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SUMMARY 

 

Nanoindentation has a high load resolution, depth sensing capabilities, and can be 

used to characterize the local mechanical behavior in material systems with 

heterogeneous microstructures. Recently nanoindentation has been used to extract useful 

stress-strain curves, primarily in hard materials such as metals and ceramics. To apply 

these indentation stress-strain methods to polymer composites, we have to first develop 

analysis techniques for materials that exhibit viscoelasticity. In a lot of current research 

the viscoelastic material properties are extracted after the material has been deformed 

enough to initiate plasticity and in some cases the time dependence of the deformation is 

ignored. This doesn’t give an accurate representation of the material properties of the 

undeformed sample or the local deformation behavior of the material. This dissertation 

develops analysis protocols to extract stress-strain curves and viscoelastic properties from 

the load-displacement data generated from spherical nanoindentation on materials 

exhibiting time-dependent response at room temperature. Once these protocols are 

developed they can then be applied, in the future, to study viscoelastic and viscoplastic 

properties of various mesoscale constituents of composite material systems. These new 

protocols were developed and tested on polymethyl methacrylate, polycarbonate, low-

density polyethylene, and the bio-polymer chitosan. The properties extracted were 

consistent under different conditions and we were able to produce stress-strain curves for 

different loading rates and different indenter tip sizes. This dissertation demonstrates that 

a set of protocols can be used to reliably investigate the mechanical properties and 

deformation behavior of time-dependent materials using nanoindentation. 



 

1 

CHAPTER 1: INTRODUCTION 

 

Extensive advances in imaging and property measurement techniques, at the 

micro-scale, over the past few decades have allowed researchers to gain new insights into 

the mechanics of engineering materials, biological materials, and advanced composites. 

In the design of many advanced composite materials, the goal is to fabricate lightweight, 

strong, and tough materials, generally by reinforcing soft materials such as polymers. 

Composites are also very popular in biomedical applications where they are used for 

bone replacement, cartilage replacement, bone cement, screws and many other 

applications [1]. There has been recent interest in the application of biological principles 

in the design of stronger, tougher, and “greener” materials [2-5]. Several studies mimic 

materials that match the properties of the natural material or are even stronger and 

tougher [4-11].  

There is considerable ongoing research into how such composites achieve better 

properties than their individual constituents display on their own. To investigate this 

property amplification we have to understand the mechanical properties at the scale in 

which the separate constituents interact, and not just the macroscale where the effective 

property of the composite is defined. Also successful application of devices at small 

length scales can only be guaranteed if their mechanical properties at the low length 

scales are known. An understanding of the deformation behavior of materials requires 

knowledge of the local stress-strain behavior of individual microstructural phases and 

constituents. While there are tools to characterize mechanical response of materials at 
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such scales [12-15], multiple data analysis procedures and assumptions lead to disparate 

results even on the same materials.  

One method that has been successfully applied to characterize mechanical 

properties of hard materials is nanoindentation. Nanoindentation has a high load 

resolution, depth sensing capabilities, and can be used to characterize the local 

mechanical behavior in material systems with heterogeneous microstructures [16]. 

Indentation data analysis methods recently developed by our research group have 

demonstrated a great potential to transform the raw load-displacement data obtained 

using spherical indenters into indentation stress-strain curves [17]. These protocols have 

been able to capture the local loading and unloading elastic moduli, the local indentation 

yield strengths, and some post-yield behavior in several samples [18, 19].  The validity of 

the definitions of indentation strain and contact radius used by these protocols have been 

critically evaluated using finite element models [20]. By recovering indentation stress-

strain curves from the measured indentation load-displacement data we can get a reliable 

comparison of material behavior between different samples without the need for 

expensive and time consuming uniaxial mechanical tests. These protocols have thus far 

been explored mostly on materials that do not experience significant time-dependent 

deformation.  

To be able to apply the indentation stress-strain methods to polymer composites, 

we have to first develop analysis techniques that will work for materials that exhibit 

viscoelasticity. In much of current research, the viscoelastic material properties are 

extracted after the material has been deformed enough to initiate plasticity and in some 

cases the time dependence of the deformation is ignored. These methods do not give an 
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accurate representation of the material properties of the undeformed sample or the local 

deformation behavior of the material. This dissertation develops analysis protocols to 

extract stress-strain curves and viscoelastic properties from the load-displacement data 

generated from spherical nanoindentation on materials exhibiting time-dependent 

response at room temperature. Once these protocols are developed they can then be 

applied, in the future, to study viscoelastic and viscoplastic properties of various 

mesoscale constituents of composite material systems, including both interior regions as 

well as those near interfaces.  The central goals of this PhD thesis are to develop and 

demonstrate these new protocols through selected case studies on a range of materials 

that include commercial polymers and the bio-polymer chitosan. 

This dissertation is divided into six chapters. In Chapter 2, background 

information is given for general viscoelasticity, nanoindentation, and the data analyses 

procedures used in current literature. In Chapter 3, a new set of protocols for extracting 

stress-strain curves and viscoelastic properties from nanoindentation testing of 

viscoelastic materials is presented. In Chapter 4, this protocol is tested on three 

commercially available polymers; polymethyl methacrylate (PMMA), polycarbonate 

(PC), and low-density polyethylene (LDPE) using three different indenter sizes. The 

properties and stress-strain curves obtained from nanoindentation are compared against 

results obtained from conventional uniaxial compression tests performed on the same 

polymers at a similar strain rate. Finite element (FE) simulations of spherical 

nanoindentation and uniaxial compression are also performed to understand this 

deformation behavior under idealized conditions. The results from the FE simulations 

help us get a better grasp of the results of the experimental work and determine the 
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relationship between uniaxial compression stress-strain curves and indentation stress-

strain curves for viscoelastic materials. In Chapter 5, the protocol is tested on a 

biopolymer, chitosan. The properties obtained from nanoindentation are once again 

compared against properties obtained from conventional tensile testing of thin films of 

the biopolymer. Chapter 6 summarizes and concludes the dissertation.  
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CHAPTER 2: BACKGROUND 

 

2.1. Viscoelastic Materials 

The mechanical response of viscoelastic materials can be characterized in a 

number of deformation modes including shearing, bending, torsion, compression, and/or 

tension. In all of these deformation modes, materials generally undergo a certain amount 

of reversible deformation. Any further deformation beyond this reversible limit results in 

the material not being able to return to its original shape. Viscoelastic materials exhibit 

both elastic (Hookean) solid and viscous (Newtonian) fluid properties while undergoing 

deformation. In elastic deformation, a material deforms instantaneously upon loading and 

returns to its original state when the load is removed. In one dimension and for small 

strains they follow Hooke’s law [21]: 

 σ(t) = Kε(t) (1) 

with K as the Elastic modulus, σ as the stress response, and ε as the applied strain. 

Viscous fluids, however, do not have a tendency for deformational recovery and resist 

only shear flow. In viscous flow, the rate of deformation increases with increasing 

applied stress; there is often a time delay between the applied maximum stress and the 

resultant maximum strain and vice versa. Under shear stress, a viscous fluid obeys: 

 
σ(t) = η

dε(t)
dt

 
(2) 

with η as the viscosity.  

 In viscoelastic materials, the relationship between stress and strain depends both 

on time and temperature. Only the time dependence will be considered in this 

dissertation. In elastic materials, stress and strain have a linear relationship (Figure 1a), 
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whereas for viscoelastic materials there is a strain rate dependence on the stress-strain 

relationship (Figure 1b). Some characteristics observed in viscoelastic materials, a couple 

of which will be discussed in the next sections, are: 

1. constant stress leads to strain increase with time (creep); 

2. constant strain leads to stress decrease with time (relaxation); 

3. effective stiffness depends on rate of load application; 

4. hysteresis (phase lag) occurs if cyclic loading is applied; 

5. rebound of an object after impact is less than 100%. 

 

 
Figure 1 - Stress-strain plots for loading and unloading at different strain rates. (a) Ideal 

elastic material. (b) Linearly viscoelastic material. 

 

2.1.1. Stress Relaxation 

Stress relaxation in viscoelastic materials occurs when they relieve stress under 

constant strain. This is best exemplified when a single step function is applied as the 

strain history with a magnitude ε0: ε(t) = ε0H(t) (Figure 2a). H(t) is the Heaviside unit 

step function which is zero for negative t and one when t is greater than zero. If the 

material is a perfectly elastic solid, the corresponding stress history would be of the form 

σ(t) = σ0H(t) which is constant for all positive t (Figure 2b). If the material is a perfectly 
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viscous fluid, the stress would be instantaneously infinite at the application of the strain 

and then zero for all positive t (Figure 2b). In a viscoelastic material the stress, σ(t), will 

decrease with time as shown in Figure 2b and the ratio [22], 

 
E(t) =

σ(t)
ε0

 
(3) 

is called the relaxation modulus which is independent of the strain level in linearly 

viscoelastic materials. Relaxation can also occur in shear or volumetric deformation. For 

shear stress the shear relaxation modulus is Es(t) and for volumetric deformation the bulk 

relaxation modulus can be defined as EB(t) with the stress as hydrostatic stress. If the 

strain is released at a later time, the stress will recover depending on the material in the 

following manner. For perfectly elastic materials, the stress will recover to zero 

immediately whereas for perfectly viscous materials, there will be an instant infinite 

amount of residual stress at the release of the strain and then zero after that. For a 

viscoelastic material, it will induce a certain amount of residual stress which will 

progressively increase to zero. 

 

 
Figure 2 – (a) A step increase and decrease in strain and the (b) resulting stress response. 
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2.1.2. Creep 

Creep in viscoelastic materials occurs when they deform under constant stress. 

This is best exemplified when a single step function is applied as the stress history with a 

magnitude σ0: σ(t) = σ0H(t) (Figure 3a). For a perfectly elastic solid, the strain response 

would be of the form ε(t) = ε0H(t) for all positive t. For a perfectly viscous fluid, the 

strain history would increase at a constant rate and be of the form ε(t) = σ0t/η. For a 

viscoelastic material, the strain ε(t) will increase with time as shown in Figure 3b and the 

ratio [22], 

 
J(t) =

ε(t)
σ0

 
(4) 

is called the creep compliance which is independent of the stress level in linearly 

viscoelastic materials. Creep can also occur in shear, Js(t), extension, JE(t), and 

volumetric deformation, JB(t). If the load is released at a later time, the strain will recover 

in different ways in the different classes of materials. For perfectly elastic materials, the 

strain will recover to zero immediately, whereas for perfectly viscous materials, the strain 

remains constant. For a viscoelastic material, there is an initial drop in strain equal to the 

step strain applied after which the strain progressively decreases to zero.  

 

 
Figure 3 - (a) A step increase and decrease in stress and the (b) resulting strain response. 
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2.1.3. Constitutive Relationships 

Practical applications of viscoelastic materials rarely involve keeping them under 

constant load or extension, so it is important to understand the material’s response to an 

arbitrary load or displacement history. To understand this, it is important to develop 

constitutive equations that describe the fundamental material behavior. Boltzmann 

generalized the behavior observed in the previous two section and formed the 

superposition principle which states that the net response caused by two or more stimuli 

is the sum of the responses of the individual stimuli. Consider an increment in strain over 

a small time interval: 

 
dε(τ) =

𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 
(5) 

Assuming the stress is continuous and differentiable in time and strain is related to stress 

via the relaxation modulus (equation (3)), Boltzmann suggested that an increment in 

stress is related to the increment in strain at time increments from τ to t through the 

relaxation modulus as: 

 
dσ(t) = E(t − τ)

𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 
(6) 

The complete stress at any time t can then be obtained by integrating over all the 

increments: 

 
σ(t) = � E(t − τ)

dε(t)
dτ

dτ
t

0
 

(7) 

Performing the same process for an arbitrary stress history, a complimentary relation may 

be obtained: 

 
ε(t) = � J(t − τ)

dσ(t)
dτ

dτ
t

0
 

(8) 
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If the material response to a step stress or strain can be determined 

experimentally, the response of a linear viscoelastic material to any load history can be 

found. Experimentally applying a step stress or strain is not feasible, so the usual 

procedure is to apply the stress or strain at the fastest rate that the machine allows and 

hold it at a preset value. This ramp loading can be taken into consideration when 

extracting the creep compliance or relaxation modulus from such tests as will be shown 

in the next chapter. 

Since this is the one dimensional form of the constitutive relationships, a three 

dimensional form needs to be developed to be applicable to all cases. This relationship 

for an arbitrary strain history can be written as [23]: 

 
𝜎𝜎𝑖𝑖𝑖𝑖(𝑡𝑡) = � 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝜏𝜏)

𝑑𝑑𝜀𝜀𝑘𝑘𝑘𝑘(𝜏𝜏)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑡𝑡

−∞
 

(9) 

where the fourth-order tensor Eijkl(t) is the relaxation modulus of the material and for an 

isotropic material is represented as: 

 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑘𝑘� + (𝐾𝐾(𝑡𝑡) − 2/3𝐾𝐾(𝑡𝑡))𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 (10) 

The scalar G(t) is the relaxation modulus in shear and K(t) is the bulk relaxation modulus. 

This relationship can also be extended to an arbitrary stress history as [23]: 

 
𝜀𝜀𝑖𝑖𝑖𝑖(𝑡𝑡) = � 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝜏𝜏)

𝑑𝑑𝜎𝜎𝑘𝑘𝑘𝑘(𝜏𝜏)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑡𝑡

−∞
 

(11) 

where the fourth-order tensor Jijkl(t) is the creep compliance of the material and for an 

isotropic material is represented as: 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐽𝐽𝑠𝑠(𝑡𝑡)�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑘𝑘� + (𝐽𝐽𝐵𝐵(𝑡𝑡) − 2/3𝐽𝐽𝑠𝑠(𝑡𝑡))𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 (12) 
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The scalar Js(t) is the creep compliance in shear and JB(t) is the bulk creep compliance. 

These three-dimensional representations of the viscoelastic constitutive equations can be 

used to describe the full range of material behavior under any deformation condition. 

In some case, the time dependent shear modulus or bulk modulus may need to be 

derived from the relaxation modulus. To get this relationship for an isotropic viscoelastic 

material, the correspondence principle can be used to get the Laplace transformed moduli 

[24] and the convolution theorem can be used to get the viscoelasticity relationships [25, 

26] as: 

 
𝐸𝐸(𝑡𝑡) = 2 �𝐺𝐺(𝑡𝑡) + � 𝑣𝑣(𝜏𝜏)𝐺𝐺(𝑡𝑡 − 𝜏𝜏)

𝑡𝑡

−∞
𝑑𝑑𝜏𝜏� 

(13) 

 
𝐸𝐸(𝑡𝑡) = 3 �𝐾𝐾(𝑡𝑡) − 2� 𝑣𝑣(𝜏𝜏)𝐾𝐾(𝑡𝑡 − 𝜏𝜏)

𝑡𝑡

−∞
𝑑𝑑𝜏𝜏� 

(14) 

If the Poisson’s ratio has very little variance or is assumed to be constant, the 

relationships reduce to: 

 𝐺𝐺(𝑡𝑡) =
𝐸𝐸(𝑡𝑡)

2(1 + 𝑣𝑣)
 (15) 

 𝐾𝐾(𝑡𝑡) =
𝐸𝐸(𝑡𝑡)

3(1 − 2𝑣𝑣)
 (16) 

which is similar to the elasticity relationships. The most significant change of Poisson’s 

ratio for most polymers is during the glass-to-rubber transition. As the operating 

temperature gets further from that region, the ratio is relatively constant. Since all 

experiments will be performed at temperatures much lower or higher than the glass 

transition temperature, the assumption of constant Poisson’s ratio is a reasonable one. 
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2.1.4. Relation between Creep and Relaxation 

In cases where only the creep compliance or the relaxation modulus can be 

calculated, it is important to obtain a relationship between both functions. The 

viscoelastic stress-strain relationships can be manipulated using integral transforms, such 

as the Laplace transform, to convert a linear integral equation or a linear differential 

equation to an algebraic equation that is easier to solve. Using the derivative and 

convolution properties of the Laplace transform, equations (9) and (11) can be converted 

to σij(s) = sEijkl(s)εkl(s) and εij(s) = sJijkl(s)σkl(s) respectively where s is the transform 

variable. This leads to the relationship, 

 σ𝑖𝑖𝑖𝑖(s)
ε𝑘𝑘𝑘𝑘(s)

= sE𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(s) =
1

sJ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(s)
 

(17) 

The equation can then be simplified to, 

 
E𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(s)J𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(s) =

1
s2

 
(18) 

Using the convolution property, L[t] = 1/s2, and taking the inverse transform, the 

following relationship is obtained, 

 
� J𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(t − τ)E𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(τ)dτ
t

0
= � E𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(t − τ)J𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(τ)dτ

t

0
= t 

(19) 

These are the implicit relationships. If a specific analytical form is known for the 

relaxation function or creep function, the explicit relationship can be formulated using 

Laplace transforms as will be developed for the viscoelastic nanoindentation case.  

2.1.5. Mechanical Models for Viscoelasticity 

Mechanical models composed of springs, assumed to be perfectly elastic, and 

dashpots, assumed to be perfectly viscous, are generally used to investigate the 
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viscoelastic behavior of materials. The spring can be described by Hooke’s law, equation 

(1), and the dashpot can be described as a viscous fluid, equation (2). To develop 

generalized mechanical models and finite networks for representation of viscoelastic 

behavior in general, a number of basic one-dimensional models are often used. These 

models will eventually be extended to more general cases to develop terms for creep 

compliance and relaxation modulus. 

2.1.5.1 Maxwell Model 

The first is the Maxwell model which is a combination of a linear spring and 

dashpot connected in series as shown in Figure 4a. Assuming quasistatic deformation, 

inertia is neglected and the stress is the same in both elements meaning that the total 

strain and strain rate is the sum of the individual strain and strain rate of each element 

respectively. Therefore the sum of the strain rates for the Maxwell model will be: 

 
ε̇(t) = ε̇s(t) + ε̇d(t) =

1
K

dσ(t)
dt

+
σ(t)
η

 
(20) 

where the subscripts s and d denote the spring and dashpot respectively. The ratio of 

viscosity to stiffness, tR = η/K, is called the relaxation time and characterizes one of the 

viscoelastic properties of the material [22]. Equation (20) can then be used to get the 

response of any arbitrary loading history for the Maxwell model. If this model is 

subjected to a step strain 𝜀𝜀0, as shown in Figure 4b, the stress response is obtained as: 

 σ(t) = Kε0e−t/tR (21) 

which describes the stress relaxation phenomenon for the model under constant strain and 

the stress relaxation function E(t) can be obtained by dividing the stress as function of 

time by the initial strain. Also from Equation (21), we can see that when t = tR, only 37% 
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of the initial stress remains. So the relaxation time can also be defined as the time it takes 

for the stress to drop to 37% of its initial value under application of a constant strain. If 

the model is subjected to a step stress σ0, as shown in Figure 4c, the strain response is 

obtained as: 

 ε(t) =
σ0
K

+
σ0
η

t (22) 

which describes the creep phenomenon for the model under constant stress and the creep 

compliance J(t) can be obtained by dividing the strain as a function of time by the initial 

stress. This model inaccurately describes creep, since the creep compliance has a constant 

slope, in contrast to the exponential decay versus time observed experimentally.  

 

 
Figure 4 - (a) Maxwell model (b) behavior under applied step strain and (c) behavior 

under applied step stress. 
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2.1.5.2. Kelvin Model 

Another commonly used simple is the Kelvin model which is a combination of a 

linear spring and dashpot connected in parallel as shown in Figure 5a. In this case the 

strain will be the same in both elements and the total stress will be the sum of the 

individual stress of each element. Therefore the total stress in the Kelvin model will be: 

 
σ(t) = σs(t) + σd(t) = Kε(t) + η

dε(t)
dt

 
(23) 

As with the Maxwell model, the properties can be studied in a similar manner. If the 

model is subjected to a step strain 𝜀𝜀0, as shown in Figure 5b, the stress response is 

obtained as: 

 σ(t) = Kε0 + ηε0δ(t) (24) 

where 𝛿𝛿(t) is the Dirac delta function, which suggests that there will be an infinite stress 

pulse as soon as the strain is applied and then the response will be a constant thereafter. 

The relaxation modulus E(t) can be obtained by dividing the stress as a function of time 

by the initial strain. This case is inaccurate as it does not show the stress relaxation 

observed experimentally. If the model is subjected to a step stress σ0, as shown in Figure 

5c, the strain response is obtained as: 

 ε(t) =
σ0
K
�1 − e−t/tC� (25) 

where tC =𝜂𝜂/K is referred to as the retardation time, which is defined as the time it takes 

the strain to reach 63% of its long term value. The creep compliance J(t) can be obtained 

by dividing the strain as a function of time by the initial stress.  
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Figure 5 - (a) Kelvin model (b) behavior under applied step strain and (c) behavior under 
applied step stress. 

 

2.1.5.3. Standard Linear Solid 

A more realistic material behavior can be modeled by the standard linear solid, 

which contains either a Maxwell model in parallel with a spring, as shown in Figure 6a, 

or a Kelvin model in series with a spring. In this case the model behavior can be 

described in differential form as:  

  dε(t)
dt

(K1 + K2) +
ε(t)K2

τ
=
σ(t)
τ

+
dσ(t)

dt
 

(26) 

where 𝜏𝜏 is either the relaxation time or the retardation time depending on the loading 

history. To obtain the relaxation response, a step strain can be applied, as shown in Figure 

6b, and the equation can be solved using Laplace transforms to get the response and 

relaxation modulus as [22]: 
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 E(t) = K2 + K1e−t/tR (27) 

Using the relationship developed earlier between the relaxation modulus and the creep 

compliance, we can come up with the creep compliance as: 

 
J(t) =

1
K2

−
K1

K2(K1 + K2)
e−t/tC 

(28) 

 

 

Figure 6 - (a) Standard Linear Solid model (b) behavior under applied step strain and (c) 
behavior under applied step stress. 

 

These physical models can be extended by adding more springs and dashpots to form 

more complicated systems, but care has to be taken to relate the models to real material 

behavior that can be observed by experimentation. 

 

 



 18 

2.1.5.4. Prony Series 

A general representation of the relaxation modulus can be obtained by connecting 

many Maxwell elements in series, and adding a spring in parallel with the whole array. 

The relaxation modulus will then have either of the two forms: 

 
E(t) = E∞ + �Eie−t/τi

N

i=1

 
(29) 

or 
E(t) = E0 −� Ei(1− e−

t
τi)

N

i=1

 
(30) 

where E∞ is the steady state stiffness of the system, E0 is the instantaneous modulus, and 

Ei and 𝜏𝜏i are the stiffnesses and time constants of the Maxwell elements. The sum of the 

exponentials is known as the Prony series and is generally used by finite element 

modeling software to define the properties of time dependent materials. Experimental 

data from stress relaxation tests can also be fit to equation (29) to determine the Prony 

series terms. For cases where only creep data is available, a Prony series representation of 

the creep compliance can be written as: 

 
J(t) = J∞ −� Jie−t/τi

N

i=1

 
(31) 

 
J(t) = J0 + � Ji(1 − e−

t
τi)

N

i=1

 
(32) 

where J∞ is the steady state stiffness of the system, J0 is the instantaneous compliance, 

and Ji and τi are the compliances and time constants of the Maxwell elements. If only one 

function is known, the relationship between the creep function and the relaxation 

function, described by equation (19), can be used to obtain the other. The shear and bulk 

relaxation moduli can also be represented in a similar form if either time series is known. 
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The Prony series is just an example of the most common method of describing 

viscoelastic behavior and can be used to model a wide range of materials and relaxation 

times by using the appropriate number of elements. 

2.1.6. Viscoelastic Material Property Definition in ABAQUS 

The viscoelastic material model used in the FE software ABAQUS defines 

isotropic rate-dependent behavior assuming the deviatoric and volumetric behaviors are 

independent in multiaxial stress states. The stress-strain relationship can be described as: 

 
𝜎𝜎(𝑡𝑡) = � 2𝐺𝐺(𝜏𝜏 − 𝜏𝜏′)

𝑡𝑡

0
ė𝑑𝑑𝑡𝑡′ + 𝐼𝐼 � 𝐾𝐾(𝜏𝜏 − 𝜏𝜏′)∅̇𝑑𝑑𝑑𝑑′

𝑡𝑡

0
 

(33) 

where e and ∅ are the mechanical deviatoric and volumetric strains respectively. τ in this 

case is the reduced time and is related to the actual time as: 

 
𝜏𝜏 = �

𝑑𝑑𝑑𝑑′
𝐴𝐴𝜃𝜃(𝜃𝜃(𝑡𝑡′))

𝑡𝑡

0
,                

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1

𝐴𝐴𝜃𝜃(𝜃𝜃(𝑡𝑡))
 

(34) 

where θ is the temperature and Aθ is the shift function. The shift function is used to relate 

the properties at any temperature to the properties obtained at some reference 

temperature. So if the relaxation modulus was obtained at one temperature E(t,θ0) , the 

relaxation modulus at a different temperature E(t,θ) can be calculated by using the shift 

function. Basically E(t,θ) = E(Aθt,θ0). If the properties are obtained at the same 

temperature that the future test will be performed, Aθ = 1 and τ = t. For indentation the 

properties are collected at approximately the same temperature that the tests are 

performed.  
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For a better understanding, the responses can be divided into the shear behavior 

and the volumetric behavior. If a time varying shear strain, γ, is applied to the material, 

the shear stress, τ, is defined as: 

 
𝜏𝜏(𝑡𝑡) = � 𝐺𝐺(𝑡𝑡 − 𝑠𝑠)𝛾̇𝛾(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡

0
 

(35) 

If a time varying volume strain, εv, is applied to the material, the hydrostatic pressure, p, 

is defined as: 

 
𝑝𝑝(𝑡𝑡) = −� 𝐾𝐾(𝑡𝑡 − 𝑠𝑠)

𝑡𝑡

0
𝜀𝜀̇𝑣𝑣(𝑠𝑠)𝑑𝑑𝑑𝑑 

(36) 

To numerically implement this material behavior, a Prony series of the shear and bulk 

relaxation moduli in a dimensionless form is used. This is done by dividing the shear 

relaxation modulus by the instantaneous shear modulus, g(t) = G(t)/G0, and the bulk 

relaxation modulus by the instantaneous elastic bulk modulus, k(t) = K(t)/K0, which 

gives: 

 
𝑔𝑔(𝑡𝑡) = 1 −�𝑔𝑔𝑖𝑖

𝑛𝑛𝐺𝐺

𝑖𝑖=1

(1 − 𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑖𝑖
𝐺𝐺) 

(37) 

 
𝑘𝑘(𝑡𝑡) = 1 −�𝑘𝑘𝑖𝑖

𝑛𝑛𝐾𝐾

𝑖𝑖=1

(1 − 𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑖𝑖
𝐾𝐾) 

(38) 

ABAQUS assumes τK and τG are equal but nK and nG need not be equal. In applications 

where the viscoelastic response is dominated by the deviatoric behavior, it can be 

assumed nK  = 0. Due to the heterogeneous nature of the stress state within the material 

during nanoindentation and the confined material, both shear and deviatoric behavior will 

be expected. Therefore it is important to consider both modes of behavior during the 

simulations. 
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2.2. Nanoindentation 

Indentation tests were originally performed by Brinell, using ball bearings as 

indenters to measure the plastic properties of materials [16]. In traditional indentation, an 

indenter of known geometry is driven into a softer sample by applying a set force or 

displacement. An optical image is then taken of the indent and the dimensions of the 

resultant imprint are correlated to a hardness index number. With higher resolution 

equipment, it is now possible to continuously control and monitor the load and 

displacement of the indenter as it is driven into and withdrawn from the material and 

produce load-displacement curves as shown in Figure 7a. This is known as instrumented 

indentation testing or depth sensing indentation and for sub-micron resolutions, 

nanoindentation. Nanoindentation has significant advantages over the traditional 

indentation, since the material properties can now be probed from depths as small as a 

few nanometers, using proper analysis techniques [27]. Nanoindentation has been used to 

measure the local hardness, elastic modulus [28, 29], evaluate the plastic response of 

metals [30-33], calculate the fracture toughness of brittle materials [34, 35], and measure 

the viscoelastic properties of polymers [36-39]. It should be noted that the majority of 

research is focused on hard materials such as metals and ceramics and the indents are 

performed with sharp tip indenters rather than spherical indenters. 
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Figure 7 - (a) Typical indentation load-displacement curve with initial and final contact 
geometry. (b) Schematic of Spherical indentation. [17] 
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2.2.1. Elastic Nanoindentation 

Elastic-plastic nanoindentation on metals and ceramics is primarily performed 

with sharp indenters, such as Berkovich and Knoop indenters [27], which are useful in 

calculating the hardness [35] and fracture toughness of a material [34]. Sharp indenters 

produce high stress concentrations under the indenter tip resulting in a very fast transition 

from elastic deformation to plastic deformation thus making them non-ideal in studying 

the elastic behavior of a material. On the other hand, spherical indenters provide a slower 

and smoother transition from elastic deformation to plastic deformation. This transition 

can be identified, in some cases, from load displacement curves collected during 

experiments. With certain assumptions [40], it is possible to generate and follow the 

stress-strain response in a sample from initial elasticity to initiation of plasticity at yield 

to large plastic strains [41].  

Several of the nanoindentation data analysis procedures used in current literature 

are based on Hertz’s theory [42] for frictionless contact between two linear isotropic 

elastic solids with spherical surfaces as shown in Figure 8. Since the contact area will be 

circular with a radius of a, the boundary condition for displacement within this region is 

given by: 

 
𝑢𝑢𝑧𝑧1 + 𝑢𝑢𝑧𝑧2 = ℎ −

𝑟𝑟2

2𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒
 

(39) 

where 1/Reff = 1/R1 + 1/R2  is the effective curvature of the two bodies and r is the 

distance from the center of contact to any point within the contact region. For indentation 

on a flat surface the effective radius is equal to the indenter radius as the sample radius 

approaches infinity. Hertz proposed a pressure distribution that satisfies this boundary 

condition as:  
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 𝑝𝑝(𝑟𝑟) = 𝑝𝑝𝑜𝑜[1 − (𝑟𝑟/𝑎𝑎)2]1/2 (40) 

where po is the maximum pressure at the center of contact. This distribution gives normal 

displacements of:  

 
𝑢𝑢𝑧𝑧 =

1 − 𝜈𝜈2

𝐸𝐸
𝜋𝜋𝑝𝑝𝑜𝑜
4𝑎𝑎

(2𝑎𝑎2 − 𝑟𝑟2),             𝑟𝑟 ≤ 𝑎𝑎 
(41) 

where E, in this case, is the Young’s modulus and ν is the Poisson’s ratio. Since the 

pressures on both bodies are equal, an effective modulus of the combined system is 

described by: 

 1
Eeff

=
1 − υ12

E1
+

1 − υ22

E2
 

(42) 

Substituting this and equation (41) into equation (39), we get: 

 𝜋𝜋𝑝𝑝𝑜𝑜
4𝑎𝑎𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

(2𝑎𝑎2 − 𝑟𝑟2) = ℎ −
𝑟𝑟2

2𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒
 

(43) 

The total load is then related to the pressure as: 

 𝑃𝑃 = � 𝑝𝑝(𝑟𝑟)2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝑎𝑎

0
=

2
3
𝑝𝑝𝑜𝑜𝜋𝜋𝑎𝑎2 (44) 

In experiments, the total load and displacement are the given outputs, so it is convenient 

to rearrange equations (43) and (44) to obtain the general form of Hertz theory used in 

literature: 

 
P =

4
3

EeffReff
1/2he

3/2 
(45) 

 a = �Reffhe (46) 
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Figure 8 - Contact between two solids of revolution. 

 

On most samples the very small initial elastic loading segment is not clearly 

identifiable on a measured load-displacement curve, therefore the Hertz model is 

commonly applied to the unloading segment as it is assumed to be primarily elastic [29, 

43, 44]. The sample usually experiences significant inelastic strains before unload, 

especially with sharp indenters, so the unloading is no longer from a flat undeformed 

sample surface. A direct measurement of Rs or a is extremely difficult, due to the 

positioning and scale of the indentation, so most researchers calibrate the projected 

contact area using measurements on samples with known moduli [45] or from finite 

element simulations [46]. This approach assumes that the result from the calibration is 

independent of the material being indented which is unlikely since indentation on 

different materials would produce different contact geometries.  
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2.2.1.1. Zero-Point Correction 

The first step in the analysis of raw load-displacement data obtained from an 

indentation test is the accurate estimation of the point corresponding to zero-load and 

zero-displacement. This will have a major influence on the estimation of the contact 

radius and values of indentation stress and strain. Our research group finds this point by 

performing a regression analysis on the initial elastic loading segment of the measured 

load, displacement, and stiffness signals and fitting it to the expected relationships 

predicted by Hertz’s theory [17]. As a result, an ‘effective’ point of initial contact is 

identified which relates to a virtual flat surface free from any sample preparation artifacts, 

like surface roughness or oxide layers. Another advantage of an effective point of initial 

contact is that it automatically produces a good looking indentation stress-strain curve for 

the loading segment compared to the spikes caused by using the zero point from the 

nanoindenter’s default procedures [17].  

A very useful signal provided by the Agilent Nanoindenter G200 is the 

continuous stiffness measurement (CSM) which provides the elastic stiffness (S) as an 

independent measurement. This is accomplished by imposing a small, sinusoidally 

varying load on top of the DC signal that drives the motion of the indenter, as shown in 

Figure 9, which allows for continuous measurement of the resulting amplitude and phase 

of the displacement oscillation [47]. Agilent have found that an oscillation frequency of 

45 Hz works best for the machine dynamics resulting in the best signals. 45 Hz will be 

used for all indentation tests in this work.  

These superimposed oscillations can produce errors in the resulting raw data since 

the machine records the average values and not the actual load and displacement that the 
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material experiences. The material actually experiences the load and displacement of the 

maxima of the superimposed oscillations and this error can be corrected using the 

following equations [48]: 

 
Pact = Papp +

∆P
2

  or   Pact = Papp + √2∆Prms 
(47) 

 
hact = happ +

∆h
2

  or   hact = happ + √2∆hrms 
(48) 

 
Sact =

1
√2π

Pmax
∆hrms

�
1
K
�
1/m

�1 − �1 −
2√2∆hrmsSapp

Pmax
�� 

(49) 

where P, h, and S refer to the load, displacement, and stiffness signals, respectively, and 

the subscripts act and app refer to the actual value experienced by the material and 

apparent value measured by the machine respectively. ΔP and Δh are the peak to peak 

load and displacement ranges and the root mean squared (rms) values are provided by the 

machine. K and m are constant values which are functions of the indenter geometry (K = 

0.6524 and m = 3/2 for spherical indentation) [49]. These corrections are applied to the 

load, displacement, and stiffness signals measured by the indenter.  

 

 

Figure 9 - Sinusoidally varying load applied on top of the DC signal. 
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To define an effective point of initial contact, start by letting P1, he1, and S be the 

measured load signal, measured displacement signal, and elastic stiffness signal in the 

initial elastic loading segment from the machine, respectively. Let P* and h* denote the 

values of load and displacement at the effective point of contact. According to Hertz’s 

theory [48], the three signals can be related as: 

 
S =

3P
2he

=
3(P1 − P∗)

2(he1 − h∗)
 

(50) 

Rearranging equation (50) we get: 

 
P1 −

2
3

She1 = P∗ −
2
3

Sh∗ 
(51) 

Plotting the left hand side of equation (51) against S produces a linear relationship whose 

slope is equal to –(2/3)h* and the y-intercept is equal to P*.  This gives us the point of 

effective initial contact accurately while making sure that the data is consistent with 

Hertz’s theory. 

2.2.1.2. Elastic Modulus 

There are two ways to determine the elastic modulus of the material. The first, 

commonly used in literature, is to extract the elastic modulus from the unloading curve. 

This is done by recasting the Hertz’s model (equation (45)) as: 

 
Eeff =

S
2a

=
S
2
�
π
A

 
(52) 

where S is the slope of the curve (dP/dhe) at or close to the peak indentation load and A is 

the projected contact area defined as: 

 
A = πa2                   a = �2hcRi − hc

2 
(53) 
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In equation (53), hc is the depth of the indenter that is in contact with the sample as 

shown in Figure 7b. This definition of contact area uses the actual contact area estimated 

from simple geometry of a chord length relation as opposed to equation (46) which is the 

equivalent elastic contact radius consistent with Hertz’s theory. Oliver and Pharr [45] 

proposed the following expression for computation of hc:  

 
hc = ht −

1
2

he = ht −
3
4

P
S

 
(54) 

where ht is the total depth moved by the indenter system and he is the elastic depth which 

as can be seen from Figure 7a is the total depth minus the depth after unloading. 

The second method is to determine the elastic modulus from the initial loading 

curve. This is achieved by rearranging Hertz’s theory to the form: 

 
P2/3 = �

4
3

EeffReff
1/2�

2/3

h 
(55) 

So a plot of P2/3 vs h of the initial portion of the load-displacement curve should have a 

section with a constant slope that passes through the origin. Since we are only 

considering the initial portion starting from a flat surface, Ri >> Rs, we can take Reff = Ri. 

A least squares fit between h and P2/3 in the initial segment of the load-displacement data 

produces the effective modulus. This provides a more accurate description of the elastic 

modulus as it is extracted from a relatively flat surface and before the material 

experiences any significant inelastic deformations. 

2.2.1.3. Stress-Strain Curves 

Common data analysis procedures to define indentation stress and indentation 

strain transforms equation (45) into a linear relationship as: 
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σind =

4Eeff
3π

εind            σind =
P
πa2

               εind =
a

Reff
  

(56) 

Knowing that S = dP/dhe, equation (45) can be differentiated and the definition of the 

contact radius in equation (46) can be used to obtain an estimation of the contact radius: 

 
a =

S
2Eeff

 
(57) 

In the regime of small indentation depths (hc << Reff) equation (56) is the same as the 

Hertz model. Many researchers have adopted a/Reff [40, 50-52] as the definition of 

indentation strain due to the expected linear relationship between σind and a/Reff in elastic 

indentation using Hertz’s model. Due to difficulty in measuring Reff at each data point, 

most researchers use a/Ri [40, 50-53] as the definition of indentation strain. This 

approximation is only valid for the initial elastic loading from a flat sample and breaks 

down as soon as the material experiences inelastic strain. Also an accurate estimation of 

the contact tradius needs knowledge of Reff as is seen from equation (45).  

 Researchers from our group have previously presented and validated new 

approaches for extracting indentation stress-strain curves for spherical nanoindentation 

[20, 41, 54, 55]. The first step is providing a more realistic definition of strain to extract 

the stress-strain curves from the raw load-displacement data. For elastic indentation, the 

Hertz’s model, equation (45), can be recast as: 

 
σind = E∗εind                σind =

P
πa2

                εind =
4
3π

ht
a
≈

ht
2.4a

 
(58) 

This new definition of indentation strain uses the total indentation depth instead of the 

elastic indentation depth which generalizes it for elastic plastic indentations. For elastic 

indentations, the total depth and the elastic depth are equal and therefore this new 

definition is consistent with Hertz’s theory and is also equivalent to the definition given 
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by equation (56). The definition idealizes the indentation as being equivalent to 

compressing a cylindrical region of radius a and height 2.4a by ht as shown in Figure 7b. 

This information can now be used with equation (57) to obtain the stress-strain curves for 

specific material systems. This estimate is only valid for the extraction of stress-strain 

curves when we assume that Eeff remains constant during the inelastic deformation 

imposed by nanoindentation. This can be applied to most metals as the effective modulus 

does not change by much throughout the indentation, whereas for viscoelastic materials 

there is a change even during the elastic portion of the indentation. This novel analysis 

method has yielded reliable stress-strain curves for aluminum [49], tungsten [17], 

polycrystalline samples [41], and single crystals [18]. 

2.2.2. Viscoelastic Nanoindentation 

While the previous method has shown highly consistent results with metallic 

materials, it has yet to be tested on materials that exhibit rate dependent elastic behavior.  

To be able to apply these new methods to materials that exhibit viscoelasticity, it is 

important to understand the viscoelastic constitutive relationships for indentation. 

Theoretical studies on linear viscoelastic indentation started in the mid-1950s with the 

works of Lee [56], Radok [57], Hunter [58], Graham [59], and Ting [60]. They developed 

a simple approach to time dependent indentation for finding the viscoelastic solution in 

cases where the corresponding solution for the purely elastic case is known. This is 

known as the viscoelastic correspondence principle. This principle for indentation was 

first derived by Lee and Radok [57] and then later improved for more general cases by 

Ting [60].  
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For viscoelastic nanoindentation, an axisymmetric rigid indenter is indenting into 

a viscoelastic half-space at t = 0. The goal is to find the stresses and displacements in the 

half-space, which must mathematically satisfy the equation of equilibrium: 

 ∂σij
∂xj

= 0 
(59) 

the strain-displacement relationship: 

 
εij =

1
2
�
∂ui
∂xj

−
∂uj
∂xi

� 
(60) 

and the stress-strain relationships for linear isotropic viscoelasticity: 

 Msij = Neij (61) 

 M′σii = N′εii (62) 

where sij = σij – (1/3)σkkδij and eij = εij – (1/3)εkkδij are the stress and strain deviators 

respectively. M, N, M’, and N’ are linear operators with a time variable and may be 

differential operators when using mechanical models with springs and dashpots [61] as in 

section 2.1.5, integral operators for the hereditary-function approach [62] as in section 

2.1.3, or other methods of describing viscoelastic behavior.  

Consider the case of a smooth rigid sphere indenting into an initially plane surface 

of a viscoelastic half space at two instants as shown in Figure 10. At any time t that the 

sphere is in contact with the surface, the contact region will be bounded by a circle of 

radius a(t). Points that are outside the contact area with a radius r > a(t) will have a 

boundary condition with zero surface traction. For points inside the contact area, r < a(t), 

the normal surface displacement is related to contact with the indenter and the tangential 

component will be zero since the indenter is assumed to be smooth. The surface traction 

in this region can then be described by: 
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 Ti(xi, t) = σijnj (63) 

where nj is the unit outward normal vector and xj are the Cartesian co-ordinates. For the 

surfaces outside this contact region, only the displacement can be prescribed. 

 

 

Figure 10 - Indentation of a smooth rigid sphere into a viscoelastic half space at two 
instants. 

 

 
In a typical linear viscoelastic model, a solution is available if the regions over 

which the boundary conditions are defined do not vary during that time. In this case, a 

Laplace transform is applied to remove the time variable, reducing the problem to an 

elastic one. Unlike indentation into an elastic half space, the boundary between the two 

regions shown in Figure 10 has conditions that vary with time. Since for some points on 

the surface, the traction and displacement are unknown throughout the history of the 

problem, therefore the transform cannot be obtained. This can be seen in Figure 10, 

where point A has a boundary condition that changes from time t1 to time t2. However, 
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Radok [63] has suggested that the viscoelastic solution can be obtained by taking the 

solutions of the elastic problem with the time variable and the same boundary conditions 

as the viscoelastic problem, and substituting appropriate viscoelastic operators for the 

elastic constants in the expressions for stress components.  

For a contact analysis, the Hertz’s solution to the elastic problem (equations (40) 

and (43)) can be rearranged to give the normal contact pressure as: 

 
p(r, t) =

2
πReff

Eeff(a(t)2 − r2)1/2 
(64) 

This equation appears to be an appropriate form of the elastic spherical nanoindentation 

solution to substitute viscoelastic operators into, since the surface traction and stress 

components appear linearly in the basic system of equations. Nonlinearity only appears in 

the changing geometry of the boundary condition. A relationship for the pressure 

distribution in an indentation of a viscoelastic half-space by a frictionless sphere can then 

be formulated as: 

 
M[p(r, t)] =

2
πReff

N[f(r, t)] 
(65) 

where, 

 f(r, t) = (a(t)2 − r2)1/2 (66) 

Since the indentation progress can be defined by a(t), the surface pressure at each point 

can be extracted assuming zero initial conditions for the initially undisturbed surface. The 

problem is now defined by the applied normal surface traction and zero shear traction. 

Applying the Laplace transform gives an associated elastic problem of p�(r, s), where the 

bar indicates the transform and s is the transform parameter. The transform can then be 

written as: 
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p�(r, s) =

2
πReff

N�
M�
�f(̅r, s)� 

(67) 

where M�  and N� are the transformed forms of the viscoelastic operators. If the operators 

used viscoelastic relationships are defined in the integral form, as in section 2.1.3, the 

transformed form can be formulated as: 

 ε�(s) = J(̅s)sσ�(s) (68) 

so that: 

 M� = J(̅s)s,        N� = 1 (69) 

The corresponding viscoelastic solution can then be obtained by using the transformed 

viscoelastic operators and performing an inverse Laplace transform.  

At any given time during the indentation, to satisfy the Hertz model, the region of 

contact will be limited to an area Amax with a peripheral radius of amax. Looking at Figure 

10, amax at time t2 would a(t2). Timoshenko and Goodier [64] have shown that for this 

type of problem the surface displacement can be written as an integral of the surface 

pressure distribution of the point load elastic solution over the contact area:  

 
𝑤𝑤(𝑟𝑟, 𝑡𝑡) =

1
𝜋𝜋

� 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝(𝑟𝑟′, 𝑡𝑡)
𝜌𝜌

𝑑𝑑𝑑𝑑 
(70) 

In equation (70) ρ is the distance from the point where the deflection is evaluated to an 

arbitrary element of area dA and r’ is the running radius coordinate over the surface of 

contact. The elastic constants can then be replaced with the viscoelastic operators and a 

Laplace transform taken to obtain: 

 
𝑤𝑤�(𝑟𝑟, 𝑠𝑠) =

1
𝜋𝜋

�
𝑀𝑀�
𝑁𝑁�

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑝̅𝑝(𝑟𝑟′, 𝑠𝑠)
𝜌𝜌

𝑑𝑑𝑑𝑑 
(71) 

Substituting in the contact pressure from equation (67) then gives: 
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𝑤𝑤�(𝑟𝑟, 𝑠𝑠) =

2
𝜋𝜋2𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒

�
f(̅𝑟𝑟′, 𝑠𝑠)
𝜌𝜌

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑 
(72) 

At any given time, the integral is over a fixed domain Amax, therefore the inverse Laplace 

transform can be performed under the integral sign and the integral only needs to be 

evaluated within the contact area since it is zero elsewhere. Performing the transform and 

evaluating the integral gives: 

 
w(r, t) =

a(t)2

Reff
−

r2

2Reff
 

(73) 

which is valid within the contact region, r < ɑ(t), and as long as the surface is in contact 

with the indenter. This is only valid for nondecreasing contact area since if a(t) reaches a 

maximum and is then decreased to zero, equation (73) shows that the normal deflection 

of the surface becomes zero. For viscoelastic materials, a residual impression would be 

left after the contact has stopped since there are delayed components of elastic and 

viscous strain. The displacement at the center, w(0,t), also gives the displacement of the 

indenter: 

 
h(t) =

a(t)2

R𝑒𝑒𝑒𝑒𝑒𝑒
 

(74) 

which gives us the same relationship as the original Hertz model for the elastic case. This 

means that as long as the contact area is increasing, the displacement for a given contact 

area during viscoelastic nanoindentation is the same as the elastic nanoindentation case.  

The important outputs during indentation are the displacement of the indenter and 

the total force of penetration. The total force is simply the integral of the pressure 

distribution over the contact surface: 
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P(t) = � p(r, t)2πr

a(t)

0
dr 

(75) 

For valid elastic solutions, the upper limit can be made constant to get an invariant region 

of integration since the pressure distribution outside the contact region is zero. 

Performing the Laplace transform and using the transform from equation (67) gives us: 

 
P�(s) =

2
πReff

N�
M�
� f(̅r, s)2πr
amax

0
dr 

(76) 

Taking the inverse transform, the integral reduces to the volume of a hemisphere: 

 
P(t) =

4
3Reff

N
M

a(t)3 
(77) 

Using the viscoelastic operators from the constitutive relationships for viscoelasticity 

given by equations (9) and (11) and rearranging everything in terms of load and 

displacement gives: 

 
P(t) =

4�R𝑒𝑒𝑒𝑒𝑒𝑒

3(1 − ν2)
� E(t − τ)
t

0

dh3/2(τ)
dτ

dτ 
(78) 

for a prescribed arbitrary displacement history and  

 
h3/2(t) =

3(1 − 𝜈𝜈2)
4�R𝑒𝑒𝑒𝑒𝑒𝑒

� J(t − τ)
t

0

dP(τ)
dτ

dτ 
(79) 

for a prescribed arbitrary loading history. Equations (78) and (79) are commonly used to 

analyze load-displacement curves obtained from nanoindentation experiments on 

viscoelastic materials.  

2.3. Discrete Deconvolution 

The solution to the indentation problem on a linear viscoelastic material is in 

terms of a convolution integral. Since in a typical indentation test, the load and 

displacement are measured, the relaxation modulus or creep compliance can ideally be 
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deconvoluted from the viscoelastic solutions. The data obtained from the indenter is 

discrete which means the convolution has to be in a discrete form to be deconvoluted. 

The general form of the convolution integral is: 

 
b(t) = � A(τ)x(t − τ)

t

0
dτ = � A(t − τ)x(τ)

t

0
dτ = A(t) ∗ x(t) 

(80) 

where ‘*’ is the convolution operator and x(t) is assumed to be the unknown parameter to 

be deconvoluted. To approximate the integral by a summation, let ΔT be the sampling 

interval, and then the discrete form is given by: 

 
b(n∆T) = � A(n∆T − m∆T)x(m∆T)

n∆T

m=0

∆T 
(81) 

Each function is now a discrete array and the nth element is the function evaluated at 

nΔT. Thus the discrete convolution can be written as: 

 
b(n) = ∆T � a(n − m)x(m)

n

m=0

= a(n) ∗ x(n) 
(82) 

The summation can be expanded to get: 

 

b(n) =

⎣
⎢
⎢
⎢
⎡

a(0)x(0)
a(0)x(1) + a(1)x(0)

a(0)x(2) + a(1)x(1) + a(2)x(0)
⋮

a(0)x(n) + a(1)x(n − 1) + ⋯+ a(n)x(0)⎦
⎥
⎥
⎥
⎤

∆𝑇𝑇 

(83) 

or in matrix form: 

 

�

a(0)  
a(1) a(0)  

 
 

⋮ ⋱  
a(N) ⋯ ⋯ a(0)

� �

x(0)
x(1)
⋮

x(N)

� ∆T = �

b(0)
b(1)
⋮

b(N)

� 

(84) 

AX∆T = B 

where: 
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Aij = �
0        i < j

a(i − j)       otherwise 

Xi = x(i − 1) 

Bi = b(i − 1) 

An estimate X� of the unknown parameter can be obtained by using a linear least squares 

approach to a solution: 

X� = (ATA)−1ATB 

For the viscoelastic nanoindentation solution, once the creep compliance or relaxation 

modulus is extracted, the estimated solution can be fit to a Prony series to get an idea of 

the material’s instantaneous and long-term moduli or compliance. 

2.4. Viscoelastic Nanoindentation in Literature 

With advances in technology and the push for advanced engineering materials, 

there has been considerable interest in the past few years in understanding the micro and 

sub-micron scale properties of viscoelastic materials. Most studies on nanoindentation 

focus on extracting the creep compliance or relaxation modulus by fitting the results to a 

mechanical model or a Prony series representation [36, 37, 65]. Several researchers have 

used sharp, Berkovich or conical, tips to investigate the viscoelastic behavior of different 

polymers [66, 67]. It should be noted that in these cases the region deformed under the 

indenter is plastically deformed, as explained in the previous section, and as such the 

properties extracted are not representative of the original undeformed viscoelastic 

material. Some tests extract these properties by fitting the loading portion of the test to 

the viscoelastic solution whereas others extract them by ramping the load or displacement 

to a preset number and holding it for some time. The relaxation modulus or creep 
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compliance can then be extracted from the hold portion. An important study was done by 

Michelle Oyen [68] to study the assumption of step loading creep conditions. 

Experimentally, a step loading condition is impossible to implement, therefore it is 

important to take into account the ramp load before the hold. Oyen has shown the 

analytical solution for this case and that if a mechanical model is used, a “ramp correction 

factor” for the exponential decay terms is the only difference between an analytical step 

loading condition and a ramp loading condition. This is explored in further detail in the 

next chapter.  

Another important property that is commonly studied is a viscoelastic material’s 

response to dynamic (oscillatory) loading at different frequencies [69-71]. This is useful 

in extracting the storage and loss moduli of the material in the frequency domain for 

applications where cyclic loading is imposed. The storage and loss moduli are also 

material properties and combined with tests at different temperatures represent the full 

spectrum of viscoelastic materials properties before and after its glass transition 

temperature. While these properties are useful, it is important to develop precise data 

analysis protocols for nanoindentation of viscoelastic materials at room temperature and 

for a single loading cycle first. The focus of this dissertation is to develop a concise 

protocol that provides the mechanical properties of a viscoelastic material at the micron 

and sub-micron scale accurately. This protocol can be extended, in the future, to different 

conditions and temperatures to capture the full spectrum of viscoelastic material 

properties. 
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CHAPTER 3: NEW VISCOELASTIC NANOINDENTATION 

PROTOCOLS 

 

The focus of most elastic-plastic nanoindentation tests, in current literature, is to 

extract the modulus, hardness, or a stress-strain curve, whereas the focus of viscoelastic 

nanoindentation tests, in current literature, is to extract the creep compliance, relaxation 

modulus, or storage and loss moduli. The objective of this work is to give any researcher 

a set of protocols to extract the creep compliance, relaxation modulus, and stress-strain 

curves from load-displacement curves obtained from nanoindentation experiments on 

viscoelastic materials. The proposed protocols shall be laid out in steps, starting with an 

understanding of the material behavior, followed by performing the indentation tests, and 

finally analyzing the data obtained. 

3.1. Step 1: Determine Material Viscoelasticity 

The first step is to determine if the material has a big enough viscous component 

to affect its deformation behavior. This is particularly useful when testing new materials 

or materials structurally or chemically modified for specific applications. In some cases, 

the viscous portion is small enough that it is negligible and the material can be treated as 

an elastic-plastic material. Before any quantitative data can be collected, it is important to 

make sure that any values being calculated assuming viscoelastic behavior is collected 

within the viscoelastic region of the load-displacement curve. This can be determined by 

loading and unloading the material at increasing loads using the same loading rate. At the 

end of each unload a small load is held on the material and the displacement is allowed to 

recover. The goal is to observe where the displacement stops decreasing and how this 
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residual displacement changes at different loads. Ideally if the indentation is still within 

the viscoelastic regime, the residual displacement will be similar at the different 

maximum loads. For highly viscoelastic materials, it may take much longer for the 

material to return to reach a residual value and thus it is hard to quantify the exact 

position of yield, rather an educated guess is made. Since this is not an exact value, a safe 

assumption can usually be made on where the elastic behavior of the material ends. To 

avoid the effect of plasticity, any mechanical properties collected should be within this 

viscoelastic range.  

 

 

Figure 11 - Schematic of the method used to determining the viscoelastic region. 
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The best evidence of material viscoelasticity is if the material produces different 

load-displacement curves in the viscoelastic portion when different deformation rates are 

applied. Before we test this experimentally in the next chapter, a finite element (FE) 

study can be performed to formulate the expected behavior for the experiments and 

confirm some of the analytical solutions for viscoelastic nanoindentation. For all 

simulations in this thesis, an axisymmetric finite element model was produced using the 

commercial finite element code ABAQUS. The model consisted of two isotropic bodies, 

indenter and sample, initially coincident on the axis of symmetry as shown in Figure 12. 

The sample was a deformable body discretized into four noded axisymmetric (CAX4) 

elements. The sample is constrained from moving in the 1-direction (x-axis) along the 

axis of symmetry and in the 2-direction (y-axis) along the bottom surface. The highest 

mesh density in the region where highest stresses or strains were expected was achieved 

by discretizing the indentation zone. A mesh density of at least 64 elements/μm, along 

one direction, is used for all simulations in this zone. The indenter was represented by an 

axisymmetric rigid indenter of radius 10 µm. In the simulation, a downward vertical 

displacement condition was imposed on the node at the center of the indenter which is 

tied to the surface of the indenter. Contact between the sample and indenter was defined 

as a hard surface-to-surface contact with the indenter as the master surface and the 

sample as the slave surface. To test our model, we indented isotropic, elastic and 

viscoelastic materials and compared the FE results with the analytical Hertz and 

viscoelastic solution respectively. The FE result showed good agreement with the 

analytical solutions, thereby validating the FE model developed in this study for 

simulating indentation. 
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Figure 12 - Schematic of indenter, sample, and boundary conditions used for finite 
element simulations. 

 

The viscoelastic material properties used for the simulation were obtained from 

our nanoindentation experiments done on LDPE (presented in the next chapter) in terms 

of a two term Prony series representation: 

 𝐸𝐸(𝑡𝑡) = 0.15 + 0.057𝑒𝑒−0.091𝑡𝑡 + 0.043𝑒𝑒−0.0094𝑡𝑡     𝐺𝐺𝐺𝐺𝐺𝐺 (85) 

The elastic material properties used for the simulations were steady state stiffness, 0.2482 

GPa, and LDPE’s Poisson’s ratio, 0.45. The indenter was indented into the material to a 

depth of 50 nm at 50 nm/s, 5 nm/s, 5x10-1 μm/s, and 5x10-2 μm/s. As can be seen from 

Figure 13, the material produces different responses as the displacement rate is reduced. 

At high displacement rates, the response is almost identical to the elastic case. This is 

because the time it takes to reach the specified displacement is lower than the material’s 
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time constants thus not giving the material enough time to relax. At a lower displacement 

rate, the material has enough time to relax thus the response would be lower. The rate 

dependence will also be shown experimentally in the next chapter by indenting different 

viscoelastic materials at different rates.  

 

 

Figure 13 - FE simulation of indentation loading-unloading cycles on LDPE at different 
displacement rates. 

 

Another method for determining viscoelasticity is to perform a creep or relaxation 

test. The creep test, in the next chapter, is performed by ramping to a specific load, 

holding the load for some time, and unloading at the same rate as shown in Figure 14. For 

a viscoelastic material, displacement will increase as shown in Figure 3. The relaxation 

test can be performed by ramping to a specific displacement, holding the displacement 

for some time, and unloading at the same rate as shown in Figure 14. For a viscoelastic 

material, load will decrease as shown in Figure 2. These tests will give a first glance at 

how viscoelastic a material is and whether the data collected from nanoindentation should 



 46 

be treated as viscoelastic. The data from the creep tests will also be used to extract the 

viscoelastic property of the material as explained in the next section. 

 

 

Figure 14 - Schematic for performing a creep or relaxation test. 

 

3.2. Step 2: Extract Viscoelastic Property 

This step should be performed before the zero-point correction and the data can 

be reanalyzed once the correction is performed in the next step. This step is to extract the 

material’s viscoelastic property from the loading portion (in either displacement 

controlled or load controlled tests) of the curve or from the ramp and hold tests. To 

extract from the loading portion, the deconvolution procedure described in section 2.3 is 

used, where the convolution to be solved is given by equation (84) with the terms 

obtained from equations (78) for a displacement controlled test or (79) for a load 

controlled test. The unknown in this case is either the relaxation modulus or the creep 

compliance represented by array X with the terms in matrix A derived from dP/dt or 

dh3/2/dt for each case respectively. The output in array B is then represented by the load 
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as P or the displacement as h3/2. Since the inputs and outputs are recorded by as discrete 

signals, noise and other perturbations will affect the solution obtained after 

approximation. This can be represented by the condition number of matrix A, which 

measures how much the output will change for a small change in the input. A high 

condition number means the problem is ill-conditioned and small errors in the output can 

cause a large error in the solution obtained. Whereas a low condition number means the 

error in the solution will not be much larger than the errors in output [72]. After 

numerically testing a few inputs that can be performed experimentally we found that the 

lowest condition number is obtained when the indentation input is a constant load rate, 

dP/dt = constant, giving us more consistent solutions for the creep compliance. Using a 

constant loading rate, a solution for the creep compliance is then obtained. This solution 

can then be fit to a Prony series to be used to describe the viscoelastic behavior.  

If instead a ramp and hold test is performed, the method presented by Oyen [68] is 

used to analyze the data obtained. The loading conditions can be written as: 

 P(t) = kt 0 ≤ t ≤ th
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = kth 𝑡𝑡ℎ < t ≤ tu

 (86) 

where th is the time it takes to reach the maximum load and k is the loading rate. The 

second term in equation (86) is then a constant. This means that the viscoelastic equation 

for creep (equation (79)) must be solved twice, once for the ramp and again for the hold: 

h
3
2(t) =

3(1 − ν)
8√R

� J(t − τ)
t

0
kdτ                              0 ≤ t ≤ th
  

 

 
h
3
2(t) =

3(1 − ν)
8√R

�� J(t − τ)
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0
kdτ + � J(t − τ)

𝑡𝑡

𝑡𝑡ℎ
0dτ� (87) 
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h
3
2(t) =

3(1 − ν)
8√R

� J(t − τ)
th

0
kdτ                             𝑡𝑡ℎ ≤ t ≤ tu 

If a Prony series representation of the creep compliance, equation (31), is used and the 

integrals are solved, we get: 

 
h3/2(t) =

3(1 − ν)k
8√R

�J∞t −� jiτi�1 − e−t/τi�
N

i=1

�
  

0 ≤ t ≤ th
  

h3/2(t) =
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8√R 
�J∞tr −� jiτie−t/τi�e−tr/τi − 1�

N

i=1

�
 
 𝑡𝑡ℎ < t ≤ tu 

 (88) 

The hold portion of the nanoindentation test can then be fit to the second term in equation 

(88) to extract the constant terms and get the creep compliance function. This method 

takes into account the ramping it takes to achieve the holding load rather than assuming it 

is fast enough to be considered a step load. The relaxation modulus can then be extracted 

by using equation (19) and deconvoluting. 

3.3. Step 3: Perform Zero Point Correction 

After an indentation has been performed and the data is collected the next step is 

to make sure that the initial portion of the load-displacement curve is corrected for the 

CSM oscillations and then the zero-point. The zero-point correction for the elastic 

nanoindentation case as explained in section 2.2.1 can only be performed because Hertz’s 

model can be arranged in terms of the available signals; load, displacement, and contact 

stiffness. In the viscoelastic nanoindentation case, due to the convolution integrals in the 

equations, this cannot be done without extracting the creep compliance or relaxation 

modulus first, as shown by Cheng and Cheng [73]. Equation (79) can be rearranged to 

obtain:  
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ℎ(𝑡𝑡)�𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒ℎ(𝑡𝑡) =

3(1 − 𝜈𝜈)
8

� 𝐽𝐽(𝑡𝑡 − 𝜏𝜏)
𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝑑𝑑

𝑡𝑡

0
𝑑𝑑𝑑𝑑 

(89) 

Equation (74) can then be substituted into (89) and an expression for the displacement 

correction is obtained: 

 
ℎ(𝑡𝑡) − ℎ∗ =

3(1 − 𝜈𝜈)
8𝑎𝑎(𝑡𝑡)

� 𝐽𝐽(𝑡𝑡 − 𝜏𝜏)
𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝑑𝑑

𝑡𝑡

0
𝑑𝑑𝑑𝑑 

(90) 

where h* is the measured displacement at the effective point of contact. The creep 

compliance can be estimated by performing a creep test and using the method presented 

in the next section. Once this is obtained, the only unknown is h* and the contact radius.  

In elastic indentation, the contact radius can be obtained by equation (57), a 

relationship between the contact stiffness, contact radius, and elastic moduli. Since in the 

experiments the stiffness is obtained from the small unloads performed by the CSM 

module, the viscoelastic response of these unloads would depend on the frequency 

applied. These oscillations were simulated using the indentation FE model at different 

frequencies as shown in Figure 15. The phase angle between the applied displacement 

oscillations and the resulting load oscillations were measured. At high frequencies the 

phase angle between the oscillations approaches zero and they can be thought of as being 

elastic. Therefore the relationship between the elastic modulus, contact area, and stiffness 

holds at high frequencies, in this case greater than 10 Hz. 



 50 

 

Figure 15 - Finite element simulations of LDPE at different displacement oscillation 
frequencies. 
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The CSM oscillations are generally performed at a frequency of 45 Hz and 

amplitude of 2 nm giving them a loading rate of 0.18 μm/s. This means that the stiffness 

values from the oscillations can be considered elastic and used to obtain the contact area. 

Another question that can be answered using the FE simulations is the 

relationship between contact radius, displacement, and effective radius given by equation 

(74). The contact radius of the FE simulations can be measured directly from each 

simulation by finding out the number of surface elements that are in contact with the 

indenter at each time step. The results are plotted in Figure 16 for the elastic case and the 

four viscoelastic displacement rates. For the elastic case and all four displacement rates, 

the loading curves fall on top of each other. These results show that as the indenter is 

pushed into the material, the contact radius does not depend on the rate of indentation and 

is the same as the elastic case. This validates equation (74) for viscoelastic 

nanoindentation since the contact radius is only dependent on the effective radius and 

depth of indentation as long as it is increasing.  

 

 
Figure 16 – Contact area vs displacement from FE simulations of LDPE at different 

displacement rates. 
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3.4. Step 4: Extract Stress-Strain Curves 

With the zero-point corrected for and the viscoelastic property extracted, the 

stress-strain curves can now be recovered from the load-displacement data. The 

indentation stress can simply be cast as load applied over the indentation contact area: 

 σind(t) =
P(t)
πa(t)2

 (91) 

Since strain is merely a function of the geometry of the material being deformed, the 

indentation strain can be cast as it was in section 2.2.1.3 [17]: 

 
εind(t) =

4
3π

ht(𝑡𝑡)
a(t)

≈
ht(𝑡𝑡)

2.4a(t)
 

(92) 

This definition of strain is idealizing the primary zone of indentation as a cylinder of 

radius a and length 2.4a which is compressed by the total indentation depth ht. This 

definition was validated using both numerical simulations and experimental 

measurements [17, 18, 20, 41]. Since the CSM oscillations are performed at a frequency 

of 45 Hz and amplitude of 2 nm, they can be considered elastic as explained in section 

3.2 and equation (57) can  be used to obtain the contact radius a by using the 

instantaneous modulus as the elastic modulus. With these definitions of stress and strain, 

the load-displacement curves obtained by nanoindentation can be converted to stress-

strain curves.   
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CHAPTER 4: SPHERICAL NANOINDENTATION ON 

COMMODITY POLYMERS 

  

In this chapter we perform uniaxial compression tests and spherical 

nanoindentation, using the protocol described in the previous chapter, on polymethyl-

methacrylate (PMMA), polycarbonate (PC), and low-density polyethylene (LDPE). The 

goal is to obtain viscoelastic properties and stress-strain curves through nanoindentation 

that can be compared to the uniaxial compression case. 

4.1. Experimental Procedure 

4.1.1. Materials 

All the polymer specimens used for tests in this chapter were obtained from 

McMaster-Carr (Elmhurst, IL). For nanoindentation, the specimens were obtained from a 

1.25 inch diameter extruded rod for PMMA (density 0.043 lbs/in3; glass transition 

temperature 105°C), PC (density 0.045 lbs/in3; glass transition temperature 145°C), and 

LDPE (density 0.033 lbs/in3; glass transition temperature -125°C). For compression tests, 

the PMMA and PC specimens were extruded rods of approximately 0.625 in diameter 

and 1.1 in length and the LDPE specimens were extruded rods of approximately 1 in 

diameter and 2 in length. Each PMMA specimen was annealed at 110°C and each PC 

specimen was annealed at 150°C. All the specimens were annealed in a Thermo 

Scientific Lindberg/Blue MTM MoldathermTM box furnace (Waltham, MA) for two hours 

and then slowly cooled down to room temperature at a rate of 5°C/hr. The 

nanoindentation specimens were cut perpendicular to the extruded direction using an 
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Allied TechCut 5TM (Rancho Dominguez, CA) precision sectioning machine and then 

polished using silicon carbide paper of decreasing grit size (320, 800, 1200, 2400, and 

4000 grit) using a Struers Tegramin-30 (Cleveland, OH). Each polishing step except the 

4000 grit was performed for 2 minutes, followed by washing to remove debris. The 4000 

grit was performed for 6 minutes. This was followed by polishing with a 1 μm alcohol 

based diamond suspension (Struers DP-Suspension) for 20 minutes and a 0.05 μm 

colloidal silica suspension (Buehler MasterMet) for 20 minutes.  

4.1.2. Uniaxial Compression Tests 

Compression tests were performed on an MTI Phoenix Universal Testing 

Machine with a 20,000 lb. load cell. Tests were performed according to ASTM standard 

D695 for testing plastics [74] at a speed of 0.05 in/min. Displacement was measured 

using a capacitance gage and all load-displacement data was converted to true stress-

strain curves. At least five samples were tested for each material with the data reported as 

mean ± standard error. 

4.1.3. Indentation Tests 

The indentation tests were performed on an Agilent G200 (Keysight Technologies 

Inc., Santa Rosa, CA) Nano Indenter with an XP head. The indenter has a maximum load 

of 500 mN with a high load option of 10 N and a load resolution of 50 nN. The maximum 

indentation depth achievable is greater than 500 μm with a resolution of less than 0.01 

nm. The indents are performed on the polished surfaces of the polymers and the spherical 

diamond tips used have a radius of 16 µm, 100 μm, and 1500 µm. Since changes in 

temperature can cause expansion or shrinkage of materials leading to errors in 
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measurement, the indenter measures a thermal drift before each test by holding the 

indenter on the surface of the material and measuring any changes in displacement. All 

tests were performed after the measured indenter drift rate reached and maintained a 

value of 0.05 nm/s. CSM corrections were applied to the displacement, load, and stiffness 

of all the tests as explained in section 2.2.1.1.  

To find the range where the material is still viscoelastic, each sample was loaded 

and unloaded at the same rate with three or four different maximum loads. Before 

completely unloading the material, a pre-set load was left on the material for a period of 

time. Using the 100 µm radius indenter tip PMMA and PC were loaded at a loading rate 

of 2.5 mN/s with maximum loads of 40 mN, 80mN, 160 mN, and 320mN for PMMA and 

20 mN, 40mN, 80mN, and 160mN for PC. For LDPE a loading rate of 2 mN/s and 

maximum loads of 8 mN, 16 mN, and 32 mN were used. The loads held at unload were 5 

mN for PMMA and PC and 2 mN for LDPE. 

To show each material’s viscoelasticity and to extract the viscoelastic properties 

ramp and hold tests were performed using the 100 µm indenter. For each material the 

load was increased to three different loads at a constant loading rate and that load was 

held for 300 seconds and then unloaded at a constant unloading rate. For PMMA, the 

loading rate was 4 mN/s and the holding loads were 20 mN, 40 mN, and 60 mN. For PC, 

the loading rate was 4 mN/s and the holding loads were 8 mN, 20 mN, and 40 mN. For 

LDPE, the loading rate was 2 mN/s and the holding loads were 4 mN, 8 mN, and 16 mN. 

The viscoelastic properties were extracted from the hold portion. The stress-strain curves 

were extracted from the indentations done at loading rates of 0.05 s-1 and 0.5 s-1 up to a 
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specified displacement. The rate in this case is defined by the nanoindenter as the loading 

rate, dP/dt, divided by the measured load, P.  

4.2. Finite Element Study 

To better understand the experimental results obtained, uniaxial compression and 

spherical nanoindentation finite element studies were performed using the viscoelastic 

material properties obtained by the creep tests. The same model and displacement rates 

described in section 3.1 were used for the spherical nanoindentation case. Uniaxial 

compression was performed on a cylinder with a radius of 20 μm and length of 20 μm 

using the viscoelastic material properties obtained by the creep tests. The viscoelastic 

nanoindentation load-displacement curves were converted to indentation stress-strain 

curves using equations (91), (92), and (74). The uniaxial compression load-displacement 

curves were converted to true stress-strain curves.  

4.3. Results and Discussion 

4.3.1. Uniaxial Compression Tests 

The results from the compression tests are shown in Figure 17. The measured 

strain rates were 8x10-4 s-1 for PMMA and PC and 5x10-4 s-1 for LDPE. It was observed 

that the PMMA and PC samples failed by shearing with polycarbonate shearing more 

than PMMA which may have caused some of the drop in stress with increasing strain. 

This drop in stress has been extensively reported in literature and is usually attributed to a 

combined effect of strain softening and thermal softening [75]. Care was taken to ensure 

that the sample geometry was always a right cylinder and the axis of loading was aligned, 

as any misalignment would increase the shear on the material. The moduli, measured 
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from the initial linear portion of the true stress-strain curves, were 1.9 ± 0.031 GPa, 1.42 

± 0.031 GPa, and 0.154 ± 0.0014 GPa for PMMA, PC, and LDPE respectively. While the 

compressive modulus values for PMMA and LDPE are acceptable compared to reported 

values, the value for PC is at least 0.5 GPa lower than expected. This disparity may 

primarily be due to the thermo-mechanical history that the material experienced before 

uniaxial compression testing. These results will be compared to the indentation stress-

strain curves collected at similar strains and strain rates.  

4.3.2. Finite Element Tests 

The results from the viscoelastic uniaxial compression and spherical 

nanoindentation are shown in Figure 18 for tests done on LDPE. These results show the 

clear strain rate dependence expected of viscoelastic materials. The indentation stress-

strain curves consistently show a higher stress value for similar strains. The average 

ratios between the indentation stress and compression stress are compared in Table 1. 

These results show an increasing ratio with slower rates. For PMMA and PC, these ratios 

are relatively constant and are approximately 1.25 and 2.26 for PMMA and PC 

respectively. These results will be discussed in more detail when compared against the 

experimental results in the next section. 
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Figure 17 - True stress-strain curves from compression tests on a) PMMA, b) PC, and c) 
LDPE. 

a.  

b.  

c.  
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Figure 18 - Finite element stress-strain curves for uniaxial compression and spherical 
nanoindentation on LDPE. 

 

Table 1 - Average ratio of indentation stress to compression stress for the FE results from 
LDPE. 

LDPE Strain Rate [/s] Indentation/ 
Compression 

 

Elastic 1.2689 

 2x10
-2

 1.2716 

 2x10
-3

 1.2938 

 2x10
-4

 1.3452 
 

2x10
-5

 1.3715 

 

Increasing 
strain rate 
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4.3.3. Spherical Nanoindentation 

4.3.3.1. Viscoelastic Region 

The results from the tests to find the region of viscoelasticity for PMMA using the 

100µm radius indenter tip are shown in Figure 19. Figure 19 shows all curves for the four 

different maximum loads with at least five tests for each. The results for PC and LDPE 

are plotted in Figure 20 and Figure 21 respectively. From these results (Table 2) it is seen 

that above a certain load there is an observable difference in residual displacements and it 

is assumed that the material may have experienced some plastic deformation above those 

loads. These results can be used to make a reasonable estimate of the load at which the 

curves can still be considered viscoelastic. This value is about 160 mN for PMMA, 80 

mN for PC, and 16 mN for LDPE. The same tests were performed using the 16 µm and 

the 1500 µm radius indenter using different loads. For PMMA, this value was 40 mN and 

500 mN for the 16 µm and 1500 µm indenter respectively. For PC, this value was 30 mN 

and 350 mN for the 16 µm and 1500 µm indenter respectively. For LDPE, this value was 

3 mN and 50 mN for the 16 µm and 1500 µm indenter respectively. 
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Table 2 - Residual displacements after holding at 5 mN for PMMA and PC and 2 mN for 
LDPE. 

Material Maximum Load (mN) Residual Displacement (nm) 

PMMA (5mN) 

40 305 ± 3 

80 300 ± 4 

160 322 ± 5 

320 500 ± 2 

PC (5mN) 

20 307 ± 1 

40 305 ± 1 

80 311 ± 1 

160 334 ± 4 

LDPE (2mN) 
8 950 ± 2 

16 1033 ± 3 

32 1248 ± 3 

 
 
 

 
Figure 19 – Indentations to different loads on PMMA. 
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Figure 20 - Indentations to different loads on PC. 

 

 
Figure 21 - Indentations to different loads on LDPE. 
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4.3.3.2. Material Viscoelasticity 

The results from the indentations at two different rates (0.05 s-1 and 0.5 s-1) using 

the 16 µm radius indenter are shown in Figure 22, Figure 23 and Figure 24. These results 

show a clear difference between the load-displacement curves at the two rates, giving a 

clear depiction of how viscoelastic each material is. It also clear that LDPE has the 

largest viscous component and can be considered the most viscoelastic of the three 

materials while PC is the least viscoelastic. These results show the viscoelastic behavior 

of the materials and confirm that viscoelasticity should not be ignored when analyzing 

nanoindentation data on these materials. These results will also be used to extract the 

indentation stress-strain curves. 

 

 
Figure 22 - Load-displacement curves of PMMA at two different loading rates. 
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Figure 23  - Load displacement curves of PC at two different loading rates. 

 

 
Figure 24 - Load-displacement curves of LDPE at two different loading rates. 
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The results from the creep tests using the 100 µm radius indenter are plotted in 

Figure 25, Figure 26, and Figure 27. These results verify how viscoelastic each material 

is, as was seen in the load-displacement curves at different rates. LDPE is again the most 

viscoelastic with the largest increase in displacement, while PC has the least, making it 

close to an elastic material. These results will be used in the next section to extract the 

viscoelastic properties. From these results it is again clear that viscoelasticity should not 

be ignored in nanoindentation analysis of PMMA or LDPE. While it may be ignored for 

polycarbonate, a more accurate quantification of its mechanical properties can only be 

achieved if viscoelasticity is considered in all nanoindentation analyses. The same tests 

were also performed using the 16 µm and 1500 µm radius indenter at different loads. 

 

 

Figure 25 - Displacement vs time for creep tests performed on PMMA at holding loads of 
20 mN, 40 mN, and 60 mN. 
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Figure 26 - Displacement vs time for creep tests performed on PC at holding loads of 8 
mN, 20 mN, and 40 mN. 

 

 
Figure 27 - Displacement vs time for creep tests performed on LDPE at holding loads of 

4 mN, 8 mN, and 16 mN. 
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4.3.3.3. Viscoelastic Properties 

The creep compliance and corresponding relaxation modulus were extracted using 

the methods explained in sections 3.2 and 2.1.4. The viscoelastic properties can be 

represented in terms of a two-term Prony series such as: 

 
𝐽𝐽(𝑡𝑡) = 𝐽𝐽∞ − 𝐽𝐽1𝑒𝑒

− 𝑡𝑡
𝜏𝜏𝑗𝑗1 − 𝐽𝐽𝑒𝑒

− 𝑡𝑡
𝜏𝜏𝑗𝑗2

 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸∞ + 𝐸𝐸1𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑘𝑘1 + 𝐸𝐸2𝑒𝑒

− 𝑡𝑡
𝜏𝜏𝑘𝑘2

 (93) 

Where the terms in front of the exponentials are the Prony series terms, J∞ is the long 

term creep compliance, E∞ is the long term relaxation modulus, and τ is the time constant. 

The instantaneous creep compliance, J0, can be obtained by subtracting the Prony series 

terms from the long term creep compliance and the instantaneous relaxation modulus, E0, 

can be obtained by adding the Prony series terms to the long-term relaxation modulus. 

These results are tabulated in  

Table 3 through Table 5 and the results for the 100 µm radius indenter are plotted in 

Figure 28 through Figure 32. The compressive moduli obtained by uniaxial compression 

can be compared to the instantaneous moduli obtained by nanoindentation. These 

comparisons are plotted in Figure 29 for PMMA and PC and Figure 32 for LDPE. These 

results show that the compressive moduli are lower than the indentation moduli for all 

three materials. This is expected as the zone of indentation is constrained by the material 

surrounding it. This effect usually leads to an increase in modulus and yield strength [76]. 

Also a much smaller volume of material is being probed leading more local properties 

compared to the average properties obtained by uniaxial compression. The average ratio 

between the compressive moduli and indentation instantaneous moduli is 1.6 for PMMA 
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and LDPE and 1.5 for PC. This ratio can be used to approximate the expected indentation 

instantaneous modulus for new viscoelastic materials if the compressive modulus is 

known. The relaxation moduli obtained by Huang and Lu [65] were 𝐸𝐸(𝑡𝑡) = 2.3343 +

0.1607𝑒𝑒−0.1𝑡𝑡 + 0.2574𝑒𝑒−0.01𝑡𝑡 for PMMA and 𝐸𝐸(𝑡𝑡) = 1.4531 + 0.0681𝑒𝑒−0.1𝑡𝑡 +

0.1359𝑒𝑒−0.01𝑡𝑡 for PC. The results for PMMA are comparable to our results with the 

results for PC being lower than ours.  

 

Table 3 - Viscoelastic Properties for PMMA 

Indenter Size Creep Compliance (1/Gpa) Relaxation Modulus (GPa) 

16 µm 0.43-0.032e
-t/18

-0.060e
-t/216   

 2.32+0.26e
-t/16

+0.37e
-t/186

 

100 µm 0.45-0.044e
-t/15

-0.076e
-t/225

 2.23+0.37e
-t/13

+0.44e
-t/187

 

1500 µm 0.41-0.025e
-t/25

-0.034e
-t/220

 2.46+0.20e
-t/23

+0.22e
-t/202

 

 

Table 4 - Viscoelastic properties for PC 

Indenter Size Creep Compliance (1/Gpa) Relaxation Modulus (GPa) 

16 µm 0.47-0.012e
-t/15

-0.010e
-t/136   

 2.11+0.059e
-t/15

+0.047e
-t/133

 

100 µm 0.49-0.013e
-t/9

-0.014e
-t/151

 2.03+0.059e
-t/9

+0.058e
-t/146

 

1500 µm 0.52-0.021e
-t/11

-0.016e
-t/162

 1.92+0.084e
-t/11

+0.061e
-t/157
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Table 5 - Viscoelastic properties for LDPE 

Indenter Size Creep Compliance (1/Gpa) Relaxation Modulus (GPa) 

16 µm 6.48-1.22e
-t/17

-1.58e
-t/154   

 0.15+0.072e
-t/13

+0.046e
-t/118

 

100 µm 6.76-1.12e
-t/14

-1.61e
-t/138

 0.15+0.057e
-t/11

+0.043e
-t/106

 

1500 µm 6.54-1.18e
-t/15

-1.73e
-t/146

 0.15+0.072e
-t/11

+0.051e
-t/108
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Figure 28 – a) Instantaneous and b) long-term creep compliance for PMMA and PC at the 

three holding rates. 
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Figure 29 – a) Instantaneous and b) long-term relaxation modulus for PMMA and PC at 
the three holding loads. Compression modulus for PMMA and PC is included in a). 
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Figure 30 - Prony series terms for a) creep compliance and b) relaxation modulus. 
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Figure 31 - a) Instantaneous and long-term creep compliance and b) instantaneous and 
long-term relaxation modulus for LDPE at the three holding loads. Compression modulus 

for LDPE is included in a). 
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Figure 32 – Prony series terms for a) creep compliance and b) relaxation modulus. 
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4.3.3.4. Stress-Strain Curves 

Once these properties have been extracted, the stress-strain curves can then be 

produced. First the zero-point is corrected for using the method explained section 3.3. An 

example of the plot used for the correction on PMMA with a 100 µm radius indenter is 

shown in Figure 33. The zero-point correction for displacement can then be extracted 

from the selected portion of the curve using equation (90). The zero-point correction for 

the load is then simply the load at the corrected displacement. The approximate corrected 

displacements and loads for the 100 µm radius indenter are 270 nm and 1.4 mN for 

PMMA, 175 nm and 0.4 mN for PC, and 450 nm and 0.7 mN for LDPE. For the 16 µm 

indenter they are 50 nm and 0.5 mN for PMMA, 30 nm 0.1 mN for PC, and 150 nm and 

0.3 mN for LDPE. For the 1500 µm indenter they are 900 nm and 14 mN for PMMA, 

550 nm and 5 mN for PC, and 1300 nm and 8 mN for LDPE. These values depend on the 

location of the indent, surface roughness, or other surface artifacts that may remain after 

polishing. 
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Figure 33 - Example of plot used to perform zero-point correction on PMMA indentation 

tests. 
 

With the corrections done, the load-displacement curves are converted to stress-

strain curves using the method described in section 3.4. The results for PMMA, PC, and 

LDPE with the 16 µm indenter are plotted in Figure 34, Figure 35, and Figure 36 

respectively. They are also compared against results from the compression tests and one 

set of the indentation stress-strain curves extracted from tests with the 100 µm indenter. 

For the 1500 µm indenter, due to the load limit on the nanoindenter machine, the 

achievable strain is very low, less than 0.02, and within the initial viscoelastic portion of 

the curves. While they confirm that the curves for different indenter tip sizes match at 

similar strain rates, they do not provide any new information not already shown in the 

plots. In all three cases, the strain rates for the 100 µm radius, slower 16 µm radius, and 

compression stress-strain curves are similar and can be compared to each other. It is clear 

in all cases that the indentation stress-strain curves obtained for different tip sizes are 

similar, meaning the load-displacement curves are normalized and these protocols can be 

used for multiple indenter tip sizes. 
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Figure 34 – Stress-strain comparison of nanoindentation tests at two loading rates with 
uniaxial compression tests done on PMMA. 

 

 

Figure 35 - Stress-strain comparison of nanoindentation tests at two loading rates with 
uniaxial compression tests done on PC. 
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Figure 36 - Stress-strain comparison of nanoindentation tests at two loading rates with 
uniaxial compression tests done on LDPE. 

 

4.3.3.4.1 Comparison of Indentation Stress-Strain Curves at Different Strain Rates 

As the strain increases the indentation stress for the higher strain is greater for all 

three cases. This difference is clear for PMMA and LDPE with LDPE showing the 

largest variance between the two. The difference between the two strain rates for PC is 

not significant. This again confirms the previous tests showing that LDPE is the most 

viscoelastic, while PC does not show significant viscoelasticity. The average ratio 

between the higher strain rate and the lower strain rate is 1.57 for PMMA, 1.18 for PC, 

and 1.77 for LDPE. The ratios obtained by the FE simulations for similar strain rates 

were 1.23 for PMMA, 1.04 for PC, and 1.23 for LDPE. While there is variance some 

variance between the idealized FE model and the experimental results, the same trend 

persists, showing PC as the least viscoelastic of the three materials. 
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Another measurement that can be obtained from these calculations is the strain 

rate sensitivity of each material. This is given by: 

 𝑚𝑚 =
∆ln (𝜎𝜎)
∆ln (𝜀𝜀̇)

 (94) 

where m is the strain rate sensitivity index, σ is the stress at a specified strain, and 𝜀𝜀̇ is the 

strain rate at the same strain. Since the tests are performed at a relatively constant strain rate, the 

strain rate sensitivity index can be compared at different strains for each material. These results 

are shown in Figure 37 through Figure 39. Strain rate sensitivity indexes have been reported 

ranging from 0.04 [77] to 0.08 [78] for PMMA, from 0.02 [79] to 0.046 [77] for PC, but there are 

no clear studies for LDPE.  The peaks shown for m for PMMA and PC are also approximately 

where the linear portion of the stress-strain curves and viscoplasticity starts. These results show a 

clear strain rate sensitivity with LDPE being the most rate sensitive while PC shows the lowest 

sensitivity. These results again confirm the results presented earlier and show that the strain rate 

sensitivity of viscoelastic materials can be measured using nanoindentation. 

 

 
Figure 37 - Strain rate sensitivity index versus strain for PMMA. 



 80 

 

Figure 38 - Strain rate sensitivity index versus strain for PC. 
 

 

Figure 39 - Strain rate sensitivity index versus strain for LDPE. 
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4.3.3.4.2 Comparison of Indentation and Compression Stress-Strain Curves 

When the results from the indentations are compared to the compression test 

results, we observe that the stress during indentation is higher than the uniaxial 

compression case for all three materials for the same amount of strain as was observed in 

the FE simulations. The ratio between indentation, slower strain rate, and compression 

can be plotted for all three materials as shown in Figure 40 through Figure 42. Comparing 

only the ratios of the initial viscoelastic portion, we get an average of 1.14 for PMMA, 

2.22 for PC, and 1.31 for LDPE. These values are comparable to what was obtained from 

the FE simulations, thereby validating the model and showing that the difference in 

stress-states can be captured by the indentation models. These curves also have a 

minimum value at approximately where the material seems to yield after which the ratio 

increases. 

 

 

Figure 40 - Ratio between indentation stress and compression stress for PMMA. 
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Figure 41 - Ratio between indentation stress and compression stress for PC. 
 

 

Figure 42 - Ratio between indentation stress and compression stress for LDPE. 



 83 

4.3.4. Conclusions 

A set of protocols to extract viscoelastic properties and indentation stress-strain 

curves from spherical nanoindentation using three different indenter tip sizes has been 

tested on commercially available polymers. The properties obtained were compared 

against all three tips and with results from compression tests on the same materials. 

While the indentation viscoelastic material properties were consistent across all the 

indenter sizes, the ratio between the instantaneous indentation modulus and the 

compressive modulus was about 1.6 for all three materials. The indentation stress-strain 

curves were also compared at two different strain rates and the effects of viscoelasticity 

were shown by calculating the strain rate sensitivity index. It was noted that LDPE was 

the most viscoelastic and PC was the least viscoelastic. The indentation stress-strain 

curves at the lower strain rate were also compared to the compression stress-strain curves. 

The ratios of the indentation stress to the compression stress in the initial viscoelastic 

region were compared to results obtained by FE simulations. They yielded comparable 

values and validated our model.  

These results show that even though the stress state during nanoindentation is 

heterogeneous, the deformation behavior is comparable to uniaxial compression for 

different polymers. This new procedure has the advantage that a quantitative value of the 

material properties can be extracted and stress-strain curves can easily be produced. This 

new set of protocols provide a high-throughput method of analyzing different viscoelastic 

materials at different deformation rates without the need to prepare a new test sample for 

each case. 
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CHAPTER 5: SPHERICAL NANOINDENTATION ON THE BIO-

POLYMER CHITOSAN 

 

In a prior study, included in Appendix A, chitosan-alumina hybrid thin films with 

nacre-like microstructure were fabricated to mimic and investigate the mechanical 

function of nacre found in a large number of mollusks. Chitosan is a linear biopolymer 

derived by N-deacetylation of chitin [80]. In that study viscoelasticity was not considered 

because the focus was on the effect of relative humidity on the mechanical properties at 

different volume fractions of alumina. This chapter will focus on obtaining the 

viscoelastic properties of chitosan and extracting stress-strain curves using spherical 

nanoindentation at a set relative humidity. 

5.1. Experimental Procedure 

5.1.1. Materials 

Low molecular weight chitosan (75-85% deacetylated) was purchased from 

Sigma Aldrich, St. Louis, MO, USA. Glacial acetic acid, deionized water, and tissue 

culture dishes were purchased from VWR International, Radnor, PA, USA. To prepare 

the chitosan samples for nanoindentation, first 3.6% (w/v) of low molecular weight 

chitosan was dissolved in 1% (v/v) glacial acetic acid in de-ionized water.  The chitosan 

solution was homogenized on a bottle roller for 48 hours at room temperature (25°C). 

The solution was cast onto surface-treated tissue culture dishes, placed in a fume hood 

and allowed to dry at room temperature for at least 24 hours. Once dry, the film was 

slowly peeled by hand from the dishes. For nanoindentation, only samples with at least a 
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thickness of 1 mm were used. This was done so that the zone of indentation was within 

the material and not in the substrate it was glued onto. Since the sample was thin and 

sensitive to water, it could not be reliably polished without changing the surface 

chemistry. Therefore, the samples were used without any further modification.  

5.1.2. Indentation Tests 

The indents are performed on the surface of the chitosan and the spherical 

diamond tip used had a radius of 100 μm. All tests were performed after the measured 

indenter thermal drift rate reached and maintained a value of 0.05 nm/s. For all tests, 

temperature and relative humidity remained at 26.59 ± 0.017 °C and 32.93 ± 0.246 % 

respectively. CSM corrections were applied to all the tests as explained in section 2.2.1.1.  

To find the range where the material is still viscoelastic, the chitosan sample was 

loaded and unloaded at the same rate with three different maximum loads. Before 

completely unloading the material, a pre-set load was left on the material for a period of 

time. A loading rate of 2.5 mN/s was used with maximum loads of 40 mN, 80mN, and 

160mN. The load held at unload was 5 mN. 

The viscoelastic property of chitosan was extracted using the ramp and hold test. 

The load was increased to three different loads at a constant loading rate and that load 

was held for 300 seconds and then unloaded at a constant unloading rate. The loading rate 

was 4 mN/s and the holding loads were 20 mN, 40 mN, and 60 mN. The viscoelastic 

properties were extracted from the hold portion of the tests. The stress-strain curves were 

extracted from the indentations done at rates of 0.05 s-1 and 0.5 s-1 as defined by the 

indenter. 
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5.2. Results and Discussion 

5.2.1. Viscoelastic Region 

The results from the tests to find the region of viscoelasticity for chitosan are 

shown in Figure 43. Figure 43 shows all curves for the three different maximum loads 

with at least five tests for each. For a maximum load of 40 mN the residual displacement 

was 331 ± 4 nm, for 80 mN it was 332 ± 13 nm, and for 160 mN it was 509 ± 7 nm. From 

these results it is seen that above a certain load there is an observable difference in 

residual displacements and it is assumed that the material may have experienced some 

plastic deformation above those loads. These results can be used to make a reasonable 

estimate of the load at which the curves can still be considered viscoelastic. This value is 

80 mN for chitosan.  

 

 

 
Figure 43 - Indentations to different loads on chitosan. 
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5.2.2. Material Viscoelasticity 

The results from the indentations at two different rates are shown in Figure 44. 

These results show a clear difference between the load-displacement curves at the two 

rates. The slower strain rate shows some variability in the data which is most likely due 

to surface roughness or surface artifacts since the samples could not be polished. These 

results show that chitosan is clearly viscoelastic even at the low relative humidity that the 

tests were performed. Therefore time dependence should not be ignored in any 

mechanical tests that use chitosan as a material. 

 

 

Figure 44 - Load-displacement curves of chitosan at two different loading rates. 

 

The results from the creep tests are plotted in Figure 45. These results verify how 

viscoelastic chitosan is, as was seen in the load-displacement curves at different rates. 

These results will be used in the next section to extract the viscoelastic properties.  
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Figure 45 - Displacement vs time for creep tests performed on chitosan. 

 

5.2.3. Viscoelastic Properties 

The creep compliance and corresponding relaxation modulus were extracted using 

the methods explained in sections 3.2 and 2.1.4. The viscoelastic properties can be 

represented in terms of a two-term Prony series as shown in equation (93):  

𝐸𝐸(𝑡𝑡) = 3.036 + 1.07𝑒𝑒−𝑡𝑡/16 + 1.52𝑒𝑒−𝑡𝑡/140   𝐺𝐺𝐺𝐺𝐺𝐺 

𝐽𝐽(𝑡𝑡) = 0.336 − 0.037𝑒𝑒−
𝑡𝑡
19 + 0.119𝑒𝑒−𝑡𝑡/220   𝐺𝐺𝐺𝐺𝐺𝐺 

These results are plotted in Figure 46 and Figure 47. The tensile moduli obtained by the 

tests on the thin films can be compared to the instantaneous moduli obtained by 

nanoindentation. This comparison is plotted in Figure 46. The tensile modulus is higher 

than the modulus obtained by nanoindentation and the ratio between them is 1.5 

comparable to that obtained with the commercial polymers.  
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Figure 46 - a) Instantaneous and long-term creep compliance and b) instantaneous and 
long-term relaxation modulus for chitosan at the three holding loads. Compression 

modulus for chitosan is included in a). 
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Figure 47 - Prony series terms for a) creep compliance and b) relaxation modulus. 
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5.2.4. Stress-Strain Curves 

Once these properties have been extracted, the stress-strain curves can then be 

produced. First the zero-point is corrected for using the method explained section 3.3. 

The same method as in the previous chapter is used and a plot similar to Figure 33 is 

produced. The approximate corrected displacement and load are 300 nm and 3 mN. 

These values depend on the location of the indent, surface roughness, or other surface 

artifacts that may remain after polishing. With the corrections done, the load-

displacement curves are converted to stress-strain curves using the method described in 

section 3.4. These results for the two different rates are plotted in Figure 48. As the strain 

increases there is also a difference between the indentations at the two loading rates. The 

faster rate tests show higher stresses at increasing strains as was observed with the 

commercial polymers. 

 

 

Figure 48 - Stress-strain curves for chitosan indentation at two different loading rates. 
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5.3. Conclusions 

The set of protocols presented in chapter 3 were used to extract viscoelastic 

properties and stress-strain curves from spherical nanoindentation on the bio-polymer 

chitosan. Due to the sample being a film and have a relatively rough surface, only the 100 

μm radius indenter could be used to extract reliable and consistent data. The properties 

obtained were compared with results from tensile tests on thin films of the same material. 

The ratio between the instantaneous modulus obtained from nanoindentation and that of 

the tensile modulus, at a similar relative humidity, was comparable to those obtained in 

the previous chapter for commercial polymers. The stresses observed were also higher at 

increasing strains, consistent with the effect of different stress states. This proves that the 

protocol presented can be extremely efficient in extracting material properties of 

viscoelastic biomaterials, especially when only small volumes are available as in this 

case. 
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTION 

 

The results obtained in these studies allow us to draw several important 

conclusions for the mechanical characterization of viscoelastic materials using spherical 

nanoindentation. While some fundamental questions remain, especially on the effect of 

indentation zone size on different polymer structures, a new set of protocols to extract 

viscoelastic properties and stress-strain curves have been presented and tested. This 

chapter summarizes the key findings and presents suggestions for future work to be done. 

6.1. Conclusions 

This dissertation presented a set of protocols to accurately extract material 

viscoelastic properties and indentation stress-strain curves from spherical nanoindentation 

tests performed on polymers. To the best of our knowledge, this the first systematic study 

of all the steps involved using spherical nanoindentation to extract full stress-strain 

curves from viscoelastic materials. These protocols were tested on polymethyl 

methacrylate, polycarbonate, low-density polyethylene, and the bio-polymer chitosan. 

The goal was to show that spherical nanoindentation can be reliably used to probe time-

dependent materials and extract useful information with a simple set of protocols. The 

steps of the protocols, how they should be used, and the conclusions drawn from this 

study are summarized below. 

1. For any properties extracted to be meaningful, it is important to be sure that the 

region they are extracted from is representative of the original undeformed 

sample. This is why it is important to know how much load the material can 
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handle before it becomes plastically deformed. The method used in this 

dissertation is to load, to a maximum load, and unload the material at a specific 

loading and unloading rate. Before fully unloading a small load is held on the 

material and the displacement is measured. This is done for different maximum 

loads and once the material has been plastically deformed, the residual 

displacement will be higher than the other cases. This method has shown 

consistent results with the tested materials in this study. Since this is a one-time 

cost and approximation for each material and indenter tip size, care should be 

taken to get a reliable value that can be used for all further tests on the material. 

For materials with much higher viscous components, this may pose a problem as 

it may take a very long time for residual displacement to be reached. This can be 

inconvenient and time consuming if the goal of the indentation tests is to rapidly 

test a series of different materials.  

2. Once an approximate value of the viscoelastic region is known, the viscoelastic 

properties can then be extracted. This is done by loading the material at a constant 

loading rate and then holding a maximum load for a set period of time before 

unloading. Using a loading ramp that has a constant loading rate is convenient 

because an analytical form of the viscoelastic equation that does not include an 

integral can be formed. This was picked over a displacement controlled method 

since that results in a relationship that cannot be solved analytically. It is 

important to take into account the dynamics of the machine and make sure the 

indenter can handle the speed of indentation and produce enough data points for 

analysis. Different holding loads and indenter tip sizes were used to extract the 
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properties to show that there is not much variance in the properties within the 

viscoelastic region and in some cases the regions we assume are no longer 

viscoelastic. These results show that a zero-point correction is not needed for 

these tests as they are consistent without a need for correction. Since for some of 

the materials, LDPE and chitosan, the properties were consistent even in regions 

that were assumed to no longer be viscoelastic, this step may also be used to 

determine the viscoelastic region. 

3. Once these preliminary steps are performed, indentations can then be performed. 

The tests are performed at a constant rate defined by the indenter as the loading 

rate divided by the measured load. This condition is used as it gives a relatively 

constant strain rate once the load-displacement curves are converted to 

indentation stress-strain curves. After the data is collected and corrected for the 

CSM signal, an effective point of initial contact has to be found for each indent. 

The method used in this dissertation was formulated directly from the viscoelastic 

solution to the spherical nanoindentation problem and has shown consistent 

results for all the materials used.  

4. After the zero-point correction is performed, the stress-strain curves can then be 

produced using the definitions of stress and strain provided. Our results show 

consistent stress-strain curves for all the strain rates and indenter tip sizes used in 

the experiments. Finite element studies were used to verify some of the trends 

observed in the initial viscoelastic region. The ratio between indentation stress 

and compression stress at similar strains and strain rates were compared and 
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consistent trends were found. For the commercial polymers, LDPE was found to 

be the most viscoelastic and PC was the least.  

With this protocol the properties and stress-strain curves can easily be extracted 

from nanoindentation on time dependent materials. Once the user is acquainted with the 

protocols, the whole procedure should take about one week for a series of materials since 

the data analysis portion can be automated. This new set of protocols is a simple process 

that has provided insight into stress-strain behavior of viscoelastic materials at the micro-

scale. This provides an accurate and fast method of investigating new polymers, bio-

polymers, or natural materials containing viscous components.  

6.2 Future Direction 

The set of protocols presented in this dissertation have only been tested on 

materials at room temperature without looking into the dynamic properties of the 

materials. To truly extract the full spectrum of the viscoelastic properties of any time 

dependent material, it would be useful to perform indentations at a range of temperatures. 

The dynamic properties can also be extracted by pushing the indenter into the material 

and oscillating either the displacement or load. With results from these tests, the time-

temperature superposition principle can be used to determine frequency dependent 

properties at various temperatures or a correlation between properties at different 

frequencies and temperatures.  

Another direction is to use a different method to extract the relaxation modulus 

rather than the creep compliance. This relaxation modulus can then be compared to the 

one extracted from the ramp and hold load method to get creep compliance. While ideally 

they should not be different, the type of test performed may cause the material to 
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experience more force relaxation of displacement creep. It would also be useful to obtain 

two independent measurements of the mechanical properties to have a more reliable 

analysis. 

While the tests on chitosan were performed at one relative humidity, they can also 

be performed at different humidities once a reliable setup to control the relative humidity 

during the tests is fabricated. With results at different humidities, a correlation can be 

made between the mechanical properties and changes in humidity. This gives a better 

view of the applications of the thin films in different environments.  
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APPENDIX A 

NACRE-LIKE HYBRID FILMS: STRUCTURE, PROPERTIES, AND 

THE EFFECT OF RELATIVE HUMIDITY 
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Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA 
 

Functional materials often are hybrids composed of biopolymers and mineral 

constituents. The arrangement and interactions of the constituents frequently lead to 

hierarchical structures with exceptional mechanical properties and multifunctionality. In 

this study, hybrid thin films with a nacre-like microstructure were fabricated in a 

straightforward and reproducible manner through manual shear casting using the 

biopolymer chitosan as the matrix material and alumina platelets as the reinforcing 

particles. The ratio of inorganic to organic content was varied from 0% to 15% and the 

relative humidities from 36% to 75% to determine their effects on the mechanical 

properties. It was found that increasing the volume fraction of alumina from 0% to 15% 

results in a twofold increase in the modulus of the film, but decreases the tensile strength 

by up to 30%, when the volume fraction of alumina is higher than 5%.  Additionally, this 

study quantifies and illustrates the critical role of the relative humidity on the mechanical 

properties of the hybrid film.  Increasing the relative humidity from 36% to 75% 

decreases the modulus and strength by about 45% and triples the strain at failure. 
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1. Introduction 

A considerable research effort is currently focused on the synthesis of stronger, 

tougher, and “greener” materials based on the principles of function and optimization 

found in natural materials.[2-5] This is because natural materials often exhibit a superior 

mechanical performance in comparison to their synthetic, monolithic counterparts due to 

their hierarchical structural arrangements.[11, 81, 82] One example of such a natural 

material, that has attracted particular interest in recent years, is nacre. Also termed 

‘mother of pearl’, it forms the inner layer of the shells of a large number of mollusks 

(e.g., abalone), and has demonstrated impressive performance under tensile loading.[83] 

Nacre is essentially a two-phase composite material with an intricate, interlocked brick-

and-mortar structure comprised of about 95 vol.%, of hexagonal aragonite platelets 

‘glued’ together by a thin polymer film (~10–50 nm thick) composed of proteins and 

polysaccharides.[84-86] The tensile strength of nacre is about 78-130 MPa (wet) and 90-

167 MPa (dry), and the Young’s modulus is about 58-70 GPa (wet) and 68-90 GPa 

(dry).[84] With a high volume fraction of ceramic, one would expect the material to be 

brittle. However, nacre has a work of fracture as high as 1240 J m-2, in a three-point 

bending test, which is about 3000 times greater than that of monolithic CaCO3.[85, 87] 

The work of fracture, in this case, is defined as the critical strain energy release rate or 

the energy necessary to drive a crack through a sample. This intriguing observation and 

the relative simplicity of the structure of nacre was the motivation for this study of 

fundamental structure-property relationships, including the often neglected effect of 

moisture, in a nacre-like model material system .[86] 
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The bio-inspired research presented here aims to identify the principles of 

function and optimization in biological materials and to mimic the same in engineered 

material systems. Numerous studies have described materials that match or even exceed 

the properties of nacre.[4-7, 9, 10] For example, using a layer-by-layer (LBL) assembly 

yields nanocomposites that can have tensile strengths up to 400 MPa.[4-6, 9] Freeze 

casting yields, when infiltrated by a second phase, layered structures that are up to 300 

times tougher than its constituents.[2, 7, 10] Toughness, in this case, is defined as the 

plane-strain fracture toughness, KIc. Casting methods, such as slip-casting,[3] 

evaporation,[88] and combined gel-casting and hot-pressing,[89, 90] all yielding a brick 

and mortar structure, have been reported to produce materials with tensile strengths up to 

250 MPa, thus exceeding that of nacre. Samples with a nacre-like structure that can be 

produced using some of the techniques described in prior literature are usually extremely 

small in volume and require time-consuming processes and specialized equipment. The 

scaling-up both of sample volumes and production rates for real-life applications 

continues to pose considerable difficulties and usually leads to a considerable loss in 

mechanical properties.   

The use of self-assembly mechanisms is increasingly being explored to overcome 

these problems. Taking advantage of particle self-assembly that occurs during freeze 

casting, for example, the manufacture of large sample sizes with a nacre-like structure 

could recently be demonstrated.[91] The resulting cellular materials, composed of 

alumina platelets in a chitosan-gelatin matrix, had a honeycomb-like structure, whose cell 

walls exhibited nacre-like structures and resulted in considerably improved mechanical 

properties both parallel and perpendicular to the long pore axis.[91, 92] In an effort to 
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better understand the mechanisms that determine the mechanical properties of the wall 

material of the freeze-cast scaffolds and to mimic the structure of biological materials in a 

well-controlled model system, we fabricated alumina-platelet reinforced chitosan films. 

Alumina platelets were chosen as the inorganic ceramic phase because of their close 

resemblance, in shape and aspect ratio, to the aragonite platelets in nacre.[93] Chitosan, a 

linear biopolymer derived by N-deacetylation of chitin was chosen for the matrix 

material, because it is ideally suited for a study of property dependence on relative 

humidity.[80]  

One critical factor that is frequently not addressed and reported is the effect of 

moisture content on the mechanical properties of the films produced. Since chitosan 

readily absorbs water, its mechanical properties will greatly vary depending on the 

relative humidity of the environment at the time of the test.[94] Chitosan films have been 

reported to have as much as a 99% loss in Young’s modulus and 88% loss in stress at 

break when immersed in deionized water for one night and an 80% loss in tensile 

strength when the conditioning relative humidity was increased from 15.6% to 93%.[94, 

95] To investigate the effect of moisture content, this study focused on controlled relative 

humidities of 35%, 55%, and 75%.  

A relatively simple and reproducible processing method to fabricate thin hybrid 

films is utilized in this study. The goals are to show that the films produced using this 

technique result in highly aligned microstructures, to investigate the mechanical 

properties of these films in tension, and to show that relative humidity of the environment 

can have a significant effect on the measured mechanical properties.  
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2. Mechanical Properties 

Prompted by investigations into the toughness of nacre (and bone), the mechanics 

of polymer composites reinforced with anisotropic particles have been pursued in depth 

in recent years. Models have been developed that describe, how the aspect ratio of the 

platelets, the properties of the different phases as well as that of the interfaces determine 

the failure mode of the whole composite.[86, 96, 97] Two simple rule of mixture models 

are commonly used to describe the mechanical behavior of two-component composites 

with continuous and aligned phases: the Voigt model and the Reuss model.[98, 99] The 

Voigt model, mostly applicable in the case of a composite with fibers running parallel to 

the loading direction, as shown in Figure 49a, assumes that the whole composite 

experiences the same strain. This case is dominated by the stiffer and stronger phase and 

describes the upper bound of the achievable mechanical properties. The Reuss model, 

applicable in the case of a composite with fibers running perpendicular to the loading 

direction, as shown in Figure 49b, assumes that the whole composite experiences the 

same stress. This case is dominated by the softer phase and describes the lower bound of 

the achievable mechanical properties. Since our composites do not have continuous 

phases, these models are only used to define the upper and lower bounds of the 

composite’s stiffness.  
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Figure 49 - Models to describe mechanical bahvior of composites: a) Voigt model, b) 
Ruess model, and c) Jaeger Fratzl model. 

 

Jaeger and Fratzl showed that the microstructure of biocomposites can be 

described by staggered mineral bricks in a protein matrix as shown in Figure 49c.[100] 

In tension, the mechanical behavior of the Jaeger-Fratzl model can be represented using 

the shear lag model, in which the mineral platelets are loaded in tension and the protein 

matrix transfers the load between platelets via shear stresses as shown in Figure 50. 

Models that describe the mechanical behavior of particulate reinforced composites, such 

as nacre and the alumina-reinforced chitosan films studied here, include the Padawer-

Beecher model for composite modulus and the Glavinchevski model for the composite 

strength.[101, 102] The Padawer-Beecher model is based on a force balance on an 

a) c)b)
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individual platelet assuming the composite material follows the shear lag model. The 

Padadwer-Beecher model estimates the composite modulus as: 

 Ec = VfEf �1 −
tan u

u
� + (1 − Vf)Em (95) 

 
u = s�

GmVf
Ef(1 − Vf)

 
(96) 

where s is the aspect ratio of the platelets, E is the elastic modulus, V is the volume 

fraction, G is the shear modulus of the matrix phase, and the subscripts c, m, and f denote 

the composite, matrix, and filler phase, respectively.  

 

 

Figure 50 - The shear lag model transfers load between the mineral platelets, where most 
of the load is carried, via interfacial shear stresses. 

 

The ultimate tensile strength of the composite can be modeled using the 

Glavinchevski model as: 

 σc = αVfσf + (1 − Vf)σm (97) 

where σ is the tensile strength. The factor α is a function of the platelet aspect ratio, the 

matrix yield shear strength, and the tensile strength of the platelets.[101] The failure 

mode of the composite is determined by the aspect ratio of the platelet.[96] The critical 



 105 

aspect ratio of the platelet can be determined by the length at which the stress build-up in 

the platelets is equal to its tensile strength as shown in Figure 51. The critical aspect ratio 

can also be estimated by the ratio of the platelet strength to the lower value among the 

shear strength of the matrix, τy, and the shear strength of the polymer-platelet interface, τi. 

For the case where the aspect ratio of the platelet is greater than the critical value, the 

platelets fracture, leading to a brittle failure of the composite and the factor α can be 

defined as: 

 α = 1 −
σf

2τmins
 (98) 

where τmin is either the shear strength of the matrix or the shear strength of the polymer-

platelet interface whichever is lower.[4] For the case where the aspect ratio of the platelet 

is lower than the critical value, the matrix will yield before the platelet, leading to platelet 

pull-out and plastic yielding of the matrix before the composite completely fails.[82, 103] 

The factor α is then defined as: 

 α =
τmins
2σf

 (99) 

 

 

Figure 51 - Variation of tensile stress in the platelet as a function of its length. σp is the 
platelet fracture strength. 

l < lc l = lc l > lc

σp

σ
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In the models discussed, the following assumptions were made to simplify the 

calculations: the matrix adheres perfectly to the platelets; the platelets don’t interact with 

each other; all the platelets have the same dimensions; the platelets are arranged parallel 

to and equidistant from each other; the moduli of all the platelets are the same; and the 

matrix is linearly elastic. The first assumption is dependent on the surface chemistry 

between the platelet and the matrix and that there are no pores generated during 

processing of the matrix. As the volume fraction of the platelets is increased, the 

likelihood of particle clustering, interactions, and disorder increases, leading to the 

second and fourth assumptions not being satisfied. For smaller dimensions, 

manufacturing limitations may cause a larger variation in the dimensions of individual 

platelets, which may not satisfy the second assumption. If using crystalline platelets, 

changes in crystal orientation between individual platelets may lead to differences in their 

modulus; however, they would probably cancel out with a large volume of platelets. The 

matrix, being a polymer, is most likely viscoelastic. For higher accuracy of the models, it 

is important to include the time and temperature dependence of the matrix mechanical 

properties into the models, which in the case of biopolymers are significantly affected by 

relative humidity. 

3. Results and Discussion 

3.1. Fabrication of Hybrid Composites 

A method to fabricate ceramic-reinforced polymer hybrid films with highly 

aligned microstructures in larger sample volumes and faster processing times is 

introduced. The films have been successfully fabricated with volume fractions of ceramic 

platelets ranging from 5 vol.% to 15 vol.% by first making a slurry of alumina platelets in 
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a chitosan solution and then using a slip casting method. For best results, it is important 

to use surface-treated tissue culture dishes, which allow for better wettability between the 

dish and the chitosan-alumina slurry. The films can be produced with thicknesses ranging 

from 15 𝜇𝜇m to 75 𝜇𝜇m and can easily be peeled off, once dry. We found that volume 

fractions of alumina greater than 15% rendered the dry films too brittle to be removed 

intact from the petri dish. 

3.2. Structural Analysis 

Analysis by scanning electron microscopy, shown in Figure 52, revealed that the 

platelets are very uniformly distributed in the matrix and aligned parallel to the film’s 

free surfaces.  The cross-sections show that the platelets form a brick and mortar like 

structure similar to that found in nacre and the freeze-cast scaffolds. Figure 52 further 

shows, how the structure changes with an increasing platelet volume fraction and that 

there appears to be very little increase in misalignment with increasing ceramic volume 

fraction.  The misalignment appears primarily to be due to the freeze-fracturing process 

before imaging. There also appears to be increased clustering at higher volume fractions, 

which may result in films with lower composite strengths as discussed in the next section. 
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Figure 52 - Films with 5% a,b), 10% c,d), 15% e,f), and 20% g,h) volume fraction of 
alumina platelets (scale bars are 50𝜇𝜇m for a,c,e,g) and 5𝜇𝜇m for b,d,f,h)). 
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3.3. Mechanical Characterization 

Alumina reinforced free-standing chitosan films with different volume fractions 

of alumina were mechanically tested in tension, at three relative humidities of 35%, 55%, 

and 75%. Typical true stress – true strain plots, shown in Figure 53, illustrate that the 

Young’s modulus increases and the strain at failure decreases with increasing platelet 

volume fraction.  

 

 

Figure 53 - Typical tensile stress versus strain curves of chitosan-alumina films with 
increasing volume fractions (V.F.) of alumina platelets (displacement rate is 1 mm s-1, 

relative humidity is 55%). 
 

3.3.1. Elastic Modulus 

The elastic modulus was calculated from the slope of the initial linear region of 

the stress-strain curves. The Padawer-Beecher model described by Equation (95) was 

used to estimate the elastic modulus of the chitosan-alumina films. The platelets had an 
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average thickness and diameter of 400±100 nm and 7.5±2.5 𝜇𝜇m respectively, giving them 

an aspect ratio of about 19.[91] The elastic modulus of the alumina platelets was assumed 

to be 375 GPa,[104] and the shear modulus of the chitosan film was calculated, using the 

model assumption of a linear elastic material, by the relationship: 

 
Gm =

Em
2(1 + ν)

 
(100) 

where ν is the Poisson ratio of chitosan, ν = 0.272.[105] Since the elastic modulus of 

chitosan can vary depending on the relative humidity of the environment at the time of 

testing, the elastic modulus of the pure chitosan films as the matrix in the Padawer-

Beecher model was determined experimentally for the three different relative humidities. 

We also compared our results with average values found in the literature for 

materials reinforced with nano-size platelets at volume fractions similar to the ones 

studied here. Bonderer et al. fabricated freestanding chitosan-alumina hybrid thin films 

using a layer-by-layer method.[5] The alumina platelets were surface modified with 3-

aminopropyltriethoxysilane (APS) to improve the platelets’ adhesion to the matrix. 

Bonderer at al. also fabricated polypropylene-alumina and polyurethane-alumina hybrid 

thin films using a gel-casting and hot-pressing method.[89, 90] Shukla et al. fabricated 

epoxy-alumina hybrid thin films using a curing method.[106] The study reported here 

was performed with uncoated platelets and platelets surface modified with 3-

glycidoxypropylmethoxysilane (GPS) to improve platelet adhesion to the matrix.  

The elastic modulus results for our study, predictions from the Padawer-Beecher 

model, and the literature values are plotted in Figure 54a. Our results show that 

increasing the platelet fraction increases the tensile modulus and increasing the relative 
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humidity decreases the tensile modulus of the composite. Our results also show a good 

experimental correlation to the model prediction. The same trend is observed in 

composites characterized by other researchers with property values dependent on the 

matrix material used. Since no mention is made of the relative humidities at which the 

literature values were obtained, it is not possible to provide a meaningful direct 

comparison with these.  

 

 

Figure 54 - a) Tensile modulus and b) tensile strength as a function of platelet volume 
fraction at three different relative humidities. Included are predictions of the composite a) 

tensile modulus based on the Padawer-Beecher model, b) tensile strength based on the 
Glavinchevski model, and literature values for chitosan-APS alumina[5], polypropylene-

alumina[89], thermoplastic polyurethane[90], epoxy-alumina[106], and epoxy-GPS 
alumina[106] hybrid composites. 
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3.3.2 Tensile Strength 

Tensile strength was calculated from the maximum stress reached during the tests. 

The Glavinchevski model described by Equation (97) is used to estimate the tensile 

strength of the chitosan-alumina composite. Since we are assuming that the matrix 

adheres perfectly to the platelets, the matrix will yield before the polymer-platelet 

interface, and the shear strength of the polymer will be used to estimate the critical aspect 

ratio and the mode of failure of the composite. The tensile strength of the alumina 

platelets is taken to be σp = 2 GPa and the shear strength of the polymer is estimated, 

using the von Mises criterion, to be τy = 0.577σm at the three different relative 

humidities.[4, 107] The critical aspect ratio is then 53.4, 55.5, and 87.4 for the 35%, 55%, 

and 75% relative humidities, respectively. The platelet aspect ratio is 19, which is lower 

than the critical aspect ratios, so Equation (99) is used to estimate the α factor meaning 

that the matrix should ideally yield before the platelet. In this case α is 0.18, 0.17, and 

0.11 for the 35%, 55%, and 75% relative humidities, respectively. 

The tensile strength results of our study, predictions from the Glavinchevski 

model, and the literature values are plotted in Figure 54b. We notice an initial increase in 

tensile strength but the strength decreases as the volume fraction of the platelets is 

increased beyond 5%. The reduction in strength, we suggest, is due to the introduction of 

flaws, such as porosity formed when the particles are added to the matrix, or insufficient 

bonding of the platelets to the chitosan matrix, so that full debonding is initiated early and 

occurs well before the matrix fails. Porosities are further increased in the material once 

debonding has occurred and the strain increases. Additionally, we also notice increased 

clustering of the platelets with increasing volume fraction (Figure 52), which causes an 
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increase in the stress concentrations around those areas leading to cracks being formed. 

Composites in the literature, in which the surfaces of the alumina platelets were not 

modified to enhance adhesion, show a decrease in strength with increasing platelet 

volume fraction. For the composites whose particles surfaces were modified, the strength 

increases with increasing platelet volume fraction especially in the case of Bonderer et 

al.,[5] with a 500% increase in tensile strength at a 15% volume fraction of platelets. This 

suggests that enhancing the bond between the matrix and platelets can significantly 

improve the tensile strength of the composite.  

3.3.3 Effect of Relative Humidity 

Table 6 shows that a decrease in relative humidity results in an increase in elastic 

modulus and tensile strength and a decrease in the strain at failure. The three stress–strain 

curves shown in Figure 55 for a film with 10 % volume fraction alumina show this even 

more clearly. The tensile modulus and strength decrease by about 45% with an increase 

of relative humidity of 20%, whereas the strain at failure is almost tripled; as the 

humidity increases, the films absorb more of the plasticizer water, rendering the polymer 

phase more ductile. This dramatic effect of the moisture content on the mechanical 

properties shows that it is very important to take into account the environmental 

conditions, when mechanical tests are performed on samples containing significant 

amounts of biopolymers such as chitosan. Humidity can further play a crucial role in 

determining the material’s performance and effectiveness for a given application. 
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Figure 55 - Tensile stress versus strain of 10% V.F. alumina-chitosan films conditioned 
and tested at three different relative humidities. 

 
 
 
Table 6 - Mechanical properties of chitosan-alumina films at different relative humidities 

and platelet volume fractions. 
Volume 

Fraction 

[%] 

Relative 

Humidity  

[%] 

Elastic 

Modulus  

[GPa] 

Tensile 

Strength  

[MPa] 

Strain at 

Failure  

[%] 

0 

35 3.66 ± 0.18 64.9 ± 5.04 4.6 ± 1.03 

55 2.77 ± 0.4 62.43 ± 3.03 12.3 ± 1.13 

75 1.9 ± 0.14 39.64 ± 1.62 19.85 ± 0.92 

0.05 

35 4.97 ± 0.42 74.42 ± 4.78 6.72 ± 0.79 

55 3.69 ± 0.29 65.64 ± 1.74 12.89 ± 0.51 

75 2.54 ± 0.28 44.55 ± 1.45 16.65 ± 1.48 

0.1 

35 5.54 ± 0.7 71.37 ± 6.27 4.98 ± 0.32 

55 3.94 ± 0.24 58.86 ± 2.05 10.12 ± 1.29 

75 3.15 ± 0.17 38.54 ± 1.76 13.86 ± 0.96 
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Table 1 (continued) 

0.15 

35 7.18 ± 0.63 59.71 ± 4.03 2.66 ± 0.22 

55 5.29 ± 0.4 45.83 ± 3.2 6.92 ± 0.5 

75 4.06 ± 0.4 37.32 ± 0.93 10.95 ± 0.66 

 

4. Conclusion 

Nacre-inspired composite films were successfully prepared with alumina-platelets 

in a chitosan solution.  They emulate the brick-and-mortar structure of the natural 

material and could be made with film thicknesses and volumes significantly higher than 

those of similar composition reported in the literature.[4, 5] While the modulus increased 

and the strain decreased with an increase in particle content, the strength did not increase 

with volume fractions greater than 5%. Voids, insufficient particle-matrix bonding, and 

platelet clustering are thought to introduce flaws, which result in decreased tensile 

strength. This can be investigated in the future by functionalizing the alumina surface to 

facilitate a chemical bond between the alumina and chitosan, thus increasing the 

interfacial strength of the composite. Also at higher volume fractions, processing 

methods would have to be improved to reduce the clustering that occurs. We have shown 

that an organized structure can be maintained at higher volume fractions and the 

fabrication method has a potential to be used for larger scale applications. Particularly 

noteworthy is the effect of relative humidity, a frequently neglected factor, on the 

mechanical performance. An increase in the relative humidity from 35% to 75% results in 

a 48.1% decrease in modulus and up to fourfold increase in strain at failure for the 

chitosan-alumina films. These results are steps towards a better understanding of the 
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mechanisms that drive biological systems as well as towards improved processes to 

emulate them in the laboratory. With improvements in the materials and processing 

techniques, it will become possible to manufacture complex hybrid materials whose 

mechanical properties can be custom-designed for specific applications and 

environmental conditions. 

5. Experimental Section 

Materials: Low molecular weight chitosan (75-85% deacetylated) was purchased 

from Sigma Aldrich, St. Louis, MO, USA. Glacial acetic acid, deionized water, and tissue 

culture dishes were purchased from VWR International, Radnor, PA, USA. Alumina 

platelets with a diameter and a thickness of 5-10 µm and 300-500 nm, respectively, were 

obtained from AlusionTM, Antaria Limited, Bentley, Western Australia. Deionized water 

was used for all experiments and all chemicals were used without further modifications. 

Film Preparation: To prepare the nacre-inspired alumina-chitosan hybrid films, 

first 3.6% (w/v) of low molecular weight chitosan was dissolved in 1% (v/v) glacial 

acetic acid in de-ionized water.  The chitosan solution was homogenized on a bottle roller 

for 48 hours at room temperature (25°C). To prepare the ceramic slurry, alumina platelets 

were added to the chitosan solution to achieve the required volume fraction of alumina in 

the dry film once the solution was cast. For example, to prepare a 5% volume fraction 

thin film, we took 10 mL of the chitosan solution, which contains 0.36 g or 0.295 cm3 of 

chitosan (density of chitosan is 1.22 g/cm3), and added 0.0155 cm3 or 0.0621 g of 

alumina (density of alumina is 4 g/cm3). Similarly, for 10% and 15% volume fraction, 

0.1312 g and 0.2082 g of alumina is added. The ceramic slurry was then shear-mixed 

(SpeedMixer DAC 150 FVZ-K, FlackTek Inc., Landrum, SC, USA) at 2700 rpm for two 
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minutes before film preparation. The hybrid films were slip cast in a 150mm diameter 

petri dish using the method depicted in Figure 56. Electrical tape was placed at the edges 

as shown in Figure 56 such that the final width of the film was 90 mm and final 

thickness was 10–40 𝜇𝜇m. The petri dish was then placed in a fume hood and allowed to 

dry at room temperature for at least 24 hours.  Once dry, the films were then slowly 

peeled from the petri dishes by hand. The thickness of the dry film can be controlled by 

increasing the thickness of the electrical tape.  

 

 

Figure 56 - Preparation of hybrid thin films using a slip casting method. 

 

Scanning Electron Microscopy: For observation by scanning electron microscopy 

(SEM), the films were first freeze-fractured in liquid nitrogen, to reduce disturbance to 

the cross-section, and then sputter-coated (Cressington 108 Auto Sputter Coater, 

Cressington Scientific Instruments Inc., Watford, England, UK) with a 2–5 nm thick 
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platinum-paladium layer.  Cross-sections of the films were observed in a scanning 

electron microscope (Zeiss Supra 50VP, Carl Zeiss SMT Inc., Peabody, MA, USA).   

Mechanical Testing: For mechanical testing in tension, the films were cut into a 

dumbbell shape (ASTM D1708-06), with a narrow section 17 mm long and 5 mm wide, 

with a microtensile die (Pioneer-Dietecs, Weymouth, MA, USA).[108] The strips were 

taped with double-sided tape into custom made paper-frames to stabilize them before the 

test and gripping in the vices with a gauge length of 22 mm for testing (Figure 57). To 

condition the films at 36±0.1%, 56±0.1% and 75+0.1% relative humidity, saturated 

solutions of Sodium Chloride (ACS grade, EMD Chemicals, Gibbstown, NJ, USA), 

Magnesium Nitrate (ACS grade, Alfa Aesar, Ward Hill, MA, USA), and Magnesium 

Chloride (ACS grade, Alfa Aesar) were prepared. The solutions were then poured into 

the bottom of a desiccator with the framed films placed on a ceramic plate and allowed to 

condition for at least 48 hours as specified by ASTM D618-13.[109, 110] At least 5 strips 

were tested for all four compositions at three different relative humidities. Mechanical 

testing was carried out in tension on an Instron 5948 (Instron, Norwood, MA, USA) with 

a 50 N load cell and a crosshead speed of 1 mm/min, corresponding to a strain rate of 

0.045/s.  For testing, a climate chamber was built around the Instron, which ensured that 

the samples could be tested at a well-defined humidity identical to that, at which the films 

had been conditioned prior to testing. The climate chamber consisted of a BioPuls 

(Instron, Norwood, MA, USA) bath chamber around the testing system sealed by elastic 

bellows (TheRubberStore.com, Dayton, Ohio, USA) as shown in Figure 58.  Tests were 

performed after the relative humidity in the chamber had reached and stabilized at each 

respective relative humidity. The true stress–true strain curves were plotted using the 
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measured force and displacement and the dimensions of the film. Young’s modulus was 

calculated from the slope of the initial linear region, the tensile strength was taken to be 

the highest stress of the true stress-strain curve, and the strain at failure was taken when 

the stress started decreasing before it fully failed. 

 

 

Figure 57 - Frame for tensile testing 

 

Humidity control: The saturated salt solutions mentioned above were prepared by 

adding the salts in boiling deionized water until no more salt could be dissolved. 

Magnesium Chloride was used to achieve an average relative humidity of 35.7±0.1%, 

Magnesium Nitrate was used to achieve an average relative humidity of 56±0.1%, and 

Sodium Chloride was used to achieve an average relative humidity of 75.4±0.1%. Before 

the start of each tensile test, salt solutions were placed in separate containers at the 

Frame
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bottom of the biobath and a small fan was used to circulate the air over salt solutions and 

to ensure a uniform relative humidity in the climate chamber. The required humidity was 

usually reached within a few minutes and stayed within 0.1% relative humidity for the 

duration of the test. The fan was turned off for the duration of each test directly before 

each test was performed. 

 

 

Figure 58 - Setup for tensile testing of chitosan films. 
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