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SUMMARY

Machine learning in drug discovery has drawn significant attention and attracted ex-

plosive growth in drug discovery and development research. This dissertation studies the

deep generative methods in drug design. Despite the rapid progress of machine learning,

especially deep learning in drug discovery, the existing drug design methods remain chal-

lenging for real-world applications in both categories of the methods from different aspects,

including sample efficiency and data requirement, which are summarized as follows.

• Sample efficiency. Existing drug optimization methods rely heavily on brute-force

trial-and-error strategy and suffer from poor sample efficiency. A sample-efficient

drug design method would save much time and computational resources.

• Data efficiency. Acquiring data labels (e.g., drugs’ property) is typically laborious

and time-consuming in drug discovery because it involves bioassay-based wet-lab

experiments or animal models.

This dissertation focuses on addressing these challenges by enhancing/designing the

following categories of deep generative models:

• Enhancing graph-to-graph neural architecture. Graph-to-graph neural architecture

is used in drug design to translate a molecule to another similar molecule with property

improvement. We design copy & refine (CORE) strategy [1] and Molecule Reward in

deep generative models (MOLER) [2] that leverages policy gradient of reinforcement

learning. Graph-to-graph methods are easy to train in an end-to-end manner and

do not require an online oracle query. However, it suffers from data- and sample-

inefficiency.

• Self-supervised learning (SSL) for generation. SSL can be pretrained in large

unlabeled data, alleviating the high demand for labeled data. During the generation

xiv



process, SSL masks a subset of the whole drug molecule and samples the masked part

based on deep neural network prediction. It can be applied to both small-molecule

drugs (Multi-objective molecule sampling (MIMOSA) [3]) and biologics design

(sampling method for inverse protein folding (SIPF) [4]). The pros are that self-

supervised learning-based generation can quantify the uncertainty and be data-efficient.

However, it suffers from sample inefficiency.

• Differentiable programming for generation. The discrete drug molecules are

relaxed to differentiable ones in continuous space, so the gradient of the neural network

can be back-propagated to update the differentiable drug molecules directly. The

strategy can also be applied to both small-molecule drugs (differentiable scaffolding

tree (DST) [5]) and biologics (constrained energy model (CEM) [6]). Differentiable

programming is data- and sample-efficient via suppressing brute-force trial-and-error

strategy. However, it still heavily relies on online oracle queries.

• Intelligent combinatorial optimization. Traditional combinatorial optimization

methods such as genetic algorithms (GA) rely heavily on a random-walk-like explo-

ration, which leads to unstable performance. To address this challenge, we propose a

Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the prof-

itable design steps. Intelligent combinatorial optimization suppresses random-walk

behavior and enhances efficiency [7]. However, it still requires online oracle queries.

In the last chapter, we describe future works to extend the current research. First, we will

build some hybrid models to inherit the advantages of multiple categories of generative

methods. Second, we will conduct comprehensive experiments to systematically compare

these generative methods.

xv



CHAPTER 1

INTRODUCTION

Drug discovery is a time- and resource-consuming process. Approving a new drug usually

takes over ten years and billions of dollars. It has attracted more and more attention,

especially after the COVID pandemic. Designing novel drugs with desired properties is a

fundamental task in drug discovery. The drug-like molecules are estimated at around 1060 [8].

Traditional drug discovery methods mainly rely on exhaustive searching approaches, e.g.,

high throughput screening (HTS), which searches over the existing drug database and is

typically time- and resource-consuming.

To address this efficiency issue, machine learning methods, especially deep generative

models, were proposed to scale up the process. There are several essential categories of

machine learning methods in drug discovery.

One is the graph-to-graph model. The main idea of the graph-to-graph model is to

leverage a continuous latent space to represent the discrete drug structure and optimize

the latent embedding vectors of molecules. Thanks to the expressive power of various

neural architectures, such as graph neural network [9], recurrent neural network [10], deep

learning methods can represent the structured discrete drug into a fixed-dimensional latent

variable. The mainstream density estimation models on drug discovery include variational

autoencoder (VAE) [10, 11, 1, 12], generative adversarial network (GAN) [13], normalizing

flow models [14], energy-based model [6, 4], etc.

Besides, self-supervised learning has also drawn much attention in recent years thanks to

its remarkable ability to utilize unlabeled data. The main idea behind self-supervised learning

is to predict a subset of the raw data conditioned on the rest. The conditional probability can

be used in generation tasks to update each drug molecule component iteratively and has been

applied to both small-molecule drug (Multi-constraint Molecule Sampling, MIMOSA [15])

1



and biologics design (sampling method for inverse protein folding (SIPF) [4]).

Further, we propose a novel class of methods based on Differentiable programming.

The discrete drug molecules are relaxed to differentiable ones in continuous space, so the

neural network gradient can be back-propagated to update the differentiable drug molecules

directly. The strategy can also be applied to both small-molecule drugs (differentiable

scaffolding tree (DST) [5]) and biologics (constrained energy model (CEM) [6]).

Last, we enhance the conventional combinatorial optimization methods by using a

neural network to prioritize the promising searching branches and suppress the brute-force

trial-and-error strategy. We successfully apply this strategy to the genetic algorithm for

small-molecule drug design (Reinforced Genetic Algorithm, RGA) [7].

In this dissertation, we propose methodologies to tackle the challenges in drug design.

In the following sections, we introduce each of those works in a problem-driven way by first

highlighting the motivation behind each one. In each of the following chapters, we have

provided more details of each proposed solution.

1.1 My Completed Works

In this dissertation, we propose solutions for the above challenges in drug design using

the deep learning-based generation method as the framework. In the following section, we

introduce proposed solutions by highlighting the motivation behind the problem.

1. Graph-to-Graph model:

• CORE: Automatic Molecule Optimization Using Copy and Refine Strategy.

This work was published at AAAI in 2020 (chapter 3).

• MOLER: Incorporate Molecule-Level Reward to Enhance Deep Generative

Model for Molecule Optimization. This work was published at TKDE in 2021

(chapter 4).

2. Self-supervised learning methods:

2



• MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization.

This work was published at AAAI in 2021 (chapter 5).

• SIPF: Sampling Method for Inverse Protein Folding. This work was pub-

lished at KDD in 2022 (chapter 6).

3. Differentiable programming:

• DST: Differentiable Scaffolding Tree for Molecule Optimization. This work

was published at ICLR in 2022 (chapter 7).

• Antibody Complementarity Determining Regions (CDRs) design using Con-

strained Energy Model. This work was published at KDD in 2022 (chapter 8).

4. Intelligent combinatorial optimization:

• Reinforced Genetic Algorithm for Structure-based Drug Design. This work

was published at NeurIPS 2022 (chapter 9).
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CHAPTER 2

RELATED WORKS

The goal of drug design is to produce novel and diverse molecular structures with desirable

pharmaceutical properties for further validation. Machine learning methods, especially deep

generative models can achieve this goal by navigating molecular space intelligently. Also,

there are two major categories of drugs, including small-molecule and biologics (also known

as macro-molecule drug). This chapter briefly reviews the existing works on deep generative

models for drug design, including both small-molecule drugs and biologics.

2.1 Deep Generative Models for Small-molecule Drug Design

Existing small-molecule drug design methods can mainly be categorized as density estima-

tion models and combinatorial optimization methods. Density estimation models construct a

continuous distribution of general molecular structure with a deep network model so one can

generate molecules by sampling from the learned distribution. Typical algorithms include

variational autoencoder (VAE) [10, 11, 16], generative adversarial network (GAN) [17],

graph-to-graph model [18, 1, 19], normalizing flow-based model [20, 21, 14, 22]. However,

its performance is unsatisfactory, primarily due to the failure to train an adequate surrogate

oracle. In addition, DGMs can leverage Bayesian optimization in latent spaces to optimize

latent vectors and reconstruct to obtain the optimized molecules [10, 11]. However, such

approaches usually require a smooth and discriminative latent space and, thus, an elaborate

network architecture design and well-distributed data set. Also, as they learn the reference

data distribution, their ability to explore diverse chemical space is relatively limited, as

evidenced by the recent molecular optimization benchmarks [23, 24, 25].

On the other hand, combinatorial optimization methods mainly include deep reinforce-

ment learning (DRL) [26, 27, 28], evolutionary learning (especially genetic algorithm) [29,

4



30], self-supervised learning [4, 15]. They both formulate molecule optimization as a

discrete optimization task. Specifically, they modify molecule substructures (or tokens in a

string representation [31]) locally, with an oracle score or a policy/value network to tell if

they keep it. Due to the discrete nature of the formulation, most of them conduct an undi-

rected search (random-walk behavior), while some recent ones like reinforcement learning

try to guide the searching with a deep neural network, aiming to rid the random-walk nature.

However, it is challenging to incorporate the learning objective target into the guided search.

Those algorithms still require massive numbers of oracle calls, which is computationally

inefficient during the inference time [24]. The problem is especially severe in real-world

drug design because the oracle typically requires a large number of resources and time such

as wet-lab experiments.

2.2 Deep Generative Models for Biologics Design

There are two fundamental tasks in protein/antibody design. One is inverse protein folding,

which aims to design an amino acid sequence that can fold into the input 3D structure.

Another is de novo protein/antibody design, whose objective is to design protein (its amino

acid sequence or/and the corresponding 3D structure) from scratch. Specifically, for inverse

protein folding, conditioned on the input 3D graph structure (the backbone), the goal is to

recover the amino acid sequence. Most of the existing methods are based on graph-to-graph

models by learning a mapping from a 3D graph structure to an amino acid and generating a

single amino acid at a time. Many kinds of neural network models were leveraged/designed

to learn the mapping, e.g., structured transformer [32], three-dimensional convolutional

neural network (3DCNN) [33, 34], graph convolutional network (GCN) [35], joint sequence-

folding embedding model [36]. For (b) de novo protein/antibody design are usually cast into

a sequence generation problem or 3D graph generation problem. Existing methods include

variational autoencoder (VAE) based methods [37, 38] and generative adversarial network

(GAN) based methods [39, 40]. For antibody design, [41] designed a neural network
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ensemble to backpropagate the gradient to update the amino acid sequence in continuous

space; [42] proposed an iterative refinement graph neural network to jointly design 3D

graph structures and amino acid sequences.
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Part I

Graph-to-Graph
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Overview My thesis begins by tackling the fundamental challenges in the graph-to-

graph molecular optimization framework. The first challenge is that in the graph-to-graph

molecular optimization method, the set of available substructures S is large (substructure is

the basic building unit in the graph-to-graph model, which can be either a single ring or an

atom), such an iterative prediction task is often inaccurate, especially for substructures that

are infrequent in the training data. Our first works deal with the issue via proposing Copy

and Refine (CORE) strategy, where copy strategy copies some substructure from the input

molecule and refine strategy searches over the entire substructure space as refinement.

chapter 3: CORE: Automatic Molecule Optimization Using Copy and Refine Strat-

egy. Tianfan Fu, Cao Xiao, Jimeng Sun. Association for the Advancement of Artificial

Intelligence (AAAI) 2020.

The second challenge is that the existing graph-to-graph models restrict their attention to

substructure-level generation without considering the entire molecule as a whole. To address

this challenge, we propose Molecule-Level Reward functions (MOLER) [2] to encourage (1)

the input and the generated molecule to be similar and to ensure (2) the generated molecule

has a similar size (in terms of the number of substructures) to the input. The proposed

method is model-agnostic and can enhance various graph-to-graph models (JTVAE [11],

VTJNN [18], CORE [1]) with consistent performance gain.

chapter 4: MOLER: Incorporate Molecule-Level Reward to Enhance Deep Genera-

tive Model for Molecule Optimization. Tianfan Fu, Cao Xiao, Lucas Glass, Jimeng Sun.

IEEE Transactions on Knowledge and Data Engineering (TKDE) 2021.
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CHAPTER 3

CORE: AUTOMATIC MOLECULE OPTIMIZATION USING COPY & REFINE

STRATEGY

3.1 Research Challenge

Molecule optimization is about generating molecule Y with more desirable properties based

on an input molecule X . The state-of-the-art approaches partition the molecules into a large

set of substructures S and grow the new molecule structure by iteratively predicting which

substructure from S to add. Table Table 3.1 shows some data statistics about the comparison

between input and target molecules on 4 datasets/tasks. From real data, we observe: Stable

principle: Row 1 shows the percentage of original substructures in the target molecule,

which is about 80% or more, and indicates many original substructures are kept in the newly

generated targets. Novelty principle: Row 2 shows the percentage of targets that have any

new substructures that do not belong to the input molecule, which is also high and indicates

the need to include new substructures in the targets. Row 3 lists the number of all the

substructures, i.e., |S|, and Row 4 lists the average substructures for molecules. However,

since the set of available substructures S is large, as shown in Table Table 3.1, the global set

of substructures are 967, 785, 780, and 780 on four optimization datasets. Such an iterative

prediction task is often inaccurate, especially for substructures that are infrequent in the

training data.

3.2 Main Idea and Contributions

Based on these observations, we propose a new strategy for molecular optimization called

Copy & Refine (CORE) to address this challenge. The key idea is at each generating step,

CORE will decide whether we copy a substructure from the input molecule (Copy) or sample
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Table 3.1: Comparison between input and target molecules on four molecule optimization
datasets/tasks.

DRD2 LogP04 LogP06 QED
% of original 80.42% 79.47% 88.90% 83.32%
% of novel 86.40% 84.06% 70.14% 80.84%

# substructures 967 785 780 780
Molecule size 13.85 14.30 14.65 14.99

a novel substructure from the entire space of substructures (Refine). CORE achieved up to

11% and 21% relative improvement over the baselines on success rate on the complete test

set and test subset with infrequent substructures set, respectively.

3.3 CORE Framework

This section presents how the copy & refine strategy enhances the graph-to-graph model.

Graph-to-graph model consists of two neural network modules:

1. an encoder that represents the structured data into a latent variable.

2. a decoder that constructs the structured data based on the latent variable.

Also, both the encoder and decoder involve two important structures:

1. molecular graph G is the graph structure for a molecule;

2. scaffolding tree TG (also referred to as junction trees in [18]) is the skeleton of the

molecular graph G by partitioning the original graph into substructures (subgraphs)

and connecting those substructures into a tree.

Table Table 3.2 lists all the important mathematical notations and their explanations used in

this section. Then we elaborate on the details.

3.3.1 Encoder

To construct cycle-free structures, scaffolding tree TG is generated via contracting certain

vertices of G into a single node. By viewing the scaffolding tree as a graph, both input
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Figure 3.1: Pipeline for Graph-to-Graph Model. The encoder includes both graph and
scaffolding tree levels. Decoding is mainly split into two parts scaffolding tree decoder
and graph decoder. scaffolding tree decoder generates molecules in a greedy manner using
Depth First Search with topological and substructure prediction on each node. To assemble
the node of the scaffolding tree into the molecule, the graph decoder enumerates all possible
combinations.

molecular graphs and scaffolding trees can be encoded via graph Message Passing Networks

(MPN) [11, 43]. The encoder yields an embedding vector for each node in either the

scaffolding tree or the input molecular graph. More formally, on the node level, fv denotes

the feature vector for node v. For atoms, fv includes the atom type, valence, and other atomic

properties. For nodes in the scaffolding tree representing substructures, fv is a one-hot vector

indicating its substructure index. On the other hand, on edge level, fuv feature vector for

edge (u, v) ∈ E. N(v) denotes the set of neighbor nodes for node v. vuv and vvu are the

hidden variables that represent the message from node u to v and vice versa. They are

iteratively updated via a fully-connected neural network g1(·):

v(t)
uv = g1

(
fu, fuv,

∑
w∈N(u)\v

v(t−1)
wu

)
, (3.1)
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Table 3.2: Important notations used in the CORE.

Notations short explanations
(X, Y ) input-target molecule pair.

S substructure set S (a.k.a. vocabulary).
V/E set of vertex (atom) / edge (bond).

G = (V,E) molecular graph.
TG = (V , E) scaffolding tree of graph G.

N(v) set of neighbor nodes of vertex v.
fv/fuv feature vector for node v / edge (u, v).
v
(t)
uv message for edge (u, v) at t-th iteration.

xG
i /x

T
i embedder of node i in G / T , XG = {xG

1 , · · · }.
hit,jt message vector for edge (it, jt)
zG embedding of Graph G.
ptopo
t topological prediction score.

qsub
t /q̃sub

t predicted distribution over all the substructures.
gi(·), i = 1, · · · , 6 parameterized neural networks.

where v
(t)
uv is the message vector at the t-th iteration, whose initialization is v(0)

uv = 0. After

T steps of iteration, another network g2(·) is used to aggregate these messages. Each vertex

has a latent vector as

xu = g2
(
fu,

∑
v∈N(v)

v(T )
vu

)
, (3.2)

where g2(·) is another fully-connected neural network.

In summary, the encoder module yield embedding vectors for nodes in graph G and

scaffolding tree TG, denoted XG = {xG
1 ,x

G
2 , · · · } and XTG = {xTG

1 ,xTG
2 , · · · }, respectively.

3.3.2 Decoder

Decoder has two phases in a coarse-to-fine manner: (A) tree decoder; (B) graph decoder.

A. Tree decoder. The objective of the scaffolding tree decoder is to generate a new

scaffolding tree from the embeddings. The overall idea is to generate one substructure at a

time from an empty tree, and at each time, we decide whether to expand the current node or

backtrack to its parent (topological prediction) and which to add (substructure prediction).
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The generation will terminate once the condition to backtrack from the root is reached. Tree

decoder has two prediction tasks: Topological prediction and Substructure prediction.

The idea of topological prediction is to first enhance the embedding for node it via a

tree-based RNN [11], then predict whether to expand or backtrack (binary classification).

Substructure prediction (multi-class classification) is conducted to find which substruc-

tures to add. The idea is every time expanding a new node, the model has to predict its

substructure from the substructure set. First, we use the attention mechanism to compute

context vector based on current message vector hit,jt and node embedding XT ,XG:

csub
t = Attention(hit,jt ,X

T ,XG), (3.3)

Specifically, we first compute attention weight via

αT
j = g4(hk,it ,x

T
j ),

[αT
1 , α

T
2 , · · · ] = Softmax([αT

1 , α
T
2 , · · · ]),

(3.4)

where g4(·) is dot-product function [44]. {αG} are generated in the same way. The context

vector is generated via concatenating tree-level and graph-level context vector

csub
t =

[∑
i

αT
i x

T
i ,

∑
j

αG
j x

G
j

]
. (3.5)

Then based on attention vector csub
t and message vector hit,jt , g5(·), a fully-connected

neural network with softmax activation, is added to predict the substructure:

qsub
t = g5(hit,jt , c

sub
t ), (3.6)

where qsub
t is a distribution over all substructures. However, the number of all possible

substructures is usually quite large, as shown in Table Table 3.1. The vocabulary size of

the DRD2 dataset is 967, which makes prediction more challenging, especially for the rare
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substructures. We design a strategy to copy some of the input sequences to the output.

Refine with novel substructures. First, we use context vector csub
t and embeddings of the

input molecule graph and its scaffolding tree to determine the weight of generating novel

substructures in the current step,

wOOI
t = g6(c

sub
t , z), (3.7)

where g6(·) is a fully-connected neural network with sigmoid activation. Thus, the weight

ranges from 0 to 1. wOOI
t represents the probability that the model generate OOI substructure

at t-th step. We assume that the weight depends on the input molecule (global information)

and the current position in the decoder (local information). We use a representation z to

express the global information of the input molecule,

z =
[ 1

|{xT
i }|

∑
i

xT
i ,

1

|{xG
j }|

∑
j

xG
j

]
, (3.8)

where z is the concatenation of the average embedding of all the scaffolding tree nodes (xT
j )

and the average embedding of all the graph nodes (xG
j ).

Copy existing substructures. After obtaining the weight of OOI substructure, we consider

what substructures to copy from the input molecule. Each substructure in the input molecule

has an attention weight (normalized, so the sum is 1), which measures the contribution of

the substructure to the decoder. Then we use it to represent the selection probability for each

substructure. Specifically, we define a sparse vector a as

{a}i =


∑

j∈C α
T
j , C = {j|j-th node is i-th substructure},

0, i-th substructure not in T ,
(3.9)
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Table 3.3: Empirical results measured by Similarity for various methods on different dataset.

Method
Test Set Test subset with infrequent substructures

QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06
JTVAE .2988 .2997 .2853 .4643 .2519 .2634 .2732 .4238
GCPN .3081 .3092 .3602 .4282 .2691 .2759 .2973 .3709

Graph-to-Graph .3145 .3164 .3579 .5256 .2723 .2760 .2901 .4744
CORE .3211 .3334 .3695 .6386 .2982 .3021 .3234 .5839

Table 3.4: Empirical results measured by Property Improvement.

Method
Test Set Test subset with infrequent substructures

QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06
JTVAE .8041 .7077 2.5328 1.0323 .7292 .6292 2.0219 .7832
GCPN .8772 .7512 3.0483 2.148 .7627 .6743 2.5413 1.813

Graph-to-Graph .8803 .7641 2.9728 1.983 .7632 .6843 2.4083 1.778
CORE .8952 .7694 3.1053 2.021 .7899 .7193 2.7391 1.820

where a ∈ R|S|, |S| is size of {a}i represent i-th element of a. The prediction is a hybrid of

q̃sub
t = wOOI

t qsub
t + (1− wOOI

t )at. (3.10)

where wOOI
t balances the contributions of two distributions at t-th step. If novel substructures

are generated, we select the substructure from all substructures according to distribution

qsub
t ). Otherwise, we copy a certain substructure from the input molecule.

B. Graph decoder aims at assembling nodes in a scaffolding tree together into the correct

molecular graph. During the learning procedure, all candidate molecular structures {Gi} are

enumerated and the learning target is to maximize the scoring function of the right structure

Go Lg = fa(Go) − log
∑
Gi

exp(fa(Gi)), where fa(Gi) = hGi
· zGo is a scoring function

that measures the likelihood of the current structure Gi, zGo is an embedding of graph Go.

3.4 Main Results

Experimental setup. We use ZINC as the data source, which contains 250K drug

molecules extracted from the ZINC database [45]. We extract data pairs from ZINC.
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Table 3.5: Empirical results measured by SR (Success Rate) for various methods on different
dataset. For QED and DRD2, when the similarity between the input and the generated
molecule is greater than 0.3 and QED improvement is greater than 0.6, we regard it “success”.
For LogP04 and LogP06, when the similarity between input and the generated molecule is
greater than 0.4 and LogP improvement is greater than 0.8, we regard it “success”.

Method
Test Set Test subset with infrequent substructures

QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06
JTVAE 43.32% 34.83% 38.43% 43.54% 38.91% 29.32% 35.32% 40.43%
GCPN 47.71% 44.05% 56.43% 52.82% 42.80% 37.82% 42.81% 43.29%

Graph-to-Graph 48.16% 45.73% 56.24% 55.15% 43.43% 38.39% 42.83% 47.02%
CORE 50.26% 47.91% 56.47% 57.64% 47.82% 42.72% 45.01% 50.05%

Following [18], we mainly focus on the following three properties:

• DRD2 measures a molecule’s biological activity against target dopamine type 2

(DRD2). The QED score ranges from 0 to 1. A higher value is more desirable.

• QED [46] is an indicator of drug-likeness. The QED value ranges from 0 to 1. A

higher value is more desirable.

• Penalized LogP is a logP score that also accounts for ring size and synthetic ac-

cessibility [47]. The LogP values range from −∞ to ∞. A higher value is more

desirable.

For all these three scores, higher is better. To construct the training data set, we find the

molecule pair (X, Y ) following [18], where X is the input molecule and Y is the target

molecule with the desired property. Both X and Y are from the whole dataset and have to

satisfy two rules:

1. they are similar enough, i.e., sim(X, Y ) ≥ η1;

2. Y has significant property improvement over X , i.e., property(Y )−property(X) ≥ η2,

property(·) can be DRD2, QED, LogP score as mentioned above. η1 = 0.4 for LogP04

while η1 = 0.6 for LogP06.
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We use the public dataset in [25] with paired data. We focus on the following evaluation

metrics. Similarity: molecular similarity between the input molecule X and the generated

molecule Y. Property Improvement: improvement of property scores.

Baseline Methods. We compare our method with some important baseline methods, which

represent state-of-the-art methods for this task.

• JTVAE [11]. Junction tree variational autoencoder (JTVAE) is a deep generative

model that learns latent space to generate desired molecules. It also uses encoder-

decoder architecture on both scaffolding tree and graph levels.

• Graph-to-Graph [18]. It is the most important benchmark method as described

above.

• GCPN [26] uses graph convolutional policy networks to generate molecular structures

with specific properties. It exhibits state-of-the-art performance in RL-based methods.

Note that we also tried Sequence-to-Sequence model [48] on SMILES strings, but the

resulting model generates too many invalid SMILES strings to compare with all the other

graph-based methods. This further confirmed that graph generation is a more effective

strategy for molecular optimization.

Evaluation. During the evaluation procedure, we mainly focus on several evaluation

metrics, where X is the input molecule in the test set, Y is the generated molecule.

• Similarity. We evaluate the molecular similarity between the input molecule and the

generated molecule, measured by Tanimoto similarity over Morgan fingerprints [49].

The similarity between molecule X and Y is denoted sim(X, Y ), ranging from 0 to 1.

• Property Improvement. The second metric is the improvement of scores on certain

properties. It is defined as Property(Y ) − Property(X), where property could be
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including QED-score, DRD2-score, and LogP-score, evaluated using Rdkit pack-

age [50].

• Success Rate (SR). Success Rate is a metric that considers both similarity and

property improvement. Since the task is to generate a molecule that (i) is similar to

the input molecule and (ii) has property improvement at the same time. We design

criteria to judge whether it satisfied these two requirements: (a) Input and generated

molecules are similar enough, sim(X, Y ) ≥ λ1; (b) improvement are big enough, i.e.,

property(Y )− property(Y ) ≥ λ2. The selection of λ1 and λ2 depend on datasets.

Among these metrics, similarity, and property improvement are the most basic metrics. For

all these metrics except run time and model size, higher values are better.

Implementation Details. We also provide the implementation details for reproducibility,

especially the setting of hyperparameters. We follow most of the hyperparameter settings of

[18]. For all these baseline methods and datasets, the maximal epoch number is set to 10,

the batch size is set to 32. During the encoder module, the embedding size is set to 300. The

depth of the message passing network is set to 6 and 3 for the tree and graph, respectively.

The initial learning rate is set to 1e−3 with the Adam optimizer. Every epoch learning rate is

annealed by 0.8. We save the checkpoint every epoch during the training procedure. When

evaluating, from all the checkpoints, we choose the one that achieves the highest success

rate (SR1) on the validation set as the best model and use it to evaluate the test set. During

adversarial training, discriminator D(·) is a three-layer feed-forward network with hidden

layer dimension 300 and LeakyReLU activation function. For all these datasets, the model

size of CORE is around 4M.

Results and analysis. The results for various metrics (including similarity, property

improvement, and success rate) are shown in Table Table 3.3, Table 3.4 and Table 3.5.

CORE outperforms baselines in all the measures. Specifically, when measured by success
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rate, CORE obtained about 2% absolute improvement over the best baseline on average

and over 10% relative improvement on QED and DRD2. Test subset with infrequent

substructures is more challenging because for all the methods the performance would

degrade on the infrequent subset. Thus, the molecule with an infrequent substructure is

worth special attention. When measured on the test subset with infrequent substructure,

CORE achieves more significant improvement than the complete test set. Concretely, CORE

achieves 21% and 18% relative improvement in QED and DRD2. In a word, CORE gains

more improvement in rare substructures compared with the whole test set.

3.5 Conclusion and Discussion

In this work, we focus on generating molecules with desirable properties. The state-of-the-

art Graph-to-Graph grows the new molecule structure by iteratively predicting substructure

from a large set of substructures, which is challenging, especially for low-frequent sub-

structures. To address this challenge, we have proposed a new generating strategy called

“Copy & Refine” (COre), where at each step, the generator first decides whether to copy

an existing substructure from input X or to generate a new substructure from the large

set. The resulting CORE mechanism can significantly outperform several latest molecule

optimization baselines in various measures, especially on rare substructures.
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CHAPTER 4

MOLER: INCORPORATE MOLECULE-LEVEL REWARD TO ENHANCE DEEP

GENERATIVE MODEL FOR MOLECULE OPTIMIZATION

4.1 Research Challenge

Despite the initial success of deep generative models in drug design, existing methods

often rely on iterative local expansion to acquire the target molecule, potentially creating

molecules of arbitrary sizes. Without a global fitness metric, the generated molecules can

significantly deviate from the target molecule in molecular similarity and size. Also, these

methods focus on patterns that map substructures. However, during testing, the evaluation

metrics for molecule quality are often based on the entire molecule. These discrepancies

cause two challenges. We also empirically demonstrate them using Junction Tree Variational

Auto-Encoder (JTVAE) [11] and Variational Junction Tree encoder-decoder (VJTNN) [18]

models, as shown in Table Table 4.1.

• Difficulty in maintaining similarity while optimizing drug properties. Similarity

scores between input and generated molecules are relatively low compared with

property improvement. For example, when property scores are higher than 0.7 in the

range [0, 1], the similarity score will only be low (around 0.3 in the range [0, 1]), as

shown in Table Table 4.1.

• Difficulty in maintaining molecule sizes which affect property improvement.

When generated molecules are of very different sizes compared to the target molecules,

they will perform poorly in both similarity and property. Table Table 4.1 show the

property improvement as a function of the size difference between the generated and

input molecules. We can see that a large size difference in either positive or negative

direction usually corresponds to smaller property improvement.
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Dataset Method
All Test Set Small Molecule Large Molecule

Similarity Property Similarity Property Similarity Property

QED
JTVAE [11] 0.298 0.804 0.142 0.542 0.231 0.792
VJTNN [18] 0.311 0.885 0.178 0.602 0.283 0.818

DRD2
JTVAE 0.299 0.709 0.164 0.501 0.243 0.621
VJTNN 0.315 0.765 0.170 0.579 0.296 0.744

Table 4.1: Empirical results of two deep generative models on two molecule optimization
tasks.

4.2 Main Idea and Contribution

To address these challenges, we introduce Molecule-level Rewards (MOLER) to enhance the

molecule-level properties. Graph-to-graph model is the base model for MOLER (MOLER

enhance graph-to-graph models), graph-to-graph model has been described in chapter 3.

MOLER is a general and flexible approach that can be incorporated into various deep

generative models for improved performance. MOLER is enabled by the following technical

contributions.

• Similarity reward (Section subsection 4.3.1): We formulate the similarity between

input and generated molecules as a reward function to alleviate the similarity gap

between them.

• Size deviation penalty (Section subsection 4.3.2): To explicitly control the size of

the molecule, we design a size deviation penalty that penalizes large size deviations to

reduce the size difference between the target and generated molecules.

4.3 MOLER Framework

In this section, we describe Molecule-Level Reward (MOLER). For ease of exposition, we

list all the mathematical notations in Table Table 4.2.
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Table 4.2: Notations used in MOLER.

Notations Explanations
(X, Y ) input-target molecule pair

S substructure set S (a.k.a. vocabulary)
V/E set of vertex(atom) / edge(bond)

G = (V,E) molecular graph
TG = (V , E) scaffolding tree of graph G, junction tree [11]

TG
scaffolding tree of G without substructure,
output of topological prediction

N(v) set of neighbor nodes of vertex v
ev/euv feature vector for node v / edge (u, v)

m
(t)
uv message for edge (u, v) at the t-th iteration
T Depth of Message Passing Network

zGi /z
T
i embedding of node i in G / T , ZG = {zG1 , · · · }

hit,jt message vector for edge (it, jt)
dG Embedding of Graph G
ptopo
t topological prediction score at the t-th step
qsub
t substructure prediction distribution at the t-th step

fi(·), i = 1, · · · , 6 parameterized neural networks
sim(X, Y ) ∈ [0, 1] Similarity between X and Y

size(X) number of substructure in X
θ all learnable parameters in generative model

πθ(Y |X) generative model parameterized by θ
g1(·), g2(·) fully-connected neural network

4.3.1 Similarity Reward

Both similarity with input molecule X and property of Y (denoted sim(X, Y )) are essential

metrics to evaluate the quality of generated Y . We consider adding “similarity reward” to

explicitly enhance the similarity constraint, i.e., maximize

Lsim(θ) = EY∼πθ(·|X)

[
sim(X, Y )

]
, (4.1)
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where θ represents all the parameters for generative models; Lsim(θ) is objective function for

similarity reward; hyperparameter wsim ∈ R+ is weight of the reward. sim(X, Y ) represents

Tanimoto similarity between molecule X and Y . When optimizing Equation (Equation 4.1),

the computation of its gradient estimator requires the numerical value of the probability

density function πθ(Y |X) explicitly. Now we discuss how to evaluate πθ(Y |X) explicitly.

We know from chapter 3, the molecule generation is mainly divided into three prediction

tasks: (i) topological prediction, which is a binary classification task; (ii) substructure

prediction; (iii)Assembling prediction (in graph decoder). Since there are two phases

(scaffolding tree and molecular graph) in graph generation, πθ(Y |X) can be written as the

following joint distribution that incorporate the generation of both the scaffolding tree and

the molecular graph, which includes three prediction tasks,

πθ(Y |X) =

2|E|∏
t=1

ptopo
t︸ ︷︷ ︸

topological prediction

·
∏
t∈S

qsub
t︸ ︷︷ ︸

substructure prediction

· exp(sa(GY ))∑
Gi

exp(sa(Gi))︸ ︷︷ ︸
assembling prediction

.
(4.2)

First, ptopo
t is the probability for the t-th topological prediction. E is edge set of the generated

scaffolding tree. Since the generation procedure would terminate until backtracking to

root node, each edge is visited twice and there are totally 2|E| topological predictions.

Second, regarding substructure prediction, qsub
t is a distribution over all substructures,

S ⊆ {1, 2, · · · , 2|E|} represents the set of the indexes of the edges who expands to a new

node in a scaffolding tree, because only when topological prediction ptopo
t predict to expand

to a new node, we need to make substructure prediction.

4.3.2 Size Deviation Penalty

Size deviation between input and target molecules is another reason that the target molecule

is dissimilar to the input. Therefore, we design a penalty score to constrain this deviation.

In graph generation, there are three key prediction tasks: (i) topological prediction; (ii)
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Figure 4.1: MOLER Framework.

substructure prediction; (iii) assembling prediction. Since scaffolding tree-based approaches

use substructure as the basic component in molecule generation, we use the number of

substructures as the surrogate for molecule size, which is much more efficient to compute

since it is only related to topological prediction.

To design a reasonable size deviation penalty, we empirically investigate the correlation

between the size of X and Y in training data pairs and find they are positively correlated.

We want to minimize the following size deviation penalty,

Lsize(θ) = EπT
θ (TY |X)

[
g
(
size(TX), size(TY )

)]
, (4.3)

where Lsize(θ) is objective function of size deviation penalty, hyperparameter wsize ∈ R+ is

weight for size deviation penalty, size(X) denotes the number of substructure in scaffolding

tree of X . g(·, ·) is the reward function of molecule size defined as

g(x, y) =


|x− y| − ϵ, |x− y| > ϵ,

0, |x− y| ≤ ϵ,

(4.4)
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Algorithm 1 MOLER
1: # training
2: while Convergence criteria is not met do
3: Sample a minibatch M = {(X1, Y1), · · · , (Xm, Ym)}, m = |M|.
4: Optimize Lgen(θ) w.r.t. θ using {(Xi, Yi)}mi=1 using SGD, where Lgen(θ) is loss of

generative models.
5: Generate molecule via Ỹi ∼ πθ(·|Xi) for i = 1, · · · ,m.
6: Maximize Lsim(θ) + Lsize(θ) w.r.t. θ using {(Xi, Ỹi)}mi=1 based on policy gradient.
7: end while
8: # test, e.g., QED task
9: for Xi ∈ Test Set do

10: generate Yi ∼ πθ(·|Xi).
11: Evaluate and record sim(Xi, Yi) and QED(Y )− QED(X)
12: end for
13: Evaluate average similarity, property improvement, and success rate on the whole test

set.

where ϵ ∈ N+ is a positive integer. Then we discuss the optimization procedure. Without

loss of generalization, we consider maximizing a general objective as follows,

L(θ) = EY∼πθ(·|X)

[
R(X, Y )

]
, (4.5)

where L(θ) can be either Lsim or Lsize. ∇θL(θ), the gradient of objective function with

regard to θ, can be simplified via policy gradient,

∇θL(θ) = EY∼πθ(·|X)

[
∇θ log πθ(Y |X)R(X, Y )

]
. (4.6)

4.3.3 Choosing Weight for MOLER

During the learning procedure, two reward values (related to similarity and size) are inte-

grated into the learning objective in order to minimize

L = Lgen − wsimLsim + wsizeLsize, (4.7)
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where wsim, wsize ∈ R+ are hyperparameters that control the strength of MOLER, Lgen is

loss of generative model . It is time-consuming to use grid search/random search to find

the near-optimal weight combination (wsim, wsize). To address this issue, we resort to the

Gaussian process (GP) [51]. The gaussian process is used to approximate the validation

accuracy as a function of these weight combinations. The validation accuracy can be the

success rate, which would be described later). Then via searching for the optimum of the

approximated function, we obtain the appropriate weight combinations. Concretely, we

denote the function to approximate as h(w1, w2), where w1 = wsim, w2 = wsize. The search

range for wi, i = 1, 2 is bounded by LBi ≤ wi ≤ UBi. We draw m weight combinations,

denoted w(1) = (w1
1, w

1
2);w

(2) = (w2
1, w

2
2); · · · ;w(m) = (wm

1 , w
m
2 ). For the i-th weight

combination w(i), we evaluate the task metric (e.g., success rate) on the validation set

ri, which can be seen as a noisy evaluation of the true function h(wi
1, w

i
2) we want to

approximate. The noise comes from the sampling bias of the validation set. The true

objective function h(w1, w2) is unknown, a zero-mean Gaussian prior is specified,

h(·) ∼ GP(·, k(·, ·)), (4.8)

where k(·, ·) is the covariance function. Given m points {w(i)}mi=1 (weight combination) and

their evaluation {ri}mi=1. We assume r is a noisy evaluation of the true unknown function

that we are interested, i.e., r(w) = h(w) + ϵ, w = (w1, w2). According to Bayes rule, the

posterior distribution of the true objective function is

h|{w(i), ri}mi=1 ∼ N (µ(w), σ2(w)),

µ(w) = k⊤(K+ σ2I)−1r,

σ(w) = k(w,w)− k⊤(K+ σ2
nI)

−1k,

(4.9)
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where

K =


k(w1,w1) · · · k(w1,wm)

... . . . ...

k(wm,w1) · · · k(wm,wm)

 ,

k = [k(w,w1), · · · , k(w,wm)]
⊤,

r = [r1, · · · , rm]⊤.

(4.10)

Regarding covariance function we set k(w,v) = exp
(
− 1

2
(w − v)⊤Σ−1(w − v)

)
, where

Σ = diag
(
α(UB1 − LB1)

2, α(UB2 − LB2)
2
)
. α is empirically set to 0.2 [24].

To summarize, the Gaussian process provides a surrogate function to approximate the

true objective h(w1, w2), the validation accuracy as a function of weights in MOLER (wsim

and wsize). The surrogate can be used to search efficiently for the optimum of the objective

function, i.e., optimal weights in MOLER. Grid search is leveraged here to explore the

surrogate and get the optimal weights.

4.4 Main results

The experimental setup follows CORE’s setup with the same dataset, properties, evaluation

metrics, baseline methods (including CORE), etc. Then we demonstrate that MOLER can

improve the state-of-the-art generative model methods on all three datasets. The results (in

terms of similarity, property improvement, and success rate) are reported in Table Table 4.3.

We found that MOLER variants (JTVAE+MOLER, VJTNN+MOLER, CORE+MOLER)

provide significant and consistent improvement across different generative models up to

19% compared to their base model (JTVAE, VJTNN, CORE).

The positive effect of similarity reward. Next, we present the effect of similarity reward

defined in Equation (Equation 4.1) (Section subsection 4.3.1) and show how we set the

similarity reward. In practice, to accelerate the optimization procedure [53], we want to

make the average R(X, Y ) to be close to 0, so we subtract its average from the original
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Figure 4.2: Results measured by novelty, training time, model size, and size deviation of
the generated molecule. (a) All methods have ∼ 100% novelty scores, and (b-c) MOLER
variants do not cost much more computationally cost in training time, and their model sizes
are compared to the original generative models. (d) MOLER can reduce the size deviation
of generated molecules.

Figure 4.3: Selection of (wsim, C) on QED dataset for similarity reward (Section subsec-
tion 4.3.1). We find (i) wsim = 1e−3 and C = 0.3 performs best among all the hyper-
parameters, especially on the improvement of similarity; (ii) within a reasonable range,
the similarity would increase when weight wsim increase. However, too large wsim would
degrade the performance even worse than the baseline method (VJTNN, dashed line).
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Table 4.3: Experimental results of MOLER. MOLER-based methods outperform deep gen-
erative methods (JTVAE [11], VJTNN [18] and CORE [1]) and RL methods (GCPN [26],
ReLeaSE [52]). MOLER-based methods achieved the best performance in all settings,
especially CORE+MOLER, which seems the most competitive. MOLER provides signif-
icant and consistent improvement across different generative models up to 19%. Green
text highlights the ones with improvement of > 5%. In each column, we highlight the best
performance using bold font.

Method
Similarity Property Improvement Success Rate (%)

QED DRD2 LogP QED DRD2 LogP QED DRD2 LogP
GCPN 0.308 0.309 0.360 0.877 0.745 3.041 47.71 44.81 55.43
JTVAE 0.299 0.300 0.285 0.791 0.693 2.532 38.74 35.43 38.43
JTVAE+MOLER 0.302 0.314 0.315 0.858 0.732 3.015 43.20 40.01 45.24
improvement +1.07% +4.77% +10.41% +8.47% +5.63% +19.08% +11.51% +12.93% +17.72%
VJTNN 0.315 0.316 0.358 0.886 0.764 2.972 48.16 45.38 55.15
VJTNN+MOLER 0.351 0.334 0.372 0.904 0.778 3.182 56.32 47.39 57.01
improvement +11.61% +5.56% +3.94% +2.03% +1.83% +7.07% +16.94% +4.43% +3.37%
CORE 0.321 0.333 0.369 0.895 0.769 3.100 50.26 47.91 57.64
CORE+MOLER 0.360 0.352 0.371 0.910 0.782 3.199 57.32 49.47 57.93
improvement +12.11% +5.58% +.41% +1.68% +1.69% +3.19% +14.05% +3.26% +.50%

value. For example, in similarity reward, the reward is

R(X, Y ) = sim(X, Y )− C, (4.11)

where C ∈ R is a hyperparameter, we want it to be close to the average of all the similarity

values.

Two hyperparameters play a crucial role in the empirical performance of similarity

reward: (1) the weight of similarity reward in the whole objective wsim ∈ R+ in Equa-

tion (Equation 4.1); (2) hyperparameter in similarity reward C ∈ R in Equation (Equation 4.11).

We search the weight of similarity reward wsim from {1e−4, 3e−4, 1e−3, 3e−3, 1e−2}. For the

hyperparameter in similarity reward C, we want it to be close to the average of the simi-

larity value. During the learning procedure, the similarity would increase from 0 to about

0.3-0.4. So we search C from {0, 0.1, 0.2, 0.3, 0.4}. We use grid search to find the optimal

combination of hyperparameters. wsim = 0 corresponds to the baseline method (VJTNN)

that does not use similarity reward. We can find that most of the (wsim, C) combinations can

outperform the baseline method, validating the effectiveness of adding similarity reward.

29



In addition, we show more visualization results in Figure Figure 4.3. For each weight

wsim ∈ {1e−4, 3e−4, 1e−3, 3e−3, 1e−2}, we show the change of performance (both similarity

and property) with different Cs (in Equation (Equation 4.11)) in Figure Figure 4.3(a) and (b).

Also, for each C ∈ {0, 0.1, 0.2, 0.3, 0.4}, we show the change of performance with various

wsim in Figure Figure 4.3 (c) and (d). We find that (i) wsim = 1e−3 performs best among

all the hyperparameters, especially on the improvement of similarity; (ii) When C = 0.3,

MOLER achieve the best performance; (iii) within a reasonable range, the similarity would

increase as we increase the weight wsim; (iv) too large wsim would degrade the performance

even worse than the baseline method (VJTNN).

For QED dataset, the optimal combination of hyperparameters is wsim = 1e−3 and

C = 0.3, as mentioned above. It is also validated to be optimal in the DRD2 dataset. For

LogP dataset, the optimum is wsim = 1e−3 and C = 0.4.

For each size deviation penalty g, we plot the change of performance (both similarity

and property) with various weight wsize Figure Figure 4.3 on the QED dataset. We find that

(i) g5 (which is represented in Section subsection 4.3.2) and wsize = 1e−3 achieve the best

performance; (ii) most of the hyperparameter setting would outperform VJTNN (baseline).

Therefore, the effect of the size deviation penalty is positive [19]. Moreover, this selection

is also validated to be optimal on both DRD2 and LogP datasets.

4.5 Conclusion and Discussion

In this work, we have proposed to incorporate molecule level reward function (MOLER)

into deep generative models for molecule optimization. Specifically, we have designed

two molecule reward functions motivated by some empirical observations. The first one

is the similarity reward to encourage the generated molecule to be similar to the input

one. Another reward is to control the size of the generated molecule explicitly. MOLER

provides a general and flexible framework that can incorporate various reward functions to

specify different aspects of generated molecules based on any deep generative models for
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molecule optimization. Policy gradient is applied to optimize the reward objective, and it

wouldn’t cause too much extra computational cost compared with deep generative models.

Thorough empirical studies have been conducted on several real molecule optimization tasks

to validate the effectiveness of MOLER.
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Part II

Self-supervised learning
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Overview In the second part of the thesis, we focus on leveraging the self-supervised

learning method for drug design methods. Self-Supervised Learning (SSL) is a machine

learning paradigm where a model learns from unlabeled data and generates data labels

automatically from the unlabeled data, and the labels are further used in subsequent iterations

as ground truths. There are two kinds of SSL paradigms: generative SSL and contrastive SSL.

Specifically, generative SSL masks a subset of structured data and trains a machine learning

model (mostly neural networks) to predict the masked part based on the remaining data

while contrastive SSL builds a positive and negative view of structured data via mutating

the structured data and then train a machine learning model (mostly neural networks)

to discriminate the negative data from the positive one. In this thesis, we restrict our

attention to generative SSL. The main advantage of generative SSL is that it can construct

the conditional distribution of the structured data via masking a subset of raw data and

predicting its category conditioned on the rest of the raw data. Also, it is learned on massive

unlabeled data and does not require too many labeled data, thus being data-efficient. Most

existing self-supervised learning methods focus on learning a representation to serve as a

warm start for downstream applications. In contrast, we leverage the conditional distribution

learned by self-supervised learning for drug molecule generation. Specifically, on small-

molecule drug design, we proposed Multi-constraint Molecule Sampling (MIMOSA) that

formulates molecule optimization as a sampling problem. Then in each sampling step,

we sample from the conditional distribution, a graph neural network pretrained on a large

unlabeled chemical compound library with self-supervised learning.

chapter 5: MIMOSA: Multi-constraint Molecule Sampling for Molecule

Optimization. Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M. Glass, Jimeng Sun.

Association for the Advancement of Artificial Intelligence (AAAI) 2021.

Then, we also formulate the inverse protein folding task (also known as fixed-backbone

protein design, which is a fundamental problem in biologics design) into a sampling problem

and use self-supervised learning to build a conditional probability which we can sample
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from. Compared with existing methods (mostly based on maximum likelihood learning and

autoregressive models) that sequentially generate amino acids, it provides more flexibility

that adaptively updates the amino acids with uncertainty quantification.

chapter 6: SIPF: Sampling Method for Inverse Protein Folding. Tianfan Fu,

Jimeng Sun. The 28th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (2022).
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CHAPTER 5

MIMOSA: MULTI-CONSTRAINT MOLECULE SAMPLING FOR MOLECULE

OPTIMIZATION

5.1 Research Challenge

Existing works on molecule optimization and molecule generation tasks can be categorized

as generative models [54, 55, 10] and reinforcement learning (RL) methods [26, 27, 19,

56]. Most existing works only optimize a single property, while multiple properties must be

optimized to develop viable drug candidates. Recently, [28] proposed a molecule generation

algorithm that can optimize multiple properties. It is a related but different task than

molecule optimization since they do not take any specific input molecule as the anchor.

However, this method is restricted by the assumption that each property is associated with

specific molecular substructures, which does not apply to global properties like logP. [29]

proposed a genetic algorithm (GA) for molecule generation and optimization. However,

the model is likely to get trapped in regions of local optima, thus the performance would

degrade in optimizing properties that are less sensitive to the change of local structures such

as molecule’s biological activity against a dopamine type 2 receptor (DRD) [29].

5.2 Main Ideas and Contributions

To allow for flexible and efficient molecule optimization on multiple properties, we propose

a new sampling-based molecule optimization framework named MultI-constraint MOlecule

SAmpling (MIMOSA). The main contributions are:

• Formulation. A new sampling framework for flexible encoding of multiple constraints.

We reformulate the molecule optimization task in a sampling framework to draw molecules

from the target distribution. The framework provides flexible and efficient encoding of
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Notations short explanation
X , Y Input molecule, target molecule.

sim(X, Y ) ∈ [0, 1] Similarity of molecules X and Y .
pX(Y ) Target dist. when optimizing X , Equation Equation 5.1.
M # of properties to optimize.

γ0, γ1, · · · , γM ∈ R+ Hyperparameter in Target dist. pX(Y ).
P1, · · · ,PM Molecular properties to optimize.

1(Y ) Validity Indicator func. of molecule Y .
K Depth of GNN.

h
(k)
v ∈ R300 Node embedding v in the k-th layer.
C1/C2 # of all possible substructures/bonds.
v; sv/s

′
v node v; substructures of v.

fv/ge one-hot node/edge feature.
ŷv/mGNN(Y, v) substructure distribution. Equation (Equation 5.2).
ẑv/bGNN(Y, v) probability of v will expand. Equation (Equation 5.3).

yv/zv ground truth label of node v
mGNN(Y,v) substructure prediction on node v
bGNN(Y,v) prediction whether to extend on node v

Y/Y ′ current/next Sample.
Sadd, Sreplace, Sdelete sampling operation from Y to Y ′.

Table 5.1: Notations used in MIMOSA.

multi-property and similarity constraints (Section subsection 5.3.1).

• Method. Efficient sampling augmented by GNN pretraining. With the help of two

pretrained GNN models, we designed a molecule sampling method that enables effi-

cient sampling from a target distribution. This enables MIMOSA to leverage the vast

amount of molecule data in a self-supervised manner without the need for labeled data

(Section subsection 5.3.2).

• Experiment. We compare MIMOSA with state-of-the-art baselines on optimizing several

important properties across multiple settings, MIMOSA achieves 43.7% success rate

(49.1% relative improvement over the best baseline GA [29]) (Section section 5.4).

5.3 MIMOSA Framework

In this section, we describe Multi-constraint Molecule Sampling for Molecule Optimization

(MIMOSA). For ease of exposition, we list all the mathematical notations.
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5.3.1 Molecule Optimization via Sampling

We formulate molecule optimization into a sampling problem. Here to formulate molecule

optimization that aims to optimize on the similarity between the input molecule X and the

target molecules Y as well as M molecular properties of Y , P1, · · · ,PM (the higher score,

the better). We propose to draw Y from the unnormalized target distribution:

pX(Y ) ∝ exp
(
η0sim(X, Y ) + η1

M∑
i=1

Pi(Y )− Pi(X)
)
, (5.1)

where η0, η1, · · · , ηM ∈ R+ are the hyperparameters. The target distribution encodes

similarity and multiple property constraints. sim(X, Y ) is similarity between X and Y.

5.3.2 The MIMOSA Method for Molecule Sampling

Figure 5.1: MIMOSA framework.

Fig. Figure 5.1 illustrates the overall procedure of MIMOSA, which can be decomposed

into the following steps: (1) Pretrain GNN. MIMOSA pre-trains two graph neural networks

(GNNs) using a large number of unlabeled molecules, which will be used in the sampling

process. Then MIMOSA iterates over the following two steps. (2) Candidate Generation.

We generate and score molecule candidates via modification operations (add, delete, replace)

to the current molecule. (3) Candidate Selection. We perform MCMC sampling to select

promising molecule candidates for the next sampling iteration by repeating Step 1-3.
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(I) Pretrain GNNs for Substructure-type and Molecule Topology Prediction

We develop two GNN-based pretraining tasks to assist molecule modification: mGNN and

bGNN.

(1) mGNN model aims at multi-class classification for predicting the substructure type

of a masked node. We mask the individual substructure, and replace it with a special masked

indicator following [57]. Suppose we only mask one substructure for each molecule during

training and v is the masked substructure (i.e., node), yv is the node label corresponding to

masked substructure type, we add fully-connected (FC) layers with softmax activation to

predict the type of node v: ŷv = Softmax
(
FC(h

(K)
v )

)
. where ŷv is a C1 dimension vector,

indicating the predicted probability of all possible substructures. Multi-class cross-entropy

loss is used to guide GNN training. To summarize, the prediction of mGNN is defined as

ŷv ≜ mGNN(Y,mask = v) = mGNN(Y, v), (5.2)

where in a given molecule Y the node v is masked, mGNN predicts the substructure

distribution on masked node v, which is denoted ŷv.

(2) bGNN is designed to predict whether a node will expand. To provide training labels

for bGNN, we set the leaf nodes (nodes with degree 1) with label zv = 0 as we assume

they are no longer expanding. And we set label zv = 1 on the non-leaf nodes that are

adjacent to leaf nodes as those nodes expanded (to the leaf nodes). The prediction is done

via ẑv = Sigmoid
(
FC(h

(K)
v )

)
, where FC is two-layer fully-connected layers. h(K)

v is the

node embedding of v produced by GNN. In sum, the prediction of bGNN is defined as

ẑv ≜ bGNN(Y, v), (5.3)

where v is a node in molecule Y , ẑv is the probability that v will expand.
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(II) Candidate Generation via Substructure Modification Operation

With the help of mGNN and bGNN, we define substructure modification operations namely

replace, add or delete on input molecule Y : That is, each time we replace, add or delete one

substructure based on the given molecule. Let Y be the current molecule graph, and Y ′ be

the generated molecule graph after substructure modification operations. We consider single

iteration of the MCMC method. Specifically, we suppose Y is the current molecule, and GY

is the corresponding molecular graph.

• Replace a substructure. At node v, the original substructure category is sv. It has three

key steps: (1) We mask v in Y , evaluate the substructure distribution in v via mGNN, i.e.,

ŷv = mGNN(Y, v), as Equation (Equation 5.2). (2) Then we sample a new substructure

s′v from the multinomial distribution ŷv, denoted by s′v ∼ Multinomial(ŷv). (3) At node

v, we replace the original substructure sv with new substructure s′v to produce the new

molecule Y ′. The whole operation is denoted as

Y ′ ∼ Sreplace(Y
′|Y ). (5.4)

• Add a substructure. Suppose we want to add a substructure as leaf node (denoted as v)

connecting to an existing node u in the current molecule Y . The substructure category of

v is denoted sv, which we want to predict. It contains 3 key steps: (1) We evaluate the

probability that node u has a leaf node v with the help of bGNN in Equation (Equation 5.3),

i.e., ẑu = bGNN(Y, u) ∈ [0, 1]. (2) Suppose the above prediction is to add a leaf node v.

We then generate a new molecule Y ′ via adding v to Y via a new edge (u, v). (3) In Y ′,

sv, the substructure of v is unknown. We will predict its substructure using mGNN, i.e.,

ŷv = mGNN(Y ′, v), following Equation (Equation 5.2). (4) sample a new substructure

s′v from the multinomial distribution ŷv and complete the new molecule Y ′. The whole

operation is denoted as

Y ′ ∼ Sadd(Y
′|Y ). (5.5)
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• Delete a substructure. We delete a leaf node v in the current molecule Y . It is denoted

Y ′ ∼ Sdelete(Y
′|Y ). (5.6)

In the MCMC process, S∗(Y
′|Y ) indicates the sequential sampling process from the

previous sample Y to the next sample Y ′. And the very first sample is the input X .

(III) Candidate Selection via MCMC Sampling

The set of generated candidate molecules can be grouped as three sets based on the type

of substructure modification they received, namely, replace set Sreplace, add set Sadd, and

delete set Sdelete.

Sampling Sreplace. For molecules produced by the “replace” operation, the weight in

sampling wr is

wr =
pX(Y

′) · [mGNN(Y, v)]s′v
pX(Y ) · [mGNN(Y, v)]sv

, (5.7)

where PX(·) is the unnormalized target distribution for optimizing X , defined in Equa-

tion (Equation 5.1), [mGNN(Y, v)]sv is the predicted probability of the substructure sv in

the prediction distribution mGNN(Y, v). The acceptance rate in the proposal is min{1, wr}.

If the proposal is accepted, we use the new prediction s′v to replace the origin substructure

sv in the current molecule Y and produce the new molecule Y ′.

Sampling Sadd. For molecules produced by the “add” operation, the weight in sampling is

wa =
pX(Y

′) · bGNN(Y, u) · [mGNN(Y ′, v)]sv
pX(Y ) · (1− bGNN(Y, u))

, (5.8)

where acceptance rate in the proposal is min{1, wa}.
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5.4 Main Results

We first describe the experimental setup. We use 250K molecules from ZINC database [45]

to train both mGNN and bGNN. We focus on the 3 molecular properties, as described in

chapter 3. We consider the following baselines: JTVAE, VJTNN, GCPN as mentioned in

CORE (chapter 3). We also incorporate GA (Genetic Algorithm) [29].

Evaluation Strategies. To optimize “Penalized LogP”, we randomly select 500 molecules

from ZINC database [45]. To optimize “DRD” and “DRD & Penalized LogP”, following [18]

we pick 500 molecules whose DRD scores are lower than 0.05. For the “QED” and “QED

& Penalized LogP” tasks, following [18] we pick 500 molecules with QED scores [0.7, 0.8] .

Data in validation and test are not in training.

Optimizing PLogP and QED
Method Similarity PLogP-Imp. QED-Imp. Success
JTVAE 0.16±0.08 0.14±0.27 0.01±0.10 0.4%
VJTNN 0.17±0.06 0.46±0.35 0.02±0.09 1.0%
GCPN 0.25±0.15 0.56±0.25 0.06±0.08 11.3%
SELFIES-GA+D 0.35±0.16 0.93±0.67 0.09±0.07 24.9%
MIMOSA 0.42±0.17 0.93±0.48 0.10±0.09 32.0%

Optimizing PLogP and DRD
Method Similarity PLogP-Imp. DRD-Imp. Success
JTVAE 0.18±0.08 0.20±0.18 0.18±0.09 0.8%
VJTNN 0.18±0.08 0.55±0.16 0.27±0.05 3.4%
GCPN 0.23±0.12 0.38±0.25 0.25±0.11 20.4%
SELFIES-GA+D 0.38±0.16 0.68±0.49 0.20±0.16 29.3%
MIMOSA 0.54±0.16 0.75±0.48 0.35±0.20 43.7%

Table 5.2: Multi-properties optimization.

To evaluate model performance in optimizing multiple drug properties, we consider

the following combinations of property constraints: (1) optimize QED and PLogP; (2)

optimize DRD and PLogP. From Table Table 5.2, MIMOSA has significantly better and

stable performance on all metrics, with 28.5% relative higher success rate in optimizing both

QED and PLogP, and 49.1% relative higher success rate in optimizing both DRD and PLogP

compared with the second best algorithm GA. The GA algorithm uses the genetic algorithm

for local structure editing, hence is expected to work well on optimizing properties that are
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Optimizing QED
Method Similarity QED-Improve Success
JTVAE 0.30±0.09 0.17±0.12 17.4%
VJTNN 0.37±0.11 0.20±0.05 37.6%
GCPN 0.32±0.14 0.20±0.09 26.5%
SELFIES-GA+D 0.43±0.17 0.17±0.11 42.5%
MIMOSA 0.50±0.30 0.20±0.14 47.8%

Optimizing DRD
Method Similarity DRD-Improve Success
JTVAE 0.31±0.07 0.34±0.17 25.6%
VJTNN 0.36±0.09 0.40±0.20 40.5%
GCPN 0.30±0.07 0.35±0.20 27.8%
SELFIES-GA+D 0.46±0.14 0.25±0.10 37.5%
MIMOSA 0.57±0.29 0.43±0.29 48.3%

Optimizing PLogP
Method Similarity PLogP-Improve Success
JTVAE 0.30±0.09 0.28±0.17 2.9%
VJTNN 0.38± 0.08 0.47±0.24 14.3%
GCPN 0.32± 0.07 0.33±0.19 7.8%
SELFIES-GA+D 0.53±0.15 0.99±0.54 92.8%
MIMOSA 0.56± 0.17 0.94±0.47 94.0%

Table 5.3: Single-property optimization.

Figure 5.2: Examples of “QED & PLogP” optimization. (Upper), the imidazole ring in the
input molecule (a) is replaced by less polar rings thiazole (b and c) and thiadiazol (d). Since
more polar indicates lower PLogP, the output molecules increase PLogP while maintaining
the molecular scaffold. (Lower), the PLogP of input molecule (e) is increased by neutralizing
the ionized amine (g) or replacing it with substructures with less electronegativity (f and h).
These changes improve the QED.
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sensitive to local structural changes, such as joint optimizing both QED and PLogP where

PLogP is related to the polarity of a molecule and is sensitive to the change of local structure.

Because of the local editing of GA, GA does not perform well on optimizing both DRD and

PLogP since DRD is less sensitive to the change of local structures.

Since most baseline models were designed to optimize single drug properties, we also

conduct experiments to compare MIMOSA with them on optimizing the following single

properties: (1) DRD; (2) QED and (3) PLogP.

From the results shown in Table Table 5.3, we can see that when optimizing a single

drug property, MIMOSA still achieved the best performance overall, with 12.5% relative

higher success rate in optimizing QED compared with the second best model GA, and

28.8% relative higher success rate in optimizing both DRD compared with the second best

algorithm VJTNN. Among the baseline models, algorithms such as JTVAE, VJTNN, and

GCPN that were designed to optimize single property have good performance in property

improvement as expected. However, they generate molecules that have lower similarity

hence the final success rates. Also, GA has the lowest QED and DRD improvement may

be due to its limitation in capturing global properties. High similarity between the output

and input molecules is a unique requirement for the molecule optimization task, on which

MIMOSA significantly outperformed the other baselines.

Case Study. To further examine how MIMOSA can also effectively improve properties

that are sensitive to local structural change, e.g., PLogP, we show two examples in Fig-

ure Figure 5.2. For the first row, the imidazole ring in the input molecule (a) is replaced by

less polar five-member rings thiazole (b and c) and thiadiazol (d). Since PLogP is related to

the polarity of a molecule: more polar indicates lower PLogP. The generation results in the

increase of PLogP while maintaining the molecular scaffold. For the second row, the PLogP

of input molecule (e) is increased by neutralizing the ionized amine (g) or replacing it with

substructures with less electronegativity (f and h). These changes would also help improve
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the drug-likeness, i.e., QED value.

Performance impact of pre-training Note that the mGNN reaches 97%+ ROC-AUC in

multiclass classification and bGNN achieves more than 0.99 in terms of ROC-AUC. We

also observe that the quality of generated molecules is insensitive to the classification

performance of mGNN and bGNN. The goal of mGNN and bGNN pretrained on large

molecule datasets is to provide good representation to guide the MCMC generation process.

Given the large sampling space, the risk of generating the input molecule is practically

non-existing, especially since you have multiple samples to choose from.

5.5 Conclusion and Discussion

In this work, we proposed MIMOSA, a new MCMC sampling-based method for molecule

optimization. MIMOSA pretrains GNNs and employs three basic substructure operations

to generate new molecules and associated weights that can encode multiple drug property

constraints, upon which we accept promising molecules for the next iteration. MIMOSA

iteratively produces new molecule candidates and can efficiently draw molecules that satisfy

all constraints. MIMOSA significantly outperformed several state-of-the-art baselines for

molecule optimization with 28.5% to 49.1% improvement when optimizing PLogP+QED

and PLogP+DRD, respectively.
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CHAPTER 6

SIPF: SAMPLING METHOD FOR INVERSE PROTEIN FOLDING

6.1 Research Challenge

The desired 3D structure with a useful function was first observed in many protein engineer-

ing applications before identifying the amino acid sequence. The task becomes designing

an amino acid sequence that can properly fold into the desired 3D structure [58, 32]. The

problem is named inverse protein folding, which often requires machine learning models.

To predict the target amino acid sequence sequentially, different network architectures have

been proposed to represent 3D protein structures, e.g., multiple structured transformers with

multi-head self-attention components [32], three-dimensional convolutional neural network

(3DCNN) [33, 34], graph convolutional network (GCN)[35]. However, several challenges

remain in these existing methods.

(C1) Lack of uncertainty quantification in the protein space: Generative models are

mainly based on maximum likelihood learning, which uses point estimation and has difficulty

quantifying the uncertainty.

(C2) Incremental generation degradation during sequential generation: auto-regressive

generative models generate amino acid sequences sequentially. The later amino acids depend

heavily on the previous ones. Thus the error may accumulate during generation.

6.2 Main Idea and Contribution

The main contributions of the proposed method are

1. Uncertainty quantification (address C1): To quantify uncertainty, we formulate

inverse protein folding as a Markov Chain Monte Carlo (MCMC) sampling prob-

lem, where pretrained neural networks are used as MCMC proposal distribution
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(Sec subsection 6.3.1).

2. Adaptive sampling (address C2): we design an adaptive sampling method to sample

more thoroughly at the variables1 with high uncertainty. The designed sampler allows

random and weighted scans over all the amino acids and provides more flexibility

than the sequential generation (Sec subsection 6.3.2).

3. Experiment. We conduct thorough experiments to show the superiority of SIPF,

which obtains 7.4% relative improvement in the recovery rate and 6.4% relative

reduction in perplexity (Sec section 6.4).

6.3 SIPF Framework

In this section, we describe sampling method for inverse protein folding (SIPF).

First, we formulate the inverse protein folding task. We represent a protein with three

structures. We use S = (s1, · · · , sN) to denote the amino acid sequence. The length is N ,

si represents the i-th token (i.e., amino acid) in the sequence. We use Z = (z1, · · · , zN) to

denote the secondary structure sequence. The length is also N , and zi represents the kind of

secondary structure to which i-th amino acid belongs. We use G = (g1, · · · , gN) to denote

the 3D graph structure of the protein. There are N nodes in the graph, gi represents the 3D

coordinate of the i-th node. Given 3D graph structure G, inverse protein folding is to find

an amino acid sequence S = (s1, · · · , sN) (si ∈ V ) that maximize the likelihood function

P (S|G),

argmax
S=(s1,··· ,sN )

P (S|G), (6.1)

6.3.1 MCMC Proposal distribution: Pretrained Neural Networks

This section describes MCMC proposal distribution Qθ(si|S−i,G), which is a mixture of

two pretrained neural networks, including (1) equivariant graph neural network (geometric
1In this paper, a variable corresponds to an amino acid.
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Table 6.1: Mathematical notations and descriptions.

Notations Descriptions
N number of amino acids in proteins.
V set of all the amino acids.
gi coordinate of the i-th node in 3D graph G.

G = (g1, · · · , gN) 3D graph structure (N nodes with coordinates).
si ∈ V The i-th amino acid in the sequence S.

S = (s1, · · · , sN) Sequence of amino acid (length N ).
S<i the first i− 1 amino acids in the sequence S.

S−i = (s1, · · · , si−1,
amino acid sequence without i-th amino acid

si+1, · · · , sN)
P (S|G) target distribution of S given G.

Qθ(si|S−i,G) MCMC proposal distribution, conditional prob. of si
∥z∥ l2 norm of the vector z
L1 Number of layers in EGNN.
m

(l)
i message vector of node i at l-th layer;

m
(l)
ij message vector of edge from i to j at l-th layer;

e
(l)
i i-th node’s embedding at l-th layer;

x
(l)
i i-th node’s position embeddings at l-th layer;

H1(·), H2(·), H3(·) embedding in BERT.
L2 Number of transformer layers in BERT.
γ hyperparameter

1(·) Indicator function
Distance(·, ·) Distance between two amino acid sequences

q = [q1, · · · , qN ] sampling weight for each amino acid,
∑N

i=1 qi = 1.
λ > 0 hyperparameter in optimizing q

graph level); (2) BERT model (amino acid sequence level). Both models are pretrained in a

self-supervised manner [57]: predicting the category of masked node/token (i.e., amino acid)

conditioned on the remaining variables (nodes/tokens/amino acids) and 3D graph structure.

Equivariant Graph Neural Network (EGNN) for 3D geometric graph We leverage the

state-of-the-art equivariant graph neural network (EGNN) proposed in [59]. It is translation-,

rotation- and reflection-invariant with respect to an input set of 3D points. Node embeddings

at the l-th layer are {e(l)i }Ni=1, where l = 0, 1, · · · , L1, L1 is number of layers in EGNN. The
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Figure 6.1: SIPF pipeline.

initial node embeddings {e(0)i }Ni=1 embed the categories of amino acids and are randomly

initialized. Coordinate embeddings at the l-th layer are denoted {x(l)
i }Ni=1. The initial

coordinate embeddings {x(0)
i }Ni=1 are the real 3D coordinates of all the nodes, i.e., {gi}Ni=1.

The following equation defines the update rule at the l-th layer (l = 1, · · · , L1):

m
(l+1)
ij = MLP1

(
e
(l)
i , e

(l)
j , ||x(l)

i − x
(l)
j ||2

)
,

e
(l+1)
i = MLP3

(
e
(l)
i ,m

(l+1)
i

)
,

x
(l+1)
i = x

(l)
i +

∑
j ̸=i

(
x
(l)
i − x

(l)
j

)
MLP2

(
m

(l)
ij

)
,

m
(l+1)
i =

∑
j

m
(l+1)
ij ,

(6.2)

where MLP1(·),MLP2(·),MLP3(·) are all two-layer multiple layer perceptrons (MLPs).

Within the l-th layer, m(l)
ij represent the message vector for the edge from node i to node j;

m
(l)
i represents the message vector for node i, x(l)

i is the position embedding for node i; e(l)i

is the node embedding for node i. When the target node is si, we attach an MLP structure to

the last layer’s node embedding of si to build EGNN proposal distribution,

EGNN(si|S−i,G) = MLP4(e
(L1)
i ), (6.3)
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where MLP4(·) is two-layer MLP with softmax activation in the output layer. In summary,

EGNN can leverage local geometric structures.

BERT model for amino acid sequence. BERT can model long range dependency in the

amino acid and secondary structure sequence. Specifically, for l = 0, · · · , L2, we have

v
(l+1)
1 , · · · ,v(l+1)

N = Transformer
(
v
(l)
1 , · · · ,v(l)

N

)
,

v
(0)
i =

[
H1(si)⊕H2(zi)⊕H3(i)

]
,

(6.4)

where ⊕ denotes the concatenation of vectors; H1(si) is the amino acid level embedding

to represent si; H2(zi) is the secondary structure level embedding; H3(i) is the position

embedding to represent the position i [60]. The proposal distribution of i-th node is v(L2)
i ,

BERT(si|S−i,G) = MLP(v(L2)
i ), (6.5)

EGNN and BERT focus on local geometric structure and long-range dependency, respec-

tively. To combine two proposal distributions (Equation (Equation 6.3) and (Equation 6.5)),

we use linear interpolation to get a better proposal distribution as follows,

Qθ(si|S−i,G) = γ EGNN(si|S−i,G) + (1− γ) BERT(si|S−i,G), (6.6)

where 0 < γ < 1 is a hyperparameter that controls the weights of two proposal distributions.

6.3.2 Adaptive Sampling

Then we design an adaptive sampling scheme that selects s1, · · · , sN (amino acids) with

adaptive weights. We want to draw independent samples and enlarge the distance between

two consecutive samples. The learning objective becomes

argmax
q=[q1,··· ,qN ]

N∑
i=1

qiD(i) + λ
1

N
ln qi, such that

N∑
i=1

qi = 1, (6.7)
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where λ > 0 is a hyperparameter, where D(i) is the probability of position i being changed.

The first term aims to maximize the expected distance between consecutive samples; while

the second term serves as a regularizer that encourages the adaptive weight’s distribution to

be close to uniform distribution.

6.4 Main Results

Dataset and Preprocessing. RCSB. We download all the protein data in pdb format from

https://www.rcsb.org/. The Protein Data Bank (PDB) file format is a textual file format

describing the three-dimensional structures of molecules held in the Protein Data Bank.

The PDB format accordingly provides description and annotation of protein and nucleic

acid structures, including atomic coordinates, secondary structure assignments, and atomic

connectivity. The list of all the amino acids, secondary structure, and their frequencies are

provided in the supplementary materials. We collect 27,043 proteins with a single chain,

from which we randomly select 1,000 proteins as a test set. The remaining proteins are

used for learning. We split training and validation sets with a 9:1 ratio. The training and

validation set contains 24,338 and 2,705 proteins, respectively.

CATH [61] is a dataset based on the hierarchical classification of protein structure (CATH)

available at https://www.cathdb.info/, also in PDB format. Following [32, 36, 25], for all

domains in the CATH 4.2 40% non-redundant set of proteins, we collect full chains up to

length 500 and then randomly assign their CATH topology classifications (CAT codes) to

train, validation and test sets at a targeted 8/1/1 split. Since each chain can contain multiple

CAT codes, we first removed any redundant entries from train and then from validation.

Finally, we removed any chains from the test set that had CAT overlap with train and

removed chains from the validation set with CAT overlap to train or test. This resulted in

a dataset of 15,802 chains in the training set, 1,975 chains in the validation set, and 1,887

chains in the test set.

50

https://www.rcsb.org/
https://www.cathdb.info/


Baseline. For all baselines, we use the default setup (hyperparameter) in the original

papers. (i) StructTrans (Structured Transformer) [32] uses three layers of self-attention

and position-wise feedforward modules for the encoder and decoder; (ii) ProDCoNN

(Protein design convolutional neural network) [33] uses a gridded box centered on the

target residue to capture the local structural information. The atoms and their features are

later voxelized into the 3D voxel grid. A 3D convolutional layer followed by a max-pooling

layer is then attached, followed by an MLP layer to make a prediction; (iii) DeepGCN

(Deep Graph Convolutional Network) [35] used graph convolutional network to represent

the node and edge attributes, where the 3D graph is transformed into a 2D graph with

an adjacency matrix. (iv) Fold2Seq (Protein Folding to Sequence) [36] jointly learns a

sequence embedding using a transformer and a fold embedding from the density of secondary

structural elements in 3D voxels. Traditional physics-based method RosettaDesign [62]

performs much worse than state-of-the-art deep learning methods and is inefficient [32,

33, 36, 63]. Thus, it is not included in the baselines. For reference, we also show the

results of (i) Uniform (Uniform frequencies): random amino acid sequence under the

uniform distribution of all the amino acids and (ii) Natural (Natural frequencies): random

amino acid sequence through natural frequencies of amino acids. We calculate the natural

frequencies of all the amino acids on the processed protein data and report them in the

supplementary materials.

Evaluation Metrics. We use the following metrics to evaluate the performance of all

the methods, following [32, 33, 34, 35]. We use the evaluation metrics following [32, 33,

34, 35]. (1) Recovery rate (RR) (%): percentage of correctly recovered amino acids in

the whole sequence; (2) Perplexity (PPL) measures how well a probability model can

predict a protein. Lower perplexities indicate better performance. (3) Amino acid level

accuracy (AAA). For each amino acid, the prediction can be seen as a binary classification

task (correctly recovered or not), we report average Precision-Recall Area Under the Curve
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(PR-AUC) over all the amino acids as metrics to measure the accuracy on the amino acid

level.

Table 6.2: Experimental results on RCSB and CATH. The results are averages and standard
deviations of 5 independent runs. On each metric, we highlight the best score and use * to
denote the results pass the t-test (SIPF versus Fold2Seq, the best baseline) with p-value <
0.05. The t-test results show that improvements of SIPF over the best baseline method are
significant in most of the metrics on both tasks.

RCSB

Method RR (↑) PPL (↓) AAA (↑)
Uniform 5.52±0.13% 20.02±0.06 0.15±0.01
Natural 9.18±0.08% 17.44±0.07 0.21±0.01

StructTrans 29.81±0.15% 9.30±0.11 0.40±0.02
ProDCoNN 25.78±0.25% 9.92±0.21 0.35±0.02
DeepGCN 28.00±0.24% 9.67±0.11 0.38±0.01
Fold2Seq 30.20±0.24% 9.28±0.10 0.43±0.01

SIPF 32.43±0.23%* 8.69±0.13* 0.46±0.01*

CATH

Method RR (↑) PPL (↓) AAA (↑)
Uniform 5.13±0.04% 20.03±0.05 0.15±0.01
Natural 9.84±0.05% 17.50±0.04 0.20±0.01

StructTrans 28.56±0.08% 9.47±0.06 0.38±0.01
ProDCoNN 26.52±0.11% 9.85±0.10 0.36±0.01
DeepGCN 27.78±0.12% 9.71±0.11 0.38±0.01
Fold2Seq 30.02±0.11% 9.38±0.05 0.43±0.01

SIPF 31.45±0.13%* 8.72±0.10* 0.45±0.01

The performance of all the compared methods on RCSB and CATH are presented in

Table Table 6.2. We observe that our method achieves the highest recovery rate (RR), amino

acid-level accuracy (AAA), and lowest (best) perplexity among all the compared methods on

both datasets. Specifically, compared with the best baseline method Fold2Seq, our method

achieves 7.4% relative improvement on recovery rate (RR) (30.20% v.s. 32.43%) and 6.4%

relative reduction in perplexity (8.69 v.s. 9.28) on RCSB, 4.5% relative improvement on

recovery rate (RR) (30.02% v.s. 31.45%) and 7.0% relative reduction in perplexity (8.72 v.s.

9.38) on CATH. The results of hypothesis testing (t-test) show the improvements over the

best baseline method are significant in most of the metrics.
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Table 6.3: Ablation studies.

Method RR (↑) PPL (↓) AAA (↑)
EGNN only 32.17±0.23% 8.71±0.13 0.45±0.01
BERT only 29.80±0.27% 9.47±0.11 0.40±0.01

Gibbs sampling 28.81±0.14% 9.62±0.12 0.39±0.02
uniform sampling 31.50±0.15% 9.28±0.12 0.42±0.02

w.o. reject 31.75±0.21% 9.20±0.16 0.43±0.02
SIPF 32.43±0.23% 8.69±0.13 0.46±0.01

Ablation Study. To further understand our method, we conduct an ablation study on the

RCSB dataset to investigate the impact of each component on the performance. Specifically,

we explore the empirical effect for both the conditional probability-based proposal and

sampling method and consider the following variants of our method.

(1) EGNN only. Our MCMC proposal distribution is a mixture of EGNN and BERT

prediction, as described in Equation (Equation 6.6). The variant uses only EGNN prediction

as a proposal to consider the local geometric structural information only, i.e., γ = 1

(Equation Equation 6.6 in Section subsection 6.3.1). (2) BERT only. The variant uses only

BERT prediction as MCMC proposal distribution to consider the long-range dependency

only, i.e., γ = 0 (Equation Equation 6.6 in Section subsection 6.3.1). (3) Gibbs sampling.

Gibbs sampling scans all the variables in a fixed order [64], instead of adaptive sampling in

our method (Section subsection 6.3.2). (4) uniform sampling. The variant randomly and

uniformly selects all the variables instead of adaptive weight. (5) w.o. reject. The variant

does not reject the proposal but accepts all the proposals. It studies the effect of leveraging

approximate target distribution. To make the comparison fair, the total numbers of sampling

iterations for all the methods are the same, ten times of the amino acid sequence length.

Table Table 6.3 reports the results of the ablation study, which demonstrates the best

performance of the full method SIPF. From the first two lines, we find that both EGNN and

BERT have positive contributions to the performance. We observe that removing EGNN

causes the most degradation in both recovery rate and perplexity, suggesting that EGNN

is more important than BERT. This is also validated by the fact that γ = 0.7 achieves
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the best performance by putting more weight on the EGNN component. Comparing the

3rd, 4th, and last lines, we also observe that adaptive sampling in SIPF outperforms Gibbs

sampling and uniform sampling. In addition, comparing the last two lines, we find if we

accept the proposal, the performance will degrade, demonstrating the positive contribution

of approximate target distribution P̃ (S). In sum, the MCMC proposal, adaptive sampling,

and approximate target distribution are all key components of SIPF.

6.5 Conclusion and Discussion

In this paper, to address the challenges in the existing inverse protein folding methods,

we have proposed a sampling-based method for inverse protein folding. Concretely, we

first formulate it as a sampling problem and then design two pretrained neural networks as

(conditional probability) MCMC proposal distribution. We also design a novel sampling

method (an adaptive sampling scheme and approximate target distribution) to quantify

uncertainty and enhance exploration ability to data space. Thorough empirical studies are

conducted to confirm the superiority of the proposed method SIPF.
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Part III

Differentiable Programming
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Overview In the third part of the thesis, we discuss differentiable programming. Specifi-

cally, the drug molecules are usually regarded as discrete structured data. Modeling discrete

object relies on combinatorial optimization more or less and suffers from a brute-force

trial-and-error strategy, which is computationally prohibitive. To address this issue, we

propose differentiable programming that throws the discrete optimization problem into a

continuous optimization problem. The main idea of differentiable programming is to relax

the discrete object into a continuous domain, which enables the gradient-based optimization

to manipulate the molecule object directly and circumvent the brute-force trial-and-error

strategy.

Differentiable programming can be used in small-molecule drug design, where we design

a differentiable scaffolding tree (a high-level abstract of the molecular graph) to convert

the molecular optimization from a combinatorial optimization problem into a continuous

optimization problem that can be solved efficiently via gradient descent.

chapter 7: Differentiable Scaffolding Tree for Molecular Optimization.

Tianfan Fu*, Wenhao Gao*, Cao Xiao, Jacob Yasonik, Connor W. Coley,

Jimeng Sun. International Conference on Learning Representation (ICLR),

2022.

Therapeutic antibodies have become one of the fastest-growing classes of drugs and have

been approved for the treatment of a wide range of indications, from cancer to autoimmune

diseases. Complementarity-determining regions (CDRs) are part of the variable chains in

antibodies and determine specific antibody-antigen binding. The key to the antibody design

is to design the CDR loop because the remaining part of the antibody is relatively fixed.

Thus, we also focus on using deep generative models to design an antibody CDR loop.

Unlike small-molecule, the CDR loop is a 3D structure with some constraints on the 3D

structure. Based on the idea of differentiable programming, we design a Constrained Energy

Model for Antibody Complementarity Determining Regions (CDRs) design to encode these

constraints.

56



chapter 8: Antibody Complementarity Determining Regions (CDRs) design

using Constrained Energy Model. Tianfan Fu, Jimeng Sun. The 28th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (2022).
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CHAPTER 7

DIFFERENTIABLE SCAFFOLDING TREE FOR MOLECULAR OPTIMIZATION

7.1 Research Challenge

Recent advances in deep generative models (DGM) for molecule optimization allow learning

the distribution of molecules and optimizing the latent embedding vectors of molecules.

Models in this category are exemplified by the variational autoencoder (VAE) [10, 11].

On the other hand, because of the discrete and not explicitly combinatorial nature of

the enormous chemical space, applying combinatorial optimization algorithms with some

structure enumeration has been the predominant approach [26, 30, 29]. Deep learning models

have also been used to guide these combinatorial optimization algorithms. For example,

[26, 28] tried to solve the problem with deep reinforcement learning; [15] approached the

problem via MCMC sampling guided by graph neural networks. Despite the initial success

of these previous attempts, the following challenges remain:

• C1: deep generative models optimize the molecular structures in a learned latent

space, which requires the latent space to be smooth and discriminative. Training such

models needs carefully designed networks and well-distributed datasets.

• C2: most combinatorial optimization algorithms, featured by evolutionary learning

methods [29, 30, 65, 15], exhibit random-walk behavior, and leverage trial-and-error

strategies to explore the discrete chemical space. The recent deep reinforcement

learning methods [26, 27, 28] aim to remove random-walk search using a deep neural

network to guide the searching. It is challenging to design the effective reward

function into the objective [28].

• C3: Most existing methods require a great number of oracle calls (a property evaluator)
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Figure 7.1: Illustration of Differentiable Scaffolding Tree approach. Convert molecular
graph to differentiable scaffolding tree. We show non-leaf nodes (grey), leaf nodes (yellow),
and expansion nodes (blue). The dashed nodes and edges are learnable.

to proceed with an efficient search. However, realistic oracle functions, evaluating with

either experiments or high-fidelity computational simulations, are usually expensive.

7.2 Main Idea and Contribution

To address these challenges, we proposed a differentiable scaffolding tree (DST) for molec-

ular structure and the main contributions are:

• We propose the differentiable scaffolding tree to define a local derivative of a chemical

graph. This concept enables a gradient-based optimization of a discrete graph structure.

It is the first attempt to make the molecular optimization problem differentiable at

the structure level rather than resorting to latent spaces or using RL/evolutionary

algorithms.

• We present a general molecular optimization strategy utilizing local derivatives defined

by differentiable scaffolding tree. This strategy leverages the property landscape’s

geometric structure and suppresses random-walk behavior, exploring chemical space

more efficiently. We also incorporate a determinantal point process (DPP) based

selection strategy to enhance the diversity of generated molecules.

• DST demonstrates encouraging preliminary results on de novo molecular optimization

and requires fewer oracle calls.
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7.3 DST Framework

In this section, we describe Differentiable Scaffolding Tree (DST). The mathematical

notations are listed in Table Table 7.1 for ease of exposition.

We first introduce the formulation of molecular optimization and differentiable scaffold-

ing tree (DST) in Section subsection 7.3.1, illustrate the pipeline in Figure Figure 7.1, then

describe the key steps following the order:

• Oracle GNN: We use Oracle GNN to replace black box oracle. Oracle GNN is trained

once and for all. The training is separate from optimizing DST below.

• Optimizing differentiable scaffolding tree: We formulate the discrete molecule opti-

mization into a locally differentiable problem with a differentiable scaffolding tree (DST).

Then a DST can be optimized by the gradient back-propagated from oracle GNN.

• Molecule Diversification After that, we describe how we design a determinantal point

process (DPP) based method to output diverse molecules for iterative learning.

7.3.1 Problem Formulation and Notations

Oracle O is a black-box function that evaluates certain chemical or biological properties.

Suppose we want to optimize P molecular properties specified by oracle O1, · · · ,OP , we

formulate molecule optimization problem as

argmaxX∈Q F (X;O1,O2, · · · ,OP ) = f(O1(X), · · · ,OP (X)), (7.1)

where X is a molecule, Q denotes the set of valid molecules; f is the composite objective

combining all the oracle scores, e.g., the mean value of P oracle scores. A scaffolding tree,

TX , is a spanning tree whose nodes are substructures. TX is represented by (i) node indicator

matrix, (ii) adjacency matrix, and (iii) node weight vector. Among the K nodes in TX , there
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are Kleaf leaf nodes and K −Kleaf non-leaf nodes. The sets of leaf nodes and non-leaf nodes

are denoted Vleaf and Vnonleaf correspondingly.

Table 7.1: Mathematical Notations.

Notations Descriptions
O Oracle function, e.g., evaluator of molecular property.
F objective function of molecule generation (Equation Equation 7.1).

P ∈ N+ Number of target oracles.
Q Set of all the valid chemical molecules.
S Vocabulary set, i.e., substructure set. A substructure is an atom or a ring.
T Scaffolding tree.

K = |T | number of nodes in scaffolding tree T .
N;A;w Node indicator matrix; adjacency matrix; node weight.
Vleaf Leaf node set in scaffolding tree T .

Vnonleaf Nonleaf node set in scaffolding tree T .
Vexpand Expansion node set in scaffolding tree T .

Kleaf = |Vleaf| Size of leaf node set.
Kexpand = |Vexpand| = K Size of expansion node set. Kleaf = Kexpand.

d ∈ N+ GNN hidden dimension.
L ∈ N+ GNN depth.

Θ = {E} ∪ {B(l),U(l)}Ll=1 Learnable parameter of GNN.
E ∈ R|S|×d embedding stackings of all the substructures in vocabulary set S .
B(l) ∈ RK×d bias parameters at l-th layer.
U(l) ∈ Rd×d weight parameters at l-th layer.

H(l), l = 0, · · · , L Node embedding at l-th layer of GNN
H(0) = NE ∈ RK×d initial node embeddings, stacks basic embeddings of all the nodes in the

scaffolding tree.
MLP multilayer perceptron
ReLU ReLU activate function
ŷ GNN prediction.
y groundtruth
L Loss function of GNN.
D the training set

N (X) Neighborhood molecule set of X (Def 3).
Λ differentiable edge set.

Ñ; Ã; w̃ Differentiable node indicator matrix; adjacency matrix; node weight.
det() Determinant of a square matrix

M ∈ N+ Number of all possible molecules to select.
C ∈ N+ Number of selected molecules.

S ∈ RM×M
+ Similarity kernel matrix.

V ∈ RM×M
+ Diagonal scoring matrix.

R subset of {1, 2, · · · ,M}, index of select molecules.
λ > 0 hyperparameter that balances desirable property and diversity.
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Figure 7.2: Example of differentiable scaffolding tree.

Differentiable scaffolding tree

Similar to a scaffolding tree, a differentiable scaffolding tree (DST) also contains (i) node

indicator matrix, (ii) adjacency matrix, and (iii) node weight vector, but with additional

expansion nodes. To make it locally differentiable, we modify the tree parameters from two

aspects: (A) node identity and (B) node existence. First, We enable optimization on the node

indicator:

Definition 1. Differentiable node indicator matrix Ñ takes the form:

Ñ =


Ñnonleaf

Ñleaf

Ñexpand

 ∈ R(K+Kexpand)×|S|
+ ,

|S|∑
j=1

Ñij = 1, K = Kexpand. (7.2)

Ñnonleaf = Nnonleaf ∈ {0, 1}(K−Kleaf)×|S| are fixed, equal to the part in the original scaffolding

tree, each row is a one-hot vector, indicating that we fix all the non-leaf nodes. In contrast,

both Ñexpand and Ñleaf are learnable, we use softmax activation to implicitly encode the

constraint
∑

j Ñij = 1 i.e., Ñij =
exp(N̂ij)∑|S|

j′=1
exp(N̂i,j′ )

, N̂ are the parameters to learn. This

constraint guarantees that each row of Ñ is a valid substructures’ distribution.

Also, We enable optimization on node existence by assigning learnable weights for the

leaf and expansion nodes, constructing an adjacency matrix and node weight vector:
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Definition 2. Differentiable adjacency matrix Ã ∈ R(K+Kexpand)×(K+Kexpand) takes the form:

Ãij = Ãji =

 σ(ŵi), (i, j) ∈ Λ, i ∈ Vleaf, j ∈ Vnonleaf

σ(ŵi|j), (i, j) ∈ Λ, i ∈ Vexpand, j ∈ Vleaf ∪ Vnonleaf,
(7.3)

where Λ is the differentiable edge set defined above, Sigmoid function σ(·) imposes the

constraint 0 ≤ Ãij ≤ 1. ŵ ∈ RKleaf+Kexpand are the parameters.

Then we construct a differentiable surrogate model to capture the knowledge from

any oracle function. We choose graph neural network architecture for its state-of-the-art

performance in modeling structure-property relationships. In particular, we imitate the

objective function F with GNN (graph convolutional network [9]):

ŷ = GNN(X; Θ) ≈ F (X;O1,O2, · · · ,OP ) = y, (7.4)

where Θ represents the GNN’s parameters. Concretely, we use a graph convolutional network

(GCN) [9]. The initial node embeddings H(0) = NE ∈ RK×d stacks basic embeddings of

all the nodes in the scaffolding tree, d is the GCN hidden dimension, N is the node indicator

matrix. E ∈ R|S|×d is the embedding matrix of all the substructures in vocabulary set S , and

is randomly initialized. The updating rule of GCN for the l-th layer is

H(l) = RELU
(
B(l) +A(H(l−1)U(l))

)
, l = 1, · · · , L, (7.5)

where L is GCN’s depth, A is the adjacency matrix, H(l) ∈ RK×d is the nodes’ embedding

of layer l, B(l) and U(l) ∈ Rd×d are bias and weight parameters, respectively. Then we

optimize Differentiable Scaffolding Tree via local editing.

Local Editing Operations For a leaf node v in the scaffolding tree, we can perform three

editing operations,

1. SHRINK: delete node v;
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2. REPLACE: replace a new substructure over v;

3. EXPAND: add a new node uv that connects to node v.

For a nonleaf node v, we support

1. EXPAND: add a new node uv connecting to v;

2. do nothing.

If we EXPAND and REPLACE, the new substructures are sampled from the vocabulary S .

We define the molecule neighborhood set:

Definition 3 (Neighborhood set). Neighborhood set of molecule X , denoted N (X), is

the set of all the possible molecules obtained by imposing one local editing operation to

scaffolding tree TX and assembling the edited trees into molecules.

Optimizing DST. Then within the domain of neighborhood molecule set N (X), the

objective function can be represented as a differentiable function of X’s DST (ÑX , ÃX , w̃X).

We address the following optimization problem to get the best scaffolding tree within N (X),

Ñ∗, Ã∗, w̃∗ = argmax{ÑX ,ÃX ,w̃X} GNN({ÑX , ÃX , w̃X}; Θ∗), (7.6)

where the GNN parameters Θ∗ are fixed. It is differentiable with regard to {Ñ, Ã, w̃} for

all molecules in the neighborhood set N (X). DST pipeline leverages iterative local discrete

search. In t-th iteration, we optimize the DST of X(t), i.e., X in Equation (Equation 7.6) is

X(t).

Sampling from DST. Then we sample the new scaffolding tree from the optimized DST.

Concretely, for each leaf node v ∈ Vleaf and the corresponding expansion node uv ∈ Vexpand,
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we select one of the following steps with probabilities (w.p.) as follows,

T ∼ DST-Sampler(Ñ∗, Ã∗, w̃∗)

=


1. SHRINK: delete leaf node v, w.p. 1− (w̃∗)v,

2. EXPAND: add uv, select substructure at uv based on (Ñ∗)uv , w.p. (w̃∗)v(w̃∗)uv |v,

3. REPLACE: select substructure at v based on (Ñ∗)u, w.p. (w̃∗)v(1− (w̃∗)uv |v).

(7.7)

Assemble. Each scaffolding tree corresponds to multiple molecules due to the multiple ways

substructures can be combined. Once the scaffolding tree is produced, we can efficiently

enumerate all the possible molecules following [11].

7.3.2 Molecule Diversification

In the current iteration, we have generated M molecules (X1, · · · , XM ) and need to select

C molecules for the next iteration. We expect these molecules to have desirable chemi-

cal properties (high F score) and simultaneously maintain higher structural diversity. To

do so, we resort to the determinantal point process (DPP) [66], which models the repul-

sive correlation between data points. Specifically, for M data points, whose indexes are

{1, 2, · · · ,M}, S ∈ RM×M
+ denotes the similarity matrix between these data points. To

create a diverse subset (denoted R) with fixed size C, the sampling probability should

be proportional to the determinant of the submatrix SR ∈ RC×C , i.e., P (R) ∝ det(SR),

where R ⊆ {1, 2, · · · ,M}, |R| = C. Combining the objective (F ) value and diversity, the

composite objective is

argmax
R⊆{1,2,··· ,M},|R|=C

LDPP(R) = λ
∑
r∈R

F (Xr) + logP (R) = log det(VR) + log det(SR),

(7.8)

where the hyperparameter λ > 0 balances the two terms, the diagonal scoring matrix

V = diag([exp(λF (X1)), · · · , exp(λF (XM))]), VR ∈ RC×C is a sub-matrix of V indexed

by R. When λ goes to infinity, it is equivalent to selecting top-C candidates with the highest
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F score, same as conventional evolutionary learning in [30, 29]. Inspired by generalized

DPP methods [67], we further transform LDPP(R),

LDPP(R) = log det(VR) + log det(SR) = log det
(
V

1
2

RSRV
1
2

R
)
= log det

(
(V

1
2SV

1
2 )R

)
.

where V
1
2SV

1
2 is symmetric positive semi-definite. Then it can be solved by generalized

DPP methods in O(C2M) [67]. The computational complexity of DST is O(TMC2).

Then, molecule diversification can be transformed as

argmax
R⊆{1,2,··· ,M},|R|=C

LDPP(R) = log det
((

V
1
2SV

1
2

)
R

)
, (7.9)

7.4 Main Results

First, we briefly describe the basic experimental setup, mainly following [11, 18, 26, 21, 28,

65]. Task. We focus on the following two optimization tasks: (1) molecular modification

(2) de novo molecule generation.

Following [28, 65] the target molecular properties, Molecular Properties contains

QED; LogP; SA; JNK3; GSK3β, following [28, 29, 68, 65], where QED quantifies drug-

likeness; LogP indicates the water-octanol partition coefficient; SA stands for synthetic

accessibility and is used to prevents the formation of chemically unfeasible molecules;

JNK3/GSK3β measure inhibition against c-Jun N-terminal kinase-3/Glycogen synthase

kinase 3 beta. For all 5 scores (including normalized SA), higher is better. We conducted

(1) single-objective generation that optimizes JNK3, GSK3β and LogP separately and

(2) multi-objective generation that optimizes the mean value of “JNK3+GSK3β” and

“QED+SA+JNK3+GSK3β” in the main text.

Dataset: ZINC 250K contains around 250K druglike molecules [45, 69]. To select the

substructure set S, we break the molecules into substructures (including single rings and

single atoms), We select the substructures that appear more than 1000 times in ZINC 250K
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as the vocabulary set S, which contains 82 most frequent substructures.

Baselines. (1) LigGPT (string-based distribution learning model with Transformer as

a decoder) [70]; (2) GCPN (Graph Convolutional Policy Network) [26]; (3) MolDQN

(Molecule Deep Q-Network) [27]; (4) GA+D (Genetic Algorithm with Discriminator

network) [29]; (5) MARS (Markov Molecular Sampling) [65]; (6) RationaleRL [28];

(7) ChemBO (Chemical Bayesian Optimization) [71]; (8) BOSS (Bayesian Optimization

over String Space) [68]. Among them, LigGPT belongs to the deep generative model,

where all the oracle calls can be precomputed; GCPN and MolDQN are deep reinforcement

learning methods; GA+D and MARS are evolutionary learning methods; RationaleRL is a

deep generative model fine-tuned with RL techniques. ChemBO and BOSS are Bayesian

optimization methods. We also consider a DST variant: DST-rand. Instead of optimizing

and sampling from DST, DST-rand leverages random local search, i.e., randomly selecting

basic operations (EXPAND, REPLACE, SHRINK) and substructure from the vocabulary.

To improve efficiency, we also select a subset of all the random samples with high surrogate

GNN prediction scores. All the baselines except LigGPT require online oracle calls.

Metrics. We consider the following metrics (1) Novelty (Nov) (% of molecules not

in training set); (2) Diversity (Div) (average pairwise Tanimoto distance); (3) Average

Property Score (APS) (average top-100 molecules); (4) # of oracle calls: DST needs to

call oracle in labeling data for GNN (precomputed) and DST based de novo generation

(online), we show the costs for both steps. For each method in Table Table 7.2 and Table 7.3,

we set the number of oracle calls so that the property score nearly converges w.r.t. oracle

call’s number. Since we only enumerate valid chemical structures during the recovery from

scaffolding trees, the chemical validities are always 100%.

Optimization Performance The de novo generation is to design novel, diverse molecules

with desirable chemical properties from scratch. We consider (1) single-objective generation

that optimizes JNK3, GSK3β and LogP separately and (2) multi-objective generation that
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Table 7.2: Multi-objective de novo design. #oracle = (1)“precomputed oracle call” (to label
molecules in existing database) + (2)“online oracle call” (during learning).

Method
JNK3+GSK3β QED+SA+JNK3+GSK3β

Nov↑ Div↑ APS↑ #oracle↓ Nov↑ Div↑ APS↑ #oracle↓
LigGPT 100% 0.845 0.271 100k+0 100% 0.902 0.378 100k+0
GCPN 100% 0.578 0.293 0+200K 100% 0.596 0.450 0+200K
MolDQN 100% 0.605 0.348 0+200K 100% 0.597 0.365 0+200K
GA+D 100% 0.657 0.608 0+50K 97% 0.681 0.632 0+50K
RationaleRL 100% 0.700 0.795 25K+67K 99% 0.720 0.675 25K+67K
MARS 100% 0.711 0.789 0+50K 100% 0.714 0.662 0+50K
ChemBO 98% 0.702 0.747 0+50K 99% 0.701 0.648 0+50K
BOSS 99% 0.564 0.504 0+50K 98% 0.561 0.504 0+50K
DST-rand 100% 0.456 0.622 10+5K 100% 0.765 0.575 20K+5K
DST 100% 0.750 0.827 10K+5K 100% 0.755 0.752 20K+5K

optimizes the mean value of “JNK3+GSK3β” and “QED+SA+JNK3+GSK3β”.

The results are shown in Table Table 7.3. We find that deep generative model (LigGPT)

and RL-based methods (GCPN and MolDQN) fail in some tasks, which is consistent with

the results reported in MARS [65]. Overall, DST obtains the best results in most tasks. In

terms of success rate and diversity, DST outperformed all baselines in most tasks. These

results show our gradient-based optimization strategy has a strong optimization ability to

provide a diverse set of molecules with high objective functions.

Figure 7.3: Oracle efficiency test. Top-100 average score v.s. the number of oracle calls.

We can see that the majority of de novo optimization methods require oracle calls online

(instead of pre-computation), including all RL/evolutionary algorithm-based baselines. DST

takes fewer oracle calls compared with baselines. DST can leverage the precomputed oracle

calls to label the molecules in an existing database (i.e., ZINC) for training the oracle GNN
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Table 7.3: Single-objective de novo molecular generation.

Method JNK3 GSK3β LogP
Nov↑ Div↑ APS↑ #oracle↓ Nov↑ Div↑ APS↑ #oracle↓ Nov↑ Div↑ APS↑ #oracle↓

LigGPT 100% 0.837 0.302 100K+0 100% 0.867 0.283 100K+0 100% 0.868 4.56 100K+0
GCPN 100% 0.584 0.365 0+200K 100% 0.519 0.400 0+200K 100% 0.532 5.43 0+200K
MolDQN 100% 0.605 0.459 0+200K 100% 0.545 0.398 0+200K 100% 0.485 6.00 0+200K
GA+D 99% 0.702 0.615 0+50K 98% 0.687 0.678 0+50K 100% 0.721 30.2 0+50K
RationaleRL 99% 0.681 0.803 25K+32K 99% 0.731 0.806 30K+45K - - - -
MARS 100% 0.711 0.784 0+50K 100% 0.735 0.810 0+50K 100% 0.692 44.1 0+30K
ChemBO 98% 0.645 0.648 0+50K 98% 0.679 0.492 0+50K 98% 0.732 10.2 0+50K
DST-rand 100% 0.754 0.413 10K+10K 97% 0.793 0.455 10K+10K 100% 0.713 36.1 10K+15K
DST 100% 0.732 0.928 10K+5K 100% 0.748 0.869 10K+5K 100% 0.704 47.1 10K+5K

and dramatically saving the oracle calls during reference. In the three tasks in Table Table 7.3,

two-thirds of the oracle calls (10K) can be precomputed or collected from other sources. To

further verify the oracle efficiency, we explore a special setting of molecule optimization

where the budget of oracle calls is limited to a fixed number (2K, 5K, 10K, 20K, 50K)

and compare the optimization performance. For GCPN, MolDQN, GA+D, and MARS,

the learning iteration number depends on the budget of oracle calls. RationaleRL [28]

is not included because it requires intensive oracle calls to collect enough reference data,

exceeding the oracle budget in this scenario. In DST, we use around 80% budget to label

the dataset (i.e., training GNN) while the remaining budget is to conduct de novo design.

Specifically, for 2K, 5K, 10K, 20K, and 50K, we use 1.5K, 4K, 8K, 16K, and 40K oracle

calls to label the data for learning GNN, respectively. We show the average objective values

of top-100 molecules under different oracle budgets in Figure Figure 7.3. Our method shows

a significant advantage compared to all the baseline methods in all limited budget settings. It

is also worth mentioning that our method can even perform oracle-free optimization, as we

can use the trained GNN as a static surrogate, though sacrificing some optimization ability.

In real cases, labeled data are usually collected for expensive oracles. We can train the GNN

with those data and optimize the molecules without explicitly calling the oracle.

7.5 Conclusion and Discussion

This paper proposed Differentiable Scaffolding Tree (DST) to make a molecular graph

locally differentiable, allowing a continuous gradient-based optimization. To the best of our
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knowledge, it is the first attempt to make the molecular optimization problem differentiable

at the substructure level rather than resorting to latent spaces or using RL/evolutionary

algorithms. We constructed a general molecular optimization strategy based on DST,

corroborated by thorough empirical studies.
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CHAPTER 8

ANTIBODY COMPLEMENTARITY DETERMINING REGIONS (CDRS) DESIGN

USING CONSTRAINED ENERGY MODEL

8.1 Research Challenge

Most of the affinity and specificity of antibodies are modulated by a set of binding loops

called the Complementarity Determining Regions (CDRs) found on the variable domain

of antibodies. There is a high demand to develop in silico methods for antibody design,

especially CDR loop design [72]. Recently machine learning methods have been proposed

in designing novel antibodies [73, 42]. However, several challenges remain:

C1. Antibody CDR loops have specific geometry shape [74]. However, most of the existing

antibody design methods do not consider it, which may generate invalid CDR loops.

C2. Most of the existing deep generative models do not leverage external knowledge and

are purely learning from data, impeding their ability to incorporate constraints.

8.2 Main Idea and Contribution

To address these issues, we proposed Constrained Energy Model that considers geometry

constraints during the generation of 3D CDR loops. The main contributions are:

(1) We formulate antibody CDR design as a constrained 3D generation task and define a

constrained manifold to represent all the geometric valid CDR loops.

(2) We design a Constrained Energy Model that learns the 3D structure on the defined

manifold (Section subsection 8.3.2).

(3) Experimental results confirm the effectiveness of the proposed method, which

obtains up to 33.4% relative reduction in 3D geometry error (Root Mean Square Deviation,

RMSD) and 8.4% relative improvement in terms of amino acid sequence metric (perplexity)
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Figure 8.1: Antibody structure.

(Section section 8.4). We provide more details as follows.

8.3 Constrained Energy Model Framework

In this section, we describe Constrained Energy Model (CEM).

8.3.1 CDR Loop Design

We first introduce the de novo antibody CDR loop generation problem. Amino acids are

the basic building blocks of proteins. The set of amino acids is denoted V , which contains

20 natural amino acids. Proteins consist of one or more chains of amino acids called

polypeptides [72]. The sequences of the amino acid chain cause the polypeptide and are

folded into a three-dimensional (3D) functional shape. An antibody is a special kind of

protein that is symmetric and Y-shaped. In the Y-shaped antibody, there are six CDR loops,

L1, L2, L3 loops on the light chain and H1, H2, H3 loops on the heavy chain [75, 76]. A 3D

CDR loop (H1, H2, or H3) can be characterized by a sequence of amino acids and their 3D

coordinates. A CDR loop is denoted Y , suppose it has N amino acids, it is represented as

Y = (A,X ), A = [a1, · · · , aN ], X = [x1, · · · ,xN ]. (8.1)

72



Figure 8.2: Pipeline of CEM.

Compared with L1, L2, and L3 loops, the H1, H2, and H3 loop in the CDR of an antibody

plays a critical role in its binding ability to potential antigens [77, 78].

Validity constraints. We define the validity of the generated loop based on empirical

domain knowledge about CDR loops [74, 79]. Specifically, we define the validity of a

generated 3D CDR loop when it satisfies the following two constraints:

1. Peptide bond length. Multiple amino acids are linked together by peptide bonds and

form a single chain. The distance between connected amino acids is a constant [74]:

||xi − xi+1||2 = κ, for i = 1, · · · , N − 1.

2. Open loop. The shape of CDR is an open loop, as shown in Figure Figure 8.1, where

the distance between the first and the last amino acids is within a specific range [79],

ϵ1 ≤ ||x1 − xN ||2 ≤ ϵ2.

The setup of κ, ϵ1, ϵ2 is based on domain knowledge [79] and empirical validation. For H1

loop, κ = 3.80, ϵ1 = 11.4, ϵ2 = 13.1; for H2 loop, κ = 3.81, ϵ1 = 5.0, ϵ2 = 5.9; for H3

loop, κ = 3.81, ϵ1 = 6.50, ϵ2 = 8.50. We define manifold M to represent the constraints.

M =
{
(A,X ) | ||xi − xi+1||2 = κ, ϵ1 ≤ ||x1 − xN ||2 ≤ ϵ2

}
. (8.2)

Constrained de novo antibody CDR loop design aims to generate novel 3D CDR loops Ys

within the constrained manifold M from scratch, i.e., Y ∈ M.
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8.3.2 Constrained Energy Model (CEM)

The Constrained Energy Model defines a parameterized probability distribution Pθ over all

the CDR loops Y in the constrained manifold M, M is constrained manifold that contains

all the geometric valid CDR loops,

Pθ(Y) =
e−Eθ(Y)

Z(θ)
, Y ∈ M, Z(θ) =

∫
Y∈M

e−Eθ(Y)dY (8.3)

the data (Y) with lower energy Eθ corresponds to higher probability/likelihood Pθ. the

normalization constant Z(θ) is computationally intractable. To represent the 3D CDR loop,

we leverage the state-of-the-art equivariant graph neural network (EGNN) proposed in [59].

The core idea of training the energy model is to push down the positive samples and

push up the hallucinated samples at the same time. In the Constrained Energy Model, we

restrict hallucinated samples in the manifold M. The learning objective is

argmax
θ

EY(+)∼Pdata

[
− Eθ(Y(+))

]
+ EY(−)∼Pθ

[
Eθ(Y(−))

]
, Y(+),Y(−) ∈ M, (8.4)

Specifically, gradient methods do not need to evaluate Pθ(Y) directly. Instead, it needs to

evaluate the gradient of the log probability, i.e., −∇Eθ. At the t-th step, it is updated via

(
A(−)

)(t)
=

(
A(−)

)(t−1) − λt∇AEθ((A(−))(t−1)) +Ξ,(
X (−)

)(t)
= RM

((
X (−)

)(t−1) − λt∇XEθ((X (−))(t−1)) + Γ
)
,

(8.5)

where λt is the step size at the t-th iteration, Ξ and Γ have the same shape with A and

X , respectively. Each scalar element in Ξ/Γ is i.i.d. drawn from zero-mean Gaussian

distribution whose variance is
√
λt, i.e., Γi ∼ N (0, λt) for any scalar element Γi ∈ Γ,

Ξi ∼ N (0, λt) for any scalar element Ξi ∈ Ξ. Our sampling space is restricted to manifold

M, when update X , we project the updated samples to the manifold using retraction

operation (denoted RM), following [80].
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8.4 Main Results

We conducted generation tasks on H1, H2, and H3 loops and reported the results in Table Ta-

ble 8.1. We conducted 5 independent runs with different random seeds, reported average

results, and have these observations:

1. our method outperforms all the baseline methods significantly in terms of amino

acid sequence level metric (PPL, perplexity) and geometry graph metrics (RMSD,

root-mean-square deviation, and %V, validity rate). Specifically, compared with the

best baseline method (IR-GNN), on H1/H2/H3 design tasks, our method achieves

14.9%/15.0%/26.2% relative improvement in terms of %V respectively, 24.1%/11.6%/33.4%

relative reduction in terms of RMSD respectively, and 7.6%/3.5%/8.4% relative re-

duction in terms of PPL;

2. H1 v.s. H2 v.s. H3: among all the three kinds of design tasks, including H1, H2, and

H3 loops, almost all the methods get the highest perplexity, RMSD, and lower validity

in the H3 generation task. This is consistent with the existing knowledge that CDR

H3 loops have the highest variability and are most challenging to design [42].

3. Diversity: EBM, CEM, IR-GNN, and AR-GNN perform similarly in terms of diver-

sity, validating that our method can explore the amino acid sequence space thoroughly.

The diversity is measured on the amino acid sequence level.

Ablation study (effect of constraints). To show the empirical effect of constraints, we

also compare the results of EBM in Table Table 8.1. We observe that CEM outperforms

the vanilla energy-based model significantly and consistently across all three generation

tasks (H1, H2, and H3), obtaining 32.8%, 120.7%, 57.9% relative improvement in terms of

validity rate (% V), respectively. The key reason behind this observation is: CEM constrains

the learning space to the constrained manifold M, and only needs to discriminate (i.e.,

assigning lower or higher energy value) the data points on the manifold. The constrained
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Table 8.1: de novo antibody CDR loop (including H1, H2, H3) design results on SAbDab.

Task Method PPL (↓) RMSD (↓) %V (↑) Div (↑)

H1

Reference 8.10±0.08 0.0±0.00 100.0±0.0% 0.518±0.024
LSTM 10.20±0.23 - - 0.553±0.045

GA 10.48±0.26 1.99±0.13 44.0±1.9% 0.635±0.047
AR-GNN 9.55±0.25 1.97±0.11 61.7±1.7% 0.632±0.050
IR-GNN 9.18±0.16 1.70±0.11 87.0±1.3% 0.684±0.014

EBM 9.84±0.27 1.92±0.25 75.3±1.8% 0.691±0.028
CEM 8.48±0.19* 1.29±0.15* 100.0±0.0%* 0.684±0.010

H2

Reference 8.57±0.12 0.0±0.0 100.0±0.0% 0.603±0.015
LSTM 10.86±0.35 - - 0.633±0.030

GA 10.25±0.26 1.93±0.19 34.3±1.8% 0.544±0.050
AR-GNN 10.54±0.24 1.69±0.30 34.5±1.1% 0.671±0.038
IR-GNN 9.65±0.16 1.12±0.17 86.9±0.9% 0.618±0.023

EBM 10.00±0.39 1.44±0.30 45.3±1.0% 0.665±0.031
CEM 9.31±0.10* 0.99±0.11 100.0±0.0%* 0.664±0.025

H3

Reference 9.84±0.32 0.0±0.0 100.0±0.0% 0.745±0.031
LSTM 12.35±0.33 - - 0.736±0.047

GA 12.75±0.29 4.33±0.98 13.4±% 0.713±0.054
AR-GNN 13.01±0.13 3.80±0.52 25.8±0.9% 0.754±0.025
IR-GNN 11.45±0.25 3.02±0.24 78.4±0.7% 0.751±0.017

EBM 10.93±0.48 3.21±0.86 62.7±1.0% 0.798±0.043
CEM 10.49±0.15* 2.01±0.10* 99.0±0.3%* 0.786±0.013

Energy Model is more efficient than the unconstrained energy model (i.e., vanilla energy

model) in terms of sample complexity.

8.5 Conclusion and Discussion

We have proposed Constrained Energy Model (CEM) for designing 3D antibody CDR

loops. We first design a constrained manifold for all the CDR loops that satisfy geometry

constraints. Then we design Constrained Energy Model that learns from both positive and

hallucinated samples in the constrained manifold and updates hallucinated samples in the

constrained manifold. Thorough empirical studies validate CEM’s superiority in designing

CDR H1, H2, and H3 loops.
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Part IV

Intelligent Combinatorial Optimization
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Overview In the last part of the thesis, we discuss intelligent combinatorial optimization

methods for drug design. Specifically, the drug molecules are essentially discrete structured

data objects. The most straightforward method is combinatorial optimization. However,

most of the existing combinatorial optimization algorithms (e.g., genetic algorithm, Monte

Carlo tree search) rely heavily on brute-force trial-and-error strategies and are always

computationally expensive. To address this issue, we propose intelligent combinatorial

optimization. Combinatorial optimization is essentially a search problem. The main idea of

intelligent combinatorial optimization is to estimate the potential reward for each searching

branch and prioritize the promising branches to search the discrete space intelligently.

Traditional combinatorial optimization methods such as genetic algorithms (GA) have

demonstrated state-of-the-art performance in various drug molecular optimization tasks.

However, they rely heavily on a random-walk-like exploration, which leads to unstable

performance. To achieve a more stable and efficient drug design method, we propose a

Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable

design steps and suppress random-walk behavior. We validate the effectiveness of the

proposed method on small-molecule drug design.

chapter 9: Reinforced Genetic Algorithm for Structure-based Drug Design.

Tianfan Fu*, Wenhao Gao*, Connor W. Coley, Jimeng Sun. Neural Information

Processing Systems (NeurIPS) 2022.
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CHAPTER 9

REINFORCED GENETIC ALGORITHM FOR STRUCTURE-BASED DRUG

DESIGN

9.1 Research Challenge

Rapid drug discovery that requires less time and cost is of significant interest in pharmaceuti-

cal science, whose importance has been highlighted in the recent pandemic. Structure-based

drug design (SBDD) [81] that leverages the three-dimensional (3D) structures of the disease-

related proteins to design drug candidates is one primary approach to accelerate the drug

discovery processes with physical simulation and data-driven modeling. According to the

lock and key model [82], the molecules that bind tighter to a disease target are more likely

to expose bioactivity against the disease, which has been verified experimentally [83]. As

AlphaFold2 has provided accurate predictions to most human proteins [84, 85], SBDD

has a tremendous opportunity to discover new drugs for new targets that we cannot model

before [86].

SBDD could be formulated as an optimization problem where the objective function

is the binding affinity estimated by simulations such as docking [82]. The most widely

used design method is virtual screening, which exhaustively investigates every molecule

in a library and ranks them. Lyu et al. successfully discovered new chemotypes for AmpC

β-lactamase and the D4 dopamine receptor by studying hundreds of millions of molecules

with docking simulation [87]. However, the number of the drug-like molecules is large

as estimated to be 1060 [81], and it is computationally prohibitive to screen all of the

possible molecules. Though machine learning approaches have been developed to accelerate

screening [88, 89], it is still challenging to screen large enough chemical space within the

foreseeable future.
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Instead of naively screening a library, designing drug candidates with generative models

has been highlighted as a promising strategy, exemplified by [90, 91]. This class of methods

models the problem as the generation of ligands conditioned on the protein pockets. However,

as generative models are trained to learn the distribution of known active compounds, they

tend to produce molecules similar to training data [92], which discourages finding novel

molecules and leads to unsatisfactory optimization performance.

A more straightforward solution is a combinatorial optimization algorithm that searches

the implicitly defined discrete chemical space. As shown in multiple standard molecule

optimization benchmarks [23, 25, 24], combinatorial optimization methods, especially

genetic algorithms (GA) [30, 93], often perform better than deep generative models. The key

to superior performance is GA’s action definition. Specifically, in each generation (iteration),

GA maintains a population of possible candidates (a.k.a. parents) and conducts the crossover

between two candidates and mutation from a single candidate to generate new offspring.

These two types of actions, crossover, and mutation, enable global and local traversal over

the chemical space, allowing a thorough exploration and superior optimization performance.

However, most GA algorithms select mutation and crossover operations randomly [30],

leading to significant variance between independent runs. Especially in SBDD, when the

oracle functions are expensive molecular simulations, it is resource-consuming to ensure

stability by running multiple times. Further, most current combinatorial methods are

designed for general-purpose molecular optimization and simply use a docking simulation

as an oracle. It is challenging to leverage the structure of proteins in these methods, and we

need to start from scratch whenever we change a protein target, even though the physics of

ligand-protein interaction is shared. Ignoring the shared information across tasks leads to

unnecessary exploration steps and, thus, demands many more oracle calls, which require

expensive and unnecessary simulations [94].
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9.2 Main Ideas and Contributions

To overcome these issues in the GA method, we propose Reinforced Genetic Algorithm

(RGA), which attempts to reformulate an evolutionary process as a Markov decision pro-

cess and uses neural networks to make informed decisions and suppress the random-walk

behavior. Specifically, we utilize an E(3)-equivariant neural network [59] to choose parents

and mutation types based on the 3D structure of the ligands and proteins. The networks are

pre-trained with various native complex structures to utilize the knowledge of the shared

binding physics between different targets and then fine-tuned with a reinforcement learning

algorithm during optimizations. We test RGA’s performance with various disease-related

targets, including the main protease of SARS-CoV-2.

The main contributions of this work can be summarized as follows:

• We propose an evolutionary Markov decision process (EMDP) that reformulates an

evolutionary process as a Markov decision process, where the state is a population of

molecules instead of a single molecule (Section subsection 9.3.2).

• We show the first successful attempt to use a neural model to guide the crossover and

mutation operations in a genetic algorithm to suppress random-walk behavior and explore

the chemical space intelligently (Section subsection 9.3.3).

• We present a structure-based de novo drug design algorithm that outperforms baseline

methods consistently through thorough empirical studies on optimizing binding affinity

by leveraging the underlying binding physics (Section section 9.4).

9.3 RGA framework

In this work, we focus on structure-based drug design. The goal is to design drug molecules

(a.k.a. ligands) that could bind tightly with the disease-related proteins (a.k.a. targets).

Given the 3D structures of the target proteins, including binding site information, docking is
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a popular computational method for assessing the binding affinity, which can be roughly

retrieved as the free energy changes during the binding processes. We present a variant of a

genetic algorithm that is guided by reinforcement learning and a docking oracle. Next, we

will first describe the general evolutionary process used in genetic algorithms (Section sub-

section 9.3.1); Then, we will present how to model this evolutionary process as a Markov

decision process (MDP) where RL framework can be constructed (Section subsection 9.3.2);

After that, we describe the detailed implementation of this MDP framework using multiple

policy networks (Section subsection 9.3.3).

Docking simulation. The purpose of target-ligand docking is to find the optimal binding

between a small molecule (ligand) and a target (target protein). Docking can be conducted

using well-commercialized software, such as AutoDock Vina [95]. The input is a 2D

molecular graph, the 3D geometric shape of target and the corresponding binding site. The

output is the 3D pose and relative position of the ligand (binds to target) that corresponds

to the best binding affinity score. In this work, we use X to denote the ligand (including

its 3D pose that binds to the target), T to denote 3D target structures. The mathematical

notation table is available in Appendix. In this work, we leverage one 3D pose and relative

coordinates of the ligand that corresponds to the best binding affinity score.

For ease of exposition, we list the mathematical notations in Table Table 9.1. All the

mathematical notations are divided into three parts: (1) notation for genetic algorithm

(Section subsection 9.3.1); (2) notation for equivariance neural networks (ENN) [59] (Sec-

tion subsection 9.3.3); (3) notations for policy network (Section subsection 9.3.3).

9.3.1 Evolutionary Process

In this section, we introduce the primary setting of the evolutionary processes. With both

optimization performance and synthetic accessibility taken into account [97, 25], we follow

the action settings in Autogrow 4.0 [93]. It demonstrated superior performance over other

GA variants in the empirical validation of structure-based drug design [93], and its mutation
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Table 9.1: Mathematical Notations. All the mathematical notations are divided into three
parts: (1) notation for genetic algorithm (Section subsection 9.3.1); (2) notation for equiv-
ariance neural networks (ENN) [59] (Section subsection 9.3.3); (3) notations for policy
network (Section subsection 9.3.3).

Notations Descriptions
X ligand (drug molecule, including 3D pose)
T target (target protein related to the disease)
S(t) the state (population of molecule) at the t-th generation.
Q(t) offspring pool at the t-th generation.
K the number of molecules in the state, i.e., size of the population.

X
parent 1/2
crossover the first/second parent molecule in the crossover.

Xchild 1/2
crossover the first/second child molecule in the crossover.

X
parent
mutation parent molecule in the mutation

Xchild
mutation child molecule in the mutation
ξ ∈ R the selection reaction in the mutation
R the reaction set (library) for mutation

ENN equivariance neural networks [59]
V = {H,C,O,N, · · · } vocabulary set of atoms

Y = (A,Z) 3D structure
A categories of all the atoms
ai one-hot vector that encode category of i-th atom
Z 3D coordinates of the atoms

D ∈ R|V|×d the embedding matrix of all the categories of atoms
d the hidden dimension in ENN.
N number of atoms in the input of ENN.
L number of layers in ENN

l = 0, 1, · · · , L index of layer in ENN
MLP multiple layer perceptrons

MLPe(·),MLPx(·),MLPh(·) two-layer MLP in ENN with Swish activation [96] in hidden layer
⊕ the concatenation of vectors

Z(0) = {zi}Ni=1 initial coordinate embeddings, real 3D coordinates of all the nodes.
H(l) = {h(l)

i }Ni=1 Node embeddings at the l-th layer
h
(0)
i = D⊤ai ∈ Rd The initial node embedding that embeds the i-th node
Z(l) = {z(l)i }Ni=1 Coordinate embeddings at the l-th layer

w
(l)
ij message vector for the edge from node i to node j at l-th layer

v
(l)
i message vector for node i at l-th layer

z
(l)
i the position embedding for node i at l-th layer

h
(l)
i the node embedding for node i at l-th layer

hY = ENN(Y) ENN representation of the 3D graph Y (Equation Equation 9.1)
p
(1)
crossover(X

parent 1
crossover|S(t)) probability to select the first parent molecule in crossover

p
(2)
crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)) probability to select the second parent molecule in crossover
pcrossover(X

child 1
crossover, X

child 2
crossover|S(t)) probability of two generated child molecules in crossover (Eq Equation 9.4)

p
(1)
mutation(X

parent
mutation|S(t)) probability to select the parent molecule in mutation

p
(2)
mutation(ξ|X

parent
mutation,S(t)) probability to select the reaction in mutation

pmutation(X
child
mutation|S(t)) probability of generated child molecule in mutation (Eq Equation 9.7)

actions originated from chemical reactions so that the designed molecules are more likely

to be synthesizable. Specifically, an evolutionary process starts by randomly sampling
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a population of drug candidates from a library. In each generation (iteration), it carries

out (i) crossover between parents selected from the last generation, and (ii) mutation on a

single child to obtain the offspring pool. Note that we only adopted the action settings from

Autogrow 4.0, without using other tricks such as elitism.

Crossover, also called recombination, combines the structure of two parents to generate

new children. Following Autogrow 4.0 [93], we select two parents from the last generation

and search for the largest common substructure shared between them. Then we generate

two children by randomly switching their decorating moieties, i.e., the side chains attached

to the common substructure.

Mutation operates on a single parent molecule and modifies its structure slightly. Following

Autogrow 4.0 [93], we adopt transformations based on chemical reactions. Unlike naively

defined atom-editing actions, mutation steps based on chemical reactions could ensure all

modification is reasonable in reality, leading to a larger probability of designing synthesizable

molecules. We included two types of chemical reactions: uni-molecular reactions, which

only require one reactant, and bi-molecular reactions, which require two reactants. While

uni-molecular reactions could be directly applied to the parent, we sample a purchasable

compound to react with the parent when conducting a bi-molecular reaction. In both cases,

the parent serves as one reactant, and we use the main product as the child molecule. We

use the chemical reactions from [93], which was originally from [98, 99].

Evolution. At the t-th generation (iteration), given a population of molecules denoted as

S(t), we generate an offspring pool denoted as Q(t) by applying crossover and mutation

operations. Then we filter out the ones with undesirable physical and chemical properties

(e.g., poor solubility, high toxicity) in the offspring pool and select the most promising K to

form the next generation pool (S(t+1)).
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Figure 9.1: We illustrate one generation (iteration) of GA (top) and RGA pipeline (bottom).
Specifically, we train policy networks that take the target and ligand as input to make
informed choices on parents and mutation types in RGA.

9.3.2 Evolutionary Markov Decision Process

Next, we propose the evolutionary Markov decision process (EMDP) that formulates an

evolutionary process of genetic algorithm as a Markov decision process (MDP). The pri-

mary purpose is to utilize reinforcement learning algorithms to train networks to inform

the decision steps to replace random selections. Taking a generation as a state, Markov

property that requires P (S(t+1)|S(1), · · · ,S(t)) = P (S(t+1)|S(t)) is naturally satisfied by

the evolutionary process described above, where S(t) denotes the state at the t-th generation,

which is the population of ligands. We use X to denote a ligand. We elaborate on essential

components for the Markov decision process as follows, and the EMDP pipeline is illustrated
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in Figure Figure 9.1.

State Space. We define the population at the t-step generation, S(t), in the evolutionary

process as the state at the t-step in an EMDP. A state includes a population of candidate

molecules (i.e., ligand, denoted X) and their 3D poses docked to the target, fully observable

to the RL agent. At the beginning of the EMDP, we randomly select a population of

candidate molecules and use docking simulation to yield their 3D poses as the initial state.

Action Space. The actions in an EMDP are to conduct the two evolutionary steps: crossover

and mutation, in a population. For each evolutionary step, we need two actions to conduct it.

Concretely, crossover (Xparent 1
crossover, X

parent 2
crossover

crossover−−−−→ Xchild 1
crossover, X

child 2
crossover) can be divided to two

steps:

1. select the first candidate ligand Xparent 1
crossover from the current state (population S(t));

2. conditioned on the first selected candidate Xparent 1
crossover, select the second candidate

ligand Xparent 2
crossover from the remaining candidate ligand set S(t) − {Xparent 1

crossover} and apply

crossover (Section subsection 9.3.1) to them.

Mutation (Xparent
mutation

mutated by ξ−−−−−−→ Xchild
mutation) can be divided to two steps:

1. select the candidate ligand Xparent
mutated to be mutated from the current state (population

S(t));

2. conditioned on the selected candidate ligand Xparent
mutated, select the reaction ξ from the

reaction set R and apply it to Xparent
mutated.

As applying the crossover and mutation steps are deterministic, the actions in an EMDP

focus on selecting parents and mutation types. Upon finishing the action, we could obtain

an offspring pool, Q(t).

State Transition Dynamics. The state transition in an EMDP is identical to the evolution

in an evolutionary process. Once we finish the actions and obtain the offspring pool,

Q(t) = {Xchild 1, Xchild 2, · · · }, we apply molecular quality filters to filter out the ones
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unlikely to be drug and then select the most promising K to form the parent set for the next

generation (S(t+1)).

Reward. We define the reward as the binding affinity change (docking score). The actions

leading to stronger binding scores would be prioritized. As there is no “episode” concept in

an EMDP, we treat every step equally.

9.3.3 Target-Ligand Policy Network

To utilize molecular structures’ translational and rotational invariance, we adopt equivariance

neural networks (ENNs) [59] as the target-ligand policy neural networks to select the actions

in both mutation and crossover steps. Each ligand has a 3D pose that binds to the target

protein, and the complex serves as the input of ENN.

Specifically, we want to model a 3D graph Y , which can be a ligand, target, or target-

ligand complex. The input feature can be described as Y = (A,Z), where A represents

atoms’ categories (the vocabulary set V = {H,C,O,N, · · · }) and Z represents 3D coordi-

nates of the atoms. Suppose D ∈ R|V|×d is the embedding matrix of all the categories of

atoms in a vocabulary set V , is randomly initialized and learnable, d is the hidden dimension

in ENN. Each kind of atom corresponds to a row in D. We suppose there are N atoms,

and each atom corresponds to a node in the 3D graph. Node embeddings at the l-th layer

are denoted as H(l) = {h(l)
i }Ni=1, where l = 0, 1, · · · , L, L is number of layers in ENN.

The initial node embedding h
(0)
i = D⊤ai ∈ Rd embeds the i-th node, where ai is one-hot

vector that encode the category of the i-th atom. Coordinate embeddings at the l-th layer are

denoted Z(l) = {z(l)i }Ni=1. The initial coordinate embeddings Z(0) = {zi}Ni=1 are the real 3D

coordinates of all the nodes. The following equation defines the feedforward rules of ENN,
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for i, j = 1, · · · , N, i ̸= j, l = 0, 1, · · · , L− 1, we have

w
(l+1)
ij = MLPe

(
h
(l)
i ⊕ h

(l)
j ⊕ ||z(l)i − z

(l)
j ||22

)
∈ Rd,

v
(l+1)
i =

N∑
j=1,j ̸=i

w
(l+1)
ij ∈ Rd,

z
(l+1)
i = z

(l)
i +

N∑
j=1,j ̸=i

(
z
(l)
i − z

(l)
j

)
MLPx

(
w

(l)
ij

)
∈ R3,

h
(l+1)
i = MLPh

(
h
(l)
i ⊕ v

(l+1)
i

)
∈ Rd,

hY =
N∑
i=1

h
(L)
i ∈ Rd

=⇒ hY = ENN(Y)

(9.1)

where ⊕ denotes the concatenation of vectors; MLPe(·) : R2d+1 −→ Rd;MLPx(·) : Rd −→

R;MLPh(·) : R2d −→ Rd are all two-layer multiple-layer perceptrons (MLPs) with Swish

activation in the hidden layer [96]. At the l-th layer, w(l)
ij represents the message vector for the

edge from node i to node j; v(l)
i represents the message vector for node i, z(l)i is the position

embedding for node i; h(l)
i is the node embedding for node i. H(L) = [h

(L)
1 , · · · ,h(L)

N ] are

the node embeddings of the L-th (last) layer. We aggregate them using the sum function

as a readout function to obtain a representation of the 3D graph, denoted hY . The whole

process is written as hY = ENN(Y).

Crossover Policy Network. We design two policy networks for two corresponding actions

in a crossover, as mentioned in Section subsection 9.3.2. (1) the first action in crossover

operation is to select the first parent ligand Xparent 1
crossover from the population S(t). Similar to

the first action in mutation operation, we obtain a valid probability distribution over all the

available ligands based on the target-ligand complex as input feature and ENN as the neural

network architecture, the selection probability of the ligand Xparent 1
crossover ∈ S(t) is

p(1)crossover(X
parent 1
crossover|S(t)) =

exp
(
MLP(hT &X

parent 1
crossover

)
)∑

X′∈S(t) exp
(
MLP(hT &X′)

) , (9.2)
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where T and X denotes target and ligand (including 3D pose), respectively, T &X denotes

target-ligand complex. (2) The second action is to select the second parent ligand conditioned

on the first parent ligand selected in the first action. Specifically, for ligand in the remaining

population set, we concatenate the ENN’s embedding of the target, first parent ligand

Xparent 1
crossover and the second parent ligand Xparent 2

mutation, and feed it into an MLP to estimate a scalar

as an unnormalized probability. The unnormalized probabilities for all the ligands in the

remaining population set are normalized via the softmax function, i.e.,

p(2)crossover(X
parent 2
crossover|Xparent 1

crossover,S(t))

= Softmax
{

MLP(hT ⊕ h
X

parent 1
crossover

⊕ h
X

parent 2
crossover

), · · · ,
}
X

parent 2
crossover∈S(t)−{Xparent 1

crossover}
.

(9.3)

Given two parent ligands, crossover finds the largest substructure that the two parent

compounds share and generates a child by combining their decorating moieties. Thus, the

generation of child ligands is deterministic, and the probability of the generated ligands

Xchild
crossover is

pcrossover(X
child 1
crossover, X

child 2
crossover|S(t))

=pcrossover(X
parent 1
crossover, X

parent 2
crossover|S(t))

= p(1)crossover(X
parent 1
crossover|S(t)) · p(2)crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)).

(9.4)

Mutation Policy Network. We design two policy networks for two corresponding actions

in mutation, as mentioned in Section subsection 9.3.2. (1) the first action in the mutation

operation is to select a candidate ligand to be mutated from population S(t). It models the

3D target-ligand complex to learn if there is improvement space in the current complex.

Formally, we obtain a valid probability distribution over all the available ligands based on

the target-ligand complex as input feature and ENN as neural architecture, the selection
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probability of the ligand Xparent
mutation ∈ S(t) is

p
(1)
mutation(X

parent
mutation|S

(t)) =
exp

(
MLP(hT &X

parent
mutation

)
)∑

X′∈S(t) exp
(
MLP(hT &X′)

) , (9.5)

where T &X denotes target-ligand complex, hT &X = ENN(T &X) represents the ENN’s

embedding of the target-ligand complex. (2) The second action is to select the SMARTS

reaction from the reaction set conditioned on the selected ligand in the first action. Specif-

ically, for each reaction, we generate the new ligand Xchild
mutation, then obtain the embedding

of the target, first ligand Xparent
mutation and the new ligand Xchild

mutation through ENN, concatenate

these three embeddings and feed it into an MLP to estimate a scalar as an unnormalized

probability. The unnormalized probabilities for all the reactions are normalized via the

softmax function, i.e.,

p
(2)
mutation(ξ|X

parent
mutation,S

(t)) = Softmax
{

MLP(hT ⊕ hX
parent
mutation

⊕ hXchild
mutation

]), · · · ,
}
ξ∈R, (9.6)

where Xparent
mutation

mutated by ξ−−−−−−→ Xchild
mutation, R is the reaction set. The probability of the generated

ligand Xchild
mutation is

pmutation(X
child
mutation|S(t)) = p

(1)
mutation(X

parent
mutation|S

(t)) · p(2)mutation(ξ|X
parent
mutation,S

(t)). (9.7)

Policy Gradient. We leverage policy gradient to train the target-ligand policy neural

network. Specifically, we consider maximizing the expected reward as an objective via

REINFORCE [100],

max EX∼p(X|S(t))

[
Reward(X)

]
, (9.8)

where p(X) is defined in Equation (Equation 9.4) and (Equation 9.7) for crossover and

mutation mutation, respectively. The reward is the binding affinity between the ligand and

the target. Larger reward values are desirable. Each episode corresponds to a generation in

RGA and we decompose the whole reward into the sum of multiple intermediate rewards
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in multiple generations. The intermediate reward is the improvement of binding affinity

over the last generation. The whole pipeline is illustrated in Figure Figure 9.1. To provide a

warm start, we pretrain ENN on a 3D target-ligand binding affinity prediction task, where

the input is the target-ligand complex and the output is their binding affinity.

9.4 Main Results

In this section, we describe the experimental setup and results.

9.4.1 Experimental Setup

Docking Simulation. We adopt AutoDock Vina [95] to evaluate the binding affinity. The

docking score estimated by AutoDock Vina is called the Vina score and roughly characterizes

the free energy changes of binding processes in kcal/mol. Thus lower Vina score means a

stronger binding affinity between the ligand and target. We picked various disease-related

proteins, including G-protein coupling receptors (GPCRs) and kinases from DUD-E [101]

and the SARS-CoV-2 main protease [102] as targets.

Baselines. The baseline methods cover traditional brute-force search methods (Screen-

ing), deep generative models (JTVAE and Gen3D), genetic algorithm (GA+D, graph-GA,

Autogrow 4.0), reinforcement learning methods (MolDQN, RationaleRL, REINVENT,

GEGL), and MCMC method (MARS). Gen3D and Autogrow 4.0 are structure-based drug

design methods, while others are general-purpose molecular design methods. Although

methods explicitly utilizing target structures are relatively few, we add general-purpose

molecular design methods optimizing the same docking oracle scores as ours, which is a

common use case, as baselines [30, 25]. Concretely, Screening mimics high throughput

screening via sampling from the ZINC database randomly; JTVAE (Junction Tree Vari-

ational Auto-Encoder) [11] uses a Bayesian optimization on the latent space to optimize

molecules indirectly; Gen3D [90] is an auto-regressive generative model that grows 3D

structures atom-wise inside the binding pocket; GA+D [29] represents molecule as SELF-
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IES string [103] and uses genetic algorithm enhanced by a discriminator neural network;

Graph-GA [30] conduct genetic algorithm on molecular graph representation; Autogrow

4.0 [93] is the state-of-the-art genetic algorithm in structure-based drug design; MolDQN

(Molecule Deep Q-Network) [27] leverages deep Q-value learning to grow molecules

atom-wisely; RationaleRL [28] uses rationale (e.g., functional groups or subgraphs) as the

building block and a policy gradient method to guide the training of graph neural network-

based generator; REINVENT [100] represent molecules as SMILES string and uses policy

gradient-based reinforcement learning methods to guide the training of the RNN generator;

GEGL (genetic expert-guided learning) [104] uses LSTM guided by reinforcement learning

to imitate the GA exploration; MARS (Markov Molecule Sampling) [65] leverages Markov

chain Monte Carlo sampling (MCMC) with the adaptive proposal and annealing scheme

to search chemical space. To conduct a fair comparison, we limit the number of oracle

calls to 1,000 times for each method. All the baselines can be run with one-line code using

the software (https://github.com/wenhao-gao/mol opt) in practical molecular optimization

benchmark [24].

Dataset: we randomly select molecules from ZINC [45] database (around 250 thousand drug-

like molecules) as 0-th generation of the genetic algorithms (RGA, Autogrow 4.0, GA+D).

ZINC also serves as the training data for pretraining the model in JTVAE, REINVENT,

RationaleRL, etc. We adopt CrossDocked2020 [105] dataset that contains around 22 million

ligand-protein complexes as the training data for pretraining the policy neural networks, as

mentioned in Section subsection 9.3.3.

Metrics. The selection of evaluation metrics follows recent works in molecule optimiza-

tion [11, 29, 28, 65] and structure-based drug design [93, 90, 25]. For each method, we select

top-100 molecules with the best docking scores for evaluation and consider the following

metrics: TOP-1/10/100 (average docking score of top-1/10/100 molecules): docking score

directly measures the binding affinity between the ligand and target and is the most informa-

tive metric in structure-based drug design; Novelty (Nov) (% of the generated molecules that
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Table 9.2: The summarized performance of different methods. The mean and standard devi-
ation across targets are reported. Arrows (↑, ↓) indicate the direction of better performance.
Screening searches over the existing drug database, ZINC, so the novelty is 0.0%. For each
metric, the best method is underlined and the top-3 methods are bolded. RGA-pretrain
and RGA-KT are two variants of RGA that are without pretraining and without training on
different target proteins, respectively.

Method TOP-100↓ TOP-10↓ TOP-1↓ Nov↑ Div↑ QED↑ SA↓
screening -9.351±0.643 -10.433±0.563 -11.400±0.630 0.0±0.0% 0.858±0.005 0.678±0.022 2.689±0.077
MARS -7.758±0.612 -8.875±0.711 -9.257±0.791 100.0±0.0% 0.877±0.001 0.709±0.008 2.450±0.034
MolDQN -6.287±0.396 -7.043±0.487 -7.501±0.402 100.0±0.0% 0.877±0.009 0.170±0.024 5.833±0.182
GEGL -9.064±0.920 -9.91±0.990 -10.45±1.040 100.0±0.0% 0.853±0.003 0.643±0.014 2.99±0.054
REINVENT -10.181±0.441 -11.234±0.632 -12.010±0.833 100.0±0.0% 0.857±0.011 0.445±0.058 2.596±0.116
RationaleRL -9.233±0.920 -10.834±0.856 -11.642±1.102 100.0±0.0% 0.717±0.025 0.315±0.023 2.919±0.126
JTVAE -9.291±0.702 -10.242±0.839 -10.963±1.133 98.0±0.027% 0.867±0.001 0.593±0.035 3.222±0.136
Gen3D -8.686±0.450 -9.285±0.584 -9.832±0.324 100.0±0.0% 0.870±0.006 0.701±0.016 3.450±0.120
GA+D -7.487±0.757 -8.305±0.803 -8.760±0.796 99.2±0.011% 0.834±0.035 0.405±0.024 5.024±0.164
Graph-GA -10.848±0.860 -11.702±0.930 -12.302±1.010 100.0±0.0% 0.811±0.037 0.456±0.067 3.503±0.367
Autogrow 4.0 -11.371±0.398 -12.213±0.623 -12.474±0.839 100.0±0.0% 0.852±0.011 0.748±0.022 2.497±0.049
RGA (ours) -11.867±0.170 -12.564±0.287 -12.869±0.473 100.0±0.0% 0.857±0.020 0.742±0.036 2.473±0.048
RGA - pretrain -11.443±0.219 -12.424±0.386 -12.435±0.654 100.0±0.0% 0.854±0.035 0.750±0.034 2.494±0.043
RGA - KT -11.434±0.169 -12.437±0.354 -12.502±0.603 100.0±0.0% 0.853±0.028 0.738±0.034 2.501±0.050

are not in training set); Diversity (Div) (average pairwise Tanimoto distance between the

Morgan fingerprints); We also evaluate some simple pharmaceutical properties, including

quantitative drug-likeness (QED) and synthetic accessibility (SA). QED score indicates

drug-likeliness ranging from 0 to 1 (the higher the better). SA score ranges from 1 to 10 (the

lower the better). All the evaluation functions are available at Therapeutics data commons

(TDC, https://tdcommons.ai/fct overview) [25, 106].

9.4.2 Results

Stronger Optimization Performance. We summarized the main results of the structure-

based drug design in Table Table 9.2. We evaluate all the methods on all targets and report

each metric’s mean and standard deviations across all targets. Our result shows RGA

achieves the best performance in TOP-100/10/1 scores among all methods we compared.

Compared to Autogrow 4.0, RGA’s better performance in docking score demonstrates

that the policy networks contribute positively to chemical space navigation and eventually

help discover more potent binding molecules. On the other hand, including longer-range

navigation steps enabled by crossover leads to superior performance than other RL methods
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(REINVENT, MolDQN, GEGL, and RationaleRL) that only focus on local modifications.

In addition, we also observed competitive structure quality measured by QED (> 0.7)

and SA Score (< 2.5) in Autogrow 4.0 and RGA without involving them as optimization

objectives, thanks to the mutation steps originating from chemical reactions. We visualize

two designed ligands with an optimal affinity for closer inspection in Figure Figure 9.2

and Figure 9.3, and find both ligands bind tightly with the targets.

Suppressed Random-Walk Behavior. Especially in SBDD, when the oracle functions are

expensive molecular simulations, robustness to random seeds is essential for improving the

worst-case performance of algorithms. One of the major issues in traditional GAs is that

they have a significant variance between multiple independent runs as they randomly select

parents for crossover and mutation types. To examine this behavior, we run five independent

runs for RGA, Autogrow 4.0, and graph-GA (three best baselines, all are GA methods) on

all targets and plot the standard deviations between runs in Figure Figure 9.4 and Figure 9.5.

With policy networks guiding the action steps, we observed that the random-walk behavior

in Autogrow 4.0 was suppressed in RGA, indicated by the smaller variance. Especially in

the later learning phase (after 500 oracle calls), the policy networks are fine-tuned and guide

the search more intelligently. This advantage leads to improved worst-case performance and

a higher probability of successfully identifying bioactive drug candidates with constrained

resources.

Suppressed Random-Walk Behavior. As mentioned, in the traditional GA, the crossover

and mutation operation randomly selects the ligands and reactions; this kind of random-

walk behavior usually leads to high variance and is undesirable in molecule optimization.

RGA is designed to suppress this random-walk behavior. Specifically, we conduct multiple

independent runs to compare the RGA and its random-walk version, i.e., Autogrow 4.0.

The average TOP-100 and TOP-10 vina score over 5 independent runs and their standard

deviations are reported in Figure Figure 9.4 and Figure 9.5, respectively. We observe that

RGA is able to significantly reduce the variance, especially in the later learning phase

94



(after 500 oracle calls). The observation validates RGA’s ability to suppress random-walk

behavior.

Knowledge Transfer Between Protein Targets. To verify if RGA benefited from learning

the shared physics of ligand-target interaction, we conducted an ablation study whose

results are in the last two rows of Table Table 9.2. Specifically, we compare RGA with two

variants: (1) RGA-pretrain that does not pretrain the policy network with all native complex

structures in the CrossDocked2020; (2) RGA-KT (knowledge transfer) that fine-tune the

networks with data of individual target independently. We find that both strategies positively

contribute to RGA on TOP-100/10/1 docking score. These results demonstrate the policy

networks successfully learn the shared physics of ligand-target interactions and leverage the

knowledge to improve their performance.

Knowledge Transfer Between Protein Targets. RGA is able to learn the knowledge of

different protein targets using the ENN-based target ligand policy network (Section sub-

section 9.3.3), which is pretrained on 3D target-ligand binding affinity prediction task. To

explore their empirical effect, we compare RGA with two variants: (1) RGA-pretrain does

not pretrain the policy network. (2) RGA-KT (knowledge transfer) does not leverage the

knowledge learned from other targets and optimize individual target independently. The

results are also reported in the last two rows of Table Table 9.2. We find that both strategies

positively contribute to RGA on TOP-100/10/1 docking score. The reason is pretraining

learns the 3D target-ligand structure information and provides a warm start for the policy

network, knowledge transfer (KT) can learn the pattern of target-ligand binding physics

from a large amount of data and promote the optimization performance.

Case study. Also, we visualize examples of the binding sites and their top affinity ligands’

poses for closer inspection in Figure Figure 9.2 and Figure 9.3. We observe that the ligand

binds tightly with the target structure. The example validates the ability of RGA to generate

high-binding affinity molecules for the designated target.
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Figure 9.2: Example of ligand poses (generated by RGA) and binding sites of target
structures of 7l11.

Figure 9.3: Example of ligand poses (generated by RGA) and binding sites of target
structures of 3eml.

Figure 9.4: Studies of suppressed random-walk behavior. TOP-100 docking score as a
function of oracle calls. The results are the means and standard deviations of 5 independent
runs.
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Figure 9.5: The bars of TOP-100 docking score for various independent runs. Studies of
suppressed random-walk behavior. TOP-100 docking score as a function of oracle calls.
The results are the means and standard deviations of 5 independent runs.

9.5 Conclusion and Discussion

In this work, we propose Reinforced Genetic Algorithm (RGA) to tackle the structure-based

drug design problem. RGA reformulates the evolutionary process in genetic algorithms as

a Markov decision process called the evolutionary Markov decision process (EMDP) so

that the searching processes could benefit from trained neural models. Specifically, we train

policy networks to choose the parents to crossover and mutate instead of randomly sampling

them. Further, we also leverage the common physics of the ligand-target interaction and

adopt a knowledge-transfer strategy that uses data from other targets to train the networks.

Through empirical study, we show that RGA has strong and robust optimization performance,

consistently outperforming baseline methods in terms of docking score.

Though we adopted mutations originating from chemical reactions and the structural

quality metrics seem good, we need to emphasize that the designed molecules from RGA

do not guarantee synthesizability [97], as the crossover operations may break inheriting

synthesizability. Directly working on synthetic pathways could solve the problem [107,

108], but the extension is not trivial. As for future direction, we expect to analyze the EMDP

formulation and the performance of RGA theoretically. We also expect to generalize RGA to

other combinatorial optimization scenarios, such as symbolic laws discovery [109], quantum
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circuits design [110]), etc.
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CHAPTER 10

CONCLUSION AND FUTURE DIRECTIONS

10.1 Conclusion

In summary, my dissertation addresses the fundamental and practical challenges in generative

models for drug design. My works contribute novel frameworks and methods that jointly

tackle the challenges of efficiency and effectiveness of deep generative models in drug

design. Specifically, we focus on the following four generative models:

• Graph-to-graph model. The main idea of the graph-to-graph model is to leverage a

continuous latent space to represent the discrete drug structure and optimize the latent

embedding vectors of molecules.

• Self-supervised learning utilizes unlabeled data and predicts a subset of the raw

data conditioned on the rest. The conditional probability can be used in generation

tasks to update each drug molecule component iteratively and has been applied to

both small-molecule drugs (Multi-constraint Molecule Sampling, MIMOSA [15]) and

biologics design (sampling method for inverse protein folding (SIPF) [4]).

• Differentiable programming. The discrete drug molecules are relaxed to differ-

entiable ones in continuous space, so the gradient of the neural network can be

back-propagated to update the differentiable drug molecules directly. The strategy

can also be applied to both small-molecule drugs (differentiable scaffolding tree

(DST) [5]) and biologics (constrained energy model (CEM) [6]).

• Intelligent combinatorial optimization. We enhance the conventional combinatorial

optimization methods by using a neural network to prioritize the promising searching

branches and suppress the brute-force trial-and-error strategy. We successfully apply
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this strategy to the genetic algorithm for small-molecule drug design (Reinforced

Genetic Algorithm) [7].

I believe my research advances the frontier of machine learning approaches in the drug

discovery process.

10.2 Future Directions

I also describe the following three future directions to extend the completed works from

both breadth and depth.

• I expect to build some hybrid generative models to inherit the advantages of multiple

categories of generative methods. For example, maximum likelihood learning methods

(VAE, GAN, normalizing flow) are good at imitating the known data distribution,

while combinatorial optimization-based methods are good at exploring the unknown

space. It would be great if we could combine both kinds of methods to get the best of

both worlds.

• The comparison between all the generative models is still lacking. I plan to conduct

a comprehensive experiment to compare these generative methods systematically.

The comprehensive experiment is expected to evaluate the sample efficiency and

data efficiency. For a fair comparison, I hope to evaluate all the methods using

the same dataset and oracle query budget. Also, I want to thoroughly explore the

hyperparameter for each method based on automatic hyperparameter tuning strategies

such as Bayesian optimization.

• I plan to build a Python toolkit for deep generative models of drug design, e.g., Jupyter

notebook, so that other researchers can easily run the deep generative models for drug

design. Concretely, I want to build a unified software environment to standardize the

drug design process and build “model card” to record the implementation details for

each model to enhance reproducibility and transparency.
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