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Abstract— EasySLAM is a robust, accurate, efficient and
easy-to-use visual SLAM framework which uses the unique
properties of planar landmarks to navigate robots in societal
settings. Due to the use of landmarks which can be associated
with semantics, a hybrid symbolic-metric SLAM variant is
obtained that makes the maps immediately usable for human-
robot interaction, high-level monitoring, and semantic analysis.

EasySLAM associates a set of landmarks to each part of the
house (e.g. kitchen, living room, bathroom, bedroom, etc.) and
takes navigation commands such as ““go to kitchen”. Loalization
and mapping, planning and navigation results are presented
with an inexpensive, commercially available robot and uniquely
identifiable markers.

SLAM with planar landmarks is easy, robust, and fills the
real need in both research and society, and we have a system
that everyone can use.

I. INTRODUCTION

In this paper we present EasySLAM, a vision-based simul-
taneous localization and mapping method that uses planar
markers to eliminate all major difficulties with deploying
SLAM in real environments.

Simultaneous localization and mapping or SLAM is a
crucial capability for mobile robots to successfully navigate
in unknown environments. An overview of the recent state
of the art in SLAM algorithms can be found in the articles
by Durrant-Whyte and Bailey [1], [2] and in the excellent
book by Thrun et. al.[3], but the field is still rapidly evolving
and novel, exciting algorithms appear regularly [4], [5], [6].

However, there are still significant practical hurdles for
anyone wishing to run a SLAM algorithm in a new environ-
ment. While the debate is out on whether SLAM is a “solved
problem” in theory, the reality facing many researchers is
that these theoretically-appealing algorithms are often hard to
make work in practice, often requiring a dedicated graduate
student to tune and/or tend to quirks of the chosen the system.
A pleasant side-effect is that this then often leads to new
ideas and new papers on SLAM, but one could argue that
SLAM has become a distraction rather than a tool.

The difficulty of making SLAM work in practice is even
more pronounced in the “real” world, i.e., when trying to use
robots in societal settings such as residential homes, office
buildings, industrial workplaces, and out in city streets.

We argue that there is a transitional need for a robust,
reliable SLAM solution that makes these problems go away.
We have no doubt that visual SLAM will eventually make
its way out of the lab and into the real world, and many
companies are hard at work to make this a reality.
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SLAM with planar markers is easy, robust, and fills
this real need in both robotics research and society. Planar
markers with known dimensions exhibit no scale ambiguity,
eliminate data association, and provide robust 6DOF mea-
surements from a single sighting.

There are many objections that can be raised against
the approach we are proposing. Markers are unappealing
visually, and many people might object to placing them in
their homes or work-places. However, (1) one can imagine
several ways in which planar targets can be made invisible or
much less visually disruptive, e.g., by using images and/or
artwork, or by working in a spectrum invisible to human
eyes; and (2) even for the “ugly” black and white markers,
one could argue that both researchers and consumers will
make this choice based on a value proposition: if robotic
technology is truly useful and a few markers around the
environment is what it takes, many might be willing to live
with this. Clearly, this is already happening in other domains
such as Augmented Reality, but this choice has already been
made on much larger scales, e.g., think of the bar-codes
one finds on every conceivable product in a grocery store,
or -more pertinent to mapping- the ubiquitous traffic signs
indicating where you are and how to get to your destination.

We will soon release an open-source implementation of
our code that will support robust mapping, localization,
and navigation right out-of-the-box. We believe that such
a capability can do for robotics and SLAM what Lowe’s
SIFT implementation [7] did for feature-based methods in
computer vision: allow researchers to concentrate on the
problems they want to study which might need SLAM as
a tool, rather than on making SLAM work.

II. RELATED WORK

We work within the landmark-based SLAM framework.
For SLAM, the earliest and most popular methods are based
on Extended Kalman Filter (EKF) and are successfully
implemented in different environments such as indoors [8],
outdoors [9], sub-sea [10] and air-borne [11]. EKF linearizes
about the current pose of the robot and position of all
landmarks, and recursively estimates a Gaussian density
around them. However, the EKF becomes computationally
intractable fairly quickly. As a result, a large amount of
effort has been devoted to extend EKF-based approaches to
cope with larger-scale environments [12], [13]. In addition,
EKF filtering methods can be shown to be inconsistent when
applied to inherently non-linear SLAM problem [14].

Recently, there has been considerable interest in Smooth-
ing And Mapping (SAM), where the entire robot trajectory
is estimated in every time step. Dellaert [15] has shown that



smoothing can be a fast alternative to filtering-based meth-
ods, and in many cases smoothing improves performance
rather than hurting it. Our localization and mapping approach
is based on [15] which we will briefly describe in Section
1.

We use ARToolkit markers [16], [17] as planar landmarks
in our experiments, however, there has been a significant
amount of research on automatic construction of planar
landmarks from the features in the environment, that can
replace the ARToolkit markers. Hayet et al.[18], [19] use
edge grouping to find the quadrangle landmarks. Then they
use Harris features to describe a landmark, and use partial
Hausdorf distance to find the similarity between two land-
marks.

Watkins et al.[20] use PCA and clustering to group the
points into planar surfaces in a SLAM framework suitable for
Micro Air Vehicles (MAV). Frese [21] and Zhang et al. [22]
use artificial landmarks such as red squares or white circles
on floors or walls. Berger and Lacroix[23] use homography
to group a set of points as a planar landmark if they are
consistent as a planar patch. They memorize the texture of
planar patches, and compute their image from different views
and use it for loop closing.

III. APPROACH

In this section, we describe the smoothing and mapping
approach used by the EasySLLAM problem to map the planar
landmarks. EasySLAM makes initial estimation of the map
by computing the relative poses between the camera and
the planar landmarks using homography. Then it uses SAM
framework to optimize the map. After map building, EasyS-
LAM provides planning and navigation capability which will
be described as well.

A. Initialization

To initialize the robot and marker poses, first we build a
spanning tree that contains all the markers and robot poses as
follows. We choose one of the markers to serve as a “world
reference marker”, and use that marker’s local coordinate
system as a global coordinate system, to which all other
marker and robot poses are relative. In each frame, in which
the robot observes one or more markers, we calculate their
poses with respect to each other and to the robot.

To be able to compute the pose of the robot and markers
observed in the current frame, we should find a path of
poses that connects them to the reference marker. Among
the markers observed in the current frame, we search for a
marker that is observed in the past and added to the spanning
tree. Since that marker is connected to the robot we will be
able to estimate the pose of the robot as well. Having the
robot pose added to the spanning tree, we verify if there are
any new markers being observed in the current frame. If so,
we simply connect them to the robot pose node and add those
markers to the list of observed nodes. If we couldn’t find a
marker that is already added to the spanning tree and failed
to connect the poses in the current frame to the previous

Fig. 1: The factor graph representation of the EasySLAM
problem. Robot poses are marked as 2’s and landmarks as
m’s. Measurements bear factors (black circles) on edges.

Fig. 2: The spanning tree of a factor graph, which we use
to initialize all the poses based on the pose of the reference
marker. The edges involved in the tree are shown darker.

ones, the robot is lost. We will move the robot and it makes
new observations and will be able to find its pose again.

Our algorithm basically creates a connected graph of robot
and marker poses over the time, from which we extract a
spanning tree that contains all the poses. The spanning tree
of the factor graph of Figure 1 is depicted in Figure 2.

B. Relative Pose from Planar Landmarks

For planar landmarks of known size we can immediately
recover the relative pose of the camera with respect to the
landmark [24] and use it for initialization of robot and
landmark poses. We define a local coordinate frame placed
at the landmark center, with the X and Y axes spanning the
landmark plane and the Z axis pointing out of the plane. For
a planar marker located at a relative location ¢, a given point
(X Y, 0) in the landmark coordinate frame is projected into
the camera as
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where u,v,w are the image coordinates, K is the camera
calibration, 7, 7o, and 73 are columns of a rotation matrix



R (from marker to camera frame). From the second line
above it can be readily seen that (u,v,w)” and (X,Y,1)7
are related by a homography H =K [ 71 7y t |

The homography H can be estimated from 4 or more
2D measurements of known points on the planar landmark.
However, we can only recover H up to an unknown scale \:
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If scale A is known we can recover the relative pose as
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Luckily, we can recover the scale factor A by imposing
orthonormality on the recovered rotation R, e.g., ||r1| =
[[r2]] = 1, giving the scale factor either as A = ||[K'hy|| =
||K _1h2H. To account for inaccuracies in H , one can take
the average of both.

C. Smoothing and Mapping

In this section we review the smoothing and mapping
(SAM) method that we use to optimize the robot and marker
poses. In SAM, we aim to estimate the unknowns which
are the entire robot trajectory X and the map M, given
the measurements Z. In particular, we use a factor graph
representation to model the SLAM problem as in [25]. A
measurement at time ¢ of landmark j introduces a binary
factor between the robot’s pose, x;, and the measured land-
mark, m;. In Figure 1, the robot poses (2’s) and landmark
poses (m’s) are represented by nodes (unknowns) and there
is a binary factor for each measurement. There is also a
unary factor representing the prior on the pose of a single
landmark that acts as the origin of the map. We ignore any
odometry measurements, which would otherwise appear as
factors between the robot poses.

The factor graph in Fig. 1 specifies the following joint
density over the robot poses X and landmark poses M:

k

where x; and m; are the robot and landmark poses, respec-
tively, f..(m,) encodes the prior on the reference landmark
m,., and fi(z;, m;)’s denote the binary factors arising from
the measurements between a robot pose and an observed
landmark.

We obtain the maximum a posteriori (MAP) estimate by
maximizing P(X, M|Z) which leads to the following non-
linear least squares problem:
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In equation 2, hy(x;, m;) is the measurement function, given
the robot pose x; and the landmark pose m;, predicting the

observation z;. We describe the details about the measure-
ments hy in Section III-D. The expressions g(m,.) and w,
arise form the prior on the reference landmark, which forces
it to stay at the origin.

The above equation is non-linear, but we can always re-
linearize around the current pose estimates. We can linearize
each binary factor as below:
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hi(xi,m;) =
hi(xi,m;) — 2z, =

where H; and J,g are the Jacobians of hy(.) with respect
to a change in x; and m; respectively, evaluated at the
linearization point (z,m9) , and ¢x = 2z — hi(z],mY)
is the measurement prediction error. The unary factor of the
reference landmark is treated similar to the binary factors. As
shown in [25] by collecting all the Jacobians into a matrix
A, and the measurement errors into a right hand side (RHS)
vector b, we can obtain the following standard least square

problem,

§* = argmin||AS — b||3 3)
0

which can be solved using QR factorization or other linear
algebraic methods. We first linearize equation 2 using the
initial robot and marker poses. After we compute the new
pose estimations, we iteratively relinearize around the new
estimations and update the estimations, until convergence.
We describe the method we use for estimating the initial
poses in Section III-B.

D. Measurement Function

The measurement function hy(x;,m;) receives the pose
of the robot (camera) and the planar landmark as inputs and
returns the pixel locations where the points on the landmark
should appear. We can use homography to compute where
each of the L points of the planar landmark (given that we
know the relative location of the points with respect to the
local coordinate frame of the planar landmark) should appear
in the image. Since we know the relative pose of marker with
respect to the robot’s camera (m; © x;), and we know the
relative location of point [ on the landmark with respect to its
local coordinate frame, we can compute the relative location
of each point with respect to the camera. Measurement
function h returns a vector of z,y pixel locations of the
points on the planar landmark in the image.

In our experiments, we use ARToolKitPlus code to detect
the fiducial planar markers in the images and generate the
ground truth measurements (zj) for each marker [16], [17].
A measurement zj, of a single marker is a set of its 4 corners
in the image (in pixels). An ID is assigned to each marker
based on its unique appearance which takes care of data
association.

To linearize the equation 2, we need to compute the
derivative of the h; function at the current estimate of the
x; and m;. We use an automatic differentiation framework
[26] which allows us to efficiently calculate a Jacobian for
a given point, free of numerical instabilities.
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Fig. 3: Construction and optimization of the factor graph: (a) The robot (1) observes some landmarks. The unary factor
connected to x; represents its location w.r.t. the reference landmark. (b) By eliminating =1, we arrive at a factor which is
connected to all landmarks seen in the first frame. (c) Elimination of all the variables results in a chordal Bayes net, and is

equivalent to performing QR factorization on the matrix.

E. Planning and Navigation

Indoor navigation with planar markers is not as easy as it
appears in the first glance. Not only does the robot need
to use the markers to localize itself in real time, plan a
path to the destination, and follow it with limited commands
available for an inexpensive robot, but also it must avoid
obstecles. When navigating between waypoints, the robot has
knowledge only of the planar markers, but not of obstacles
such as walls and furniture. We keep a history of robot
poses to solve this problem. At the beginning the robot will
be manually operated in the house, and while building a
map of envirnoment, it will record its pose at each frame
as well. When the robot navigates autonomously between
commanded waypoints, it uses, its history of poses to plan
its path. The history consists of poses that the robot has
occupied, and thus are free of obstacles. The robot can be
made aware of changes to the environment later by being
driven manually through an area again.

To plan a path between two robot poses, we build a
graph in which the nodes are the poses from the history,
and the edges encode the distance between poses. We will
connect two poses if their distance is less than a threshold.
To compute the distance between the poses we consider
both their relative translation and rotation. Since the robot is
always on the ground, and it can only rotate around camera’s
y axis, we can present the rotation by an angle. We compute
the distance (D) using the following formula:

D = altllz+5-10|

where o and 3 are coefficients, ¢ is the length of the
translation vector between the two poses, and 6 is the angle
between the two poses in radians. « and 3 can be set based
on the characteristics of the robot and preference of the user.
To make the robot gradually rotate while moving, 3 should
be increased. We use Dijkstra’s algorithm to compute the
shortest path between the current pose and the destination
pose in the graph of recorded poses. Figure 5 shows an
example of the plan for going to the bedroom from the
kitchen.

The navigation module contains a stack of objectives, such
as idle, traverse, charge. When this module is initiated
an idle objective is pushed into the stack. When the robot
receives a command, the planning module will compute a
path of robot poses, and pushes each of them as a traverse
objective to the stack. The planner pushes the poses into the
stack in reverse order. The navigation model always loads the
objective at the top of the stack and tries to accomplish it.
In each frame the navigation modul performs a sequence of
sense-think-act. It receives an image from the robot, localizes
the robot in the environment, verifies if it has accomplished
its current objective or not, and based on that decides the
next action.

IV. EXPERIMENTAL RESULTS

In this section, we describe our experimental results along
with the details on the experimental setting.

We have conducted two experiments, one at home with
markers placed in all rooms (in kitchen, dininig room, living
room, bedroom, bathroom, etc.) and the other one in the
corridors of our department, around a cubical in our lab. In
both experiments we use ROVIO. Rovio is a small robot
which has a camera on it, communicates via http and can
receive movement commands. Rovio has three wheels and
can rotate around itself, and move in different angles. Images
transmitted from Rovio’s camera are 640 x 480 and are not
very high quality. In each of the experiments, we have placed
markers onto walls and drawers. Here we describe each of
these experiments and validate the results of EasySLAM for
each one.

House: While controlling the Rovio with a laptop we
drove it around a house.

We manually controlled the robot for 15 minutes, while it
was capturing images every 1 second. A total of 964 images
were collected. EasySLAM built the map of the environment.
In Figure 4 we present the computed map on top of the house
plan.

After the robot built the map, we put it in the navigation
mode, and asked it to move to different parts of the house,
and it passed all the tests successfully. In Figure 5 we have
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Fig. 4: The results of marker and robot pose computations
for the house experiment are shown in the top view. Markers
are shown as green spheres and robot poses are shown in red.

shown the path robot planned to go to the bedroom from the
kitchen.

One might argue whether we need to optimize poses
beyond the initial pose estimations. In Figure 6 we have
presented the initial pose estimation results, which is not
looking as good as the optimized version shown in Figure 4
and it won’t be useful for reliable planning and navigation.

Lab: We drove our ROVIO robot in a corridor, around a
cubical in our lab. We used a laptop to control the robot.
We manually controlled the robot for 10 minutes, while it
was capturing images every 1 second. A total of 684 images
were collected. This experiment has two main properties: (1)
we did not close the loop, to test if EasySLAM can build
an accurate map without loop closing, and (2) we put many
markers densly together to test if the robot can efficiently
build the map with more markers that one will typically put
in his house. The robot was able to build an accurate map
of the environment without closing the loop as presented in
Figure 7.

V. CONCLUSION

We introduced EasySLAM, a fast, robust, and easy to use
framework for mapping and navigation in societal settings.
One can introduce different markers at different locations in
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Fig. 5: The path planned by the robot to go to the bedroom
from its current location (kitchen) is shown. As it is seen
the robot never plans to go trhough the obstecles since it is
using the history of poses for planning.

a house or a company, and robots can be controlled through
the environment to create the map and navigate robustly
which allows them to operate within the environment. It
has been shown that EasySLAM can reliably localize itself,
without using odometry and navigate reliably in real time
and successfully avoid obstecles.

Since the data association is solved by unique marker
appearances, we are able to solve the kidnapped robot
situation. The other usage of using landmarks with IDs is that
they can be easily associate with semantics (e.g. landmark
3 is associated with kitchen), however, we also plan to use
the existing planar landmarks such as paintings, traffic signs,
patterns on the walls, etc. within our framework in our future
work.
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Fig. 6: The pre-optimized results of marker and robot pose
for the house experiment are shown in the top view. The
initial results are built by computing the relative poses
between the robot and landmarks using homography in each
frame. As it is seen pre-optimized results are not as accurate,
and markers on the right are completely off the ground truth
pose.



