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ABSTRACT 

Universal kriging and variance reduction analysis are 

geostatistical procedures for mapping and sampling of spatial 

random variables. In this project these methods are expanded 

to the time-space domain in order to be applicable to 

spatiotemporal random variables. A large number of 

hydrological processes can be viewed as such variables. In 

the first phase of the project different versions of kriging 

are developed. They include non-negative universal kriging, 

universal time kriging and universal space-time kriging. The 

presented case studies are mapping of groundwater hydraulic 

variables in southwestern Georgia, estimation of drought lead 

time as a management tool for reservoir operations, and 

mapping of transient piezometric surface in southern Georgia. 

In the second phase, variance reduction analysis is expanded 

along universal kriging. It is used for the design of a 

groundwater quality monitoring network in the shallow aquifer 

of Dougherty Plain in southwestern Georgia, as well as, for 

the optimal sampling of transient piezometric heads in 

southern Georgia. 	In the final phase of the project, the 

resilience of variance reduction analysis is studied. 	It 

appears that variance reductoin analysis has an unstable 

parameter space, but a resilient action space. The above 

developments provide a reliable geostatistical sampling 

scheme for spatiotemporal random variables. 
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1. INTRODUCTION 

A large number of natural and physical phenomena in 

hydrology can be viewed as stochastic processes. Variables 

such as, transmissivity, storativity, and piezometric heads 

are of this type. The sampled values of these variables 

usually exhibit complex behaviors, which at the first glance, 

appear to be totally random. However, points taken at 

neighboring locations in space and time reveal a degree of 

stochastic structure. Such structures can be represented by 

a variety of statistical models. Geostatistical techniques 

provide us with tools to study different problems associated 

with such random variables, including their spatiotemporal 

mapping and sampling. 

As shown by Rouhani (1985), sampling of spatiotemporal 

variables can be studied in the framework of geostatistical 

procedures. In particular, the PI proposes to utilize a 

generalized scheme for optimal sampling, known as variance 

reduction analysis, which is based on the universal kriging 

(Rouhani, 1983 and 1985). 

Universal kriging is a generalized Gauss-Markov 

interpolation method for estimation of non-stationary random 

variables. This procedure provides linear estimates of the 

variable of interest, as well as, a measure for the accuracy 

of these estimated values. This measure is given in the form 

of an estimation variance. Many authors, such as Matalas 

(1968) and DeMarsily (1979) propose to add sampling points at 

sites with highest estimation variances in order to minimize 

the regional variance. This approach, however, ignores the 

impact of a new sampling point on the accuracy of its 

neighboring zones. To resolve this problem Rouhani (1985) 

derives a measure for the relative influence of an arbitrary 

added measurement point on the estimation accuracy at another 
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location. 	Areal expansion of this measure then yields a 

regional indicator for the information efficiency of any 

potential sampling point. 	Two optimality criteria are 

utilized for the ranking of potential sampling sites. 	The 

first one directly depends on the variance reduction values 

and measure the amount of accuracy or informaiton gains, 

while the second one is proportional to the expected economic 

loss reductions due to new measurements. These two ranking 

functions are utilized to determine the best sequence of new 

added points. 

Prior to this project, the above algorithm was generally 

applied to cases where the variables of interest were assumed 

to be Gaussian, and only spatially distributed. Such an 

approach excluded the application of variance reduction 

analysis to the important classes of non-negative 

spatiotemporal variables. These variables constitute a major 

group of stochastic processes in hydrology and water 

resources. 

In response to the above problems, the PI proposed a 

research plan based on the expansion and extention of 

variance reduction analysis in the time-space domain. In the 

process of this project, which was initiated on 6/1/85 and 

effectively lasted until 10/30/87, the following major tasks 

were performed. In the first phase of the project, universal 

kriging was expanded and modified to perform the 

interpolation of non-negative random variables, time series, 

and finally spatiotemporal variables. 	For application 

purposes we utilized geohydraulic dat 	in southwestern 

Georgia, streamflow data in western Georgia, and piezometric 

data in southern Georgia. Results of this phase provided 

more realistic interpolations, as well as, maps of forecasted 

and hindcasted values. 

In the second phase of this project, variance reduction 
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analysis was expanded, along with universal kriging, to yield 

a more general sampling procedures for hydrological 

variables. In the first application we devised a scheme for 

groundwater sampling in The Dougherty Plain in Georgia. In 

our second attempt we studied the groundwater quantity 

sampling using the space-time variance reduction analysis. 

In the final phase of this project we looked into the 

question of the resilience of our proposed scheme under 

hypothetical conditions. The detailed discussion of the 

above findings is the topic of the following sections. 
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2. EXPANSION AND MODIFICATION OF KRIGING 

Geostatitical methods such as 	riging have been 

extensively used in the estimation of different hydrological 

phenomena. For example, auhtors like Delhomme (1979), 

DeMarsily (1979), and Ahmed and Demarsily (1987) utilize 

different version of kriging for mapping and simulation of 

transmissivity fields. Dunlap and Spinazola (1981), Rouhani 

(1983 and 1986), and Aboufirassi and Marino (1983) also use 

kriging for the spatial study of groundwater piezometric 

surfaces. 

Others like Fogg et al. (1979), Dagan (1979 and 1982), 

and Chirlin and Dagan (1980) utilize geostatitical methods 

for the solution of stochastic groundwater equations. 

Another group of researchers work with kriging in the context 

of inverse problems, including Neuman and Yakowitz (1979), 

Neuman (1980), Neuman f,t al. (1980), and Kitanidis and 

Vomvoris (1982). Furthermore, a number of authors, such as 

Delhomme (1977) and Chua and Bras (1980) applied kriging 

procedures to precipitation data. 

In all the above works the hydrological variables of 

interest are studied only in the space domain. Even with 

rainfall data, rather than using spatiotemporal algorithms, 

the authors have chosen a variety of spatial approaches. 

This is usually done by focusing on temporally averaged 

quantities at each point, such as mo:thly, seasonal, or 

annual values. Thus, the temporal structure of the data is 

only implicitly considered. 

In the present work, however, we expand kriging to the 

time-space domain, so we can study the phenomena of interest 

as spatiotemporal variables. For this purpose, we have 

utilized universal kriging as the basis :f our work, as one 
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of the more advanced versions of kriging. 

Universal kriging is a Gauss-Markovian interpolation 

method for non-stationary random variables. In punctual 

estimation, given the measured values of a random variable Z 

at the measurement points Xi , i=1,....,N, universal kriging 

provides the best unbiased estimate of Z at Xo (the arbitrary 

location of an unmeasured site). The estimate is given in 

the following linear form: 

N 
E 	X ;  Z(X.) Z(Xo ) = .o (2.1) 

where, 

A 
Z(Xo ) = kriging estimate at X - 0' 
Z(Xi ) = measured value at X i' i=1,....,N; and 

Aio 	= kriging weights for Z(X.) to estimate Z(X o ). 

The X io  are defined by two criteria. (1) Unbiasedness: 

E(2(Xo )-Z(Xo )) = 0, where Z(X o ) is the true value of the 

variable at Xo , which is unknown. (2) Minimum squares error, 

which requires E(2(X 0 )-Z(X0 )) 2  to be minimum. This variance 

is also defined as the estimation or kriging variance, 

Var((2(X0 )). 

Universal kriging views the process Z(X) as a random 

variable with the following structure: 

Z(X) = M(X) + R(X) 	 (2.2) 

where M(X) is a slowly varying deterministic function known 

as the drift which is equal to the expected value of Z at 

point X. R(X) is a Gaussian stationary random variable with 

zero expectation. It is also assumed that R(X) has a 

covariance function K(Xi' X j ), or simply a (semi-)variogram 

f(X i ,X j ), which depend only the distance vector between Xi 
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and X. 3 .  

Kriging basically considers Z as a realization of a 

random function. Thus, in order to be able to estimate its 

statistical characteristics, it further assumes that the k th 

order increment of Z, namely R, is stationary and satisfies 

the ergodic hypothesis. Stationarity implies that the 

probability distribution function of R(X) does not vary with 

X. Assumption of ergodicity indicates that the variability 

of Z is same as in the ensemble of realizations. This 

assumption is almost impossible to check in practice. 

Therefore, as DeMarsily and Ahmed (1987) note, these rather 

theoretical hypotheses are just working ,.ypotheses to enable 

us to develope a model. It is never claimed that the 

variable of interest is stationary or ergodic in nature. 

They are simply used as a set of tools for parameter 

estimation, and must be checked to avoid inconsistency with 

data. 

For automatic estimation of the covariance function, 

Matheron (1973) proposes to study Z as a realization of an 

intrinsic random function that can be made stationary by an 

incrementing process. First, it is assumed that M(X) admits 

a local presentation in the form of a polynomial of order k. 

Then A. 	are defined in such a manner that the linear io 
combination E A. Z(X.) 	for i=0,1,....,N, filters out the i 	io 	' 
mean, defined by M(X0 ). 	This approach leaves out the 

important step of estimating the actual parameters of the 

drift function. 

For the case of an intrinsic random function of order 0, 

1, or 2 in two-dimensions with Cartesian coordinates (x.,y.) 

the above incrementing requirements can be written as: 
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k = 0 

k = 1 

k = 2 

N 

E 	A. 
i=1 

= 1 

N 	 N 
E A. x. 	xo 	 = yo io i=1 	 i=1 

E A. x.y.= x y 	E A. x. 
2 

= xo
2 

10 1 1 	0 0 	 10 1 
1=1 	 1=1 

N 	22 
E A. y. = yo i=1  lo 1 (2.3) 

The above constraints constitute the unbiasedness criterion 

of the universal kriging. 	They are also referred to as 

universality conditions. 	The estimation variance is then 

defined as: 

A 	 N 	 2 
Var(Z(Xo )) = E(Z(Xo  )- E A. Z(X.)) . 	lo 	1 1=1 

N N 
= E 	E A. A. o1 K(IX. 	j -XI) io   i=1 j=1 

(2.4) 

For added efficiency Matheron (1973) also suggests a 

family of admissible polynomial covariance functions for the 

two- and three-dimensional cases, as shown in Table 2.1. 

At this stage A io  are estimated by minimizing the 

estimation variance (2.4), subject to the incrementing 

constraints (universality conditions) given by (2.3). Using 

Lagrange multipliers, p po , for each constraint, one obtains 

the following set of equations, known as the kriging system: 

N 	 1(k) 
E 	A. K(IX. -X j I) + E p 	f (X.) = K(IX 0  -X1 1) 	i=1,...,N j=1  10 	1 p=1 P° P  
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DRIFT 
	

k 	f in R
2 	

f in R
3 	

MODELS OF GC 

CONSTANT 	0 	1 	 1 	 K(h) = Cd(h) + a l h 

LINEAR 	1 	1,x,y 	 1,x,y,z 	 K(h) = Co(h) + a l h + a 3 h 3  

QUADRATIC 	2 	1,x,y,xy,x
2 a 2 	

1,x,y,z,xy,xz, 	K(h) = C6(h) + a l l) + a 3 h 3  + a 5h 5 

2 2 2 
yz,x ,y ,z 

CONSTRAINTS 
ON THE 

COEFFICIENTS 

a l  < 0 	a 5 <0 

in R2 : a 3 
 > -P(ala5) 1/2 	in R

3
: a 3  > -(10 a

I
a

5
) 1/2 

TABLE 2.1: SELECTED MODELS FOR GENERALIZED COVARIANCES 

Source: Delfiner 1719751 

Table 2.1 Selected Models for Polynomial Covariances. 
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N 
E A. f p  (Xj) = f p  (Xo  ) 10  
j=1 

p=1,...,1(k) 	(2.5) 

where f (X) is the p th monomial in the drift function at X, 1 

is the number of such monomials in the drift function that 

depends on the order k of the polynomial drift. 

It is clear that for kriging one needs to estimate the 

order of the polynomial drift, as well as, the parameters of 

the covariance function. This pre-kriging task is known as 

the structural analysis. For structural analysis we use the 

algorithm suggested by Delfiner (1975), and a series of 

computer programs developed by the PI on the basis of an 

earlier work by Kafritsas and Bras (1981). For a detailed 

study of these procedures readers are referred to Rouhani 

(1983). 

As noted earlier, the above algrithms are basically 

applied to cases of Gaussian spatial random variables. It is 

our aim, as described in the following sections to expand the 

application domain of universal kriging to non-negative 

spatiotemporal random variables. This goal is obtained in a 

step by step manner, first by obtaining a non-negative 

universal kriging, followed by universal time kriging, and 

eventually, by the space-time universal kriging. 

1 0 



2.1. Application of Universal Kriging to Non-Negative Random 

Variables 

A significant number of variables in hydrology that are 

considered as random processes, cannot acquire negative 

values. 	This is due to either physical characteristics of 

the variable, or the way in which it is defined. 	For 

example, point rainfall by its nature cannot have a negative 

value, while the net rainfall can have both positive and 

negative values. Transmissivity is another example which by 

its definition is always positive. In contrast, the 

groundwater flow rate, depending on its direction can acquire 

both positive and negative values. 

In order to deal with this prob,em, authors have 

suggested a number of alternative approaches. For instance, 

Szidarovsky et al.  (1987) and Baafi et al.  (1986) discuss 

procedures for forcing the kriging system to produce only 

positive Aio . 	This is done by addi,g N non-negative 

constraints for each weight: A. 	) 0, for i=1,...,N, to the io 
kriging system (2.5). 

The above alternative creats two basic problems. 	The 

first one is of theoretical nature, and that is, in universal 

kriging, it is assumed that the variable of interest has a 

Gaussian distribution - capable of acquiring both positive 

and negative values. Thus, imposing such a non-negative 

constraints simply causes a contradiction with the basic 

underlying assumption of the kriging. 

The second problem is of a practical nature, which is 

caused by the addition of non-negative constriants. The 

existance of such inequality constraints prohibits the use of 

simple lagrange multipliers optimization scheme. Indeed the 

above authors have suggested optimizatica procedures which 
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are significantly less efficient than the lagrange 

mulitipliers scheme. These reasons lead us to search for 

other alternative approaches. 

While studying non-negative variables, 	the first 

observations indicate that the assumption of Gaussian 

distribution is simply not valid. So we should probably look 

for approaches that allow relaxation of this assumption. 

Disjunctive kriging (Journel and Huijbregts, 1978, Yates et 

al.,  1986a and 1986b) offers an approach based on the 

approxmation of any non-Gaussian process by a truncated 

series of Hermite polynomials of normally distributed 

variables of the form: 

J 
Z(X) = 0(Y(X)) = E 	C•H•(Y(X)) 

j=0 3  

where, 

H.(Y) = (-10exp(y 2 /2)d i (exp(-y 2 /2))/dy; 

3th . C. 	= 3 	coefficient; and 

y 	= a bivariate normal variable. 

The estimation of Z(X0 ) is then given as: 

N J A 
Z DK (Xo ) = E 	E f. .H.(y(X i) ) 

i=0 j=0 13 3  

(2.6) 

(2.7) 

where, 

A 
ZDK (XO ) = disjunctive kriging estimate of Z(X 0 ); 

N 

f.• 
1 J 

= number of measurement points; 

= sample set; and 

= a constant which depends on i and j. 

The above approach, despite its mathematical elegance, 

displays some practical limitations. 	For instance, in 
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pratice, it has a tendency to only estimate the first 2 or 3 

elements of the expansion series in (2.6). If the variable 

of interest requires a more extensive expansion, disjunctive 

kriging may lose its advantage. This deficiency may force 

the disjunctive kriging to yield inferior results. 

Another approach, which is utilized by many authors in 

geohydrology, is to assume the that the non-negative variable 

of interest is log-normally distributed, see Delhomme (1974), 

Freeze (1975), and Neuman (1982). In many instance there are 

physical evidence to support such an assumption. For 

instance, in the case of transmisivity data, as Ahmed and 

DeMarsily (1987) note, measured values usually exhibit a wide 

range of magnitudes, many orders of difference, while their 

histograms are close to lognormal. Furthermore, Matheron 

(1967) shows that in two dimensions and for parallel flow in 

a heterogenous medium, the correct average transmissivity is 

the geometric mean, which is given by the arithmetic mean of 

the logarithm of the transmissivty. So, for the above 

reasons we decided to utilize a log-nov ,a1 approach in our 

study. 

In this approach the variable of interest Z(X) is 

defined as the log-transform of the original variable Y(X), 

such as: 

Z(X) = ln(Y(X)) 	 (2.8) 

Afterward, Z(X) is treated exactly as described in Section 2. 

Different properties of Y(X) can then be estimated as: 

E(Y(X)) = exP[E(Z(X)) + Var(Z(X))/2] 
	

(2.9a) 

Var(Y(X)) = [E(7(X))]
2 
 LexP(Var(Z(X)) - 1] 
	

(2.9b) 

also, 
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m(Y(X)) = exp[E(Z(X))] 	 (2.10) 

Ya (X) = exp[E(Z(X)) + z afilTiTTTi)] 	 (2.11) 

where, 

m( ) = median; 

Y a (X) = the risk value of Y at X whose probability of 

exceedence is a percent; and 

za 	= the standardizd normally distributed random 

variable with a probability of exceedence of a 

percent. 

2.1.1. Case Study : Mapping of Geohydrological Parameters in 

the Shallow Aquifer of Dougherty Plain, Southwestern 

Georgia 

This case study was jointly supported by a grant from 

U.S. Geological Survey (USDI/USGS Project G-1219(05)). 

The Dougherty Plain which is located in the southwestern 

corner of Georgia, as shown in Figure 2.1.1.1, is a rapidly 

growing agricultural region. This area is underlain by a 

succession of sand, clay, and carbonate rocks to a depth of 

more than 5,000. ft., forming one the most productive 

multilayer aquifers in the country. In our study we focused 

on the shallow aquifer, which is the main recharge route to 

the principal artesian aquifer. This latter aquifer is the 

main source of groundwater in this region that has sustained 

the agricultural growth of the Dougherty Plain. 

The above growth has been accompanied by a drastic 

increase in the use of fertilizers and pestcides, some of 

whose components are toxic to humans, long-lasting, and tend 

to accumulate in the hydrogeological system. This poses an 

obvious threat to the quality of groundwater from the 
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PALEOZOIC ROCK AQUIFERS SHALLOW AQUIFER 

CRYSTALLINE ROCK AQUIFERS 	 PRINCIPLE ARTESIAN AQUIFER 

Figure 2.1.1.1 Dougherty Plain, Georgi 
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principal artesian aquifer. 

An important step in the understanding of this 

phenomenon is the study of the hydraulic characteristics of 

the shallow aquifer. The available values are given in Table 

2.1.1.1. As seen, all the variables exhibit wide spatial 

variations, which at some instances amount to differences of 

many order of magnitude. 

In addition to the above lateral variations, vertical 

conductivity also dispalys a decreasing trend with respect to 

the depth. Test drillings indicate that permeable sand 

layers occur more commonly in the upper half of the shallow 

aquifer than its lower half. On this basis, Hayes et al. 

(1983) suggest to consider the lower half of the shallow 

aquifer as the leaky layer between the shallow and the 

principal artesian aquifer. To derive a measure for the 

potential recharge from the shallow into the principal 

artesian aquifer, they further define leakance, L, as the 

rate of recharge per unit horizontal area per unit hydraulic 

head difference: 

L(X) = Kv (X)/b(X) 	 (2.12) 

where, 

L(X) = leakance at X in (ft/d)/ft; 

Kv (X)= vertical hydraulic conductivity of the shallow 

aquifer at X in ft/d; and 

b(X) = thichness of the lower half of the shallow 

aquifer at X in ft. 

Estimated values of leakance vary from .00001 1/d to 

0.36 1/d, with a median of 0.00172 ltd. Our objective is to 

utilize universal kriging to determine the regional 

structures of these variables. 
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WELL 
NUMBER 	WELL NAME 

* 
NORTH EAST 
(miles) 

LEAKANCE 
(ft/d/ft) 

--BAKER COUNTY 	  
38 	T. RENZE RW 
39 	JO-SU-LI TW1 
--CALHOUN COUNTY 	 
24 	B. JORDAN TW1 
--DECATUR COUNTY 	 

	

50.0 	38.3 

	

42.0 	38.1 

	

59.4 	41.8 

0.00762 
0.00002 

0.00003 

44 	DPG 30.3 	38.3 0.00019 
45 	J. HALL TW2 27.0 	46.2 0.00010 
46 	G. BOLTON TW2 23.0 	33.4 0.00038 
47 	A. NEWTON 16.7 	25.1 0.00755 
--DOUGHERTY COUNTY 	 
69 	SCHOOL BUS ROAD TW1 61.1 	59.1 u.00006 
70 	GAME AND FISH TW1 66.3 	49.1 1.00042 
71 	NILO TW3 58.5 	54.3 3.00800 
72 	USMC SUPPLY TW1 64.3 	66.4 0.00007 
--EARLY COUNTY 	 
45 	I. NEWBERRY TW2 51.9 	30.6 i 	00005 
46 	V. EVANS 38.0 	12.4 0.00013 
--LEE COUNTY 	  
40 	PIED. PLANT FARM TW1 74.3 	62.3 0.00013 
41 	S. 	STOCKS TW1 69.2 	63.3 0.36000 
42 	B. 	KING TW1 83.0 	64.3 0.00008 
43 	H. 	USRY TW1 86.0 	59.1 0.00001 
--MILLER COUNTY 	  
16 	DP3 37.0 	19.9 0.00002 
33 	J. FLEET TW2 53.0 	29.2 0.00049 
--MITCHELL COUNTY 	 
34 	H. MEINDERS TW2 31.2 	43.4 0.00034 
35 	C. BOLTON TW2 43.5 	50.4 0.00010 
36 	H. DAVIS TW1 34.8 	47.6 0.00010 
39 	DP12 45.8 	49.1 0.00003 
--SEMINOLE COUNTY 	 
27 	RODDENBERRY TW2 18.4 	16.0 0.00003 
28 	D. HARVEY TW2 31.2 	11.3 0.00007 
--SUMPTER COUNTY 	 
22 	E. 	STEPHENS TW1 91 . 5 	70.0 0,00005 
--TERRELL COUNTY 	 
14 	A. 	VANN TW1 71.0 	63.3 0.00001 
--WORTH COUNTY 	  
5 	DP9 75.5 	66.4 0.00250 
9 	C. ODOM TW1 81.0 	74.8 0.00003 

* 	The 	origin 	corresponds to 	30'38' 	North, 85 ° 10' 	west. 

Table 2.1.1.1 Hydraulic Data for the Shallow Aquifer 
Test Wells (Source, hayes et al., 1983). 
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At the first step we have to select an appropriate 

distributio function for our variables. Freeze (1975) states 

that most field studies have indicated that the log-normal 

distribution is a suitable function to describe the 

statistical variations of the transmissivity data. Ahmed and 

DeMarsily (1987) also note a number of studies which confirm 

the above. The same argumet can also be applied to the 

hydraulic conductivity. 

Considering that the transmissivity is the product of 

the hydraulic conductivity and the saturated thickness, we 

can infer that the average saturated thickness is also 

log-normally distributed. This is based on the principle 

that the products or ratios of log-normally distributed 

variables are also log-normally distributed (Benjamin and 

Cornell, 1970). By extension, the leakance which is the 

ratio of vertical hydraulic conductivity and the confining 

layer of the shallow aquifer (defined as its lower half), is 

also log-normally distributed. 

Our initial statistical structrual analysis and mapping 

based on the normal distribution assumption produced 

unreasonable results which were interpreted as an indicator 

that these variables are not normally distributed. In 

contrast, the log-normal assumption yielded reasonable 

results that confirm our theoretical argument that these 

varaibles appear to be log-ormally distributed. 

The results of structural analysis are given in Table 

2.1.1.2. As shown, all the three variables have constant 

drifts with linear covariance functions, which is equivalet 

to the cases of stationary random fields with linear 

varigrams. The statitical similarities among these variables 

stem from their explicit and implicit geohydrologic 

relationships. 
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Estimated Statistical Properties  
Hydraulic 	K 	 Covariance  

; /d1  Conductivity 	 al 	a3 	a5 

Leakance 0 0 -1.1552 0 0 1.4822 
(L) 

vertical 
Conductivity 0 0 -1.2366 0 0 1.5176 

(Kv ) 

Transmissivity 0 0 -1.3433 0 0 1.7656 
(T) 

Table 2.1.1.2 Results of Structural Analysis. 
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As a measure for the goodness-of-fit of the estimated 

covariance functions, we have utilized a jackknife estimator 

for p: the ratio of the actual sum of squared errors of the 

estimation and the theoretical sum of krigig variances 

(Rouhani, 1983). A perfect fit results in a value of 1 for 

p. The indicated values in Table 2.1.1.2, thus, display a 

reasonable and satisfactory degree of goodness-of-fit. 

For mapping puposes the Dougherty Plain area is divided 

into a 20 x 22 grid with 5 mile increments. The actual maps 

are then produced by the contour program of DISSPLA version 

9.2, which is available at Georgia Tech's OCS Cyber computer. 

For the sake of brevity and due to the similarities among the 

variable of interst only maps associaed with leakance are 

presented. For a detailed presetation of these maps readers 

are referred to Rouhani and Hall (1987). 

The produced maps are analyzed in four different 

categories: maps of expected values, maps of medians, maps of 

estimation variances, and maps of risk values. Figure 

2.1.1.2 displays the map of expected leakance, which has a 

relative uniform value throughout a large portion of the 

Dougherty Plain. However, a sudden rise is indicated in the 

southern tip of this region. At this region, leakance is 

about 4 to 10 times larger than the leakance in other parts 

of the Plain. So the southern tip should be considered an 

area with high recharge potentials. 

It must be noted that due to the asymmetry of the 

log-normal distribution some of the indicated values in the 

above map are excessively high. Meyer (1975) states that : 

"the expectation value is not so useful for an asymmetric 

distribution. Often, more significant are such measures as 

the median, mode, and the geometric mean." So we propose to 

utilize the median map as the representative map of the above 

hydraulic variables. For such log-normally distributed 
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varaibles, median is equivalent to the geometric mean. 

Figure 2.1.1.3 illustrates the median map for leakance. 

In contrast to the expected map it has more moderate values, 

and displays more spatial variations. This figure also 

points to the southern tip and the upper centeral region as 

the areas of high leakance. 

As noted earlier, kriging provides a measure for the 

accuracy of its estimates. Figure 2.1.1.4 shows the 

estimation variance of the log-leakances. The boundry region 

have higher variances, due to the fact that these points are 

generally extrapolated, and thus, contain more uncertainty. 

As expected, the southern and the northern tips show higher 

levels of uncertainty. On the other hand, the middle of the 

upper half portion of the plain displays lower variances of 

estimation which is due to a higher concenration of 

measurement points in this region (see Figure 2.1.1.1). 

Finally, we study the risk values, as defined by (2.11), 

as a measure that contains both the magnitude and the 

accuracy of the estiamted values. Figure 2.1.1.5 is the 10% 

risk map of leakance. Comparison of this map with the median 

map indicates a smoothing of small local variations in the 

risk values. This is due to the fact that at some points we 

have values with small leakances, but highly inaccurate, 

while at others we have the opposite condition. This tends 

toward more uniform risk values. It is also possible that 

inclusion of the estiamtion variance in the risk value may 

cover some of the local fluctuations of the median value. 
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2.2 Time Kriging 

Up to now, geostatistical procedures, including kriging, 

have been almost exclusively applied to spatial data. This 

is due to a variety of reasons, such as the fact many 

variables involved in mining (the original field of 

geostatistical applications) are only spatially distributed, 

or the fact that alternative estimation procedures are 

available for time series analysis. However, in our quest 

for working with spatiotemporal variables, it was essential 

to expand universal kriging into the time domain, which 

required certain modifications. First of all the two or 

three dimensional space vector X has to be converted into—a 

one-dimensional vector T with coordiante (t
i ). The 

universality conditions (2.3) are thus reduced to: 

k = 0 

k = 1 

N 
E Aio  = 1 
i=1 

N 
E A. t. =to io i=1 

k = 2 E 	A. t.
2 
 = t. 

2 
10 

i=1 
(2.13) 

Furtermore, the positive-definitness criteria of the 

polynomial covariance function, as indicated in Table 2.1, 

changes due to the one-dimensionality of time. Based on the 

work of Matheron (1973), for a polynomial covariance with the 

following form: 

k  
K(h) = C5(h) + E a,4.1 11 2p+1 

p=0 
(2.14) 

the positive-definitness conditions for the one-dimensional 
space, are: 
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0 , a 1  

a 5 	0, and 

a 3 	-2/3(30a 1 a 5 ) 1/2 	 (2.15) 

where, 

K( ) = covariance function; 

C 	= nugget effect; 

6( ) = Dirac delta function; 
.th ai 	 coefficient in the covariance function; 

h 

	

	= length of the distance vector (lag time in the 

case of time kriging); and 

k 	= order of the polynomial drift function. 

The above isotropic covariance function is composed of 

two parts. The first part is the nugget effect which 

represents small scale fluctuations and measurement errors. 

The second part is the sturctured portion that reflects the 

regional or large scale structure of the random variable of 

interest. 

In order to implement the above changes in the 

universality conditions and the positive-definitness criteria 

of the covariance, some detailed modifications in the 

original spatial universal kriging computer program were 

made. For a detailed study see Appendix 5 (TKRIG). 

2.2.1. Case Study: Time Kriging for Drought Management in 

Western Georgia 

Drought is a reoccuring event in many parts of the 

world. Drought has been termed a creeping phenomenon. It is 

generally difficult to accurately predict either the onset or 

the end of a drought, or to even know if a drought is 

occuring. It is also difficult to deter tine the severity of 
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a drought, which depends on its magnitude, its duration, and 

its geographical extent. 

Considering the above we propose to utilize time kriging 

to predict stream flow fluctuations in a drought prone area. 

This will provide a management tool for reservoir operators. 

The scheme is basically composed of the following steps: (1) 

structural analysis of the stream flow, upstream of the 

reservoir of 

the critical 

inputs into 

finally, (4) 

beginning of 

interest; (2) prediction of stream flows during 

periods; (3) applying the predicted values as 

an appropriate reservoir routing model; and 

calculating the length of time gap between the 

the critical period and the beginning of the 

predicted drought. 	This lenght is def14.10ted--as the drought 

lead time, which can be used as a warning measure by 

reservoir operators and regulatory agencies. 

For this purpose, we have selected a location in western 

Georgia,as shown in Figure 2.2.1.1, 	as the site of a 

hypothetical reservoir. 	In recent years this area has 

experinced some sever meteorological droughts, which has 

resulted into a significant drop in its agricultural 

production. 

In our study, we designed a hypotetical reservoir on 

Brier Creek, located 6.7 miles south of Thompson, Georgia, 

with a drainage basin of 56. sq. miles. The basis of our 

design was the monthly streamflow data from a USGS gaging 

station just downstream of the proposed site. Using other 

relevant information concerning the use of water in this 

region, it was assumed that the normal release rate of the 

reservoir is equal to 40. cfs. Furthermore, we assumed that 

the reservoir has an operating policy, as follows: 

Rt = S t-1 + I t' if S 	+I 	T t-1 	t 	t' 
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Rt = Tt, if Smax 	St-1 +I t 	Tt; and 

(2.16) Rt = St-1 +I t -Smax+Tt' if S t-1 +I t 	Smax 

where, 

I t = inflow volume during the t
th month; 

Tt  = target release volume during the t
th 

Smax = maximum reservoir storage. 

month; 

month; and 

Rt = release volume during the t
th month; 

St = reservoir storage at the end of the t
th 

We then defined the drought in the context of water 

management, as the condition, at which the reservoir release 

falls short of the target. For other definitions of the 

drought readers are referred to White and Glantz (1985). 

Available records of average monthly streamflows are 

provided by the U.S. Geological Survey, for the period of 

January, 1973 to December, 1982, as displayed in Figure 

2.2.1.2. The critical period is chosen for the eight month 

period from March to October, which is the low-flow season. 

It is during this period that water management drought is 

most likely to occur. 

For the selection of the appropriate distribution 

function for streamflow data, we first drew the 

log-streamflow histogram, as shown in Figure 2.2.1.3. This 

graph indicated a non-normal bi-modal distribution. For this 

reason log-normal distribution is rejected. 

We then examined the monthly fluctuation data, which are 

defined as the differences between the actual flow in any 

month and the long-term average of flow for that month. The 

resulting histogram, as displayed in Figure 2.2.1.4, shows a 

nearly normal distribution. So, we selected fluctuation data 
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as the basis of our analysis. 

The structural analysis also confirms that the order of 

the drift function for the data is 0. Three covariance 

functions are then derived as alternatives. The first one is 

a pure nugget effect (C=2181.7, a 1 =0) which results in equal 

Xi°  for all the measured values in the estimation process, 

regardless of their temporal vicinity to the estimated time. 

The second one does not have any nugget effect (C=0, 

a 1 =3149.7) which gives the whole weight to the nearest 

measured value and ignores all the rest. This is an extreme 

case of shadoW effect which reduces the impact of data beyond 

the first ring of measurements (David, 1977). The third one 

contains both the nugget effect and the correlated portion 

(C=1696.53, a 1=-56.06). This third option yields more 

realistic weights by giving the highest weight to the nearest 

data and then decreasing as the time lag increases. This 

covariance was also confirmed by an experimental variogram. 

The range of the variogram is approximately estimated as 8 

months. This means that fluctuations with 8 or more months 

of lag between them, have no significant covariance. 

Using the third covariance, at each March (beginning of 

the critical period) we estimate a sequence of eight monthly 

fluctuations, based on the available data prior to March. 

Each estimated fluctuation is then added to the long-term 

monthly average flow for that month to produce a sequence of 

eight monthly flows. These values are then used as inflow 

data, I t , in the routing procedure, to calculate the release 

rates, Rt , during the critical period. The first month that 

indicates an R t less than the target release is identified as 

the beginning of the drought period. The lag between this 

month and the begining of the proceeding March is defined as 

the drought lead time- a measure of warning for reservoir 

operators about the possibility of a drought. 
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In order to test the validity of our procedure the above 

scheme is repeated using the actual data for the critical 

periods between 1972 and 1980, and their results are compared 

to time kriging results. Figure 2.2.1.5 shows the results of 

the predicted flows. Generally, they are poor estimates. 

This is due to two reasons. First, the predicted values are 

in fact extrapolated values, and thus, contain a significant 

amount of uncertainty. The second reason is particular to 

our data set which shows a poor correlation between the 

fluctuation values. However, it will be seen that these 

results still provide a reasonable estimate of the drought 

lead time, whose estimation is our main target. 

At the next—s 	aye, the routing procedure is repeated for 

both the estimated data, and the actual data, using initial 

storage values of 0, 500, 1000, 1500, 2000, 2400, 5000, 8000, 

10,000, 15,000, 20,000, 25,000, and 29,040 acre-feet. Thus, 

we cover the whole range of possible initial storages, from 0 

to Smax' which produced 208 trials. 

In the above runs, as expected, the drought lead time 

showed a positive correlatoin with repect to the initial 

storage S o . Furhtermore, as So  increases, the correlation 

between the actual and predicted drought lead time (N) 

increases as well. As indicated in Figure 2.2.1.6, for S o  of 

8000 acre-feet and up, this correlation is 1, which means a 

perfect estimation. 	Figure 2.2.1.7 displays the actual 

and predicetd drought lead times 	for different initial 

storages. The correlation is quite satisfactory. 

The drought lead time appears to be a useful tool for 

providing a warning system for reservoir operators. The time 

kriging plays a pivotal role by providing predictions for the 

inflows. For a more detailed study of this case study 

readers are referred to the M.S. special research of K.A. 

Cargile (1987), conducted under the supervision of the PI. 
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2.3 Universal Space-Time Kriging 

As noted earlier, our eventual objective is to expand 

universal kriging to the space-time domain. This expansion 

has a multitude of benefits for hydrologists. First of all 

it enables us to utilize our space-time data efficiently. As 

noted before, in a number of past studies, authors have to 

divide their data base into segments for each time interval, 

and then apply spatial geostatistical techniques to each 

subsection (Delhomme, 1977), or use temporally integrated 

values as the basis of their analysis (Chua and Bras, 1980). 

Space-time universal kriging, on the other hand, provide 

us with a tool to study the spatiotemporal variable of 

interest, without forming artificial divisions or integrated 

values based on temporal occurances. It also allows 

hindcasting and forecasting, which are not possible with 

spatial kriging. Finally, as it will be shown, in most 

cases, the maps based on space-time kriging are more accurate 

than the ones by spatial kriging. This is due to the fact 

that space-time kriging is able to utilize a broader range of 

information than the spatial kriging. 

Our survey reveales that only few authors have ever 

attempted to use kriging simultaneously in both the space and 

time dimensions. Most notably, Bilonick (1985, 1987) has 

exapnded kriging into time space by utilizing anisotropic 

variograms, where the time is treated as the (n+1) th 

dimension. He has applied this prosedure for mapping of 

sulfate and ion deposition in the northeastern U.S. To our 

knowledge, this project is one of the f.rst attempts to 

expand and uitlize space-time universal kriging in hydrology. 

Expansion of universal kriging into the time-space 

domain requires two important steps. In the first step we 

propose to exapnd the universality conditions by including 
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both the spatial and temporal drifts. We then search for an 

appropriate family of spatiotemporal covariance functions. 

For the expansion of the universality conditions, we 

assumed that similar to the space domain, the random variable 

of 	interest may 	have 	a temporal 	polynomial 

order. 	We 	define 	orders 	ks 	and 	k1 , 	as 

polynomial drift in the space and time domain, 

We expand the universality conditions by combining 

(2.13). 	For the case of k s=2 and kt=2, 	the 

system 	with 	N 	data 	point 	for 	estimation 

coordinates 	(xo' 	yo' 	to ) 	is: 

0 	0 	... 	0 	0 	0 	0 	1 	 1 

0 	 0 	0 	x 1 	xN 

. 	 . 

0 	0 	0 	0 	0 	0 	
Y1

2 	
YN

2 

0 	0 	0 	0 	0 	0 	t
1

2 	
tN 

0 	0 	0 	0 	0 	0 	t
1 	tN

2  

2 	 2 
1 	x 1 ... 	 Y 1 2 	t1 	t1 2 	

K
11 	

K
1N 

1 	x 2— 	Y2 	t2 	t2 	K21 	K2N 

2 	 2 
1 	X

N 	 YN 	tN 	tN 	N1 	KNN 
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universal 

trend 

p 1 0 

ij 2o 

P 6o 
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A go 

No 

order 

at X0  

respectively. 

of 

(2.3) 

of 

kriging 

1 

x
o 

• 
2 

Y o 
 

t 
0 2 

t
o 

K 10 
K2o 

KNo 

some 

with 

the 

and 

(2.17) 

where, 13  K.. is defined as the covariance between X. and X. 
3' 

A10 is the kriging weight for the i th  data point, and p po  is 

the Lagrange multiplier for the p th monomial. In the above 

case there are eight monomials as: 1, x, y, xy, x
2

, y
2

, t, 

and t
2

. 

Our initial search for an appropriate family of 

covariance functoins provided us with a number of 
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alternatives (Rouhani, 1986x). 	For example, in our pilot 

study, we constructed a composite polynomial covariance 

function to cover both the space and the time dimension. 

This approach is similar to deriving covariance functoins for 

anisotropic random variables, or for spatial fields with a 

nested statistical structures. It is based on the following 

properties of positive definite functions (Journel and 

Huijbregt, 1978), that: (1) every linear combination of 

covariances with positive coefficient is a covariance, and 

(2) any covariance product is also a covariance. For 

variograms only the first rule is applicable. 

The above rules indicates that there are numerous 

models, as well as, their combinations that can be used as 

models for our study. The question that arises is which one 

of these is more suitable? For instance, we use polynomial 

covariance functions for the sake of operational efficieny. 

However, in the course of our study we encountered some 

difficulties, which were mainly due to the fact that 

covariance estiamtes based on actual data display a lack of 

robustness. Small changes in the data set causes significant 

fluctuations in the estimated parameters of the covariance 

function. Furthermore, there are some tendency in the 

proposed algorithm by Delfiner (1975) to yield covariances 

with large nugget effects. Consequently, the choice of the 

best fitted polynomial covariance becomes rather subjective, 

which in turn, reduces the efficiency of the scheme. 

Rouhani (1985 and 1986) and Rouhani and Fiering (1986) 

discuss the above problems in detail. They conclude that 

despite fluctuations in the estimated covariance functions, 

kriging estimates show a high degree of stability. Journel 

and Huijbregt (1978) go even further and state that: "the 

results of the geostatitical calculations prove to be robust 

in relation to the choice of the (covariance or variogram) 

model - provided that the parameters of this model are 
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correctly estimated." 

After the above considerations, we decided to continue 

using the family of polynomial covariance functions as the 

basis of our analysis, as defined in (2.15), such that: 

K(h,t) = K s (h) + Kt (t) 
	

(2.18) 

where, 

K 	= spatiotemporal covariance; 

Ks 	= spatial polynomial covariance; 

Kt = temporal polynomial covariance; 

h 	= space lag; and 

t 	= time lag. 

Structural analysis is then performed by adding a 

tolerance limit to both the space and the time dimensions. 

For instance, while estiamting the parameters of K s, we 
assumed that any data point located at t i  t E t  can be 

considered at the same time interval as the i th data point. 

Likewise, in the estiamtion of K t , the points located at a 

radius of e s of each other are considered to belong to the 

same time series. This allowed us to simultaneously conduct 

the spatiotemporal stuctural analysis. For a detailed 

description of the above algorithm, readers are referred to 

the M.S. special research of T.J. Hall (1987), conducted 

under the supervision of the PI. The program itself is given 

in the Appendix 5 (STVARED). 

2.3.1. Case Study: Space-Time Mapping of Groundwater Data in 

Southern Georgia 

The data for this study is from a U.S. Geological report 

by Clark et al. (1985). We selected a study area of 110 

miles by 80 miles in southern Georgia with eight sampling 
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Figure 2.3.1.1 Study Area in Southern Georgia. 
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points, as shown in Figures 2.3.1.1 and 2.3.1.2. The 

sampling points are not uniformly distributed. 	The 

upper-centeral portion of the study area has a relatively 

higher concentration of points, while the lower-centeral 

portion has no data points. 

The basis of our study are monthly averages of water 

table elevations in 1984 for each of these points. In 

general, water table elevations range from less than 100 feet 

above MSL in the lower portion of the study area, to well 

over 200 feet above MSL in the upper portions. 

The pre-kriging structural analysis is conducted on both 

the time and the space domain. However, we encountered a 

problem which was caused by ill-conditioned matrices in the 

kriging system, given by (2.17). This was caused by the 

similarities between rows associated with sampling points 

with same spatial locations. In other words, differences in 

time lags were relatively insignificant when compared to 

spatial lags. To solve this problem, we use a set of scales 

to create more homogenous values for space and time. After 

a series of trials, we choose to divde spatial coordinates by 

10, and the temporal coordinates by 1.2. In this way all the 

coordinates of the measurement sites vary between 0 to 10. 

We first estimated the spatial structure of the 

variables. It is found that the order of the spatial 

polynomial trend is 2. The best fitted polynomial covariance 

is also determined to have the following coefficients (C=5, 

a 1 =-28). The jackknife estimator of p for the chosen 

function is 1.0233, which indicates a satisfactory fit. 

We then analyzed the temporal structure of the data. 

Our analysis indicates a linear drift. As indicated in the 

Section 2.2.1 the covariance function should contain a nugget 

effect, as well as, the structured portion. This way the 
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resulting weights give a gradually decreasing value as the 

lag time between the sampled point and the estimated point 

increases. After some trials, we selected a linear 

covariance function with the following coefficients as: C=5 

and a 1 =-0.5. The jackknife estimator of p is 1.0053, which 

is an indication of a very good fit. 

At the next stage we performed universal kriging for a 

12 x 8 grid with 10 miles increments. For the sake of 

brevity we only present some of the results. Figure 2.3.1.3 

displays a hindcasted map for the middle of March (3.5 

months), while Figure 2.3.1.4 shows its variance of 

estimation. It must be noted that with spatial kriging, such 

maps cannot be estimated. 	Universal space-time kriging is 

also capable of forecasting. 	Figures 2.3.1.5 and 2.3.1.6 

exhibit forecasted map for 14 th  month and its estiamtion 

variance. The similarity of the variance maps is due to the 

fact that in our initial studies we imposed a weight to give 

more preference to temporal data. 	We later abandon this 

approach by using scale factors, instead. 	This scheme 

produced more reasonable results. 	It must be noted that 

forecasted maps usually lack the desired accuracy. However, 

for short term predictions they provide a reasonable map, as 

indicated in our example. 

Finally, we present the results of spatial mapping with 

and without the use of temporal data. Figures 2.3.1.7 and 

2.3.1.8 show the estimated map of piezometric surface for the 

first month along its variance map, using only the eight 

available values for the first month. Now compare these maps 

to Figures 2.3.1.9 and 2.3.1.10 which display the same, 

however, based on universal space-time kriging. The most 

striking feature of this comparison is the significant 

improvement in, estimation variances after the inclusion of 

the temporal data. In short, universal space-time kriging 

provides a tool for forecasting and hindcasting, as well as, 
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Figure 2.3.1.3 Piezometric Surface at M_ d-March, 1984. 
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Figure 2.3.1.4 Estimation Variance at Mid-March, 1984. 
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Figure 2.3.1.6 Estimation Variance at 14 Months (Feb. 1985). 
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Figure 2.3.1.7 Spatial Kriging of Piezometric Surface 
at 1 Month (Jan. 1984). 
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Figure 2.3.1.8 Estimation Variance Using Spatial Kriging 
at 1 Month (Jan. 1984). 
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Figure 2.3.1.9 Space-Time Kriging of Piezometric Surface 
at 1 Month (Jan. 1984). 
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more accurate mapping of spatial data. 
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3. EXPANSION OF VARIANCE REDUCTION ANALYSIS 

As noted, the variance of estimation, given by (2.4) is 

a measure for the accuracy of the estiamted value. Many 

authors have proposed the use of this measure as a guideline 

for sampling activities. For example, DeMarsily (1979) 

suggests that the location with the highest estimation 

variance should be selected as the next sampling point. This 

approach, however, does not consider the impact of a new data 

point on its neighboring region. It also ignores the fact 

that another point with lower estimation variance may be more 

effective in reducing the over-all uncertainty of the field. 

In order to resolve the above problem, Rouhani (1983 and 

1985) proposes the derivation of the magnitude of variance 

reduction at point X0  due to a sampling at X *  (the arbitrary 

location of a potential sampling site). This magnitude is 

denoted as VR0* , which was determined through the concept of 

bordered matrices. 	It was also shown that VR o* can be 

calculated without resolving the kriging sysytem. 	This 

allows us to evaluate the variance reduction potential of any 

point prior to its sampling. 

VR0*  is determined to be: 

N 	 1(k) 
-1 	 2 

VR
o*  = (V* (N)) 	(K*0  - E Ai* Ki0 	E pp* fp (X0 )) 

i=1 	p=1 

(3.1) 

where V* (N) is defined as the estiamtion variance at X *  prior 

to any sampling (i.e. using the N available data points). 

The rest of -definitions are given in (2.5) and (2.17), 

assuming the condition of pre-sampling at X. This measure 

can then be expanded to the whole field to determine the 

total variance reduction due to a sampling at X * , denoted as 
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TVR * . In the continious case it is: 

TVR *  = f VR,... * dX0 	 (3.2) 
S 

or in the discrete case: 

TVR *  = E VR0* 	 (3.3) 

where S defines the continious estimated field, and j defines 

the set of discrete estimated point, such that j e S. 

TVR *  is a measure for information gain due to a sampling 

at X. It can be directly used by the planners to identify 

the location of the best sampling point. If a loss function 

is available we can calculate the economic gain due a 

sampling. For instance, Rouhani (1985) uses a two-piece 

linear loss function due to over- or under-estimation of the 

variable interest (in this case, piezometric levels). It is 

shown that the expected value of economic loss reduction is 

related to variance reductions as follows. 

TLR1, 	(Cu 	co"21TC1/2(EN71/2 	E(V.-VR.*) 1/2 ) 
3 	j 	3 

(3.4) 

where, 

TLR *  = total loss reduction due to a sampling at X * ; 

Cv 	= loss per unit length of under-estimation; 

C0 	= loss per unit length of over-estimation; and 

j 	= set of estimated points. 

The above can be easily derived for the continious case. 

TLR *  can be compared to the cost of sampling at X * , in 

order to derive a value for the net worth of data. 	This 
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measure provides an alternative ranking for the selection of 

the best sequence of points. The identification of the best 

sequence is conducted, such that, at each round of kriging 

the point with the highest information gain (TVR * ) or the 

highest economic gain (TLR * ) is selected as the next added 

sampling point, which will then be added to our data set. 

This process continues until we have satisfied our 

infromation criteria, or our budget is exhausted. This 

yields a sequence of n points among m available points for 

further sampling. For a more detailed study of variance 

reduction analysis readers are referred to Rouhani (1983 and 

1985). 
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3.1 Variance Reduction Analysis for Non-negative Variables 

As noted earlier, the above procedure had been applied 

to cases of Gaussian random variables, only. In our first 

attempt we utilize this procedure for sampling in cases where 

the variable of interest is non-negative. The basis of this 

procedure is already outlined in Section 2.1. In other 

words, we assume that our variable of interest is 

log-normally distributed. We further propose to use the 

lograrithm of Y, denoted as Z and defined by (2.8), as the 

basis of our variance reduction analysis, which is outlined 

in Section 3. 

To accomplish the above, it needs to be shown that the 

point with the highest information or economic gain for Z(X) 

is the same point for the original variaile Y(X). This can 

be easily illustrated by considering (2.9a) and (2.9b) that 

give the expected value and the variance of an estimated 

Y(X), in terms of the expected value and estiamtion variance 

of the estimated Z at the same point. As seen, the variance 

of Y(X) directly depends on the Var(Z(X)) and E(Z(X)). 

However, E(Z(X)) remains unchanged, as ong as, the added 

point agrees closely with its predicted value. Thus, the 

only variable is Var(Z(X)), which goes down as new data 

points are added. This means that wh_chever point that 

induces the highest varaince reduction for Z(X), yields the 

same for Y(X). 

The magnitude of variance reduction for the estiamted 

Y(Xo ) due to a measurement at X * , VRo ,(Y), can be derived 

from the variance reduction at Z(Xo ) due to the same 

measurement, denoted as V110,(Z), by taking the first 

derivitive of (2.9b) with respect to Var(Z(X0 )), and 

rewriting it to yield. 
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VR0* (Y) = 

VR0* (Z)[expf2E(Z(X0 ))+Var(Z(X0 )))][2exp(Var(Z(X0 )))-1] 

(3.5) 

which further shows that the selected sequence of points 

based on variance reduction analysis of Z, produce the 

highest variance reductions for Y. 

3.1.1. Case Study: Optimal Schemes for Groundwater Quality 

Monitoring in the Shallow Aquifer of Dougherty Plain, 

Southwestern Georgia 

As described in Section 2.1.1, Dougherty Plain is a 

major agricultural center, whose growth is made possible by 

the groundwater from the principal artesian aquifer. The 

protection of this aquifer can be substantially improved by 

establishment of a water quality network in the shallow 

aquifer. This monitoring network can act as an early warning 

system for pollution control in the lower layers. It also 

allows time for the design and implementation of appropriate 

prevention plans. 

The questions that immediately arise are: How should we 

design such monitoring netwrok? More specifically, what 

criteria should be utilized as the basis of our network 

design? Where are the best locations for sampling sites? In 

order to answer these questions we studied a number of 

schemes. 

The common statitical approach to a sampling design is 

the maximization of incremental infromation subject to budget 

constraints; see Fiering (1965), Hughes and Lettenmaier 

(1981), Chou and Scheck (1984), and Rouhani and Fiering 

(1986). Variance reduction analysis is one such method. 
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These schemes generally give priority . o points with high 

estiamtion variance,, regardless of the magnitude of the 

estiamted values. Such a criterion is thus suitable for 

cases where the magnitude of the variable of concern is not 

of primary importance. 

In our case study, however, the desired monitoring 

network is designed on the basis of leakance data. This 

choice is made in order to identify locations, where there 

are higher chances of surface pollution leakage into the 

principal artesian aquifer. So, we are not only interested 

to gain as much information as possible, but also to monitor 

areas with potentially high levels of re ,  harge. This means 

that we should also explore other selection criteria which 

include both the accuracy and the magnitude of the estiamted 

values. 

To accomplish the above, we have used three selection 

criteria. The first one is based on the maximization of 

incremental information, using variance reduction analysis. 

The second one is based on the ranking of median values of 

estiamted leakance. The third one uses the risk value as the 

basis of its selections, as defined by 2.11). This last 

criterion includes both the accuracy and the magnitude of the 

varaible of interest. 

For sampling purposes we have defined the 32 points 

shown in Figure 3.1.1.1 as potential sampling sites. These 

points are scattered uniformly over the Dougherty Plain area. 

This figure also displays the location of existing sampling 

sites which are scattered throughout the plain and its 

vicinity. There are concentrations of data points in few 

zones, such as the middle of the upper por -ion. However, the 

distribution of these points can be considered as relatively 

uniform. Such a distribution allows us to examine the 

ranking of potential sampling sites witAput any implicit 
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bias. 

The 	sampling 	activities 	are 	conducted 	in 	a 

non-sequential manner , which means that the estiamted 

covariance function remains unchanged. This assumption can 

be violated if the measured values at the new sampling sites 

turn out to be significantly different from their predicted 

values. In a non-sequential sampling we implicitly assume 

that the measured value at the new site belongs to the same 

predicted population. The rankings are conducted similar to 

the procedure outlined in Section 3. We, however, use three 

selection criteria, as discussed above. For the sake of 

brevity we only present a summary of results. For a complete 

description of results readers are referred to Rouhani and 

Hall (1987). 

Figure 3.1.1.2 shows the sequence of selected points 

based on variance reduction analysis. As expected, the 

boundary nodes located in the eastern and southern sections 

of the palin have higher ranks. The centeral nodes and the 

western boundary, on the other hand, have lower ranks. 

Figure 3.1.1.3 displays the relative information gain by each 

ranked site, in terms of its TVR,. Sampling at the top five 

points yield the highest amount of gain. Additional sampling 

appear to worth only marginally. One could assume that there 

must be a finite number of sampling sites, such that, any 

sampling beyond these points results in small information 

gains that cannot be economically justified. 

The above criterion, despite its versitality, ignores 

the magnitude of estiamted values. So, in our second ranking 

we use a criterion which only depends on the estiamted 

magnitudes. Figure 3.1.1.4 shows the result of median 

ranking. As seen, in contarst to the previous ranking, the 

upper centeral portion of the plain, as well as, its southern 

tip have gained the highest ranks. 
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In our third criteria, we used risk values as the basis 

of our selections. Figure 3.1.1.5 shows such ranking, using 

the 10% risk values (i.e., such values whose probability of 

exceedence is only 10%). This corresponds to (2.11), where 

za is equal to 1.28. In this ranking, the southern tip and 

the centeral zone (nodes ranked fourth, fifth, and sixth) 

have the highest rankings. The centeral region was generally 

ignored by the first criterion. This is due to fact that 

this region despite of its high leakance is relatively well 

sampled, and thus, has low estiamtion variance. This 

illustrates one of the advantages of the risk ranking which, 

in addition to the accuracy of estiamted points, considers 

their magnitude, as well. 

Equation (2.11) shows that the risk value is basically a 

weighted sum of the expected value and its estimation 

variance. So, as we decrease the probability of exceedence 

of our risk values (i.e., making them more extreme), we are 

giving more weights to the variances, and conversely. This 

indicates that the risk value has practically two extremes. 

If a is very small, the risk ranking appraoches the variance 

reduction ranking. On the other hand, as a nears 50%, or as 

za approaches 0, the risk ranking becomes closer to the 

median ranking. These tendencies are cleraly demonstrated in 

Figures 3.1.1.6 and 3.1.1.7, which represent the 1% and 4% 

risk rankings, respectively. This characteristic is another 

advantage of risk ranking that provides a flexible weight for 

users to adjust their sampling plans according to their 

specific objectives. 
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3.2 SPACE-TIME VARIANCE REDUCTION ANALYSIS 

In this section we attempt to expand variance reduction 

analysis into space time domain. Our survey indicates that 

this study is the first attempt to expand variance reduction 

analysis to be applicable to the case of spatiotemporal 

variables. 

The basis of our approach is spac.-time kriging, as 

described in Section 2.3. In particular, it can be shown 

that the addition of a measurement point at an arbitrary 

site, X * , with coordinates (x * , y * , t * ), transforms kriging 

matrix in (2.17) into a bordered matrix. The inverse of this 

matrix, and hence, the solution to this kriging system, can 

be determined by utiizing the inverse of the original matrix, 

see Rouhani (1985). Thus, we can derive the estimation 

varaince at an estimated point, X0 , with coordinates (x o , yo , 

to ), if a sampling point is added at X * . The amount of 

information gain, measured in terms of reduction in 

estimation variance at X o , due to a measurement at X * , can 

then be calculated, using an equation similar to (3.1), as: 

N 	 1(k 

s

) 
VR0* 	(V* (N)) -1  [K *  - E A * K. 	E 	p * f (x ,y ) - o 	i= i i 	io 	p=i ppoo 

1(k_)+1 1 (kt ) 2 
F 	p * f (t ) 

p=1(k s )+1 P P  

(3.6) 

where 1 and 1' are the numbers of monomials in the spatial 

and temporal drifts, which depend on the order of these 

drifts, ks and kt, respectively. The rest of definitions are 

indicated in (3.1) and (2.17). For the case of a variable 

with a two dimensional space coordinates and a one dimesional 

time coordinate, the number of monomials are given as 
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follows: 

1 = (ks + 1)(ks + 2)/2 

and 

1' = kt 
	 (3.7) 

Please note that the constant monomial is not included in the 

temporal drift. This is due to the fact that it is already 

contained in the spatial drift. It implies that the 

universality condition for the constant monomial is included: 

E N iel, for As an example, we can look at the 

case of ks=kt=2, where 1=6 and 1'=2. The monomials for the 

above case are: 1, x o , yo , xoyo , xo
2

, and yo
2 

(for space), 

and two additional temporal monomials t o and to e ; a total of 

8 monomials. 

In the case that Xo and X, have two different 

neighboring set of data, we have to make an additional 

assumption. For this purpose, we use the argument stated by 

Rouhani (1985). He states that since we would like to 

predict the impact of X *  on X0 , we should use the former's 

neighboring data as the basis in (3.6). This allows us to 

measure the impact of additional information which is 

presently contained in the estimate at X * . 

The neighborhood of each estimated point is determined 

by using the space-time covariance function, as defined in 

Section 2.3. 	To accomplish this task, the number of 

neighboring points, N, has to be specified. 	The program 

identifies the N data point with the highest covariances with 

the estimated points, as its neighboring sites. This is a 

specially efficeint scheme for spatiotemporal variables. 

Similar to the space variance reduction analysis, we can 
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expand (3.6) over the entier domain, in order to measure the 

information efficiency of an added sampling at X * , in terms 

of its total variance reduction (TVR * ): 

TVR *  = f VR0*dX0 
 S,T 

or in the dicrete case, 

TVR *  = E VR. 
3 *  

3 

(3.8) 

where, X0  sweeps the spatiotemporal domain, and j is the set 

of estimated points in space and time. At each round of 

sampling we can identify the point with the highest TVR as 

our next added measurement. This process continues until we 

have either exhausted our budget, or have satisfied an 

accuracy criterion, such as maximum allowable uncertainty. 

For sampling, the program allowes a general flexible 

schemes, suitable for a variety of different hydrological 

problems. The user can select n sites at each time period as 

one time measurements or measurements that will be collected 

for the next m time intervals. For instance, an 

oceanographic vessel allows only a one time sampling at each 

location along it path. In contrast, a stationary device, 

such as a piezometer inside a well, provides discrete or 

continious measurements at only one lcation. Thus, the above 

scheme can be easily adapted to a variety of monitoring 

devices. 

3.2.1. Groundwater Sampling in Space and Time in Southern 

Georgia 

In this project we initiated the applications of 

space-time variance reduction by using it for the design of a 

sapmling scheme for groundwater monitoring in southern 

Georgia. The data set is already discussed in Section 2.3.1. 

It consists of average monthly piezometric heads in 8 wells 
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for a 12 month duration. 

For the purpose of sampling the centeral region of this 

area, where 10 miles 4 x 100 miles, and 40 miles y 100 

miles, is selected as the area of potential new measurements. 

We then establish a 6 x 4 grid, with 15 mile increments in 

both directions. The nodes of this grid are defined as the 

potential sampling sites, as shown in Figure 3.2.1.1. 

Our measurement devices are assumed to be stationary 

piezometers, Which are to be installed one month after the 

end of our available measurements, i.e., 13 months. 	This 

task would be impossible, if we only had the 	spatial 

variance reduction analysis. 

We then used a neighborhood size of 10. The result for 

five additional sampling sites are given in Figure 3.2.1.2. 

It is interesting to note that the estimation variance of the 

first point is less than the one for the second point. This 

condition also exist for the fourth and the fifth point. It 

indicates that at the first and the fourth round of ranking, 

despite the fact there are points with higher varainces, the 

program selects other sites that have more effective impacts 

on the accuracy of the entier field. Such a procedure 

results into higher information gains. 

Figure 3.2.1.3 reflects the level of information gain at 

each sampling. As expected this level drops quickly to an 

assymptotic level after the first few added points. 

In our next trial, we study the sensitivity of 

space-time variance reduction analysis with respect to the 

size of the neighborhood, N, which is a rather arbitrary 

measure. 	For this purpose we used an N=6. The results of 

analysis are given in Figure 3.2.1.4. 	Which are almost 

identical to the previous case. The only diference is in the 
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Figure 3.2.1.2 Variance Reduction Ranking (N=10). 
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Figure 3.2.1.3 Total Variance Reductions of Added Sites. 

(N=10). 
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Figure 3.2.1.4 Variance Reduction Ranking (N=6). 

78 



choice of the fifth point, which has a low information gain, 

anyway. Figure 3.2.1.5 displays the estiamted information 

efficiencies of the selecd point that are also very similar 

to the previous case. Thus, it can be conc_uded that variance 

reductiona analysis is relatively robust with repect to the 

size of neighborhood. This is true, as long as, the first 

few nearby data points adequately describe the process in the 

vicinity of the estimated point. 

The major problem that we encountered here was the 

problem of ill-conditioned kriging matrices, which occured 

more frequently as we added more sampling points. This 

problem manifests itself by yielding unrealistic A io , which 

result into varainces of estimation with very high, and 

sometimes, unbounded absolute values. This in turn prohibits 

the use of varaiance reduction analysis, for TVR may show an 

unacceptable upward trends. This condition in fact occured 

for the sixth points and on, we thus ignored their results. 

Presently, we are studying alternative approaches to resolve 

this problem. For instance, in such cases we can use 

approximate solutions to the kriging system in (2.17). This, 

however, may reduce the accuracy of our scheme. It is 

anticipated that the search for a solution for the above 

problem will be one of our next objectives. 
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Figure 3.2.1.5 Total Variance Reductions of Added Sites 
(N=6). 
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4. RESILIENCE OF VARIANCE REDUCTION ANALYSIS 

As noted in Section 1, one of our goals has been to test 

the resilience of variance reduction analysis, in cases where 

some of its basic assumptions are violated. In previous 

sections we have already study the sensitivity of resilience 

vis-a-vis the variability in some of the involved parameters, 

such the size of the neighborhood. In this section, however, 

we are more interested to study the dynamic behavior of 

variance reduction analysis. 	The following paragraphs 

provide a brief report of this study. 	For a more detailed 

presentation, readers are referred to Rouhani and Fiering 

(1986). 

Our study is designed to answer such questions, as: What 

is the effect on the sampling scheme if the predicted values 

are significantly under- or over-estimated? How does the 

covariance function respond to the newly sampled values? Are 

the decisions of the above analysis stable under such 

situations? To answer these questions we propose to study 

the resilience of variance reduction analysis. 

The concept of resilience in water resources is a 

relatively new topic (Fiering, 1982). Resilience is the 

ability of the system to accomodate surprises and to survive 

unanticipated perturbations. It implies that even if an 

unlikely event occurs, the decision has an acceptably high 

probability of being either correct or good enough. In other 

words, a tolerance ("good enough") and a confidence 

("acceptably high") are required. 

Resilience is a more general concept than the 

robustness. Fiering (1982) gives an example to illustrate 

the differences between robustness and resilience of a 

system: "The sensitivity of the system response with respect 
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to a decision variable x i  is given by the partial derivative 

af/ax i . If the partial derivative is small, the system is 

"robust" with repect to such changes. If the partial 

derivative is not small, the system need not suffer important 

shifts in its reponse because changes in other decision 

variables might be made to accommodate an unfortunate choice 

of xi ." Therefore, robustness alone does refect the behavior 

of the entier system. The total derivative df/dx i  = 

y af/ax i Mayax.)measures the system's ability to adjust 

to changes in xi . A linear combination of all total 

derivatives df/dx i  might suggest a measure of resilience of 

the given system. 

In this section we consider varLance reduction analysis 

as a system, composed of an input space (set of measured 

values), a parameter space (covariance models and their 

estimated parameters), and an action space (selected sampling 

sites). 

To test the resilience of the above system we first 

assume that the measured values in the data space are under-

or over-estimated to such degree that we have to reject the 

hypothesis that they belong to the population with a mean 

equal to their predicetd values. In the second step the 

parameters of the covariance are re-estimated, affecting the 

parameter space. Finally, we proceed with the selection of 

next added sites, thus, studying the impact of mis-estimation 

on the action space. 

To generate the "measured" values at the sampling site , 

we use the risk values of the variable: 

Z i1-1 (X,) = l i (X,) t z a (Vi (X4 )) 1 / 2 	 (4.1) 

where, 

82 



= (i+1) th  added measured value at X * ; 

= estimated value at X *  based on Ki ; 

= varaince at X *  based on K 1 ; 

= estimated covariance at the i th round of 

sampling; 

= standardized normaly disributed random 

variable with a probability of exceedence of 

a percent; and 

= level of deviation. 

za 

a 

We then define a number of schemes on the basis of type 

of mis-estimation (0 for over-estimated, U for 

under-estimated, and S for alternating under- and 

over-estimation), and their level of deviations in percent. 

So, the U-90 refers to the case that all measured values are 

assumed to be under-estimated, using z 90=1.280 in (4.1). 

The data set used are 84 piezometric data in northwstern 

Kansas, scatterd over an area equal to 2,560. square miles, 

as described in Rouhani (1985). The study area is divided 

into a 4 x 5 grid with increments of 8 and 16 miles in x and 

y directions, respectively. The nodes are defined as 

potential sampling sites, as indicated in 7igure 4.1. 

Nine studies of sampling planning are conducted, using 

different mis-estiamtion schemes and levels of deviations. 

Some of the generated data with large perturbations might be 

unrealistic. For example, in study U-99, large additions to 

Z might yield a water table significantly higher than the 

ground level. These values are included in this study to 

test the reliability of the proposed algorithm under some 

extreme, unexpected or counter-expected events (Fiering and 

Kindler, 1981). 

The results of sampling studies are included in Figure 
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Figure 4.1 Original and Sequential Sampling Schemes 
along with the Existing Data Points 
(Northwest Kansas). 
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4.1. Comparison between these results with the original case 

with no generated noise, reveals a case of an unstable 

parameter space, but a resilient action space. In general, 

when the level of noise is low, universal kriging treats it 

primarily as measurement error. Cosequently, the structural 

analysis produces covariance functions with larger nugget 

effects (C in Eqaution (2.14)). In such instances the 

priorities are furhter shifted toward border nodes. 

When the level of noise is high.,, universal kriging 

considers it as indication of error caused by an 

under-estimated covariance function. Consequently, the 

parameters of the structured part (coefficients a 2p+1 in 

Equation (2.14)) increase. This in turn causes an increase 

in the influence of the internal nodes on their neighboring 

points, which makes the internal locations more advantageous 

as sampling sites. 

Despite the large amount of simulated noise, all 

selected sequences show a great degree of geometrical 

similarity. 	A regret analysis also shows a case of near- 

optimality among all selected sets. 	This study clearly 

illustrated the resilience of variance redution analysis. A 

more detailed description is given in Rouhani and Fiering 

(1986). 
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5. GENERAL CONCLUSIONS AND FUTURE PLANS 

As described, universal kriging and variance reduction 

analysis appear to be effective tools for performance of 

hydrological estiamtion and sampling. Universal kriging has 

proven to be easily applicable to cases of non-negative 

log-normally distributed random variables. Its theoretical 

expansion to the time-space domain is also conducted without 

any difficulty. This expansion in turn allows the 

development of variance reduction analysis for spatiotemporal 

processes. In the following paragraphs we try to highlight 

the important conclusions that lead us to our future plans. 

In the first section, the theoretical part of the 

expansion of universal kriging appear to be rather 

straightforward. 	This is done by assuming that time is 

(n+1) th  dimension for the variable of interest. 	Presently, 

we are exploring other theoretical arrangements to deal with 

space-time dimensions. For instance, we can study data at 

each location as a time series, characterized by a temporal 

covariance or variogram. Then, we consider these time series 

as a set of seperate correlated random variables. This will 

allow us to estimate them using co-kriging or principal 

componenet analysis. The PI is pursuing this objective in 

his present project: "Advanced geostatistical studies at 

Centre de Geostatitique, Ecole des Mines de Paris, 

Fontainebleau, France", funded by NSF (Project Number 

INT-8702264). 

The next step is the selection of an appropriate family 

of covariance functions. 	As discussed in Section 2.3, we 

decided to utilize polynomial covariance functions. 	This, 

however, does not mean that this choice is the definitive 

answer. 	In fact, variogram models are far easier to be 

interpreted and compared to the physical processe under 
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study. So researchers may find the use of variograms more 

appealing. 

The problem of structural analysis is then studied. It 

should be noted that the results of structural analysis have 

to be checked thouroughly, in order to identify the best set 

of parameters. The procedure proposed by Delfiner (1975) has 

a tendency to yield covariance functions with large nugget 

effects. In the same time, it delets many valid forms of the 

covariance function that contain both the nugget effect and 

the structured part. This is caused by the fact that the 

above procedure idetermines parameter values, which do not 

satisfy the positive definite criterion. 

The other problem which we encounter in the course of 

our study is the ill-conditioned matrices in the kriging 

system. As noted, this problem is partially due to the fact 

that some of rows associated with the same data location at 

different time intervals are rather similar. 

Another reason for the above behavior is the limited 

number of neighboring data points. This condition gives a 

dominanat role to the drift block in the kriging matrix, as 

defined in (2.17). Consequently, the elements of the 

covariance block make little difference among these rows. It 

appears that in our next step we should first increase the 

number of neighboring points in order to give an advantage to 

the covariance block in the kriging process. We will also 

explore the possibilty of using approximate matrix inversion 

procedures, if the ill-conditioned matrices persist. 

At the next phase of our study we focuse on the 

expansion of variance reduction analysis. Its application to 

non-negative log-normally distributed variables is rather 

straightforward. 	We also show that result produced for 

log-transformed values are equally 	for the original 

86 



data. This makes variance reduction analysis an effective 

procedure for identifying sequences of the best sampling 

points. 

The above step is followed by the developement of 

space-time variance reduction analysis. 	Its theoretical 

formulation is presented in Section 4.3. 	Except the 

ill-conditioned matrices, we did not encounter any problem in 

the application of this procedure. Presently, we are 

focusing on applying this algorithm to identify the best 

route for a moving sampling device, such as an oceanographic 

vessel. In this approach we define the route as the best 

sequence of points, where its initial and final point, as 

well as, its duration is given. It can be easily observed 

that each point in this sequence is located at the vicinity 

of its proceeding point. This characteristic significantly 

reduces the needed number of computations. We hope that this 

will be the topic of one of our next projects. 

In the last phase, we presented the result of a study on 

the resilience of variance reduction analysis. It shows 

while the parameters of the covariance function are highly 

unstable, the decisions made by varaince reduction analysis 

display a remarkable degree of resilience. Thus, it may be 

used as an effective tool for planning of sampling 

activities. Considering the high cost of sampling in 

hydrology, the use of variance reduction analysis may yield 

significant savings in time and money. 
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APPENDIX 1. EQUIPMENT 

As noted in the proposal, we aim at applying the above 

procedure to actual field activities. This appear to be 

accomplished by adapting the program for micro-computers. To 

achieve this an IBM PC AT with color display and an HP 

Thinkjet printer was purchased at a dicounted price, half of 

which was paid by Georgia Institute of Technology. 

The above equipment played a major role on our efferts. 

First, all administrative and word processing tasks 

associated with the project, were conducted on the above PC. 

They include a number of papers, reports, and realted 

proposals. Secondly, we use it as the main terminal when 

using the mainframe for our computations and mapping 

activities. 

The application of space-time variance reduction 

analysis to micro-computers appear to be straightforward. 

However, judging from the required time of computations on 

the main frame, we decided to perform our runs on the 

CYBER computer that is available at Georgia Tech. We believe 

that in very near future the speed of micros will be 

sufficiently high to be able to run variance reduction 

analysis for large data bases on PCs. 
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APPENDIX 2. STUDENT TRAINING AND ABSTRACTS OF THESES 

In the course of this project, three graduate students 

were involved. The first one was Mr. M. Zakikhani, a Ph.D. 

student in geohydrology, who was supported for a period of 

three months. During this period he was trained in using 

spatial universal kriging and variance reduction analysis. 

The second student was Mr. T. J. Hall who was supported 

throughout his M.S. studies. For a period of three months he 

studied spatial kriging and variance reduction analysis. He 

then assisted the PI on the extension of these algorithms to 

non-negative phenomena. At this stage, he was jointly 

supported by another project of the PI, funded by U.S. 

Geological Survey for applying these methods to the problem 

of groundwater quality monitoring network in Dougherty Plain, 

southwestern Georgia. For his special M.S. project, he 

selected the topic of space-time universal kriging, whose 

results are given in Section 2.4.1. He also assisted the PI 

in developing the time kriging computer program. Mr. Hall 

graduated in September, 1987, and presently works as a 

geohyrologist in an environmental consulting firm in 

Massachusetts. 

The third student was Mr. K. A. Cargile who studied 

under the direct supervision of the PI for a period of 9 

months. During this period he worked on the application of 

time kriging in drought management schemes, as his special 

M.S. project. 	A brief summary of his work is given in 

Section 2.3.1. 	He received his M.S. degree in September, 

1987. He currently works in an enginnering consulting firm 

in Georgia. 

The abstarcts of the above M.S. special problems are 

given in this appendix. 
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GROUNDWATER DATA 

A Special Research  Problem 

Presented to 

The Faculty of the School of Civil Engineering 
Georgia Institute of Technology 

by 

Timothy J. Hall 

In Partial Fulfillment 
of the Requirements for the Degree of 

Master of Science in Civil Engineering 

August 1987 

ABSTRACT 

There are many naturally occurring processes and 

parameters which can be described as stochastic processes. 

These processes can be interpolated by using a Gauss-

Markov estimator such as kriging. Presently most kriging 

packages are designed for estimation of spatiaAy random 

variables. It is shown that with certain modifications, 

kriging can be expanded to the space-time domain to be 

applicable to a more general class of stochastic processes. 

This is analogous to combining spatial analysis with time 

series analysis. In this study a series of hydrologic data 

from Georgia is simultaneously analyzed in time and space 

using kriging, and the results are presented in a series of 

spatial maps for different time periods. In this way 

valuable new information has been gained by utilizing both 

the spatial and the temporal data. Space-time kriging also 

yields more accurate results by allowing the addition of 

all the available space-time data. Finally, it allows 

hindcasting and forecasting for periods when no sampling is 

conducted. 



A GEOSTATISTICAL METHOD IN 

DROUGHT MANAGEMENT 

A Special Research Problem 
Presented to 

The Faculty of the School of Civil Engineering 

by 
Kenneth Alvin Cargile 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
in the School of Civil Engineering 

Georgia Institute of Technology 

September. 1987 

ABSTRACT 

A Geostatistical Method in Drought Management 

Kenneth Alvin Cargile 

Directed by Dr. S. Rouhani 

This report presents research findings and design analyses 
for a water resources engineering project. The project 
involves the planning for the conditions of a potential water 
management deficit. Planning requires the definition of a 
drought and the implementation of design methods to prepare 
water management planners and operators for the drought 
condition. 

Planning for extreme hydrological events requires the 
analysis of statistical data. These events can be character-
ized as stochastic processes, and the geohydrological variables 
such as low streamflows into a reservoir can be viewed as ran-
dom fields. Analysis of historic hydrological data allows the 
planner to derive the means to predict the outcome of extreme 
events in the future. 

A proposed site for a reservoir is analyzed for its 
potential water usage to demonstrate the capability of the 
reservoir to perform under the drought condition. A geosta-
tistical method is presented for applications in water manage-
ment to predict the impact of drought on a proposed reservoir. 
This method can also be used to assess the reliability of an 
existing reservoir for its performance during a drought. 



APPENDIX 3. RELATED RESEARCH AND SCIENTIFIC COLLABORATORS 

During this project two related projects were proposed 

and funded. The first one was titled: "Optimal schemes for 

ground water qulaity monitoring in the shallow aquifer, 

Dougherty Plain, southwestern Georgia." This project was 

funded by a grant from U.S. Departemnt of Interior, 

Geological Survey; USDI/USGC Project G-1219 (05), for the 

period of April 1986 to March 1987. 

The above USGS project was jointly conducted with the 

PI's initiation project, as discussed in Sections 2.4, 2.4.1, 

3.1, and 3.1.1. The abstract of the final report of this 

project is given in this appendix. 

The second realted project that was proposed by the PI 

and was later funded, is titled: "Advanced geostatistical 

studies at the Centre de Geostatistique, Ecole des Mines de 

Paris." This project was funded by Natioanl Science 

Foundation under the US-Industrialized Countries Program for 

the Exchange of Scientists and Engineers; Project No. 

INT-8702264, for the period of September 1987 to October 

1988. 

This project is in fact a continuation of the present 

project which allows the PI to conduct advanced research at 

the Centre de Geostatistique, Ecole des Mines de Paris for 

furhter studies on space-time kriging and varaince reduction 

analysis. The technical abstract of the proposal is given at 

the end of this appendix. 

In the following page a list of scientific collaborators 

of the PI in his initiation project is given. 
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endorsement or recommendation for use by the U.S. Government. 

School cf Civil Engineering 
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ABSTRACT 

Geostatistical schemes for ground water quality monitoring 
in the shallow aquifer of Dougherty Plain, Georgia are presented. 
This aquifer is not generally used for water supply purposes. 
However, it is the main recharge route to the principal artesian 
aquifer which is the primary source of water supply in this 
rapidly growing agricultural region. The desired monitoring 
network acts as an early warning system for ground water 
pollution in deeper layers. We have utilized the available data 
on hydraulic properties of the shallow aquifer to identify the 
zones which should be the primary locations for our sampling 
activities. The one variable which appears to be most suitable 
for our study is leakance. Statistical analyses indicate that 
leakance has a log-normal distribution with a constant trend and 
a linear covariance function. Ranking criteria for the selection 
of the best sampling points are: the variance reductions, the 
medians, and the risk values. 	Due to the nature of our 
monitoring network we suggest to use mainly risk ranking as the 
basis of our sampling activities. The results of our risk 
rankings demonstrate that the southern tip of the Dougherty ?lain 
and its upper central zone should be the prime targets of cur 
monitoring activities. 

Keywords: Network Design, Statistical Methods, Regional Analysis, 
Water Quality, Water Management (Applied), Georgia. 
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Technical Abstract 

A significant number of natural and physical variables in 
hydrology, hydrogeology, and oceanography can often be viewed as 
stochastic processes. Geostatistics provides a means for the 
statistical study of such processes. This branch of applied 
statistics was first developed at the Geostatistics Center, School 
of Mines of Paris, under the direction of Prof. G. Matheron. 
Since its inception in 1968, this center has been one of the main 
research groups in the world in the field of geostatistics- both 
on the theoretical and the applied sides. 

In this proposal I am seeking support for a one year 
sabbatical-type visit to conduct joint research with members of 
the above group and its associated centers in Fontainebleau, 
France. My first objective is to incorporate the disjunctive 
kriging into the variance reduction analysis (a geostatistical 
sampling scheme developed by the PI.) This expansion enables the 
program to identify the optimal sequence of sampling points for 
random variables with any distribution. It will be attempted to 
expand this algorithm to the time-space domain to be applicable to 
most physical processes in water sciences. My attention will then 
be focused on the application of the expanded variance reduction 
analysis to actual field cases, including the water quality 
sampling in Lake Geneva, ground water observation networks in 

• Northern France, and rainfall-gage networks in the Aquitaine 
Basin. 

As stated in the official letters from the above centers, 
they also believe that this cooperative project can lead to some 
very fruitful research in the study of spatiotemporal variables, 
and in the applied fields of hydrogeology and oceanography. At the 
same time this project provides an opportunity to develop and 
further stimulate scientific, engineering, and technical 
cooperation between the United States and France. 



APPENDIX 4. PUBLICATION CITATIONS 

Since the initiation of this project a number of 

publications are produced by the team lead by the PI. The 

following lists and corresponding abstarcts include only the 

completed works. Two papers on space-time kriging and 

varaiance reduction analysis, as well as, another one on 

drought management are under preparations. We intend to 

submit them for publication to Water Resources Research and 

Water International. The completed works are as follows: 

Rouhani, S., Variance reduction analysis, Water Resources  

Research, Vol. 21, No. 6, pp. 837-846, June 1985  

Rouhani, S., Comparative study of ground water mapping 

techniques, Journal of Ground Water, Vol. 24, No. 2, pp. 

207-216, March-April 1986. 

Rouhani, S., and M. B Fiering, Resilience of a statistical 

sampling scheme, Journal of Hydrology, Vol. 89, pp. 1-11, 

December 1986. 

Also presented in a brief form at the Americal Geophysical 

Union Fall Meeting, San Francisco, December, 1985. (Abstarct 

published in EOS, Vol. 66, No. 46, pg. 897, November, 1985). 

Rouhani, 	S., 	Water resources monitoring: 	A combined 

information-economic approach, Journal of Resouces Policy, 

under review, 1987. 

Rouhani, S., and T.J. Hall, Optimal schemes for ground water 

monitoring in the shallow aquifer, Dougherty Plain, 

Southwestern Georgia, Technical Completion Report, USDI/USGS 

Project G-1219 (05), School of Civil Enginnering in 

cooperation with Environmental Resource 	Center, Georgia 

Institute of Technology, Atlanta, GA, March 1987. 
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Rouhani, S., and T.J. Hall, Geostatitical schemes for 

regional ground water monitoring, Proceedings .gf the Third  

National Groundwater Technology Conference, City University 

of New York, NY, September 1987. 

Rouhani, S., and T.J. Hall, Geostatistical schemes for 

groundwater sampling, Journal of Hydrology, under review, 

1987. 

Rouhani, S., and T.J. Hall, Space-time kriging analysis of 

groundwater data, Proceedings  DI the Third International  

Geostatistics Congress, Avignon, France, September, 1988. 
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Variance Reduction Analysis 

SHAHROKH ROUHANI 

School of Civil Engineering, Georgia Institute of Technology, Atlanta 

This paper presents an algorithm for optimal data collection in random fields, the so -called variance 
reduction analysis, which is an extension of kriging. The basis of variance reduction analysis is an 
information response function (i.e., the amount of information gain at an arbitrary point due to a 
measurement at another site). The ranking of potential sites is conducted using an information ranking 
function. The optimal number of new points is then identified by an economic gain function. The selected 
sequence of sites for further sampling shows a high degree of stability with respect to noisy inputs. 

1. INTRODUCTION 

Many physical variables involved in hydrological phenome-
na may be viewed as random fields, also known as re-
gionalized variables [e.g., David, 1977]. The geohydrological 
variables such as transmissivity, storativity, and steady state 
piezometric heads are of this type. Examples of the  onchnstic 

 analysis of these variables can be found in the work of such 
authors as Freeze [1975], Smith and Freeze [1979], Bakr et al. 
[1978], Dettinger and Wilson [1979], Delhomme [1979], Gam-
bolati and Volpi [1979], Chirlin and Dagan [1980], Clifton and 
Neuman [1982], and Yeh et al. [1983]. 

The data management of these spatially distributed vari-
ables can be studied in the framework of random fields. For 
such fields, the location and rates of sampling depend upon 
the objectives of the planning approach. Often very little data 
are available. Furthermore, the measured values may be clus-
tered together and therefore not provide information about 
the whole field. For example, the study of water table data in 
northwestern Kansas [Rouhani, 1983] revealed that most 
measured values were clustered around major towns and farm 
communities. Consequently, a significant portion of the whole 
region was sporadically sampled. In such situations, planners 
may wish to design a data collection scheme in order to better 
define the variable of interest. 

The following questions then arise. 
1. Where are the optimal locations for further sampling? 
2. What is the optimal size of the sample set? 
In order to answer the first question there is an initial need 

to quantify the uncertainty in the estimated field variable at 
any one point. Kriging provides such an indicator: the esti-
mation variance. For instance, to minimize the regional vari-
ance of estimation one may add a measurement point at the 
site with maximum estimation variance [see Matalas, 1968; 
DeMarsily, 1979]. However, the estimation variance alone is 
not sufficient. One needs an indicator of the relative influence 
of the added sample on the reliability of the whole field in 
order to select a point providing maximum information gain. 
In response to this problem a new algorithm called variance 
reduction analysis is developed, yielding a method for the 
selection of sequences of sites for further sampling in random 
fields. 

Two optimality criteria are utilized for the ranking of po-
tential sampling sites. The first one reflects the amount of 

Copyright 1985 by the American Geophysical Union. 
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information gain (i.e., the variance reduction) due to a new . 
measurement. The second function is proportional to the ex-
pected economic gains (i.e., the loss reduction) due to further 
sampling. 

Finally, one is faced with the more sophisticated question: 
3. How reliable are these decisions? 
To answer this question it is necessary to study the re-

silience of the prescribed decisions of the variance reduction 
analysis. 

This paper is divided into three parts. The first part is de-
voted to a brief review of kriging and variance reduction 
analysis. In the second part the author describes several data 
collection management approaches and discusses the advan-
tages of the proposed algorithm, which leads to a process for 
ranking of prospective sampling sites. In the last section the 
author applies this algorithm to water table level observations 
in northwestern Kansas and briefly discusses the reliability 
and resilience of the variance reduction analysis. 

2. DEVELOPMENT OF VARIANCE REDUCTION ANALYSIS 

2.1. Kriging Method 

Kriging has been applied to groundwater hydrology by 
such authors as Delhomme [1979], DeMarsily [1979], Gambol-
ati and Volpi [1979], Chirlin and Dagan [1980], Dunlap and 
Spinazola [1981], Sophocleous et al. [1982], Clifton and 
Neuman [1982], Kitanidis and Vomvoris [1982], Aboufirassi 
and Marino [1983], and Yeh et al. [1983]. In these papers 
kriging was used mainly as a tool for the interpolation of 
either transmissivities or piezometric heads. 

In point kriging one estimates the value of the random field 
at an arbitrary point X 0  based on the given measured values 
in a linear form of 

	

2(X0) = E ;_ioz(x,) 
	

( 1 ) 

where 

2(X o) kriging estimate at X 0 ; 
Z(X,) measured value at X,, i = 1, • , N; 

.1, 0  kriging weight for Z(X ;) to estimate 2(X 0). 

The l,o  are defined 	two criteria: (1) unbiasedness: E[2(X 0) 
— Z(X 0)] = 0, where Z(X 0) is the true value of the field at X 0, 

and (2) minimum squared error of estimation: this requires 
E[Z(X 0) — Z(X0)] 2  to be minimum. These conditions can be 
written as 

	

E[2(X 0) — Z(X 0)] = 	
(2) 

Var [2(X 0) — Z(X 0)] = min 
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where Var [2(X 0) — Z(X 0)] is known as the estimation or 
kriging variance. 

In kriging one may view the process Z(X) as a spatial 
random function with the following structure: 

Z(X) = M(X) + R(X) 	 (3) 

where M(X) is a slowly varying deterministic function known 
as the "drift," which is equal to the expected value of Z at 
point X e Dr. It may be further assumed that M(X) admits a 
local representation in the form of a polynomial of order k as 
follows: 

1(k) 
M(X) = E b pfp(X) 	 (4) 

p=1 

where by  are fixed unknown coefficients, and fp(X) are basic 
monomials of the polynomial 

fp(X)= x i Ftx 2 P2  • • • .7c„P• 	p i  + p 2 + • • • +P n 	k 	(5) 

1(k) is the number of such monomials in M(X). R(X) is a 
spatially fluctuating random function with zero expectation. 

Matheron [1973] proposes a new method in which the pro-
cess Z(X) is viewed as an intrinsic random function (IRF), 
which could be made stationary by a process known as "in-
crementing." A kth-order intrinsic random function (IRF-k) is 
defined as a random process that requires a kth order filtering 
to achieve stationarity. The linear combination E j .,,„N 
A ioz(x) is a generalized increment of order k, if and only if 

E 	 • (x, R) = 0 	 (6) 
i-o 

for all integers p,, • • • , 	0 such that p, + p 2  + • + P. 
k, where X, stands for the point (x 11 , • • • , x,,,) in n space 
(A00 = — 1). 

For the case of an IRF of order 0, 1, or 2 in R 2  with 
Cartesian coordinates (x 1 , y1), (6) can be written as 

E Aio  = o 
i=0 

N 

E A jox, = 0 
i=0 

E 2iox1Yi = 0  
i= o 

E Aioyi l = 0 
i=o 

The above constraints constitute the unbiasedness criterion of 
the original kriging (2). 

Variance of estimation 2) can be written as 

Var [ E Aioz(xid 	
v N 

= E E ,twAJOK(Ixi — )(JD ;.0 

,  

i=0 j=0 

where K(IX, — 	= covariance function of Z(X,) and Z(X J). 
Matheron [1973] proposes a polynomial function of 2k + 1 

order as the generalized covariance (GC) for an IRF-k, as 
follows 

K(h) = C,o(h)+ E 	110P+ 1 	 (9) 
p=0 

where 

h length of vector distance between two points; 
C nugget effect; 

6( ) Dirac's delta function. 

Now in order to calculate 2,0, it is necessary to minimize (8) 
subject to constraints (6). By using the Lagrange multiplier 
go, (8) can be minimized with respect to A, and ppo  if 

N 	 1(k) 

Z AJoK(ix, — x,I) + E ppoip(x;) = Kvo — xi!) 
p= I 

i = 1, • • • , N 	(10) 

Ajofp(x) =4,(x 0) 	p = 1, • • • , 1(k) 
= 

The above set of equations is the so-called "kriging system." 
At its minimum the estimation variance (8) takes the value of 

Var [2(X 0) — Z(X0)] = K(IX0  — X01) 
N 	 1(k) 

— E ).010x0 — x,l) — E 12,04(x0) 
p=1 

2.2. Variance Reduction Analysis 

The kriging variance (11) can be utilized as a guideline for 
optimal sampling [see DeMarsily, 1979]. For instance, the 
area with the highest level of estimation uncertainty can be 
targeted for further monitoring. However, such an approach 
ignores the overall effect of a new measurement on the level of 
accuracy of the estimated field as a whole. In particular, it 
overlooks the influence of added data on the estimation vari-
ances of other interpolated values. The author proposes an 
algorithm to establish a measure for such an influence. 

As the first step, a relationship is established between the 
reduction in kriging variance at an arbitrary point with re-
spect to the sampling at another location. This relationship 
resembles a common "response" function. It gives the level of 
improvement in the accuracy of Z(X 0) due to a new measure-
ment at X. This level of improvement is measured in terms of 
reductions in the kriging variances. Furthermore, this measure 
of variance reduction can be expanded to cover the whole 
field. This enables the planner to rank the prospective lo-
cations for further data collections. 

In order to obtain this response function the kriging system 
(10) may be written in matrix form. This system is composed 
of N + 1 equations, where N is the number of data points used 
in kriging, and 1 is the number of monomials in the drift 
function, which is a function of the order of 1RF. 

In the case of an IRF-2 in R 2, kriging system (10) can be 
written as 

k = 0 

k = 1 

k = 2 

E Aioy, = 0 
1=0 	

(7) 

E Ajoxi 2 = 0 
i = 0 

(8) 
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where K. is the covariance between X, and Xi, A.0  is the 
kriging weight of Z(X ;) to interpolate 2(X 0), and p po  is the pth 
Lagrange multiplier in the kriging system (10). The above 
equation can be written as 

Aw o = ao 	 (13) 

with the obvious notations. 
The kriging variance at X, estimated by N existing data 

points can then be denoted by Vo(N) in the following form, 
when k = 2 

Vo(N)= Koo — [Pio ' • • P60 A10 • • ANO] 

From the definitions of w o  and ao  

Vo(N) = Koo — wo Tao 

and from (13) and the symmetry of A, 

Vo(N)= Koo — ao TA -l ao 

Superscript T defines the transpose of a vector. 
Equation (16) can be expanded to include the effect of a new 

added measurement. If one adds a new measurement point at 
X *, the A matrix in (13) acquires the form of a bordered 
matrix A. A *  is A with a new bottom row and a new right-
hand side column. Consequently, V0(N + 1) can be written as 
follows:  

where 

w* T = LUI.P2* • • • P6.2 1* • • • ANO; 

Vs(N) variance of estimation at X *  prior to any sampling 
at that point; 
kriging weight of Z(X ;) to estimate 2(X,,,) prior to 
sampling at X * ; 
pth Lagrange multiplier in the kriging system for 
estimation of 2(X *) prior to sampling at X. 

Finally, substituting the elements of w *  and ao  into (20) yields 

Vo(N) — Vo(N + 1) = 	[K — E 

	

V,(N) 	" 1 , 1  i 2 

— E Ppcfp(X 
P= 1  

Equation (21) can be defined as 

VR 00  = V0(N) — Vo(N + 1) 

as the "variance reduction VR" at X 0  due to a measurement 
at X. VR o, can be utilized as a direct measure of the im-
provement in the reliability of kriging estimates due to sam-
pling at a new location. Equation (22) can be expanded to 
other versions of kriging. For instance, in universal kriging 
one can write (21) as 

1 	
2 

	

vRo. = — [y.0 — E 	— E lip.fp(X0)1 V*(N) 	 p= I 

where yu  is the semivariogram of Z(X,) and Z(X 1). 
If simple covariance functions are used, then (21) can be 

written as 

xo  

Yo e 
	

(14) 
K10 

K No 

(15) 

(16) 

(21) 

(22a) 

(226) 

where 

Vo(N + 1)= K oo —[ao T  Ko.]A,1 
a

° 
Ko. 

(17) 1 
V Ro. 	 C A i.cio  (23) = 	 — E p p,fp(X 0d 2  

" 
— E 

V*(N)[ 	 P=1 

A* =[

A a* 
a*T. K** 

  a* T  = [1 x * -- K,„„] 

K o„ = K(IXo — X *1) 

K. = K(IX * — X * I) 

K,,= K(IX ;  — X * I) 

Nobel and Daniel [1977] introduce a theorem concerning 
the bordered matrices which says that 

	

[A 	a *  1 -1  = [ F Pl 	(18) A * - I  = 
a* T K.. 	pT 1 

where 

F=A + ccA -l a *as T A - 

a = [K **  — a* TA -l a*] - I  = [V*(N)] -1 

 p 

and A is invertible. Substituting (18) into (17) yields 

Vo(N + 1) =K00 — ao r/1 -  lao —act 0  T w* _
W,

T - 

where Cu  is the covariance of Z(X i) and Z(X j). 
VR,„ (21) is dependent only on the covariance function and 

the geometry of the points. Thus it is a suitable tool for the 
design and planning of data collection schemes. The other 
advantage of VR,„ is due to its computational efficiency. For 
calculation of (21) there is no need to solve another kriging 
system or invert another matrix A *  for each possible ad-
ditional sampling site. 

It is also easy to see that VR 0 „ (21) is always positive. It 
implies that any new sampling would cause only reductions in 
kriging variances. In other words, any additional sampling 
would improve the reliability of the estimated field. This opti-
mistic conclusion may sound logical; however, it implicitly 
assumes that the additional data would not significantly affect 
the assumed covariance function. In the real world, the new 
measured values are sometimes so different from the estimated 
values that drastic changes in the covariance function may 
result. In such cases, there might be a need for reevaluating 
the assumed covariance function which could force the kriging 
variances to go up (i.e., the actual VR becomes negative)! It 
can be concluded that as long as the assumed covariance 
function remains intact, VR o•  (21) is a valid measure of the 
improvement of the reliability of the estimated field. 

+ 2aK *0ao r w * — aK *0 2 	(19) 

Considering (16) one can write the variance reduction as 

V0(N) — Vo(N + 1) =
V*(N)  [K*0  — ao rw*] 2  

3. DATA MANAGEMENT APPROACHES 

Prior to any sampling design, one should establish the ob- 
jective of the study in order to deal with the question of data 

(20) collection. There are two major approaches which are com- 
monly used in groun water data management studies. In the 
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first method, sampling procedures are designed based on max-
imization of the accuracy of the estimated field with budget 
constraints or by minimizing the sampling cost subject to a 
criterion of minimal acceptable accuracy. Such programs are 
suitable for regional studies, where the errors in data cannot 
be easily related to any monetary measure besides measure-
ment costs. The level of accuracy of variables has to bt substi-
tuted for more common economic criteria such as economic 
benefits. These methods usually lack a meaningful interpreta-
tion of the optimal level of accuracy of the data. They will not 
tell the planner how much is gained by adding a new data 
point. 

On the other hand, in the second approach the accuracy of 
parameters is interpreted in economic terms. This approach is 
easily applicable to problems dealing with specific planning 
and management activities. Such programs yield more mean-
ingful measures for optimal data management plans. 

3.1. Previous Work 

Many authors have advocated the use of the accuracy of the 
estimates as the criterion function for their proposed sampling 
schemes. For instance, Fiering [1965] and Matalas [1968] use 
the total variance of estimates as the objective function of 
their schemes for gaging. By using a nonlinear integer pro-
gramming they identify the best locations for sampling among 
a set of potential sites that yield minimum total variance. This 
approach is operationally slow and inefficient. Bastin et al. 
[1984] compute all possible combinations of n sampling sites 
out of m potential locations in order to identify the subset that 
produces minimum normalized kriging variance. This method 
becomes costly as the number of combinations increases. 
Hughes and Lettenmaier [1981] and Chou and Scheck [1984] 
use iterative algorithms to adjust the location of sampling sites 
in order to minimize regional or areal kriging variances. In 
these works there is no need to specify the potential sites. 
However, the efficiency of the iterative algorithm depends on 
the assumed initial locations. In the case of Chou and Scheck 
[1984], the minimization of the regional kriging variance is a 
nonlinear programming problem subject to constraints that 
may become operationally inefficient as the number of sites 
increases. Other such as Pimental [1978] include the accuracy 
of their results as a constraint in the form of a maximum 
allowable variance of estimation. The objective functions in 
such cases are sampling rates or costs. 

Examples of the second type of approach can be found in 
the work by Maddock [1973], where the accuracy of the data 
is associated with the mean expected loss in total farm income. 
These models usually identify the optimal sampling rates or 
sites by comparing marginal benefits of additional data to 
measurement costs. Maddock [1973] also proposes a method 
to rank different types of data based on their relative influence 
on the risk function. 

In many cases of the second approach, the expected loss 
value remains almost unaffected by variations in hydrological 
parameters. Maddock [1973] concludes that the value of the 
risk is practically insensitive to changes in the value of trans-
missivities and storativities, yet it is highly dependent on crop 
prices and pumping costs. Similar results are also reported by 
Ben-Zvi and Bachmat [1979]. Therefore in spite of the fact 
that the second approach gives a meaningful interpretation to 
the accuracy of data, it fails to give a significant role of hydro-
logical parameters. 

One reason for such behavior lies in the fact that in the 
second type of models the geohydrological parameters are  

linked to the economic functions through the groundwater 
level. The depth of the water table always plays a major role 
in the total (farm) income functions; for example, it is the main 
factor in the pumping cost functions. In turn, the piezometric 
head is calculated through the flow equation in aquifers, as a 
function of transmissivity and storativity values. Such head 
estimates show significant level of robustness with respect to 
variations in transmissivity and storativity values. As Fogg et 
al. [1979] notice, radical changes in transmissivity values are 
reflected by only scarcely perceptible changes in head. This 
problem usually leads to identification instability in inverse 
problems [see Neuman and Yakowitz, 1979]. Moreover, Bakr 
et al. [1979] showed that spatially varying transmissivities in a 
three-dimensional space results dnly in small head variances. 
Consequently, the economic risk or loss functions which are 
dependent on piezometric head values also show little or no 
sensitivity to the variations in the values of transmissivity and 
storativity. So it seems appropriate that in a combined hy-
droeconomic approach to data management problems, 
groundwater levels should be considered as an independent 
variable rather than a function of other hydrological parame-
ters. This leads us to the study of the third approach. 

3.2. A Third Approach 
Each of the above methods has deficiencies. The first ap-

proach puts heavy emphasis on the accuracy of results but 
fails to interpret them in a meaningful manner. On the other 
hand, the second approach provides an economic interpreta-
tion for the accuracy levels but appears to ignore the hydro-
logical data. In order to solve this problem, Bras and 
Rodriguez -Iturbe [1976] propose the use of a weighted sum of 
the accuracy and the cost of observation as the objective func-
tion of their data management program. However, the relative 
weight of these two factors, the so-called "trade-off" coef-
ficient, remains a subjective measure. 

The solution to the optimal data management can be in-
ferred to lie in a proper link between the economic risks and 
the accuracy of the hydrological parameters, particularly the 
groundwater levels. One can build this link by defining the 
monetary losses associated with uncertainties in water levels. 
The kriging variance can be utilized as a measure of accuracy 
of the estimates. Our objective is to define the expected losses 
in terms of Var [Z — Z]. Ultimately, by using the variance 
reduction analysis, one can estimate the reduction in expected 
losses due to the addition of a new data point. 

Such a loss function can be defined in terms of over or 
underestimation of 2 (e.g., piezometric head estimates). For 
example, whenever 2 - Z is positive (i.e., the estimated piezo-
metric head is higher than the actual one), the operators are 
faced with a penalty. These losses may be in the form of higher 
costs of pumping. However, if the estimation results turn out 
to be underestimating the water table, the operators may have 
to pay other forms of penalties such. as higher drainage costs. 
It can be argued that these marginal losses may not be equal, 
and thus the loss function is asymmetric. Moreover, this func-
tion may have a shape similar to the pumping cost functions. 
Concerning the overall cost of pumping, Bredehoeft and 
Young [1972] and Maddock [1973] both assumed that the 
cost of water production is a linear function of the depth of 
the water table. 

Considering all the above factors, one can define a loss 
function as follows: 

L = C u(2 — z) 2 - z < 0 

L = Co(2 — Z) 	2 - z > 
	(24) 
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where 

L loss function (dollars); 
2 estimated piezometric head (ft); 

actual piezometric head (ft); 
Co  loss per foot of underestimation (dollars/ft); 
Co  loss per foot of overestimation (dollars/ft). 

It must be mentioned that the role of this loss function is 
simply to interpret the level of accuracy of 2 in monetary 
terms. Our estimation criteria remains to be unbiasedness and 
minimum squared error as defined by (2). One, however, can 
utilize a similar function to (24) as a basis for estimation of 2. 
The corresponding estimate is no longer given by kriging or 
more generally by a conditional expectation type estimator, 
but by a conditional quantile estimator [see Journel, 1984]. 

In order to evaluate the expected losses one must make 
some assumptions about the statistical nature of the esti-
mation errors. Freeze [1975] ran an extensive Monte Carlo 
simulation of water heads in a one-dimensional flow based on 
uncorrelated lognormally distributed transmissivities. He con-
cluded that the steady state system with low estimation vari-
ance tends toward a normal frequency distribution for piezo-
metric heads over a greater portion of the field. It seems rea-
sonable to assume that estimation fluctuations (i.e., 2 — Z) are 
normally distributed, with a zero mean and a variance equal 
to the so-called kriging variance. The expected loss can be 
written as follows: 

E(L) = I m  L(u)f(u) du 	 (25) 

where 

L(u) loss function; 
f(u) frequency distribution of the estimation error; 
- u= Z — Z. 

Following Bryant [1961], substituting a normal frequency in 
(25) and using the loss function described in (24) we can write 
the expected loss as 

-0 
E(L) = 	C u u(2rcV) -  / exp ( — u 2/2V) du 

+ co 

J 	 , _ ( 14 2 /2V) du + 	Cou(2rcV)- 1/2 exp 
0 

C,, + C o  
= 	V" = cV" 2 	 (26) (27)" 

where V is the kriging variance E[2 — Zr (ft 2 ), and c is the 
net loss coefficient (C0  + C„)/(2r4) 112  (dollars/ft). 

Equation (26) shows the expected losses at each estimated 
point as a function of the kriging variance at that site. Ex-
pected loss (26) is based on a rather simple distribution func-
tion. One may estimate the expected losses based on more 
sophisticated conditional probability of Z — Z fluctuations, 
given the N existing data points, which is likely to be much 
more complex than (26) [see Journel, 1984]. Now, using (26) 
the total expected losses (TEL) prior to any new sampling can 
be defined as 

TEL = E E(L)= c;  E vi ii2 	 (27) 

where E(L,) is the expected loss associated with V„, which is 
the kriging variance at X i . Adding a new data point reduces 
variances of estimations. As defined in (21), VR„ ;  is the amount 

of such reductions in V, due to a new measurement at X i . The 
TEL after a new sampling at X. can be written as 

TEL ;  = c E (1/1 — VR id 12 
	

(28) 

Thus the total loss reduction (TLR) due to an additional 
measurement at X ;  is 

TLR ;  = TEL — TEL ;  

= c[E vi" — E 	viz i1)1/2] 	 (29) 

These loss reductions aside, adding a new measurement re-
quires more investments. The net expected benefit (NEB) of a 
new data point is defined as 

NEB, = TLR ;  — MC ; 	 (30) 

where 

NEB;  net expected benefit of sampling at X ; ; 
TLR ;  total loss reduction due to sampling at X i ; 
MC ;  measurement cost at X i . 

The above results can be shown in a different way. The 
following can be defined as 

TOTV = E vi  

TOTSD = E 
	 (31) 

where TOTV is the total sum of kriging variances, and 
TOTSD is the total sum of kriging standard deviations. 
TOT V ;  and TOTSD, are defined as TOTV and TOTSD after 
the addition of the new data point at X,. TVR ;  (total variance 
reduction due to sampling at X . ) can be written as 

TVR, = TOTV — TOTV 

=E — E (V;  — VR i;)= E VR ii 	 (32) 

TVR, represents the total gain in accuracy or the information 
gain due to the measurement at X, [Matalas, 1968]. 

Similarly, TSDR ;  (total standard deviation reduction due to 
sampling at Xi) is defined as 

TSDR, = TOTSD — TOTS() ;  

= E Vi t / 2  — E 0/, — vR jj./2 	 (33) 

Substituting the above into (27), one gets 

TLR, = c(TSDR,) 	 (34) 

In other words, TSDR ;  reflects the economic gain due to a 
new measurement at X,, while TLR ;  represents the monetary 
value of added information. NEB ;  (30) can also be shown as 

NEB ;  = cTSDR, — MC, 	 (35) 

If the cost of measurement exceeds the economic gain of the 
added information, the result is as follows: 

TSDR, < MCdc 	 (36) 

In the process of variance reduction analysis, all points where 
(36) holds should be eliminated as potential new measurement 
sites. 

3.3. Ranking of Prospective Data Points 

' Equation (35) can be utilized in two ways. First, all points 
that show negative NEB, can be eliminated as potential data 
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(ta 
Fig. 1. (a) Set of existing data points. (b) Selected sequence based 

on the variance reduction analysis. (c) Selected sequence based on the 
criterion of maximum distance. (Numbers in circles correspond to the 
rank of the selected sites.) 

locations. Second, the sites with positive NEB;  can be ranked 
as a sequence of points for further sampling. A set of weights 
may be assigned to potential sites to reflect their relative im-
portance. It makes this ranking procedure more flexible for 
different cases of data management. 

The above ranking is valid as long as only one additional 
data point is involved. This means that the reduction in Vi 

 caused by a set of new data points is not equal to the sum of 
the corresponding For example, if two points are closely 
located, measurement at one will reduce the effectiveness of 
the other as a new sampling point. For an efficient data man-
agement scheme, the best feasible algorithm seems to be the 

following. 
1. Perform the kriging and calculate 
2. Pick X, with maximum TVR. If NEB, was negative, 

then stop. 
3. If not, assume that X i  is a data point. Then go to step 1. 
In this process X i  is selected based on maximum infor-

mation gain. The number of added points, however, depends 
on the economic gain function. In fact, when the net benefit of 
the added point becomes negative, the planner should stop 
sampling. 

For the purposes of kriging a computer package named 
AKRIP (an acronym for a kriging program) is utilized. 
AKRIP is a kriging algorithm for I RF of order 0, 1, and 2 
developed by Kafritsas and Bras [1981]. This program is 
based on the proposed algorithm by Delfiner [1975]. It in-
cludes a step-by-step structural analysis which is the core of 
any kriging procedure. It also provides options for point or 
block kriging. 

In the variance reduction (VR) equation (21) it is assumed 
that the set of neighboring data points for both X, and X. are 
identical. However, in AKRIP, each point may be interpolated 
by different sets of "nearest" measured values. X. may be 
located within the radius of nearest data points to X, but has 
a different set of neighboring points for itself. In such a case, 
X. represents the added information about its surrounding 
area. Thus it seems appropriate to use its neighboring data 
points in the VR analysis. This way the calculated VR 0, 
shows the impact of the addition of X. which is currently 
estimated by its neighboring measured values. 

4. APPLICATION OF VARIANCE REDUCTION ANALYSIS 

4.1. Data Description 

The available data are groundwater level observations 
made in January 1979 in Groundwater Management District 
no. 4 of Kansas, an area of nearly 5000 square miles in north- 

western Kansas, including Sherman, Thomas, and Sheridan 
counties and parts of Cheyenne, Rawlins, Decatur, Graham, 
Logan, and Gove counties. The data set consists of 327 
measurements made in water wells scattered at irregular lo-
cations within the district and outside but close to its bound-
aries. Average spacing between wells is about 3.6 miles (5.8 
km). The measurements define a water surface that forms an 
undulating plane dipping to the east and northeast. For fur-
ther study of the geohydrology of this region, readers are re-
ferred to Pearl et al. [1972]. 

An area of 2048 square miles (5302 square km) is selected, 
as indicated in Figure la. This subregion lies between latitudes 
38°48' and 39°48' north and longitudes 101° and 101°36' west. 
There are 84 measurement points in this area (see Table 1). 
Northeastern and northwestern corners of this zone are rather 
densely measured, while central and southern parts of this 
subregion have relatively scattered data points. 

4.2. Summary of the Numerical Results 

Based on the variance reduction analysis, a ranking of the 
prospective new measurement sites has been conducted. For 

TABLE 1. Existing Data Locations and Values 

Point 

y, miles x, miles 
Z(x. y), 

ft Point 

y, miles x, miles 
Z(x, y), 

It Down Across Down Across 

(1) 1.18 4.16 3239.00 (43) 32.02 7.35 3356.00 
(2) 1.93 7.08 3196.00 (44) 32.27 7.84 3349.00 
(3) 3.31 9.95 3175.00 (45) 33.16 6.81 3372.00 
(4) 6.06 • 8.43 3205.00 (46) 31.04 0.70 3445.00 
(5) 4.18 0.33 3295.00 (47) 31.16 5.08 3391.00 
(6) 5.94 2.11 3292.00 (48) 32.54 1.84 3443.00 
(7) 7.44 0.81 3308.00 (49) 36.55 4.33 3433.00 
(8) 12.58 7.62 3244.00 (50) 43.17 9.84 3228.00 
(9) 12.20 3.46 3312.00 (51) 17.10 29.52 3039.00 

(10) 13.33 1.57 3339.00 (52) 21.61 29.79 3050.00 
(11) 14.83 2.16 3341.00 (53) 17.85 27.41 3060.00 
(12) 48.94 26.87 3099.00 (54) 17.98 27.90 3045.00 
(13) 46.55 13.52 3219.00 (55) 18.74 24.54 3101.00 
(14) 46.67 13.14 3216.00 (56) 16.97 21.90 3112.00 
(15) 61.59 22.49 2912.00 (57) 20.36 22.00 3146.00 
(16) 2.18 26.65 2886.00 (58) 16.47 11.52 3219.00 
(17) 3.43 24.38 2926.00 (59) 17.46 15.95 3189.00 
(18) 1.55 21.35 2973.00 (60) 20.86 11.89 3263.00 
(19) 0.53 14.27 3128.00 (61) 21.85 15.19 3229.00 
(20) 0.92 11.25 3161.00 (62) 23.37 29.90 3041.00 
(21) 6.82 29.30 2981.00 (63) 23.13 24.49 3124.00 
(22) 8.82 31.03 2972.00 (64) 26.12 29.41 3055.00 
(23) 9.70 24.33 3039.00 (65) 26.75 28.11 3065.00 
(24) 4.92 16.92 3092.00 (66) 24.00 20.49 3169.00 
(25) 6.69 22.22 2986.00 (67) 24.99 12.38 3273.00 
(26) 8.94 18.16 3068.00 (68) 27.63 15.41 3252.00 
(27) 4.06 10.22 3176.00 (69) 29.13 30.28 3041.00 
(28) 5.93 12.60 3172.00 (70) 28.26 28.76 3056.00 
(29) 14.34 29.73 3023.00 (71) 28.77 23.52 3124.00 
(30) 10.08 27.36 3021.00 (72) 31.77 27.63 3062.00 
(31) 14.47 25.09 3072.00 (73) 30.13 12.00 3302.00 
(32) 11.95 19.68 3099.00 (74) 38.65 29.84 3017.00 
(33) 13.46 12.33 3200.00 (75) 35.39 29.36 3043.00 
(34) 16.47 8.38 3261.00 (76) 43.79 29.57 3057.00 
(35) 17.09 5.51 3294.00 (77) 40.15 29.09 3015.00 
(36) 18.97 7.79 3288.00 (78) 41.54 28.60 3038.00 
(37) 17.22 2.00 3354.00 (79) 42.55 27.46 3076.00 
(38) 19.48 0.87 3391.00 (80) 45.59 16.87 3189.00 
(39) 22.24 7.41 3318.00 (81) 52.10  4.60 3229.00 
(40) 22.86 6.38 3336.00 (82) 61.94 13.46 3011.00 
(41) 23.36 9.89 3290.00 (83) 39.69 19.30 3173.00 
(42) 24.37 6.76 3337.00 (84) 25.75 32.06 3026.00 

One mile = 1.609 km; 1 foot = 0.3048 m. 
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the purpose of VR analysis the field is divided into a 5 x 5 

grid with Ax = 8 miles (12.9 km) and Ay = 16 miles (25.7 km). 
The nodes are described as the set of potential sampling sites. 

At each round of kriging, the point with maximum TVR is 

selected as the new added data point. The basis of this selec-

tion is the maximization of the added information. It is further 
assumed that the new measurements do not cause any change 

in the parameters of the selected covariance function. So, in 

the process of data collection, no further structural analysis is 

conducted. 
The structural analysis of the initial data set indicated an 

IRF of the first order with the following covariance function: 

K(h) = 145.686(h) + 0.89914/0 	 (37) 

where 6 is Dirac's delta function, and h is the length of vector 

distance between two points in miles. It must be mentioned 
that the above covariance function (37) has a tendency toward 

pure nugget effect. In cases of pure nugget effect, kriging is 

reduced to a moving average process. 
Using the newly added VR option to AKR1P, the top 20 

points have been ranked as the sequence of best locations for 
further measurements. The actual results and the effects of 

each added data point on the overall reliability of the esti-

mated field are shown in Table 2. 
Figure lb illustrates the spatial distribution of the ranked 

sites. As is expected. most of the added points are in the lower 

section of the field which has few existing sampling sites. For 

example. eight of the top 10 points are in the southern part of 

the region. In contrast, the central region of the upper section 
which was already densely measured does not gain any new 

data point among the top 20. 
Another look at Figure lb shows that almost all nodes on 

the border lines are selected as sites for further sampling. One 

hundred percent of the top 5 and 90% of the top 10 points are 
boundary nodes. Among the top 20, 15 points are located on 

the edge of the field; this is 94% of all possible boundary 
nodes. Meanwhile. the internal grid points get five sites, which 
is only 56"4 of the total available internal nodes. In statistical 

TABLE 2. Results of Sampling Based on Variance Reduction 
Analysis 

Rank 

x. miles y. miles 
Z. 
ft 

V, 
ft2 

TVR, 
ft 2  

TOTV, 
ft 2  

TOTSD, 
ft Across Down 

0  • • • 	• 27.019 669.4 
1 0 64 3119 8311 9644 17,445 559.3 
1 _ 3 1  64 2775 6415 7104 10,400 467.4 
3 32 0 2825 1600 1634 8,770 426.5 
4 0 48 3347 1120 1163 7,643 393.1 
5 32 48 3020 714 736 6,915 366.0 
6 0 0 3281 711 718 6,197 339.2 
7 8 64 3028 640 670 5.521 313.0 
8 24 64 1 850 452 496 5,025 290.6 
9 24 48 3123 344 406 4.642 270.9 

10 16 64 2940 403 403 4.265 251.6 
11 16 32 3244 365 380 3.895 232.4 

12 32 32 3015 368 379 3,532 213.4 

13 8 48 3235 351 353 3,178 194.5 

14 32 16 3004 348 349 2.830 175.9 

15 24 0 2906 317 325 2.507 157.9 

16 24 32 3114 306 306 2,201 140.4 

17 16 48 3189 288 288 1,912 123.4 

18 0 32 3463 280 280 1,632 106.7 

19 16 0 3087 272 273 1,360 90.2 

20 0 16 3379 267 267 1,093 73.8 

One mile = 1.609 km. I ft = 0.3048 m, and 1 ft' = 0.0929 m 2 . 

2_ 
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1 
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TOTV.  
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Rank ( ) 
Fig. 2a. Total sum of variances and the corresponding marginal 

information gains due to additional sampling. 

terms, the boundary nodes are extrapolated, while the interior 
points are usually interpolated. The extrapolated nodes are 

less reliable than the interpolated ones. In other words, given 
equal weights to each point, the boundary nodes are predomi-
nant choices for further measurements. This conclusion can 

also be verified by comparing it to the case of stochastic 

steady state flow in aqt. ':rs. In such instances, the variations 

of the boundary values of piezometric heads are the most 

influential factors on the variances of the estimated water 

tables [see Dettinger and Wilson, 1979]. It must be noted that 

in this example all data points outside the area of study are 

ignored. The addition of outside sampling sites near to the 

boundary may reduce the priority of border nodes in the 

ranking process. 
Figures 2a and 26 represent total variances and standard 

deviations at each round of kriging. They also show the corre-

sponding marginal improvements in the accuracy of the esti-

mated field due to the addition of each new point. As ex- 

rig. 2h. Total sum of standard deviations and the corresponding 
marginal economic gains due to additional sampling. 
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Fig. 3. Optimal number of new data points (Ns) versus cost-loss 
ratio (MC,/c). 

petted, both TOTV and TOTSD decrease as the number of 
new data points increase. These optimistic results are valid as 
long as the estimated generalized covariance function remains 
unchanged. 

TVR and TSDR show the level of reduction in TOTV and 
TOTSD (i.e., improvement in the reliability of results) at each 
round of kriging. In initial rounds TVR and TDSR are quite 
high, but after few rounds they both approach almost asymp-
totic levels. This monotonic decrease in the values of TVR 
and TSDR is similar to the concept of "diminishing rate of 
return" in economics. As the number of new sites increases, 
the marginal improvement caused by additional measure-
ments decreases. So there should be a finite optimal number of 
new measurements (N*). 

As is mentioned in (35), the net expected benefit of each 
sampling is a linear function of TSDR and the corresponding 
measurement costs (MC). As long as marginal benefits exceed 
measurement costs, new data points should be added, given 
no budget constraint. N* reaches its optimal value when equi-
librium is established. In neoclassical economics, equilibrium 
is referred to the state of equality between marginal benefits 
and costs [see Hirshleifer, 1976]. Naturally, no further 
measurement should be conducted beyond the state of equilib-
rium. In terms of (35), N* is equal to i if and only if 

TSDR i  < MCi/c j > i 

TSDR i  mc i /c 	j = i 	 (38) 

TSDR ;  > Mci/c j < i 

The locus of points where equilibrium (38) hold is shown in 
Figure 3 (N* as a function of MC,/c). The shape of the graph 
indicates that N* is extremely sensitive with respect to small 
values of MC,ic (e.g., less than 20). However, as MC,/c in-
creases, N• becomes significantly less sensitive to the value of 
MC,/c. The following are some approximate estimates of the 
sensitivity of N• with respect to MC,/c (i.e., eN*10(mcdc)): 

r  e•nr*  

L 3M C i /ci 

MC, < 20c —2.09 
20c < MC, < 50c —0.26 
50c < MC, —0.05 

The above results indicate that as MC,/c decreases, the sen-
sitivity of N* to its values goes up as much as 40 times. It can 
be inferred that for small MC,/c, the high reliability of its  

estimates is essential to identify a robust estimate of N*. In 
other words, as MC I/c goes down, the relative importance of 
economic data (i.e., MC, and c) increases dramatically. In con-
trast, even an approximate estimate of large MCi/c produces a 
robust N. 

4.3. Resilience of Variance Reduction Analysis 

Variance reduction analysis depends only on the covariance 
function and the geometry of points. This property in turn 
implies that the new added values should comply with the 
estimated covariance function. The assumption of the con-
stancy of the covariance function is the basis of the optimality 
of the variance reduction decisions (i.e., the selected sequence). 

The questions that immediately arise are, What is the effect 
of the predicted values being significantly under or overesti-
mated? How does the generalized covariance function re-
spond to fluctuations in the newly sampled values? How does 
the decisions based on the variance reduction analysis behave 
under such situations? In order to answer these questions it 
seems necessary to test the robustness and the resilience of the 
variance reduction analysis. 

For the purpose of answering these questions the VR analy-
sis was divided into three spaces. The data set was denoted as 
the input space. The results of the structural analysis (i.e., the 
estimated parameters of the covariance function) were defined 
as the parameter space, and the selected sets were represented 
as the action space. 

At each round of kriging the value of Z at the selected site, 
X., was defined as 

Z(X *) = 2(X.) ± a 

where 

Z(X.) simulated measured value at X.; 
2(X.) estimated value at X.; 

simulated normally distributed noise; N(0, 

Var [2 — Z]). 

Z(X.) was then added to the input space, which was followed 
by a structural analysis. The parameter space showed a signifi-
cant degree of instability with respect to the noisy input space. 
Similar results are also reported by Kitanidis [1983]. Even 
small levels of fluctuations in the added data caused large 
changes in parameters of the estimated generalized covariance 
function. In contrast, the instability of the parameter space 
had a negligible effect on the action space. Selected sets under 
noisy input space showed strong similarities with the original 
selected sequence. For actual results, readers are referred to 
Rouhani [1983]. 

4.4. Comparison of Sampling Based on Simple 

Criteria to Variance Reduction Analysis 

Figure lc shows the top 20 selected nodes based on a simple 
criterion of maximum distance from data set. At each round, 
the point among the potential sites with maximum average 
distance from existing data points is selected as the new added 
measurement site. Marginal economic and information gains 
(TSDR and TVR) due to sampling based on this simple cri-
teria is then calculated. The comparison of this set to the 
selected sequence based on VR analysis reveals a significant 
difference between them. The above simple criterion ignores 
the fact that points with maximum distances from existing 
data set are not necessarily the most uncertain nodes. For 
example, in some cases, the node with maximum distance is 
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Fig. 4b. Economic regrets due to sampling based on the criterion of 
maximum distance. 
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located very close to a single data point. So, even though it is 
the farthest point, it may not be the most uncertain site. 

Following such a simple criterion may lead to information 
and economic regrets. These regrets are defined as reductions 
in marginal information and economic gains caused by using 
the maximum distance criterion as compared to gains of the 
selected sequence based on VR analysis. 

Figures 4a and 4b show information and economic regrets 
due to sampling based on the maximum distance criterion. As 
seen from these figures, the regrets are significant. They also 
show an interesting pattern. At the first stage of ranking of the 
top ten points, all points are bordered nodes in sparsely sam-
pled areas. At this stage the simple method leads the planner 
to nonoptimal points with large regrets, such as the fifth-
ranked node. After some lags it identifies the optimal points 
and the level of regret goes down. In the second stage (i.e., the 
second top ten points) selected nodes are located in relatively 
densely sampled areas; almost half of them are internal points. 
Both regret functions at this stage show a second rise in regret 
values; however, the level of regrets are smaller. From the 
above it can be concluded that simple criteria can lead the 
planners to nonoptimal points in both sparsely and densely 
sampled regions with significant regrets. 

5. SUMMARY AND CONCLUSIONS 

This paper is an attempt to develop a data collection algo-
rithm, known as the variance reduction analysis. The pro-
posed method is based on an information response function 
(i.e., the amount of information gain at an arbitrary point due 
to a measurement at another site). This method was later 
applied to groundwater data management problems. Total 
variance reduction (a measure for the information gain) which 
is independent of measured values was used as a tool for the 
design and planning of such data collection schemes. How-
ever, this algorithm still required an additional measure for 
the monetary or economical interpretation of the gained infor-
mation. It was suggested that by utilizing a loss function the 
planners can estimate monetary values of their added data. By 
assuming that measurement fluctuations are normally distrib- 

E

C 

2: 

Fig. 4a. Information regrets due to sampling based on the criterion 
of maximum distance. 

uted, a two-piece linear loss function yielded an expected loss 
that was directly proportional to the square root of the krig-
ing variance. This measure of economic gain provided a mon-
etary interpretation for the value of the added information. 

The two indicators of information and economic gains led 
to an optimal sampling scheme. Based on the information 
gain function, selected points were ranked as prospective new 
sampling sites. Then, using the economic gain function, the 
optimal number of added points was calculated as a function 
of cost-loss ratio (i.e., MC,/c). Studying the pattern of selected 
points produced the following conclusions: 

1. Given equal weights to all nodes, border (extrapolated) 
nodes have a higher priority over internal (interpolated) 
points. 

2. Areas with low sampling density get a clear priority for 
further measurements. 

3. Marginal information and economic gains diminish to 
almost asymptotic values as the number of added points in-
creases. 

4. As the measurement cost increases relative to net loss 
coefficient (i.e., MC i /c goes up), the number of optimal new 
points (Ns) decreases. 

5. When MCdc is small the sensitivity of N* with respect 
to the cost/loss ratio is far greater than the case of larger 
MC,/c. So at low MCdc more accurate economic data is 
needed in order to produce equally robust estimates of N. 

6. Adding noisy input shows that the proposed structural 
analysis yields estimates of covariance function parameters 
that lack robustness. However, selected sets show significant 
stability under noisy inputs. 

7. Simple criteria for the selection of sampling sites such as 
"the maximum distance from data set," tend to ignore the 
influence of added data on their neighboring points. As a 
result, they lead the planners to sampling at nonoptimal sites. 

In general, it can be concluded that the variance reduction 
analysis is an effective algorithm for the planning and design 
of data collection schemes in random fields. 
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Comparative Study of Ground-Wate-: 
Mapping Techniques 

by Shahrokh Rouhani a  

ABSTRACT 
Mapping of ground-water spatial data is an important 

part of any geohydrologic investigation. There are three 
main classes of interpolators used for such mappings. The 
first group include simple estimators which are commonly 
used in practice. The second group are least-squares esti-
mators which are basically fitting processes. The last 
category are Gauss-Markov estimators, such as kriging, 
which beside being exact interpolators, produce measures 
for the accuracy of the estimated field. These estimators are 
compared theoretically and numerically. These studies 
show that kriging yields relatively robust estimates. How-
ever, its suggested statistical inference method may not 
always produce robust estimates of the covariance function 
parameters. Simple estimators produce unstable results, 
while least-squares methods ignore local variations by 
fitting a single polynomial function over the whole field. 
For this study, water-table data from northwest Kansas 
are used. 

INTRODUCTION 
In most ground-water investigation studies, 

the initial geohydrologic data are in the form of 
scattered point values. It is one of the tasks of the 
investigators to interpolate these values in order to 
get a more complete picture of the spatial 
characteristics of the field of interest. To accomplish 
this, automatic mapping and interpolating tech-
niques may be utilized. These methods vary in their 
levels of complexity and operational efficiency. 

Most common interpolation procedures are 
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based on linear combinations of existing data. 
These methods are linear in the following sense: 

Z(Xo ) = 	Xi, Z (Xi) 	 (1) 

where 

Z(X0 ) = estimated value at X o  (e.g., estimated 
ground-water levels at X o ); 

Z(Xi ) = measured value at Xi, i = 1, . . . , N (e.g., 
measured ground-water levels); 

Xio 	= coefficient or weight of Z (Xi) to 
estimate Z (X0 ). 

These algorithms can be divided into three classes: 
(1) simple estimators, (2) least-squares estimators, 
and (3) Gauss-Markov estimators. In the first 
group, interpolation is done by using an assumed 
function for Xi o  . In least-squares estimators, Xi o 

 are estimated by fitting a function to the data. In 
the third group, Z (X) is assumed to be a spatially 
distributed random variable with a specific correla-
tion function, also known as a random field. 

1. The Simple Methods 
These algorithms can be readily applied to 

any spatial data. In this group are the following: 

a. The Nearest Neighbor Method 
According to this technique the estimated 

value at any given point is taken as the measured 
value at the nearest data point. This method 
represents the simplest approach to interpolation. 
It does not make any explicit assumption about 
the underlying field, and consequently, does not 
require any statistical information about the 
structure of Z (X). 
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b. The Arithmetic Mean 
In this method Z(X0 ) is estimated by the 

average of its surrounding data values as follows: 

2 (x0 ) = E xi°  z (xi ) 	"(2) 

where Xi. = 1/N. N is the number of data points in 
the surrounding area. The above values for Xi °  are 
identical to estimation weights used in the case of a 
random field with a constant expected value and 
uncorrelated residuals. The similarity shows that 
the seemingly simple model for Xi0  in equation (2) 
may imply an implicit statistical structure for Z (X), 
if studied as a random field. 

c. The Distance Weighting Function 
In this approach the data values are weighted 

according to their distances from the estimated 
point. For example in inverse squared distance 
weighting (ISDW), Xi o  is defined as: 

"it) = 1 Xi Xo 1-2 
	

(3) 

where Xi and X0  correspond to the locations of 
the measured and the estimated points, respective-
ly. The above model indicates that the closer the 
two points, the higher their correlation. However, 
similar to the previous method, the relative loca-
tion of data points with respect to each other has 
no significance in the interpolation process. 

2. Least-Squares Estimators 
Least-squares estimation also can be catego-

rized as a linear method (Delfiner, 1975). Given 
basic functions fp  (X) (e.g., monomial functions), 
Z (X) is estimated as follows: 

Z(X0 ) = E bp fp (X0 ) 
	

(4) 

which is the regression equation with unknown 
coefficients b y  . The by  are estimated by minimizing 
the following equation with respect to b p : 

S = E [Z(Xi) — E b p fp(Xi)? 	(5) 

where S is known as the sum of squares of errors 
(SSE). Xi denotes the measurement points. In this 
class are: 

a. The Ordinary Least-Squares Estimator (LSE) 
LSE views Z (X) as a field with the following 

structure: 

Z (X) = M(X) + R(X) 	 (6) 

where 

M(X) = E bp  fp  (X) 

E [11(X)] = 0 

E [R (Xi)R (Xi)] = C6 (h) 

where 6(h) is the Dirac delta function. M(X) is a 
deterministic function, and R (X) is an uncorrelated 
zero-mean error term with a variance of C. 

LSE also produces a measure of the goodness-
of-fit, a", or the mean square error which is defined 
as 

u 2  = 1 — E [Z(Xi)— E b p fp (Xi)1 2 	(7) 
N 

Unfortunately, 0.' 2  gives only an over-all measure of 
the goodness-of-fit at data points, and does not 
reflect the accuracy of individual point estimates. 

b. The Generalized Least-Squares Estimator (GLSE) 
This method is identical to the LSE except 

that a correlated error with K( ) as its correlation 
function is included: 

E[R(Xi)R(Xj)1 = K(Xi, Xj) 	 (8) 

As a result, the criterion SSE in equation (5) 
becomes more complicated: 

S=E E [Z(Xi)—M(Xi)]K(Xi,Xj)[Z(Xj)—M(Xj)] 

(9) 

where S in equation (9) is called tie "weighted" 
sum of squares of errors (WSSE). 

Due to the more complicated form of WSSE, 
simple optimization methods such as Lagrange 
multipliers are not usually applicable. So, quadratic 
programming algorithms have to be used. These 
nonlinear optimization schemes are computationally 
less efficient than Lagrange multipliers. Further-
more, GLSE requires prior knowledge of K (x i , xj ) 
(i.e., the correlation matrix). Here, one can easily 
see that as the level of the sophistication of the 
method increases, the background information 
requirements along with the operational complexity 
of the method also increase. 

3. The Gauss-Markov Estimators 

The following techniques yield unbiased 
minimum variance estimates, which are the core of 
the Gauss-Markov theorem (Meyer, 1975). In 
practice these algorithms substitute the minimiza-
tion of SSE by the minimization of the estimation 
variance. This substitution becomes very useful 
when dealing with fields with correlated residuals. 
In such cases the Gauss-Markov estimators can 
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adapt simple optimization techniques such as 
Lagrange multipliers, and thus they are operation-
ally more efficient than GLSE. These methods are 
based on the following criteria: 

(1) Unbiasedness: E [Z (X0) — Z(X0)] = 0, 
where Z(X0) is the unknown underlying value of 
Z at Xo , and 

(2) Minimum squared error: this requires 
E[Z(X0 ) — Z (X0 )] 2  to be minimum. These condi-
tions can be written as 

E (Xo ) — Z (X0 )] = 0 

Var (X.) — Z(X 0)] = minimum 	(10) 

where Var [Z (X0 ) — Z(X0 )1 is defined as the 
estimation variance. 

From the point of view of modeling, a Gauss-
Markov estimator views the field Z (X) as a spatial 
random function with the following model: 

	

Z(X) = M(X) + R(X) 	 (11) 

where: 

(i) M(X) is a slowly varying deterministic 
function known as the "drift" which is equal to 
the expected value of Z at point X (xii, x2,, • 	, 
x0i) in R. It may be further assumed that M(X) 
admits a local representation in the form of a 
polynomial of order k as follows: 

(k) 
M(X) = E bpfp (X) 

P= 1  

where b y  are fixed unknown coefficients, and 
fp (X) are basic functions of the polynomial, i.e.: 

f (X) = xPi xP 2 	xPn 
 n 

on the condition that p, + p 2  + . . . + 	< k. 2(k) 
is the number of monomials M(X). 

(ii) R (X) is a spatially fluctuating random 
component with zero expectation. In this group 
are: 

a. Objective Analysis 
This method was developed by Gandin (1965) 

and has been widely applied for mapping of 
random fields in meteorology and oceanography 
(e.g., Tu, 1981). For this technique, as for all 
Gauss-Markov estimators, the random field is 
viewed as a Bayes model (Schweppe, 1973) as 
defined by equation (11), with: 

M(X) = E[Z(X)] = M 

E[R(Xj)] = 0 

E[R(X )R(Xj)J = K(I X, — Xj I) 	(14)  

According to this technique, M(X) is constant 
throughout the field and Z(X) is second-order 
stationary. Based on equation (14), Z(X 0 ) is 
estimated as: 

Z(X0) = E Ai°  Z (X, ) 

where Xi °  are calculated by the minimization of 
the Var [Z (X0) — Z (X.)] . Naturally, one has to 
know the following statistical properties prior to 
the interpolation process: (1) the constant drift, M, 
and (2) the correlation structure of the random 
field, K( ). Gandin (1965) slightly varied the 
model (14). For example, he assumed M(X) to be 
a correlated random function with zero mean and 
R(X) was assumed to be uncorrelated with a 
nonzero mean, known as the measurement bias. 

b., Simple Kriging 
This method has been applied to many 

geological and hydrological estimation problems; 
for instance, see David (1977), Delhomme (1979), 
Sophocleous et al. (1982), Aboufirassi and Marino 
(1983), and Bastin et al. (1984). Kriging is 
essentially similar to objective analysis; however, 
there is a difference between these two methods. 
For the objective analysis one assumes weak 
stationarity for Z (X). For kriging it is only assumed 
that the first-order increments of Z (X) are weakly 
stationary. The assumption for simple kriging can 
be written: 

E[Z(X,)— Z(Xj)] = 0 

Var [Z (Xi) — Z (Xj )] = 27 ( I X, — Xj I ) 	(15) 

where 7 (h) is defined as the "semivariogram." 
Assumptions (15) eliminate the need for prior 
estimation of M which is required by the objective 
analysis. 

c. Intrinsic Random Functions (IRF) 

If M(X) is nonstationary, then the drift has to 
be estimated prior to the mapping. In order to 
avoid this, Matheron (1973) proposes a new 
method. In this method the process Z (X) is viewed 
as an intrinsic random function (IRF) which could 
be made stationary by a process known as 
"incrementing." A k th  order intrinsic random 
function (IRF) is defined as a random process 
which requires a k th  order filtering to achieve 
stationarity. In other words in IRF, estimation 
weights, Xi °  , are defined in such a manner that the 

N 
linear combination E X i o  Z (Xi) filters out the 

i=0 

(12)  

(13)  
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mean, which is assumed to be a polynomial of 
order k. Consequently, this approach leaves out the 
important step of estimating a drift. 

For the case of an IRF of order 0, 1, or 2 in a 
two-dimensional space with Cartesian coordinates 
(xi, yi), the above incrementing constraints can be 
written as: 

N 
k = 0 	E Xio  =0 

i=0 

2 
• Xi o  yi = 0 

1.0 

The above constraints (16) constitute the 
unbiasedness criterion of the original kriging 
[equation (10)] . 

The criterion of minimum squared error in 
equation (10) is defined as: 

N 	 N N 
Var[ E Xio Z (Xi)] = E E Xi o Xi o K(IXi — 	I) 

i=0 	 i=0 j=0 
. . . . (17) 

where K( ) is the covariance function, and X oo  = —1. 
Now, in order to calculate Xi o , it is necessary 

to minimize (17) subject to constraints (16). This 
minimization can be done by Lagrange multipliers, 
g po . At its minimum the estimation variance (17) 
takes the value of: 

Var[2(Xo)— Z(Xo)] = K(IX0  — X0 1) 

N 	 Q(k) 
— E Xi0 K(IX0  — Xj1) — E Ppo fp OW (18) 

j=1 	 p=1 

Equation (18) is a measure for the accuracy of 
Z (X0 ). The knowledge of covariance function and 
the order k are the only prerequisites for the mini-
mum variance estimation of Z (Xo). Kafritsas and 
Bras (1981) note that in the process of estimation, 
kriging preserves the observed values. This quality 
makes this method an "exact interpolator." 

As a step toward more computational effi-
ciency, Matheron (1973) suggests a family of 
functions as the general form of admissible poly-
nomial isotropic covariance functions for IRF-k in 
n dimensional space, as shown in Table 1. Vario-
grams and simple covariance functions may also be 
utilized. 

SUMMARY OF THE THEORETICAL ANALYSIS 
From the above brief description of these 

methods, one can infer that for an over-all theoreti-
cal comparison of interpolation techniques, three 
main characteristics should be considered. These 
are: (1) the required information prior to the inter-
polation, (2) the efficiency of the interpolation 
algorithm, and (3) the type of measure of the 
accuracy of the outputs. These factors are all inter-
dependent. For instance, given a good estimate of 
K(h), kriging yields robust estimates with a 
measure of their accuracy. However, if the data are 
scarce, the choice of K(h) becomes rather subjec-
tive which in turn adds more uncertainty to the 
results. 

Keeping the above characteristics in mind, 
one can find instances in which one method has 
clear advantages over the other. For example, the 
IRF is computationally more efficient than the 
GLSE, the objective analysis, and the simple 
kriging, because it requires similar or less informa-
tion than others while yielding better results with a 
measure for their accuracy. However, when one 
compares the IRF to the LSE or simple methods, 

N 
k = 1 	E Xi o xi = 0 

i=0 

k = 2 	E 

• 

Xioxiyi = 0 
i=0 

N 
• Xio Yi = 0  

i=o 

• X iO Xi
2  
 = 

1=0 

(16) 

Table 1. Selected Models for Generalized Covariances (Delfiner, 1975) 

Drift k fp  in R 2 	 fp  in R 3  Models of GC 

Constant 0 1 	 1 K(h) = Cb(h) + a i h 
Linear 1 1, x, y 	 1, x, y, z K(h) = Cb(h) + a l h + a 3 h 3  
Quadratic 2 1, x, y, xy, x 2 , y 2 	1, x, y, z, xy, xz, yz, x 2 , y 2 , z 2  K(h) = Cb(h) + a i h + a 3 h 3  + ashs 

Constraints 
on the 
coefficients 

a l  <0 	a 5  <0 

in R 2 : 	— 
10 
— (a i a s ) 1/2  in R 3  a3...> — (10 a 1 a 5 ) 1/2  

3 
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such clear advantages do not exist because unlike 
the IRF, the LSE and simple methods do not 
require detailed statistical information. In fact, the 
simple methods, and to some degree the LSE, have 
very simple interpolation algorithms. This opera-
tional simplicity is achieved by ignoring the statisti-
cal structure of Z(X). So the choice of the best 
appropriate method depends on the amount of 
available information, the computational resources 
available to the user, and the significance or the 
desired level of accuracy of the mapping results. 

THE NUMERICAL COMPARISON 
Based on the above conclusions, those 

methods which show no distinct advantage or dis-
advantage over the others are compared. The IRF, 
the LSE, and the inverse squared distance 
weighting (ISDW) methods are selected for numeri-
cal comparison. For the following case study, a set 
of water-table data has been used.  

Data Description 
The available data are ground-water level 

observations made in January 1979 in a section of 
Groundwater Management District No. 4 of 
Kansas, an area of 2048 square miles in north-
western Kansas, including parts of Sherman, 
Thomas, Cheyenne, Rawlins, Logan, and Wallace 
counties (Figure 1). This subregion lies between 
latitudes 38°48' and 39°48' North and longitudes 
101° and 101° 36' West. There are 84 measurement 
points in this area (see Table 2). Northeastern and 
northwestern corners of this zone are rather 
densely measured, while central and southern parts 
of this subregion have relatively scattered data 
points. In general there is no area of excessive 
pumping or recharging that can be shown as a 
major sink or source for the aquifer. For further 
study of the geohydrology of this region, readers 
are referred to Pearl et al. (1972). 

Computer Programs 
Two major programs have been used in this 

study. For the purpose of the structural analysis 
and kriging, a versatile program named AKRIP 
(Kafritsas and Bras, 1981) has been utilized. This 
program is based on the suggested algorithm by 
Delfiner (1975). The other program used was the 
SYMAP (SYnographic MAPping System) developed 
by the Harvard Laboratory for Computer Graphics 
and Spatial Analysis (Dougenik, 1975). SYMAP is 
basically employed for the purpose of mapping the 
kriging results, least-squares trend fitting, and dis-
tance weighting interpolations. 

KANSAS 
Fig. 1. Hand-drawn contour map of ground-water levels in 
northwest Kansas. (Map scale: 1 inch = 11.77 miles for 
X = 7.75 miles for Y.) Measurements are in feet. Black dots 
indicate the observation sites. 

ANALYSIS OF RESULTS 
1. Inverse Squared Distance Weighting (ISDW) 

First, the available data are interpolated by 
ISDW. The point distribution coefficient of the 
data set is 1.13 which is an indication that the 
measurements are located irregularly. The random-
ness of the spatial distribution of the data means 
that the data points are not clustered .so a meaning-
ful interpolation can be done. No other statistical 
information was required. 

Two special data points, A and B, are selected 
to test the robustness of our estimates in sparsely 
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Table 2. Data Points Locations and Values 

Point 

y 
(mile) 

Down 

x 

Across 

Z(x,y) 
(ft) 

Point 

y 
(mile) 

Down 

x 

Across 

Z(x,y) 
(ft) 

( 	1) 1.18 4.16 3239.00 (43)  32.02 7.35 3356.00 
( 2) 1.93 7.08 3196.00 (4.4) 32.27 7.84 3349.00 

( 	3) 3.31 9.95 3175.00 (45) 33.16 6.81 3372.00 
( 4) 6.06 8.43 3205.00 (4.6) 31.04 0.70 3445.00 

( 	5) 4.18 0.33 3295.00 (47) 31.16 5.08 3391.00 
( 6) 5.94 2.11 3292.00 (48) 32.54 1.84 3443.00 

( 	7) 7.44 0.81 3308.00 (49) 36.55 4.33 3433.00 
( 8) 12.58 7.62 3244.00 (50) 43.17 9.84 3228.00 

( 	9) 12.20 3.46 3312.00 (51) 17.10 29.52 3039.00 
(10) 13.33 1.57 3339.00 (52) 21.61 29.79 3050.00 
(11) 14.83 2.16 3341.00 (53) 17.85 27.41 3060.00 
(12) 48.94 26.87 3099.00 (54) 17.98 27.90 3045.00 
(13) 46.55 13.52 3219.00 (55) 18.74 24.54 3101.00 
(14) 46.67 13.14 3216.00 (56) 16.97 21.90 3112.00 

A (15) 61.59 22.49 2912.00 (57) 20.36 22.00 3146.00 
(16) 2.18 26.65 2886.00 (58) 16.47 11.52 3219.00 
(17) 3.43 24.38 2926.00 (59) 17.46 15.95 3189.00 
(18)• 1..55 21.35 2973.00 (60) 20.86 11.89 3263.00 
(19) 0.53 14.27 3128.00 (61) 21.85 15.19 3229.00 
(20) 0.92 11.25 3161.00 (62) 23.37 29.90 3041.00 
(21) 6.82 29.30 2981.00 (63) 23.13 24.49 3124.00 
(22) 8.82 31.03 2972.00 (64) 26.12 29.41 3055.00 
(23) 9.70 24.33 3039.00 (65) 26.75 28.11 3065.00 
(24) 4.92 16.92 3092.00 (66) 24.00 20.49 3169.00 
(25) 6.69 22.22 2986.00 (67) 24.99 12.38 3273.00 
(26) 8.94 18.16 3068.00 (68) 27.63 15.41 3252.00 
(27) 4.06 10.22 3176.00 (69) 29.13 30.28 3041.00 
(28) 5.93 12.60 3172.00 (70) 28.26 28.76 3056.00 
(29) 14.34 29.73 3023.00 (71) 28.77 23.52 3124.00 
(30) 10.08 27.36 3021.00 (72) 31.77 27.63 3062.00 
(31) 14.47 25.09 3072.00 (73) 30.13 12.00 3302.00 
(32) 11.95 19.68 3099.00 (74) 38.65 29.84 3017.00 
(33) 13.46 12.33 3200.00 (75) 35.39 29.36 3043.00 
(34) 16.47 8.38 3261.00 (76) 43.79 29.57 3057.00 
(35) 17.09 5.51 3294.00 (77) 40.15 29.09 3015.00 
(36) 18.97 7.79 3288.00 (78) 41.54 28.60 3038.00 
(37) 17.22 2.00 3354.00 (79) 42.55 27.46 3076.00 
(38) 19.48 0.87 3391.00 (80) 45.59 16.87 3189.00 
(39) 22.24 7.41 3318.00 (81) 52.10 4.60 3229.00 
(40)  22.86 6.38 3336.00 (8 .2) 61.94 13.46 3011.00 
(41)  23.36 9.89 3290.00 B 	(83) 39.69 19.30 3173.00 
(42)  24.37 6.76 3337.00 (84) 25.75 32.06 3026.00 

sampled areas as indicated in Figure 1. Point A is 
located in the lower part of the map where the 
number of measurement points is very low, while 
point B is in an area of sparse data surrounded by 
areas of high data density. 

In the first round of interpolation all points, 
including A and B, are used to produce the contour 
map shown in Figure 2a, which shows a lot of 
small-scale variations throughout the map, especial-
ly in its lower part. This area is an area of low data 
density, so these patterns should be viewed with 
caution. In order to test the reliability of these  

estimates, point A is omitted. As a result, the con-
tour lines in the lower part of Figure 2b are 
changed drastically. This significant change shows 
one of the weaknesses of ISDW interpolation in 
sparsely sampled areas. In Figure 2c, point B is also 
omitted, but in contrast to the previous case, the 
omission of point B causes only an increase in the 
hydraulic gradient of the central part of the map. 
It must be remembered that the choice of the 
weighting function is still arbitrary, and thus, the 
validity of the final results has to be checked by 
other means. 
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Coefficient of 
x3 x 2  xy2 y 2 

x 2y xy 
Order of 

polynomial 	1 Y
3 	c orrelation 

Table 3. Polynomial Trend-Fitting Statistical Results 

1 

2 

3 

3337.9 

3252.5 

3266.1 

—12.30 

—13.73 

—12.37 

1.47 

12.48 

8.61 

.0181 

—.1171 

.0195 

.0342 

—.2133 

—.0354 .0039 —.0022 .0010 —.0024 

.895 

.983 

.986 

2. Least Squares Trend Fitting 
Three polynomials of the first, second, and 

third order are fitted to the data. The statistical 
results are shown in Table 3. They show close 
correlation between the trend and the measured 
values. The coefficient of correlation rises from 
.895 to .986 when it goes from a first- to a third-
order polynomial. In spite of a high coefficient of 
correlation, the least-squares estimator ignores 
local variations. This forced orderliness is most 
obvious in the upper right corner and the lower 
part of this subregion. Furthermore, the coefficient 
of correlation gives only an over-all measure of the 
goodness-of-fit with respect to the data points. 
Thus it does not give any direct measure for the 
accuracy of estimated values. 

3. Kriging Results 
The Structural Analysis 

As was discussed in the theory of kriging, one 
has to estimate the order of the IRF and the  

covariance function parameters prior to the inter-
polation. This is done by the structural analysis. In 
this work, the suggested analysis by Delfiner 
(1975) and polynomial generalized covariance 
functions (Table 1) are used. 

In order to avoid ill-conditioned matrices in 
the interpolation process, a minimal allowable dis-
tance between each pair of two data points, DR, 
has to be selected. The program discards some of 
the data so that there are no two measured points 
with a distance less than or equal to DR between 
them. It also averages the observed values of each 
retained point and of its discarded neighbors and 
assigns the result to the retained point. The choice 
of the minimal allowable distance is arbitrary and 
may differ from case to case. One may assume that 
discarding a few points through the application of 
DR is merely the smoothing of microscale varia-
tions in the data values. The results of these pre-
kriging smoothings and the structural analysis for 
DR = .5, 1, and 2 miles are shown in Table 4. 

a 
O. THE OMITTED POINT 

Fig. 2. Water-levels contour map produced by distance 
weighting function. (Map scale: 1 inch = 11.77 miles for 
X = 7.75 miles for Y.) a. All points are included; b. Point A 
is omitted; c. Points A and B are omitted (in feet). 

a 
Fig. 3. Water-levels trend-fitted surface. (Map scale: 
1 inch = 11.77 miles for X = 7.75 miles for Y.) 
a. First-order polynomial; b. Second-order polynomial; 
c. Third-order polynomial (in feet). 
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Table 4. The Results of Structural Analysis 

G. C. 

	

1 	0 
	

K(h) = 1552.1 6(h) 

	

4 	1 
	

K(h) = 145.686(h) + .89914 h 3  

	

14 	1 
	

K(h) = 125.196(h) + .98978 h 3  

Minimum allowable distance between data points 
(miles). 

Number of discarded points. 

Order of the intrinsic function. 

The generalized covariance (ft 2 ). 

The distance vector (miles). 

Dirac delta function. 

The sensitivity of the estimated covariance 
function parameters to changes in the data set is 
quite obvious. However, it can be seen that after 
some microscale smoothing (i.e., elimination of 
four points in DR = 1 mile), the structural analysis 
tends to produce robust estimates of the 
covariance function. The uncertainty in these pre-
interpolation estimates are not formally included 
in kriging. Consequently, they might add an un-
measured amount of error to the interpolated 
values. 

Mapping Results 
For kriging purposes the field is divided into 

an 8 x 18 grid with Ax = Ay = 4 miles. The results 
of the contour maps and their corresponding 

a 
Fig. 4. Water-levels contour map by kriging. (Map scale: 
1 inch = 11.77 miles for X = 7.75 miles for Y.) 
a. DR = .5 mile; b. DR = 1. mile; c. DR = 2. miles (in feet).  

kriging variances for cases of DR = .5, 1, and 2 
miles are illustrated in Figures 4 and 5. They 
provide a basis for a comparative analysis of the 
covariance functions. As expected in the first case 
(i.e., the pure nugget effect) the variances are 

. identical for all estimated points (see Figure 5a). 
The calculated variance seems rather high when 
compared to the other two cases (see Figures 5b 
and 5c). 

Considering the other two cases, one easily 
observes the close similarity of the kriging maps 
(see Figures 4b and 4c). In fact, kriging produces 
rather similar maps when the covariance functions 
are of the same order. 

The comparison of Figures 5b and 5c also 
shows close agreement between the estimated 
accuracies of the kriged values. However, it seems 
that kriging with DR = 2 miles has produced a 
slightly more reliable map. This is mainly due to 
the lower nugget effect (i.e., C) in the case of 
DR = 2 miles. The above comparisons show how 
the variabilities in the covariance functions 
influence the estimation variances. So these 
variances should be viewed only as a relative 
measure for the accuracy of estimates. 

Two distinct points A and B (see Figure 1) are 
selected to study the effect of data point omission. 

4 	3 
	

3 4 5 
	

4 	3 
	

3 4 5 

Uniform 

Kriging 

4arlanOe, 

4= 1746.1 

a 	4 2  b 
Fig. 5. Contour of estimation variances. (Map scale: 
1 inch = 11.77 miles for X = 7.75 miles for Y.) 

a. DR = .5 mile; b. DR = 1. mile; c. DR = 2: miles (in feet). 

Map symbols: 	 1 	2 	3 	4 	5 
Min 	0 200 400 600 800 

Range 

(sf) 
	

Max 199 399 599 799 — 

DR 

.5 

1. 

2.  

DR = 

n 	= 

k 	= 

K(h) = 

h 	= 

= 
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a 
®. THE OMITTED POINT 

Fig. 6. Water-levels contour map by kriging (DR = 1. mile). 
(Map scale: 1 inch = 11.77 miles for X = 7.75 miles for Y.) 
a. All points are included; b. Point A is omitted; c. Points A 
and B are omitted (in feet). 

Both of these two points are located in sparsely 
sampled areas. Point A is located near the lower 
boundary of the map, while point B is surrounded 
by areas of high data point density. With the ISDW 
procedure, the deletion of point A causes a drastic 
change in the pattern of contour lines, while 
skipping point B causes only marginal changes in 
the hydraulic gradient. Now with kriging, as shown 
in Figure 6, the removal of points A and B has 
practically no effect on the map. However, in both 
cases after omitting points A and B, the level of 
uncertainty rises in the neighboring areas of these 
two points, as shown in Figures 7b and 7c. These 
increases give proper signals to warn the map 
producer of the high level of uncertainty created 
by skipping these two points. 

Further study of estimation variances indicate 
that the lower part of the map is basically an 
uncertain area so that more sampling should be 
done in that part. The central section, where point 
B is located, is also an uncertain area, but its level 
of uncertainty is moderate, and at this point it 
should not necessarily be a target place for further 
measurements. 

SUMMARY OF THE NUMERICAL ANALYSIS 
Generally speaking, the ISDW procedure pro-

duces maps with rather low reliability and high 
sensitivity to measured values especially in sparsely 
sampled areas. Kriging tends to yield much more 
robust results and takes the spatial structure of the  

data points into account. In contrast to LSE, 
kriging also reflects small-scale variations in its 
maps. The other important advantage of kriging is 
the estimation variance which yields a measure of 
the accuracy of any single interpolated value. This 
measure can have a dual role. First, it evaluates the 
reliability of our estimates. Secondly, it can serve 
as a guideline to identify the most uncertain areas 
for further measurements. So kriging can be an 
effective tool both for mapping and planning of 
data sampling activities (see Rouhani, 1985). 

There are several drawbacks to this method. 
Kriging demands a significant amount of prior 
statistical information. In addition, the suggested 
statistical inference algorithm includes some 
arbitrary choices such as the selection of DR (i.e., 
minimum allowable distance between data points). 
Another handicap of this method is the lack of any 
measure of reliability of estimated covariance 
functions. In the absence of an extensive data set, 
kriging might generate significant variations in its 
covariance function estimates. In such cases a less 
sophisticated method may be more appropriate for 
the contouring of a random field. In general, as 
mentioned earlier, the choice of the best appro-
priate mapping method depends on the amount of 

4 3 
	

3 4 5 

C 
O. THE OMITTED POINT 

Fig. 7. Contour of estimation variances (DR = 1. mile). 
(Map scale: 1 inch = 11.77 miles for X = 7.75 miles for Y.) 

a. All points are included; b. Point A is omitted; c. Points A 
and B are omitted (in feet). 

Map symbols: 	 1 	2 	3 	4 	5 
Min 	0 200 400 600 800 

Range 
(sf) 	 Max 199 399 599 799 	-- 
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available data, the technical resources of users, and 
the desired level of accuracy of interpolated maps. 
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ABSTRACT 

Rouhani, S. and Fiering, M.B, 1986. Resilience of a statistical sampling scheme. J. Hydrol.. 89: 1-11 

Most statistical sampling algorithms on hydrologic random fields assume that the new measure-
ments will agree reasonably well with their predicted values. This in turn implies the stationarity 
of the estimated covariance function. In order to test the reliability of one such statistical 
algorithm (i.e., variance reduction analysis), noisy input data are generated, and results of sam-
pling from these data are compared to the case of sampling with the unperturbed data. These 
comparisons and a related regret analysis reveal that the effects of the noisy data are primarily 
accommodated by adjustments to the covariance function parameters, while selected sets show a 
high degree of resilience. Variance reduction analysis seems to be a reliable method for maximizing 
information by sampling random fields with an unstable parameter space but a resilient action 
space. 

INTRODUCTION 

Many authors have advocated the use of statistical methods for the design 
of sampling schemes on hydrologic random fields. Commonly these procedures 
are based on the maximization of incremental information subject to budget 
constraints. For instance, Fiering (1965) and Matalas (1968) suggest minimiza-
tion of the total variance of estimates of flow as the objective function for 
gaging schemes. Using non-linear integer programming, they identify from a 
set of potential sites those sampling locations which yield minimal total va-
riance. Bastin et al. (1984) compute all possible combinations of n sampling 
sites out of m potential locations in order to identify the subset which produces 
minimal kriging variance. Brady (1978), Crawford (1979), Hughes and Letten-
maier (1981) and Chou and Scheck (1984) use iterative algorithms to minimize 
regional or areal estimation variances. Rouhani (1985) proposes variance re-
duction analysis to select those sequences of n points so chosen from m poten-
tial sites to maximize reduction in the total variance of estimates. 

In all the above work it is assumed that the statistical structure of the 
random field — represented by a covariance function — is known. Further-
more, it is assumed that the availability of new data does not affect the assumed 
covariance function. 

The questions that immediately arise are: What is the effect on the sampling 
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scheme if the predicted values of the field are significantly under- or overesti-
mated? How does the covariance function respond to the newly sampled val-
ues? Are the decisions, i.e., selection of sampling sites, stable under such 
situations? To answer these questions we propose to test the robustness and the 
resilience of these statistical sampling algorithms. 

RESILIENCE AND ROBUSTNESS 

The concept of resilience is relatively new in the field of water resources. 
Fiering (1982) describes resilience as analogous to the robustness of statistical 
estimators. Matalas and Fiering (1977) define robustness as: "the insensitivity 
of a system design to errors, random or otherwise, in the estimates of those 
parameters affecting design choice". Resilience is the ability of the system to 
accommodate surprises and to survive under unanticipated perturbations. It 
implies that even if an unlikely event occurs, the decision has an acceptably 
high probability of being either correct or good enough. In other words, a 
tolerance ("good enough") and a confidence ("acceptably high") are required. 

Fiering (1982) gives an example to illustrate the differences between robust-
ness and resilience of a system: "The sensitivity of the system response with 
respect to a decision variable x, is given by the partial derivative eflax i . If the 
partial derivative is small, the system is "robust" with respect to such changes. 
If the partial derivative is not small, the system need not suffer important shifts 
in its response because changes in other decision variables might be made to 
accommodate an unfortunate choice of x i ." Therefore robustness alone does 
not reflect the behavior of the entire system. The total derivative df/dx, 
= E(Ell0x,) (dx,/dx,) measures the system's ability to adjust to changes in x„ 

some of which might be correlated. A (linear) combination of all derivatives 
df/dx, might suggest a measure of resilience of the given system. In this paper 
we study the resilience of variance reduction analysis applied to a sampling 
scheme. 

VARIANCE REDUCTION ANALYSIS 

The proposed sampling algorithm is based on kriging, a linear interpolation 
method for variable random fields. Given the values Z(X,), i = 1, . . . , N of a 
field Z(X) at the data points Xi , i = 1, . . . , N, kriging provides a technique for 
estimating the value of linear functionals of Z at additional points. 

In point kriging one estimates: 

2(xo = 	;_zoz(x,) 
	

(1) 

where 2(X) is the kriging estimate at an arbitrary point )C,,, and 	is the 
kriging weight for Z(X) to estimate Z(X0 ). The 	are defined by two criteria: 

E[2(Xo ) — Z(X0 )] = 0 

E[2(X0 ) — Z(X0 )] 2  = kriging variance, to be minimum. 
	 (2) 



r 
Without any loss of generality, it may be assumed that the expected value 

of Z(X) is a polynomial of kth order: 

E[z(x0)] = E bpfp(x), 	 (3) 
p=1 

where by  are fixed unknown coefficients, fp (X) is the pth monomial, and 1(k) is 
the number of these monomials in the above kth order polynomial. In a 2-dimen- 

,i 

	

	sional space with Cartesian coordinates (r, ,y,), a 2nd order polynomial (k = 2 

and 1 = 6) has the following form: 

E[Z(X3 )] = b1  + b2 x, + 13 3 y0  + b4 4 + 	+ bo xoy, 	 (4) 

In our study we measure the accuracy of an estimated value in terms of its 
kriging variance, so it can be a guideline for optimal sampling of the field at 
new data points. For example, the area around which the kriging variance is 
largest can be selected for further data collection. However, such an approach 
ignores the effect of a new measurement on the level of accuracy of the 
estimated field as a whole. Rouhani (1985) proposes a new method to establish 
a measure for such an influence; this resembles a common response function by 
calculating the level of improvement in the accuracy of Z(X) due to a new 
measurement at X* (the arbitrary location of a new sampling site). The level 
of improvement is measured in terms of reductions in the kriging variances. 
Furthermore, this variance reduction can be expanded to cover the entire field. 
Such an expansion enables the user to rank the prospective locations for 
further data collection and, from this ordered list, along with other criteria 
that are not expressed, to select the sites. 

Rouhani (1983) shows that this response function, which represents the 
amount of information gain, can be written as 

VR 0 * - 

1 
	 [K*, — 
V*(N) 

1(k) 

E ;.,*Kio  — E pp* fp (X0)) 2 	 (5) 
p=1 

where VR,* is the variance reduction at Xo  due to a measurement at X *; V*(N) 
is the estimation variance at X* prior to the new measurement; K*, is the 
covariance function between X* and Xo ; is the optimal weight of Z(X ) in 
estimation of Z(X*) prior to the new measurement; p p * is the Lagrange multi-
plier for the pth monomial constraint in the kriging system for the estimation 
of Z(X*) prior to the new measurement; and N is the number of existing data 
points prior to the new measurement. 

In this work, estimation of the covariance function is accomplished using 
the structural analysis proposed by Delfiner (1975). The suggested polynomial 
covariance function has the following form: 

K(h) = C 5(h) + E a2p . 1  10' 
p=0 

(6) 
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where h is the length of vector distance between any two points; C is the point 
variance; 6 is the Dirac delta function; and k is the order of polynomial 
expected value. 

The following definitions are useful: 

TOTV = Vi  

TVR* = E VR) * 
	 (7) 

where TOTV is the total variances of estimation; TVR* is the total variance 
reduction due to a measurement at X*: and j is the set of estimated points. In 
variance reduction analysis, at each round of sampling the site among poten-
tial sampling locations with maximal TVR* is selected as the next measure-
ment location. This yields a sequence of n points among m sites for further 
sampling. Equations (5) and (7) show that the above sampling scheme depends 
on the location of points and the assumed covariance function. 

Proposed methodology 

For planning a sampling activity, one may assume that the estimated cova-
riance function remains unchanged as new data are collected. This yields an 
off-line or non-sequential ranking of n points for further sampling, or a ranking 
which is invariant with respect to the acquisition of new data. The rank list can 
be used as a shopping list; we utilize it, from the top down, until the budget is 
exhausted or some information criterion is met. 

To study the resilience of variance reduction analysis, we compare these 
non-sequentially selected sites to points selected by a sequential procedure, in 
which the point X* with maximal TVR*, is selected as the next new added site 
at each round of sampling; however, the new measured value Z(X*) is assumed 
to be over- or underestimated by a random additive term or white noise per-
turbation: 

Z' -1 (X* ) = 2`(X*) ± t, [17 1 (X* )1 12 	 (8) 

where Z'(X*) is the (i + 1)th added measured value located at x*; 2`(x*) is 
the estimated value at X* based on V'(X*) is the kriging variance at X* 
based on K`; K` is the estimated covariance function at the ith round of 
sampling; t, is a standardized normally distributed random variable with 
Pr(t < t2 ) = 1; and a is the level of deviation. 

After adding the perturbed value to the data set a new structural analysis 
is conducted to estimate 1C+ 1 . This procedure is sequential in the sense that at 
each round of sampling the statistical structure of the field is re-evaluated to 
accommodate the perturbation term. 

Three main schemes are defined to generate perturbed inputs. In the first, it 
is assumed that all the new measured values are smaller than their estimated 
levels: the overestimated scheme (0). In the second, all new measured values 



are larger than their corresponding predicted levels: the underestimated 
scheme (U). Finally, in the third scheme the added measured values alter-
natively vary around their estimated values: the sinusoidal scheme (S). These 
schemes can be shown to be equivalent to: 

Type of scheme 	 Simulated measured values 

0 	 zi" = 	- tz (w) 112  
U 	 V+ 1  = 	+ tim) 0  

= 2' + (-1)'+'t2 (0) 112  

Each of these is simulated under three levels of deviation as follows: 

Level of deviation (%): 

70 	 0.525 
90 	 1.280 
99 	 2.327 

Consequently, nine cases of noisy inputs are generated, each of which can be 
identified by its type of scheme and its level of deviation (e.g., 0-70). 

The data set used in this study is described in Rouhani (1983). The existing 
data points are 84 spatially distributed values of piezometric heads measured 
in wells in northwest Kansas during January, 1979. For further information 
about the geohydrology of this region, readers are referred to Pearl et al. (1972). 
Their values and locations are given in Table 1. This area is divided into a 
5 x 5 grid with Ax = 8 miles and Ay = 16 miles. The nodes are defined as 
potential sampling sites as shown in Fig. 1. 

ANALYSIS OF RESULTS 

Nine studies of sequential data collection planning are conducted. Each is 
characterized by a scheme type and a level of deviation. Some of the generated 
data with large perturbations might be unrealistic. For example, in scheme U 
large additions to Z might yield a water table significantly higher than the 
ground level. These values are included in this study to test the reliability of 
the proposed algorithm under some extreme, unexpected or counter-expected 
events (Fiering and Kindler, 1981). 

In general, the effects of noisy data are accommodated by adjustments to the 
parameters of the covariance function (i.e., the parameter space). This is akin 
to an absorptive process whose mechanism can be described as follows: when 
the level of deviation in the added data is small, the structural analysis con-
siders it simply as noise (e.g., measurement error). Consequently, the chaotic 
component of the covariance function [C in eqn. (6)] is selected for absorption 
of the simulated noise. As the flow of low level noisy data continues the chaotic 
component becomes stronger. 

On the other hand, when the level of deviation is large, the structural 

F 
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TABLE 1 

Existing data locations and values (1 mile = 1.609 km; 1 ft. = 0.3048 m) 

Point y 
(mile) 
down 

x 
across 

Z(x, y) 
(ft.) 

Point y 
(mile) 
down 

x 
across 

Z(x, y) 
(ft.) 

(1) 1.18 4.16 3239.0() (43) 32.02 7.35 3356.00 
(2) 1.93 7.08 3196.00 (44) 32.27 7.84 3349.00 

(3) 3.31 9.95 3175.0() (45) 33.16 6.81 3372.00 
(4) 6.06 8.43 3205.00 (46) 31 :04 0.70 3445.00 

(5) 4.18 0.33 3295.0() (47) 31.16 5.08 3391.00 
(6) 5.94 2.11 3292.00 (48) 32.54 1.84 3443.00 

(7) 7.44 0.81 3308.00 (49) 36.55 4.33 3433.00 
(8) 12.58 7.62 3244.00 (50) 43.17 9.84 3228.00 

(9) 12.20 3.46 3312.00 (51) 17.10 29.52 3039.00 
(10) 13.33 1.57 3339.00 (52) 21.61 29.79 3050.00 

(11) 14.83 2.16 3341.00 (53) 17.85 27.41 3060.00 

(12) 48.94 26.87 3099.00 (54) 17.98 27.90 3045.00 
(13) 46.55 13.52 3219.00 (55) 18.74 24.54 3101.00 
(14) 46.67 13.14 3216.00 (56) 16.97 21.90 3112.00 
(15) 61.59 22.49 2912.00 (57) 20.36 22.00 3146.00 
(16) 2.18 26.65 2886.00 (58) 16.47 11.52 3219.00 
(17) 3.43 24.38 2926.00 (59) 17.46 15.95 3189.00 
(18) 1.55 21.35 2973.00 (60) 20.86 11.89 3263.00 
(19) 0.53 14.27 3128.00 (61) 21.85 15.19 3229.00 
(20) 0.92 11.25 3161.00 (62) 23.37 29.90 3041.00 
(21) 6.82 29.30 2981.00 (63) 23.13 24.49 3124.00 
(22) 8.82 31.03 2972.00 (64) 26.12 29.41 3055.00 
(23) 9.70 24.33 3039.00 (65) 26.75 28.11 3065.00 
(24) 4.92 16.92 3092.00 (66) 24.00 20.49 3169.00 
(25) 6.69 22.22 2986.00 (67) 24.99 12.38 3273.00 
(26) 8.94 18.16 3068.00 (68) 27.63 15.41 3252.00 
(27) 4.06 10.22 3176.00 (69) 29.13 30.28 3041.00 
(28) 5.93 12.60 3172.00 (70) 28.26 28.76 3056.00 
(29) 14.34 29.73 3023.00 (71) 28.77 23.52 3124.00 
(30) 10.08 27.36 3021.00 (72) 31.77 27.63 3062.00 
(31) 14.47 25.09 3072.00 (73) 30.13 12.00 3302.00 
(32) 11.95 19.68 3099.00 (74) 38.65 29.84 3017.00 
(33) 13.46 12.33 3200.00 (75) 35.39 29.36 3043.00 
(34) 16.47 8.38 3261.00 (76) 43.79 29.57 3057.00 
(35) 17.09 5.51 3294.00 (77) 40.15 29.09 3015.00 
(36) 18.97 7.79 3288.00 (78) 41.54 28.60 3038.00 
(37) 17.22 2.00 3354.00 (79) 42.55 27.46 3076.00 
(38) 19.48 0.87 3391.00 (80) 45.59 16.87 3189.00 
(39) 22.24 7.41 3318.00 (81) 52.10 4.60 3229.00 
(40) 22.86 6.38 3336.00 (82) 61.94 13.46 3011,00 
(41) 23.36 9.89 3290.00 (83) 39.69 19.30 3173.00 
(42) 24.37 6.76 3337.00 (84) 25.75 32.06 3026.00 
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Fig. 1. Selected sets by sequential and non-sequential sampling schemes along with the set of 
existing data points. 

analysis does not consider it only as a measurement error. Instead, it responds 
by trying to re-evaluate the over-all correlation structure of the field. As a 
result, the correlated part of eqn. (6) takes the burden of reflecting these added 
perturbations. However, as the flow of added data continues the chaotic com-
ponents also increase. An interpretation of this is that there might be measure-
ment errors superimposed on the potentially stronger correlation structure. 

The amount of added noise might in fact cause the parameters of the cova-
riance function to go up so much that the actual TVR (i.e., information gain) 
of the added data becomes negative. In such instances, the addition of noisy 
data deteriorates the predicted reliability of the estimated field. This 
phenomenon, dilution of good information with weakly correlated surrogates, 
was first studied systematically by Fierinl (1962). 

Effects of unstable parameters on the action space 

The action space consists of selected sets of the new added sampling sites. As 
discussed earlier, these sets are directly related to parameters of the covariance 
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TABLE 2 

Comparative rankings of the selected points of the non-sequential sampling 

Rank No. of sets 
containing 
the point Non-sequential case Sequential cases 

High Median Low 

1 1 1 1 9 
2 2 2 2 9 
3 3 3 4 9 
4 3 4 4 9 
5 5 7 4 9 
6 5 5 9 9 
7 6 7 10 9 
8 8 8 9 a 
9 6 8 8 7 

10 6 8 10 6 

function. To study the effects of the unstable parameters on the system's action 
space, the sequential sets and the original non-sequential set are contrasted. 
This provides an estimate of the resilience of the variance reduction analysis. 

Figure 1 illustrates the patterns of the selected sets for all nine cases plus the 
original (non-sequential) set. Table 2 compares the ranking of the first ten 
points of the original set to these same points in other sets. All sets share the 
first seven points of the original set, with the ranking patterns of the first four 
points being similar in all sets. The last three points are not included in all sets. 
For instance, point 8 is eliminated in six of nine cases. These patterns reveal 
an exchange mechanism within the action space, initiated as a function of 
variations in parameter space. The operational guideline is as follows: When 
the chaotic component of the covariance function overshadows the correlated 
part, there is a tendency to select more boundary nodes, and conversely. 

All of the selected sequences reveal strongly similar central tendencies, with 
the points generally selected on either side of the field. In contrast to the 
existing data set, all the selected sets favor the sparsely sampled part of the 
region. 

Regret analysis 

In this section the sequential sets and the original set are compared using 
regret analysis. Suppose that at each round of sequential ranking, the esti-
mated IC' is the true representative of the state of nature 0, as defined by Marin 
(1983). The decision set D* (i.e., the sequentially selected sequence) is therefore 
a function of 0. The regret IR(D,D*) is the incremental loss (in information 
gain) incurred by taking a non-optimal action D (i.e., the original set), instead 
of D*: 



TABLE 3 

Average information regrets for non-sequential sampling in ft. 2  (values in parentheses correspon 
to average percentage regrets; 1 	= 0.0929m2 ) 

V 

Level of 
deviation 

Scheme Type Avg. 

0 U S 

70 45.1 90.2 12.7 49.3 
(0.8) (1.3) (0.2) (0.7) 

90 3.5 5.0 431.8 146.8 
(0.1) ( - 0) (4.2) (1.4) 

99 1663.7 3175.3 68.3 1635.8 
(4.2) (3.7) (0.1) (2.7) 

Avg. 570.8 1090.2 170.9 610.6 
(1.7) (1.7) (1.5) (1.6) 

IR(D, D*) = TOTV(D, 0) - TOTV(D*, 9) 	 (9) 

The average values of IR are shown in Table 3. As expected, the average 
regret increases with the level of deviation. The striking fact is that the values 
of regret as percentages of the sequential TOTV(D*, 0) are negligible; their 
average is only 1.6%. It seems that use of the original set instead of the 
sequential set causes an insignificant loss in information. 

The above result is in fact a case of near-optimality. Harrington (cf. Matalas 
and Fiering, 1977) gives an example of near-optimality which has many charac-
teristics similar to those of our problem. In his study four treatment plants were 
to be built over a number of years to meet growing municipal demands. The 
least-cost solution is identified, but eleven other solutions generated at random 
fall within 3.3% of that minimal cost, well within the anticipated noise. 

Further examples of near-optimality in water resources can be found in 
Harrington and So (1978), Gidley (1981) and Rogers and Fiering (1983). Near-
optimality implies that, in spite of drastic differences between the estimated 
covariance functions of the sequential cases and the K °  of the non-sequential 
case, the resulting actions D* and D are so closely similar that their differences 
are insignificant. 

UNSTABLE PARAMETER SPACE VERSUS RESILIENT ACTION SPACE 

Comparison between the sequential sets and the original set shows that the 
parameter space is very sensitive to perturbations in the data set. Even slight 
levels of simulated noise in the input data cause significant changes in the 
general pattern of the estimated covariance function. On the contrary, the 
instability of the parameter space has a negligible effect on the action space. 
Actual results reveal the following patterns in the behavior of the parameter 
space and the action space. 

(1) When the level of noise is low, kriging treats it primarily as measurement 
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error. Consequently, the structural analysis produces covariance functions 
with larger chaotic components. In such instances the priorities are further 
shifted towards border nodes. 

(2) When the level of noise is high, kriging considers it an indication of error 
caused by an underestimated correlation function. As a result, the correlated 
part of the covariance function gets stronger to reflect the more unreliable 
results. This in turn causes an increase in the influence of the internal nodes 
on their neighboring points. Consequently, internal points become more ad-
vantageous as sampling sites. 

(3) Despite the large amount of simulated noise, all selected sequences show 
a great degree of similarity. Furthermore, a regret analysis shows a case of 
near-optimality among all selected sets. 

It can be concluded that the variance reduction analysis is a reliable method 
with an unstable parameter space but a resilient action space. 
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Synopsis 

Water resources management demands an efficient strategy for sampling 

activities. This policy involves two conflicting objectives, which are the 

information accuracy and the economic efficiency. Water experts have 

traditionally used approaches which emphasize one objective, while ignore 

the other. The author proposes a combined information-economic procedure 

on the basis of the above conflicting goals. Variance Reduction Analysis, 

a statistical algorithm, is utilized to quantify the information gain due 

to a new measurement. A loss function is then defined to convert the above 

gain function into a monetary value. This method is applied to a ground 

water monitoring problem, and its efficiency is illustrated by comparing it 

to a simple plan based on the criterion of maximum distance. 
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ABSTRACT 

Geostatistical schemes for ground water quality monitoring 
in the shallow aquifer of Dougherty Plain, Georgia are presented. 
This aquifer is not generally used for water supply purposes. 
However, it is the main recharge route to the principal artesian 
aquifer which is the primary source of water supply in this 
rapidly growing agricultural region. The desired monitoring 
network acts as an early warning system for ground water 
pollution in deeper layers. We have utilized the available data 
on hydraulic properties of the shallow aquifer to identify the 
zcnes which should be the primary locations for our sampling 
activities. The one variable which appears to be most suitable 
for our study is leakance. Statistical analyses indicate that 
leakance has a log-normal distribution with a constant trend and 
a linear covariance function. Ranking criteria for the selection 
of the best sampling points are: the variance reductions, the 
medians, and the risk values. 	Due to the nature of our 
monitoring network we suggest to use mainly risk ranking as the 
basis of our sampling activities. The results of our risk 
rankings demonstrate that the southern tip of the Dougherty ?lain 
and its upper central zone should be the prime targets of our 
monitoring activities. 

Keywords: Network Design, Statistical Methods, Regional Analysis, 
Water Quality, Water Management (Applied), Georgia. 
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ABSTRACT 

Regional schemes for shallow ground water quality monitoring in southwest Georgia are 

presented. The aquifer of concern is not generally used for water supply purposes. However, it is 

the main recharge route to the lower principal artesian aquifer which is the primary source of 

water supply in this rapidly growing agricultural region. The desired monitoring network acts as an 

early warning system for ground water pollution in deeper layers. We have utilized the available 

data on hydraulic properties of the shallow aquifer to identify the zones which should be the 

primary locations for our sampling activities. The one variable which appears to be most suitable 

for our study is leakance. Statistical analyses indicate that leakance has a log-normal distribution 

with a constant trend and a linear covariance function. Ranking criteria for the selection of the 

best sampling points are: the variance reductions, the medians, and the risk values. Due to the 

nature of our monitoring network we suggest to use the risk ranking as the basis of our sampling 

activities. The results of our risk rankings demonstrate that the southern tip of the study area 

and its upper central zone should be the prime targets of our monitoring activities. 
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ABSTRACT 

Geostatlstical techniques offer efficient tools for design of ground water sampling networks. 

They include procedures for the selection of the best sequences of sampling points, such as: 

variance reduction analysis, median ranking, and risk ranking. Variance reduction analysis considers 

primarily the accuracy of the estimated field, while median ranking is based only on the magnitude 

of the estimated values. Risk ranking Is a compromise between these procedures that appears to 

yield a more balanced guideline for cases when planners desire to acquire maximum information. 

while monitoring areas where the variable of interest exhibits critical values. These procedures are 

used for the design of a regional shallow groundwater quality monitoring network In the Dougherty 

Plain, located in southwest Georgia. The shallow aquifer of concern is the main recharge route to 

a semi-confined aquifer which is the primary source of water In this region. The desired 

monitoring network acts as an early warning system for groundwater pollution In deeper layers. 

Leakance data Is utilized to Identity the primary sampling locations. Statistical analyses Indicate 

that leakance has a log-normal distribution with a constant drift and a linear spatial covariance. 

The results of our risk rankings demonstrate that the southern tip of the Dougherty Plain and Its 

upper central zone should be the prime targets of our monitoring activities. 
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Abstract 

A significant number of naturally occurring processes and 
parameters can be described as stochastic processes. These 
processes can be mapped by using Gauss-Markov estimators, such as 
kriging. Presently most kriging packages are designed for 
estimation of spatially random variables. It is shown that with 
certain modifications, kriging can be expanded to the space-time 
domain to be applicable to a more general class of stochastic 
processes. This is analogous to combining spatial kriging with 
time series analysis. In this study a series of groundwater 
elevation data from southern Georgia is simultaneously analyzed 
in time and space, using universal kriging, in the framework of 
intrinsic random functions with polynomial generalized 
covariances. The results are presented in a series of spatial 
maps for different time periods. In this way valuable new 
information has been gained by utilizing both the spatial and the 
temporal data. This new procedure yields more precise estimates 
of covariance functions, as well as, more accurate spatial maps. 
It also allows hindcasting and forecasting for periods when no 
sampling is conducted. 



APPENDIX 5. COMPUTER PROGRAMS 

The following sections include the listing of a number 

of selected programs, developed by the PI in the course of 

this project. These programs are written in Fortran. 

1. VARED: Spatial Universal Kriging with variacne reduction 

analysis option; 

2. TKRIG: Temporal Universal Kriging; and 

3. STVARED: Universal Space-Time Kriging with varaince 

reduction analysis. 
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	 UrIT 99 :FIPUT DATA.U%IT 9B=7KPIGE OUTPUT 
	 UNIT 97=VAPSE'T OUTPUT 
	 UNIT 9 6 A 95 I/O= 	TEPYINAL 

PROGRAM VARED(INPUT  OUTPUT.VAR.7KF.ZRISK.DAT.5RINTAPE4=ZRIFK 
ilgTAFE5=INPUT,TAPE6= 	Tg -TAF-57=-VAR.71Pi_8=4"(1 
WAPE9=DAT,TAPEIO=GPID) 
	NEW MODIFICATIONS 	  

• M y. 	PUT (OR DATA INPUT)  
....UNIT 9 9  ==> UN 	5 TcRMIt!AL 	NPUT 
....UNIT P6 ==> UNIT 6 	TFP'INAL OUTPUT 
....UNIT 97 ==> UNIT 7 	OUTPUT FILE = VAR 

98 ==> UNIT  8 	OUTPUT FILL  = ZKP 

   

VARE D 

   

       

       

       

       

DIMENSION FORM(4).KM(15),CM(15),A1M(15).TVARFO(1001100) 
L•A3M(19) eA5.MS_151-11aRDIA151AEANE_LI5L.T( 410_14) AZK_RUELLOILLI!)0) 
A.VARS':-.T(100.100)16(4.5),UU(1001.VV(100),ZRISK(100.100) 
A.ZMED(100,100).UUU(100).VVV(100) 

CO/M
COMHONAC3/ 

C5AA
U(100).V(100) 

ON/(10.  
COMMON/C6/2(100)

107) 

 COMMON/C7AIEIST(100) 
COMMON/C8/RLIST(100) 
rOMMON/r9,P(100)  

DATA ST0,ST1/1H0,114 1/ 
DATA STA,STB.STC.STDISTFtSTO/lHAt1HB.1HCelHD.1HLIP1140, 

L'IRLAT) TIFOPMATI ON APOUT DATA Pr•INTS  
• WR/TE(6.90C1) 

READ(5vONDATA 
ONDATA=NDATA 
IJAIYE(A.9nnA)  
READ(5.•)04 
READ(9.0)0/(I),U(I).Z(I),/=1."4DATA) 

400 	WRITE(6.9600) 
RFAn(c *1Yir'r  
IF (XLOG.E0.0) GO TO 999 
IF (XLOG.EQ.1) GO TO 499 
GO TO 400 

499 DO 5'O I - 1,NDATA  
Z(I)=LOG(Z(I)) 

500 CONTINUE 
• CHECK FOR DOUBLE POINTS 
999 	(*ALL DnueEr(NnATA.DR.ATInuRi)  
	 REARANGE DATA 

CALL SORT(NDATA) 
	 UPDATE NUMBER OF DATA POINTS 

NDATi"NDATet..NDoUBL  
CONTINUE 
	 READ THE PEW DATA POINTS 

ISEQ=1 
wRITE ( 6.9A10)  
READ(5.+)NEW 
TF(NEw.E0.0) 0) TO 15 
DO 2 INEw=1.NEN 
WRITE(E,9E11)  
NDATA=NDATA.1 
READC50•0U(NDATA).V(NDATA).Z(NDATA) 
IF(XLOG.EQ.1)Z(NDATA)=LOG(Z(NDATA)) 
IF fIVONREr4.'0.1.ARIII - NDA 	.1r1h, .+0\MASTAIIIJR/TCA .9F111  
IF(NONRE6.%E.1.AND.NDATA.00.(ONDATA+fIUMAX.IVMAX)))aITE(6.9613) 

513 	FURY:AT( ,  ALL ESTIMATION GRID POINTS ARE NOW DEFINED AS",/, 
rEAsuREm::or POINTS. FURTHER SAMPLING IS NOT POSSIBLE.",/, 

8. YOU MAY SELECT THE SEQUENTIAL SAMPLING AND THEN LYIT.") 
CONTINUE 

WRITE(6.9612) 
112 FORMAT("*** IF SEQUENTIAL (ON-LINE) SAMPLING IS DESIRED"./. 

A 	 TYPE A 1. OTHERWISE TYPE A 0") 
READ(50)IS:() 
IF(ISED.E0.1) 50 TO 10 
ToTv=0- 
TOTSD:O. 
GO TO 5001 

610 FORMAT("? HOW MANY NEW DATA POINTS?") 
611 FORnAT(n7 NE"  U. V. APO Zni  
0 	CONTINUE 

TOTV=0. 
TOTSD=0. 

***** • OPTION SELECTION 

WRITE(6.9004) 
PEAn(c000 ,-.1AT  
IFIST.EO.STAIGO TO 1000 
IF(ST.EQ.ST0)G0 TO 2000 
IF(ST.EO.STC)GD TO 3000 
IF(ST.FQ.STD)Qn TO 4010 
IF(ST.EQ.STE)G0 TO 5000 
IF(ST.EQ.STQ)STOP 
GO TO 1 

Inn 	FONTTrouT  

,•+*,, OPTION A 

wPITF(5.9006)  
WRITt(6.9107)

STA 
	• 

READ(5.n)NO.NGC.ISTEP 
IF(ISTEP.E0.0)ISTE 99 1 

'*±±AALAD0.--eEs4.A3AALEV  EACH OFNFRAII7FD  COVARIANCE  
DO 1050 IGC=1,NGC 
.:RITE(6.910 9 )I5C.IGC.ICC.IGC.IGC 
READ(5.•)KY(IGC).CY(IGC),A1Y(IGC),A3M(ISC).A54(IGC) 

)50 	C ONTINUE  
II 	060 	=1. 
RANK(IGC)=0. 

160 CONTINUE 
N6I=0  

4'nnn START ITERATION ON DATA PQINTS• IC IS 
THE TYPICLL DATA POINT 

pn 1200 I0=1.MDATA.ISTiP 
	NGI=NnI.0.1  

STARf rupx.rmr—og—TriirRALIzED covARIENcrs—=—=771ch 
ONE IN TURN TO KRIGE POINT IO 

DO 1100 IGC=1,NGC cALLqtailliDALAAkcaujiajay(I0).N11) 
KRIGE POINT II 

CALL 	KR !GPO (KM ( IGC ) 'CM( I GC ) I Alm( InC ) 413r,  ( If;C) A5FY ( IGC ) 
AU(I0),V(I0).N0) 

EON=Nt(KY(/SC)+1).(KrUsr)+2)/2  
CALL EEIMPT(A.Pi-NEnN.10C.167) 
SUM=-Z(I0) 
DC. 1080 E=1.N0 
	1=11 IST(1)  

SU'=SUM+P(E)nZ(I) 
'80 	EiVTINUE 

FIND KR/f7J.Ps ERRoR OF CURE:NT :EINPRALIZED COVARIE•=. 
/S_C) =A5 F( Sum) 

00 	CoNfr:U: 



1190 CONTINUE 
120D CONTINUE 
C  CM) 7 ITr;ATI:N ON DATA POI'7 ,7 

0'7, 121" IGC=1.•C 
_BANK(T: ,")=R:,NK(IGC)/F16ALO;1)  

1210 CONTINUE 
C• 	 WRITE RESULTS 

DO 1220 IQC=1.NGC 	- 
UPTTri&oilliirroemicgir'l  	  

1220 	CONTI ,...1: 
GO TO I 

2000 CONTIN:_: 
,---__C_ 	  

C 

 

OPTION 8 

 

  

u4/TE(6,9006)sT8 
WDITE(6,93ft1)  
READ(5..)NC.IST7F 
IF(ISTEP.EG.0)ISTEP=1 
WRITE(E.9313) 

URITEt6,9205) 
READ(5,42061(F008(I),I=1,4) 

2010 CONTINUE 
	 SET m 4 T 0 Iv G EnUAI—TZL-ZEJL-2—m_m_A_Tnix_G__IS_THE_A.u.Gmv , T - 0  

. ATRIX OF THE SET OF EGUATIOr.S APP'.ARING IN TA:7LL 3.1 OF 
C 	 CHAPT 	3 

gP2=K+2 

DO 2020 1801i=1,K12 2 
DO 2020 ICOL=1.AP3 

i 	 G(IROUIICOL)=0. 
2120---CON11  1.$' _ 
C.... START ITERATIO% 0% DATA P7 , P41. '-7 	. , IS THE. TYPICAL 7ATA PlINT 
C 	 FIND THE '0 Nz:ARSET DATA P1I .:TS IT DATA P,',INT 10 

DO 22:' I0=1.NO!TAtISTP 
LajEhalitalak •  I 0.0 ( I PLAY ( I '/.11...0) 	  

C 	 KRIGE POINT TO USING INITIAL K.C.A1.A3.A5 
CALL KRIGPO(K.C.A1,A3.A5.U(I0).V(10).N0) 
NEON=N0*(K+1)•(K+2)/2 
(- A) L F1 f MTAIIA.P.NFONI.

r C 	 FILL IN T'45 VECTOR TIT111.1 T12),T(3).T(4) ARE GIVE. BY THE 
C 	 LAST =OUR EQUATIONS OF TABLE 3.2 3F CHAPTER 3- NOTICE THE 
C 	 CHAGE OF ,:OTATION 

( 1 )=1.  
0 2050 L=1,N0 
T(1)=T(1)•P(L)•.2 

200 CONTINUE 
1(122=K*2  
DC 206:: N=2.KP2 
NExP=2•(N-2).1 
T(':)=1. 

=.NO  
I1 =ILIST( 1) 
H=(U(IC)1/(II))..2.6.(VCIO)..V(II)).'2 
H=SORTCH) 
TIN)=T(N):".+P(_LlittlieXP  
0 ,1' 206: L2=1.NO 
I2=ILIST(L2) 
H=(U(I1)..U(I21).•2.0.(V(I11 ■V(I2))•02 
H=S1RT(-0 
it")_fr., 	(LI1. 

2060 CW:TI: 
C 	 UPDAT: MATRIX G 

KP2=0(.2 
00 20°Z IROW=I.KP2 

2Qq ,  1/^". 1-1.1[C7  

G(IROW.ICOL):61IR06.ICOL)*T(IROO.T(ICOL) 
2090 CONTI”OE 
C 	 CONSTRUCT GENERALIZED INCREHENT 

GINCR=-Z(I0) 
DO 210) L=1040 
I=ILIST(L)  
GINCR=3INCR•P(L).2(1) 

2100 CONTINUE 
OINCR2=GIRCR••2 

IOST COLOUMN OF MATRIY G.T.E. THE RIGHT HAND STIlE  
C 	 VECTOR OF THE SET C.F EQUATIONS OF TABLE 3.2 OF CHAPTER 3 

01 2=1(4.2 
DO 2110 IRO' =10( 0 2 
c(130+3)=G(IROV.K+3)..T(IRO:t)+GINCR2  

2110 CONTINUE 
2200 CONTINUE 
C 	ND OF ITERATION ON DATA POINTS -AT THIS STAGE 

	

qr 	I 
C 	 S,J 4 E. :F THE COLFFICIETS CsAI.A3,A5 MAY HAV 	EEN SET EQUAL 
C 	 TC ZERO A PRIORI 

KP2=K*2 

	

IR:sw=1,KP2 	  

IFcFopwl/40w).E0,ST1160 TO 2240 
C 	KP2=1( 4.2 

00 2220 ICOL=10(P2 
GriRnw,Tcni 1-a  
G(ICOLIIRO.- )=0. 

2221 
D(IROW.K.3)=0. 
G(TRM..TRO)=1. 	 

2240 CONTINUE 
NEON=K.2 

C 	 SCLV= =04 C. A1,A3.AF 
0A11  
C=C. 
Al=0. 
A3=0. 
A; -  
IF(FOR', (1).13.51. 1) C=X(1) 
IF(FOR.(2).E3.5T1)A1=X(2) 
IF(F0 0 4(3).=G.ST1)A3=X(3) 
IFLFOPN(i.)_ F Q.ST4)A5"( 4 ) 
WRIT'CE.92T7IK,7.41.A3•.EF 

C 	 C.ECK IF THIS IS A PP , '- r =E%1RALI 7 ED COVARIANCE - 
C 	 CO:FFICIEN 	 ..J TS - ASK IF VEER APTS TO START AGAIN: USING 
C 	Tw -  	 OF'4..L'LVA=IA , "'  AS ILIS13L_Sr%. rovARIANCL  

CALL CH:CK(C,A1.A3.A5tMDEX) 
IFIINCEX.E1..1).RITE(6.1200) 

2280 CON:TINO: 
W=ITE(6. 420q)  
READ(50005)ST 
IF(ST.El.ST1)G1 TO 2117 
IF(ST.:9.ST:)GO TO 1 
an T^  

3000 CONTP!ui. 
C 
C 	 OPTIC. C 

iR/TE(6.900E)STC 
WRIT=(43 , 1) 
PLAD(..P.:7.IST 

0 1 	T'Ll 

• 	•7.• .11. 1 7'• 5 



IMIN=2“NA-1)•1sTEP 
IrAX= ,!DATA 
CALL FIT(NIJATA.IMIN.IMAX,ISTERIO.K.C.A1gA39A5. 

RSUMIP.SUM2:-.1,NE) 
R=(SU'1A+SU"18)/(SUM2A*SUP4 2P) 
RA - suw14LSu521 	  
REI=SU 4 1B/SW, 2B 
R=2*(1-(NA•PA+N9•RB)/(NON0) 
VRITE(6.9305)NA.RA.NO,RP.R 
GQ TO_  1  

000 CONTINUE 

             

             

WRITE(6,9006)STD 
WRITE(604C1) 
READ(5.•)THETA 
THETA - THETA.A1.74c1992F-2  
CALL FOTAT•'(THETA.NDATA) 
CALL SORT(DATA) 
60 TO I 

'00 CONTIkU ,  

         

         

OPTION E 

WRITF(6.9OCA)STF  
WRITE(6.9303) 
RTA0(5.•)K.C.A1.A3.A5 
WRITE(6.9002) 

___ EILLIF__,RvIT 54111Yillrr_p_rA/WANTIFr 11 USE YOUR OWN GRID PD/NTr7"./. 
Y 	Y 	I"./. 

IF NO (REGULAR RECTANGULAR GRIDS) TYPE A 0") 
READ(5.*)NONREG 
TF(Nn!, RFG.NF.1)  GO TO 5100  
RE4N100, ) ,!NN.(UUU(I).VVV(I),I=1.NNN) 
GO T: 5101 

100 	WRIT:(6.9501) 
REAO(5..)UC.VO.DU.DV.IUmAX.IVMAX.UINCR.VINCP  

TO1 WRITE(6.9503) 
REA0(5.•)NO.R0 

	 THE OPTION FOR THE VARIANCE REDUCTION  

WRITE(60700) 
700 FORvAT(" 	 IF VARIANCE RCOUCTION ANALYSIS"./. 

IS DESIRED TYPE  A 1" /.  
	 IS NOT Dr-SIRED TYPE 	0") 

READS500IVRO 
WRITE(6:9801) 

sg 	I 	0 	 911 / 

IF YES TY•IN THE RISK FOR". 
" 	 7PISR=E(Z) + RISK * SORT(V)"./. 

IF ND  TYPE A 0") 
RFAO(FoORISK  
IF(NONR-G.La.1) GO TO 5102 
uut)(1=U0 
vvv0=v3 
On corn Iti=1.IfsmAx  
00 5710 IV=IgIVHAX 
UU(IU)=UO.FLOAT(IU-.1)*UINCR 
VV( IV) =VO+FLOAT ( IVv.1 ) *VINCR 

702 CON  
001 	IF( StO. 0.1)GO TO 5002 

IF(NONREG.E.0)00 TO 5112 
UO=JUU0 
VO=VVVO 

002 UO=UC-UINCR 
ve - vD ■ W , C 

KRIGE POINT OR BLOCK IU,IV -SEE FIGURE 5.2 OF CHAPTER 5 
DO 5600 IUU=1,IUMAX 
UO=UO+UINCR 
U1=U0-DU/2. 
U2=UO.DU/2. 
no ccnn TVV-1.TVMAY  
VO=VO+VINCR 
V1=VOOV/2. 
V2=VO+DV/2. 

IV=IVV 
IF(NONREG.NE.1) GO TO 5103 

102 DO 5505 INP=1.4NN 
Un - uUu(IT, A1  
V0=VVV(INR) 
IU=INR 
IV=INR 

10-3-80-55-04—I44-=4, N DATA  
IF(UO.NE.U(III).0R.V0.NE.V(III)) GO TO 5501 
?KRIGt(ILI,IV)=.7(II/) 
VARSET(IU.IV)=C 
TvAR"(IH.Iv) - 0.-- 
IF(RISK.NE.0)ZRISK(IUOV)=Z(III)+RISK*C 
IF(NE..NE.O.AND.RISK.Nr.0)ZRISK(IU.Iv)=-100. 
IF(NONREG.NL.0) GO TO 5505 
CO TO 5.500 

501 CONTINUE 
IF(R0.E0.0.)G0 TO 5200 
CALL FIND2('.DATA.O.UO.VO.RO.mo) 
Tcimo_LT-"Lac T3 5700  
GO TO 5300 

?00 CONTINUE 
m0=NO 

---CALL—F-IN01MaAT-A-9-0.-U04-V119-4 	  
300 COrTINUE 

IF(DU.NE.0..ANO.DV.":E.0.)CALL KRIG9L(K.C.A1.A3.A5.U1.U2.V1.V2.r0) 
IF(DU.Z0.0..OR.OV.C9.0.)CALL KRIGP9(KoCiAl.A3.45.UOIVO0'0) 
N=ON=v3±.(K±1.1_•1__K±2)  
CALL ELIMIN(A.P.NEON.10R..107) 
7KRIGE(IU.IV)=0. 
VARSET(IU.IV)=0. 
on 5 -tcn  
I=ILIST(L) 
2KFIGE(IU.IV)=ZKRIGF(IU.IV).0 0(L)*Z(I) 

S50 	CO%T•:UL 
IF(OU.%:-.0,A•O.DV.U..0.)G: 1  T1 5450 	  
DO 5400 L=1,m0 
I=ILIST(L) 
M=(UO-U(I))**2•(VO-V(I))• *2 
H=nORT119  
VARSET(IU.IV)=VARSi:T(IU.IV)-P(L)*GENCOV(KliCIA1 -1 ) 
CoNTIYJE 
VARSET(IU.Tv)=VARS7T(IU.IV)-P(M0+1).0 
IF(K.E0.0) 	.7-7,  5450 
9Apso'cil-19 I V ) = VAR T CTII.TV)=P-P402-) •TUTF-F- KIT■731-41TIF 
I F ( K .E0 .1 ) Cl TO 5450 
VARSET(IU.IV)=VARSET(IU,IV)-, P(M0 4.4)*UO*VO ■ P(MO*5)*U0**2-P(w0+61 

&*V0*• 1  
I(VAPSET(IU.IV).GF.0.) GO TO 5450 
6R/TE(6.9620)UO.VO.VARS'T(IU.IV) 

20 FORmAT(" 	0FGATIVE VAP AT U. V, A VAP " 02F5901F1001) 
VAPscT(TU.TV)=-VARS,_T(IP.Iv) 

77 



TVARED(IU.IV):0 
IF(NONREG.L-..1) GO TO =108 
00 5451 IUOu = 1,IUMAX 

DO5451  IVVv = 1,IVMAX 
	VARED=0  

IUD=UU(IUOTO 
VVO=YV(IVVV) 
IF(NONREG.NE.1) GO TO 5107 

5108 	D2 5111 INBG=1.NNN  
YAKED=0 
UUO=UUU(INRG) 
XVO=VVV(INRG) 

--110 7  9_01  54A0 IIII=1,NDATA  
IF(UUO.NE.U(iIII).0R.YYC.NE.V ( IIII)) GO TO 5460 
GO TO 5440 

5460 CONTINUE 
Frun1ctinATA.o.nun.v1/0.mni  

IMO=ILIST(m0) 
RMAX.m(UU0-U(IMO))+.2.(VY0-V(Im0)) 4.42 
RMAX=SORT(RMAX) 
ko=(u0-ilun)**2+(lin-VVA1•49  
HR=SORT(HR) 
IF(HR.GT.RMAx) GO TO 5440 
CALL FIND1(NDATA,O.UO,V0,80) 
Do 5457 1=1.110._ 	  
I=ILIST(L) 
DEP=(UU0-U(I))•*24(vv0-v(I))•.2 
DEP=SORT(OFR) 
VAPFO=SIARF OrP (I ).OFNOOV(AisZIAL,A.3_t_A5.OFP)  

5452 CONTINUE 
VARED=YARED+P(8104.1)-GENCOV(K,C.A1,A3.A508) 
IF(K.EO.0) GO TO 5453 
WARE:0 -Y ARrI).P (m 0 6 21  *11-1.1-at-P-M11*3-1-*-W/13 	  
IF(K.E0w1) GO TO 5453 
YAR:O=VARED.P(M04.4)•UU0.-VV0+P(M0+5).UU0..2 

g+P(m0+6)4V11 04.2 
4110— 	  

TVARED(IU,IV)=TYARED(IU,IV)+VARLD 
5440 IF(NONREG.NE.1) GO TO 5451 
5111 CONTINUE 

IF(NONPEC_E0.1) GO TO 5109  
5451 CONTINUE 
5109 	IF(RISK.EQ.0) GO TO 5110 

ZRISK(TUOV)=ZKRIGE(IusIV)+RISK•SORT(VARSET(IU.IV)) 
1112  

5505 CONTINUE 
IF(NONREG.E0.1) GO TO 5510 

5500 CONTINUE 
VO-V0-1VMAY•1INCR  

5600 CONTINUE 
C 	 THE MATRICES ZKRIGE, VARS7T, 	ZFISK IN THE 
C 
E 	

CASE OF POINT KRIGING AND THE MATRIX 7KRIGF. IN THE 
I'Lr0 A"0. CAN UZ  

u(mG.Eo.o) GO TO 5698 
DO 5655 I - lv  mAX  
DO 5655 J=1,IlimAX 
2mED(I,J)=2.718282+.(ZKRIGE(I,J)) 
ZRISK(I,J)=2.718282**CZRISK(I,J)) 
7KPTrrli,J1 - 2-71$12A2**tZKPT'FIT J14.(VADc.ETIT.A1/2)1  

5 6 55 	VARSET(I.J)=(TKPIGE(I,J)•.2).“2.718282•+VARSET(I.J))-1) 

IDENTIFYING THE BEST SAMPLING SITES AMONG 
REGULAR GRID PQINTS 

:C70 	TV"AX - 0 
VARMAX=Ow 
RISKMAX=0. 
DO 5804 IU=1,IUMAX 
DO 5804 IV=1,IVMAX 
IF(IVRD.E0.0) GO TO 5805 
7vmAx-mAy(TvmAx.TyARFoty11.Tv»  

seos 	IF(RISK.EQ.0) GO TO 5806 
RISKMAX=MAX(RISKMAX.ZRISK(IU,N)) 

5806 VARmAX=MAX(YARMAX,VARSET(IU.IY)) 
5R0 4  CONTINUF  

DO 5807 IUrl,IUMAX 
DO 5807 IV=1,IVMAX 
IF(IVRD.E0.0) GO TO 580P 
IF(TVmAX.NF.TVARFO(IO.I . V)) GO TO 5808  
WRITE(6,9706)UU(IU),VV(IV),2KRIGE(IU,IV),VARSET(IU,IY) • 

6,TYARED(IU.IV) 
IF(XLOG.E0.1)WRITE(699709)ZMED(IU,IV) 

CAOA 	TFCPISK - EO.n1 f;0 TO SAN3  
IF(RISKMAX.NE.ZRISK(IU.IV)) GO TO 5809 
WRITE(6,9707)UU(IU),VV(IV)9ZKRIGE(IU,IV),VARSET(IUsIV) 

g. ZFI SK(IU,IV) 
"il_a+6,___R70312,LE1 D(IU•IV) 

809 IF(VARMAX.NE.VARSE (IU,IV)) GO TO 5807— 
 WPITE(6,9708)UU(IU),VV(TV),ZKRIGE(IU.Iv),VARSET(IU,IY) 

t,ToTV.TOTSD 
TF(mIOG_wElLed)WRITFIFI.970917M00(THAIV1  	  

5907 COTIOUE 
- 	9706 	FORmAT("POINT WITH "AX TVR: 	U.V,Z,VARSL. T.TVR:",/, 

62F10.1,/,3(F20.5t1X),/) 
9707 	FORk*AT(mPOINT AITH MAx RISK: 	U,V,Z,VARSET,ZR/sK:m,/,  

S2F10.1,/,3(F20.5.1X),/) 
9708 FORmAT(mPOINT WITH MAX VARIENCE' U.V,Z,VARSET.TOTV,TOTSD:",/, 

C2FlOwl,/,2(F20.591X),2(F15.5,1Xig/) 
97 n 9  c0E-I4II"T4 (  4UIAN OF THIS POINT ISLA_E2IL5A11__ 	  

Go TO 5699 
5510 	IF(YLOG.E0.0) Go TO 5520 

DC. 5930 I=1,NNN 
	 3°''-'111)=2118282mm(7KPIG:(1,I)) 

ZRTSK(I .TI=Z.TrY282., *(Mr7S)CITTI)) 
ZKRIGE(I.1)=2.718282**(7KRIGE(I0)4.(VARSET(1,I)/2)) 

5930 	YARSET(I.I)=(7KRIGE(I,I).+2)4((2.718282•mVARSET(I,I))-1) 

**, 4m IDP;ITFYING THE BEET SAMPLING SITES AMj."'G 
%O':-FF3ULAP GRID POINTS 

C 
5520 	TymAY=0  

VARmAxzn 
RISKmAX=0 
DO 5900 I=1,NNN 
Irfrion.va.n) 0,0 TO 5201 	  
TymAx=MAX(TVMAX,TVAPE5(I,I)) 

5901 	IF(PISK.E0.0) GO TO 5 1 CO 
RiGKvAx:MAYIRIGKMAx.Z9IsKlIO)) 

	 V_AnYA 0 7191(VARMAXtVLE,57ZA_Lei/i-__ 	  
5900 CONTINUE 

00 5910 I=1INNN 
IF(IVRO.00.0) GO TO 5911 

 ITATVm1X,NV.,TVARED11411L_SCL_IO 5911  
1 9 11. :(6.97r6)OUU(I),VVV(I).7. 1.(9IGE(IIII).VARSET(ItI) 

'eTVARED(19I) 
Ir(XL7G.EG.1)WR/TFU:0779)2.5O(T,I) 

T.7)  
ISK (1,1)) 	T' 5912 

-'IT - U,•97 ,77i , m"(T).v."/(T).7(- - ! 	 .VAR 	go I) 

C 	 - RETRIEVED FROM THIS LOCAT 



ggTOTVIJOTSD 
IF(XLOG.E0.1)WRITE(6,9709)7ME7(IgI) 

910 CONTINUE 
IF(IVRD.NE.0) GO TO 1 

..r. PREPARLUaZICR-0 0(11—Z.R1.51( FILE.ILIOR—DaLSRLA 	 :PASHICe 

699 WRITE(6.9805) 
805 FORMAT("DO YOU DESIRE TO PRODUCT MAPS?"./, 

I. 	=1-F—Y-E-S-:—.T-V-P.F.1-4-0-TH4IR-V1-!-E-0"-.. 1 -)- 
RE:0(5,1./1MAF 
IF(IMAP.E0.0) GO TO 1 

 	NUMBER OF DATA POINTS IS .4RITTEN INT^ 
••I..•..•_____ZACk  OUTPLLT FILE FOR 9.A.P.R1N^  PimPocE r s  

IF(NONREG.E.Q.0) SIZE=IUMAX.IVMAX 
IF(NONREG.E0.1) SIZE=NNN 
WRITE(4,0SIZE 
WRITE(7,..)SIZE 
hIRITE(8..)SIZE 
IF(NONREGOIE.1) GO TO 5697 
DO 5696 I=1.NNN 

LLTE. 1 4.•3uul7itvvvt().7RISKJI.T1  
iiIRITE(8..)UUU(I),VVV(I).2KRIGE(I.1) 
WRITE(7,•000(I).VVV(I),VARSET(I.I) 

696 CONTINUE 
697 DO 5701 I - 1-.TUMAX  

DO 5701 J=1.IVmAX 
WRITE(4, ,OUU(I),VV(J),ZRISK(I.J) 
WRITE(8..)OU(I).VV(J).7KRISE(I.J) 
WRITF(7.4)NN(II.VV(d).Vt:R_SFT(i.d)  

701 CONTINUE 
GO TO 1 

	 FORMAT cTATEMENTS.•.* 	*****  ....-LC!,,,13.., ! — 	  

001 	FORMAT("? 	NDATA") 
004 FORMAT("1 SELECT AN OPTION :A.B.C.O.E CR E-TYPE 0 TO STOP") 
nas FORMAT(A1)  
008 FORMAT("? 	 DR") 
011 FORMAT(3F10.51 
006 FORMAT(" 	 of.

u  A. yo ARF NOW (Inm 	.. s OPTION .Ale. *us/.  
& 	 ) 

107 FORMAT("? 	 NO 	 NGC 	 'STEP") 
109 	FORMAT("? 	K(".12,") 	 C(".I2.") 	 All", 

" 
	 A?("  I2,") 	 A5("0", ,.).)  

h 
") 

	 -DIN 	 0 	 72 111 FO RMAT("! GEN. TZW.FCT. NO",I2 AVERZ7rinnTR"FiTi5.-51—  
205 FORMAT("I GIVE FORM OF GEN. coy. FUNCT.•) 
206 FORMAT(4A1) 
pnT FoRmAT(.1 K=•,T1.^ c.“ ,G11.5." A1=".G13.50 A3=',013.5,  

6" A5=".G13.5) 
208 FORMAT(1 THIS IS NOT S PROPER GEN. COV. FUNCT.") 
209 FORMAT(" TYPE 1 TO ITERATE ON THIS GEN. COV. FUNCT."./. 

1 "1 TYPE 	TO MOVE TO A•'ITH ,:R OPTION")  
301 FORMAT("? 	.NO 	ISTUP") 
303 FORMAT("? 	K 	 C 	 Al". 

B" 	 A3 	 AS") 
305 FORMAT(" DOMALn_A'",I5," ROINTS ■ R="9015.50/,  

& 	"I DOMAIN B..."115." POINTS ■ R="9G15.59 
A 	 /9"1 JACKKNIFEV=".015.5) 

401 FORMAT("? 	THETA(IN 107GREES)") 
n01 FORMAT("? 	UO 	 VO 	 DU 	 DV IUMaX", 

6" 	IVMAX 	UINCK 	VTN(.4") 
503 	FORMAT("? 	 NO 	 RO") 

 

600 FORMAT( " 	 DO YOU DESIRE CONVERSION TO LOG VALUES?"./. 
2 	 +••• IF NO CONVERSION: 	 TYPE 0"./. 
3 	 " 	..7,• IF CONVERSION IS DESIRED: TYPE 1",f) 
rrn 

•.• SUBROUTINE CHECK 

SUBROUTINE CHECK(C.A.O.Al.A2.INDEX) 
INDEX=0 
IF(C,LT20.)INDEX=  
IFIAO.GT.0.)INDEX=

1  
1 

IF(A2.GT.0.)INOEX=1 
IF(INDEX.E0.1)RETURN 
A-.111./1.*SORTIAO.A2)  
IF(Al.LT.A)INDEX=1 
RETURN 
END 

+••,* SUBROUTINE DOUBLE 

SUBROUTINE DOUBLE(NDATAORIINDOUBL) 
CrwHnNir3/uti8010111001  

COMMON/C6/Z(100) 
NDOUBL=0 
NDAT=NDATA --1 
10201111L-UALIDAT 
JDOUBL=0 
IF(U(I0).E0.1.E+10.AND.V(I0).E0.1.E+10)G0 TO 20 
I1=I0 4.1 
DO 10 I=IloNDATA  
R=IU(I)-U(I0)).+2.0(V(I)..-V(I0))..2 
R=SORT(R) 
IF(R.GT.DR)O0 TO 10 
7(10)z7(10)+2I11  
U(I)=1.E+10 
V(I)=1.E+10 
NDOUBL=NDOUBL(.1 
JCIOUBL - JDOUBL*1  

C 	CONTINUE 
21I0)=2(I0)/r_OAT(JDOUBL 4.1) 
CONTINUE 

ENO 

"" SUBROUTINE ELIMIN 
tuk11.1,1,...-...1,2141e1,311341,* a* tie-a -11.11FALILALLI,*ilt 	 dululukAILLILItit 

. SUBROUTINE ELIMIN(a.X.MrAN,NROW.NCOL) 
DIMENSION A(NROW.NCOL)0(NROW) 
NEON="EON 
mCOL41 - NC 0 L-1  
IF(NEON.LE.NROW.AND•NE0r.LE•NCOLm1)G0 TO 1 
WRITE(6,61) 
FORMAT("STOP"DIMENSION ERROR IN CUMIN") 

CONTINUE 
JPAX=N=10N+1 
NEONM1=NEON.-1 
DO 	IF11"1,NEZ«41 	 
IMIN=IE0N•1 
IMAX=ICON 
D9 3 I=IMIN,NEON 
IF(ABS4444-.4ZON))-.-G-T.-A-S.S.444.-IMAX+ICON.LLI IMAY - I  
IF(IMAX.E0.IEDN)G0 TO 
Dr' 4 J=ILON,JMAX 
At=A(L:ON,J) 

_A(.1:11.11.61.);AAI2A.A.J/ 	 
A(IMAY,j)=AA 



oc F L=204(5N 
I=NE7f,:s1-L 
SUN=A(I,JMAx) 
IP1=I+1 

Sup=Sup-A(I,J).x(j) 
x(I)=SUM/A(I,I) 
RETURN 

C 	  
C.... SUBROUTINE FIN01 

iL U 4, 

........ 

SUBROUTINE FINDIANDAT4t10_t-U4AJ0LNO) 
COmmON/C7/ILIST(100) 
COmMON/CEURLIST(100) 
COMMON/C3/U(100).V(100) 
TFLIII.F0.0)S0 TO 5  
u0=u(10) 
v0=v(10) 
IP=I0 
TM=TO  
GO TO 6 

5 	CONTINUE 
CALL POS(NDATA.IN.U0) 
IP=IN-1  
IM=IN 

6 	CONTINUE 
1=0 

10 	co).TINuE  
IP=IP+1 
IF(IP.GT.NDATA)GO TO 15 
1=1 4.1 
IIIST(I)=IP  
RLIST(1)=00 ■U(IP)/•+2•(VO—V(IP))**2 
PLIST(I)=SORT(RLIST(I)) 
IF(I.EO.NO)GO TO 20 

15  51i4IT 	 
IF(IM.LE•0)G0 TO 10 
1=141 
II IST(T)=TM  

  

   

    

RLIT(I)=(u0-U(IM»•424.(VO-V(IM))442 
RLIST(I)=SORTOILIST(I)) 
IF(I.EG.N0)60 TO 20 
	 GO TO 10  

20 	CONTINUE 
CALL HLPFND(No) 
IFP=0 
/Fm=D  

30 	CONTINUZ 
IP=IP.1 
IF(IP.OT.NDATA)G0 TO 40 
IFIARc(1I(TP)-una.nr.R1 IST(tio»Go TO 40 
R=cu0-u(IP))•424.4VO-V(IP))41, 2 
P=SORT(R) 
IF(R.LT.RLIST(N0))00 TO 35 
rt,  

35 	CONTINUE 
ILIST(NO)=IP 
RLIST("J0)=F 
CAIL HipFNn(Nn)  
GO TO 50 

40 	CONTINUE 
Irr=1 
IF(IF 0 •E0.1.4NO.IFM.E0.1)R7TURN 

50 	CONTINUE 
I" - I" 1  
IF(Im.LE.0)G0 TO 140 
IF(ASS(U(IN)-00).GE.RLIST(NO))G0 TO 140 
R=cuo-u(Im))••2•(V1-w(IF))442 
R=SaRT(R) 
IF(R.LT.RLIST(N0))G0 TO 135 
no TO 30  

135 	CONTINUE 
"ILIST(NO)=IM 
RLIST(NO)=R 
CNLL HLDFNO(NO)  
GO TO 30 

140 	CONTINUE 
IFm=1 
irciFP-rn.l.AND 	11RFSUP4  
GO TO 30 
END 

C 	  
C4••4  SUBROUTINE rIND2 
C. 	  

SUBROUTINE FINO2(NDATA.I0.U0,VO.P0.(40) 
COmMON/C7/ ILI ST ( 100 ) 
rof.moN/rR/RITT(inn)  
COmmON/C3/U(100).V(100) 
IF(I 0.E0.0 )60 TO 5 
U0=t1( TO) 
VC VITO)  
IP=I0 
Im=10 
GO TO 6 
Co , TI%u=  
CALL POS(NDATA.1N.U0) 
IP=IN-1 
IM=IN 

J; 	fO^ITINU=  
IFP=0 
IFv=0 
I=0 

OF:TT  ILA  	  
F=IP+1 

IF(IP.GT.NDATA)GO TO 4; 
IF(ABS(UO -U(IP)).GF.R0)60 TO 140 
R=(U011(12))!!2±(1,1 —VCIF)1.+2__ 	 
R=S3RT(R) 
IF(s.LT.RO)G0 To 35 
GO TO 50 

35 	CONTINUE  
1=1.1 
ILIST(I)=Ip 
RLIST(I)=R 
GC  TO 5 

40 COTJT N 
IFP=1 
IF(IFP.EQ•1.AND.IFm.E11.1)00 To 200 

5C 	CONTINUE  

IF(IM.LE.0)GO TO 140 
IF (APS(UO-U(IM)).GE•F0)G0 TO 140 
	 R=(U0-U(IM))., 2(VO-V(Im)j.+2 	  

B=S),RTTP) 
IF(R.LE.RO)GO TO 135 
0, 0 TO 30 

135 	CT.T1 ,:u 	 

IL:IT(I)=I - 



IF(IFF.E0.1.ANO.IFm.E.:.1)GC TO 200 
GO TO 30 

CO 	CONTINUE 
N0=1 
CALL HLFFRT('0) 
RETURN  
END 

• ■ 

• • • SUBROUTINE FIT 

SUBROUTINE FIT(! DATt ,I4IN.P4A 	T STED 9N C.K 9C .A 10 3, A5. 
?.SU ,'1.SUu241N) 

COPMON/C7/TLIST(100) 
- C_OmMON/CAPILLSTAICOA 	  

COMNON/C3/U(100).V(100) 
COmmON/C6/Z(100) 
COM4ON/C5/A(106.107) 

_____Cpmmnm/roirtInni  

SW

• 

'2=0. 
N=0 
On Inn In=ivIN9IMA1(.IcT , P  
N=Nri 
CALL FIND1(NOATA.IO.U(I0).V(I0)00) 
NEGN=N0 4.(K 4.1)•(K4.2)/2 

	

CALL KAInPniK,C.A.L.43.AR,utT111.2/(0_1_.mo)   	 -- 

CALL ELIM/N(A.P.NEON,106.107) 
SUM= - Z( I0) 
DC 50 L=1.NC 

- / - ILTST(L)  
SU,"=SU4.0.P(L)•2(I) 

0 	CONTINUE 
SUMI=SUM1+SU 14., •2 

DO CO L=1,NC 
I=ILIST(L) 
H=CJ(ID)U(I))..2.6(V(I0)...V(I))** , 2 
w - SOLT(H)  
SUM2=SUM2 ■ P(L)•GENCrli(K.C.A1,13,A5.H) 

0 	CONTINUE 
SUM2=SUM2 ■P(N04.1) 
IF(K.E.G...0)4O TO  
SUM2=SUM2-P(N0 4.2)•U(10)-P(NO.0.3)•V(I0) 
IF(K.E0.1)G 1  TO 100 
SLU.'2=SUm2F(N0.4)4, U(I0)., V(I0)-P(N0+5) 1, U(I0)**2-=(N04.6)., V(I0).., 2 r n  
RETURN 

- END 

• 
FUNCTION GENCOV(K,C,A1.A3,A5v 4 ) 
IF(H.NE.0.)G0 IC 10 
arvrqu-r  
RETURN 

0 	CONTINUE 
GENCOY=A1•11 
IFC49E13 -0 1 RFTUQR' 
GENCOV=GENC:, V+A3.H••3 
IF(K9E091)P 0 TUR", 
GENCOV=GENCCV4.45•H••5 

END 

•• 	SUBROUTINE rLPFP.O. *• 
SUBROUTINE HLPF%D(NC) 
cp” ,.2 -, Co'fLI2TA100)  
CO30 40N/C7/ILIST(100) 
IMAX=N0-1 

0 	CONTINUE 
IFLAG=0 
DO 40 1=11ImAX 
IFURITST(T).GT.PIIST(T+1))G1 Tn 20 
GO TO 40 

0.CONTINUE 
ITEMP=ILIST(I) 
RTFHP=RI Tgif 71  
ILIST(I)=ILIST(I4.1) 
RLIST(I)=RLIST(I+1) 
ILIST(I*1)=ITEMP 
RI IST(I+1)=RTE4P  
IFLAG=1 

0 	CONTINUE 
IF(IFLAG.E0.0)RETURN 
ImAX=IMAX-1  
GC TO 10 
ENO 

SUBROUTINE KR1313L  

SUBROUTINE KRIGSL(K,C.A1,A3.A59U102,V1021 ,10) 
COMMON/C5/A(10691072 
coum0N/C7/IIIST(Inn)  	 
COPRoN/C3/u(100).v(100) 
NRO;1=N10.0(.1)•1K+21/2 
NCCL="dlOsi+1 

5 pow.1„,„  

0 5 ICOL=19NCOL 
A(IROW9ICOL)=09 
CONTINUE 
DO 4R ,II=1.N0  
DO 40 J2=19%0 
I1=ILIST(J1) 
I2=ILIST(J2) 
H C-1 111)'"U(T 2 )) 41 2*( 1L111(I2))!Pl 	  
H=SORT(H) 
A(J1.J2)=GENCOV(K.C.A1.A3.A5.H) 

C 	CoNTINUZ 
	_an mn  'trot 1.  i0.._ 	  

A(40419ICOL)=19 
A(ICOL,N0.1)=A(N0 4. 19ICCL) 
CONTINJF. 
IF(NA'.:4.n)C,' 
00 60 ICOL=1.NO 
I=ILIST(ICOL) 
A(N0+2,ICOL)=U(I) 
A( IfnL.Nn+2)=ALLAILLLICN I  
A(NO4.3.1COL)=V(I) 
A(ICOL.N0+3)=A(N0.3.1C°L) 
CONTINUE 
IFj5_9 1- 1.1)6'  il_AO 
DO 70 ICOL=1,N0 
I=ILIST(ICOL) 
A(N04.4,1COL)=U(I)•V(I) 
ALTCnL+.114U-41 - 141114&4.IC.O.L1 
AC45.5.ICOL)=U(I).*2 
A(IC)L.N0+5)=A(N04.5,IC°L) 
A(N:46.1COL)=V(I)•.?.  

0_•= A L'_‘12+ 	L2 
cnr.T 



CALL ODR(K.C.Al.A3.A5.u10.U20.v10,V20.=) 
A(IRow.NCOL)=F 

90 	CONTINUE 
AcNn.I.Nrno-i112-W11.(v2-v1)  
IF (K.00.0)RETURN 
A(N0+2,NCOL)=(U2• 4 2-U1••2)•(112-V11/2. 
A(N043.NCOL)=(/2•*2-V1••2)*(U2-u11/2. 
Ir(v.C1)...14RE_TuAN 
A(N0.4.NCOL)=(U2+•2-U1••2).(V2*•2-V1•*2)/4. 
A(N0+5.NCOL)=(U2++3-U1••3)•(V2-v1)/3. 
A(N0+6.NCOL)=(v2**3-v1••3).(U2-u11/3. 
)(FTuNN  
END 

C•+•••• SUBROUTINE KRIGPO 
4---Ciiii-ii,itiiilurnuiti*Litiftaiii***.** ult.* ILA E 	 itii• it is * * * 

SUBROUTINE KRItSPD(K.C.!1.A3.A5.UO.VO.NO) 
COMMON/C7/ILIST(100) 
COMMON/C5/A(106110T) 
erimmi.1/rwuctoolevilnn)  
NROW=N0*(K.1) ,b(K 4, 2)12 
NCOL=NR0101 
DO 5 IROw=1.NROW 
On 5 	rcilL-1,Nrm_  
A(IROw.ICOL)=0. 

5 	CONTINUE 
Do 40 J1=1.110 
D C' 4n 12.1 .Nn  
I=ILIST(J1) 

I2=ILIST(.12) 
N=CU(TI)-U(I2))**2.0(VCI1)-..V(I2))•..2 

A(J19,12)=GENCOV(K.OIA1.43,A50") 
40 	CONTINUE 

DO 50 
LL 

 ICOLO=1

A

.NO 
O 	4,1L)=1. 	  

CICOL.(40)=A(N0+1.ICOLT--  
50 	CONTINUE 

IF(K.E0.0)G0 TD 80 
co =1010  

I=ILIS (I OL) 
A(N0.2.ICOL)=U(I) 
A(ICOL.NO*2)=A(N0+2.ICoL) 
A(N0.3.ICOL)=v(I)  
A(ICOLIN04.3)=A(N0 4.3.ICoL) 

60- 	CONTINUE 
IF(K.EO.1)G0 TO Co 
DO 70__IS  =1 NO  
i=ILIST( 	OL 
A(N0.4.ICOL)=U(I).1(I) 
A(ICOL.N0+4)=A(N0+40C0L) 
A(N0.5 ICOL)=U(I)*.2  

----Au/rni, 	=a(N0 4.5.ICCLY-  
A(N0 4.6.ICOL)=v(I)••2 
A(ICOL.N04.6)=A(N0+6.IcOL) 

70 	gONTINn 	  
60 	cONTILTT, 

DO 90 IROW=1.N0 
I=ILIST(IROW) 
H=(UO-U(I))..2 ■ (VO-V(I))+.2  
H=SWKi(11) 
A(IROW,NCOL)=GENCOV(K.C.A1013.A5,N) 

90 	CONTINUE 
A(N0 4.1,NCOL)=1. 
IF(K.F0.0)RETURN 
At.4114,-vcnkl-un  
A(N04.3.NC0L)=V0 
IF(K.E0.11RETuRN 
A(N0.4,NCOL)=U0•VO 
A(No+5.NCOW=U0**2 
A(N0.6.NcOL)=V01, 42 
RFTURN 	  
END 

C 
C•4•+ SUBROUTINE POS 
C 	 ** 	 

SUBROUTINE POS(NDATA.IN,U0) 
COMMON/C3/U(100)0/(100) 
DO 4 I=1.NCATA 
IF(nn.i r.ucT»Gn TO 5  

4 	CONTINUE 
IN=NDATA 
RETURN 

5 	coNTINur  
IN=I 
RETURN 
END 

C***• SUBROUTINE ODR 
C 	  

SUBROUTINE ODR(K.C.A1.A3.A5gU1lU2.V1.V2.F) 
F - 
IF(C.E0.0.)G0 TO 100 
F=F.c.(U2-U1)*(v2-V1) 

100 	CONTINUE 
IF(fil-E(1-0-loo TO 2n0 
CALL ODR1(u1.VI.F1) 
CALL ODR1(u2.1( 2.F2) 
CALL ODRI(U1.V2.F3) 
CALL ODRI(U2.(11.F4)  
F=F+A1•(F1.F2-F3-F4) 

200 	CONTINUE 
IF(K.E0.0)RETURN 
IF4A3-..E0.0)a0 TO 3no  
CALL o0R3(U101.F1) 
CALL 00R3(U2.V2.F2) 
CALL OnR3(U10/2,F3) 
	----C4-1A-4OR34412-.11 1-1-F-411 	 

F=F+0•(F14, F2-F3 ■F 4 ) 
300 	CoNTI ,,UE 

IF(K.E0.1)RFTURN 
1rc45  
CALL ODR5(U1.v1.F1) 
CALL 0DR5(U2.V2.F2) 
CALL IDR5(U10/2.F3) 
CALL 03R54-112.44-1.F4I__ 	 
F=F+A5.(Fl.F2-=3-F4) 
RETuM: 
END 

C•••• SUBROUTINE DORI. 
C 	  

SUBROUTINE GORI(VoY,F) 
tr.-Y*1Q Y**..2____ 
T=SORT(T) 
IF(A.E1.0.)A=0. 
IR(Y.'1:.0.)A=Y.•3..ALor:(v+T)/6. 

P=v.y.7/3..t+ ,,  

•  



1.408KiNS. 

IP(IFLAG•EG.0)RLTURN 
/mAy=v4AX-1 
GO TO 10 
ENO 

4.40.23.UCLP• 64. ELP13 • 

SUBROUTINE 0DR3(X.Y,F) 
Tr-X• 4.2+Y++: 
T=SoRT(T) 
IF(Y.E0.0.)41- 0. 

IF(Y.E0.0.)[1 =0. 
IF(Y.NE.0.18=.075.T..5•ALOG(x+T) 
F=.175*X 4, Y•T*•3...A.B 
RETURN  
END 

* 
•*•• SUBROUTINE 0DR5 

SUBROUTINE 00R5(X,T•F) 
T=Y**, 2+1**2 
T=SORT(T) 
TF(x.Fil.n.)AABa 	  
IF(x.NE.0.)8=044642P57 -_-1•x• ,..7•ALOG(T.T)' 
IP(Y.E0.0..)3=0. 
IP(T.NE.0.)B=.44642657 - -1.y••7*ALOG(X•T) 

RE ,URN
220, 48.x.Y.T•.5-_,Aq2UT14 7-1.X..3*Y•*3..T.A.3  

END 

suBROLITTNE  RQTATE 

SUBROUTINE POTATE(THET 0 .VDAT4) 
EORmON/E3/O(100).V(100) 

- N=SIN(TNETA) 
DO 10 I=1,NDATA 
UU=U(I) 
u(T).7.ucTil+rs.vc7)*sN  
V(I)=-uU•sN+V(1)*CS 

0 	CONTINUE 
RETURN 
END  

• SUBROUTINE SORT 

cortFinUTTNF snRTENnATAI  
COMMON/C6/'(100) 
COMI4ON/E3/U(100),V(100) 
INAX=NOATA-1 

O rnNTINU - 
IFLAG=0 
Do 40 I=1.1mAx 
IFtu(I).GT.u(I+1))GO TO 20 
rn Tn 40  

0 	CONTINUE 
2Z=Z(I) 
Uu=u(T) 
vv - w(T)  
Z(I)=2(1+1) 
U(I)=U(I41) 
v(r)=v(r.1) 

- 1^ I.1 1- ZZ  
U(14.1)=UU 

IFLAG=1 

*** It 
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C 
111141f fmC f QR — r Ir TE DYLIAJ 

PROGRAM TKPIG(INPUTOUTPUTIVAPI7KIAIIZPI7KoDAT,VAPOIZKRO,ZRIT,KO 
6,TAPE4='RISK4TAPEE=INPLT,TA°Z6=CU1PUT,TAPE7=VARoTAPER=ZKR 
6,TAPE9=DAToTAPE1C=VARO,TAPE11=ZKRtgTAPr.12= 7PISKO) - 

C.0444..NEW MODIFICATIONS  	1 	  

114-PUT4 
:C•44.11U 8 IT 99 ==> UNIT _ S TERMINAL INPUT 
g•i•OrriT 96 	UNIT 	TERMINAL OUTPU 	. 
C. .UNIT- 97 ==> UNIT 7 	OUTPUT FILE = VAR 

--OUTPU4-F-1-ES-*-4*R- 
c 

DIMENSION FORM(4).K.(1E).(1!).A1M(1) 

	

..&,A3mtip.A.-A415).[RR0R4-1-54,44,41(4114,T1-44.*4-4).2KRIGrti-e-evlo 	 
sALVARSET- ( 10-0.1oo),G(4,5),uu(loo)orvioo),zRisktioo,100) 

tiwlvAitSCTo(loe.loo),mrsEocioo.A0o4.zRisio(loeolo0) 
• oreNrc3Yu(loo),v(100) 

e 	4IctiA(loc.1-e7)----- 	  
COMMON/C6/.'(100) 
commoN/c7/ILIsT(100) 
commcm/cc/RLisT(100) 

C**Illogrir 
04TA STD,ST1/1H0.1H1/ 
DATA STA,STB.STC,STOtSTE,STO/lHAOH0,1HC,1H0,1HEillH0/ 

c-,--A READ INFORMAT/OR ABDUT-$4  
300 WRITE(6,9700) 

READ(5..)TIME 
IF(TIME.E0.0) GC TO 150 

• . 
GO TO 300: 

150 WRITE(6.9001) 
READC5.0NOATA  

Ou8 
READ(5, ► )DR 
IF(TIME.E0.1) THEN 
READ(9..)(U(I).Z(I)II=1.NDATA) 
UU 	1-1.9uAIA 	 
V(I).:0, - 	- 

- 175 CONTINUE— 
ELSE -- 
RtAlIt9t*/tVtll,U4171L(1)111-1,NUA14 1 ) 
END IF 

400 WRITE(6,9600) 
READ(5..) ,(LOG 
Sr t 	5.0 U. 	 ,y 
IF (XLOG.E0.1) GC TO 499 
GO TO 400 

; 499 00 500 /=1,NOATA  
▪ (1)-Lobiz(1), 

500 CONTINU: 
	 CHECK FOR DOUBLE POINTS 
999 CALL DOUBLE(NDATA,OR,KODUBL)  
	 KEANANOL UA1A 

CALL SORT(MDATA) 
C 	 UPDATE NUMBER OF DATA POINTS 

NDATA=NDATA4NDOUDL  

C 
iC 	 OPTION SELECTICN 
JC  

1000 
C 
C 	OPTION A 	 

1 	 .." 	 -' 	 -• 	 --.'".'' 

WRITE(6.9006)'STA 
WRITE46.91077.,  ' 

'READ(540NOOGC4ISTEP 
IP(/STEP.CO.0)TSTEM-.1 

C 

	

	 READ K9C.A1.A3,AE FOP EACH GENERILIZEC COVARIANCE 
DO 1050 IGC=1,uGC 
WRITE(6,9109)IGC.IGCsIOC4IGC,IGC 

, (Ct)(IGC),A1M(IOC)',A3Mt
1050 CONTINUE ,. 	 . 

J1060

00 1060 IGC=1INGC 

CONTINUE 
RANK(IGC)=0. 

NGI=0 
C 	 START ITERATION ON DATA POINTS... JO IS 
C 	 THE TYPICAL DATA POINT 

READC5,9005)ST 
IF(ST.EO.STA)G0 TO 1000 
IF(ST.EO.STB)G0 TO 2000 

--Ifts-T.Ea4srctco IC 300 - _: -  
IF(ST.EQ.STO)G0 TO 4000 
irlal.,UoJ , LJUU IV JUVU 
IF(ST.EO.STO)STOP 
GO TO .1 
CONTINUE .. 

NGI=NGI.4 1 
	 START ITERATION ON GENERALIZED MARIENCES 	USE EACH 
	-ONE IN•TURN TO JUZIGE POINT to 

DO 	110C Irt-1.4Gt 	  
CALL FP101(MDATAII0IU(I0),V(I0),NM) 
	 KRIGE POINT I0 

CALL KPIGPO(Km(IGC),CN(INT),A1MUJIGC).A.7M(IGC),AtM(IGC), 

KEDN=NO+(KM(IGC)41)*(KM(IGC)+2)/2- 
CALL •ELIMIN(TIME,KM(IGC),A,P,NEON-4106,107) 
SUM=-1(70) 

-co Iona I.-1,w°  
I=ILIST(L) 
SUM=SUM+PCLI*Z(I) 

!1080 CONTINUE 
rico KrItcrx to--Ac ,s  OF C-U-R-RENT CCAG,RALI2ED COVARIE-WGZ 	 

ERROR(IGC)=ABS(SLM) 
!1100  CONTINUE 
JC 	ENO OF ITERATION OM GENERALIZED COVARIENCES 

COVAIIIENCEA--- 	  
Cr 11 0 0 i6c1=1,rec 
RANK(IG01)=PANK(IGC1)+1. 
00 1190 IGC2=1,MGC 
IF (ERPGA-41CC2 

' 1 1190 CONTINUE 
11200 CONTINUE 
	 END OF ITERATION ON DATA POINTS 

1 	00 1210.1r0=-1-.44t  
RANK(10C)=PANK(ICC)/FLCAT(NGI) 

11210 CONTINUF 
iC 	 WPITF PESULTS 

43-4-Gt=-14-4t , C 
kRITE(6,9111)IGCIPANK(IGC) 
CONTINUE 
GO TO 1 

:-. 	• 

-TTE4 4,9O-041S,T L 
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201C 	CiP,T1r, 	
10,1 CU_/“, r 	 

A.Arpry n 1(1_0_ TI 'F.F7 	— "'TFTY 	7"L A',:-G"Tfl 
	 'Z•TP 	rr 	11-!'" 	n% 	 To;PLi. 

412-2-=X 4 _ 

CC 2272 IRw.i=1,4F2 
00 2C:r IPOL=1,(F3 

-TOr7L1=:'. 
2::21 

	

1T.J :110, 	C. ,-)AT 	P - 1 r -  - 	17 To- TYPICAL r:ATA 

I0=1,V110,1sT , F,  
CALL FT - Fic:OATA,T0.0(r:), ,!1T ,:), P;T) 

10 1511,6 PIII'L 
CALL K.:.IGPfAK.c.A10,31:(103,v(10, , :f1 

CALL 	LI"1"!(TT"' 	 •• , 	 C7',  
	 FILL I 	CC' 	V CT 	T-7!1,. , (7),Tt7),Ifio C, 7 1.1V17 ,  BY  THr 
	 LAST h"11,-- 	 'r 7A . 	 (71iFT . P 3- VATICK THE: 

rnTATICN 	• 
T(1)=1. 
00 235u l=1.NO 
Tt1)=T(1)., v(L).,: 

KPL=K.: 
2;: 

cr 2105 L1=1,N0 
T1=ILTfl'ILI) 
H=Cv(Tn)-u(II))..2 , (VITf:)-V(I1)) ,..2 

Tr 1 =r(Y)-7...'(L1).4 ., •.' - YE' 
C 	77 	L7=1•':3 

	_itf(11)-0.!(12)1* , 2+CV(11).-V(I2))*+2 
F=SOPT(H, 

2060 
r4ATP1, 43- 

xP2r.e.+: 
CT 711, t1 

:L- 1, SF2 

2C90 CC%TV•H: 
	CY:•!SToUCT 	ALI7EC T ENT 

GP:CP=- 7. (IC) 
	04}-2 	E=1-,440 - 

NLLI"(L ) 
CT* r.=•--T•;r: , ,p(t.).7r 

2101 	CC' '1'' 
+.2 

LAST C3L71 1f,r: OF "ATPIx 	 IF= Rrr, HT NANO SIDE 
CC TH ,7 SFT 	■ ' , UArT.r, S CF TA B L: 3.2 CF cl- , rTEP 3 

KF2=K+7. 
	C" 	ro,u=1,4,c2 

2111 
220: 

1' (V C H.f.S 	c' FILL:12 I'' -rFC.L','r) T .  TA ,T P.m() ACCCUET TI-AT 
..... 	• 	C"- FFIrIT 	.11.;,3 	t.1.'1 HAVT FIEE:11 

2 7 "Z A PRI:ftI 
_ 

CC 22 4 : 

CC 2 1 22 ICC:L=10, F2 
1(IF5'-.ICGL)=0. 

222" CO"1P:U 

2240 CONTI ,  
'C'V ,=x+i 

• 1, 1*-A ! 
CALL TLIvIr,.2(TI"".G.X“. - 0',,4. , ) 
C=3. 
A1=tr,. 

Cro, r2) 
V'1)21 	IC) 

	 C!-, TC, IF IC IC TS A r47 , FP 	 CCVAPTU4CE 
TI - 	 T4=-6iA-Ft-T--AF•AIN US1 14,  

:•.••• 

	

	 ri!V , !ANC 	INITIAL GEN. CrIWIRIANCE 
CALL r17.:(O,n1,42.A5,7!T)' - y) 

?-2ef.! 	 

	

f• 1)-Y . 	I 	2015 
	....T.: ,:..„Te)(.; 	T .,. 	1 

Fr Tr) 
.1.100 	Cat:TP.15 

	 ..... le ir 

—6, 

[ 7 '. 1111"1:1) 
t 	) 	T 

IF , 	7..c )1 -; r 

. 
% .71. 

CCLL 	 •I • _•.! 

C11 L F1 , 	 N 	 --";-,:•' 
St,' 1 
f• - .7-T 4-7'"."1 ,■ #"'""It.7) 	̂:' '2 ' • "U7 -  
!-•4='... - 14/ ,,,," 2/ 
ELI• 
P=,.•? - 1 	 •F ,  5 Y1 

ror'. TV 
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SL9F.r,t!TI'.r" ri061 (Nc ■ t:TF 	,uri.')o.r.lin) 
IC)) 

__16:20A./c. ,,,i, LTs -r (leo) 
cr, --. ir0/17in .v 
IF(' " • 

IP=I 

tr- t;) 
—C-12 1 

Ct, LL 
IC=P. 

0=r1 

r=!...1 
___II-- CIP.:;r.:%:0:.T541,.c: 

T. ,  1=(0r:..1 , ; 
I3 1 

C7 .  

IF(Tf!-LE.016r T• 	10 
1=1.1 
f 	I  
PLI:7; 7 (!)=(!!:-'1(1")).r.2 4 (VC-V(P'.)) 4 •2 

• I 
T• 20 

-; 7'1 	10 
Co' 

--6-A-L-L--1--L-Pf 44441 G4 
IFP=0 

ceNTIP!UF 
la-+ 1 - 

I

- 

F( 	 –C 	40 
IFC.I.S.'-(((T

▪ 	

')-1.0).1". -...PLICTV 	)(;'' 10 40 
k= (L, 0-0 ( IP ))**'. 7 1.(V,i•V(IP) )• 

- IF(R.LT•RLIST(H0)) ,7“) 7!".• 
CO TG 

PLI"Ti 	)=' 
CALL HLF'F'H'i • fe 
GO T^. 7:0 

— E-Oft-T i43- : 
IFF=I 
IF TIFF.tG..1.41%.i 

IP:OL 

T , 	14' 
TF(6;2^(!1{I

• 

"1-11 ,1) .0 
I") 

7' 13'; 
(I^ TO 73 
c'n%TU.Iir 

— IL 	 Ttt' -^)=I" 
)t-r: 

C 	 (!; CL) 

IF (I

▪  

FP.E0.1.4 ,- 	-.:" .1) 
TO 3n 

.. 

• s111q --.171– . ,.  Fr 

r 
co..../c7/111*( icc; 

 crp”.13,:tr.sr-LI.7T 
CO"O'I/C3/t1(10 , .' ,Vt 100') 

• p ) Tn 

00=1!( 
vn=v ( 

• - 
■.in 	Tr. 

CALL 	 fl,•i!r.) 

C"' 

Jr 



7' 	e 	J1=_. 

) 

'--A711•) 
IF(R.LTer2)60 T , 

 Cr TC 
35 	CC'!T1!1' 

1=1•- 
 

PLIST(r)=q 
CO TO 5n 

jet) 
 

	 IL= - 

 (TF=. 1 	 T 

I4b 	-• 
IF (A.7., !7•-!..i( 	).5c.P 

)• 
R=SCRT1P 
I 	%(1)C. T.. 	3 5

•  Cr r". 1 : 
.135 

1=1.1 
	a-1,,,,T4T.) ,.../ 

RLISTIII=R 
GO TO 30 

;14(1' 	CONTI•UF 
	tr.-14=.4 

•.1) —  T - 	:C 

crT 

C ... 	  
SUS; 	FI7( 	7.1, 

CO!'"ION/C7/ILIST(1CO) 
COF!'ON/r3/. :,1_18 1. (1CC) 
CCIZ:t/C3 ,, q1C2).Y(100) 

SU"1=C. 

!.=C 
CC 1C0 

CALL v"7 7,, r(K.C.41.L3.(T01.7170),(7) 

'0. 50 L=1...0 
1=1LI:T(LT 
3!1 - =SU'. 77-(L). 7 (.7) c__ 	a -1' 	- 

-1=iLi=T(L)- 	 • . 
=T(H) 

60 
SO - 2=';:!" 7 -(A(•.C.1) 

sLv2=z!”2-P('IG.2)-u(ic)-o(r3+7). 1/.(T) 
IF(K.Cc.1)ric T6 lc:: 
sur2=.7T, 2-D(yr. 4 ).u(io).v( :o)-P(!\1.t)•L(I0)..2-Pv!c+6)*vtion.*2 

1^0 
p , :tuR" 
I- 	LI 

C 	  
C.... FUNCTTC, % GENCCV 
C 	  
	FWC - tn. -  6 . .7'.4:-"VI1(‘C.41.1■ 3.1750,1-  

IF(H. , 7=.0.)GC TO 10 
,- ,rnv=c! 

R71. 12P.% 

IF(r.ir.:1)RcRP ,  
cF2.cr, v=r,cvc1V+A70, .., 3 .  

CC  
2C0 	

Tr 'C 

CALL HLPFND(Ncl) 
RETURN 
CND 

-at sa*aa.asa 	 
C•... SUrRc,UT1 

SnRouTINE HLPF 0 

C 	  
suRouTIF' HLPF ,:ct.,c) 

1FL _4C 
41 I=1.p, Ay 

IccRLTsT(I).GT.FLr , T(141)) ,-, TO 2-r 
T.? 4!) 

2L_ 

1.11'7 T(I)=TLIST ■ :." 

4 1-111.:I=FT7"i,  
IFL.13=1 

40 	CO!LTIT:J= 
1r(TcLL"..: 7 .01 ,  

.. 

......... 

C.... SUbRZL;TI'.' 	L 
C 

	

	  
SUO.RaUT17. -- eV 111:2 ti.0) 
C ,̂ .•IC- . (0'1 " (177 • 1 77 ' 
Cr n,“:;• 

NcoL.7.%.^ ,.•1 
S 

P 7  5 700L=1.N ,7 



--Lml, 

F=F*AZ.( 7 1.F2-F!-F6) 
CC*ITIP.C - 
IFfv•L - .1)!, :TP 7 ' 
1F(IF). 
CALL 

- 	- 
- CALL CL, '5(1)1.Y2.F2) 

CALL T): , 5(U2.V1.F4) 
F=F.A5.icl•F2-F3-F4) 

. 	_ 
• I • • 	• • 	• ** 

▪ ZL-3POCTTAL CDP.1(Y,Y.F) 

TORT(T) 
1F4-4-rf41. ,_'•44-= 11. 

▪ •13•)A=v• • 
(Y•E7:•0•)F=7. 

()•1)“•.. 

- RETURf: 
ERD 

• --S-144,14).0 T-I A4-F - 
• 

5UrPCUT:%i: r,:JP!'XtY,F1 

T - S:AaT17)  
IF(x.rn.o.)A=c. 
IFCX • k! . . 3.)4=.C7.!•xt-LCG(Y+T) 
IF(Y•fl.0.)E=0. 

•▪ 

 

S(JR(UTI%: 
•	  

SU9ROUTV) 7: 77, .( 11Y,F) 

- T=S7:',,TfT) 
IF ( X. 7 'vee , I=0. 
Trof...)!=. 4 4E42:i57:1-1•Y+*7.4LC7 (v+T) 

F-.12

▪  

4.:":.m..Y.Y*T+.5-285.714E-1.1**Z•v**3•T+A.0? 
PETuR. 
ENT1  

• SI , =-.7r,) --- „c- 
** 

cr•-•c• //).:(10).:) .vticc) 
) 
) 

Zr  10- 
) 

L(:)=P)..r:+vt11*'' 
f 	 'VI 1 

- • 

. • . 
• suE.nr -ri..F 2.7.77 
•	  

c14.<1/7E./2(1 oc, 
cc.."GN/c7../(icc).V(10c) 

COvTIN ,_iE 
IFLAG= 

IF(U(T)o3ToU(1 . 1))GO T r-  20 
GC Tn 4c 
currir:ui: 
z7—z(-14 	 
up=t)(:) 
vir=V(I) 
2(:)=7(7+1) 

liCI)=V(1+1) 
2(1.1)=.72 
O(I.1)=LW 

- 
- IFLL, G== 

- GC T‘') 
P): 



WRITE(6,9006)STA 
UAITE4 1....9107) 
READ(5.+)NO,NGC.ISTEP 
TF(NO.GF.NDATA) THEN 
ORITE(6, 9 108)NDATA 
SZL-TC. 
ELS: 

C 	 
C 	 DEVELOPED BY: DR. S. ROUHANI 
C 	 SCHOOL OF CIVIL ENGINEERING 
C 	 GEORGIA INSTITUTE OF TECHNOLOGY 
C 	 ATLANTA. GEORGIA 30332 

—C- 	 All 	1,913/_ 
C  	 ... 1.... 
C 	 
C 
C  

PROGRAM STVARED(INPUTgnUTPUT.VAP,21(R.DAT.VARO.MED 
6,TAPE5=INPUT.TAPE6=OUTPUT.TAPE7=VAR,TAPE8=ZKR 
3gTAPE9=DAT,TAPE10=VARO,TAPi11=MED) 

DIMENSION FORM(4),10(15).Cm(15)0(4)14(4),A1M(1 5 ) 
tot3M(15),A5M(15),ERROR(15).RANK(15),ZKRIGE(20,20.12) 
10/ARSET(20,20.12)0(4.5)9UU(20),VY(20).TT(12) 
t•TVARFO(20.20.1-24-9-T-L141420049T-V11 A14121 
301,ARSET0(20,20,12).mKRIGE(20920,12) 

COMMONIC1/KS.KT.CS,CT.A1StAlT.A3S.A3TgA5S.A5T 
COMMOk/C3/UDAT(200),VDAT(200),TDAT(200),IOUT(200),CHOICZ 
rnmmomi 6.514(1069 10 7 )— 
COMMON/C6/Z1200) 
COMMON/C7/ILIST(200) 
COMmON/C8/RLIST(200),U(200).V(200) 
	GO*44044C9IP(200) 
COMMON/C10/0U0,VV0,TTO 

DATA STO.ST1/1.0.1H1/ 
DA TA ST  A-+S-T-B4S-T-Ce-ST-D-.4-TE-9-S-1-5-4-5-1-0-1-144.4-1444-4C-44"1-41-HZ94-"44-14-1

C 	  READ INFORMATION ABOUT DATA POINTS 
WRITE(6.9001) 
READ(50)NDATA 
ONPAT4- NDATA 	  
READ(9,+)(UDAT(I),VDAT(I),TDAT(1).Z(I),I=1.NDATA) 
WRITE(6.9701) 
READ(500UFAC.VFAC,TFAC 
DO 300 I - ltmDATA 
UDAT(I)=UDAT(I)/UFAC 
VDAT(I)=VDAT(I)/VFAC 

300 TDAT(I)=TDAT(I)/TFAC 
	 WRITE( -9 OR)  

READ(5.0ORSORT 
DRS=ORS/SORT((UFAC• 42+VFAC++2)/2) 
ORT=ORT/TFAC r.*** 	ri4Lcw Fop nnpl_TrATi PrItriTc  
CALL DOUBLE(NOATAORSORT.NDOUBL) 
NDATA=NDATANDOUBL 
WRITE(6.9009) 
mEAD ( c.4)0v.OT  
DY=DX/SORT((UFAC4+2+VFAC**2)/2) 
DT=DT/TFAC 

400 	WRITE(6.9600) 
RFAnc5..)xl_nn  
IF(XLOG.EQ.0) GO TO 999 
IF(XLOG.E0.1) GO TO 499 
GO TO 400 

444 nn 50n T - I.NnATA  
Z(I)=LOG(Z(1)) 

500 CONTINUE 
11 	CONTINUE 
C 	READ THE NEW DATA POINTS  

ISt.O=1 
WRITE(6.9610) 
READ(5.()NEW 
IF(NEW.ED.0)G0 TO 10 
DO 2 INEW=1.NEW 
"9 .1T: ( C1 .9 611)  
READ(5.+)UNEWINNEW.ZNEW 
IF(XLOG.EQ.1)ZNEW=LOG(ZNEW) 
WRITE(6,9612) 
READ(5. 1 )TSTARTIITEND 
ISTARWSATRTTNCR 

DO 15 I =I ART,IEND 
NDATA=NDATA+1 
UDAT(NDATA)=UNEW 
IMAT(NnATA)=VNFid  
TDAT(NDATA)=ITT*T/NCR 
Z(NOATA)=ZNEW 

15 	CONTINUE 
IF(N,DATA.G1.(01DATA*IUmAX•IVmAX•TTmAX))yRITE(6,9613)  

2 	CONTINUE 
WRITE(6.9614) 
READ(5.+)ISE0 
TFCCFO.FT1.1Ifill Tn In  
TOTV=0. 
TOTSD=0. 
GI TO 5001 

11 	CONTINUE  
TOTV=0. 
TOTSD=0. 

999 WRITE(6.9700) 
RFAn(.....)OHOIrr  
IF(CHOICE.E0.2)GO TO 5000 
DO 150 I=1,NDATA 
IF(CHOICE.FC.0) THEN 
U(T)=TOAT(T)  
V(I)=0. 
ELSE 
U(I)=UDAT(/) 
V(I)-vnAT(r)  
END IF 

150 CONTINUE 
C 	 REARANGE DATA 
	 CAI( COPTUIOATA)  

CONTINUE 

	  OPTION Si_LECT/ON 

:RITE(6,9004) 
READ(5, 9 005)ST 
IF(ST.EO.STA)G0 TO 1000 
TFrcr.vn.s/a3L3  TO 2n nn  
IF(ST.EO.STC)G0 TO 3000 
IF(ST.EO.STD)G0 TO 4000 
IF(ST.EG.STE)G0 TO 5000 
IFIST-ZO.STS440-  TO 999  
IF(ST.EO.STO)STOP 
GO TO 1 

1100 CONTINUE 

C 	 OPTION A 
	 • 

C 

C  

STKRIG  

C 



READ(50)Km(IGC).CM(IGC).A1M(IGC).A3m(IGC).A5M(IGC) 
050 CONTINUE 

DO 1060 IGC=1.NOC 
RANK(I6C)=0. 

060 CONTINUE 
NnI=O  
	 START ITERATION ON DATA POINTS- 10 IS 
	 THE TYPICAL DATA POINT 

00 1200 I0=1.NDATA.ISTEP 
Nr1=414.1A4--- 
	 START ITERATION ON GENERALIZED COVARIENCES - USE EACH 

DO
NE IN TURN To KRIGE PrINT 10 
1100 ISC=1.NGC 

Elm FINol(NDAIAcIO,U(SD).VILLI.NO.OxIDII_____ 	 
	 KRIGE POINT TO 

CALL KRIGPO(KM(IGC).CM(IGC).A1M(IGC).A3M(IGC).A5M(IGC). 
itAI0),V(I0).N0) 

GCJ +_1)+, (K.M(IG_C)..+2) 
CALL ELIMINICHOICE.KM(TqC),A.P.NEON.106.107) 
SUM=-Z(I0) 
DO 1080 L=100 
j=DIST(I)  
SUM=SUM*P(L) 41(I) 

080 CONTINUE 
	 FIND KRIGING ERROR OF CURRENT GENERALIZED COVARIENCE 

ERROR(TnC)=LBSLSWD__ 
100 CONTINUE 
	 END OF ITERATION ON GENERALIZED COVARIENCES . 
	 UPDATE RANKS OF GENERALIZED COVARIENCES 

DO 1190 IGL.2=1,NGC 
IF(ERRORIIGC2).LT.ERROR(IGC1))RANK(IGC/)=RANK(IGC1) 4.1 

190 CONIIBMF 
200  CONTINUE 

- ND OF ITERATION ON DATA POINTS 
DO 1210 IGC=1.NGC 
RANK(IGC)=RANK(IGC)/FLOAT(NGI)  

210 CONTINUE 
	 WRITE RESULTS 

DO 1220 IGC=1,4GC 
	MEITE( 60 1 111I0C , RANK(IEC) 
220 CONTINUE 

GO TO 1 
000 CONTINUE 

	 OPTION B 	  

WRITE(6.9006)STB 
WRITE(6.9391) 	  

005 	READ(5..)NO.ISTf.P 
IF(NO.GE.NOATA) THEN 
WRITE(6.9108)NDATA 
GO TO 2005  
ELSE 
END IF 
IF(ISTEP.EQ.0)ISTEP=1 
WR/TF(6.9303)  
READ(5..)K,C.A1.A3.A5 
WRITE(6.92 175) 
READ(5.9206)(FORM(I),I=1.4) 

010 ' NTINUF  
	 ET MATRIX G EQUAL TO ZERO - MATRIX G IS 1HE AUGMUTED 
	 MATRIX OF THE SET OF EQUATIONS APPEARING IN TABLE 3.1 OF 
	 CHAPTER 3 

KP2=K+2 
KP3=K+3 
DO 2026 P12 , -- 1,Yr2  
DO 2020 ICOL=1.KP3 
G(IROW.ICOL)=0. 

020 CONTINUE 
+++++ START ITERATION ON DATA POINTS - 10 IS THE TYPICAL DATA POI4T 
	 FIND THE NO NEARSET DATA POINTS TO DATA POINT IO 

DO 2280 TO=I LNDATA.TSTP  
CALL FIND1(NDATA910.U(I0).V(I0).NO.DX.DT) 
	 KRIGE POINT IO USING INITIAL K.C.A1.A3,A5 

CALL KRIGPO(K.C.A1.A3.A59U(10).V(10).N0) 
-NEGIAlz-1141*-C44-1-1 

CALL ELIMIN(CHOICE.K.A.P9NEON.106,107) 
	 FILL IN THE VECTOR T-T(1),T(2),T(3),T(4) ARE GIVEN BY THE 
•..*** LAST FOUR EQUATIONS OF TABLE 3.2 OF CHAPTER 3- NOTICE THE 

CIOGF OF NOTATION  
T(1)=1. 
00 2050 L=1.N0 
T(1)=T(1)+P(L)++2 

3-50  CONTINUE  
KP2=K+2 
DO 2060 N=2.KP2 
NEXP=2*(N-2)+1 - 
DO 2060 L1=1.NO 
11=ILIST(L1) 
H=CU(10)..U(I1))+*2+(V(I0)-/(I1))**2 
H -SORT(H) 
T(N)=T(N)-2.*P(L1)*H++NEXP 
DO 2060 L2=1.N0 
I2=ILIST(L2) 

---H=-4-41-1,14-41(-12))  +.24, ( V( 11) 	 .+2  
H=SORT(H) 
T(N)=T(N)+P(L1)+P(L2)+H.*NEXP 

360 CONTINUE 
G  

KP2=K+2 
DO 2090 IROU=1.KP2 
DO 2090 ICOL=11KP2 
GAIR0u.IC0LL=GLIR-014.-LC-611.3-a-UaRD-W1aT(ICoL)  

!90 CONTINUE 
.***. CONSTRUCT GENERALIZED INCREMENT 

GINCR=-Z(I0) 
DO 2100 r-1_AO 
I=ILIST(L) 
GINCR=GINCR+P(L)+Z(I) 

.00 	CONTINUE 

,*++ UPDATE LAST COLOUMN OF MATRIX G.I.E. THE RIGHT HAND SIDE 
,rnd,  VECTOR OF THE SET OF EQUATIONS OF TABLE 3.2 OF CHAPTER 3 

KP2=K+2 
DO 2110 rclnu.=1._KP2  	  
G(IROwor+3)=G(IROw.K*3)+T(IRow). , GINCR2 

10 CONTINUE 
TO CONTINUE 
*.,++ END OF ITFRA,TION ON_DATA_POI ,ITS ■A_T__THIS_STAG F 	 

MATRIX G HAS BEEN FILLED IN -PROCEED TO TAKE INTO ACCOUNT THAT 
-.,+++ SOME OF THE COEFFICIENTS C.A1.A3.A5 MAY HAVE BEEN SET EQUAL 
++++ TO ZERO A PRIORI 

KP2 K +2  
DO 2240 IROW=1.KP2 
IF(FORM(IROJ).:Q.ST1)G0 TO 2240 
KP2=K+2 
	Dt, 2220 rCrL=1,KP2 

G(Ivow,rCoL)=0. 



NEON=K4.2 
C 	 SOLVE FOR Co AI.A3.AE 

CALL ELI4ING(GOoNEON.4.5,EFLAO) 
C=0. 
A1=0. 
A3=0.  
A5=0. 
IF(RORM(1).E0.571) C=X(1) 
IF(FORM(2).E0.ST1)AI=X(2) 
IF (FORM  
IF(FOR4(4).ED.5T1)A5=Y(4) 
WRITE(6.92C7)K,C,A1,A3.05 
	 CHECK IF THIS IS A PROPER GENFFALIZED COVARIANCE 

BITE COFFFIZIENIS_'" tSft IF USERJILANTS 73 START AlAirt_VSINC 
• 	C 	 THE NEWLY FOUND GEN. COVARIANCE AS INITIAL GE',. COvARIANCF 

CALL CHECKACHOICE.C.A1.A3,A59INnEx , 
 IF(INDEX.EG.1)WRITE(6,9208) 

27110 rnAltiNoF  
WRITE(6,92091 
READ(5,9005)57 
IF(ST.E0.ST1)GC TO 201C 
/F(ST.FO.STO)GC TO 1  
60 TO 2280 

3000 CONTINUE 
C 
	 OPSION r   	"..t.c_k_a_tr • •• • • 11,_4_ 	  

C 
WRITE(600C6)STO 

3100 WRITE(603C1) 
PFAntS.*IVileTST 7 P  
IF(ISTEP.E0.01ISTEP=1 
IF(NO.GE.NDATA)THEN 
WRITE(6,91C6)NDATA 
Go Ta 1108  
ELSE 
END IF 
WRITE(6,9303) 
RFant5.•1KsraA1git3aA5  
IMIN:1 
IMAX=NDATA/2 
IF(NO.SE.NDATA)NO=NDATA-1 
CALL FIT(4DATA,IMI4,ImLY.ISTE 00,0-.X..Z.44,A34A 5 

 &SUM1A,SUH2A,NA.:3X.DT) 
IMIN=2.(NA-1) ,ISTEP 
IMAX=NOATA 
CALL FITINDATA,TM/N./M1VgIqTEPICG0K.r.C10 1 015 11  

ISSUM1B9SUM2B,NBIOXOT) 
R=CSUP1A+SUM1BU(SUM2A.SUM23) 
RA=SW11A/SUM2A 
RB -SU410/SUN213  
R=2•R-(NA.RA.N.R8)/(NA.NB) 
WRITE(6,9305)NA.RA.I\B.RFO 
GO TO 1 

AO00 CONTINPIc 

	 OPTION D 
C 

WRITF(5.900(0512 
WRITE(6.9431) 
READ(5,+)THETA 
THETA:THETA.1.7 4 532°2E-2 
CAL] rv7TAT , (TH7TA.mrArr) 
CALL SORTCNDATA) 
GO TO 1 

5000 CONTINUE 
C 
C 	 OPTION E•• 	 

WrITC(C.9000IST. 	  
WRITE(6,9350) 
WRITE(6,9351) 
READ(5•)KS,CS,A1S,A3S,A5S 
KSS=KS 
WRITE(6,9352) 
REAnt-,-,..iiir.wo.MHAv.LvmAy.u1Nrp,v1krR  
UO=UO/UFAC 
VO=VO/VFAC 
UINCR=UINCR/UFAC 
VINCA-vINCP/vFxr  
WRITE(6,9355) 
WRITE(6,9351) 
READ(5t•)KT,CT,A1T9A3T.A5T 
KTT - KT 

 WRITE(6,9357) 
READ(5,•)TO,ITMAX,TINCR 
TO=TO/TFAC 
TIKrR=TTMCP/TFAC  

5196 WRITE(6,9353) 
READ(5..)H0 
IR(E10.07.NDATA)THEN 
WRITE(5,9354)NOATA  
GO (0 5196 
ELSE 
CND IF r  

C 	 TH: OPTION F0 7,  THE VARIANCE REDUCTION ANALYSIS 

WRITE(6,9650) 
READ(5.*)IVRD  
NELAG=0. 
UUO=U0 
VVO=VO 

___ITO=TO  
5001 UO=UUD 

V0=VV0 
TO=TTO 
UO=UO-WINCR 
VO=VO-VINCR-----  
TO=TO-TINCR 

C 	  
C" 8EGIA_IIERATION FOR ALL_ OCSLREO POINTS 

DO 565C I7=1,IT'AX 
TO=70+7INCR 
DC' 5600 IU=1,IU.AX  
U0=U0.UINCR 
DO 5500 IV=1,IV4AX 
V0=v0.VINCR 

C••.*  LLCATE__NEARt_ST Na_ETIATS FOR_ARIGING 
CALL FIND3(%0A74,UO.V0v70,M0) 
Op 5200 III=10C-.1 
LLL=IL1ST(III) 
	 LLLP1=ILIST(III*1) 

IFIIUDAT(LLL).E1.UDAT(LECRI).ANO.VD 4 7(LIL).LCITIMAlTIALP1rITFE v  
GO TO 5200 
ELSE 
run I F  
KS=K SS 
GO TO 5215 

5200 	CO ■!TIN'JE 
KS=,: 

.215 	C 	u 	 



GO TO 5265 
250 CONTINUE 

KT=0 
265 CONTINUE 

CALL KRGPST(U09)10,TO,M0) 
NEDIO!!/.0-•-litS + 1 ) K • 2 ) Z+1( 
CALL ELIMING(A,PoNE040106,107,EFLAG) 
IF(EFLAGIDEQ.1)THEN 
ZKRIGE(I0,IV,IT)=-1E.15 

----WARZE-T44-U+14.ITJ-==.1Z*4 	  
NFLAG=NFLAG , 1 
GO TO 5500 
ELSE 
ZOD- IF  
ZKRIGE(IU,IVIIIT)=0 
VARSET(IU,IV.IT)=0 
DO 5350 L=100 
I - ILIST(L)  
TLIST(L) 21 
ZKRIGE(IU,IV,IT)=ZKRIGP(IU,IV9IT)*P(L)*Z(I) 

350 CONTINUE 
Da 54 00 L - 110.4-0- 	  
I=ILIST(L) 
HS=(UO-UDAT(I))**2+(V0-vDAT(I))• 4, 2 
HS=SORTCHS) 
	HT -419(-4■TOAT(4)) 	  

VARSET(IU,IVIPIT)=VARSET(IUtIVOT)•P(L) 
1(•STUC(KS,KT,CS,CT.A1S9A1T,A3S,A3T+A5S,A5T,HSvHT) 

900 CONTINUE 
-----NAILSE-14,1-04-IV,IT 9- V 9 RSrT(INIPIV91-TP-1140-s1 9 +CS•CT 	

IF(KS.E0.0)THEN 
HNO=M0+1 
GO TO 5450 

END IF 
VARSET(IU,IVOT)=VARSET(IU,IVoIT).•P(M09.2)*UO ■ P(..0•3)+V0 
IF(KS.E.0.1)THEN 
ww11-910+3  
GO TO 5450 
ELSE 
END IF 
V4 0 SEZ-1-4-11,414-11-1-=4.9-R$J4.14-L44N-44-TJ-•P ,(14-13*A4*UO.VO+P-CM-0+-53-AU-(1.-4-2 

11•P(M0+6)•V0**2 
MNO=910 , 6 

950 CONTINUE 
TP(KT.F1.0)GO rn 5451  
vARSET(IU.IvelT)=VARSET(IU.IV.IT)-P(mm04.1)*T0 

	

- 	IF(KT.E0.1)60 TO 5451 
VAPSET(IUtIV,IT)=VARSET(IU,IV,IT) ■P(MM0+2) ,T0•*2 

	

451 	CONTLIWIF  
TOTV=TOTV+VARSET(/UsIVtIT) 
TOTSD=TOTSD+SORT(VARSET(IU,IV.IT)) 

	 VARINANCE PFOJCTION AN4LYSIS  

IF(IVPDoE0.0)60 TO 5500 
TvAREO(I0,IV,IT)=0. 
on Anna Timil=1.111mAy  
00 6000 IVVV=1,IVMAX 
DO 6000 ITTT=1,ITMAY 
VARED=0. 
U00=UUO+FLOAT(IUUU1)*UINCR  
VOO:VVO•FLOAT(IVVV-1 -F7VTNCR 
TOO=TT0+FLOAT(ITTT•1)*TINCR 
CALL FIND3(NDATA,U009V00,700010) 
IMAX=ILIST(HO) 
KMAX=-RLIST(IMAX) 
uo7-snvritycl ..u00t+.2..fvn..vnn.++21 
HRT=A6S(T0-700) 
KOO=STGC(KS,KT,CS,CT,A1S,A1TioA3S,A3T,A5S,A5ToHRS,HRT) 
IF(K0O.LT.KMAX)G0 TO 6000 
DO 6020 L=1010 
I:TLIST(L) 

P= 	RT((U 	DAT( )).., +( it•VDAT( 	) 

	

B ( 00- 	)) 
VARED=VARED+P(L)*STGC(KS,KT,CS,CT.A1S,A1T,A3S,A3T0A5S,A5T,DEPITEP) 

)20 CONTINUE 
WARFD=VARFO+PCM0+1)-K00  
IF(KS.E0.0)G0 TO 6030 
VARED:VARED+P(M0+2)•000+P( 4 0+3)*V00 
IF(KS.E0.1)G0 TO 6030 
VARFD=VARED+P(M0+4)•U00*V0O+P(M0+5)+UU0**2  

i+P(M0+6) 4 V00**2 
)30 CONTINUE 

IF(KT.E0.0)GO TO 6040 
veRF0.vARFo+pimmn+1).Tnn  
/F(KT.EQ.1)60 TO 6040 
VARED:VARED+P(MM0+2).700•2 

AO VARED=VARED+•2/VARSET(IU,IV,IT) 
TVARFOCilleiVeIT)=TVARFOCIO.TV.TT)*VARFO  

110 CONTINUE 
,00 CONTINUE 

VO=VO-IVHAX+VINCR 
00 	ffINTINIIF  

00:00-IUNA( ► UINCR 
CONTINUE 
DO 5660 Iti=leIjAX 
DO 5PAO TW=1,IYCLAX 	  
DO 5660 IT=1.ITmAy 
uu(iu)=(ULJ04.FL0AT(iu-1)4wINCR)*uFAC 
VV(IV)=(VVO+FLOAT(IY•1) ,, VINCR)+VFAC 
TT(ITI=ITTn.PLAAT(IT.+11*TIMCR)*TPAC 

60 CONTINUE 

PREPARE A FILE FOR USE WITH DISSPLI GRAPHICS 
	AtAkkAAA *AAAA* * * * *AA* **AAAAA 	 *_*_**•*•• 	 

SIZE=IUMAX•IVMAX•ITMAX-NFLAG 
IF(XLOGIDE0.0)THEN 
WRITE(7+ 4 )SIZE 

----WALTE(B+.0S1.2-C 	 
DO 5700 I=1.IUMAX 
DO 5700 J=1o1VMAX 
DD 5700 K=111ITMAX . 

 11-12-1(-R-LSZ4-1-9-.1443-..-E :A • ,14.=-+-1-5.-AALL-e-V-A_RS T 
-1E+15)G0 TO 5700 
WRITE(7,9702)00(I).VV(J)9TT(K),VABSFT(19J,K) 
WRITE(809702)UO(I),VV(J),TT(K),ZKRIGE(I•00  

CO CONTINUE  
ELSE 
WRITE(70•)SIZE 
WRITE(9..)SIZE 

DO 5701 I=1,IUMAX 
DO 5701 J=1111WMAX 
OD 5701 K=1,ITNAX 

---Ig--(-24(- 19-)-GE-(-)-rd+40-.E4.-1-1-4-1-5-+AN-D+-VA-RSET(I+J-+K)-+E-41.--- 
4•1E*15)G0 TO 5701 

MKRIGE(I,J,K)=2.718282++ZKRIGE(1.U.K) 
VAPSETD(I,J,K)=VARSET(I.J.K) 
ZKaLGLIL.J.AL:2-71a282..12KrtLILLI4d.K)+(vARsLiti.J.10/.2)1 
vaRsET(I.J.K)=ZrRic,(1,J,K).*2*«-.710",0 



IF(IVPOwE0.0)G0 TO 1 
C 
C 	 IDENTIFYING BEST SAMPLING POINTS 

DO 6100  ITT=1.ITMAX 
TvmAxELLILE. 
DO 6150 IUU=1,IUMAX 

61"

D0 6 1 5 0 IVV=1,1VMAX 

rnviTINUE 
 TVMAXIITT)=MAX(TVMAX(ITT).TVARED(IUUo/VV,ITT)) 

6100 CONTINUE 
WRITE(6.9800) 
DO 6200 ITT=leITMAX 
nn 	PH=lsiURAX  _ 	 
DO 6250 IVV=1"IVMAX 
/F(TVMAXIITT)0E.TVARECITUU,IVV,ITTI)G0 TO 6250 
IF(XLOG.E0.1)THFN 

1 	 WRTITIA.980 1 )TTIITT/sUeL111111.VVLIVV)  
&IMKRIGElIUU,IVVoITT),VARSET(IUUtIVV,ITT),TVARED(IUU,IVVvITT) 
ELSE 
WRITE(6,9801)TI(ITT).UU(IUU),VV(IVV) 

 11.ZKRIU(
ND

IUU.IVV,ITT),VARSET(IUUtIVV,ITT)i7VAREO(IUU.IVVIITT ) 
 E 

62005
0 CONTINUE 
0 CONT

IF
I
NUE 

60 TO 11  
C 
C 	 FORMAT STATEMENTS 	 
C 
9001 FORMAT("? 	NUATA")  

T--9110-A—FOTER-AT("•** SLLELT AN OFT ION: A. B, Co D. OR E"./, 
& 	• 	**• TYPE S TO SWITCH TIME/SPACE• sfo 
& " 	FOR OPTIONS A, I, Co OR D . 1 , 1, 

• *•ft LreiGICLALLEPI) 	  
9105 FORMAT(A1) 
9108 FORMAT("**. ENTER DR FIR SPACE AND DR F0 9  TIME (DRS,ORT) 	) 
9109 FORMAT("•.. INPUT DX AND CT VALUES *0*") 
9111 FORMATt3F10.5)  
9006 FORMAT( 	 of, 

1.* YOU ARE NOW USING OPTION NoAl,' 11 "./. 
& ) 

.4117 
 

FORMAT("? 	NO 	NGC 	ISTEP6 )  7_____ 
8 FORMAT(//,"... NO MUST BE LESS THAN NoI4,//) 

9109 FORMAT("? 	KC",I2.") 	 C(",I2,") 	 All", 
S129') 	 A3(",I2,") 	 A5(",I2o N )") 

9111 	FORmAT(I , GEN. COV. FUN:CT. NON,I20. AVERAGE RANK= ",G15.5)  
7----9205 FORMAT("' olVt. FUR?) OF GEN. GOV. FUNCT9") 
, 	9206 FORMAT(4A1) 

9207 FORMAT("' K 7.N,I1," C:" ,013.5," Al=',G13.5o N  A3= NoG13.5o ,  
&" A5=',G131.5)  

9208 FORMAT(" 1  THIS IS NOT A PROPER GEN. COV. FUNCT.") 
O 9209 FORMAT 	TYPE 1 TO IT ,E 9 ATE ON THIS GEN.. COV. FUNCT.",/, 

&NI TYPE 	TO MOVE TO A%7THER OPT/ON") 
	9301 FORMAT("? 	NO 	!STEP")  

9303 F0R- 47(" 4 	K 	 C 	 Al", 
/IN 	 A3 	 A5") 

9305 FORMAT( "
I 
 DOMAIN A...N.15v' POINTS ■R="11G15.5,/. 

IL_ • DOMAIN R—. g TOEILLNITS,A1='  •G 1 5.S•  	_ 
& /9"1 JACKKNIFEV="901595) 

0 350 FORMAT(//, 	 ENTER INFORMATION FOR SPACE DATA "".") 
9351 	FORMAT(/," +..,* ENTER COVARIANCE FUNCTION",/, 

" 	 K 	C 	Al1 	A3 	A5")  
9352 	ORuAT(f," w.w. ENTER UO,V 9UMAX9VMAXIUINCR9VINCR") 
9353 FORMAT(/, ■>>)) ENTER "0 (“(") 
9354 FORMAT(//"")))) NO MUST SE LESS THAN...140o) 
9355 FORMAT(//," 	 ENTER INFORMATION FOP TI"E DATA •***") 
°358 FORMAT(/' 	 ENTER A WEIGHT FOR TIME COVARIANCE") 
92E7 fOr"/T1/,A   C4TC1 TC.T",, X,TINC9")  
9401 FORMAT("? - 	THEIA(IN DEGREES)") 

9503 FORMAT("? 	NO RO") 

9501 FORMAT("? 	UO 	VO 	DU 	DV 	IUMAX", 
i • 	IVMAX 	UINCR 	VINCR•) 

9600 FORMAT( 	 00 YOU DES/RE CONVERSION TO LOG VALUES?",,, ...* IF ,, rmivEPtinw, 	 TYPF n.,/. 
3 	,, 	**** IF CONVERSION IS DESIRED: TYPE 1",/) 

9610 FORMAT("? HOW MANY NEW DATA SITES2 • ) 
9611 FORMAT("? NEW U. V, AND Z?') 

OF SA"PLImC AT TIIS SITE?")  
9613 FORMAT(" ALL ESTIMATION GRID POINTS ARE NOW DEFINED AS",/ 

2," MEASUREMENT POINTS. FURTHER SAMPLING IS NOT POSSIBLE.•,/ 
3," YOU MAY SELECT THE SEQUENTIAL SAMPLING AND THEN EXIT.") 

o " 	 LING IS DESIRED",'  
2," TYPE A 1, OTHERWISE A 0.") 

9650 FORMAT(" * 	 IF VARIANCE REDUCTION ANALYSIS'', 
2," 	IS DESIRED TYPE  Al, OTHERWISE A 0..) 

& le 	ENTER A 1 FOR SPAC' STRUCTURAL ANALYSIS",/, 
F. 	. 	ENTER A 2 FOR OPTION E",/) 

9701 FORMAT( 	ENTER SCALING FACTORS CUFACt VFAC, TFAC) 
9742 FONMAT(37 7 1,1F 9 -2 )  
9900 FORMAT("BEST SAMPLING P5INTS•,//.3Y, N T/NE N .7Xv"U • .9Xo N V". 

&BX,NZ OR M1.0",8X."VARSET".9X, N TVARED N .4) 
9801 FORMAT(3(F9.2,1X),3(F14.1,1X)) 

END  
C 
C 
C  

_ 
C 	LIST OF SUBROUTINES • * 
C 

C 

C••*" SUBROUTINE CHECK 

SUBROUTINE CHECK(TIME.C.A0,41,42,INDEv) 
INDEX7-0 
IF(C.LT.0.)INDEX=1 

IF(A2.51. .0.)INDEx=1 
IF(INC'EX.EO.1)3ETURN 
ALT-10.13.*SORT(AO•A2) 

IF(A1.LT•4)INDEX=1 
RETURN 
END 

SUBROUTINE DOU3LE 

SUBROUTINE DOU3LE(NDATAORSOPT,NOOUSL) 
	 VmM0%/cIPJD_AT ( 002TIZEIflJPATIZMAI3UT(200),Sm_OIILC______ 

COMMO ,./C6/2(200) 
NDOUBL=0 
NOAT=NOATA•1 
nl 20 I0=1A1DfiT 	 
JOCUBL=0 
IP(UDAT(I0).EC.1.E+10.4 , 3.VDAT(10 ) .LG.I.E*10 

P..AND.TDAT(I0).:.0.17.1O)': 0 TU 2C 
I1=I0.1 

7=1-1.7DLT! 
"!.., = e.;"((j - f.T(7) .. 0' •  'f 	 .17 (T) - V!1 !..f M 

2  

C99 	 
C 	 



VDAT(1)=1.F.10 
TDAT(I)=1E.10 
NDOUBL=NDOU5L*1 
JDOUBL=JDO12 ,21..1 

10 CONTINUE 
Z(lo)=Z(ID)/F0AT(OIMILt1) 	 

20 CONTINUE 
RETURN 
END 

•••• SUBROUTINE ELT"IN 

SUBROUTINE ELImIN(TImE.K.AoripmE9N.NROW.NC0E) 
AINA3W.NCOLJI_UNRO_Wi  _ 

mR0w=MEON 
mCOL=MEON+1 
IF(TIME.NE.1.)mEON=MEON-K•( )(+1.)/2 
NEnxi.- mFam  
NCOLM1=NCOL-1 
IF(NEON.LE.NROW.AND.NEON.LE.NCOLM1)60 TO 1 
WRITE(6.61) 

1 	FoRmATI"Srop-mmENSTI.N____EAReg  IN EITMIN")  
STOP 

1 CONTINUE 
IF (TIME.NE.0) GO TO 99 
CwEmk=  
DO 200 III=1. 04R1W 
1=III-CHEKK 
CHEKK=0. 
no 21n .1=1."CA  
IF (A(I.J).NE.0) GO TO 200 

210 CONTINUE 
MROW=PROW-1 
Da 2_24)..._)(x=4,.tiwou 
DO 230 L=1."COL 
A(KKIIL)=A(KK4.1,L) 

230 CONTINUE 
rnmTTNHE  
CHEKK=1. 

200 CONTINUE 
CHEKK=0. 
00 300 144=4-0( 	  
I=III-CHEKK 
CHEKK=0. 
DO 310 J=1."Row 
IF(A(A.II. , -01 ao TO GO 	  

310 CONTINUE 
McoL=mCOL-1 
DO 320 KK=I.MCIL 
DO 330 L - 1.-RAJ 	  
A(1_,KK)=A(L,KK4.1) 

330 CONTINUE 
320 CONTINUE 

CwE<K 1- 
300 CONTINUE 
99 CONTINUE 

JmAx=NEON.1 
NFONM1 - NEON-1  
DO 6 IEON=1.NEONM1 
ImIN=IEON+1 
IMAX=IEGN 
nr, 3 T-TMT., .mF1N 	  
IF(ABS(A(I.IE0x)).GT.ABs(A(imAx.IEGIN))) ImAx=1 
IF(ImAX.E0./E0N)60 TO 5 
DO 4 J=IEGN,JMAX 
AA=A(IEON.J) 
A(IEON,J)=A(Imay,j) 

I" Y. ) 	  
CONTINUE 
DO 6 I=IMIN.NE3N 
FACT=A(I.IEON)/A(IEON.IEON) 
DO 6 J=IMIN.JmAx 
A(I.J)=A(I,J)-FACT•A(IEON.J) 
X(NEON)=A(NEON.JMAX)/A(NEGIN.NEON)  
DO 8 L=2,4EON 
I=NEON+1 ■1. 
SUM=A(IguIMAY) 
TP1=l+t  
DO 7 J=IP1OCON 
SUM=SUM-A(I*J11(tJ) 
X(I)=SUM/4(I,I) 

_____IF(TIME.E0.1) GO TO 15  
IF(K.EO.0) GO TO 15 
/F(K.EQ.1) GO TO 11 
NEON=NEON+3 
X(NFON)=O.  
X(NEON-1)=x(NEON ■ 3) 
x(NEON-2)=G. 
X(P:EGN - 3)=0. 
	GO TO 15  
11 NEUN-NEON+1 

X(NEON)=0. 
15 RETURN 

- END  

SUBROUTINE ELIMING 

SUBROUTINE ELIm_l_Nq(A4X0E0N.NROW,NCOL4EFLAG)  
- ----ororrNsLoN 

NCOEM1=NCOL-1 
	IF

p-FT6T
VJEONI.L:Z.NROW.AND.NEON.LEoNCOLM1)G0  TO 1 

 ap61) 
61 FoRmAT("SToP-DIMENSION ERROR IN ELIMING.) 

STOP 
1 	CONTINUE 

..)MAX=NE-.017-471 
NEONM1=NEGN-1 
DO E IEON=1.NEONM1 

YAX=IrON 
00 	I=ImINOJEON 

3 	IF(ABS(A(I.IEON)).GT.ABS(A(IMAY.IEON))) IMAx=1 
1F(ImAX.E0.TEON) GO To 5  	 
DO 4 -U=II"Ol.JMAX 
AA=A(IEON.J) 
ACIFON.J)=A(IMAX.J) 

_ 4.__ALLIAX4,12,=AA 
5 CONTINUE 

00 6 I=IMIN.NEON 
IF(ABS(A(IEGN.ILON)).LT.1E-5)Go TO ' 
	FACT:A(I,IFON)/A(HON.U0A) 	 

006 J=IMIN,JMAX 
6 

	

	A(.1...1):AtI,J)....7 ACT•A(TrON'i) 
/FIABS(A(NEON,NEON)).LT.IL-.5)G0 TO ° 

______101Loal=Auli- QN.amAxitAmEarLotEona__ 
DO 8 L=2,NFON 

SUM=A(ItJmAX) 
	I°_1=I*1 

Dr 7 J=I181,!I11% 



7 CrLMU-1 
10 RETURN 

END  
C  	4 	  

SUBROUTINE FrOl 
rte * 	 ALVTIA***.t&LAt*ItittittiALAAA*** 11Altf 4.W4 t. * 	 ir_fr ir 

SUBROUTINE FIN)IINDATA009U0oV000. 0)( 90T) 
COMMON/C7 , ILIST(200) 
COMMO%/C8/RLIST(200),U(200)4V(20 0 ) 

 G74'MO4.0 C-34-1404T4-2-9-04-440-AT4-2-043-4TOkT4 -240),I 0UT42-00),CKaIO -
COM ° 0 1 C10/UUNVVO.TTO 
IF(10.'O.0)TNPI 
UUU=U00 

TTT=TTO 
ELSE 
UUU=eAT(I0) 
	 VV-V=WD.,44-14-P4- 	 

TTT=TCAT(IC) 
E%0 IF 
IF(CMCICE.F04,:) CALL TDATAINDATA,UUU,VVVI,OX) 
IF , C 4-ZT"--a.G.11—CALL-SZA-LALUCIA1A-sIT-T*D-I1 	  
IF(I0.E61.0)G0 TO 5 

Ij 	 UO=U(I0) 
VO=V(I0) 
ID - TO 	 
IM=I: 

5 	
GO TO .:,. 
CONTINUE 
CALI = -IstuDATA.Im oUR) 
IP=IN-1 
IM=IN 

6 	CONTINUE 

10 	CONTr-JE 
IP=IPA1 
IF(/P.3T.NOATA) GO TO 15 
vFiTn , Turol ra.n1 nn 10 19 
1=1.1 
ILIST(I)=IP 
RLIST(1)=tuO-U(IP))••24.(VO-v(1P)) 4,6 2 
141TCTIII=CO ,LIOITCTIT11 

 IF(I.E1.110)O0 TO 20 
15 	CONTINUE 

Im=1*-1 
I O 11 

F( 	 0.u.)
1 
 GO TO 19 

itO I rU ( ZA_E  

I=I+1 
ILIST(I)=Im 
mIsT(L) - tlin-utIM»**2+(vn-v(Im))**2  
RLIST(T)=SGRT(RLIST(I)) 
IF(I.Z3.%0)GO TO 20 

1.9 	GO TO 10 
2C  

CILL--6LPF1Tqla) 
IFP=0 
irm= 0 

3C 	CONTP.UE  
IPTIR•1 
/F(IP.7.,T.NDATA) GO TO 4(1  
Pr(IOUT(IP).ECe0e) GO TO 40 
IFCA9S(U(IP) ■U3).GE.RL/ST(NO)/G0 TO 40 
M=1il0+J(1 ,-')).+2+(VO+VTIP))...2 
P=SOR'(R) 
IF(R.LT•RLIST(40))90 TC:' 35 
GO TO 50 

35 	CONTTWE 
TI TCT,1t111..-TP 

RL/ST(V0)=R 
CALL !4 LPFNO(N0) 
GO TO 50 

40 	CONTINUE 
IFP=1 
iF(1,FP.ZG.1.ANO.IFM.E0,1)RETURN  

50 	CONT/NUE 

IF(IM.LE.0) GO TO 140 
IF(TflUT(T)R) Fo.n.] nil TO I40  
IF(AES(U(IM)+.U0).GE.RLIST(40))G0 TO 140 
R=(UC+U(I"))•+2+(V0.-V(Im))**2 
p=spRT(R) 
IF(R.IT.RITST(NR))fin Tn 135  
GO TO 30 

135 	CONTINUE 
ILIST(40)=/m 
ALT Tigf11=P  
CALL IlLPFND(NO) 
GO TO 30 

140 	CONTINUE 
Trv=1  
IF(IFP.E0.1.AN7T.IFM.E0.1)RETURN 
GO TO 30 
END 

 	AultALA*A...ALiikAAEAAlitt. ******** orA4A4t1, T*14_ 	  

C••• SU9ROUTINE PIN)2 
C 	 •* 	  

SUBROUTINE FIT32(NDATA.TO$UO,V0,R0gNOIOX,ST) 
rnwmjc re7/ TLI  
COMMn/C8fRL/ST(200),U(200),V(200) 
COmmOh/C3/uDAT(200).VDAT(200),TDAT(200),IOUT(200),CHOICE 
COr.10 ,:/C10/UUO,vVO.TTO 

UUu=1_,U2 
vvv=vv: 
ITT=TT: 
Elc.Z 

 uuu=uCAT(I.7.) 
VVV=V::ST(10) 
TTT=TCATtIO) 
END .F  
IF(CH7ICE.EG.0)CALL TDATA(OATA,UUU,VVV,DX) 
IP(C1-17ICCoLC:o1)CALL SOATA(f.DATA,TTTIOT) 
IP(IO.EC.C)G0 Ti 5 
U.Z - U 17 ') 

 VO=V(IO) 
IP=I0 

GC TO 6  
5 	COT.TITJE 

CALL P:S(AZDATA.IN,00) 

Lu - It  
6 	CO•TriUE 

IFP=C 
IFM=0 
I - 0  

30 
IPTIP•1 
IF(IP.OT•N1)ATA)70 TO 4. 
	 _____IPASC'..71I94,ES.:1_5^__T: 19 

I;(AP'(20U(IP)).GT.421 . ") T) 1A - 
(I=)).•7•11(7-v 



I=I+1 
ILIST(I)=IF 
RLIST(I)=P 
GO TO 50 
CONTINUE 

-----igi;P■ra71-. AND•Irti.r0.13G0 TO 20E 
CONTINUE 
IM=IM-1 
IFIIM.LEA0100 T0_140 	  
IF(IOUT(IM).EO.0) GO TO 19 
IF (ARS(UO-U(I")).GT.RO)G0  TO 140 
R=(UO-U(IM))++2+(/0-V(IM))**2 
R=SORT(R)  
IFIR.LE.ROJtO TO -135 

4 	GO TO 30 
35 	CONTINUE 

ILIST(I)=IN 
RLIST(I)=R 
GO TO 30 

40 	CONTINUE  
IFH=1 
IF(IFP.E0.1.AND•IFM•EQ.1)00 TO 200 
GO TO 30 

110____L.0N1INUE 
NO=I 
CALL HLPFNC(NO) 
RETURN 
END  

■ 	  

kW SUBROUTINE FINO3 

	nigng/15Feii1WMTA 111 2; VATT T41S11 1 7-11-  5S A5T 
CONMON/CEI/PLiST(20u).0(20u)oV(2u0) 	9 	9  
COHMONICTIILIST1200/ 
COMMON/C3/UDAT(200).VDAT(200)00AT(200),IOUT(200),CHOIC:  
DO 1 I=1•NOATA 
HS=(UO-UDAT(I))+ 4, 2+(VO-VOAT(I))++2 
HS=SORT(HS) 
HT=ABS(TO-TDAILL)) 
RLIST(I)=-STGC(NSIRT•CS.CT-Tirrf-iAlT.A3S,A3TTII-5-S•A5T.HS•14TY 
ILIST(I)=I 

1 CONTINUE 
CALL HLPFND(MD) 	  
DO 10 J=H0+111-N3ATA 
IF(RLIST(J).LT.RLIST(M0))THEN 
RLIST(M0)=RLIST(J) 
TLTST(M0)=IIIST(1)  
CALL HLPFNO(H0) 
ELSE 
END IF 

10 c
E
orql  

R -T N 
END 

	 • 
Y*.. SHPROOTINE FIT 

SUBROUTINE FIT(NDATA•IHIN,IMAX.ISIEP,NO,K,C,A1,A3,A5, 
4SUM1,SUM2,N,DX.OT) 

CONRON4CitILI$T(200)  
COMMON/C3/UDAT(200)•VDAT(200).TDAT(200),IOUT(200),CHOICE 
commoN/c8/pLisT(200).uu00).vc200o 
COMMON/C6/2(200) 
COMMON/C5,A(106.107) 
COHNON/C9/P(200) 

SUH2=0. 
N=0 
00 100 IO=IMIN,IMAX.ISTEP 
N=N+1 
CALL FINC11(NDATA,10 ,0(I0),V(I0),NO,DX•OT) 
NEnt4=N0erK+1t.1x..91/2  
CALL KRIGPO(K•C,A1.1A3.A5tU(I0),V(I0),N0) 
CALL ELIHIN(CHOICEIKtAsP,NEON,106•107) 
SUM=-2(I0) 
DO 50 L -4-04-0 	  
I=ILIST(L) 
SUM=SUM+P(L)+2(I) 

1 	CONTINUE 
SUR1 - SUM14-SUM+&12  
SUM2=SUM2+C 
DO 60 L=1•N0 
I=ILIST(L) 
p-(u(l0)-u0I))"2-(v(to-v(i))..2  
H=SGRT(H) 
SUM2=SUM2-P(L)+GENCOV(K.CIAl.A3.A511H) 
CONTINUE 
c11 02 - SUN2-RiN0+1)  
IF(K.E0•0)G0 TO 100 
SUM2=SUM2-P(N0+2)*U(I0)-P(N0+3)+VII0) 
IF(K.EO.1)GO TO 100 

----SUM2 - SUm2 ■ P(N0+ 4 )+UtIO)L1L1I0)-PAI 
0 	CONTINUE 

RETURN 
END 

++4,  FUNCTION GENCOV 

FUNCTION GENCOV(K•C141,A31A5,H) 
IP(H.NF n )rn TO 10  
GENCOV=C 
RETURN 
CONTINUE 
nr%rilv=ia+H  	 
IF(K•EQ.0)R:TURN 
GENCOV=GENCOV+1130.1..3 
IF(K.E0.1)RETURN 
nENraV=r1ENrOV+1452RH++R 	  
RETURN 
END 

+++ FUNCTION ITGC 

FUNCTION STGC((SOCT,CS.CT,A1S,A1T,A3S•A3T.A5S•A5T.HS.HT) 
IF(HS.NE.O.OR.HT.NE.0)60 TO 5 
STGC=CS+CT  
RETURN 

5 CONTINUE 
IF(HS•NE.0)O0 Tn 10 
STGC=A1TLHT+CS 	  
IFIKT.E0.0TATTURN 
STGC=STGC+A3T+HT4, •3 
IF(KT.E0.1)RETURN 

____STOC.=qTGC+A5T+_d1.*5  
RETURN 

10 CONTINUE 
IF(4T.NE.0)C;C T9 15 
STOC=A1S+Hr+CT 

--Tr( KS . 0 ) FrETO 



33:13 •11S$...5 
S5=A5S•IS•+5 
71=AIT•IT 
73=A3T•HT**3 
T5=Alitdi.445 

 IFiKSeE0.0.AND.10;r -0.0)STGC=-S1.T1 
el 	 IF (1(S.E.0 .0.AND.K T .E0.1 )STGC=SI ,  T101. 3 

jarz..L.L.AN(S. (2•1•AND•K T•EO• 0 )STGE=S l• S3471 
0.xi.c.a.aaSTsr -ql+c3+Tisri 	 

SUBROUTINE HLPFND(NO) 
crwArm/rA1RUST(700)0(2nn).vonn)  
COMMON/C7fILIST(200) 
IMAX=N0 ■ 1 

10 	CONTINUE 
IrLAG- 0-  
DO 40 I=1,IMAX 
IF(RLIST(I).GTeRLIST(I+1)/G0 TO 20 
GO TO 40 

20 	rmoTrouF  
ITEMP=ILIST(I) 
RTEMP=RLIST(I) 
ILIST(I)=ILIST(I 4 1) 
RLIST ( I) -RLIST(I.1) 

 ILIST(I4 1)=ITEMP 
RLIST(I.1)=RTEMP 
IFLAG=1 .a 	rnNTINUE  
IF(IFLAG.E0.0)RETURN 
IMAX=IMAX ∎ 1 
GO TO 10 
END  

C 
C 
C 

     

 

SUBROUTINE. KRIGPO 

   

    

 

smmITIN.E wRInPO(K*C.A1,A3.115 	v 
COMMON/C7FILIST(200) 
COMMON/C5/A(106,107) 
COMMON/C8/PLIST(200),U(200),V(200) 
NROW -tql..-AK.-1).($(.21/2  
NCOL=NROW.1 
DO 5 iRoW=1,NR0w 
DO 5  ICOL=1000L 
AtI40.14ICnLI- Q- 

   

     

     

     

5 	CONTINUE 
00 40 J1=19N0 
00 40 J2=110:0 

I2=ILIST(J2) 
H=(1.1(I1)..U(I2))••2*(V(I1).V(12))•A2 
H=SORT(H) 
ecol..1,)=nFkcnv(it.r.Al.Al.A5,14)  

4C 	CONTINUE 
DO 52 ICOL=leN0 
A(N0•1eICOL)=1. 
A(ICOLeN04.1)=A(N0+111ICOL) 

5.11 	CONTINUE 
IFir 7%_12) 1. 0 "  eri  
DO 60 ICOL=19N0 
I=ILIST(ICOL) 
A(N0.29ICOL)=U(I) 
A(ICOL040+2)=A(N0+2,ICOL) 
A(NO.39ICOL)=V(I) 

60 	CO 
A(4416ALI  
IFIK.E0.1AGO TO 80 
DO 70 ICOL=1040 

A(Nc4.4.ICOL)=WI)+V(/) 
A(ICOL,N04.4)=A(N0+4,IC0L) 
A(N0A5tICOL)=U(I)**2 
ACICOL.N0.5)=A(N0+5,ICOL)  
A(N046gICOL)=V(I)4 , 42 
A(ICOL010+6)=A(N04 6,1COL) 

70 	CONTINUE 
PO 	CONTINUE  

DO 93  IROW=1,NO 
I=ILIST(IROW) 
!-I=(UO-.U(I) )•*24,  (V0..V( I ))••2 
H=SQRT(H)  
A(IROV,NCOL)=GENCOV(K,C,A1,A 9A511N) 

50 	CONTINUE 
A(NOA1eNCOL)=.16 
IF(A.E0.4)RFTURN  
A(N0+29NCOL)=U 1  
A(•0.3.NCOL)=V0 
IF(K.EQ.1)RETURN 
	A(N2•4.NCOL)=U0•VO 
A(NUA5IINCOL)=UTA*2 
li(N0A69NCOL)=V0**2 
RETURN 
END  

• /F(RS.E0.2.AND.KT.E0.0)STGC=S1.53.55 4.T1 
. 	 IF(ICS.E0.0.10.KT.E0.2)STGC=S14.T1•T3•T5 

IFIKS.E0.2eAND.KT.LG81)STGC=S1•S3r•S5 4.T1+T3 
TP(KS.FO.1.ANDaKT.E.04_21StaC=S1•R.1 4T-1•13.1. 5 
IF(KS.E0.2.AND.KT.E0.2)STGC=S14.S34S5.T1+73•75 

$ 	 RETURN 
END 

1.-..—Cs 	 	AAL 	• 	•_•_. set", $iutip__ 	 
	 SUBROUTINE HLPFtAl 

c.**• SU5ROUTINt KRGPST 

	 SUBROUTINE KRGPST(U000.709NO) 
CORAWCIIKS9KTIET,A1S9A1T,AiSioA3T9A5SilbT 
COMMON/C3/UDAT(200),VOAT(200),TDAT(200)91OUT(200),CHOICE 
COMAON/C7FILIST(2001 
C0)IMAWC5/_4(106,107)  
COm4,”:1C8/FLIST(200),U(200),V(200) 
• Row=%04.(KS.1).(KS+2)/24.KT 
NccLv4ROw•1 
po  
DO 5 Ir6L=1,NcoL 
A(IR0 .49ICOL)=0• 

5 CONTINUE 
DO 42_,11-7.1AN0 	  
00 2 : J2=1,0 
I1=ILIST(J1) 
I2=ILIST(J2) 

	 MS=ALTAT(I11 -InkT(12))tt2 4.(vDASJI1) - YDATAI2J)..2_ 	 
HS=SCRT(HS) 
HT=AAS(TDAT(I1) ■ TDAT(12)) 
A(J111.121=STGC(KS.KTiCS,CT ♦ A1S.A1T9A3S.A3T.A5S.A5TIHS9HT) 

AO CONTI•JE 	 
DO 5: ICOL=1010 
A(NCA:IICOL)=1. 
ACICIL.'10.6 1)=A(N0+191CCL) 

" SO 



ACICOL.N0.3)=A(N04.3.ICCL) 
60 CONTINUE 

IF(KS.E0.1160 TO 80 
DO 70 ICOL=100 
I=ILIST(ICOL) 
Almn*A.L=1.3=UOLULJAVDAT1-13--- 	  
AUCCL,N0.1 9)=A(NO.49ICCL) 
A(N0.5.ICOL)=UDAT(1) ► 0, 2 
A(ICOL00+5)=A(NO.5.1COL) 
0.(1(0'.5.1COL) --VIAT(I).. 2 
A(ICOL.40+6)=A(N0+6,ICOL) 

70 CONTINUE 
80 CONTINUE 

DO 1031 I - 1.N0  
000 CONTINUE 

IF(KS.E0.0)XXX=2 
IF(KS.E0.1)XXX=4 
IF(KS-E9-2)xx. - 7 	  
Ig( 1,(7.:Q.C)S0 TO 89 
On 	ICOL=1.N0 
I=ILIST(ICOL) 

A(ICOL,NO*XXX)=A(NO+XXXI,ICOL) 
85 CONTINUE 

90 1001 I=1.N0 
001 c0,011JUE  

IF(KT.E0.1)G0 TO 89 
OD 86 ICOL=1,NO 
I=ILIST(ICOL) 
A typ.Xxv4.1 .1[04 )=TOAT(T)..2  
A(ICOL ,010•XXX.1)=A(N0 4.XXX 4 191COL) 

86 CONTINUE 
89 CONTINUE 

flo 9n Tnnu-1 un  
I=ILIST(IROW) 
MS=(UO-UDAT(I))+.2*(VO-VDAT(I)).., 2 
HS=SORT(HS) 
HT=ARS(TO-TnAT(IIJ 	  
A(IROU.NCOL)=STGC(KS.KTI,CS.CT,A1S.A1T9A3S.A3TIA5S.A57.14S.HT) 

90 CONTINUE 
A4/40.1,NCOL)=1. 
TFtocs.rm.n)Rn rn 99  
A(N04.29NCOL)=U0 
A(NO*3.NCOLI=VO 
IF(KS.EQ.1)GC TO 99 
A(NO+•tNCOL)=UO*V0  
A(N04.5,NCOL)=U0**2 
A(N04.6.NCOL)=V0**2 

99 CONTINUE 

IF(KS.E0.1)XXX=4 
IF(KS.E0.2)XXX=7 
IF(KT.E0.0)RETURN 
	A(NO•xXx•NCCL)=TO 	  
IF(KT.E(1.1)REWRN 
A(No.xxx.I.NcOL)=T0..2 
RETURN 
rNn  

• SUBROUTINE ncS 

SUBROUTINE PCS(NDATA.IN.U0)  
COu'ON/Cd , RUNT(Z00)70-1700).V(200) 
DO 4 1:19NDATA 
IF(UO.LE.U(I)),50 TO 5 
CONTINUE 
IN=NDATA 
IDE711121 ,  

CONTINUE 
IN=I 

EN 
RE

D
TURN 

• 
• SUBRnUTINF PflR 

SUBROUTINE ODR(K.C.A1tA31A5.U19U2.V1.V2IF) 
F=0. 
jrtc-En-n.fno To inn  
F=F•c.(u2—u1)., (1/2-1#1) 

00 	CONTINUE 
IF(A1.E0.0.)G0 TO 200 
rut  
CALL OOR1(U2,V2,F2) 
CALL 00R1(U1.V29F3) 
CALL QDRI(U2sV1eF9) 
F -F.A1.(F14F2•F3 ■FA)  

CO 	CONTINUE 
IF(K.E0.0)RETURN 
IF(A3.E0.0)GC TO 300 
nAL1 13n1(U1.R11,F1)  
CALL 00R3(112,V29F2) 
CALL 90R3(U1.V29F3) 
CALL QDR3(U2,V1,F4) 
= -F---1 3 ∎ (F1+F2-F3-F41  

CO 	CONTINUE 
IR(K.E1.1)RETURN 
IF(A5.EC.0.)RETURN 

----CALL-2245"4-V1 • r 1 I  
CALL 00R5(U2,V2,F2) 
CALL 00R5(U1,V2,F3) 
CALL QDR5CU2111,19F(1) 

RETURN 
END 

1111.6 1tit, 
c0 0 1  

SUBROUTINE ODR1(X.Y.F) 
T=X..2 4.Y•.2 
T-SORT(T)  
1=(X.F:].0.)n=0. 
I(X.NE.0.)A=x..3 4, ALOG(Y.T)/6. 
/F(y.7:.0.)B=0. 

— • • 

F=X.Y.T/3.4.A.4.8 
RETURN 
END 

gt-h-E-*-2-**-*-Waktit tlAt_IlultAti**-11L*-111..**AtititLlultltillt_**_• * ittitlrArWA** 
SUBROUTINi' 0043 

SUBROUTINE CO 03(X.Y.F) 
T=x, .2*-1-" - 	  
T=SORT(T) 
IF(X.E1.0.)A=0. 
/F(x.N:.0..)(=.075.y..5.ALOS(Y+T) 

IR(Y.N'_.C.)B=.075.Y.+5., ALOG(X4.T) 
F=.17..A.Y.T.•34.A.03 
RETURN 



IF(X.E0.0.)A=0. 
IF(X.NE.0.)A=.446428575-1•)(4, 47.ALOGCY0T1 
IF(Y.E0.0.19=0. 
IF(T.N.E.0.)b=.44642A57E-1•y•+1•ALOO(X.T) 
F=.1220238.v+V*T• 4, 5-.0285714E-1.0(••3.Y.•3•T•A.? 
RETURN  
END 

C 	 ....• 	 
C.••• SUBROUTINE ROTATE 
C    IP* 	*** 	 

SUBROUTINE 00TATE(TNETA•NDATA) 
COmMON/CB/RLIST(200),U(200),V(200) 
CS=COS(THETA) 
SN=S/N(THETA) 	  
00 10 I=1.NDATA 
UU=U(I) 
U(I)=U(I)•CS•v(I)•SN 
V(1)=-UU•SN•V(I)+CS  

0 	10 	CONTINUE 
RETURN 
END 

C 
C**** SUBROUTINE SOATA 
C 	 et .  

5 ,  

ai  
7 ,  

SUBROUTINE SDATA(NDATA,TO,DT) 
DOMMON/C3/UDAT(200).VOATt2901,TOkn200),IOUT(200).OHOICE 
DO 10 1=1eNDATA 
IFIABS(TDAT(I)..70).GT.GT) THE% 
IOUT(I)=0 
ELS: 

 IDUT(1)=1* 
END IF 

10 CONTINUE 
RETURN 

 ENO 
C 	  

SUBROUTINE SORT 
C  

SUBROUTINE savr(-NDT/R) 
COMMON/C6/Z(200) 
MAIIION,C0/RLISTC200).0(200).V(2001 
rowmoNtrliNnAT(an(1),v0(non).TnAr(,nn),TnuTc2n0).cmnycE  
IMAV=NOATA-1 

10 	CONTINUE 
IFLAG=0 
DQ 40 	 121'4 AX  
/F(U(/).GT.1.1(1.1))00 TO 20 
GO TO 40 

20 	CONTINUE 
77=71 1  
uu=u(i) 
VV=V(/) 
UUDAT=UDAT(T) 
	 V_VD_FT=VPAT(I) 

TTDAT=TDAT(I) 
Z(1)=2(14.1) 
U(/)=U(I4.1) 
yr t-vrue  
UDATAII=UDAT(I.0 1) 
VDATIT)=VOATII.A1) 
TCAT(I)=TDAT(0.1) 
2t1.11=72  
u(14.1)=UU 
V(I4, 1)=VV 
uDAT(I+1)=UuoAT 
VDAT(I4.1)=vvDAT 
TDAT(I+1)=TTOAT 
ITLA6-1  

40 	CONTINUE 
1F(IFLAG.E.0.0)RETURN 
ImAX=IMAx-1 
GO TO 10 
END 

C 	  
SUBROUTINE TDATA 

C 
SUBROUTINE TDATA(NDATA.UO.VO,DX) 
CO"".ON/C3/UDAT(200),VDAT(200),TDAT(200),IOUT(200).CWOICE 
DO 10 1.,2 1.NOATA 
IF(SORTUUDAT(I)U0)..2.(VDAT(I)-M0)+.2).GT.Dx) THEN 
IOUT(I)=0. 

TOUT(I)=1. 
END IF 

10 CONTINUE 

ENO 

3i 

a 

2. 

C 
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