6] 

Large 

amino acid 

change? 

[Grantham 

score] 

Induce 

Gly/Pro 

change? 

[amino 

acid 

change] 

Locate in 

buried 

site? 

[%RSA] 

Locate 

on 

protein 

patch? 

Locate in 

protein 

domain?  

[CATH 

architecture] 

Reduce 

protein 

stability? 

[∆∆G (kcal 

mol-1)] 

Gene 

tolerance 

level 

[RVIS] 

Locate in 

highly 

flexible site 

[percentile 

of 

P(flexible)] 

structural 
disrupted 
variants 

 
which 

 
locate in 

high 
tolerance 

genes 

A ABCA6 
(4075)TGC>CGC 

[C1359R] 
yes [6] yes [180] 

 
yes [2.05] 

 

yes 
[3-layer(αβα) 

sandwich] 
yes [1.64] 5 

high 
[0.26] 

 

B ABHD14A 
(685)CGA>GGA 

[R227G] 
 yes [125] yes [R>G]   

yes 
[3-layer(αβα) 

sandwich] 
yes [0.87] 4 

high 
[0.77] 

 

C ALOX12 
(1211)CGG>CAG 

[R404Q] 
yes [4] 

  
yes [10.55] yes 

yes [up-down 
bundle] 

yes [0.90] 5 
high 

[0.80] 
 

D DDX52 
(1064)ATC>ACC 

[I463T] 
yes [4]   yes [4.42]  

yes 
[3-layer(αβα) 

sandwich] 
yes [1.37] 4 

high 
[0.05] 

 

E EPYC 
(449)TCC>TGC 

[S150C] 
yes [5] yes [112]  yes [0.77]  

yes 
[α-β 

horseshoe] 
 4 

high 
[0.51] 

 

F HELB 
(1517)GAT>GGT 

[D506G] 
yes [4]  yes [D>G] yes [18.27]   yes [1.40] 4 

high 
[1.08] 

 

G IAH1 
(127)CTG>GTG 

[L43V] 
yes [4]   yes [4.66]  

yes 
[3-layer(αβα) 

sandwich] 
yes [2.06] 4 

high 
[0.17] 

 

H NMUR1 
(409)CGC>TGC 

[R137C] 
yes [4] yes [180] 

 
yes [1.17] 

 
yes [up-down 

bundle] 
yes [1.83] 5 

high 
[0.27] 

 

I PALB2 
(2993)GGA>GAA 

[G998E] 
yes [5]  yes [G>E] yes [2.27]   yes [3.23] 4 

high 
[0.32] 

yes [97.75] 
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Table 4.5 (continued) 

Variant 

category 
List Gene 

Variant position 

(base change, 

[amino acid 

change]) 

Structural disruption features* 

SDS 

(max 

= 7) 

Additional gene/SNP 

features 

High 

deleterious 

count? 

[Del count, 

max=6] 

Large 

amino acid 

change? 

[Grantham 

score] 

Induce 

Gly/Pro 

change? 

[amino 

acid 

change] 

Locate in 

buried 

site? 

[%RSA] 

Locate 

on 

protein 

patch? 

Locate in 

protein 

domain?  

[CATH 

architecture] 

Reduce 

protein 

stability? 

[∆∆G (kcal 

mol-1)] 

Gene 

tolerance 

level 

[RVIS] 

Locate in 

highly 

flexible site 

[percentile 

of 

P(flexible)] 

structural 
disrupted 
variants 

 
which 

 
locate in 

low 
tolerance 

genes 

J EXOG 
(830)GGA>GTA 

[G277V] 
yes [6] yes [109] yes [G>V]   

yes 
[3-layer(αβα) 

sandwich] 
yes [1.64] 5 

low 
[-0.45] 

 

K FAAH2 
(821)CGT>CAT 

[R274H] 
yes [4] 

  
yes [0] 

 
yes 

[α-β complex] 
yes [0.95] 4 

low 
[-0.29] 

 

L MAOA 
(374)AAT>AGT 

[N125S] 
yes [4] 

  
yes [6.65] 

 

yes 
[orthogonal 

bundle] 
yes [1.36] 4 

low 
[-0.14] 

 

M PPP1R27 
(336)ATA>ATG 

[I112M] 
yes [5] 

  
yes [0] 

 
yes 

[α horseshoe] 
yes [1.41] 4 

low 
[-0.32] 

 

N PTPN14 
(566)GAA>GGA 

[E189G] 
yes [4]  yes [E>G]   

yes [up-down 
bundle] 

yes [1.79] 4 
low 

[-0.30] 
 

* Only the values corresponding to enriched characteristics of causal SNPs are included in the table; the empty cells do have values 
but they are not presented here for clarity. 
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Table 4.6: Summary of structural disrupted case SNPs. The table summarizes the structural and clinical findings for each of the 
top 14 case variants. The 9 putative functional variants for epilepsy (variants A-H, M) are identified from of a subset of the 14 
variants.  Eight variants (variants A-H) are located in “high tolerance genes” and do not possess a compatible feature with those of 
neutral SNPs. The ninth variant (variant M) is located in a “low tolerance gene”; the gene is likely to be associated with epilepsy 
disorders.  

 Variant 

category 
List Gene 

Variant position 

(base change, 

[amino acid 

change]) 

Gene functions 

[biological function] 
Variant’s features* 

Disease implications† SDS 

(max 

= 7) 

%MAF 

(AfrAmr, 

EurAmr) Other diseases Epilepsy 

structural 
disrupted 
variants 

 
which 

 
locate in 

high 
tolerance 

gene 

A ABCA6 
(4075)TGC>CGC 

[C1359R] 

ABC transporter A family 

member 6  

[lipid homeostasis] 

large change in amino acid 
properties, mutation causes 
protein destabilization but 
does not alter disulfide bonds 

n/a n/a 5 0.30, 2.00 

B ABHD14A 
(685)CGA>GGA 

[R227G] 
hydrolase  
[neuron development] 

near active site (low Γ), loss 
of side chain (R>G) 

linked to Chanarin-Dorfman 
syndrome (fat depositions in 
internal organs) 

less likely 4 0.16, 0.23 

C ALOX12 
(1211)CGG>CAG 

[R404Q] 
lipoxygenase  
[lipid metabolism] 

near active site, on best 
protein patch 

shares substrate with COX 
(COX-2 expression increases 
upon electrical stimuli) 

likely 5 0.05, 0.37 

D DDX52 
(1064)ATC>ACC 

[I463T] 
RNA helicase 
[mRNA degradation control] 

stabilization center 

gain of function in 
Drosophila's homolog 
suppresses seizure; mRNA 
loss accounts for 1/3 of 
human diseases 

maybe 4 0.23, 1.16 

E EPYC 
(449)TCC>TGC 

[S150C] 
epiphycan  
[cartilage development] 

stabilization center, mutation 
yields preferred hydrophobic 
core 

osteoarthritis no 4 0.61, 2.42 

F HELB 
(1517)GAT>GGT 

[D506G] 
DNA helicase  
[DNA damage repair] 

3 indications as a binding 
residue, confirmed by 
mutagenesis 

effective cellular protection 
mechanism helps animals 
survive brain injuries after 
induced seizures 

likely 4 0.57, 3.76 

G IAH1 
(127)CTG>GTG 

[L43V] 
esterase  
[lipid metabolism] 

mutation locates at a turn 
region (not favorable in 
highly structured proteins) 

antiepileptic drugs interfere 
with lipid metabolisms 

likely  
(drug 

response) 
4 0.28, 2.62 

H NMUR1 
(409)CGC>TGC 

[R137C] 

neuromedin-U receptor 1 
[uterus contraction, 
vasoconstriction] 

diminishes stabilizing salt 
bridge and causes protein 
destabilization 

control of food intake no 5 0, 0.08 

I PALB2 
(2993)GGA>GAA 

[G998E] 

partner and localizer of 
BRCA2 [homologous 
recombination repair] 

mutation may interfere with 
conformational flexibility of 
protein, largely decreases 
protein stability 

several mutations identified 
in breast cancer but disease 
associations are not definitive 

no 4 0.59, 2.40 
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Table 4.6 (continued) 

Variant 

category 
List Gene 

Variant position 

(base change, 

[amino acid 

change]) 

Gene functions 

[biological function] 
Variant’s features* 

Disease implications† SDS 

(max 

= 7) 

%MAF 

(AfrAmr, 

EurAmr) Other diseases Epilepsy 

structural 
disrupted 
variants 

 
which 

 
locate in 

low 
tolerance 

gene 
 

J EXOG 
(830)GGA>GTA 

[G277V] 
mitochondria endonuclease 
[programmed cell death] 

rigid residue at turn region, 
controls positioning of C-
terminal and active site, 
confirmed by mutagenesis 

n/a but reduces substrate 
binding 

n/a 5 0.27, 1.20 

K FAAH2 
(821)CGT>CAT 

[R274H] 
fatty-acid amide hydrolase2 
[lipid metabolism] 

mildly decreases protein 
stability 

gene’s regulation of 
endocannabinoid system is 
linked to Alzheimer’s and 
other CNS disorders 

maybe 4 n/a 

L MAOA 
(374)AAT>AGT 

[N125S] 

monoamine oxidase type A  
[neurotransmitter 
metabolism] 

far from functional sites, 
mildly reduces protein 
stability  

gene catalyzes several 
neurotransmitters and 
associated with behavioral 
phenotypes, confirmed by 
animal studies 

no 4 n/a 

M PPP1R27 
(336)ATA>ATG 

[I112M] 
phosphatase regulator 
[cellular process regulation] 

longer amino acid side chain 
causes steric clash 

member of KEGG epilepsy 
pathway;  protein in the same 
family linked to Lafora 
disease (teenager-onset of 
epilepsy) 

likely 4 n/a 

 
N PTPN14 

(566)GAA>GGA 
[E189G] 

tyrosine-protein phosphatase 
non-receptor type 14  
[cellular process regulation] 

mutation does not alter inter-
residue bonding but slightly 
decreases protein stability 

several mutations identified 
in colorectal cancers 

no 4 0.93, 3.22 

*Variant’s features include all structural changes/implications that were collected during the analysis, regardless of their significant in 
feature enrichment towards causal SNPs. 

†Disease implications denote any clinically-relevant associations in found in literatures. Epilepsy implications indicate our opinions on 
whether or not the variant contributes to epilepsy development. The opinion is based upon several data sources. However, the 
considerations exclude the SDS of a variant and its minor allele frequencies (MAFs). (The SDS had already been utilized as a filter 
during the variant prioritization step. The allele frequencies are presented here solely for comparison purposes.) 
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Figure 4.4: 3D structures for the nine high-priority variants for epilepsy. Mutated 
protein residues caused by the SNPs are indicated with blue surface representations along 
with the amino acid name (wild type) and residue index. Yellow surface representations 
refer to predicted binding sites or catalytic sites, except in (M) in which it represents a 
protein residue with close proximity to the altered amino acid. Orange representations in 
(C) indicate the predicted best conserved residue cluster on the protein surface. The 
substitution of Ser150Cys in (E) adds one favorable hydrophobic residue (green surface 
representation) to the core of the α/β horseshoe. The magenta sticks in (H) represent the 
partner residue, Glu117, which forms a salt bridge with wild type Arg137. This salt 
bridge is lost in the presence of mutant Cys at position 137.  
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Individual assessment of putative structurally deleterious variants 

A) Cys1359Arg in ABCA6 Cys1359 mutation is located in a buried site of ABCA6, a 

protein that plays roles in macrophage lipid homeostasis (Figure 4.4A). Despite the high 

SDS of this variant (score 5/7), it has not been associated with diseases. The functionality 

of cysteine residue depends largely on the protein structure and its cellular location. For 

this instance of Cys to Arg change, it does not alter the pattern of disulfide bonds, partly 

due to the rarity of this bonding type within membrane proteins [99]. However, the 

C1359R mutation is still considered as a crucial change (Grantham score 180, ∆∆G 1.64 

kcal mol-1), especially when the mutation occurs in the middle of protein domain.  

B) Arg277Gly in ABHD14A.    Arg277 is located on an exposed site of ABHD14A 

(Figure 4.4B). Another member of this protein family, ABHD5, is thought to be 

responsible for a rare genetic disorder called Chanarin-Dorfman syndrome. This is the 

only variant among the 14 structural disrupted case SNPs that was not detected as 

“deleterious” by any sequence-based algorithms (deleterious count 0/6), but our SDS 

suggests it has potential impact on the protein (SDS 4/7). The wild type Arg227 residue 

has low sequence optimality (Γ -0.58 kcal mol-1), a likely indicator that it has close 

proximity to a catalytic site. Moreover, the Arg to Gly change is considered as an 

unfavorable substitution, especially when it occurs in a structured protein, as the lack of a 

side chain in Gly may diminish proper protein folding or intermolecular interactions.  

C) Arg404Gln in ALOX12  Arg404 is found in a buried site of ALOX12 (Figure 4.4C). 

Arg404 is in close proximity with the catalytic site of this protein and is also predicted to 

be part of the protein patch for intermolecular interactions. The Arg404Gln substitution 

within this protein is also predicted to cause a slight protein destabilization (∆∆G 0.90 
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kcal mol-1), despite the acceptable Grantham substitution score (< 100). We suspect the 

variant may play roles in epilepsy implication, since a link between its substrate 

(arachidonic acid) and seizure susceptibility had been proposed [127].  

D) Ile463Thr in DDX52   Ile463 is located in a buried site of DDX52 (Figure 4.4D). A 

study of seizure susceptibility in Drosophila discovered that a gain-of-function mutation 

in the maleless helicase gene can suppress seizure susceptibility in bang-sensitive 

Drosophila mutants [128]. The Ile463Thr mutation in this protein affects the structural 

integrity of the protein since it is detected as a stabilization center (SC), consistent with 

its destabilization effect (∆∆G 1.37 kcal mol-1). 

E) Ser150Cys in EYPC    The Ser150Cys variant is located in the core of the leucine-

rich repeat (LRR) structural motifs of EYPC (Figure 4.4E). Several disulfide bonds are 

formed between cysteine clusters that flank the LRRs, providing additional structural 

support, but no changes of disulfide bonds or hydrogen bonds appear in the mutated 

protein. Ser150Cys has minimal impact on protein stability (∆∆G = -0.41 kcal mol-1), and 

while the substitution induces a large physicochemical change (Grantham score ≥ 100), 

the substitution is considered neutral if located in α/β protein [129]. Indeed, we observed 

Ser150Cys added one favorable hydrophobic residue to the core of the α/β horseshoe.  

Despite its high SDS (4/7), we consider it unlikely that this variant contributes to any 

disorders.  

F) Asp506Gly in HELB  Asp506 is situated in a buried site of HELB (Figure 4.4F) and 

several of its features are predicted to interfere with ligand binding. First, wild type 

Asp506 has an exceptionally low sequence optimality value (Γ -4.14 kcal mol-1). Second, 

wild type Asp506 is predicted to be a highly flexible site by three parameters, although 
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the values are not extreme. Third, the Asp506Gly substitution is predicted to destabilize 

the protein (∆∆G 1.40 kcal mol-1). These characteristics coincide with a recent 

mutagenesis experiment that proves Asp506 is part of a binding motif, and the mutation 

of D506A induces loss of substrate binding when associated with E499A and D510A 

[130]. Study of another human DNA helicase, Twinkle, demonstrated that two missense 

mutations were detected in patients with a wide range of psychiatric symptoms, including 

severe epileptic encephalopathy, possibly due to inefficient recovery from molecular 

stress [131].  HELB Asp506 is thus particularly interesting for further assessment of a 

role in epilepsy.  

G) Leu43Val in IAH1  Leu43 is located at a buried site in IAH1, although it lies far from 

the substrate binding site (Figure 4.4G). The protein is of interest given that many 

antiepileptic drugs are potent enzyme inducers and inhibitors of the cytochrome P450 

system, which affects lipid and glucose metabolisms, as well as evidence that increased 

lipase level is one of the side effects of anti-psychotic and anti-epileptic drugs [132, 133]. 

Substitution of Leu to Val is quite favorable in all protein folding types [129], but 

Leu43Val in this protein is suspected to reduce protein stability (∆∆G 2.06 kcal mol-1). A 

plausible explanation may be that this protein is highly structured, comprising only a few 

loop residues. The turn regions may play an essential role in bringing together and 

enabling or allowing interactions between regular secondary structure elements.  

H) Arg137Cys in NMUR1 Arg137 is situated in the central cavity of NMUR1 (Figure 

4.4H). The presence of the a mutant Cys at position 137 diminishes the stabilizing salt 

bridge between wild type Arg137 and Glu117, and results in a decrease in protein 

stability (∆∆G 1.83 kcal mol-1). The gene has no known associations with any diseases.   
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M) Ile112Met in PPP1R27 Ile112 is found at a buried site of PPP1R27 (Figure 4.4M). 

A study of a similar protein, PPP1R3C, identified one missense mutation that may lead 

to a mild phenotype in Lafora disease—a teenage onset epilepsy disorder [134]. In 

addition, protein phosphatase 1 (PP1) was identified as a member of long term 

potentiation (PTP) pathway in epileptogenesis and epilepsy (KEGG: map04720) [135, 

136]. Other genes in this pathway mostly regulate neurotransmission and ion channel 

receptors.  The Ile to Met substitution is quite favorable both in general (Grantham score 

< 100) and in distinct types of protein folding [129]. However, the longer aliphatic side 

chain of Met creates steric clashes with Ala104 of an adjacent helical region. This single 

point mutation is predicted to destabilize the protein (∆∆G 1.41 kcal mol-1). 

Structural disruption score correlates with sequence-based deleterious score 

Finally, we tested whether the SDS correlates with measures not used to construct the 

score itself. We performed an additional sequence-based deleterious prediction of case 

SNPs using Condel: a weighted score that integrates the output of five tools [22], three of 

which were used in our analysis. There is a significant positive correlation between our 

SDS and the Condel score (p-value .0342, n= 30). The trend persists after removing the 

sequence-based deleterious scores from SDSs of 16 variants (the variants have 

deleterious count ≥ 4 out of 6), although the significance in correlation is reduced to a 

marginal level (p-value .0717). In addition, we performed a similar analysis by 

sequentially removing one SDS component from the total score, and found the 

significantly positive correlation between SDS and Condel is maintained (Table 4.7). 

The weakest structure-based parameter among all of the SDS components is the 

classification of buried vs. exposed site using RSA. After removing this indicator from 15 
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variants, we did not detect any correlation between the two measures (p-value .13). Note 

that this analysis is complicated by the small sample sizes. Nonetheless, the finding 

supports our expectation that although the deleterious count is one of the major 

components for constructing our SDS, the remaining non-conventional deleteriousness 

parameters also have substantial impact on the overall missense variant evaluation. 

Table 4.7: Step-wise analysis for correlation of SDS and Condel score. Initial SDS 
includes 7 parameters, described in Table 4; the maximum SDS for each variant is 7. The 
revised SDS calculates the score by exclude one SDS component at a time; the maximum 
revised score for a variant equals 6.  

SDS parameters R2 of linear fit 
P-value of 

correlation 
#of variants affected by the revised SDS

†
 

All SDS .1504   .0342** none 

SDS-high deleterious count .1112 .0717* 16 

SDS-large amino acid change .1508   .0340** 5 

SDS-induce gly/pro change .1308   .0496** 7 

SDS-locate in buried site .0782 NS (p = .1344) 15 

SDS-locate on  protein patch .1629   .0270** 3 

SDS-locate in protein domain .2093   .0110** 25 

SDS-reduce protein stability .1243 .0560* 20 
† The full dataset has 30 missense variants. All data points were used to test for a 
correlation between SDS and Condel score. When an SDS component was removed 
during the step-wise analysis, the SDSs for some numbers of variants were affected, i.e. 
the excluded parameter was applicable to the variant. For such cases, the correlation 
analysis was performed with all of the 30 data points, minus the number of exclusions 
indicated in the last column. 

Significant p-values are designated with ‘**’ and ‘*’ for α =.05 and α =.10, respectively. 
Non-significant test statistics are labeled with NS, followed by the correspondent p-value. 
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Discussion 

Current perspectives in prioritization of epilepsy variants 

The evaluation and prioritization of candidate case variants is particularly difficult when 

the disorder involves a dissimilar set of genes, as is the case for epilepsy disorders, which 

are now known to involve diverse molecular pathways [112, 137]. The classic epilepsy 

genes (ion channel genes/regulatory genes, neurotransmitter genes/receptor 

gene/regulatory genes, genes that disrupt cortical circuits, and genes that lower the 

convulsion stimuli) rarely present in genomic data from sequencing studies.  This may be 

because the classical epilepsy mutations are Mendelian, whereas exome sequencing 

likely targets more polygenic cases, noting that only 1% of epilepsy disorders are 

inherited in a Mendelian  manner [138].  

Ferraro and coworkers (2012) highlighted how daunting the task is for epilepsy when 

they exemplified some factors in the design of cohort studies that influences the 

discovery of true positive epileptic variants: the selection of cases (presence/absence of 

the cause of symptoms), the seizure types (determine the amount of genetic influences), 

the patient profiles (age at onset, gender, characters of seizure incidences, etc.), and the 

assumption of genetic patterns (common variant effects, rare variant effects, or a 

combination of both) [139]. Some authors are starting to incorporate disease information 

as prior knowledge in the probabilistic evaluation of candidate causal SNPs [105, 140, 

141], but the scarcity of knowledge related to epilepsy genes limits this approach.  

Indeed, we found that the genes in our dataset are somewhat poorly understood and their 

disease contributions are largely unknown.  
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In addition to SNPs, structural variations have been shown to associate with epilepsy 

genetics. Jia et al (2011) used stepwise enrichment analysis of protein-protein interactions 

to derive a molecular network of 20 high priority candidate genes linked to copy number 

variation [142]. Interestingly, the genes do not overlay with the 68 homozygous nsSNP-

containing genes in our dataset (but they do overlap with 4/1,604 genes that harbor 

heterozygous variants: [111]). An independent comparison with nine genes that harbor de 

novo mutations (identified from trios—unaffected parents and their affected child) also 

found no overlap [143].  

Consequently, we cannot be sure that any of the variants discussed in this article are truly 

causal for epilepsy.  However, the variant prioritization scheme does suggest a reduced 

number of candidates which, on the basis of careful curation of protein structure, might 

be taken forward for targeted experimental manipulation and assessment of biological 

function in cell lines or model organisms. 

Key findings 

We have developed a structure-based variant analysis protocol that evaluates the effects 

of missense mutations with respect to their predicted effects on protein features, such as 

solvent accessibility, stability, and flexibility. Replicated trends for putative case SNPs to 

have aberrant structural features that more closely match those of established disease 

mutations in the same proteins, than to those of neutral polymorphisms, establish the 

potential utility of this approach as an orthogonal protocol to sequence-based assessment 

of deleteriousness. 
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Starting with 71 genes harboring putative case SNPs from an exome sequencing study of 

epilepsy disorders [111], we were able to perform the assessments on 57 gene products.  

Presumably only a fraction of these are actually causal, so our expectation was simply 

that the distribution of risk scores may be shifted from neutral toward disease-associated.  

Several features were observed to classify SNPs into two groups: putative functional 

variants, or presumably neutral variants, and a composite risk score based on summation 

of these features highlighted nine putative functional variants, from thirty exclusive 

missense mutations whose protein 3D structures are available.  Although none of these 

has been previously linked to epilepsy disorders, detailed case-by-case analysis strongly 

suggests that several should be prioritized for further functional evaluation. 

Although our structure-based analysis only captured a fraction of variant residues due to 

the limited availability of 3D structures (Table 5.1), we show that 44%, 32%, and 75%, of 

case, negative, and positive variants from the first gene set are amenable to structure-

based predictions. The equivalent percentages for set 2 genes are 49%, 37%, and 51%, 

respectively. More importantly, we were able to represent 84% of the proteins in our first 

set, and 86% in the second set, despite the difficulty in generating high quality structures. 

Our preliminary analyses suggest that it is not necessary to have structural data for all 

variants in order to construct the SDS. Since the sequence-based predictions of variants 

with structure data are similar to those obtained for all SNPs in the dataset (data not 

shown), we are confident that the conclusions from our structure-based variant 

assessment protocol can be extended to the complete SNP pools in each of the two gene 

sets.  
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With our combined sequence- and structure-based analysis pipeline, we discovered that 

some features are predominantly found among negative or positive SNPs. Structure-

based parameters contribute as much as 50% of the features that differentiate the two 

types of variants. There are several key observations from our feature enrichment 

analysis. First, we noticed seven common characteristics that are predominantly found in 

the positive control SNPs, regardless of the set of genes. SNPs with strong effects are 

those that: have deleterious count  ≥ 4, have Grantham score ≥ 100, induce glycine or 

proline changes, locate in protein domains, in buried sites, or on conserved protein 

patches, and destabilize the protein. Second, variants with neutral effects (negative SNPs) 

have a few strong enriched features. In gene set 1, we found negative SNPs are more 

likely to be in conformationally flexible sites. A similar feature was detected in gene set 

2, in which non-damaging SNPs are mostly highly dynamic sites.  An additional 

distinctive characteristic of the negative SNPs in gene set 1 is that they tend to affect 

highly conserved residues. This finding appears to be counter intuitive; we suspected that 

this unique observation seems to be an exception for this particular gene group. 

Study limitations  

A primary limitation of our approach is the requirement for homology models that 

support computational prediction of structural characteristics. Specifically, only 18/68 

proteins had at least partial experimental structures, so homologous templates were used 

in most cases. These were not available for just 9% of the proteins (n = 6), but the 

retained models did not cover the disrupted site for another 56% (36/68 variant sites), and 

24 of the potentially disrupted proteins are larger than 1000 amino acids, which also 

presents additional challenges for building models and satisfying quality settings. 
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Nevertheless, by restricting the modeling to domains, we were able to model 84% of the 

68 candidate genes (covering 44%, 32%, and 75%, of case, negative, and positive 

variants). This is a clear improvement on the automated pipelines used in training 

algorithms such as PolyPhen2. We also ensured that the quality of the models was 

validated wherever possible, which also introduces an intensive manual curation 

requirement into the analytical pipeline, requiring some knowledge with methods that 

most genomicists are not familiar with. 

An analytical limitation is that the size of the dataset is relatively small, since only one 

variant per gene was studied, and just 68 proteins were available to begin with. Since 

these are structurally diverse, it is likely that different aspects of protein structure are 

affected and the probability of enrichment for any one structural feature is 

correspondingly reduced.  While approximately three quarters of amino acid changes 

leading to Mendelian diseases consistently induce protein destabilization [37], the 

structural consequences of missense variants in complex diseases such as the epilepsy 

disorders are likely to be of a more diverse nature.  

Study innovations 

The Structural Disruption Score (SDS) offers a novel strategy for genomic profiling of 

variants that have uncertain but likely weakly deleterious function.  It combines similar 

instances of variants with respect to their predicted impact on aspects of protein structure, 

allowing joint assessment of the impact of the variants as a class on biological function.  

Instead of evaluating each variant one by one, SDS provides a ranking that might be used 

to guide downstream experimental and/or clinical evaluations. 
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Other studies using structural biology approaches to examine the variant effects have 

considered a large number of variants per gene, facilitating direct contrasts of variant 

characteristics and predictions for individual genes [144] or genes with similar 

structures/functions [39, 145]. The genomic data that we started with is relatively small 

by comparison.  However, we provide an alternative structure-based approach that can 

accommodate the small number of variants expected from exome sequencing samples as 

well as the large diversity of gene functions they will typically generate. 

Most importantly, our SDS score implementation assures that case variants share similar 

characteristics as those observed in causal variants, but not neutral variants known to 

reside in the same proteins. We have validated the findings in a replication dataset, and 

show how the approach can be used as a unique solution to prioritizing case variants in 

unrelated genes.  Though not providing a guarantee of disrupted function, the score 

should be considered as a complementary approach to existing sequence-based 

deleteriousness prediction.  

Conclusion 

Using the list of enriched features, we concluded that this novel structure-based 

assessment protocol for missense variant deleteriousness has a potential to determine 

high-priority candidate variants suitable for experimental validations. The analysis may 

prove to be useful, particularly when traditional sequence-based predictions are 

inconclusive.  An important question is whether the same structural attributes 

differentiate neutral and functional variants for different categories of disease.   
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Because our study employed large numbers of external resources (variant predictions, 

gene information, 3D structure modeling and quality controls, sequence- and structure-

based predictions), the analysis pipeline presented here is not readily automated.  Aspects 

of it are in theory readily generalizable to all classes of proteins, and once all the above 

steps have been accomplished, the variant deleteriousness structure-based predictions 

could be effectively populated into a database. After that labor-intensive step is 

completed, the SDS for any variants in a dataset may be computed and retrieved virtually 

by combining the predictions for the genes specific for the study. 
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CHAPTER 5: SYSTEMATIC 3D SCREENING OF AMINO ACID 

MUTATIONS IN PHARMACOGENES 

Abstract 

Next-generation sequencing technologies have promoted steady progress in the 

identification of genetic factors that influence drug responses. Priority is being given to 

genes whose variants are predicted to alter pharmacokinetic and/or pharmacodynamic 

parameters, which may result in an increased risk of drug toxicity or therapeutic failure. 

Therefore, rational analysis of an individual’s genomic variants can guide personalized 

medical treatments. In this study, we selected 48 genes identified as “Very Important 

Pharmacogenes (VIPs)” by the PharmGKB database. Despite their high potential impact 

for prescription of specific drugs, only ten gene-drug pairs currently have dosing 

guidelines suggested by the Clinical Pharmacogenetics Implementation Consortium 

(CPIC).  

To promote more practical usage of genetic test results, we have developed a systematic 

screening for structural disturbance of amino acid mutations within the 48 VIPs in the 

context of their 3-dimensional (3D) protein structures. Our pipeline focuses on the 

changes in inter-residue bonding, protein stability, protein flexibility, drug binding 

capability, protein-protein interactions, and amino acid dissimilarity, in addition to the 

localization of the variants and the amino acid secondary structure preference. These 

results are incorporated into the construction of a five-feature “SDS Pharmacogenes” 

score that categorizes distinguishable characteristic profiles that annotate VIP variants as 



 
 

107 
 

functional rather than neutral mutations. Unlike most existing conservation-based 

measures, SDS Pharmacogenes can be used to evaluate unknown variants of these 48 

VIPs and predict the degree to which each one will have strong impacts towards 

pharmacogenomics, potentially aiding optimization of drug therapy. 

While expertise in 3D-protein analysis is beneficial, our implementation does not require 

that an individual with experience in protein structures be engaged in the personalized 

genome evaluation. In addition, the analysis pipeline is systematic and scalable, thus 

expected to keep pace with the rapid accumulation of pharmacogenomic data. 

Introduction 

Pharmacogenomics aims to predict the effect of genetic polymorphisms and mutations on 

therapeutic efficacy and/or toxicity. To this end, one of many challenges for 

bioinformaticians is the development of variant evaluation methods that may be used to 

guide the interpretation of genomic variation.  

In this study, we surveyed genomic variability of 48 Very Important Pharmacogenes 

(VIPs) identified in the PharmGKB database [146] (Table 5.1), and implemented a novel 

3-dimensional (3D)-protein structure based method to systematically screen the 

characteristics of their amino acid mutations. The implementation incorporates results 

from many protein structural analysis tools. It generates an integrative score that offers a 

comprehensive understanding of potential mutational effects. The analysis also reveals 

some key structural features that are generally present in functional variants (mutations 

that lead to functional differences between wild type and mutant proteins) as well as 

highlights the complexity of understanding mutation-function relationships in genes that 
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are highly interactive. Our findings may assist the refinement of existing deleterious 

prediction algorithms by adding protein structural data to sequence conservation based-

parameters, particularly to predict the functional significance of variants in 

pharmacogenes. The objective is to provide a comprehensive understanding of potential 

mutational effects towards inter-patient drug responses and lead to the practical usage of 

genetic test results. 
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Table 5.1: List of 48 VIPs and number of their pharmacogenomics associated 
variants. The data were obtained from PharmGKB’s curated list of clinical annotations. 
There are no variants in level 2B or level 4.  

 Gene Protein name  CPIC 

Total number of variants  

(Nonsynonymous/Synonymous/non-coding) 

All 

levels 

Level 

1A 

Level 

1B 

Level 

2A 

Level 

3 

ABCB1 
Multidrug resistance 
protein 1 

no 
78 

(53/7/18)   
3 

(3/0/0) 
75 

(50/7/18) 

ACE 
Angiotensin-
converting enzyme 

no 
14 

(0/2/12) 
  

1 
(0/0/1) 

13 
(0/2/11) 

ADH1A 
Alcohol 
dehydrogenase 1A 

no 
     

ADH1B 
Alcohol 
dehydrogenase 1B 

no 
     

ADH1C 
Alcohol 
dehydrogenase 1C 

no 
     

ADRB1 
Beta-1 adrenergic 
receptor 

no 
5 

(5/0/0)    
5 

(5/0/0) 

ADRB2 
Beta-2 adrenergic 
receptor 

no 
8 

(8/0/0)   
1 

(1/0/0) 
7 

(7/0/0) 

AHR 
Aryl hydrocarbon 
receptor 

no 
     

ALDH1A1 
Retinal 
dehydrogenase 1 

no 
1 

(0/0/1)    
1 

(0/0/1) 

ALOX5 
Arachidonate 5-
lipoxygenase 

no 
1 

(0/0/1)    
1 

(0/0/1) 

BRCA1 
Breast cancer type 1 
susceptibility protein 

no 
     

COMT 
Catechol O-
methyltransferase 

no 
10 

(6/0/4)   
1 

(1/0/0) 
9 

(5/0/4) 

CYP1A2 
Cytochrome P450 
1A2 

no 
14 

(0/1/13)    
14 

(0/1/13) 

CYP2A6 
Cytochrome P450 
2A6 

no 
2 

(0/0/2)    
2 

(0/0/2) 

CYP2B6 
Cytochrome P450 
2B6 

no 
28 

(27/0/1)   
8 

(7/0/1) 
20 

(20/0/0) 

CYP2C19 
Cytochrome P450 
2C19 

yes 
107 

(56/7/44) 
16 

(10/2/4)  
46 

(25/2/19) 
45 

(21/3/21) 

CYP2C8 
Cytochrome P450 
2C8 

no 
8 

(5/0/3)    
8 (5/0/3) 

CYP2C9 
Cytochrome P450 
2C9 

yes 
47 

(39/0/8) 
5 

(5/0/0) 
3 (3/0/0) 

8 
(8/0/0) 

31 
(23/0/8) 

CYP2D6 
Cytochrome P450 
2D6 

yes 
213 

(167/0/46) 
34 

(23/0/11) 
8 (7/0/1) 98 (78/0/20) 

73 
(59/0/14) 

CYP2E1 
Cytochrome P450 
2E1 

no 
4 

(1/0/3)    
4 

(1/0/3) 

CYP2J2 
Cytochrome P450 
2J2 

no 
     

CYP3A4 
Cytochrome P450 
3A4 

no 
23 

(8/0/15)   
4 

(1/0/3) 
19 

(7/0/12) 

CYP3A5 
Cytochrome P450 
3A5 

yes 
24 

(2/0/22)  
1 (0/0/1) 

2 
(0/0/2) 

21 (2/0/19) 

DPYD 
Dihydropyrimidine 
dehydrogenase 

yes 
14 

(10/0/4) 
3 

(2/0/1)  
1 

(1/0/0) 
10 

(7/0/3) 

DRD2 
D(2) dopamine 
receptor 

no 
10 

(1/1/8)   
1 

(0/0/1) 
9 

(1/1/7) 
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Table 5.1 (continued) 

Gene Protein name  CPIC 

Total number of variants  

(Nonsynonymous/Synonymous/non-coding) 

All 

levels 

Level 

1A 

Level 

1B 

Level 

2A 

Level 

3 

F5 Coagulation factor V yes 1 (0/0/1) 
  

1 
(0/0/1)  

G6PD 
Glucose-6-phosphate 
1-dehydrogenase 

no 7 (3/0/4)  
1 

(1/0/0) 
3 

(1/0/2) 
3 

(1/0/2) 

GSTP1 
Glutathione S-
transferase P 

no 9 (9/0/0)   3 (3/0/0) 6 (6/0/0) 

GSTT1 
Glutathione S-
transferase theta-1 

no 5 (0/0/5)    5 (0/0/5) 

HMGCR 

3-hydroxy-3-
methylglutaryl-
coenzyme A 
reductase 

no 9 (0/0/9)   1 (0/0/1) 8 (0/0/8) 

KCNH2 

Potassium voltage-
gated channel 
subfamily H member 
2 

no 1 (0/1/0)    1 (0/1/0) 

KCNJ11 
ATP-sensitive inward 
rectifier potassium 
channel 11 

no 1 (0/0/1)    1 (0/0/1) 

MTHFR 
Methylenetetrahydrof
olate reductase 

no 
27 

(27/0/0) 
 1 (1/0/0) 4 (4/0/0) 22 (22/0/0) 

NQO1 
NAD(P)H 
dehydrogenase 

no 2 (2/0/0)    2 (2/0/0) 

NR1I2 
Nuclear receptor 
subfamily 1 group I 
member 2 

no 1 (0/0/1)    1 (0/0/1) 

P2RY1 P2Y purinoceptor 1 no 1 (0/1/0)    1 (0/1/0) 

P2RY12 P2Y purinoceptor 12 no 6 (1/1/4)    6 (1/1/4) 

PTGIS Prostacyclin synthase no      

PTGS2 
Prostaglandin G/H 
synthase 2 

no 3 (0/0/3)    3 (0/0/3) 

SCN5A 
Sodium channel 
protein type 5 subunit 
alpha 

no      

SLC19A1 Folate transporter 1 no 6 (5/1/0)    6 (5/1/0) 

SLCO1B1 
Solute carrier organic 
anion transporter 
family member 1B1 

yes 
35 

(21/0/14) 
1 (1/0/0)  8 (4/0/4) 

26 
(16/0/10) 

SULT1A1 Sulfotransferase 1A1 no 1 (1/0/0)    1 (1/0/0) 

TPMT 
Thiopurine S-
methyltransferase 

yes 10 (5/0/5) 4 (3/0/1)   6 (2/0/4) 

TYMS 
Thymidylate 
synthase 

no 8 (0/0/8)    8 (0/0/8) 

UGT1A1 
UDP-
glucuronosyltransfera
se 1-1 

yes 13 (5/0/8)   4 (2/0/2) 9 (3/0/6) 

VDR Vitamin D3 receptor no 3 (2/0/1)    3 (2/0/1) 
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Table 5.1 (continued) 

Gene Protein name  CPIC 

Total number of variants  

(Nonsynonymous/Synonymous/non-coding) 

All 

levels 

Level 

1A 

Level 

1B 

Level 

2A 

Level 

3 

VKORC1 
Vitamin K epoxide 
reductase complex 
subunit 1 

yes 
16 

(2/0/14) 
1 (0/0/1) 3 (0/0/3) 6 (1/0/5) 6 (1/0/5) 

GSTP1 
Glutathione S-
transferase P 

no 9 (9/0/0)   3 (3/0/0) 6 (6/0/0) 

Total 48 genes  
yes 
=10 

776  
(471/22/283) 

64  
(44/2/18) 

17  
(12/0/5) 

204 
 (140/2/62) 

491  
(275/18/198) 
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The 48 VIPs have important roles in drug metabolism. Some mutations are expected to 

influence drug efficacy and/or toxicity through perturbation of the drug-binding ability of 

the protein (directly or indirectly), or via altered drug metabolism and excretion [147]. 

The PharmGKB database [146] (accessed January 19, 2014) lists 546 drug molecules that 

interact with one or many of the VIPs (Supplementary Table B.1). However, little is 

known about the function of most of the genetic variants. Despite their high potential 

impact for prescription of specific drugs, only ten gene-drug pairs currently have 

genotype-specific dosing guidelines developed by the Clinical Pharmacogenetics 

Implementation Consortium (CPIC) [148] (Table 5.1). These shortcomings highlight the 

need for a novel strategy to examine and predict the outcomes of genetic variations 

towards a diverse range of drug toxicity or therapeutic failure.  

Several research groups have focused on expanding variant assessment methodologies for 

proteins, generally by including more predictive features [13, 35-39]. One of the notable 

improvements arises from adding predictive parameters which are derived from protein 

structural context. Even so, the space of protein study is large and many unexplored fields 

are worthy of attention [34]. Our study explores a broad range of protein analyses and 

employs statistical tests to derive key structural features of functional variants. The 

implementation utilizes numerous computational tools in the following eight areas of 

protein analysis: inter-residue bonding, protein stability, protein flexibility, drug binding 

capability, protein-protein interactions, residue localization, amino acid dissimilarity, and 

amino acid secondary structure preference. A subset of 11 tests which represent disrupted 

protein characters that are preferably targeted or induced by functional variants was 

identified among the total of 68 tested features. The initial selection of 11 significantly 
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enriched features is subsequently reduced to the 5 strongest indicators that can 

discriminate pharmacogenomics variants from neutral mutations. 

The implementation of our fully structure-based variant assessment algorithm enhances 

our knowledge of residue features that are susceptible to or induced by functional 

mutations. Structure-based information provides both the understanding of local changes, 

as well as those that occur non-locally and cannot be deduced from sequence 

conservation analysis alone.  

Methods 

This research aims to provide a rational analysis of genetic variants in 48 Very Important 

Pharmacogenes (VIPs). The implementation of our 3D screening approach was designed 

such that it is systematic and scalable so that it offers a broad understanding of various 

protein characteristics while being flexible enough to accommodate emerging genomic 

data for future refinement. 

Dataset of 48 Very Important Pharmacogenes (VIPs) 

A list of VIPs was populated from the PharmGKB’s external data source on October 7, 

2013. In addition, we retrieved a list of curated gene-drug and gene-chemical pairs for 

each VIP from the gene’s record, available at the PharmGKB website (accessed January 

19, 2014) [146]. Supplementary Table B.1 provides the descriptions of the 48 VIPs, 

their molecular functions, and the numbers of drug partners. 
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Genomic variation dataset  

A) Genomic variants for construction of the algorithm (training set) 

Genomic variants were obtained from publicly available databases and were categorized 

into two groups: functional mutations and neutral mutations. The data sources for 

attaining functional mutations include MSV3d [43] (accessed October 25, 2013), 

SwissVar [44] (accessed October 25, 2013), ClinVar [149] (accessed January 9, 2014), 

and UniProt’s functional mutagenesis records [150] (accessed March 4, 2014). For 

neutral variants, we obtained the data from EVS [151] (accessed January 4, 2014) and 

Uniprot [150] (accessed January 28, 2014). Quality control of the genomic data was 

carried out by aligning wild type amino acids from the given list of variants to the 

corresponding UniProt curated protein sequences [150]. Any variants of minor protein 

isoforms were excluded (n=87).  

Using the sequence mapping, we identified nine incorrectly labeled variants (one 

functional and eight neutral mutations). The variants have interchanges between 

reference and alternate residues. For example, a functional variant ADRB2:c.79C>G 

(p.Gln27Glu) is listed as a risk factor for obesity, metabolic syndrome and asthma in the 

ClinVar database (classified by a single submitter) [149]. The amino acid variant has a 

sequence conflict with our data sources: Uniprot [150] and SwissVar [44] list Glu as the 

wild type amino acid at residue 27, but ClinVar (based on dbSNP [49] indicates the SNP 

induces a change from Gln to Glu. These errors are likely due to inaccuracies of 

sequencing or in the reference genomes; therefore, all unmatched variants were 

eliminated from our study. 
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B) Genomic variants for testing the utility of the algorithm (test set) 

A collection of pharmacogenomic-associated variants was downloaded from the “Clinical 

Annotation” records at the PharmGKB website [146] (accessed February 16, 2014). 

PharmGKB annotates the variant-drug associations based on the number and/or strength 

of pharmacogenomic evidence (Table 5.1). The two conditions classify variants into four 

levels: 1A/1B, 2A/2B, 3, and 4. Level 1A/1B variants are the most significant variants for 

pharmacogenomics. They have either endorsed CPIC guidelines or clinical 

implementations (level 1A variants) or strongly suggestive evidence of variant-drug 

associations from multiple cohort studies with significant test statistics (level 1B 

variants). Level 2B variants are those with moderate indications of variant-drug 

associations, but may lack statistical significance of associations in some studies. For any 

2B variants that are located in VIPs, their association levels are re-assigned to 2A. 

Genomic variants in level 3 require more replication to confirm the significant test 

statistics from a single study, or the data from multiple studies is available but has not 

provided clear indication of an association. Other variants that were derived from case-

by-case reports, non-significant studies, or in vitro data are assigned to be in level 4. 

There are a total of 96 associations in level 1A/1B, 81 are found in 10/48 VIPs 

(CYP2C19, CYP2C9, CYP2D6, CYP3A5, DPYD, G6PD, MTHFR, SLCO1B1, TPMT, and 

VKORC1). Non-VIP genes that harbor strong pharmacogenomic associations are CFTR 

and HLA-B for a total of six associations in level 1A, and ANKK1, CYP4F2, EGFR, 

GRIK4, IFNL3, TMEM43, and XPC for a sum of nine associations in level 1B. The level 

2B associations are related to variants of 55 non-VIP genes. 
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Among the 48 VIPs, there are 776 pairs of pharmacogenomic associations (Table 

5.1).The associations are listed in the format of variant-gene-drug partners. Some gene-

drug pairs are well recognized, while other genes may not directly relate to the drug’s 

mechanism of action. To account for the accuracy of the annotations, especially for level 

3 variants, we checked if their genes are listed as pharmacogenomic biomarkers in the US 

FDA drug labeling (http://www.fda.gov/drugs) (accessed March 7, 2014), namely, drug 

exposure and clinical response variability, risk for adverse events, genotype-specific 

dosing, mechanisms of drug action, and polymorphic drug target and disposition genes. 

Additional annotations for drug labels (informative/actionable pharmacogenomic labels 

from FDA and European Medicines Agency (EMA)) were obtained from the 

PharmGKB’s website  [146] (accessed March 7, 2014). In addition to the apparent 

pharmacogenomic evidence, some genes may have direct/indirect effects on drug 

efficacy or toxicity. The gene may be a drug target, enzyme, transporter, or carrier. We 

obtained this information from the DrugBank database [152] (accessed March 7, 2014). 

The clarifications of gene-drug pairs returned 307/776 associations with at least one of 

the listing drugs having FDA- or EMA- approved labels, (maximum 7 drugs/variant; 

CYP2D6 gene) and 548/776 listings in DrugBank [152] indicating that the gene has a 

known pharmacological action.  

Of all 776 associations, 471 are related to missense variants (Table 5.1); their 

pharmacogenomic associations can also be in different levels due to multiple drug 

partners. The absolute number of unique missense mutations among the 471 associations, 

regardless of the association levels, is equal to 81. (For example, Arg150His of CYP2C19 

has 10, 25, and 21 associations at levels 1A, 2A and 3, respectively (Table 5.1) but the 
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unique count of this mutation is one (one and the same variant). Since 9 of the 81 unique 

variants do not lie in regions of overlap with the protein structure dataset, we were able to 

use 386/471 structural data points to assess the abundance of enriched disrupted protein 

features with respect to the PharmGKB’s three levels of pharmacogenomics association 

confidence. The equivalent 386 data points were used to evaluate the classification 

performance of six standard conservation-based predictors.   

Protein structure dataset 

We retrieved experimentally derived structures from the RCSB Protein Data Bank [60] 

and generated/downloaded numerous homology models following our previously 

described protocols [110]. We used two parameters, QMEAN6 [63] and ModFOLD4 

[153], to validate all protein models. 

Most (36/48) of the proteins in our dataset are well studied, granting access to multiple 

experimental structures (range 1 to 53 structures per protein). Nonetheless, almost all 

structures only partially represent the entire protein length. Among these PDB 

coordinates, we selected the best structural representative for each protein chain by 

comparing their resolution and the percentage of sequence coverage. To ensure that our 

3D structural analysis covers most of the protein chain; we compared each of the selected 

PDB structures with the matching best homology models (from single-, or multi-template 

methodology, preferably full length structures). The best overall structure for each non-

overlapping protein segment, among all sources, was retained for subsequent 3D 

analyses. 
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Note that some of the selected x-ray crystal structures contain sequence conflicts (from 

mutagenesis during crystallization) with respect to the reference protein sequences. For 

such cases, the structures were mutated back to the wild type proteins. We used the 

Swapaa tool in Chimera [65] to model the new side chain using the most probable amino 

acid rotamer [154]. Unfavorable atomic contacts between each modeled side chain with 

the remaining protein residues were assessed using the Find Clashes/Contacts tool in 

Chimera [65] with the default distance settings.  

A complete list of protein 3D structures used in this study, along with the structure 

sources and quality parameters are provided in Supplementary Table B.2. The genomic 

and structure datasets were combined into 3D structure maps for each genetic variant. 

Table 5.2 summarizes the genomic variability data of the 48 VIPs and the structure 

coverage statistics of the 3D maps. The complete list for genomic variability coverage of 

each gene and the percentage coverage of variants with structural data is presented in 

Supplementary Table B.3.  

Table 5.2: Statistics of genomic variability data of the 48 VIPs and 3D structure 

maps. 

Variant 

types 

All genomic data* Genomic data with available 3D structures 

# of variants 
Avg # of variants 

per gene 
# of variants 

Avg # of 

variants per 

gene 

% of variant 

retained 

per gene† 

Functional 
mutations 

779 (in 35 genes) 16 (range 0-186) 371 (in 31 genes) 8 (range 0-58) 80% 

Neutral 
mutations 

2537 (in 48 genes) 54 (range 4-245) 1811 (in 45 genes) 38 (range 0-140) 84% 

*Sources for functional mutations: MSV3d [43], SwissVar [44], ClinVar [149] databases 
and Uniprot databases [150]. Sources for neutral mutations: EVS [151] and Uniprot 
databases [150]. 

†Represents the average of all 3D variant coverage percentages of the 31 genes and 45 
that harbor functional and neutral mutations, respectively.  
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Identification of conserved protein domain families 

Protein domain families are evolutionary conserved structural modules which exist 

independently from the rest of the protein chain. Large proteins often consist of several 

structural domains. Protein domains were identified according to the annotations 

provided by InterPro—a centralize database for protein family (Hunter 2011). We 

downloaded the “All UniProtKB proteins” dataset (January 27, 2014 release, accessed 

February 16, 2014) and extracted domain definitions for the 48 proteins. Identification of 

protein domain family was performed by first indexing the mutated protein residues 

relative to the full length protein chain, and then identifying the protein domain family 

that surround each variant residue. 

The InterPro database is made up from 11 external data sources [155], each with different 

identification and annotation methodologies for protein domains. We excluded the 

Gene3D-derived entries from the preliminary InterPro hits since Gene3D domains reflect 

the geometric similarity of protein structures rather than the functional or evolutionary 

relationships employed by the remaining algorithms. The exclusion of Gene3D hits 

yielded 4,599 remaining records; many variants have duplicate domain annotations from 

several algorithms. We further removed all duplicates to generate a non-redundant set of 

113 protein domain families present in the 48 proteins (Supplementary Table B.4). 

To detect protein domain families that harbor significantly more proportions of functional 

variants, we compared the relative abundance of functional and neutral variants that are 

located in a particular protein domain family. The calculations were performed by first 

normalizing the absolute number of functional (neutral) variants observed in each protein 
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domain family to the total number of functional (neutral) variants located within any 

domains (excluding variants found in domain boundaries). Each normalized value was 

then transformed into a percentage with respect to the sum of the two normalized values. 

The final two percentages were compared, and three types of domain family were 

identified: domains with more abundance of functional variants (n=36), domains with 

more abundance of neutral variants (n=42), and domains with only neutral variants 

(n=35). 

Characteristics of amino acid mutations at different protein regions 

1) Changes in physicochemical properties of amino acids 

We performed Fisher’s exact tests to examine the ratios of dramatic amino acid changes 

when the variants affect important vs. general protein regions. First, we used Grantham 

scores [56], which measure chemical dissimilarity between amino acid pairs, to classify 

amino acid changes into two classes. An amino acid replacement is considered 

conservative (mutation with similar amino acid property) if the Grantham score is less 

than 100 and radical (mutation with distinct amino acid property) otherwise. We used 

Grantham score to compare the amino acid changes at non-structural sites vs. structural 

sites [150], protein domains vs. domain boundaries [155], and binding sites (or around 

binding site) vs. other sites [72]. Second, we used the categorical classes of the amino 

acid side chain properties [156] to represent the four physicochemical changes between 

amino acid pairs: hydropathy index (hydrophobic and hydrophilic properties), volume, 

charge, and hydrogen donor/acceptor. The changes are empirically considered important 

if they occur between hydrophobic (A, C, I, L, M, F, W, V) and hydrophilic (R, N, D, Q, 
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E, K) side chains, between very small (A G, S) and large (R, I, L, K, M) or very large (F, 

W, Y) side chains, between very large (F, W, Y) and small (N, D, C, P, T) or very small 

(A, G, S) side chains, between positive charged (R, H, K) and negative charged (D, E) 

side chains, or between hydrogen donor (R, K, W) and acceptor (D, E) side chains. We 

tested the abundance of each altered side chain property at various protein locations: 

buried sites, exposed sites, binding sites, around binding sites, and any sites. 

The Uniprot’s sequence feature records provide descriptions of 11 functional features 

within a protein sequence. The annotations were either experimentally derived or 

computationally predicted. The features are: molecular processing, amino acid 

modification, sequence motif, sequence bias, active site, bond, natural variant, 

mutagenesis (indicates the amino acid has experimental mutation data), transmembrane, 

protein domain, and other region of interest. We re-organized the annotations into two 

groups: structural site and non-structural site. Our intuition is that the first four features 

do not necessarily have direct implications for the structural integrity of the protein; any 

variant annotation falling within these terms should be regarded as “non-structural site”. 

Our genomic data were not annotated to have the fourth feature, sequence bias. The 

content of the first three most prominent features detected in our variant dataset are 

propeptide and signal peptide; motif, zinc finger, and repeat; and modified residue, 

respectively. 

The grouping of missense variants into protein domain vs. domain boundaries was 

performed according to the aforementioned steps for identifications of protein domain 

families.  Similarly, the partitioning of variants into either predicted binding sites or other 

sites was carried out at the subsequent step of prediction of ligand binding sites. We first 
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searched for ligand environments of each protein using 3DLigandsite [72]. The binding 

pocket residues were predicted from clusters of bound ligands that are present in protein 

homologs (average predicted binding site = 21 residues per protein, range 17-25 residues, 

95% CI). There are 41 functional and 104 neutral variants predicted to lie within binding 

pockets; these variants were grouped into “predicted binding sites”. Any other variants 

were assigned to the “other sites” category. Using the Cα- Cα atomic distances, we 

extracted a list of variant residues that are within 5 Å or 10 Å to the nearest predicted 

binding site [72]. The selected variants were grouped into either the “near binding sites (5 

Å)” or the “near binding sites (10 Å)” categories, and their structural features were 

compared with all other variant residues. 

2.) Changes in secondary structure preference of amino acids 

Amino acids have different preferences towards a certain protein secondary structure 

(coil, strand, 3-turn helix, α-helix, bend, or turn). Malkov et. al (2008) compared the 

occurrence of an amino acid in all types of secondary structures and defined the amino 

acid as a preferred or a prohibited residue for that structure type [157]. We use this 

information in conjunction with the predicted secondary structure of a variant residue 

[120] to identify if the altered amino acid will induce a secondary structure break (i.e., the 

amino acid changes from preferred to inhibited for the predicted secondary structure). 

Systematic 3D screening for structure-function relationships of amino acid mutations 

We implemented a systematic 3D screening methodology to investigate structure-

function relationships of each amino acid mutation. We concentrated the analyses on 

essential characteristics for a protein to function properly (independently or when 
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interacting with other molecules). The screening explores eight aspects of protein 

function: inter-residue bonding, protein stability, protein flexibility, drug binding 

capability, protein-protein interactions, residue localization, amino acid dissimilarity, and 

amino acid secondary structure preference.  A similar set of computational tools was 

adopted in our previous study of epilepsy variants [110].  The compendium of scores was 

used to predict structurally-related attributes for each amino acid residue in the context of 

its 3D structure (Table 5.3). The following sections explain several assessments that have 

been added to this 3D screening process for the first time. The new methods include 

predictions of salt bridges and long range electrostatic interactions and hinge point 

predictions.
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Table 5.3: List of computational tools used to analyze structurally-related attributes for each amino acid residue. 

Structural 

feature 
Parameter Variable type Description Tool 

Inter-
residue 
bonding 

Disulfide 
bond 

Categorical The mutation occurs at one of an amino acid pair that forms a disulfide bond. DiANNA  [119]  

Salt bridge / 
electrostatic 
interaction 

Categorical 
The mutation occurs at one of an amino acid pair that forms a salt bridge or an 
electrostatic interaction. 

WHAT IF  [158] 

Protein 
stability 

Stabilization 
center (SC) 

Categorical 
The mutation occurs at one of an amino acid pair that forms an SC (two residues locate at 
least ten amino acids apart on the primary sequence but form close atomic contacts). 

SCide  [69, 70] 

Stabilizing 
residue (SR) 

Categorical 
The mutation occurs at one of an amino acid pair that forms an SR (a subset of SC that is 
also evolutionary conserved and located in the core region of the protein, and/or have 
many interacting partners). 

SRide  [71] 

∆∆G 
Categorical (transformed 
from continuous value) 

Stability change from a single point mutation; categorized into four groups: no change if 
∆∆G is between ±0.5 kcal/mol, mildly stabilizing if ∆∆G is between -0.5 and -2 kcal/mol, 
mildly destabilizing if ∆∆G is between 0.5 and 4 kcal/mol, and strongly destabilizing if 
∆∆G is ≥4 kcal/mol. 

PoPMusic 2.1  [120] 

Protein 
flexibility 
(small 
amplitude) 

B-factorNorm 
Categorical (transformed 
from continuous value) 

Relative vibrational motion; indicates the mobility of each C atom. The mutation occurs 
at a highly dynamic (or highly rigid) residue if B-factorNorm ≥ 97.5 (or ≤ 2.5) percentile. 

PredyFlexy  [75] 

RMSFNorm 
Categorical (transformed 
from continuous value) 

Root-mean-square fluctuation; indicates the movement amplitude of each Cα atom over a 
period of time. The mutation occurs at a highly dynamic (or highly rigid) residue if 
RMSFNorm ≥ 97.5 (or ≤ 2.5) percentile. 

PredyFlexy   [75] 

Protein 
flexibility 
(large 
amplitude) 

FlexPred 
label 

Categorical The mutation occurs at a predicted conformationally rigid or flexible site. FlexPred [76, 77] 

Hinge site Categorical The mutation occurs at a predicted hinge site. FlexServe [159] 

Drug 
binding 
capability 

Binding site  Categorical The mutation occurs at a predicted binding site. 3DLigandSite [72] 

RSA 
Categorical (transformed 
from continuous value) 

Relative solvent accessibility; indicates percentage of solvent accessible compared to the 
fully exposed peptide. The mutation occurs at a buried site if RSA ≤ 20%, and at the 
protein core if RSA ≤5%. 

PoPMusic 2.1 [120] 

Γ 
Categorical (transformed 
from continuous value) 

Degree of residue non-optimality (summation of all stabilizing ∆∆Gs). A mutation occurs 
at a highly non-optimal residue if Γ ≤ 5 percentiles (an indication of being a catalytic site). 

PoPMusic 2.1 [120] 
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Table 5.3 (continued) 

Structural 

feature 
Parameter Variable type Description Tool 

Protein-
protein 
interaction 

Protein patch Categorical 
The mutation occurs at a conserved cluster on a protein surface (an indication for site of 
intermolecular interactions). 

PatchFinder [73, 74] 

Residue 
localization 

Protein 
domain 

Categorical The mutation occurs at a conserved protein domain family. InterPro [155] 

Structural site Categorical 
The mutation occurs at a structural site (any residues excluding the one with the following 
annotations: molecular processing, amino acid modifications, sequence motif, or sequence 
bias). 

Uniprot [150] 

Amino acid 
dissimilarit
y 

Grantham 
score 

Categorical (transformed 
from continuous value) 

Indicates the dissimilarity of an amino acid pair. The substitution is radical (or 
conservative) if Grantham score is ≥ 100 (or < 100). 

Grantham matrix [56] 

Physicochemi
cal properties 
of amino acid 
side chains 

Categorical 
Indicates the classification of hydropathy index (hydrophobic and hydrophilic properties), 
volume, charge, and hydrogen donor/acceptor for amino acid side chains. 

IMGT standardized 
criteria for amino 
acid side chain [156] 

Amino acid 
secondary 
structure 
preference 

Preferred / 
break 

categorical Indicates propensities of amino acids towards a particular secondary structure. 
[157]and PoPMusic 
2.1 [120] 
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Salt bridge is the most commonly observed noncovalent interaction that contributes to the 

stability of entropically unfavorable protein folds [160]. The cut-off distance to define 

salt bridges in a protein structure varies, but generally centers around the distance of 3.0 

Å that is used to define hydrogen bonds (H-bonds). A distinction between salt bridge and 

long-range electrostatic interaction between charged groups was made [161], such that 

salt bridges are strong H-bonds between donor and acceptor atoms within the distance 

cut-off of 2.8 Å, whereas long-range electrostatic interactions can have variable cut-offs 

since the association energy depends upon types of environmental media. We used the 

WHAT IF server [158] to characterize bonding patterns between opposite charged 

protein residues. We followed the default distance cut-off of 7.0 Å so that the predictions 

were suitable for both salt bridges and long-range electrostatic interactions. 

Hinge residues are typically located at inter-domain boundaries of a protein. Hinges 

allow the domains to move relative to one another upon binding to another molecule, or 

upon activation/deactivation of the protein. Hinge points do not involve large number of 

residues and each region can rotate at a very large degree. All of the proteins in our 

dataset occur as multi-domain proteins, therefore, the study of hinge regions is considered 

very informative since their cooperative motions are a critical element of protein-drug or 

protein-protein interactions. There are numerous computational approaches for predicting 

this type of large-scale protein movement; their computational resource requirements also 

vary over dynamic time scales. One prominent tool, FlexServe [159], detects hinge 

protein residues using a coarse-grained based method as an alternative to the resource-

intensive Molecular Dynamic (MD) simulations. We performed hinge point predictions 

under the normal mode analysis with the following default settings: Kovacs algorithm 
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(distance-dependent potential), inter-atomic force constant 40 kcal/mol*Å, and maximum 

distance cut-off for close atomic pairs of 3.0 Å. 

Statistical comparison of disrupted protein residues and the implementation of SDS 

Pharmacogene for predicting the structural significance of a variant 

Our systematic 3D screening aims to identify protein characteristics that are commonly 

disrupted by functional variants. The specific details for performing statistical 

comparisons of disrupted protein residues can be found in our previous work [110]. 

Briefly, after all residues in the 45 protein structures had been evaluated by each of the 

selected tools, we populated all measures/predictions and generated a distribution of the 

scores (if the tool outputs a continuous parameter; i.e., B-factor, RMSF, or Γ) (Table 

5.3). Lower- and upper-bound thresholds were defined as suggested in the literature or 

empirically. Empirically-defined thresholds were set at the top and bottom 2.5 percentiles 

of each distribution. Based on the selected cut-offs, we transformed all measures into a 2-

level category: extremely small and extremely large values. Variants whose measures or 

predictions go beyond the defined threshold are most likely to be aberrant residues (with 

disrupted protein structures). We repeated the three steps of score assessment, threshold 

determination, and category assignment to all of the five continuous measures used in our 

study. For tools that report the prediction in categorical variables; e.g. predictions of 

disulfide bonds, salt bridges and electrostatic interactions, and stabilization centers, etc., 

we counted the number of variants that fall into each category and reported their absolute 

numbers. 
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Fisher’s exact test was used to determine whether the proportions of functional and 

neutral variants for a particular structural feature are significantly different. We applied 

this statistical method to variants located in our protein 3D structures (371 functional and 

1,811 neutral mutations) and report the test statistics when p-values are significant (α = 

.05). Structural characteristics that harbor different proportions of functional vs. neutral 

variants were identified (n= 11 features).  

Further refinement of the selected structural features was then performed according to the 

proportion comparisons (presence/absence) of the disrupted characters among the three 

groups of variants. Five out of eleven indicators showed significant differentiation of 

PGx variants from neutral mutations; in each case they also suggest PGx variants to have 

similar structural properties to the one that altered the protein functionality (functional 

variants) (Table 5.4). A list of five strong suggestive characters was populated as a 

“Structural Disruption Index”. Given the predictions of the five suggestive characters, we 

calculated the consensus prediction for the structural significance of a variant: “positive” 

if a variant induces/interrupts any of the five suggestive characters, and “negative” 

otherwise.
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Table 5.4: Fisher’s exact test statistics for enriched structural features present in functional mutations and the selection for 

strongest predictive features for structural disturbance (Structural Disruption Index). The complete statistics, including the 
absolute number of functional and neutral variants in all categories of structural indicators can be found in Supplementary Table 5. 

Structural features Indicators Descriptions 

Preliminary selection of 

structural features 

Final selection of structural features as 

Structural Disruption Index (SDI) 

Fisher's exact test  

(one-tailed) 
n 

Likelihood Ratio  

(Chi-square) 

% of 

functional/neutral/PGx 

variants (n=2214) 

Protein stability 

Is a stabilizing residue 
(SR) 

Wild type residue = a stabilizing 
residue (SR) 

0.0037** 2182 .0154* (2.77/0.79/1.39) 

Induced any changes 
of stability 

Mutant residue reduces or increases 
stability (∆∆G ≥ 0.5 or ≤ -0.5 
kcal/mol)  

0.0311* 2182 - - 

Protein flexibility Conformationally rigid 
Located at conformationally rigid site 
(FlexPred label = rigid) 

0.0218* 2182 - - 

Drug binding 
capability 

At binding site Located at binding site  0.0003*** 2182 - - 

At 10 Å of binding site 
Located within 10 Å of binding site 
(Cα-Cα distance) 

0.0005*** 2182 .0058** (33.24/25.49/33.33) 

Protein-protein 
interaction 

At patch Located on protein patch < 0.0001* 2182 
  

Residue localization 
At core 

Located at the core region (RSA ≤ 
5%) 

0.0021** 2182 .0151* (35.73/29.14/38.89) 

Induced Gly/Pro 
change Induced Gly/Pro change 0.0015** 2157   
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Table 5.4 (continued) 

Structural features Indicators Descriptions 

Preliminary selection of 

structural features 

Final selection of structural features as 

Structural Disruption Index (SDI) 

Fisher's exact test  

(one-tailed) 
n 

Likelihood Ratio  

(Chi-square) 

% of 

functional/neutral/PG

x variants (n=2214) 

Amino acid 
dissimilarity 

Large AA dissimilarity 
at structural site 

Induced large amino acid change 
(Grantham score ≥ 100) when 
located at structural sites‡ 

< 0.0001*** 3165 < .0001* ** (35.84/22.98/36.11) 

Change of volume, 
any site 

Induced volume change (very large -
-> small/very small, very small --> 
large/very large) when located at 
any sites‡ 

0.0002*** 3316 - - 

Worse hydropathy at 
buried site 

Induced unfavorable hydropathy 
(hydrophobic to hydrophillic) when 
located at buried site 

0.01** 1096 < .0001* ** (4.43/1.74/16.67) 

Significant p-values (α =.0001, .01 and .05) are designated with ‘***’, '**', and ‘*’, respectively.  

During the preliminary selection of structural features, except for the two tests marked with '‡', the dataset include variants whose 3D 
structures are available (371 functional mutations and 1811 neutral mutations in 45 gene products). The tests marked with '‡' were 
performed on protein sequences; the dataset represents the maximum of 3316 data points (779 and 2537 functional and neutral 
mutations, respectively). During the final selection of structural features as Structural Disruption Index (SDI), all tests were performed 
on non-overlap set of functional, neutral and PGx variants (n= 361, 1781, and 72 variants, respectively). The percentages of variants 
with particular disturbance features are reported.  
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In addition to the binary classification of structural importance, our implementation also 

provides a composite structural score of those five measures—“Structural Disruption 

Score” (SDS), the score ranges from 0 to 5 (each point is taken from an individual –

“Structural Disruption Index” (SDI)). Since a structural feature indicates only one 

function, among possible multiple roles a protein residue may have. Therefore, mutating 

amino acid residues with multiple hits for potential structural disturbance should be of 

high priority; this interpretation is represented by the higher SDS (closer to 5). 

Evaluation of conventional deleterious classifiers and protein characters for 

assessing amino acid variants in pharmacogenes 

The pharmacogenomics (PGx) variants represent an independent set of genomic data that 

were used to evaluate the performances of sequence conservation-based predictors, 

protein characters, and SDS for the deleterious evaluation of amino acid variants in the 

48 VIPs. Some PGx variants were found to overlap with the training set, therefore, 12 

functional mutations and 32 neutral mutations that are duplicates with PGx variants were 

excluded from all evaluation tests. An additional filter was used to remove all variant 

with no available structural data, leaving a unique and non-overlapping set of 361 

functional variants, 1781 neutral variants and 72 PGx variants. We used this dataset to 

performed several evaluations. 

The first test compared means (ANOVA tests) and distributions of five continuous 

structural parameters (P(Flexible), RSA, ∆∆G, Γ, B-factor, and RMSF) (Table 5.3) and 

six continuous scores of conventional deleterious classifiers (SIFT [16], 
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PolyPhen2_HumDiv and PolyPhen2_HumVar [19], LRT [17], MutationTaster [20], and 

MutationAssessor [18]) across three types of amino acid mutations. 

The second evaluation, chi-square test with α = .05, was performed on the numbers of 

variants with binary consensus structural disturbance predictions (positive/negative), as 

well as the categorical levels of structural disturbance (score 0 to 5). The results were 

compared with similar tests on the consensus deleterious predictions (whether or not ≥ 

3/6 conservation-based tools assign the variant to be “deleterious”) and the categorical 

assignment “deleterious count” (the number of tools that predict a variant to be 

deleterious, maximum score = 6).  

Next, we focused on the classification of PGx variants to match the annotation of 

PharmGKB’s three levels of annotation confidence. We evaluated the predictive power of 

different methods for PGx variants whose 3D structures are available (n=386 associated 

variants, equivalent to 72 unique variants). To test whether standard conservation-based 

predictors can statistically distinguish variants of each level, we first clustered the 386 

variants into 3 groups: level 1A/1B, level 2A, and level 3. Next, we compared the 

average deleterious prediction scores from the six conservation-based predictors. The 

comparisons were performed using each paired Student’s t-test on rescaled prediction 

scores (range 0 to 1). The tests were carried out with both the original and the revised 

listing of pharmacogenomic associations. The original list comprises of 386 associations 

with structure data.  
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Results and discussion 

Location of missense variants in protein structures  

A total of 113 conserved protein domain families harbor missense variants in our 

genomic dataset. To further define the relative abundance of the 3,316 amino acid 

mutations in specific protein domain families, we compared the normalized variant 

percentages between the functional and neutral variant groups. Although many protein 

domain families have both types of variant, we found that some domains contain much 

higher percentages of variants of either group. Of all 113 protein domain families that are 

present in the 48 proteins, we identified 36 domains with greater abundance of functional 

variants, 42 domains with greater abundance of neutral variants, and 35 domains with 

only neutral variants  (Figure 5.1, Supplementary Table B.4). Two explanations 

contribute to these observations. First, there is a strong preference for some protein 

domains to harbor more or less functional variants, since the relative variant abundances 

within the first two domain types are significantly different (p < .0001, Student’s t-test, df 

76). Second, the analysis discovered some protein regions with insufficient sampling 

depth from current sequencing technology. 
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Figure 5.1: Relative abundance of functional and neutral variants across conserved 
protein domain families. Of all 113 protein domains that are present in the 48 proteins, 
36 domains harbor more functional variants (Figure 5.1A) and 42 domains contain more 
neutral mutations (Figure 5.1B). The remaining 35 protein domains only have genomic 
data for neutral variants. The complete list of domain names and relative abundances of 
functional and neutral variants is provided in Supplementary Table B.4.  
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Physicochemical change of amino acids at different protein regions 

We used the Grantham matrix [56] to measure physicochemical differences of each 

amino acid substitution. We compared the proportion of conservative vs. radical 

mutations of functional variants with respect to the variant localization along the protein 

chain (Supplementary Table B.5). All analyses suggest that only when functional 

variants occur in non-structural sites (i.e., as propeptide, signal peptide, sequence motif, 

zinc finger, repeat, or modified residue), do they not tend to associate with large 

dissimilarities. For other regions, functional variants always have a stronger preference 

towards substitutions with large amino acid dissimilarity. 

The first comparison examined Grantham scores of variants in structural sites relative to 

non-structural sites. As expected, when functional variants are located in structural sites 

of the protein, they tend to be more of radical type (Grantham scores ≥ 100) (p < .0001). 

On the other hand, functional variants do not seem to induce large amino acid changes 

when the altered protein residues locate elsewhere (p = .6145).  

Next, we were interested to see if the localization of variants in conserved protein 

domains would increase the likelihood of drastic amino acid change, or if functional 

variants have a tendency to induce radical substitutions throughout the protein chain. 

Comparing amino acid substitution scores (Grantham ≥ 100 vs. < 100) of variants in 

protein domains to ones located at domain boundaries did not suggest unequal 

proportions (p = .42, one-tailed Fisher’s exact test, n=3,316). Conversely, when 

functional variants are situated at either protein domains or at protein boundaries, they 
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tend to equally promote large amino acid change compared to neutral mutations (p < 

.0001 and p = .0045 for the two locations, respectively). 

Lastly, we tested whether predicted binding sites tend to harbor more functional variants 

with a Grantham score ≥ 100. The test statistics indicate functional variants do tend to 

associate with amino acid dissimilarity when they are predicted to alter binding sites (p = 

.0259, n=145), and this tendency is much stronger if they are located within 10 Å of the 

binding site (p < .0001, n=591).  

Additional tests for unfavorable amino acid changes (hydropathy, volume, charge, 

hydrogen donor/acceptor) indicated that functional variants do not directly have large 

physicochemical dissimilarity at/around the binding sites (α = .05), and that change in 

side chain volume is the only significant physical disturbance caused by functional 

variants (p = .0002 at any sites, n=3,316; p = .0046 at around 10 Å of binding sites, 

n=591) (Supplementary Table B.5). The three most insignificant indicators are ligand-

specific: 40/48 VIPs serve as drug targets for 530 drugs and 23 genes have known 

pharmacological actions for 270 drugs [152]. This large number of highly interactive 

genes and the diversity of their drug partners may explain why we did not observe any 

enrichment in structural disturbances of the three physical changes. Besides the potential 

disruption in binding cavity volume, other notable changes we detected from functional 

mutations is that they tend to alter the hydrophobicity of buried residues (p = .01, 

n=1,096).  

The analysis of secondary structure preference for amino acids pointed out that although 

functional variants tend to have gain or loss of glycine or proline residues (two unusual 
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amino acids that are either very conformationally flexible or rigid, respectively), the 

secondary structure of the protein is still well maintained. We did not observe any 

structure break in the six secondary structure types (coil, strand, 3-turn helix, α-helix, 

bend, and turn) (Supplementary Table B.5). 

Implementation of systematic 3D screening for structure-function relationships of 

amino acid mutations 

PharmGKB is a knowledge-based database that provides curated resources on genetic 

variation and drug responses [146]. As of February 2014, there are 249 peer-reviewed 

scientific articles that were written by PharmGKB affiliated researchers. Among these, 25 

articles address the pharmacogenomics of an individual gene, and 29 publications 

emphasize drug metabolism pathways. The remaining 195 articles mostly describe 

population studies or dosage studies, or are review articles. Most significantly, only one 

article [35] utilizes 3D structure data (stability change) to improve the prediction 

accuracy of a popular conservation-based deleterious predictor—PolyPhen2 [19]. Their 

study showed that with a single structural parameter added to the sequence data, the 

deleterious prediction performance improved from 82 to 85% accuracy, and the 

Matthew’s correlation coefficient (a quality estimator for binary classifications) increased 

from 0.63 to 0.70. Although the authors of PolyPhen2 had mentioned that their algorithm 

includes 11 predictive features (6 conservation-based, 4 structure-based, and 1 derived 

parameter), we reasoned that since the number of included structural data annotations 

was very limited (only ~10% of the training set have available structural data), it can be 

further improved upon. Note that the four structural features included in PolyPhen2 are 
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side chain volume, accessible surface area, accessible surface area for buried residues, 

and B-factors (indicate mobility of individual atoms) [19]. 

A recent review presenting a protein structural perspective on drug responses [162] 

summarized the different structural characteristics that are important for 

pharmacodynamic and pharmacokinetic mechanisms. The authors considered five major 

classes of computational tool for examining drug-protein relationships: structure 

visualization tools, structure prediction tools, binding site prediction and comparison 

tools, ligand docking and scoring tools, and MD (molecular dynamics) simulation tools. 

We added to this list some other potential protein analyses that incorporate other types of 

interactions that occur within or between proteins even when no drug molecules are 

bound (Table 5.3). 

The nearly complete coverage for functional and neutral mutations which can be mapped 

to structural data of the 45 VIPs (average variant coverage of 85% per gene, range 75 to 

95%, 95% CI, Supplementary Table B.3) enhances the ability to study the structure-

function relationships of missense variants. We employed a similar approach in our study 

of epilepsy-associated variants [110] where we showed that quantifying the structural 

disruption features caused by functional mutations can prioritize risk variants. 

Furthermore, we added a few explicit test categories in this current study, namely, inter-

residue bonding, residue localization, amino acid dissimilarity, and secondary structure 

preference of amino acids. 
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Implementation of SDS Pharmacogenes for predicting structural significance of a 

variant 

The analysis of context-dependent mutation effects describes a list of physical protein 

features that are commonly found in functional mutations as oppose to in neutral variants. 

These enriched characters are important because they suggest specific protein attributes 

and/or residues that are less tolerant of disruption. We have integrated scores of five 

selected components in “Structural Disruption Index” (SDI) into a composite “Structural 

Disruption Score for Pharmacogenes” (SDS Pharmacogenes). The score provides a 

measure of the likelihood that a mutation is damaging. It can be used to evaluate all 

missense variants found in this gene set whose protein 3D structure is available (currently 

45/48 gene products) and thus to derive a list of mutations that may cause altered protein 

functions when interacting with drug molecules, contributing to inter-patient variability 

of drug responses. 

Among the 68 structural features we compared between functional and neutral variants, 

11 features were found to be more common in functional mutations (Table 5.4). Six 

indicators may have pharmacodynamic effects due to altered protein stability, binding 

sites, or protein conformations. One indicator, conformational rigidity, also plays an 

important role in pharmacokinetic mechanisms of many proteins, including the CYP450 

system [163]. Two indicators also have close relationships with sequence conservation, 

namely, stabilizing residues and protein patches. In addition, all interior protein residues 

(RSA ≤ 5%) appear to be highly conserved. The full list of structural characteristics that 

were tested during the algorithm development and the correspondent test statistics are 

provided in Supplementary Table B.5. 
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Next, we aimed to narrow the list of enriched structural features to a small number of 

protein characters that best assign PGx variants to resemble functional mutations, rather 

than to the neutral ones. Table 5.4 indicates that eight of the eleven structural measures 

illustrate a shift in PGx variants in the same direction as functional mutations, and away 

from the neutral ones (the three exceptions are induced Gly/Pro change, at patch, and at 

binding site). Among the eight features, five have significant statistics that cluster 

functional and PGx variants to the exclusion of neutral ones; the features are: unfavorable 

hydropathy change at buried site, large amino acid dissimilarity (Grantham score ≥ 100) 

if located at structural sites, located at core region (RSA ≤ 20%), located within 10 Å of 

predicted binding sites, and is a stabilization residue (SR). Jointly they define a 

“Structural Disruption Index” (SDI) that can be used to infer structural (and maybe 

functional) significance of an amino acid variants based on the consensus prediction of 

structural disturbance (positive/negative) and the magnitude of structural impact (SDS). 

Structural characteristics of functional variants 

The five components of the “Structural Disruption Index” (SDI) are unfavorable 

hydropathy change at buried site (RSA ≤ 20%), large amino acid dissimilarity (Grantham 

score ≥ 100) if located at structural sites, located at core region (RSA ≤ 5%), located 

within 10 Å of predicted binding sites, and is a stabilization residue (SR). 

Hydropathy is an important property of amino acid side chains. Hydrophobic residues 

tend to be at buried sites (RSA ≤ 20%) while amino acids with hydrophilic side chains 

are more commonly found on protein surfaces. Side chains with similar hydropathy 

attract each other. The clustering of hydrophobic side chains within the protein core is a 
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major force that holds a protein structure in place [161]. Any amino acid substitutions 

that reduce hydrophobic interactions may cause serious folding defects. 

Grantham scores serve as a general criterion to classify amino acid dissimilarity for a pair 

of amino acids. The score is derived from an index that best correlated physicochemical 

properties of protein residue to the substitution frequencies [56]. The properties include 

amino acid composition, polarity, and molecular volume. We did not detect any 

difference in the proportion of large amino acid replacements (Grantham score ≥ 100) 

among the three levels of PGx variants. However, large Grantham score is a good 

indicator for separating PGx from neutral variants (p < .0095, Fisher’s exact test). 

Protein residues that have significant roles can be either solvent-accessible (e.g. some 

ligand binding sites or protein-protein interaction sites), or can be solvent-inaccessible 

(e.g. several ligand binding sites, catalytic sites). In addition, conserved residues within 

the protein are likely to have important structural roles in maintaining the correct protein 

fold. This feature is described as “stabilizing residue” (SR) [71], which indicates the 

protein residue has: (1) high surrounding hydrophobicity (sum of hydrophobic indices of 

all its neighbor residues within 8 Å is greater than 20 kcal mol-1), (2) high long-range 

order (the percentage of long-range neighbors (≥ 12amino acids apart) with the Cα-Cα 

distance of ≤ 8 Å is greater than 2% of the total number of protein residues), and (3) high 

conservation score (score ≥ 6/9 based on ConSurf predictions [164]). 

Although we only detect 1% (215/21457) of all the protein residues in our 3D structure 

data of 45 proteins to be qualified as SR (the number can be increase if we relax any of 
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the three criteria), the proportion is higher (p = .0034, Fisher’s exact test) in functional 

variants (2.8%, 10/361 residues) compared to neutral variants (0.8%, 14/1781 residues).  

Among the72 PGx variants, only one mutation is detected as an SR (equivalent to 1.4% 

of the dataset). This PGx variant, Y240C in TPMT (rs1142345) is classified asTPMT*3 

allele and is associated to five drugs at the PharmGKB’s level 1 annotation (azathioprine, 

mercaptopurine, purine analogues, and thioguanine) and one drug (cisplatin) in PGx level 

3. Four conservation based predictors (except MutaionTaster and MutationAssessor) 

predict the variant to be deleterious. 

In addition to being predicted as an SR, this Tyr240Cys substitution is independently 

predicted by by PoPMuSiC software [120] to severely reduce protein stability (∆∆G 2.24 

kcal mol-1). The functional significance of this variant has been confirmed by 

experimental studies [146] which demonstrate the loss of several side chain contacts, 

accelerate in vitro degradation, and reduce the protein activity. In addition, an MD 

simulation study indicates this variant of TPMT causes the most structural deformation 

during simulations [165].  

An exceptional case 

In general, the 386 pharmacogenomic-associated variants harbor at least one type of the 

eleven structural disrupted features (maximum SDS = 3/5). Only one variant, R26H in 

CYP2D6, has 0 hits in our SDI (SDS = 0/5) and in fact 0 hits among the initial selection 

of 11 predictive features. Prediction results from 5/6 conservation based predictors 

indicate the variant is benign (prediction scores are at the extreme end for “benign”). 
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MutationTaster [20] is the only program which predicts this amino acid change to be 

deleterious with a score of 0.999 (cutoff = 0.5).  

The R26H amino acid change of CYP2D6 is identified as the CYP2D6*46 allele 

(rs28371696) [166]. CYP2D6 metabolizes a wide range of drugs—up to 25% of 

commonly used prescriptions, such as, antidepressants, antiarrhythmic agents, 

neuroleptics, opioids, and antihistamines [167]. R26H in CYP2D6 has been linked to 31 

drugs in the PharmGKB’s pharmacogenomic association schema levels 1-3. Overall, 

Africans metabolize CYP2D6 substrates at a slower rate than Caucasians owing to the 

higher alternate allele frequency (1.68% vs. 0.02%) [151].  

Of all 68 structural features that were tested during the development of SDS 

pharmacogenes (Supplementary Table B.5), the R26H does not unusual for any of those 

features. Arg26 is locate at the exterior loop of the protein (RSA = 53%). The amino acid 

change does not induce a secondary structure break at this coil region. In addition, Arg 

and His have very comparable physicochemical properties (Grantham score = 29). The 

substitution does not induce any stability change (∆∆G = -0.09 kcal mol-1). The only 

structural feature that comes close to being positive for this variant is the fact that Arg26 

is predicted to be a non-optimal residue (several of its mutations will indeed increase the 

protein stability) The Γ parameter (designates the degree of sequence non-optimality) for 

Arg26 is -3.16 kcal mol-1 (positive cut-off is when  Γ ≤ 3.47 kcal mol-1; an indication for 

resemble a catalytic residue).  

CYP450 enzymes consist of an N-terminal transmembrane α-helix and a catalytic 

domain. While the structure of the catalytic domain is well-resolved, the N-terminal 
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domain cannot be elucidated due to insufficient x-ray density. Four crystal structures of 

human CYP2D6 are currently available [60], but the first 33 residues (N-terminal) have 

been replaced with an 11 amino acids long peptide to improve crystallography. The full 

length model of CYP2D6 predicts reside 1-25 as the N-terminal transmembrane α-helix, 

and residues 26-33 to be the linker between the N-terminal and the catalytic domain. 

Molecular dynamic simulations of related enzymes using full length protein structures 

revealed the N-terminal region exhibits a large range of flexibility [168, 169] and the 

presence of N-terminal region alters the conformational dynamics of opening and closing 

ligand channels compared to the N-terminal truncated crystal structure of CYP2D6 [170]. 

Further assessments are required for the functional roles of Arg26 in this enzyme. 

Performance of conservation-based predictors and SDS for assessing amino acid 

variants in pharmacogenes 

1) Classification of functional, neutral, and PGx variants 

The six deleterious predictors we chose for comparison with the SDS Pharmacogenes 

score differ in the underlying methodologies. Three algorithms (SIFT [16], LRT [17], and 

MutationAssessor [18]) were built from evolutionary conservation, while the other three 

(MutataionTaster [20], and PolyPhen2_HDIV, PolyPhen2_HVAR [19]) incorporate 

various SNP data as predictive features. SIFT calculates the normalized probability of a 

substitution from sequence alignments of orthologous proteins [16]. LRT uses sequence 

alignments of related proteins from vertebrate species to check for negative selection of 

codons [17]. MutationAssessor partitions sequence alignments to identify evolutionary 

conserved sites that contribute to protein function [18]. MutationTaster combines several 
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sources of information to generate a supervised-learning classifier [20]. 

PolyPhen2_HDIV and PolyPhen2_HVAR use protein sequence (orthologs and paralogs) 

and structure-based information (side chain volumes, accessible surface areas, accessible 

surface areas for buried residues, and B-factors) to generate a Bayesian model for variant 

deleteriousness [19].  

We found the classification of genetic variants (functional, neutral and PGx) in the 48 

pharmacogenes is challenging. The poor performance of most conservation-based scores 

is illustrated by the plots in Figure 5.2. Although the consensus prediction, deleterious 

count, for the six tools can rank functional and neutral variants in the correct order, the 

deleterious assignment for PGx mutations is not meaningful. Likewise, each pair of 

Student’s t-tests indicates all programs properly rank the functional variants to be more 

deleterious than the neutral ones (p < .0001 for all predictors). On the contrary, every 

program failed to place PGx variants closer to the functional mutations. More 

importantly, PGx variants were assigned less deleterious scores (less damaging) than 

neutral variations (p < .0001 for all predictors except p=.0112 for SIFT). Density plots 

suggest the conservation-based programs have a tendency to under-predict the damaging 

effects of variants in this set of 48 pharmacogenes.  
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Figure 5.2:  Performance of conservation-based predictors across the three types of 
mutations in 48 VIPs. The first row represents the consensus prediction for 
deleteriousness (deleterious count, score 0-6). The remaining rows demonstrate the score 
distributions for different types of variants (n= 361, 1781, and 72 for function, neutral, 
and PGx variants, respectively). Some scores were rescaled to [0, 1] so that deleterious 
scores of the six predictors can be interpreting in the same manner—scores closer to zero 
indicate the prediction is “benign” while score closer to one indicate “deleterious”. The 
horizontal (vertical) dashed black lines in the scatter (density) plots indicate the 
deleterious threshold for each predictor.  
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We performed chi-square tests on the numbers of variants that receive consensus 

“positive” or “negative” predictions for inducing any structural disturbance. The test 

statistics demonstrated that the proportions of “positive” variants differed significantly 

among the three groups of mutations (p < .0001). Approximately 78% of PGx variants (n 

= 56/72) will interrupt at least one of the five elements of the SDI, and this bias is in the 

same direction as the 66% of functional mutations (n=239/361), whereas only 57% of 

neutral mutations (n=1013/1781) have a positive SDI (Figure 5.3). Structurally disrupted 

variants are more abundant in PGx than neutral variants (p = .0002, n = 1,853, Fisher’s 

exact test), and in slightly more excess in PGx than functional variants (p = .0647, n = 

433, Fisher’s exact test).  

 

Figure 5.3: Percentages of variants with respect to their scores for structural 

significance (Structural Disruption Score; SDS) and the consensus scores for 
conservation-based deleteriousness (Deleterious count). The graph shows the 
percentage of positive variants (variants that are predicted to disrupt at least one of the 
five components of Structural Disruption Index (SDI)) which have score of at least n for 
SDS and deleterious count. Note the SDS can distinguish between PGx and neutral 
variants, and PGx variants receive comparable or higher SDSs than functional variants in 
all SDS thresholds, whereas deleterious count (del count) assigns the score for PGx and 
neutral variants with no meaningful interpretation. 
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We also observed that SDS correlates highly with the deleterious count (p = < .0001, 

n=1,902), although the correlation is not strong (Pearson’s correlation coefficient = .248). 

SDS also correlates (p < .0001) with SIFT, PolyPhen2_HDIV, PolyPhen2_HVAR, and 

MutationAssessor but with small coefficient (range 0.18 to 0.29). 

2) Classification of three levels of PGx variants 

PharmGKB has annotated 776 variant-drug pharmacogenomic associations for the 48 

VIPs (Table 5.1).The association strength is classified into four levels: 1A/1B, 2A/2B, 3, 

and 4. The most number of associations are linked to CYP450 enzymes; their variants 

account for 83, 81 and 48% of all levels 1A/1B, 2A/2B, and 3 variants, respectively. In 

addition, we observed that missense mutations contribute approximately 61% (471/776) 

of the overall associations, consistent with a recent remark that states 60% of disease-

causing variations are missense variants [14]. Among the remaining associations, just 3% 

(22/776) are caused by nonsynonymous mutations, and 36% (282/776) are induced by 

non-coding variants (variants in intergenic, intron, or 3’UTR regions). Their associations 

with pharmacological traits are not strong and the variants are mostly classified as level 4 

in the PhamGKB’s schema. Among the 471 missense mutations, many have 

pharmacogenomic associations with more than one drug (ranges 1 to 10), but the levels 

of association vary upon the interacting compounds. The CYP2D6 gene has the 

maximum number of FDA-approved pharmacogenomic drug labels per variant (seven 

drugs: amitriptyline, clomipramine, desipramine, doxepin, imipramine, nortriptyline, and 

trimipramine) (http://www.fda.gov/drugs) (accessed March 7, 2014). 
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The 471 variant-drug pairs uniquely involve 81 missense mutations (levels 1-3) of 27 

proteins. After we applied the six conservation-based deleterious predictors to the 471 

missense variants of all annotation levels, we compared the average prediction scores 

across the three levels: 1A/1B, 2A, and 3. Student’s t-test statistics indicate only one 

program, SIFT [16], can differentiate variants of the three pharmacogenomics association 

levels based on the score averages ( Plevel 1-2 = .0042, Plevel 1-3 =.0015). The trend for SIFT 

score is as expected; SIFT predicts pharmacogenomic-associated variants in level 1A/1B 

and 3 as the most and the least deleterious groups, respectively. This observation is 

consistent with PhamGKB’s curated levels of associations.   

Results from different conservation-based tools also demonstrate the unforeseen 

difficulties in analyzing genomic variants in this gene set. The ability of SIFT  [16] and 

inability of PolyPhen2 [19] to cluster PGx variants is worth investigating, since both 

programs perform exceptionally well in general. The poor performance of 

PolyPhen2_HDIV is surprising, since the structural information used by 

PolyPhen2_HDIV is related to the enriched disrupted features we detected among 

functional variants (Table 5.4). More importantly, the training set PolyPhen2_HDIV 

used comprises of SNPs that cause Mendelian diseases by affecting protein stability and 

function [19], therefore, the substantial contribution of structural features is expected.   

SDS is a numerical parameter; the value ranges from 0 to the maximum possible SDS 

(currently 5). In the dataset of 386 pharmacogenomic associations, the average SDS is 

1.26 and the maximum SDS is 3. We did not detect any differences between average SDS 

among the three levels of PGx associations; the observation is in agreement with the 

deleterious count (representing the number of conservation based tools that predict a 
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variant to be deleterious, average score 1.80/6). A major reason is that the dataset of 386 

associated variants are very much redundant (uniquely mapped to 72 variants). The 

identical protein residue can interact with many small molecules and other proteins in 

through various modes of interactions. 

Limitations of pharmacogenomics studies 

The need for expanded application of sequencing technologies in pharmacogenetics, 

especially for the ability to uniformly and fully capture all genomic variations within 

genes, was raised by [23]. They assessed the polymorphism coverage of 253 

pharmacogenes from the 1000 Genomes Project [171], and discovered that no current 

genotyping technologies cover more than 85% of residues within each gene. More 

importantly, data for only 30% of missense mutations are being generated across all 

sequencing platforms. This notable remark was also observed in our genomic dataset, in 

which we detect some protein domains seriously lack the data for functional variants 

(Figure 5.1). 

In addition to more extensive databases of variation in pharmacogenetic loci, exhaustive 

mutagenesis data is another key to the generation of accurate predictive tools for 

damaging variants. At this stage of genome analysis, the data on human studies is used to 

deduce the functional impact of variants in a binary format (functional vs. neutral 

variants). Experimental data provides observable phenotypes with measurable effects. 

The information has the potential to greatly enhance the development of deleterious 

prediction algorithms. The data will provide a means to guide, refine and validate 

prediction models. 
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A future direction of this work is to explore mutagenesis data and/or genomic data of the 

pharmacogenes to aid the refinement of feature selection. We also plan to populate SDSs 

for all amino acid mutations in the currently available set of 3D structures (n=45). Our 

future implementation of a database and a web-application for SDS Pharmacogenes will 

allow an easy retrieval of the pre-computed scores, thus promoting the practical utility of 

this research. 

Conclusions 

Our implementation of “SDS Pharmacogenes” provides a foundation for investigating the 

roles of amino acid mutations in drug responses from the standpoint of structural 

analysis. The pipeline introduces several conceptual shifts in assessment of genomic 

variations. First, the evaluation is strictly structure-based, therefore, offers a unique 

opportunity to explore the effects of amino acid mutations within the structure 

environment. Second, the analysis is systematic, through the investigation of structure-

function relationships in the context of each protein topology. Third, the implementation 

is scalable, suitable for the large and growing accumulation of genome data. Fourth, the 

prediction is informative, because the SDS Pharmacogenes combines results from several 

analyses, and the consensus prediction for structural disturbance (positive/negative) is 

meaningful. Unlike existing deleterious scores that do not consistently classify 

Pharmacogenetic VIP mutations as functional, we have identified five protein structure 

features that are significantly enriched in VIP variants. Further refinement of SDS 

Pharmacogenes, including the database-driven web application, will permit anyone, with 

or without protein expertise, to quickly obtain the comprehensive predicted drug 

responses for the variant of interest. 
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CHAPTER 6: CONCLUSIONS 

Sequencing technology development and the outlook for genomic 

variant analysis pipelines 

The rapid technological advances in sequencing technology are promising ever more 

breakthroughs from genome studies. The cost of sequencing is now estimated at about 

$1000 per genome, a huge drop compared to the first completed genome data 10 years 

ago that cost nearly $3 billion [26]. HiSeq X Ten, the newest sequencing platform from 

Illumina, is advertised to be capable of sequencing 18,000 genomes per year, while 

keeping the cost close to $1000 per genome (http://www.illumina.com). This remarkable 

development means affordable large-scale human genome sequencing projects are a 

reality, which in turn elevates the potential for improved understanding of variant-

function relationships and the identification of causative variant/genes for genetic traits 

and diseases. 

Even if new technologies can facilitate the completion of genome data with minimal cost, 

the main difficulty in genome studies is indeed the multi-filtration and iterative process 

for the identification of candidate genes and causal variants (Figure 6.1) [7]. Each person 

harbors about three million genomic variations; the variants are present throughout the 

genome [1]. Proper analyses can help narrow down millions of whole genome variants to 

less than ten SNPs which have strong clinical significance.  
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Figure 6.1: Variant analysis and filtration in whole genome sequencing. The 
identification of candidate genes and causal SNPs require multiple filtration steps (taken 
from [7]). 

Although whole genome data can be informative, the functional annotation of variants in 

various genomic regions (coding, splice site, regulatory region, etc.) is quite complex—

different types of functional variants have different weights. An example is illustrated by 

a complicated decision tree for analyzing candidate variants (Figure 6.2) [13]. This 

approach has been implemented in a bioinformatics tool, F-SNP [172], which uses 

conditional probabilities to assign the maximum likelihood that a SNP has significant 

functions at different genomic regions.
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Figure 6.2: Tools for analyzing SNPs form different genome regions.  Each box lists the common tools for analyzing certain type 
of genomic variants. The tools are largely redundant but somewhat different in the methodologies (taken from [13]).
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Given that disease-causing variants are mostly located in the protein coding regions, the 

focus on analyzing coding variants can promote the detection of true causative factors. 

Above all, missense variants enable straightforward functional annotations since they 

underlie the best understood biological concept: DNA�RNA�protein. 

Whole exome sequencing (WES) offers a cost effectiveness alternative approach to 

whole genome sequencing (WGS) for conducting the large-scale human genome 

research. While WGS reads an individual’s entire DNA, exome sequencing targets only 

the protein coding regions (1% of the whole genome). More importantly, a whole exome 

is (for now) 1/6 the cost of whole genome and 1/15 the amount of data [173]. It is 

suggested that more than 10,000 exomes are needed to achieve statistical power [174]. 

Undoubtedly, the lower cost of WES can ensure more samples, better sequencing 

coverage, and better quality control of sequencing data. The relatively small amount of 

data facilitates exhaustive variant analysis and the possibility to combine effects of 

multiple variants together. As a result, the study of amino acid mutations caused by 

coding variants will greatly benefit from the advantages of WES. 

Complexities and future directions for interpreting amino acid variants 

Detailed knowledge about an individual variant is essential for the elucidation of 

molecular mechanisms that underlie their functional impact. The emerging practice in 

variant interpretation is to combine functional predictions from several sources to 

improve the annotation confidence and/or accuracy. At the moment, the accurate 

functional annotation of amino acid variants is still under development, since several key 

limitations can be foreseen: (1) confirmed functional data of coding variants are very 
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limited in terms of availability, quality and variability of experimental data. For proteins 

that bind to multiple ligands, it is also possible that mutagenesis tests only examine one 

substrate in the same in vitro experiment; the results present substrate-dependent effects 

as opposed to generalized functional significances of the variant. (2) The accurate 

prediction of protein-ligand interactions is limited by large computational resource 

requirements. (3) For genes that a have high number of genetic variants (such as genes in 

the CYP450 system), structural variations e.g. indels, copy number variants, and gene 

fusions which are coupled with missense mutations, introduce additional challenges for 

variant analysis [175]. 

Protein structural analysis may have a major impact in the next phase of genome studies 

as missense variants contribute to at least 60% of Mendelian disease development [5]. 

Computational prediction of various structural changes can be used to guide subsequent 

biological assays which will include functional implication of the specific amino acid 

mutations. Current trends in structural analysis use static protein data, e.g. stability 

change of the protein, physicochemical changes of the amino acid side chain, or changes 

in ligand binding environment to classify functional roles of a protein residue. However, 

it is very important not to ignore dynamic data since proteins are flexible biomolecules 

that can have functional interactions with substrates, biological compounds, or other 

proteins. 

The strength of exhaustive molecular dynamic simulations for the ability to detect large-

scale structural changes will increasingly become a desired method for in silico 

functional assessment of amino acid mutations at the level of tertiary and quaternary 

protein structures. For primary protein sequences, bioinformatics tools that combine the 
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conservation degree of amino acid substitutions, physicochemical/biological properties, 

and possibly structural-derived parameters are deemed essential for the preliminary 

process of variant prioritization. 

Summary of this dissertation 

Numerous genetic variations an individual carries joint with the potential impacts of 

some variants towards his/her health profiles create the demands for analyzing personal 

genome data. The ideal practice is that a variant assessment pipeline needs to be efficient 

and informative—using a systematic evaluation which is suitable for large genome data 

while providing a good combination of computational predictions (conservation-based 

and structural-based) and knowledge-based parameters in human genomics (disease and 

trait associations) [28]. In addition, a suitable user interface shall be implemented to 

promote the practical utility of the developing variant assessment protocol. 

Although sequence conservation can be used to assess variant effects, it is not the only 

indicator for residue functionality. This dissertation asked if it is possible to overcome the 

weaknesses of the conservation-based assumption for variant deleteriousness. 

Specifically, can we combine the conservation-based approach with clinical information 

and structural data to attain a better understanding of the variant effects? 

Using several data sources for the development of the three variant assessment pipelines 

(Chapters 2, 4 and 5), the dissertation highlights some of the difficulties yet to be 

overcome. The difficulties arise from several attributes: (1) limited number of curated 

gene-disease data. (2) The limitation of gene knowledge. (3) Diverse structural 
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characteristics of mutating proteins caused by disease causing mutations. (4) Errors in 

homology models. (5) Error in prediction programs.  

The details for each observation are described below. 

(1) Limited number of curated gene-disease data. The list of clinically curated gene-

disease associations is not exhaustive, and the annotations often have different 

levels of significance (e.g. variants that were concluded from a single significant 

study, variants with moderate statistical associations, and variants derived from 

case-by-case reports, non-significant studies, or in vitro data). Notably, SNP 

databases frequently list associated diseases without specifying the annotation 

confidences. 

(2) The limitation of gene knowledge. My research examined variant effects in three 

complicated situations. The analysis of personal genomes (Chapter 2) focused on 

homozygous missense variants (highly penetrant effects are most likely to be 

recessive) and identified 60-84 known homozygous nsSNPs per genome (across 

40-77 genes). In addition, some individuals also carry de novo homozygous 

variants (range 1-5 variants per genome). Genomic variants of healthy individuals 

are less likely to have observable effects, although some variants are predicted to 

be deleterious. Without additional information of clinical data, the deleterious 

prediction is not as informative as expected. The AACDS classification scheme 

(Chapter 2) provides a concise description (and eight-level category) of a variant 

from the perspectives of consensus sequence-based deleterious prediction, types 

of mutation (disease-associated vs. neutral), and information on disease- or trait-

associations with the gene. 
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The analysis of variants in epilepsy disorders suffered from very minimal 

information on the gene functions towards the disease development (Chapter 4). 

Literature searches indicated only 1 gene, among 68 genes of our dataset, may be 

linked to epilepsy. In addition, the number of candidate case variants is only one 

per a gene. The two limitations created difficulties in incorporating prior 

knowledge of gene biology to the functional assessments.  

(3) Diverse structural characteristics of mutating proteins caused by disease-causing 

mutations. While ~75% of amino acid changes leading to Mendelian diseases 

(single gene diseases) consistently induce protein destabilization [37], the 

structural evaluation of missense variants in complex diseases (multiple gene 

diseases) is not that simple. The high contributions of missense variants in 

Mendelian genes on protein structures provide a better interpretation of variants 

effects than a list of the same variants that are linked to complex disorders—

multiple variations in one gene and/or of several genes may work synergistically 

to create protein malfunction.  

Furthermore, in vivo activities and/or structural characteristics of mutating 

proteins may be dissimilar between different types of disease-causing mutations. 

A study on protein kinase [176] indicates germline disease causing mutations 

mostly affect the substrate binding sites or protein-protein interaction sites, while 

cancer causing somatic mutations tend to altered ATP binding sites or catalytic 

residues. Bearing that some disease genes may harbor both types of causal 

mutations, but given the small number of causal variants per a gene, the sorting of 

causal variants into two distinct groups is not possible. The combination of 
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structural disturbances maybe diluted when multiple structural changes from 

various disease types were combined during the development of the prediction 

algorithm (Chapter 5). 

(4) Errors in homology models. The understanding of genotype-phenotype 

relationships can be improved upon the examination of a mutated residue in its 

3D protein context. Homology modeling is fulfilling the largely unavailable 

known protein structures. Homology models have with a wide range of 

accuracy—depending upon the sequence identity to the structural templates. 

Errors of modeled proteins exist (and are recognized), but they should not prevent 

the roles of computationally derived structures to assist functional annotations of 

amino acid variants. Errors from homology models include misplaced side chains, 

inaccurate loop modeling, distortions of protein core, or even wrong folds [177]. 

The model quality can be assured by performing structural minimizations (to 

resolve steric contacts) and assess the models using a series of quality scores (to 

evaluate the overall geometrical accuracy). 

(5) Error in prediction programs. Many bioinformatics tools for predicting variant 

deleteriousness have been established, each with their own strengths. Nonetheless, 

the output of one tool may not be entirely reliable. During the analysis of variants 

in pharmacogenes (Chapter 5), large disagreements among six conservation-

based indicators were discovered. More importantly, despite the fact that high 

impact variants in pharmacogenes contain extensive available clinical data, most 

prediction programs underestimated the damaging effects of pharamacogene 

variants (although they work well in other cases).  
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Despite these difficulties, this dissertation shows that the integrative approach for 

investigating variant-function relationships can be applied to at least three aspects of 

genome studies—personal genomics, genomics of epilepsy disorders, and genomics of 

variable drug responses. More importantly, the variant evaluation pipeline were 

implemented in a systematic manner, therefore, it is now possible to evaluate the large 

number of variants at a genome level (Chapters 2), in a disease-wise perspective 

(Chapter 4), and in a set of highly significant pharmacogenes (Chapter 5). Each 

implementation serves as a filter to identify functional significant variants which are 

worth clinical attentions (Chapter 2), which can guide subsequent experimental 

validations (Chapter 4), and which may induce the variability in drug responses 

(Chapter 5). The development of a database-driven web application for the AACDS 

classification scheme (Chapter 3) and the future development of a database for variants 

in pharmacogenes enhance the practical utility of research outcomes since minimal 

experience/expertise in genome interpretation is required.  

The incorporation of knowledge of clinical associations and protein structure data serve 

as complementary tools to the existing conservation-based algorithms for variant 

deleteriousness. My efforts in generating a large number of high quality homology 

models and the employment of diverse structural analyses offer a way to detect common 

structural features which are induced/targeted by most functional variants (variants that 

lead to functional differences between wild type and mutant proteins). As a result, 

functional implications caused by any amino acid changes in a protein can be elucidated 

by a fast and systematic screening of structural disturbances. The approach provides an 

opportunity for investigating the joint effects of multiple structural changes from one or 
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many mutations in a specific protein and for establishing the likely causative variants in 

large genome data. 

Overall, the dissertation explains essential developments in genome analysis. It is the first 

introduction of three variant assessment pipelines that utilize an efficient way to catalog 

missense variants on a large scale.
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APPENDIX A: SUPPLEMENTARY INFORMATION FOR 

CHAPTER 2 

 

Figure A.1: AACDS summary report. The report is provided to the user with the 
AACDS category of the variant and its relevant information, along with additional 
variant data.   
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Figure A.2: Cumulative distribution plots for the six deleterious prediction scores. 
The X-axis represents the prediction scores, ordered by deleteriousness such that low and 
high scores for each prediction algorithm indicate neutral and damaging nsSNPs, 
respectively. For each prediction program, the score threshold for defining damaging 
SNPs is indicated by a vertical green line (threshold for LRT is at 0.999). The genes were 
classified into four groups depending upon population prevalence of their SNPs, using 
the difference in minor allele frequencies (MAFs) (cut-off of ± 5%) between European 
American (EA) and African American (AA) populations. The four gene groups are EA 
bias, AA bias, EA&AA bias, and no bias. For each plot, the dashed lines illustrate the 
cumulative distribution of deleterious prediction scores for disease-causing SNPs located 
in each gene group. The numbers of genes and SNPs are as follows: EA bias (222 genes, 
3409 SNPs), AA bias (368 genes; 4,825 SNPS), EA&AA bias (234 genes; 4,225 SNPs), 
and no bias (965 genes; 12,214 SNPs). All disease-causing nsSNPs were retrieved from 
MSV3d [43] and SwissVar [44]. Population-specific minor allele frequencies for the 
variants were derived from NHLBI GO Exome Sequencing Project (ESP6500) (June 
2012 release) [50].   
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Figure A.3: Allele frequency distributions by AACDS score. The three columns 
indicate the minor allele frequency (MAF) in percent, listed in the order of European 
American (EA), African American (AA) and all populations (All). Only SNPs with 
available allele frequency data are represented here and the numbers in each group are 
221, 33 and 165, respectively.  
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Figure A.4: Proportions of the 9 types of annotated protein regions found in all 
residues in the analyzed proteins vs. in SNP residues. Data were compiled from a set 
of 520 proteins whose sequence features are available from UniProt database [51]. 
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Figure A.5: Location of SNPs within proteins according to sequence feature type. A 
relative location near zero indicates the SNP is located near the N-terminus of that 
sequence feature. For clarity, a few features were excluded due to small sample sizes.  
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Figure A.6: Comparison of gene functional enrichment in the 12 genomes. The 
analysis was performed with g:Cocoa [78]. Each cell in the left most column indicates the 
number of queried genes from each individual that are associated with each annotation 
term. The highlighted cells indicate significant enrichment. The enrichment p-values are 
determined by the default multiple testing correction procedure g:SCS. The column 
“Term genes” indicates the total number of genes associated to each functional term. 
Abbreviations: bi BioGRID protein-protein interaction network, co CORUM protein 
complexes, hp human disease genes from Human Phenotype Ontology, ke/re  
KEGG/REACTOME pathway, mi MicroCosm microRNA sites.  
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Figure A.7: BioGRID network for protein interactions in one person’s genome. The 
red nodes highlight a subset of the query that is connected by an edge in the network. The 
black nodes are the immediate neighbors of the red nodes. The one private homozygous 
nsSNP from this individual is found in the STK17A gene. 

  



 

171 
 

 Table A.1: List of protein structures used in supervised structural analysis. 

Structure  

type 

(source) 

Protein 

Protein 

full 

length 

Structure 

coverage 

Details of PDB 

structures 
Details of homology models 

Range % 
 PDB 

[resolution] 

 Template 

PDB 

[%seq ID] 

QMEAN6 

score 

(Z-score) 

ModFOLD  

Score 

(P-value) 

NMR (PDB) APOE 317 19-317 94 2l7bA [n/a] - - - 

X-ray (PDB) AMY2A 511 17-511 97 3oleA [1.55 Å] - - - 

X-ray (PDB) CHIA 476 22-398 79 3fy1A [1.70 Å] - - - 

X-ray (PDB) MTMR2 643 74-586 80 1lw3A [2.30 Å] - - - 

X-ray (PDB)  
& model 
(PMP) 

THBS1 1170 549-1169 53 1ux6A [1.90 Å] 
1yo8A     
[77%] 

0.745          
(-0.20) 

0.3664     
(2E-2) 

Model 
(PMP) 

MYH6 1939 3-777 38 - 
4db1B 
[85%] 

0.644          
(-1.32) 

0.6001 
(1.61E-4) 

Abbreviations: PDB RCSB Protein Data Bank [60], PMP Protein Model Portal [61], 
Phyre Protein Homology/analogY Recognition Engine [101]. 

Structure coverage represents the range of protein residues present in the 3D structure 
and the percentage of structural coverage with respect to the full length of the proteins. 
Each PDB accession number is indicated by its four letter code followed by the chain ID 
(in capital letter).  

Details of homology models include the template’ PDBs, sequence identity percentage 
between the target and the template sequences (in case of single-template modeling), or 
percentage of residues modeled at >90% confident (in case of multi-template modeling). 
Quality of homology models is evaluated by QMEAN6 [63] and ModFOLD4 [64] scores. 
QMEAN6 is a reliability score derived from a linear combination of six terms. It 
estimates model reliability between 0 and 1 (1 represents the best model). QMEAN Z-
score for a given model is a comparable quality score to experimental structures of 
similar size. Models of low quality will have strongly negative QMEAN Z-scores. 
ModFOLD’s global model quality score ranges between 0 and 1. In general, scores 
greater than 0.4 generally indicate more complete and confident models, which are highly 
similar to the native structure. ModFOLD’s P-value represents the probability that each 
model is incorrect. 
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Table A.2: List of protein structures used in automated structural analysis. 

Structure type 

(source) 
Protein 

Variant 

residue 

Protein 

full 

length 

Covered 

residues 

% 

Coverage 
PDB [resolution] 

model (PDB) OPSR 236 364 1-364 100 1kpxA [n/a] 

x-ray (PDB) 1A03 121 365 25-298 75 3rl2A [2.39 Å] 

x-ray (PDB) 1A11 91 365 25-299 75 1x7qA [1.45 Å] 

x-ray (PDB) ADA 8 363 5-363 99 3iarA [1.52 Å] 

x-ray (PDB) AL4A1 470 563 23-563 96 3v9hA [2.4 Å] 

x-ray (PDB) AMYP 145 511 17-511 97 3oliA [1.5 Å] 

x-ray (PDB) ARSB 376 533 42-533 92 1fsuA [2.5 Å] 

x-ray (PDB) C1S 119 688 16-174 23 1nziA [1.5 Å] 

x-ray (PDB) CCL8 49 99 25-99 76 1esrA [2.0 Å] 

x-ray (PDB) CP2A6 160 494 30-494 94 2fdvA [1.65 Å] 

x-ray (PDB) CSF1R 245 972 20-295 28 4dkdC [3.0 Å] 

x-ray (PDB) DRB5 149 266 30-219 71 1fv1B [1.9 Å] 

x-ray (PDB) FCG2A 63 317 37-207 54 1fcgA [2.0 Å] 

x-ray (PDB) HGFA 644 655 393-646 39 1yc0A [2.6 Å] 

x-ray (PDB) IDHC 178 414 4-410 98 3inmA [2.1 Å] 

x-ray (PDB) IF16 723 785 575-766 24 3rloA [1.8 Å] 

x-ray (PDB) KC1G2 173 415 44-338 71 2c47A [2.4 Å] 

x-ray (PDB) LYAM1 193 372 39-194 42 3cfwA [2.2 Å] 

x-ray (PDB) MGA 755 1857 93-954 46 3l4yA [1.8 Å] 

x-ray (PDB) MICA 174 383 24-297 72 1hyrC [2.7 Å] 

x-ray (PDB) PUR6 141 425 7-425 99 2h31A [2.8 Å] 

x-ray (PDB) PYGL 222 847 23-830 95 1l5rA [2.1 Å] 

x-ray (PDB) SNX7 59 387 25-150 33 3iq2A [1.7 Å] 

x-ray (PDB) SUN2 671 717 521-717 27 3unpA [2.39 Å] 

x-ray (PDB) THBG 303 415 40-414 90 2ceoA [2.8 Å] 

Abbreviations: PDB RCSB Protein Data Bank [60]. 

Structure coverage represents the range of protein residues present in the 3D structure 
and the percentage of structural coverage with respect to the full length of the proteins. 
Each PDB accession number is indicated by its four letter code followed by the chain ID 
(in capital letter). 
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Table A.3: List of all private variants in the 12 genomes. 

Subject 

ID 

#SNPs 

(#genes) 

Position, 

Base change  

(AA change) 

Gene Remarks 
Gene-disease 

associations 

Gene-trait 

associations 

Protein 

sequence/structural 

features of variant 

AACDS 

category 

1 2 (2) 

3:14106202 
G-->A (G177S) 

TPRXL Putative protein    Ovarian reserve 
Compositional bias 
(Ser-rich=76%) 

3A, 5 

7:43622870 
G-->A (G10S) 

ST17A       N-terminal 6 

2 3 (3) 

17:43319304 
C-->T (P559L) 

FMNL       Interdomain linker 6 

17:72839464 
G-->C (P938A) 

NMDE3       
Topological domain 
(cytoplasmic side) 

6 

6:32009621 
C-->T (R4232Q) 

TENX   Tenascin-X deficiency 

Phospholipid levels 
(plasma); HIV-1 
control; Systemic 
lupus erythematosus 

C-terminal 2B, 3B 

3 3 (2) 

1:148010896 
C-->G (V576L) 

NBPFE 

Young gene, generated 
by gene duplications 
during primate 
evolution 

  AIDS progression 
1 of the 10 NBPF 
domains 

3A, 5 

1:148010901 
A-->C (L574W) 

NBPFE         3A, 5 

10:23384581 
C-->T (T15I) 

MSRB2       Transit peptide 6 

4 1 (1) 
1:111217425 
C-->T (E3K) 

KCNA3       N-terminal 6 

5 2 (2) 

11:4967679 
A-->T (S218T) 

O51A4       Transmembrane 4 

9:69424057 
C-->G (L785V) 

A20A4 Putative protein     Coiled-coil 6 

6 none 
  

        
 

7 4 (4) 

19:55998135 
G-->T (A145S) 

NAT14       
N-acetyltransferase 
domain 

6 

2:131976262 
A-->G (N96S) 

POTEE Putative protein     N-terminal 6 
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Supplementary Table A.3 (continued) 

Subject 

ID 

#SNPs 

(#genes) 

Position, 

Base change  

(AA change) 

Gene Remarks 
Gene-disease 

associations 

Gene-trait 

associations 

Protein 

sequence/structural 

features of variant 

AACDS 

category 

7 4 (4) 

2:43451823 
T-->C (T374A) 

TISD         6 

9:69423770 
C-->T (S689L) 

A20A4 Putative protein     Coiled-coil 6 

8 none        

9 2 (2) 

7:106300898 
G-->A (P149S) 

CC71L Putative protein     
Compositional bias 
(Pro-rich=34%) 

6 

X:3229609 
G-->A (T2212M) 

MXRA5 
Chromosome Y also 
has this pseudogene. 

    
Ig-like C2-type 6 
domain 

4 

10 2 (2) 

4:9251554 
A-->T (D400V) 

U17LI         6 

9:69424057 
C-->G (L785V) 

A20A4 Putative protein     Coiled-coil 6 

11 5 (5) 

1:145333904 
A-->T (Q804L) 

NBPFA       NBPF 6 domain 6 

2:97911728 
G-->A (D1802N) 

AN36A Putative protein       6 

4:9251554 
A-->T (D400V) 

U17LI         6 

X:154158785 
C-->G (E1094Q) 

FA8 

The gene contains at 
least 53 genetic 
variants in families 
with hemophilia A. 

Hemophilia A   
Part of Factor VIIIa 
heavy chain 

2A, 5 

X:70329183 
G-->A (R218C) 

IL2RG   

Severe combined 
immunodeficiency X-
linked T-cell-negative/B-
cell-positive/NK-cell- 
negative; 
Agammaglobulinemia 
Swiss type; X-linked 
combined 
immunodeficiency 

  

Topological domain 
(extracellular side), 
Fibronectin type-III 
domain 

2A, 5 
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Supplementary Table A.3 (continued) 

Subject 

ID 

#SNPs 

(#genes) 

Position, 

Base change  

(AA change) 

Gene Remarks 
Gene-disease 

associations 

Gene-trait 

associations 

Protein 

sequence/structural 

features of variant 

AACDS 

category 

12 5 (5) 
19:46394260 

C-->T (R274Q) 
MYPOP       

Compositional bias 
(Pro-rich=31%) 

4 

  
X:100169803 

C-->T (G292S) 
XKR2 Putative protein     Interhelix-linker 6 

  
X:34962803 

G-->A (D619N) 
FA47B         6 

  
X:37026758 

G-->A (S92N) 
FA47C Putative protein       6 

  
X:38013836 

G-->T (Q364K) 
SRPX         6 

The “Remarks” column describes the interesting features of gene annotations, obtained from UniProt database [51]. The SNPshot text-
mining tool for PubMed abstracts [80] was used to explore if any of the private homozygous nsSNP-containing genes have clinical or 
experimental evidence for gene-drug or gene-disease associations.
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Table A.4: List of all Categories 2A/2B variants affecting the same gene in more than one individual. 

Gene # SNPs Associated-diseases Associated-traits Variant categories Amino acid mutations Note 

I12R1 3 Mendelian susceptibility to mycobacterial disease   2A R156H 
same 

variant 

FRMD7 3 Nystagmus congenital x-linked type 1   2A R468H 
same 

variant 
FRAS1 3 Fraser syndrome Hair morphology 2A, 3A | 2A, 3A | 2A, 3A T2203I | G2230R | A2251T   

MUC5B 3 Pulmonary fibrosis idiopathic   2A | 2A | 2A R2211P | P2830L | S3061P   

ZC12D 2 Sporadic lung cancer   2A | 2A E51K | P405S   

CO6A5 2 Atopic dermatitis   2A | 2A V1276I | T1280P   

CUBN 2 
Breast cancer; Colorectal cancer; Renal cell 
carcinoma case; Recessive hereditary 
megaloblastic anemia 1 

Folate pathway vitamin 
levels; MRI atrophy 
measures 

2A, 3A | 2A, 3A I2984V | E3002G   

FA9 2 Recessive x-linked hemophilia b; Thrombophilia   2A | 2A T194A 
same 

variant 

ADA 2 
Pancreatic ductal adenocarcinoma; Severe 
combined immunodeficiency autosomal recessive 

  2A | 2A D8N | K80R   

OPSR 2 
Partial colorblindness protan series; Blue cone 
monochromacy 

  2A | 2A A174V | M236V   

MYH6 2 
Atrial septal defect type 3; Familial hypertrophic 
cardiomyopathy type 14; Cardiomyopathy dilated 
type 1ee; Sick sinus syndrome type 3 

Resting heart rate; 
Electrocardiographic 
trait 

2B, 3B | 2A, 3A G56R | A1130T   

PGCA 2 

Spondyloepiphyseal dysplasia type kimberley; 
Spondyloepimetaphyseal dysplasia aggrecan 
type; Osteochondritis dissecans short stature and 
early-onset osteoarthritis 

Height 2A, 3A | 2A, 3A D1142E | E1294D   

LAMB3 2 
Colorectal cancer; Epidermolysis bullosa 
junctional herlitz type; Generalized atrophic 
benign epidermolysis bullosa 

  2A M852L 
same 

variant 

MICA 2 
Progression of monoclonal gammopathy of 
undetermined significanceto multiple myeloma; 
Psoriasis type 1; Psoriatic arthritis 

Rheumatoid arthritis; 
HIV-1 control; 
Hepatocellular 
carcinoma 

2A, 3A | 2A, 3A M174V | P294A   

C1GLC 2 TN syndrome   2A | 2A D131E | A143V   
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Supplementary Table A.4 (continued) 

Gene # SNPs Associated-diseases Associated-traits Variant categories Amino acid mutations Note 

GCP6 2 Microcephaly with chorioretinopathy   2A | 2A R1763W | A884V   

SP110 2 
Breast cancer; Hepatic venoocclusive disease 
with immunodeficiency 

  2A | 2A E207K | A128V   

VPP4 2 
Distal renal tubular acidosis with preserved 
hearing 

F-cell distribution 1, 2A, 3A M580T 
same 

variant 

#SNPs represents the total number of homozygous nsSNP found in each gene from all 12 individuals. Multiple diseases or traits that 
are associated with the genes are separated with “;”. The variant category and the amino acid mutation for each nsSNP are partitioned 
with “|”. 
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Table A.5: List of all Category 2B variants. 

Gene Position 
Base change (AA 

change) 

Del 

count 

Con 

count 

Grantham 

score 

Protein 

stability 

change 

Site 

annotations 
Associated disease(s) 

GNAT2 1:110151395 G-->T (L107I) 3 3 5 Decrease   Achromatopsia type 4 

IDH1 2:209108317 C-->T (V178I) 4 3 29 Neutral   Glioma 

PRSS12 4:119203221 C-->T (R833Q) 3 3 43 Neutral DOMAIN Mental retardation autosomal recessive type 1 

LAMA2 6:129824406 A-->G (N2843S) 4 3 46 Decrease DOMAIN 
Merosin-deficient congenital muscular dystrophy type 
1A 

SYNE1 6:152443744 G-->T (L8741M) 3 3 15 Neutral 
TOPO_DOM; 

DOMAIN 

Spinocerebellar ataxia autosomal recessive type 8; 
Autosomal recessive cerebellar ataxia type 1; Emery-
Dreifuss muscular dystrophy type 4 

DNAH11 7:21778429 T-->C (Y2593H) 5 3 83 Neutral 
REGION  

(AAA 3 (By 
similarity)) 

Kartagener syndrome; Primary ciliary dyskinesia type 
7 

RP9 7:33134883 T-->C (K210R) 3 3 26 Neutral COMPBIAS Retinitis pigmentosa type 9 

ELN 7:73474825 G-->C (G610R) 3 3 125 Neutral COMPBIAS 
Cutis laxa, autosomal dominant, type 1; Supravalvular 
aortic stenosis 

SPTLC1 9:94830356 C-->A (R151L) 3 3 102 Neutral TOPO_DOM Hereditary sensory and autonomic neuropathy type 1A 

MYH6 14:23876267 C-->T (G56R) 4 3 125 Neutral DOMAIN 
Atrial septal defect type 3; Familial hypertrophic 
cardiomyopathy type 14; Cardiomyopathy dilated type 
1EE; Sick sinus syndrome type 3 

APOE 19:45412079 C-->T (R176C) 5 3 180 Decrease REPEAT 
Hyperlipoproteinemia type 3; Familial 
dysbetalipoproteinemia; Sea-blue histiocyte disease; 
Lipoprotein glomerulopathy 

NLRP12 19:54313707 G-->C (F402L) 3 1 22 Neutral DOMAIN Familial cold autoinflammatory syndrome type 2 

TRMU 22:46731689 G-->T (A10S) 5 3 99 Decrease NP_BIND Transient infantile liver failure 

TBX22 X:79281202 G-->A (E187K) 5 3 54 Neutral DNA_BIND X-linked cleft palate with ankyloglossia 
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Table A.6: List of all Category 3B variants. 

Gene Position 
Base change  

(AA change) 

Del 

count 

Con 

count 

Grantham 

score 

Protein 

stability 

change 

Site 

annotations 
Associated trait(s) 

NVL 1:224482084 C-->T (V404I) 4 3 29 Neutral   Major depressive disorder 

SRBD1 2:45640334 T-->C (K811R) 4 3 26 Neutral   Glaucoma 

ZNF385D 3:21706469 G-->T (P25H) 3 3 77 Neutral   Partial epilepsies 

DNAH1 3:52390789 C-->T (R1285W) 3 3 101 Decrease 
REGION     
(Stem (By 
similarity)) 

Bipolar disorder 

DNAH1 3:52429665 C-->T (R3809C) 3 3 180 Decrease 
REGION       

(AAA 6 (By 
similarity)) 

Bipolar disorder 

HLA-DRB5 6:32489949 G-->A (R35C) 3 3 180 Increase 
TOPO_DOM;  

REGION 
(Beta-1) 

Chronic lymphocytic leukemia; Ulcerative colitis; 
Parkinson's disease 

LAMA2 6:129824406 A-->G (N2843S) 4 3 46 Decrease DOMAIN Body mass index 

SYNE1 6:152443744 G-->T (L8741M) 3 3 15 Neutral 
TOPO_DOM; 

DOMAIN 
Bipolar disorder and major depressive disorder 
(combined); Bipolar disorder; Tonometry 

LPA 6:160977059 A-->C (N4165K) 3 2 94 Decrease DOMAIN 
Protein quantitative trait loci; LDL cholesterol; HDL 
cholesterol;  Total cholesterol; Lp (a) level; Coronary 
heart disease; Response to statin therapy (LDL-C) 
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Supplementary Table A.6 (continued) 

Gene Position 
Base change  

(AA change) 

Del 

count 

Con 

count 

Grantham 

score 

Protein 

stability 

change 

Site 

annotations 
Associated trait(s) 

DNAH11 7:21778429 T-->C (Y2593H) 5 3 83 Neutral 
REGION       

(AAA 3 (By 
similarity)) 

Multiple myeloma; LDL cholesterol; Total ventricular 
volume; MRI atrophy measures; Total cholesterol 

FRMD4A 10:13699338 T-->G (T751P) 5 3 38 Decrease COMPBIAS RR interval (heart rate); Alzheimer's disease 

MRC1 10:18138519 C-->G (P359A) 3 3 27 Decrease TOPO_DOM Cardiovascular disease risk factors 

ANKRD30A 10:37451768* T-->G (L665W) 3 1 61 Decrease   
Metabolite levels; Hemostatic factors and 
hematological phenotypes 

PCDH9 13:67800867 C-->T (S569N) 3 3 46 Neutral 
TOPO_DOM; 

DOMAIN 
Obesity 

MYH6 14:23876267 C-->T (G56R) 4 3 125 Neutral DOMAIN Resting heart rate; Electrocardiographic traits 

HERC1 15:63988400 G-->C (L1682V) 4 3 32 Neutral   Iris characteristics 

APOE 19:45412079 C-->T (R176C) 5 3 180 Decrease REPEAT 
Cardiovascular disease risk factor; Alzheimer's disease; 
Quantitative traits; Response to statin therapy (LDL-
C); C-reactive protein 

GGTLC1 20:23965995 A-->T (V179E) 4 3 121 Decrease   Erectile dysfunction and prostate cancer treatment 

RTDR1 22:23482483 G-->A (T42M) 3 3 81 Neutral   Height 

SYTL5 X:37935825 T-->C (L187P) 3 3 98 Neutral   Erectile dysfunction and prostate cancer treatment 

* One SNP (10:37451768 T-->G) was observed in two individuals.
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Table A.7: List of all Category 4 Variants. 

Gene Position 
Base change (AA 

change) 

Del 

count 

Con 

count 

Grantham 

score 

Protein 

stability 

change 

Site 

annotations 

NBPF3 1:21809667 C-->G (P564A) 3 0 27 Neutral DOMAIN 

AMY2A 1:104161650 C-->T (P145S) 4 3 74 Decrease   

CHIA 1:111854859 C-->T (R35W) 3 2 101 Decrease   

ITGA10 1:145535814 C-->T (R668W) 4 3 101 Neutral TOPO_DOM 

QSOX1 1:180148012 G-->C (G200A) 3 3 60 Neutral   

SNTG2 2:1168781 C-->A (S168Y) 5 3 144 Increase   

CCDC142 2:74702756 C-->T (R534Q) 4 3 43 Neutral   

FOXD4L1 2:114257319 C-->G (N162K) 4 3 94 Neutral DNA_BIND 

UNC80 2:210798699 G-->C (V1984L) 3 3 32 Neutral   

SLC26A6 3:48669447 C-->T (V206M) 3 3 21 Neutral TRANSMEM 

DNASE1L3 3:58183636 G-->A (R206C) 5 3 180 Decrease   

KBTBD8 3:67053926 T-->C (F179L) 3 3 22 Neutral DOMAIN 

TKTL2 4:164393835 A-->G (F351S) 5 3 155 Decrease   

ENPP5 6:46135884 C-->G (R39P) 6 3 103 Neutral   

TCP10L2 6:167587284 G-->C (R63T) 3 1 71 Decrease   

RSPH10B 7:5983568 A-->C (I528S) 4 3 142 Decrease   

USP17L2 8:11995540 C-->T (E244K) 3 3 54 Decrease   

FER1L6 8:125115420 G-->A (R1720Q) 3 3 43 Neutral TOPO_DOM 

EPPK1 8:144944225 C-->T (R1066H) 3 3 29 Decrease REPEAT 

OR1N2 9:125316028 T-->C (F194L) 5 3 22 Neutral TOPO_DOM 

STAMBPL1 10:90673047 G-->A (E204K) 3 3 54 Neutral   

IFIT1B 10:91143374 G-->T (A102S) 4 3 99 Decrease REPEAT 

HABP2 10:115348046 G-->A (G534E) 5 3 98 Decrease DOMAIN 

NRAP 10:115410234 T-->C (Y249C) 4 3 194 Neutral REPEAT 

NPS 10:129350856 G-->C (V75L) 3 3 32 Neutral   

OR51A2 11:4976544 A-->T (Y134N) 4 3 143 Neutral TOPO_DOM 

OR52D1 11:5510598 A-->T (Y221F) 5 3 22 Neutral TOPO_DOM 

OR2D3 11:6942726 G-->C (W165S) 5 3 177 Neutral TRANSMEM 

ALDH3B2 11:67431914 G-->A (R276W) 3 0 101 Increase   

SCYL2 12:100708367 C-->T (P357L) 4 3 98 Neutral   

TEP1 14:20846927 C-->G (G1780R) 3 3 125 Neutral REPEAT 

THBS1 15:39882178 A-->G (N700S) 3 3 46 Neutral REPEAT 

SPESP1 15:69238272 G-->T (L133F) 3 3 22 Neutral   

ABCC11 16:48204078 T-->A (N1277Y) 5 3 143 Neutral 
TOPO_DOM; 

DOMAIN 
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Supplementary Table A.7 (continued) 

Gene Position 
Base change (AA 

change) 

Del 

count 

Con 

count 

Grantham 

score 

Protein 

stability 

change 

Site 

annotations 

PHLPP2 16:71683718 A-->G (L1016S) 4 3 145 Neutral DOMAIN 

PMFBP1 16:72184566 C-->T (E193K) 3 3 54 Neutral   

CTC1 17:8141897 C-->G (S83T) 4 3 58 Neutral   

KRT23 17:39092741 C-->A (G39W) 5 3 184 Neutral 
REGION 
(Head) 

KRT40 17:39135089 G-->A (T388M) 3 3 81 Increase 
REGION 

(Rod) 
KRTAP2-2 17:39211434 G-->C (F10L) 3 3 22 Decrease REPEAT 

KRTAP2-3 17:39216085 C-->T (C73Y) 4 3 194 Neutral REPEAT 

BTBD17 17:72353745 G-->T (A163E) 3 3 107 Neutral   

ENGASE 17:77078069 G-->A (R321H) 3 3 29 Neutral DOMAIN 

TBCD 17:80710097 G-->T (G10C) 3 3 159 Neutral   

PCSK4 19:1487195 G-->A (T267M) 3 3 81 Decrease 
REGION  

(Catalytic, by 
similarity) 

CSNK1G2 19:1978927 G-->T (V173L) 3 3 32 Decrease DOMAIN 

OR10H5 19:15905468 T-->G (C204G) 3 3 159 Neutral TRANSMEM 

OR10H5 19:15905505 T-->C (L216P) 3 3 98 Neutral TRANSMEM 

NXNL1 19:17566634 T-->A (E154V) 3 3 121 Neutral DOMAIN 

ZNF737 19:20727903 T-->C (Y369C) 3 1 194 Increase ZN_FING 

PSG1 19:43373078 C-->G (W273S) 3 3 177 Decrease DOMAIN 

ZNF534 19:52942535 T-->G (C621G) 4 3 159 Neutral ZN_FING 

SDCBP2 20:1292989 C-->T (G242R) 5 3 125 Decrease DOMAIN 

LRRN4 20:6033004 G-->A (L148F) 6 3 22 Neutral 
TOPO_DOM; 

REPEAT 
OTOR 20:16729138 T-->C (L31P) 4 3 98 Decrease   

DDX27 20:47859217 G-->A (G766S) 3 3 56 Neutral   

UMODL1 21:43504286 G-->A (D138N) 4 3 23 Neutral 
TOPO_DOM; 

DOMAIN 
HDX X:83723541 A-->G (F397S) 3 3 155 Neutral   
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Table A.8: Summary of automated structural analysis. 

Source  

(# analyses) 
Predictions 

total 

# SNPs 

# SNPs in each category* 

2A 2B 3A 3B 4 5 6 

SDM (n=33) 

highly stabilizing/destabilizing  
(≤ -2 or ≥ 2 kcal mol-1) 

5 0 0 1 0 1 1 2 

stabilizing/destabilizing  
(between - 2 to -1 or 1 to 2 kcal mol-1) 

5 2 0 2 1 0 0 0 

Slightly stabilizing/destabilizing  
(between -1 to -0.5 or 0.5 to 1 kcal mol-1) 

8 2 0 0 0 1 2 3 

neutral (between ± 0.5 kcal mol-1) 15 4 1 9 0 0 0 1 

Crystalographic 
B-factor of Cα 
atom (n=31) 

small (B-factor <60) 27 6 1 10 1 2 2 5 

medium (B-factor ≥60 but <100) 4 0 0 2 0 0 1 1 

large (B-factor ≥100) 0 0 0 0 0 0 0 0 

PredyFlexy 
(n=32) 

rigid 19 5 0 5 0 0 3 6 

intermediate 9 1 1 5 0 2 0 0 

flexible 4 1 0 2 1 0 0 0 

FlexPred (n=33) 
conformationally flexible 3 0 0 1 1 0 0 1 

conformationally rigid 30 8 1 11 0 2 3 5 

PDBe (n =25) 
is a binding site 1 1 0 0 0 0 0 0 

is not a binding site 24 5 1 8 1 2 1 6 

3DLigandSite 
(n=7) 

is a binding site 0 0 0 0 0 0 0 0 

PatchFinder 
(n=33) 

Is part of conserved residue cluster 3 1 0 1 0 0 1 0 

Is not part of conserved residue cluster 30 7 1 11 1 2 2 6 

The “source” column lists the name of prediction program or sources of structural 
information.  

# of analyses refers to the number of 3D structures that were used to obtain the results. 
Some structures cannot be assessed by a certain approach, hence they are omitted.  
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Table A.9: List of X-linked recessive mutations. 

Subject ID Gene Position 
Base change 

(AA change) 

rsID                         

(%MAF EA/AA/All) 
Disease/traits 

Del  

count  

Con 

count  

3 ARSE X:2856155 C-->T (G424S) 
rs35143646 

(32.9/17.9/49.2) 
Chondrodysplasia punctata X-linked recessive type 1; Height 1 3 

9 

ZNF674 X:46360317 T-->C (K236R) 
rs201621696 
(0.8/0.1/0.6) 

Mental retardation X-linked type 92 0 3 

BMP15 X:50658966 G-->A (A180T) 
rs104894767 
(1.4/0.3/1.0) 

Ovarian dysgenesis type 2; X-linked hypergonadotropic ovarian dysgenesis 
or hypergonadotropic ovarian failure due to ovarian dysgenesis; Premature 
ovarian failure type 4 

0 1 

C1GALT1C1 X:119760594 G-->A (A143V) 
rs45557031 
(2.5/0.5/1/8) 

Tn syndrome 2 3 

FRMD7 X:131212642 C-->T (R468H) 
rs6637934 

(5.7/7.5/6.4) 
Nystagmus congenital X- linked type 1 1 3 

F9 X:138633280 A-->G (T194A) 
rs6048 

(29.8/12.3/23.5) 
Recessive X-linked hemophilia B;Christmas disease; Thrombophilia due to 
factor IX defect 

0 2 

10 

SYTL5 X:37985895 G-->A (R702H) 
rs143176819 

(0.03/0.0/0.02) 
Erectile dysfunction and prostate cancer treatment 1 3 

TIMP1 X:47444361 C-->T (P50S) 
rs145349279 

(0.07/0.1/0.09) 
Other erythrocyte phenotypes 0 1 

SERPINA7 X:105278361 C-->A (L303F) 
rs1804495 

(11.2/12.3/11.6) 
Thyroxine-binding globulin deficiency 2 2 

C1GALT1C1 X:119760629 A-->T (D131E) 
rs17261572 

(-/-/13.2) 
Tn syndrome 0 2 

FRMD7 X:131212642 C-->T (R468H) 
rs6637934 

(5.7/7.5/6.4) 
nystagmus congenital X- linked type 1 1 3 

F9 X:138633280 A-->G (T194A) 
rs6048 

(29.8/12.3/23.5) 
Recessive X-linked hemophilia B; Christmas disease; Thrombophilia due to 
factor IX defect 

0 2 

11 

TBX22 X:79281202 G-->A (E187K) 
rs34244923 
(6.8/0.8/4.6) 

X-linked cleft palate with ankyloglossia 5 3 

CHM X:85233820 T-->A (S89C) 
rs145707160 
(2.0/0.2/1.3) 

Choroideremia 1 3 

ZCCHC16 X:111698440 G-->T (D162Y) 
rs7474140 

(21.9/6.8/16.4) 
Biochemical measures 0 0 

OPN1LW X:153420176 A-->G (M236V) 
rs78093025 

(9.5/36.7/19.4) 
Partial colorblindness protan series;protanopia; Blue cone monochromacy 0 1 
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Supplementary Table A.9 (continued) 

Subject ID Gene Position 
Base change 

(AA change) 

rsID                         

(%MAF EA/AA/All) 
Disease/traits 

Del  

count  

Con 

count  

12 

SYTL5 X:37935825 T-->C (L187P) 
rs144659697 

(0.04/0.0/0.03) 
Erectile dysfunction and prostate cancer treatment 3 3 

OPHN1 X:67652748 C-->T (V39I) 
rs41303733 
(7.8/1.5/5.5) 

Mental retardation X- linked OPHN1-related 2 3 

OCRL X:128674722 C-->T (T14I) 
rs61752970 
(0.5/0.1/0.4) 

Lowe oculocerebrorenal syndrome; Dent disease type 2 1 3 

FRMD7 X:131212642 C-->T (R468H) 
rs6637934 

(5.7/7.5/6.4) 
Nystagmus congenital X- linked type 1 1 3 

OPN1LW X:153418524 C-->T (A174V) 
rs149897670 

 (7.6 /20.3/12.4) 
Partial colorblindness protan series;protanopia; Blue cone monochromacy 0 1 
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APPENDIX B: SUPPLEMENTARY INFORMATION FOR 

CHAPTER 5 

Table B.1: List of molecular functions and the numbers of drug partners for the 48 
VIPs. Functional terms were analyzed with the g:Profiler web server (accessed December 
17, 2013) [78] to summarize aspects of gene function. 

Gene 

symbol 
Protein name 

Molecular function terms # of drug pairs 

D
ru

g
 b

in
d

in
g
 

H
em

e 
b

in
d

in
g
 

Ir
o

n
 I

o
n

 b
in

d
in

g
 

O
x

y
g

en
 b

in
d

in
g
 

B
et

a
-a

d
re

n
er

g
ic

 r
ec

ep
to

r 
a

ct
iv

it
y
 

O
x

id
o

re
d

u
ct

a
se

 a
ct

iv
it

y
 

E
le

ct
ro

n
 c

a
rr

ie
r 

a
ct

iv
it

y
 

D
ru

g
 

D
ru

g
 s

u
b

st
ra

te
 

D
ru

g
 I

n
h

ib
it

o
r 

D
ru

g
 I

n
d

u
ce

r 

ABCB1 Multidrug resistance protein 1 
       

77 68 40 
 

ACE Angiotensin-converting enzyme x 
      

6 
   

ADH1A Alcohol dehydrogenase 1A 
     

x 
 

1 
   

ADH1B Alcohol dehydrogenase 1B 
     

x 
 

1 
   

ADH1C Alcohol dehydrogenase 1C 
       

1 
   

ADRB1 Beta-1 adrenergic receptor x 
   

x 
  

15 
   

ADRB2 Beta-2 adrenergic receptor x 
   

x 
  

2 
   

AHR Aryl hydrocarbon receptor 
           

ALDH1A1 Retinal dehydrogenase 1 
     

x 
     

ALOX5 Arachidonate 5-lipoxygenase 
  

x 
  

x 
 

1 
   

BRCA1 Breast cancer type 1 susceptibility protein 
      

1 
   

COMT Catechol O-methyltransferase 
       

2 
   

CYP1A2 Cytochrome P450 1A2  x x   x x  4 1 4 

CYP2A6 Cytochrome P450 2A6  x x   x x  11   

CYP2B6 Cytochrome P450 2B6  x x   x x  18 4 7 

CYP2C19 Cytochrome P450 2C19  x x x  x x  25 14 4 

CYP2C8 Cytochrome P450 2C8  x x   x x 9    

CYP2C9 Cytochrome P450 2C9 x x x   x x 16    

CYP2D6 Cytochrome P450 2D6 x x x   x x 38    

CYP2E1 Cytochrome P450 2E1  x x x  x x 2    
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Supplementary Table B.1 (continued) 

Gene 

symbol 
Protein name 

Molecular function terms # of drug pairs 
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CYP2J2 Cytochrome P450 2J2  x x   x x 3    

CYP3A4 Cytochrome P450 3A4  x x x  x x 72    

CYP3A5 Cytochrome P450 3A5  x x x  x x 67 10   

DPYD Dihydropyrimidine dehydrogenase      x  3    

DRD2 D(2) dopamine receptor x       1    

F5 Coagulation factor V        4    

G6PD 
Glucose-6-phosphate 1-
dehydrogenase 

     x  11    

GSTP1 Glutathione S-transferase P        6    

GSTT1 Glutathione S-transferase theta-1      x   8   

HMGCR 
3-hydroxy-3-methylglutaryl-
coenzyme A reductase 

     x  5    

KCNH2 
Potassium voltage-gated channel 
subfamily H member 2 

       43    

KCNJ11 
ATP-sensitive inward rectifier 
potassium channel 11 

       5    

MTHFR Methylenetetrahydrofolate reductase      x  6    

NQO1 NAD(P)H dehydrogenase      x  4    

NR1I2 
Nuclear receptor subfamily 1 group I 
member 2 

x       82    

P2RY1 P2Y purinoceptor 1            

P2RY12 P2Y purinoceptor 12        2    

PTGIS Prostacyclin synthase  x x   x x     

PTGS2 Prostaglandin G/H synthase 2  x    x  6    

SCN5A 
Sodium channel protein type 5 
subunit alpha 

       11    

Total 7 13 13 2 24 4 12 546 147 62 15 
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Table B.2: A list of selected protein 3D structures, their data sources and the quality parameters. 

Protein 
 Protein  

full  length 

Structure coverage† Experimental structure Homology model 

Residue range 
% of 

sequence 
coverage 

PDB ID [method] 
Template PDB  
[% confident] 

QMEAN6 score  
(Z-score) 

ModFOLD4 score  
(p-value) 

ACE 1306 30-639, 645-1223 44.3 3nxqA [x-ray, 1.99 Å], 1uzeA [x-ray, 1.82 Å] 
   

ADH1A 375 1-375 100 
 

multiple [100%] 0.856 (0.98) 0.725 (5.66E-05) 

ADH1B 375 2-375 99.7 1u3uA [x-ray, 1.6 Å] 
   

ADH1C 375 2-375 99.7 1u3wA [x-ray, 1.45 Å] 
   

ADRB1 477 1-477 100 
 

multiple [87%] 0.356 (-4.81) 0.351 (2.58E-03) 

ADRB2 413 1-413 100 
 

multiple [92%] 0.433 (-3.90) 0.417 (1.09E-03) 

AHR 848 113-426 37.0 
 

3gdiB [15.6%] 0.418 (-4.06) 0.237 (1.55E-02) 

ALDH1A1 501 1-501 100 
 

multiple [99%] 0.788 (0.25) 0.805 (3.14E-05) 

ALOX5 674 1-674 100 
 

multiple [100%] 0.686 (-0.85) 0.492 (4.69E-04) 

BRCA1 1863 1-103, 1649-1859 16.9 1jm7A [NMR], 1t29A [x-ray, 2.3 Å] 
   

COMT 271 1-271 100 
 

multiple [96%] 0.337 (-4.68) 0.370 (1.99E-03) 

CYP1A2 515 1-515 100 
 

multiple [93%] 0.702 (-0.78) 0.617 (1.39E-04) 

CYP2A6 494 1-494 100 
 

multiple [100%] 0.774 (0.07) 0.663 (9.31E-05) 

CYP2B6 491 1-491 100 
 

multiple [95%] 0.732 (-0.44) 0.562 (2.30E-04) 

CYP2C19 490 1-490 100 
 

multiple [95%] 0.694 (-0.88) 0.621 (1.34E-04) 

CYP2C8 490 1-490 100 
 

multiple [100%] 0.765 (-0.03) 0.645 (1.08E-04) 

CYP2C9 490 1-490 100 
 

multiple [95%] 0.742 (-0.31) 0.620 (1.35E-04) 

CYP2D6 497 1-497 100 
 

multiple [93%] 0.728 (-0.47) 0.615 (1.40E-04) 

CYP2E1 493 1-493 100 
 

multiple [94%] 0.736 (-0.38) 0.647 (1.07E-04) 

CYP2J2 502 1-502 100 
 

multiple [92%] 0.704 (-0.76) 0.651 (1.03E-04) 

CYP3A4 503 1-503 100 
 

multiple [94%] 0.664 (-1.23) 0.594 (1.71E-04) 

CYP3A5 502 1-502 100 
 

multiple [93%] 0.690 (-0.93) 0.592 (1.73E-04) 

DPYD 1025 1-1025 100 
 

multiple [99%] 0.777 (0.16) 0.223 (2.03E-02) 

DRD2 443 30-442 93.2 
 

2rh1A [20.8%] 0.250 (-6.02) 0.359 (2.29E-03) 

F5 2224 29-737, 1574-2224 61.2 1y61A [model] 
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Supplementary Table B.2 (continued) 

Protein 
 Protein  

full  length 

Structure coverage† Experimental structure Homology model 

Residue range 
% of 

sequence 
coverage 

PDB ID [method] 
Template PDB  
[% confident] 

QMEAN6 score  
(Z-score) 

ModFOLD4 score  
(p-value) 

G6PD 515 1-515 100 
 

multiple [94%] 0.627 (-1.69) 0.389 (1.55E-03) 

GSTP1 210 1-210 100 3dgqA [x-ray, 1.6 Å] 
   

GSTT1 240 1-240 100 
 

multiple [99%] 0.795 (0.26) 0.637 (1.16E-04) 

HMGCR 888 1-870 98.0 1dqaA [x-ray, 2.0 Å] multiple [64%] 0.424 (-3.74) 0.231 (3.74E-2) 

KCNH2 1159 26-135 9.5 4hqaA [x-ray, 1.96 Å] 
   

KCNH2 1159 667-869 17.5 
 

1q5oA [26.24%] 0.565  (-2.16) 0.491 (4.70E-04) 

KCNJ11 390 1-390 100 
 

multiple [84%] 0.430 (-3.95) 0.230 (1.76E-02) 

MTHFR 656 57-338 43.0 
 

1zrqC [33.6%] 0.757 (-0.15) 0.370 (1.99E-03) 

NQO1 274 1-274 100  multiple [100%] 0.738 (-0.33) 0.569 (2.15E-04) 

NR1I2 434 1-434 100  multiple [86%] 0.429 (-4.02) 0.307 (4.88E-03) 

P2RY1 373 1-373 100  multiple [96%] 0.352 (-4.78) 0.362 (2.20E-03) 

P2RY12 342 1-342 100  multiple [99%] 0.362 (-4.79) 0.459 (6.68E-04) 

PTGIS 500 1-500 100  multiple [96%] 0.692 (-0.91) 0.560 (2.34E-04) 

PTGS2 604 1-604 100  multiple [91%] 0.742 (-0.24) 0.485 (5.03E-04) 

SCN5A 2016 1776-1928 7.6 4dckA [x-ray, 2.2 Å]    

SLC19A1 591 1-591 100  multiple [73%] 0.418 (-3.82) 0.218 (3.10E-02) 

SULT1A1 295 1-295 100  multiple [99%] 0.861 (0.95) 0.674 (8.52E-05) 

TPMT 245 1-245 100  multiple [93%] 0.718 (-0.55) 0.460 (6.59E-04) 

TYMS 313 1-313 100  multiple [97%] 0.735 (-0.45) 0.651 (1.03E-04) 

UGT1A1 533 1-533 100  multiple [84%] 0.444 (-3.78) 0.314 (4.36E-03) 

VDR 427 1-427 100  multiple [89%] 0.486 (-3.32) 0.320 (4.02E-03) 
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Supplementary Table B.2 (continued) 

†Structure coverage represents the range of protein residues present in the 3D structure and the percentage of structural coverage with 
respect to the full length of the proteins. Each PDB accession number is indicated by its four letter code followed by the chain ID (in 
capital letter). 

*Details of homology models include the template’ PDBs, sequence identity percentage between the target and the template sequences 
(in case of single-template modeling), or percentage of residues modeled at >90% confident (in case of multi-template modeling). 
Quality of homology models is evaluated by QMEAN6 and ModFOLD4 scores. QMEAN6 is a reliability score derived from a linear 
combination of six terms. It estimates model reliability between 0 and 1 (1 represents the best model). QMEAN Z-score for a given 
model is a comparable quality score to experimental structures of similar size. Models of low quality will have strongly negative 
QMEAN Z-scores. ModFOLD’s global model quality score ranges between 0 and 1. In general, scores greater than 0.4 indicate more 
complete and confident models, which are highly similar to the native structure. ModFOLD’s p-value represents the probability that 
each model is incorrect.
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Table B.3: Complete list of genomic variability data of the 48 VIPs and the statistics 

of 3D structure maps. 

Gene name 

All genomic data 
Genomic data with 

available 3D structures 
%3D coverage 

# of 

functional 

variants 

# of neutral 

variants 

# of 

functional 

variants 

# of neutral 

variants 

Functional 

variants 

Neutral 

variants 

ABCB1 2 86 0 0 0% 0% 

ACE 2 148 0 140 0% 95% 

ADH1A 0 17 0 17  100% 

ADH1B 1 32 1 32 100% 100% 

ADH1C 2 17 2 17 100% 100% 

ADRB1 11 20 11 20 100% 100% 

ADRB2 4 35 4 35 100% 100% 

AHR 2 55 2 18 100% 33% 

ALDH1A1 0 31 0 31  100% 

ALOX5 16 48 16 48 100% 100% 

BRCA1 186 245 58 25 31% 10% 

COMT 3 22 3 22 100% 100% 

CYP1A2 0 71 0 71  100% 

CYP2A6 7 73 7 73 100% 100% 

CYP2B6 1 80 1 80 100% 100% 

CYP2C19 5 68 5 68 100% 100% 

CYP2C8 0 53 0 53  100% 

CYP2C9 7 52 7 52 100% 100% 

CYP2D6 1 95 1 95 100% 100% 

CYP2E1 0 41 0 41  100% 

CYP2J2 0 40 0 40  100% 

CYP3A4 0 54 0 54  100% 

CYP3A5 0 39 0 39  100% 

DPYD 4 85 4 85 100% 100% 

DRD2 1 28 1 25 100% 89% 

F5 8 165 7 91 88% 55% 

G6PD 52 38 52 38 100% 100% 

GSTP1 2 28 2 28 100% 100% 

GSTT1 2 16 2 16 100% 100% 

HMGCR 2 25 2 25 100% 100% 

KCNH2 117 65 35 9 30% 14% 

KCNJ11 51 29 51 29 100% 100% 

MTHFR 18 48 8 19 44% 40% 

NQO1 1 16 1 16 100% 100% 

NR1I2 0 52 0 52  100% 
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Supplementary Table B.3 (continued) 

Gene name 

All genomic data 
Genomic data with 

available 3D structures 
%3D coverage 

# of 

functional 

variants 

# of neutral 

variants 

# of 

functional 

variants 

# of neutral 

variants 

Functional 

variants 

Neutral 

variants 

P2RY1 0 10 0 10  100% 

P2RY12 2 18 2 18 100% 100% 

PTGIS 0 61 0 61  100% 

PTGS2 2 21 2 21 100% 100% 

SCN5A 180 147 18 13 10% 9% 

SLC19A1 0 52 0 52  100% 

SLCO1B1 2 74 0 0 0% 0% 

SULT1A1 1 31 1 31 100% 100% 

TPMT 7 16 7 16 100% 100% 

TYMS 0 4 0 4  100% 

UGT1A1 42 38 42 38 100% 100% 

VDR 16 43 16 43 100% 100% 

VKORC1 19 5 0 0 0% 0% 

Total 779 2537 371 1811 - - 

Average 16 54 8 38 80% 84% 

Range 0-186 4-245 0-58 0-140 0-100% 0-100% 
# of proteins with 
variant data 

35 48 31 45 - - 

# of proteins 
whose structure 
covers  > 70% of 
total variants 

- - - - 27 39 
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Table B.4: Complete list of domain names and relative abundances of functional 

and neutral variants. 

Domain Domain name Domain Domain name 

MF_00008 Thymidylate synthase PR01666 
Voltage gated sodium channel, 
alpha-5 subunit 

MF_00812 Thiopurine S-methyltransferase PR01683 
Cytochrome P450, E-class, group 
I, CYP1 

MF_00966 Glucose-6-phosphate dehydrogenase PR01684 
Cytochrome P450, E-class, group 
I, CYP2A-like 

PF00001 
G protein-coupled receptor, 
rhodopsin-like PR01685 

Cytochrome P450, E-class, group 
I, CYP2B-like 

PF00010 
Myc-type, basic helix-loop-helix 
(bHLH) domain PR01686 

Cytochrome P450, E-class, group 
I, CYP2D-like 

PF00027 Cyclic nucleotide-binding domain PR01687 
Cytochrome P450, E-class, group 
I, CYP2E-like 

PF00043 Glutathione S-transferase, C-terminal PR01688 
Cytochrome P450, E-class, group 
I, CYP2J-like 

PF00067 Cytochrome P450 PR01689 
Cytochrome P450, E-class, 
CYP3A 

PF00097 Zinc finger, C3HC4 RING-type PS00059 
Alcohol dehydrogenase, zinc-
type, conserved site 

PF00104 
Nuclear hormone receptor, ligand-
binding, core PS00079 

Multicopper oxidase, copper-
binding site 

PF00105 
Zinc finger, nuclear hormone 
receptor-type PS00081 Lipoxygenase, conserved site 

PF00107 Alcohol dehydrogenase, C-terminal PS00086 Cytochrome P450, conserved site 

PF00171 Aldehyde dehydrogenase domain PS00198 
4Fe-4S ferredoxin, iron-sulphur 
binding, conserved site 

PF00201 
UDP-glucuronosyl/UDP-
glucosyltransferase PS00518 

Zinc finger, RING-type, 
conserved site 

PF00479 
Glucose-6-phosphate dehydrogenase, 
NAD-binding PS00711 Lipoxygenase, iron binding site 

PF00520 Ion transport domain PS50089 Zinc finger, RING-type 

PF00685 Sulfotransferase domain PS50112 PAS domain 

PF00754 
Coagulation factor 5/8 C-terminal 
type domain PS50113 PAS-associated, C-terminal 

PF00989 PAS fold PS50156 Sterol-sensing domain 

PF01007 
Potassium channel, inwardly 
rectifying, Kir PS50262 GPCR, rhodopsin-like, 7TM 

PF01180 
Dihydroorotate dehydrogenase, class 
1/ 2 PS50405 

Glutathione S-transferase, C-
terminal-like 

PF01401 Peptidase M2, peptidyl-dipeptidase A PS51379 
4Fe-4S ferredoxin-type, iron-
sulphur binding domain 

PF01477 PLAT/LH2 domain PS51393 Lipoxygenase, C-terminal 

PF01596 O-methyltransferase, family 3 PS51557 Catechol O-methyltransferase 

PF01770 Reduced folate carrier PTHR10572 
Hydroxymethylglutaryl-CoA 
reductase, class I/II 

PF02219 Methylenetetrahydrofolate reductase PTHR11695 
Alcohol dehydrogenase 
superfamily, zinc-type 

PF02525 Flavodoxin-like fold PTHR11771 Lipoxygenase 

PF02781 
Glucose-6-phosphate dehydrogenase, 
C-terminal PTHR24231:SF2 P2Y1 purinoceptor 

PF02798 Glutathione S-transferase, N-terminal PTHR24233:SF0 P2Y12 purinoceptor 
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Supplementary Table B.4 (continued) 

Domain Domain name Domain Domain name 

PF03098 Haem peroxidase, animal PTHR24248 Adrenoceptor family 

PF05724 TPMT family PTHR24248:SF13 Dopamine D2 receptor 

PF06512 Sodium ion transport-associated PTHR24248:SF21 Beta 2 adrenoceptor 

PF07732 Multicopper oxidase, type 3 PTHR24248:SF3 Beta 1 adrenoceptor 

PF08240 Alcohol dehydrogenase GroES-like SM00015 IQ motif, EF-hand binding site 

PF08447 PAS fold-3 SM00086 PAC motif 

PF11933 
Domain of unknown function 
DUF3451 SSF103473 

Major facilitator superfamily 
domain, general substrate 
transporter 

PF12820 BRCA1, serine-rich domain SSF46548 Alpha-helical ferredoxin 

PF14691 
Dihydroprymidine dehydrogenase 
domain II SSF48113 Haem peroxidase 

PIRSF000047 
Cytochrome P450, cholesterol 7-
alpha-monooxygenase-type SSF48508 

Nuclear hormone receptor, 
ligand-binding 

PIRSF000354 Coagulation factor 5/8 SSF49503 Cupredoxin 

PIRSF001734 
Breast cancer type 1 susceptibility 
protein (BRCA1) SSF49723 

Lipase/lipooxygenase, 
PLAT/LH2 

PIRSF037177 
Catechol O-methyltransferase, 
eukaryotic SSF49785 Galactose-binding domain-like 

PIRSF500628 Prostacyclin synthase SSF50129 GroES (chaperonin 10)-like 

PIRSF500793 Folate transporter 1 SSF51206 Cyclic nucleotide-binding-like 

PR00170 
Voltage gated sodium channel, alpha 
subunit SSF52113 BRCT domain 

PR00242 Dopamine receptor family SSF52540 
P-loop containing nucleoside 
triphosphate hydrolase 

PR00350 Vitamin D receptor SSF52833 Thioredoxin-like fold 

PR00398 Steroid hormone receptor SSF53720 
Aldehyde/histidinol 
dehydrogenase 

PR00457 Haem peroxidase, animal, subgroup SSF55035 

Hydroxymethylglutaryl-CoA 
reductase, class I/II, 
NAD/NADP-binding 

PR00463 Cytochrome P450, E-class, group I SSF55831 
Thymidylate synthase/dCMP 
hydroxymethylase domain 

PR00464 Cytochrome P450, E-class, group II SSF56542 

Hydroxymethylglutaryl-CoA 
reductase, class I/II, substrate-
binding 

PR00465 Cytochrome P450, E-class, group IV SSF81296 Immunoglobulin E-set 

PR00467 Lipoxygenase, mammalian TIGR00533 

Hydroxymethylglutaryl-CoA 
reductase, eukaryotic/arcaheal 
type 

PR01268 Glutathione S-transferase, Pi class TIGR00677 

Eukaryotic-type 
methylenetetrahydrofolate 
reductase 

PR01332 
Potassium channel, inwardly 
rectifying, Kir6.2 TIGR00920 

Hydroxymethylglutaryl-CoA 
reductase, metazoan 

PR01463 
Potassium channel, voltage-
dependent, EAG/ELK/ERG TIGR01037 

Dihydroorotate dehydrogenase 
domain 

PR01470 
Potassium channel, voltage-
dependent, ERG 
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Supplementary Table B.4 (continued) 

* The prefix of Domain ID indicates the data source. Abbreviations are MF: HAMAP; 
PF: Pfam; PIRSF: PIRSF; PR: PRINTS, PS: PROSITE; PTHR: PANTHER; SM: 
SMART; SSF: SUPERFAMILY; TIGR: TIGRFAMS. 



 

196 
 

Table B.5: Complete statistics of Fisher’s exact test for enriched structural features 

present in functional and neutral mutations. 

Structural features Indicators Descriptions 

Fisher's 

exact test 

(one-tailed) 

Inter-
residue 
bonding 

Disulfide bond 

At Cys Wild type residue = Cys 0.0003* 

Loss of disulfide 
bond 

Wild type residue forms disulfide bond 
(when wile type AA = Cys) and mutant 
residue eliminates the bond 

0.4039 

Salt bridge 

At charged AA Wild type residue = charged AA 0.6537 

At salt bridge 
Wild type residue forms salt bridges (when 
wild type AA = charged residues) 

0.9081 

Loss of salt bridge 
Mutant residues eliminate salt bridges 
(changes to opposite charged/neutral AA) 

0.5021 

Protein 
stability 

Key stabilizing 
residues 

At SC 
Wild type residue = a stabilization center 
(SC) 

0.0848 

At SR 
Wild type residue = a stabilizing residue 
(SR) 

0.0037* 

Stability 
change 

Any change of 
stability 

Mutant residue reduces or increases stability 
(∆∆G ≥ 0.5 or ≤ -0.5 kcal/mol)  

0.0311* 

Destabilizing 
Mutant residue reduces stability (∆∆G ≥ 0.5 
kcal/mol)  

0.0588 

Highly destabilizing 
Mutant residue highly reduces stability 
(∆∆G ≥ 4 kcal/mol)  

0.4059 

Stabilizing 
Mutant residue increases stability (∆∆G ≤ -
0.5 kcal/mol)  

0.1317 

Highly stabilizing 
Mutant residue highly increases stability 
(∆∆G ≤ -2 kcal/mol)  

none 

Protein 
flexibility 

Interdomain At hinge Located at hinge site 0.6563 

From 
crystallography 

Highly rigid 
Is a highly rigid residue (B-factorNorm ≤ -
0.523) 

0.6490 

Highly dynamic 
Is a highly dynamic residue (B-factorNorm 
≥ 1.0909) 

0.7997 

Highly rigid or 
highly dynamic 

Highly rigid or highly dynamic residue (B-
factorNorm ≤ -0.523 or ≥ 1.0909) 

0.7776 

From MD 
simulations 

Conformationally 
rigid 

Located at conformationally rigid site 
(FlexPred label = rigid) 

0.0218* 

Highly rigid 
Is a highly rigid residue (RMSFNorm ≤ -
0.4609) 

none 

Highly dynamic 
Is a highly dynamic residue (RMSFNorm ≥ 
0.964) 

0.1088 

Highly rigid or 
highly dynamic 

Highly rigid or highly dynamic residue 
(RMSFNorm ≤ -0.4609 or ≥ 0.964) 

0.1088 
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Supplementary Table B.5 (continued) 

Structural features Indicators Descriptions 

Fisher's 

exact test 

(one-tailed) 

Drug 
binding 
capability 

Binding site 
predictions 

At binding site Located at binding site  0.0003* 

At 5 Å of binding site 
Located within 5 Å of binding site (Cα-Cα 
distance) 

0.0123* 

At 10 Å of binding 
site 

Located within 10 Å of binding site (Cα-Cα 
distance) 

0.0005* 

Catalytic site 
predictions 

Non-optimal residue Is a nonoptimal residue (Γ < 0 kcal/mol) 0.2014 

Highly-non optimal 
residue 

Is a highly nonoptimal residue (Γ < -3.47 
kcal/mol), most likely catalytic sites 

0.1738 

Amino acid 
change at 
binding site 

Change of 
hydropathy, at 
binding site 

Induced hydropathy change (hydrophobic 
� hydrophilic) when located at binding 
sites 

0.2854 

Change of volume, at 
binding site 

Induced volume change (very large to 
small/very small, very small to large/very 
large) when located at binding sites 

0.2241 

Change of charge, at 
binding site 

Induced charge change (positive � 
negative) when located at binding sites 

0.4870 

Change of H-bond, at 
binding site 

Induced H-bond change (H-bond donor 
� acceptor) when located at binding sites 

0.4870 

Change of any kind, 
at binding site 

Induced any of the four changes when 
located at binding sites 

0.0954 

Amino acid 
change around 
5 Å of binding 
sites 

Change of 
hydropathy, around 5 
Å of binding sites 

Induced hydropathy change when located 
around 5 Å of binding sites 

0.4943 

Change of volume, 
around 5 Å of 
binding sites 

Induced volume change when located 
around 5 Å of binding sites 

0.0385* 

Change of charge, 
around 5 Å of 
binding sites 

Induced charge change when located around 
5 Å of binding sites 

0.6429 

Change of H-bond, 
around 5 Å of 
binding sites 

Induced H-bond change when located 
around 5 Å of binding sites 

0.6429 

Change of any kind, 
around 5 Å of 
binding sites 

Induced any of the four changes when 
located around 5 Å of binding sites 

0.0803 

Amino acid 
change around 
10 Å of 
binding sites 

Change of 
hydropathy, around 
10 Å of binding sites 

Induced hydropathy change when located 
around 10 Å of binding sites  

0.1117 

Change of volume, 
around 10 Å of 
binding sites 

Induced volume change when located 
around 10 Å of binding sites 

0.0046* 

Change of charge, 
around 10 Å of 
binding sites 

Induced charge change when located around 
10 Å of binding sites 

0.9107 

Change of H-bond, 
around 10 Å of 
binding sites 

Induced H-bond change when located 
around 10 Å of binding sites 

0.9585 

Any changes  around 
10 Å of binding sites 

Induced any of the four changes when 
located around 10 Å of binding sites 

0.0105* 
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Supplementary Table B.5 (continued) 

Structural features Indicators Descriptions 

Fisher's 

exact test 

(one-tailed) 

Protein-
protein 
interaction 

Interaction site At patch Located on protein patch < 0.0001* 

Residue 
localization 

Unusual AA At Gly/Pro Induced Gly/Pro change 0.0015* 

Residue 
localization 

At domain Located in protein domains 0.2355 

Residue 
localization 

At structural site Located at structural site 0.9978 

Residue 
localization 

At buried site Locate in buried site (RSA ≤ 20%) 0.0533 

Residue 
localization 

At core Located at the core region (RSA ≤ 5%) 0.0021* 

Amino acid 
dissimilarity  

Grantham 
score, by 
location 

Large AA 
dissimilarity at any 
site 

Induced large amino acid change (Grantham 
score ≥ 100) when located at any sites 

< 0.0001* 

Large AA 
dissimilarity at 
binding site 

Induced large amino acid change (Grantham 
score ≥ 100) when located at binding sites 

0.0259* 

Large AA 
dissimilarity at within 
5 Å of binding sites 

Induced large amino acid change (Grantham 
score ≥ 100) when located within 5 Å of 
binding sites 

0.0079* 

Large AA 
dissimilarity at within 
10 Å of binding sites 

Induced large amino acid change (Grantham 
score ≥ 100) when located within 10 Å of 
binding sites 

< 0.0001* 

Large AA 
dissimilarity at 
domain 

Induced large amino acid change (Grantham 
score ≥ 100) when located in protein 
domains 

< 0.0001* 

Large AA 
dissimilarity at any 
domain boundary 

Induced large amino acid change (Grantham 
score ≥ 100) when located in domain 
boundaries 

0.0045* 

Large AA 
dissimilarity at 
structural site 

Induced large amino acid change (Grantham 
score ≥ 100) when located at structural sites 

< 0.0001* 

Large AA 
dissimilarity at non-
structural sites 

Induced large amino acid change (Grantham 
score ≥ 100) when located at non-structural 
sites 

0.6145 
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Supplementary Table B.5 (continued) 

Structural features Indicators Descriptions 

Fisher's 

exact test 

(one-tailed) 

Amino 
acid 
secondary 
structure 
preference 

Secondary 
structure break 

Any type 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at any secondary structure types 

0.1674 

Coil break 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at coil 

0.6199 

Strand break 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at strand 

0.2454 

3-turn helix break 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at 3-turn helix 

0.4586 

α-helix break 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at α-helix 

0.1256 

bend break 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at bend 

0.5348 

turn break 
Induced secondary structure break 
(preferred to least preferred amino acid 
propensity) at turn 

0.4898 

Significant p-values (α = .05) are designated with ‘*'. Non-significant p-values indicate 
Prob(testing features) is greater for functional variants. 
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