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ABSTRACT

Impact sounds produced by everyday objects are an important source
of information about contact interactions in virtual environments
and auditory displays. Impact signals also provide a rich class
of real and synthetic percussive musical sounds. However, their
perceptually acceptable resynthesis and modification requires ac-
curate estimation of mode parameters, which has proved difficult
using traditional methods.

In this paper we describe some of the problems posed by im-
pact phenomena when applying standard methods, and present a
phase-constrained high-resolution algorithm which allows more
accurate estimation of modes and amplitudes for impact signals.
The phase-constrained algorithm is based on least squares esti-
mation, with initial estimates obtained from a modified ESPRIT
algorithm, and it produces better resynthesis results than previ-
ously used methods. We give examples with everyday object im-
pact sounds.

[Keywords: sound, estimation, synthesis, contact, impact, condi-
tioning, ESPRIT, least squares]

1. INTRODUCTION

Impact sounds are ubiquitous and carry very useful information
that can be used for recognition of the structure and material prop-
erties of the environment, and of the nature of the impact [15, 22].
They are critical in human perception of contact [10, 13, 17]. Im-
pact sounds are also increasingly important in music [5], computer
graphics [27, 18, 12], and multimodal user interfaces [4, 28]. In
haptics, impact sounds can be used to complement the force feed-
back of a haptic device [8, 9], and impact vibrations have been
used to improve performance [14, 19, 16].

The impact signal produced by an object is characterized by a
discrete set of decaying vibration modes which depend on mate-
rial properties and boundary conditions. The signal can be mod-
eled as the real or imaginary part of a sum of complex decaying
exponentials zt = e(a+iw)t, or modes, determined by complex
poles z = ea+iw, with complex amplitude coefficients. The prob-
lem of estimating exponential modes from noisy data is well stud-
ied in signal processing and system identification, and a number
of successful high resolution algorithms — algorithms which can
resolve frequencies beyond the discrete Fourier transform (DFT)
resolution limit — have been developed for this and related tasks.

However, impact signals pose difficulties in the application of
these methods. Unlike the usual contexts in which these meth-
ods have been applied, impact signals are brief and possess fast-
decaying modes. Another difficulty is closely spaced modes, which
are common due to near-symmetries in the vibrating objects. These
characteristics lead to serious conditioning problems and to large

inaccuracies in mode analysis from typically available data lengths,
even when no other noise is present. Using a lower-rank approx-
imation (fewer modes) to correct conditioning problems leads to
mode errors, which are insignificant for the short data, but can au-
dibly distort longer resynthesis.

The artificial “impact sound” in Fig. 1 illustrates some of these
problems. The short test signal can be modeled well by highly in-
correct modes chosen at random; these randommodes also contain
non-decaying modes. However, the exponentially growing modes
sound nonsensical in longer synthesis.

In this paper we discuss the accurate off-line estimation of im-
pact signal modes when only short data windows are available for
analysis. We consider the conditioning properties of impact sig-
nals, and their implications for the choice of analysis method. We
observe that, for many impact signals, the mode-amplitude deter-
mination problem is nearly ill posed.

To allowmore accurate mode analysis of difficult impact sounds
from short data, we propose an improved high-resolution method.
The method is based on well-known existing methods, least squares
estimation and ESPRIT, modified for impact sounds, and it models
impact sounds better. Experimental results are presented in this pa-
per. They can be seen and heard at a supplemental web page [26].

2. RELATEDWORK

The general problem of estimating the spectral content of a noisy
signal has been extensively studied; see, for instance, [25] for a
recent overview. The obvious method is to estimate the spectra
by picking the peaks of the discrete Fourier transform (DFT) of a
windowed signal, but the frequency resolution of such an approach
is limited. This problem has been addressed with the development
of so-called high resolution methods, whose accuracy transcends
the DFT resolution limit, and which can be used on relatively short
data samples.

Several different classes of methods have been developed for
high resolution estimation and related problems in signal process-
ing and system identification [25], [7].

Common and effective methods for estimating signal parame-
ters include ESPRIT, MUSIC, and Least Squares (LS) and its gen-
eralization, Maximum Likelihood (ML). In some settings these
can be formulated as similar optimization problems [7]. LS is
an important instance of methods which attempt to directly mini-
mize the distance between a low rank shift-invariant subspace and
the observed signal. ESPRIT and MUSIC are instances of sub-
space methods, which rely on the eigendecomposition of the data
covariance matrix to determine an estimate for the signal space.
These latter methods do not require non-linear optimization to im-
plement. Most approaches separate the problems of mode estima-
tion and amplitude estimation. (Amplitude estimation from known
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Figure 1: Randomly picked modes with a wide mode error can approximate test data well. Modes are depicted in a stem plot, frequency
on x-axis, modulation exponent (“decay”) on y-axis. Decaying modes point in the negative y-direction. (a) Original modes (black) and
randomly generated modes (green), some of which do not decay. (b) Signals synthesized from original modes (in black) and from random
modes (in color). Signal approximation from random modes is excellent for the test signal (samples to the left of the vertical line), but gives
nonsensical results in longer synthesis. Test data approximation error is 2.9e-007.

modes for non-decaying sinusoidal signals has been discussed in
detail in [24].)

All the above estimation methods are unbiased and have good
asymptotic properties, especially in the presence of Gaussian noise
and when the modes do not decay too sharply. For recent results
on ESPRIT, the most statistically accurate of the subspace methods
for the harmonic retrieval problem, see [1], [3].

The methods present tradeoffs in estimation accuracy and com-
putational complexity. ESPRIT methods are widely used due to
their relatively efficient closed-form solution and good asymptoti-
cal properties [25]. However, in the presence of nearby modes, ES-
PRIT is poorly conditioned and requires very long data samples for
accuracy, reducing the high-resolution benefits of the method. In
addition, the computational complexity of ESPRIT increases as the
O(N3) required for the usual SVD calculation (although some im-
provements can be made). Accordingly, to reduce model and data
size, sound samples are often preprocessed for ESPRIT by filter-
ing. Also, for musical samples, perceptually important higher fre-
quency modes can be enhanced at the expense of lower frequency
“noise.” However, impact sounds, which have denser spectra, can
lose important timbre information in such preprocessing.

As opposed to ESPRIT, Least Squares (LS) estimation, the
Gaussian noise form of Maximum Likelihood estimation (ML),
requires solving a nonlinear optimization problem. This is gener-
ally computationally expensive. The method requires good global
search algorithms and initial estimates to converge correctly[25].
However, in the presence of closeby poles, the method is more
accurate than ESPRIT. The applicability of the standard version
of LS for impact sounds is reduced by conditioning problems and
spurious minima.

In previous work on estimating models of impact sounds [22,
20], mode frequencies were first estimated from power spectra and
peak identification. The modes could be pruned based on percep-
tual criteria [29]. The results provide a convincing method for
modeling moving impact locations, but the perceptual accuracy of
the synthesized timbres can also be improved. [6] presents a fast
but approximative method, which fits a small number of modes to
the signal near each chosen frequency peak. The method is de-
signed to be approximative and it is not clear how it will perform

for dense modes.
We applied an earlier version of our algorithm to haptic force

signals in [21]. In the current paper, the algorithm has been ex-
tended to deal with difficult sound examples, using shorter signal
samples and more complicated spectra. We give more details of
the conditioning problems. Added examples and the new results
section give insight into the behavior of the algorithms and into the
reasons for looking for improvements to existing methods.

3. IMPACT SIGNAL MODELS

We model the measured impact signal y as the real or imaginary
part of a complex model signal x, together with additive noise �:

y(t) = Re(x(t)) + � or y(t) = Im(x(t)) + �, (1)

where we assume that the noise is Gaussian with variance �2.
The model signal x is the sum ofK decaying exponential sig-

nals produced by the vibration modes of the sound generating ob-
jects,

x(t) =
K�

k=1

ck e(ak+i�k)t =
K�

k=1

ckzt
k. (2)

Here, ck is the complex amplitude of mode k, consisting of both
magnitude and phase; zk = eak+i�k is a complex pole of the z-
transform of x, ak is the decay parameter and �k the frequency.
The poles are assumed distinct here. Note that the number of
modes K, the model order of the problem, is generally unknown
and must be estimated.

The signal subspace consists of the space spanned by the K
modes bk(t) = zt

k. In discrete time, each mode can be written, for
a window ofM samples, as the vector bk = (zk

0, zk
1, zk

2, ..., zk
M�1)T .

Then, the signal subspace is the column space of the Vandermonde
matrix

B = (b1 b2 ... bK). (3)
Note thatB is a function of the poles, z = (z1, . . . , zK)T ; we

will writeB(z) when it is important to highlight this dependence.
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When highlighting the dependence ofB on column lengthM , we
will useBM .

Similarly, we can define the sampled signalx(t) = (x(t) x(t+
1) . . . x(t + M � 1))T ; y(t) is defined similarly. This notation
allows the signal model in Eq. 2 to be expressed compactly as

x = Bc, (4)
where c is the vector of complex mode amplitudes (c1, . . . , cK)T .
Existing performance analyses for the line spectrum analysis

problem indicate that in the presence of Gaussian noise, two of
the most statistically accurate estimation methods are least squares
and ESPRIT.

In nonlinear Least Squares (LS) estimation, which is equiva-
lent to Maximum Likelihood estimation (ML) for Gaussian noise,
the problem is to estimate the signal parameters z and c so that the
error between the data y and its projection onto the signal space
B is minimized:

z, c = arg min � y �B(z)c �2 . (5)

This problem is separable into two optimization problems, one
for modes and a linear one for the amplitudes. This is because, for
any set of poles z the optimal choice in the least squares sense for
the coefficients c is found via the pseudoinverseB† ofB:

c(z) = B(z)†y, (6)
where B† = (B�B)�1B�, where ‘�’ indicates the conjugate
transpose. This is an unbiased linear estimate with minimal vari-
ance for Gaussian noise [24], and can be used with any method
which provides an estimate of the modes.

For LS, the mode estimation can be performed by substitut-
ing c(z) into the minimization (Eq. 5), resulting in an amplitude-
independent formulation of the problem:

z = arg min � (I �BB†)y �2=
= arg max

z
(y�BB†y). (7)

The amplitude-dependent formulation minimizes the error be-
tween the observed signal y and its projection to space B; the
amplitude-independent formulation, equivalently, maximizes the
alignment between the signal and its projection.

In mode estimation, an alternative to dealing with the sensi-
tive optimization of Eq. 7 is to use shift invariance of the under-
lying signal modes and the covariance matrix of the data, defined
as R = E{yy�}. The estimated covariance matrix is a square
matrix, whose dimension is denoted here by M �M . The eigen-
structure of R contains all the information needed to estimate z;
specifically, the eigenvectors corresponding to the K dominant
eigenvalues of R span the signal subspace of B. ESPRIT, for
example, provides a method for estimating z this way. We sketch
the main steps of the algorithm below.

Using the eigendecomposition of the covariance matrix is equiv-
alent to using the singular value decomposition (SVD) of the ma-
trix Y , formed from successive windowed observations yt of the
data y, yt = (y(t)y(t + 1) . . .)T . Y consists of W successive
shifted data windows, starting at a given time t:

Y = (yt yt+1 ... yt+W�1). (8)
With y window length M , the covariance matrix R can be

estimated as theM �M matrix 1
W Y Y �. The choice of window

shift direction leads to two similar formulations for Y , where the
matrix Y has Toeplitz or Hankel structure. (For more details, in
the Hankel formulation, see e.g. [1].)

4. ESPRIT ESTIMATION OF SIGNAL MODES

Our mode estimation algorithm is an optimization procedure tai-
lored for impact signals. The initial modes for the optimization are
obtained from an algorithm which modifies the results from stan-
dard ESPRIT [23] to account for the properties of impact signals.
(Other methods for initial mode determination can be used, but ES-
PRIT has the advantage of being asymptotically accurate enough
so that the optimization step may not be necessary for longer data
samples and sparser spectra.)

Standard ESPRIT, which we describe briefly below, is an eas-
ily implemented algorithm based on the eigendecomposition of the
data covariance matrix, or equivalently, on the SVD of the Toeplitz
or Hankel matrix Y . The method uses the shift invariance of the
signal subspace and does not require nonlinear optimization. For
more details, see e.g. [25].

In ESPRIT, the eigenvectorsU of the covariance matrixR are
separated into two subspaces, an estimate S of the signal subspace
B, and the noise subspace N . The signal subspace is determined
by the model order, or signal subspace rank, K. If the noise �
is gaussian, of variance �2, the covariance matrix of the observed
signal y(t) is the sum of the covariance matrices of Bc and the
noise covariance matrix �2I . From this it follows that the eigen-
values of R corresponding to the signal subspace of rank K are
theK largest eigenvalues.

Finding the poles from S relies on the shift-invariance of the
exponential mode. Shift-invariance of the signal space B is ex-
pressed as

BFRD = BLRDdiag(z), (9)

where BFRD and BLRD are B with the first and last row
deleted, respectively. Since the corresponding eigenvectors S also
span the signal subspaceB, S is also shift-invariant, and we have
S = GBG�1 for a basis-change matrix G. This basis change
takes the poles diag(z) of the original space B to a matrix � =
Gdiag(z)G�1 with the poles as eigenvalues, and the shift-invariance
of Eq.9 can be expressed as:

SFRD = SLRD� (10)

The poles zk, k = 1, . . . , K are the eigenvalues of the matrix
�, found as a least squares or total least squares solution.[25]

The complex amplitudes c are determined from the data y and
the estimated signal subspace matrix B using the separability cri-
terion of Eq. 6.

For accurate estimation, model order K must be chosen to be
equal to (or larger than) the actual dimension of the signal space;
with a lower model order, the estimation results are approxima-
tions. There are several methods for determining model order [25],
[2].

The computational complexity of the ESPRIT algorithm is
bounded by the cost of the eigenvalue computation for theM �M
covariance matrix, or equivalently, the SVD computation for Y of
Eq. 8, O(M3) in standard forms. Computationally it is frequently
better to obtain eigenvectors of the covariance matrix R directly
from the SVD of the matrix Y .
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5. CONDITIONING PROBLEMS IN IMPACT SIGNAL
ESTIMATION

Impact signals pose difficulties in the application of standard spec-
trum analysis methods like ESPRIT and ML/LS. Impact signals
are characterized by spectra that are dense or, due to near symme-
tries in the objects, locally dense, and with modes that decay fast or
at widely different rates. These characteristics cause conditioning
problems which make accurate mode determination very difficult
in the presence of noise or truncation errors.

We summarize some of the algorithmic problems in impact
sound mode estimation below.

• Basis matrix conditioning: for many observed impact sig-
nals, the mode-amplitude determination problem of Eq. 4 is
nearly ill posed.
The conditioning of the Vandermonde basis matrix B of
Eq. 3 becomes worse when the poles approach each other,
when the modes decay more sharply, and when column
length (sample length) decreases. When estimating impact
signals from short samples, all of these factors apply. The
original signal can then be approximated within a small er-
ror also from nearby, incorrect mode spaces.
One solution is to reduce the number of modes used in the
approximation. But, although the original short samples
can then be adequately represented by such low rank ap-
proximations, or from incorrect modes in general, the in-
duced mode errors may distort new synthesized examples.
This happens for example when generating longer sounds
(Fig. 1) or when different subsets of the signal modes are
activated during impact, or when the sound is modified in
applications such as pitch-shifting.
So mode errors can be perceptually relevant, even if the test
data error norm is small.

• Covariance matrix conditioning
The conditioning of the covariance matrixR and the condi-
tioning of the matrix Y of Eq. 8 depend on the conditioning
ofB and the complex amplitudes of the signal. This can be
seen from the following relationship between the matrices
B and Y . In this discussion, we assume that Y is formed
from the complex noiseless signal.
If we assume thatY is formed fromW -many data windows
of length M , taken from time index t onwards, where t is
indexed as t = 0, 1, 2, . . ., we can write

Y = BMdiag(zt)diag(c)BT
W , (11)

where c are the complex amplitudes of the signal, andBM ,
BW are Vandermonde basis matrices with column lengths
M, W (see Sec. 3).
From this formulation it can be seen that the maximum rank
of Y is the maximum rankK ofB, and that (a sufficiently
large) Y has full rank exactly when the poles z are distinct
and the amplitudes c are non-zero. The same result is seen
to hold for R by writing out the covariance matrix expres-
sion forR in terms of Y . (See also [11, 1].)

• ESPRIT conditioning
Given a fixed data sample length, ESPRIT will be inaccu-
rate when the covariance matrix R is poorly conditioned;
that is, when the mode basis is poorly conditioned or the
mode amplitudes are small.

In this case, small errors due to data truncation or noise
can make the determination of the eigenvectors U and of
the signal subspace, estimated as the span of a subset of
U , widely inaccurate. Algorithms for determining model
order using the covariance matrix eigendecomposition ([1])
can also miss.
In poorly conditioned ESPRIT a portion of the signal sub-
space determined by ESPRIT is noise.
An example is given in Figs. 2, 3. In Fig. 2(b) the “non-
sense” modes correspond to noisy eigenvectors inU . Fig. 3(b)
shows the consequence of poor ESPRIT conditioning on
signal approximation: the test signal has a good low-rank
approximation from the decaying ESPRIT modes, but de-
cay and pitch errors are visible and audible in longer resyn-
thesis.

• Optimization
For the same reasons as above, closeby modes and sharp
decays yield “too many near solutions” to the general op-
timization problem. As the Vandermonde matrix becomes
more rank-deficient, these near-solutions become more ac-
curate, and, similarly, spurious local error minima approach
zero. It is very difficult to get convergence to the correct
modes in optimization algorithms unless the problem is reg-
ularized further.

The difficult conditioning properties of impact signals have
some implications in the choice of analysis method when accurate
mode modeling is important:

• For impact signals, perceptually acceptable mode accuracy
is not guaranteed by a small 2-norm error for the test signal.

• For dense spectra and sharp decays, cross-validation or fur-
ther optimization, possibly from multiple initial values, is
needed to ensure that a mode value near the global opti-
mum has been found.

• One strategy is to use a large number of modes with fur-
ther constraints to regularize the optimization problem and
to reduce the number of spurious minima. We use a phase-
constraining strategy below. Another strategy is low-rank
approximation. Low-rank mode approximations can be very
useful when the decays for dense modes are so sharp that
the low-rank estimation is accurate even with larger sample
lengths. However, ensuring the perceptual correctness of
a low-rank approximation usually requires cross-validation
or careful psychoacoustic analysis.

6. PHASE-CONSTRAINED MODE ESTIMATION FOR
IMPACT SIGNALS

We address the difficulties described above by using phase con-
straints.

We constrain the LS/ML algorithm with a physically based
constraint and require that the phases of the modes equal zero or
�. This effectively aligns the signals with the time of impact, and
restricts the amplitude to real numbers. This exploits an impor-
tant piece of prior information available about impact signals not
present in many other types of signals, and reduces the number of
local minima of the target function.

Due to the reduced number of local minima, phase-constrained
optimization is not as sensitive to initial value placement as opti-
mization allowing arbitrary phase, but the LS algorithm still re-
quires relatively good initial values to converge correctly.
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Figure 2: Problems with DFT peak finding and ESPRIT. (a) FFT magnitude of test sound (only 2 maxima visible for 15 modes, shown in a
frequency-decay stem plot). (b) The results of the unmodified ESPRIT method. Only the “nonsense” modes unrelated to signal content are
visible - the signal modes and the 5 decaying ESPRIT modes occupy the small black box in the image.

We use ESPRIT to produce the initial values, modified to al-
low its use for impact signals despite poor conditioning. (For gen-
eral signals, this modification is not possible.) The essential step is
the obvious one of removing non-decaying modes from the results
of the ESPRIT algorithm. In addition, we assure that the condi-
tioning of the resulting Vandermonde matrix B is better than a
given tolerance both by removing modes and by normalization.

Since with impact signals ESPRIT usually reduces problem
rank and can miss significant modes, we supplement the initial
mode estimates from ESPRIT by frequencies from DFT peak find-
ing. (One should note that the best low-rank approximations usu-
ally do not satisfy the same physical constraints as the signal modes:
for example, the ESPRIT rank-deficient approximation modes do
not generally have zero phase, even if the original modes do.) The
advantage of using ESPRIT is its asymptotic accuracy for most
data.

Finally, we refine the modes by solving the nonlinear opti-
mization problem of Eq. 5, with the phase constraint.

Modified ESPRIT alone can be sufficient for impact signal
modeling, especially if a large sample is available for the estima-
tion. But for difficult, fast-decaying impact signals with closeby
modes, this phase-constrained LS optimization with modified ES-
PRIT initial values produces better resynthesis results than previ-
ously used methods.

6.1. A summary of the algorithm:

For phase-constrained optimization, the signal is modeled as the
imaginary part of the complex signal.

A. Initial Mode Determination from Modified ESPRIT

1. Determine a model orderK, and the covariance matrix size,
M .
Since the signal is real, and the model is complex, the algo-
rithm will use K = 2K�, where K� is the number of real
exponentials expected in the data. We letM = (N +1)/3.

2. Determine the estimates for the poles zk, k = 1, . . . , K as
in standard ESPRIT.

3. Form a subset of the modes zk of length K�, by discard-
ing all nondecaying modes; renumber the modes zk, k =
1, . . . , K�.

4. Determine the estimated Vandermonde matrixB for the re-
maining modes.

5. Determine the amplitudes and phases from the complex am-
plitudes c, the data y, and the estimated signal subspace
matrixB using the optimization separability criterion: c =
B†y.

6. Retain only the K�� = K�/2 complex conjugate poles zk

with positive imaginary part, and their coefficients ck. Renum-
ber the modes as zk, k = 1, . . . , K��.

7. Given ck and the poles zk, k = 1...K��, the estimated signal
model is then

x(t) =
K���

k=1

�ke�ki e(ak+i�k)t (12)

where the decays and frequencies ak, �k are obtained from
the poles zk, and the amplitudes and phases from the com-
plex coefficients ck.

B. Add missed DFT peaks
If DFT peak frequencies are missed to a given tolerance by

step A, add modes corresponding to these peak frequencies.
(There are several methods for approximating the correspond-

ing mode decays, but for initial modes, using an average mode
decay has been sufficient.)

C. Zero phases and determine initial real amplitudes
Zero all phases, and use the real form of the separability con-

dition Eq. 6 to determine the best (real) amplitudes for the initial
modes.

D. Phase Constrained Least Squares
Using modes obtained in the previous step as initial values,

solve the nonlinear optimization problem of Eq. 5, with the phase
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Figure 3: Modified ESPRIT. (a) Original modes (black) and the 5 modified ESPRIT modes (red). (b) In the modified ESPRIT algorithm,
pruned modes are used to produce a good fit to the test signal (to the left of vertical line). Mode errors become apparent with a longer
synthesis; here ESPRIT (red) diverges from the correct signal (black). Pitch and decay errors are clearly heard in longer synthesis. Our
optimization algorithm addresses this problem.

constraint. For single impact sounds, the phase constraint is imple-
mented simply by allowing the amplitudes ck in the signal model
Eq. 2 to take any real values, which constrains the phase variable
to zero or �.

We used the Matlab function lsqnonlin.
To allow for better performance and to reduce the number of

variables in optimization, it is in many cases possible to carry out
the bulk of the optimization in band-limited steps, finetuning the
results in a final global step. (Straightforward band-limited opti-
mization will obviously be the more accurate the better the modes
separate into mutually nearly orthogonal signal subspaces.)

7. RESULTS

For the examples below, the sounds and additional data are also
available at a supplemental webpage [26].

7.1. Artificial impact sounds

We illustrate ESPRIT conditioning problems with an example of
an artificial “impact” sound consisting of 15 modes between 765
and 872 Hz in frequency. The modes form two groups which
are visible from the DFT, Fig.2(a), but the modes are sufficiently
closely spaced so that individual modes cannot be picked out.

To illustrate the effects of conditioning with truncated data, we
do not add noise. The data length here is N = 1024 for clearer
illustration, but the behavior of ESPRIT is analogous for longer
data lengths. The covariance matrix size is M = (N + 1)/3 (for
reasons for the choice, see [1]).

For this test signal, ESPRIT will be inaccurate for all parame-
ter choices, because the eigenproblem of the covariance matrix is
poorly conditioned and sampled matrices have truncation errors.
ESPRIT misses decaying modes. In Fig.2 and Fig.3, 10 of the
15 original modes estimated by ESPRIT are “nonsense” modes,
or non-decaying modes clearly outside the frequency range. Here
modified ESPRIT provides a low-rank approximation to the data,
Fig.3(a, b). However, mode errors distort longer synthesis, Fig.3(b).

7.2. Real impact sound

Our algorithm performs well even in the more difficult case of a
real impact sound. Since it is difficult to convey the accuracy of re-
sults of sound synthesis with figures, we have collected the sounds
and other figures that could not be included due to space limitation
on the website.

We recorded sounds from everyday objects by tapping them in
different locations. The objects include wine glasses, a four-sided
plastic office trashcan tapped with a flick of a finger, and a plastic
water bottle struck with a wooden striker.

The recording was performed in an acoustic isolation chamber
(built by Eckel Noise Control Technologies, Cambridge, MA), us-
ing a 1/2 inch condenser microphone type 4189 (Brüel and Kjær,
Denmark). The signal was digitized at 44.1 KHz, 16 bit resolution,
using an NI DAQCard-6036 (National Instruments, Austin, TX)
and Matlab’s Data Acquisition Toolbox (The MathWorks, Natick,
MA). Microphone placement varies for the different objects, for
example, for the bottle example, it was held approximately 50cm
from the middle of the bottle. The data lengths used for estimation
are standard, varying from 37 ms to 68 ms. The sound was not
preprocessed for the algorithms.

7.2.1. Wine glasses, a bottle, and a trashcan

We resynthesize sounds from tapping on a plastic trashcan, wine-
glasses, and a plastic bottle. The different modal content of the
sounds is reflected in the difficulty of analysis.

For the wineglass sounds, which have sparse spectra, Fig. 4(a),
modified ESPRIT alone produces very good results. The ESPRIT
result is perceptually difficult to distinguish from the original (both
on paper and in sound). For the other sounds, phase-constrained
optimization produces audibly the best results. For the bottle sound,
where we have used a long data sample for analysis, the modified
ESPRIT version is perceptually quite similar to the original, but
mode inaccuracies are still heard in longer resynthesis.

The trashcan example has the densest mode spectrum, Fig. 4(b),
and phase-constrained optimization is clearly better than ESPRIT
here. The resynthesis results are depicted in Fig. 4(c). The esti-
mated modes were used to resynthesize longer data. In this cross-
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validation, the phase-constrained optimization result is perceptu-
ally difficult to distinguish from the original. Phase-constrained
optimization converges even when initial values are determined
from ESPRIT with a relatively arbitrarily chosen model order.

7.3. Synthetic Sound Modification Example

Accurate mode analysis can be used also as a starting point for
compression, or to synthesize artificial but realistic impact sounds
which modify the mode structure of existing sounds. The modi-
fications can include, for example, pruning modes selectively or
changing the behavior of the modes of one sound to mimic speci-
fied features of another.

As a simple example, we compress sound representation by
starting with the full set of estimated modes and removing all
modes with decays faster than a preset decay limit. Removing
sharply decaying modes also softens the attack. For sounds like
the wineglass sound, the results are perceptually close to the orig-
inal with only a few modes retained (12 out of 83). By chang-
ing the decays of the slowest-decaying modes only, we can also
change the decay properties of the sound without affecting attack
quality. The modified sounds, which are realistic, can be heard on
the website.

8. CONCLUSIONS

Accurate estimation of the parameters of impact sounds is very dif-
ficult due to the poor conditioning of the problem, and traditional
approaches have not produced perceptually accurate resynthesis
results from short samples. We have outlined these conditioning
problems, and described a high resolution method based on ES-
PRIT and least squares estimation, with phase constraints. The
method gives excellent resynthesis results even with difficult im-
pact signals and short samples. Example sounds are available at
[26].
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Figure 4: (a) Tapping on a wineglass, data length N = 3000. FFT of original (black) and modified ESPRIT (red) shown superimposed,
original on top, modified ESPRIT (red) modes on bottom. The zoom shows the two FFTs to be close to identical. Estimated modes are
plotted in stem plot (red) at frequency locations, with decay given by the length of the stem. (b) Tapping on a plastic trashcan, data length
N = 1630. FFT of original signal, with a stem plot of the optimized modes (black). Modes are densely spaced also beyond the zoomed view.
(c) Tapping on a plastic trashcan, data length N = 1630, zoom. Original data (black), phase-constrained optimization (blue), modified
ESPRIT (red). Longer data has been resynthesized from estimated modes and compared in cross-validation with unused portions of the
original sound. Test data is to the left of the vertical line. The modified ESPRIT algorithm produces slightly incorrect pitch and decay;
phase-constrained optimization is nearly identical to the original. (The optimization procedure has been stopped before full convergence
and the ESPRIT model order in the data in Fig. 4 has been chosen relatively arbitrarily; the results are representative but not optimal.)
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