
Georgia Tech Sponsored Research (oAOZDlbl

Project E-20-N02

Project director Sotiropoulos

Research unit CEE

Title A Lagrancian

S^£5
Fotis

24

A Lagrancian / Eulerian Method for Predicting DO
Transfer in Autoventing Hydroturbine Draft Tubes

Project date 1/31/1998

JT\. i^agi aiigicui/ j^uiciiaii ivicunju lvji r icuiuuiig,
DO Transfer in Autoventing Hydroturbine Draft tubes

by

Y. Ventikos and F. Sotiropoulos

Final report for project E-20-N02

Sponsored by the
Tennessee Valley Authority

Environmental Hydraulics and Water Resources Group
School of Civil and Environmental Engineering

Georgia Institute of Technology
Atlanta GA 30332-0355

October 1997

This report describes the development and application of an efficient numerical method
for predicting Dissolved Oxygen transfer in autoventing hydroturbine (AVT) draft tubes. The
model employs a Lagrangian approach for tracking an arbitrary number of air-bubbles through a
steady flowfield obtained by a separate CFD calculation on a fixed (Eulerian) mesh. The bubbles
are allowed to coalesce, break-up into smaller bubbles, and exchange DO with the water, under
the assumption that their motion does not alter the local flow characteristics. This assumption
restricts the applicability of the model to flows with low air-fraction such as those encountered in
typical autoventing hydropower installations. A second assumption which is implied from the
previous one is that the air transferred from the bubbles to the water does not alter the DO
concentration of the water. In other words, the ability of the water to absorb DO at a given
instant in time is not altered by the amount of DO that has been already dissolved at earlier times.
The validity of this assumption and its impact on the computed DO transfer rates requires further
investigation, particularly when the air-water mixture approaches saturation conditions. One
may speculate, however, that since the residence time of the bubbles inside the draft tube is very
small such an assumption may not significantly affect the computed results.

The above simplifying assumptions are crucial for the computational efficiency of the
present model. A more exact treatment would necessitate: i) the use of the so-called two-way
coupling approach, in which the air and water phases are coupled together through source terms
in their respective transport equations; and ii) the solution of a transport equation for the DO
concentration of the water in order to account for concentration history effects. Such a level of
sophistication would obviously increase significantly the required computational resources,
particularly since our objective is to develop a practical engineering tool that can be used to
optimize the design of AVT draft tubes. Typical AVT draft tubes are geometrically very
complex, include multiple downstream piers, and feature a number of air-injection outlets.
Furthermore, obtaining statistically meaningful results for such a complex geometrical
configuration requires carrying out simulations with at least few thousands of air-bubbles. Thus,
the main challenge that we had to address in this work was to strike a fine balance between the
accuracy of the computed results and the computational efficiency and expedience of the overall
numerical model. This need has guided all the modeling choices that are described in subsequent
sections of this report. The present model, although simpler than existing in the literature bubble
tracking algorithms (see Domgin et al. (1997) for a recent review), is the first attempt to apply
such methods to complex three-dimensional flows. Previous studies have primarily focused on
simple straight pipe geometries. It should be emphasized, however, that the model has been
constructed in modular form so that its various modules can be readily enhanced as additional
data or more refined models of various physical processes become available.

In what follows, we start by describing the bubble tracking and DO transfer models and
present and discuss representative results from the application of the model to the Norris Dam
AVT draft tube. At the end of this report, we provide a detailed user's manual and a copy of the
entire computer code developed to implemented the present model.

2. Description of the method

2

The numerical method requires as input a complete three-dimensional solution
for the single-phase draft tube flowfield~in terms of pressure, mean velocity components, and
turbulence statistics—at a given powerplant operating point. The precomputed flow comprises
the Eulerian component of the present model and is obtained by employing our existing RANS
draft tube flow solver (Ventikos et al., 1996). Discrete air bubbles are subsequently introduced
in this virtual flow environment at user specified locations. The bubbles are released in a time
accurate manner, so that the total amount of air they carry into the flow per time step corresponds
to the desired air discharge. The trajectory of each bubble is computed using a Lagrangian
tracking algorithm. The motion of each bubble is described in terms of a sequence of translations
along the three Cartesian axes, and, thus, a total of three differential equations (for the Cartesian
components of the linear acceleration vector) are necessary for describing the entire spectrum of
possible motions. The source terms in these equations represent the various forces exerted by the
flow on the individual bubble. At every point along the computed trajectory the amount of DO
transferred from the bubble to the surrounding water is monitored by solving a mass transfer
equation. The application of this algorithm continues until one of the following events occurs:

• the bubble exits the computational domain, i.e. exits the draft tube;
• the bubble is depleted of all the air, and thus vanishes;
• the bubble approaches another bubble closer that a prescribed threshold and merges with it.

From this time step on, the new bubble is tracked, having inherited properties from both the
merged bubbles;

• the bubble encounters local conditions that lead to its splitting or fragmentation. Each
resulting bubble is tracked individual from now on;

• the bubble "sticks" to a solid wall leading to the formation of an air pocket.

It is evident from the above brief summary that the overall algorithm consists of several
modules that need to be carefully formulated for accurate, physically meaningful predictions.
These include the: i) selection of a statistically average bubble shape; ii) modeling of the bubble-
injection process; iii) physics of the DO transfer and bubble dynamics; and iv) formulation and
accurate and efficient numerical solution of the equations of motion. The modeling strategies
adopted for each of these modules are described in detail in the subsequent sections.

2.1 Selection of a statistically average bubble shape
Numerous experimental observations (Shinnar, 1961, Maxworthy, 1991, Jun and Jain

1993) have shown that, depending on the local flow characteristics, the history of the bubble etc.,
air bubbles in water can have various regular and irregular shapes (see Fig. 1). Obviously it
would be impractical to try to simulate the precise shape of each individual bubble in a model
that must be applicable to very complex flows. An obvious first approximation would be to try
to match the bubble shape with some kind of statistical average derived from experimental
observations. Such a mean shape is believed to exist (Jun and Jain 1993) and is of the general
shape of an oblate spheroid, curve (d) in Fig. 1. Even this level of approximation, however, is
not feasible, because:

3

V — - ' ' (d)

(c)

Figure 1. Bubble shapes

i) it would require accurate description of the bubble shape, which would drastically increase the
required computational resources; and ii) there are no comprehensive estimates for the viscous
drag force of such a body for all possible local flow conditions. These restrictions dictated the
use of a spherical bubble (Shinnar, 1961), curve (a) in Fig. 1, as the core of this model.

2.2 Modeling of the bubble-injection process

Accurate modeling of the bubble injection process is of crucial importance for evaluating
the performance of various aeration strategies. There are several parameters that must be either
specified by the user or calculated in order to develop a meaningful bubble-injection model.
These include: i) the location and geometrical characteristics of the air-injection orifices; ii) the
frequency at which bubbles are injected into the flow; iii) the amount of total airflow; and iii) the
initial bubble size.

The location and general geometric characteristics of the injection orifices are specified
by the user. Since such orifices are in general arbitrarily shaped, we adopt herein a simple
approach for approximating their geometrical shape. As shown in Fig. 2, we employ an
ensemble of circular openings to approximate the exact shape of a given injection slot. In the
present version of the model injection slots have been introduced at the deflector, the discharge
edge of bucket, and the periphery of the draft tube inlet—obviously, the first two locations rotate

4

with the angular velocity of the runner. As already discussed, the model has been formulated
such that other injection outlets can be introduced and tested in a rather straightforward manner.

Original Opening Geometry

Simplified Bubble Enseble Geometry

Figure 2. Typical simplified geometry of air injection openings

The frequency of bubble-injection, i.e. the number of time-steps between two successive
injection events, as well as the air flowrate through each orifice are specified by the user. The
actual number of bubbles that are introduced through an orifice when an injection event takes
place is determined by the air flowrate and the size and properties of each bubble (see discussion
in following paragraphs).

The issue of determining the exact size of the bubbles when they are injected into the
flow field is very complicated and can be properly addressed only via experimental work.
Existing experiments (Maxworthy 1991) provide some short of estimate of potential bubble sizes
with respect to local flow conditions, but are rather case-specific and not straight-forward to
apply. Thus, we decided to resolve this issue in a somewhat empirical manner. After
experimenting unsuccessfully with various techniques (scaling with the air flowrate through each
opening, the radius of the opening, characteristic times of the water flowrate etc.), we decided to
simply treat the initial bubble size as an input, user-specified parameter that can be selected from
experience and observations from model-scale laboratory experiments. Obviously, since the user
has to also determine the distribution of the injection locations and the distribution of the total
airflow among these locations, the initial bubble size should be selected so that the total number
of bubbles introduced per time step corresponds to the desired total air flow rate.

It should be emphasized that due to the lack of a definitive approach for selecting the
initial bubble size, the present version of the model can only be used to provide general
qualitative trends. Obtaining accurate quantitative information about the actual air transfer
taking place requires, among other things discussed subsequently, a physically-based approach
for determining the initial bubble size.

5

2.3 Modeling of the various physical processes

2.3.1 Air exchange mechanism
As the bubble moves through the draft tube, it continuously transfers air to the

surrounding water through its surface, which is the interface of the two phases. This exchange is
governed by a physical law of the form:

^- = kLS(CM-C) (1)
at

That is, the rate of mass transfer through the interface is proportional to the surface area of the
interface, S, and to the difference between the saturation air concentration of water, Csat), and the
surrounding water air concentration C (Jun and Jain, 1993). A model for the mass transfer
coefficient kL, has been proposed by Jun and Jain (1993) as follows:

^=8.33-10-57?°'363A"0225^ (2)

where R is the flow Reynolds number, X is the air-to-water flowrate ratio, and U is an average
fluid velocity. Since the velocity varies greatly inside the draft tube (due to the diffuser effect of
the geometry), U in eqn. (2) is set equal to the local relative velocity of the bubble, U=UfiUid-
Vbubbie- The air to water ratio is computed as the ratio of air flowrate Qair over the total air and
water flowrate (QWater+Qair)-

The air concentration of the surrounding water, C, is assumed to be a user-specified
constant that represents the air concentration of the water upstream of the draft tube. As already
discussed, this treatment is only approximate since, in reality, C changes continuously with time
via convection, molecular diffusion, turbulent transport, and transfer from passing bubbles. This
assumption, however, should be reasonable for low air-fraction flows that evolve very rapidly, as
is the case in typical AVT draft tube flows. Finally, the saturation concentration Csat is also
assumed to be constant and provided as a datum to the model. There is room for improvement
here, however, since it is known (Baird and Rohatgi, 1989) that the saturation concentration is
pressure sensitive. Such a sensitivity can be readily accounted for by incorporating in the model
available in the literature tabulated data.

A significant amount of code infrastructure has been developed for using the results of
the above local transfer model to estimate the total amount of air transfer from the bubbles to the
water. More specifically, algorithms for calculating the total amount of air transferred to the
water as well as the amount of air still trapped in bubbles exiting the draft tube have been
incorporated and tested. Note that if the available computer resources do not permit a full
simulation, i.e. releasing and tracking a total number of bubbles corresponding to the total air
flowrate, the model can estimate the total DO transferred to the water using information from a
partial simulation (i.e. a simulation using fewer bubbles than those needed for a full simulation).
In such a case, the final dimensional amount of dissolved air as well as an estimate of the DO
concentration at the exit of the draft tube (based on the water flow rate) can be calculated by
scaling the results of the partial simulation to the number of bubbles corresponding to the full
airflow rate.

6

Bubble coalescence occurs when the distance between two bubbles becomes sufficiently
small so that the local flow field of each bubble affects the other one. As two bubbles are driven
by the flow close to each other, the increased fluid velocity in the gap between them results to a
local pressure drop (Bernoulli effect), thus, giving rise to a force that tends to bring the bubbles
even closer.

This very complex body-fluid interaction mechanism is simulated in the model by
implementing a very simple algorithm that checks the inter-bubble distance for all bubble pairs.
Coalescence takes place when this distance becomes smaller than the sum of the two radii. The
Bernoulli effect in this process is accounted for by introducing an effective bubble radius which
is computed as the product of the actual radius times an empirical constant coefficient. This
coefficient is greater than unity so that it increases the coalescence potential radius of each
bubble.

An assumption implicit to the above model is that coalescence occurs only in a binary
fashion. That is, following Shinnar (1961), at each time step only bubble pairs are checked for
proximity. Once the two bubbles have joined together, apart from adjusting air content and
radius, all of the other characteristics of the new bubble are inherited from one of the two parent
bubbles in an ad hoc manner.

It must be noted here that the coalescence model is computationally very intense as it
involves an exhaustive search for all possible bubble pairs during each time step. Incorporating
this mechanism, however, is of crucial importance for realistic simulations particularly when
there is significant residual swirl at the exit of the runner. This is because bubbles that are either
released (deflector aeration) or transported by the flow near the core of the swirling flow,
experience an imbalance between the centrifugal force an the radial pressure gradient and tend to
move toward the vortex core and coalesce.

2.3.3 Bubble break-up
There are several bubble breakup models in the literature (Shinnar, 1960, Hughmark

,1971, Luo and Svendsen, 1996). These models range from relatively simple concepts, linking
size with breakup, to very sophisticated treatments that rely on statistical considerations of eddy
sizes and intensities. Since computational efficiency is of major interest herein, a compromise
between level of sophistication (which in general is equivalent to accuracy) and performance had
to be made. The breakup model finally employed is based on the concept of bubble critical
diameter proposed by Hesketh et al. (1991a,b). According to this model, bubble break-up will
occur when the bubble radius exceeds a threshold level, rcrjt, given by the following equation:

r -ir^r g06 r" o)
"" A 2 J (PLPJ*

where c is the surface tension of the air water interface (a constant in the model), Wecrjt is the
critical Weber number set equal to 1.1 (Hesketh et al., 1991a), e is the local energy dissipation
rate, and pwater and pair are the water and air densities, respectively.

Experimental observations (Hesketh et al. 1991b) show that when a bubble passes
through a region where the local flow conditions are suitable for inducing breakup, the actual
splitting does not occur instantaneously. Rather it takes place after a small time delay which

7

ranges from a fraction of a second to 10-11 seconds. This time delay parameter is a hard-coded
constant in the present model. We should point out that our experience so far with the model has
shown that this parameter, which to a large extent governs the rate at which bubbles break-up, is
of great importance for determining the overall rate of DO transfer. This is because broken-up
bubbles tend to exchange air with the water at a much faster rate. Thus fine-tuning the time
delay constant should be among the first priorities for further enhancing the model. Such an
undertaking, however, will require detailed experimental data which are not currently available.

It is implied again here that bubble breakup occurs in a binary fashion, i.e. each bubble
marked for breakup, splits only to two new bubbles. The radii and air contents of the new
bubbles are obtained by equi-distributing the air mass of the parent bubble. A statistically sound
random distribution might make the model more realistic (Luo and Svendsen, 1996). All the
other properties of the new bubbles are inherited from the parent bubble, except from their spatial
positions and position histories. These are determined by assigning the values of the original
bubble to one of the two new bubbles and displacing the other one by a constant proportion of
the radius of the original bubble, biased towards the center of the draft tube. This approach can
be also improved by adopting a statistically rigorous distribution of the new bubbles. The new
bubbles are re-initialized with respect to delay time for possible subsequent breakup, even if the
local flow conditions dictate a second breakup to occur immediately.

2.4 The equations governing bubble motion

Since the bubble shape is assumed to be spherical and a sphere is invariant under rotation,
only three differential equations, for the Cartesian components of the linear acceleration vector,
are needed to fully describe the motion each bubble. Assuming steady flow, these equations are
formulated as follows:

"h^r=K + K + KM + K+-, '' = i.2,3 (4)
at

where mb is the mass of the bubble, d/dt is the Lagrangian derivative, Ubi are the Cartesian
components of the bubble velocity vector, and the terms in the right hand side of eqn. (4)
represent the various forces acting on the bubble at a given point along its trajectory. These
include, forces due to: i) viscous drag, F'D; ii) ambient pressure gradient in the flow, F'P\ iii)
added mass effects, F'AM\ and iv) buoyancy, F'B. The dots in eqn. (4) represent higher order
forces that are typically difficult and time consuming to compute while their overall effect on the
bubble trajectory is fairly small. For the sake of expedience and computational efficiency such
forces are neglected herein. A complete review of the various forces acting on a spherical bubble
can be found in the recent paper by Michailidis (1997).

Assuming that the various forces acting on the bubble are known, eqn. (4) can be
integrated in time to obtain the bubble velocity at the new time steps. The new position of the
bubble can subsequently determined by integrating in time the following equations for the
Cartesian components, x^i, of the bubble position vector:

8

dx,
— ^ = M w , i = 1,2,3 (5)

a?

The details of the numerical technique employed to integrate eqns. (4) and (5) are given in
section 2.5 below. The equations used to calculate the various forces in the right hand side of
eqn. (5) are formulated as follows (for technical details on the implementation of the various
forces, the reader is referred to Users Manual included at the end of this report).

2.4.1 Viscous drag
The drag force acting on a bubble of frontal area Sb that moves at velocity^ through a

fluid of density p, is given as follows:

FD=X-CDpS\v-V\iy-Vb) (6)

where v is the fluid velocity and Co is the drag coefficient which is a function of the bubble
Reynolds number. Since the bubble is assumed to be spherical, Co can be readily determined
from available experimental correlations. Fig. 3, taken from Munson et al. (1994), is a
compilation of existing experiments showing the variation of the drag coefficient for a sphere
with the Reynolds number. This curve has been discretized and incorporated into the code.
Given the bubble Reynolds number, based on the bubble diameter and relative velocity, the drag
coefficient is calculated using linear interpolation.

It is important to point out that the drag force has been found to be the most important
among the various forces in the right hand side of equation (4).

2.4.2 Force due to ambient pressure gradient
In a complex three-dimensional flow environment, the pressure sensed by the various

sides of the bubble is not uniform but depends on the local pressure gradients in the flow. A
simple and fast interpolation scheme is employed to estimate the net pressure force, denoted by
FP. As a general remark, we must say that this force produces two interesting effects on the
average:
• since the draft tube is a pressure recovery system, in general pressure downstream of the

bubble are greater than those upstream. This results in a net negative pressure force
(opposing the propagation of the bubble with the flow)

• in swirling flows, this term causes bubble caught in the vortex core to move toward the
center of the vortex and possibly coalesce

Examples of both the above can be found in the Results section of this report.

9

1 0 i r T ri 1 1 r

P
U

0.1

0.01 J I l_l I I L_l U

10

_l_l I I l_l I I 1—1 L

100 1000 10000 100000 le+06
Reynolds Number

Figure 3. Drag Coefficient for a sphere

10

2.4.3 Force due to added mass effect
In order to account for the response of the fluid surrounding the bubble to acceleration,

the so-called added mass effect, an additional force term is introduced as follows:

FAM=a\nrlpwater^{y-Vh) (7)
3 dt

where n> is the radius of the bubble and a is the added mass coefficient which for a sphere is
equal to 0.5 (Newman, 1977). The velocity derivative along the three directions is computed via
a first order accurate finite difference scheme, from current and stored bubble velocity values.

The numerical integration of the equations of motion (eqn. (4) can be greatly simplified
and stabilized by moving the added mass force to the left hand side of the these equations. This
amounts to substituting the mass of the bubble with a new effective mass that accounts for both
the inertial mass and the added mass.

2.4.4 Buoyancy force
The net buoyancy force (effective bubble weight) acts in the vertical direction and is

computed as follows:

FB=-ri(pair-p„aler)g (8)

where $ is the gravitational acceleration. In the coordinate system used in our CFD simulations,
g=(£,o,o)- The density of the air in the bubble is computed (for this and all other purposes) from
the ideal gas law and the local computed pressure.

2.5 Numerical integration of the equations of motion

The governing equations of bubble motion, eqns. (4) and (5), are integrated in time in a
Lagrangian fashion. That is, unlike the governing flow equations which are solved on a fixed
Eulerian mesh, the solution of eqns. (4) requires the calculation at every time step of both the
bubble properties and spatial locations. This implies that any numerical scheme to be used for
this purpose should consist of two components: i) a temporal integration scheme for advancing in
time eqns. (4) and (5); and ii) an algorithm for searching and interpolating in space. As is the
case with all our modeling choices in this work, the selection of an appropriate numerical scheme
was guided by the need to balance computational efficiency and numerical accuracy.

2.5.7 Temporal integration scheme
Extensive numerical experiments with temporal integration schemes showed that

schemes that are second order accurate and higher yield identical results for the bubble
trajectories, provided that the time step is kept sufficiently small. However, schemes whose
accuracy is higher that second order require either excessive memory (Euler type schemes) or
significantly more computational time (Runge-Kutta, predictor-corrector and other multi-stage

11

type schemes). Both of the above requirements can substantially increase the overall
computational overhead, particularly when such schemes are employed to integrate in time the
trajectories of several thousands of air bubbles. Since we found no significant accuracy
improvements with the use of a higher-than-second order approximation, the three-point, second-
order accurate Euler explicit scheme was selected for integrating both eqns. (4) and (5):

(du,A hi

dt

O n + \ A n , n-

3uhi -Auhi+uhi

2Af

(9)

where n denotes the time level and At is time step. The time step in eqn. (10) is selected in a
manner that guarantees numerical accuracy and stability while minimizes the computational
resources required for carrying out spatial searches and interpolations. A module has been
introduced in the code that pre-estimates1 mean bubble traveling times along the three directions
of every cell of the CFD computational grid. Consequently, the smaller of these traveling times is
chosen as the time step (usually multiplied by a factor of 0.1-0.5, to increase accuracy and take
into account inertia effects). This approach yields a very conservative time step estimate but has
two major advantages: i) the time step is kept small enough for the temporal integrator to be
accurate and stable; and ii) it guarantees that the spatial position of a given bubble at the new
time level will be in the close neighborhood of its current position.

A small example can illustrate clearly the speedup achieved by selecting the time step as
described above. Assuming that the new position of the bubble will be within, say, 4
computational cells from the old one, the required search area consists of (4+l+4)3=729 cells
(four cells upstream, the current cell and four cells down stream, for all three spatial directions).
If our estimation involves a neighborhood of 10 computational cells, we get a total of (10+1+10)3

=9,261 cells to be searched. Arbitrarily defined, user-specified time step requires a searching
area that spans 10-15 cell neighborhoods in every direction. The time step selected using the
above procedure allows the use of just 1 cell neighborhoods, which implies that the total number
of grid cells to be scanned is (1 + 1 + 1)" =27. Since the search algorithm takes up more that 75% of
the total CPU usage of the model, it is obvious that a speedup of 0.75X(9,261/27)=250 per time
step is achieved through this technique. Of course the final speedup of the model is reduced by a
factor 10-15 because the smaller time step means increased number of time steps required for the
completion of each trajectory. Still, a significant overall speedup of approximately 15 has been
observed.

It is important to point out that the code is constructed in such a way, that if the initial 1-
cell-neighborhood fails, then all of the computational domain is searched. This happens very
rarely, however, and usually only for newly injected bubbles. The effort for these newly injected
bubbles is still very small, because bubbles are injected near the first sections of the
computational grid (near the inlet plane of the draft tube) thus the algorithm locates the
corresponding cells without having to search but a small number of cells. The actual mechanism
that this locating takes place is described in the next section.

'This is done only once, in the beginning of each run

12

2.5.2. Spatial search and interpolation algorithm
In order to be able to estimate the local flow conditions around the bubble we need to

pinpoint the location of the bubble in the computational flow field. This is not an easy task, since
computational grids for draft tubes are in general curvilinear, skewed, stretched and very
irregular. The technique used to find the grid cell that the bubble is in is based on an equality of
volumes principle. Each of the grid cells is subdivided in six tetrahedra that span the original
volume. The volume of each one of these tetrahedra is computed using a simple analytic
geometrical relationship and stored. Subsequently, during regular execution of the program, the
searching algorithm assumes that the center of the bubble is in every one of these tetrahedra and
defines four new tetrahedra for each one of the initial ones. The four vertices of the new sub-
tetrahedra correspond to three vertices of the original tetrahedron and the center of the bubble.
The sum of the volumes of these new four tetrahedra will be equal (within some accuracy
depending on roundoff error) to the original tetrahedron volume, if and only if the center of the
bubble is within this tetrahedron (figure 4).

Figure 4. Schematic of the technique used to locate the center of a bubble in space

When this is satisfied, we declare the center of the bubble to be in that cell and interpolate
the values of the variables from the eight grid nodes defining that grid cell. An inverse distance
formula, with an exponent of 3.5 is used for the interpolation:

nd = \

2 This is done only once, in the beginning of each run

13

For very skewed grids, the above search algorithm might fail due to roundoff errors in the
calculation of the cell volumes. Our experience so far has shown that this occurs very rarely. In
the rare occasion that this happens, the user is provided with a hard-coded constant that can be
altered (increased slightly) to accommodate these roundoff errors.

3. Results and discussion

The method developed herein has been applied to simulate bubble trajectories and DO
transfer for two operating points (maximum and best gate operation) and various aeration
configurations. In this section we present a sample of the computed results, selected to
demonstrate the various features of the method as well as its overall ability to simulate a wide
range of operating conditions and bubble-injection options in a fairly straightforward manner.
The cases selected herein are summarized in Table 1.

No I OPERATION | WATER FLOW | AIRFLOW | AIR INJECTION CONFIGURATION
I POINT

1 1 Max Gate 4600 cfs 265 scfs All openings on

2 Max Gate 4600 cfs 50 scfs Deflector openings on (all six)

3 Max Gate 4600 cfs 8.5 scfs Deflector openings on (only two)

Table 1. Computed test cases

As already discussed, the shape of the aeration openings has been described in an
approximate manner. A total of 82 openings were used to represent the three possible aeration
options studied herein. These were distributed as follows: i) 18 openings were used to describe
the three deflector slots (3 on each slot); ii) 39 openings were used on the runner blades (3 on
each bucket); iii) and 25 equi-distributed openings on the draft tube periphery.

The program was run until an equilibrium in the number of bubbles in the computational
domain was reached, i.e. when the number of bubbles exiting the draft tube minus the number of
bubbles entering the draft tube was constant over an adequate time interval. The total number of
bubbles tracked for equilibrium ranged from about 1000 for case 3 to almost 3000 for case 1. The
computer time needed for these simulations ranges, depending on the total number of bubbles,
from 1-8 CPU hours. The reported times correspond to a high-end Silicon Graphics Octane
workstation with an R10K processor and 128 Mbytes of RAM. The user can adjust the total
number of bubbles to the speed of the available computer by appropriately adjusting the number
of time steps between two successive bubble-injection events.

For all the tests performed, the oxygen concentration of the water downstream of the
runner was set equal to 1 mg/L. The saturation concentration is assumed to be 46.2 mg/L In all

14

subsequent figures, the bubble sizes have been slightly enlarged for clarity.
In figure 5, a representative flow field solution, corresponding to operation near

maximum gate, is presented in terms of draft tube wall pressure distribution and indicative
particle paths. This solution was obtained using our RANS solver (Ventikos et al., 1996). Test
runs of the bubble tracking code have been performed using CFD solutions obtained on grids
with a total number of nodes ranging from 300,000 to 1,200,000. The searching algorithm we
have developed (see section 2.5.2) allows the method to execute almost equally fast on coarse
and fine grids. Of course the memory requirements are much higher when a finer grid CFD
solution is used as input. For the tests presented herein, the CFD solution was obtained on a
mesh with a total of approximately 400,000 nodes using the k-co turbulence model for closing
the RANS equations.

In figure 6, the distribution of bubbles in this flow field is presented for Run No. 1 (see
table 1). The bubbles are simultaneously injected from all openings, i.e. from the deflector, the
discharge edge of the turbine and from the draft tube periphery. There are several important
features that can be readily observed from this figure. Several oversized bubbles clustered
together are present in the near-wall region immediately downstream of the injection slots on the
draft tube periphery, a trend that suggests increased frequency of bubble coalescence events.
This is consistent with the fact that bubbles injected inside the turbulent boundary layer move
downstream toward a region of continuously decreasing velocity due to the effects of adverse
pressure longitudinal pressure gradients induced by the area expansion. Therefore, these bubbles
slow down allowing new bubbles approaching from upstream to catch up with them and
coalesce. Note that existing experiments (Jun and Jain, 1993) have revealed the formation of
large air-pockets just downstream of wall injection slots. We may speculate, therefore, that the
model is trying to mimic a behavior which, due to inherent limitations, can not predict directly.
The overall distribution of the bubbles is distinctly different in each of the three bays, with most
bubbles concentrating toward the left and center bay. This trend is to be expected as it is
consistent with the general flow characteristics at this operating point (see Fig. 5). An interesting
phenomenon is observed near the entrance of the center bay, where the bubbles tend to form
distinct clusters. This phenomenon should be attributed to the combined influence of the
stagnation effect, caused by the re-circulating flow region in that area (see Fig. 5), and the overall
upward motion of the bubbles in that region (see discussion of Fig. 9 below).

In figure 7 only the deflector aeration openings have been kept open (Run No. 2). It is
seen that bubbles released from the deflector openings pass only through the left and center bay
and no bubbles are found in the right bay. This is in compliance with the observation made in
figure 5, where the vortex core seems to have a strong preference towards the left bay—the fact
that the bubbles tend to pass through both the left and center bays is probably due to inertia and
slippage effects. It is interesting to note that for this aeration condition, very few small bubbles
manage to leave the computational domain. This implies that most of the injected air is
successfully passed into the water. We have to repeat here, however, that such quantitative
conclusions are not safe yet, since there is still considerable uncertainty regarding several aspects
of the model such as the initial bubble size and the bubble breakup delay time. Both these
parameters are expected to affect the overall aeration performance of each configuration
significantly.

Figure 8 shows the results of Run No. 3, where only two of the six deflector aeration slots are
open. These openings are located opposite to each other, at 0° and 180°, respectively. It is
obvious that the rotation of the runner creates a rope-like vortical distribution of the bubbles.

15

>
.

03
u

c

H

c/3

rt
n

-
<u

w

T
3

o
c

o
u

.2
c/3

3
"C

 X
i

S
"S

•
7

C
/3

< £
^

>
C/3

I—
I

^
I—

1
<J

.£

O
H

TD

=

1
3

^
•<z>>

£
d

O

O

G

\3
"o -5
<u c
3

O

a
."

E
 ~

o
"^

U
 °°
. 6

IT
}

3

<u _E
3

'*
oo a

E
S

co
N

O

V
O

C

N

m

^
f

en

r--
N

O

•s
t

O
O

N

O

o
o

o
o

o

"fr
0

0
"tf
r--
C

N

o d

r-O
N

oo
0

0
o o

O
N

00
O

N

vo
O

N

o o d

»T)
^

f
^J-
0

0
0

0
oo

vo
C

N

T
fr

o
o r̂

'sf

^t
o r-o ~̂

vo oo
o

o

m

N
O

^O

 </->
V

O

C
N

C

N

<—

O
N

<
N

T

f
'sf

00

T
*

O
N

O

O

o
cs n

IO

o
o

C

N

N
O

»n
O

N

o
o

o
o

o
o

o
o

o
o

C
N

C

N

(N

d

r-o <3-

m

r~-
C

N

C
N

d
d

Q
J

J=>

3
•

*
—

•

<
4

-H

a u,
-a
^

j

o <D

'o
1

S
-!

D
H

t/2

V
-

1—

O

Z

!/3

c
in

 .2 *̂—
*

<
-a

>
c

H

o o
c

c
c _o
.2

4
—

1

'•4
—

1

;—

03
<D

W

) cd
C

3
i

C
X

ful

o 1—

ful

cu-a
-2 c cfl
3

<
D

-O

=3

ctf

CQ

b
fl

r-C

vd
3

<D
 .e

!—

3 '*
toX) <3

E
 s

^
•1

<u

JO

3
•

*
—

'

i
,J

=-(—.
eg
s-,

T
3

j
>

a u

C
/2

roj

c o

O
H

 '•2
c^

T
3

•
r

*
C

S

-,
o

o

C

J

Z

c
C

A
 _o

< >

era

E-
eg
u

,

c
O

c

U

CD

_o
 55

•
4

—
*

CD

W
) T

3

eg zzi
D

H

3
O

<+-.

u,

a, "
0
C

<u

eg
JO

_CD

J

O

=3
"eg
bJC

PQ

 E

r^

3

CD
 S

i—

3

'*
W

>

e
g

£ s

<D

X
>

3

•-^

t|-l

a u
T

3
C

/3

u

ion

•zr>

o

s-,
T

3
D

H

C

C
/2

o

u

'C

S
-H

c

o
 _g

z

•
4

—
J

03
C

/}
u

,
^

<U

<
cfl

>
U

,

o

H

o

c
1)

•
"

*
C

c

<u

o

T
3

OS

cs
bO

 •^3
c<3

u
,

C
L, c3

o

C
X

S

-H

D
. -a c

<U

33

X

a
j

X
)

as
3

bJO

C
Q

 a
0

0
3

<u
 6

u 3
'*

bQ
 a

E
 s

V

3 cd
i_<

.s.,5
2

*>

O
H

(U

c/3

"O

"££
Z

c

«3
2

21
H 8
.S

 c
c

.2
.2 g

c3

<U

bJO

cd

cs
_

°S

P
,"T

3

JH
 £

X
)

X
)

3
CQ

O

N

<D

<U

•
4

—
'

c3

oa

6 3
..I

3
'*

OJQ
a

E
S

<D

O
H

<U

C
/5

O

1)
X

>
3 2

W
)

T
3

.5

O

w

bJQ

O
H "^

C
/3

c/3

o

.
^

c
t/2

O

<
i

^
c
o

c o

H
 c o

•
—

c

tf
•.—

(T
3

M

111
"O

n

u s

£
0

3
O

fflS
-s

3

X
)

X
)

3 .§£
x

o

SPJ2
o

U
-S

u

bubble passageway oscillating between the left and center bays. This phenomenon is not
observed (at least with such intensity) for the previous test case (figure 7) because the
axisymmetric nature of the openings distributes bubbles more evenly around the vortex core.

Figure 9 shows a side view of the computed results for the fully aerated case (Run No. 1).
It is seen that the combined effect of bubble buoyancy, secondary motion and reduced velocity
(due to the diffuser effect) causes the majority of the bubbles to rise to the upper layers of the
draft tube. In fact, it appears that there is a significant volume of the lower downstream layers of
the draft tube where there are no bubbles and thus no air exchange takes place.

Finally, figure 10 shows a close-up of the draft tube cone for a typical fully aerated case.
The objective of this figure is to demonstrate an interesting capability of the method. It is
possible to track (by color or other means) the origin of each bubble throughout its journey in the
draft tube. Since each bubble is tagged with a numerical identification number it is, in principal,
possible to actually trace bubbles injected from each individual opening. In figure 10, color
identification has been applied based only on general origin i.e. deflector (green), discharge edge
of the turbine (red) and the draft tube cone slot (blue). Although color identification for each
individual opening is definitely within the capabilities of the method, this technique might get
rather confusing when too many colors co-exist on the same plot. This figure also demonstrates
clearly the response of the bubble column to the vortex core swirl. It is seen that the radial
pressure gradient set up to balance the centrifugal force tends to push the air bubbles towards the
center of that core where they occasionally coalesce.

The information presented in these figures is supplemented by a computer animation
sequence which demonstrates clearly the evolution of the bubble formations in the draft tube.

4. Summary and conclusions

A three-dimensional numerical model was developed for tracking individual bubble
trajectories and computing DO transfer in autoventing hydroturbine draft tubes. The equations
governing bubble motion are formulated in Lagrangian form and integrated in time through a
precomputed, via a separate CFD calculation, turbulent flow environment. Forces due to viscous
drag, ambient pressure gradient, added-mass effects, gravity, and buoyancy comprise the source
terms of the bubble equations of motion. The model accounts for bubble breakup, bubble
coalescence, and DO transfer from the bubbles to the water, under the following assumptions:
• the flow inside the draft tube is steady and not affected by the motion of the air bubbles (one­

way coupling approach);
• the statistical mean bubble shape is spherical;
• bubble split-up and coalescence take place only in a binary fashion; and
• the capacity of the water to dissolve DO at any instant time is not affected by the amount of

DO that was dissolved at earlier times.
The model was applied to simulate bubble motion and DO transfer for various aeration

strategies. The computed results demonstrate the potential of the proposed approach as a
powerful engineering tool for understanding the highly non-linear dynamics of bubble motion
and refining air-injection strategies.

22

At its current state of development, the model can be used to provide only genera]
qualitative trends. A number of modeling refinements as well as detailed validation studies with
experimental measurements are necessary in order to enhance its quantitative accuracy. Future
work should focus on: i) detailed quantitative validation of the flow solver over a range of
powerplant operating conditions; ii) incorporating a transport equation to account for history
effects on the DO concentration of the water; iii) developing physically sound estimates for the
initial bubble size and the bubble break-up delay time; and iv) obtaining detailed DO data to
validate and fine-tune the mass-transfer module of the model.

5. References

Baird M. H. I., Rohatgi A., "Mass transfer from discrete gas bubbles in a reciprocating plate
column", The Canadian journal of Chemical Engineering, 67, 1989, p 682

Brice T. A., Cybularz J. M., "Air admission effects on hydraulic turbines", FED-Vol. 136,
ASME 1992, p 121

Cho J. S., Wakao N., "Determination of liquid-side and gas-side volumetric mass transfer
coefficients in a public column", Journal of Chemical Engineering of Japan, 21, 6, 1988, p 576

Cuenca-Alvarez M., Baker C. G. J., Bergougnou M. A., "Oxygen mass transfer in bubble
columns", Chemical Engineering Science, 35, 1980, p 1121

Daniil E. I., Gulliver J. S., "Temperature dependance of liquid film coefficient for gas transfer",
Journal of Environmental Engineering, 114, 5, 1988, p 1224

Daniil E. I., Gulliver J. S., "Water quality impact assessment for hydropower", Journal of
Environmental Engineering, 117, 2, 1991, p 179

Daniil E. I., Gulliver J. S., "Influence of waves on air-water gas transfer", Journal of
Environmental Engineering, 117, 5, 1991, p 522

Domgin J. F., Huilier D., Burnage H., Gardin P., "Coupling of a Lagrangian model with a CFD
code: Application to the numerical modeling of the turbulent dispersion of droplets in a turbulent
pipe flow", Journal of Hydraulic Research, 35, 4, 1997, p 473

Fu T. C , Shekarriz A., Katz J., Huang T. T., "The flow structure in the lee of an inclined 6:1
prolate spheroid", Fluid Mech., 269, 1994, p 79

Gulliver J. S., Arndt E. A., "Interfacial support in river- reservoir systems", FED- Vol. 143/HTD-
Vol. 232, ASME 1992, p 77

Gulliver J. S., Halverson M.J., "Gas transfer and secondary currents in open channels", Water
Forum'86, p 1056

23

Gulliver J. S., Halverson M.J., "Measurements of large streamwise vortices in an open-channel
flow", Water Resources Research, 23, 1, 1987, p 115

Gulliver J. S., Oakley B. T., Semmens M. J., "A new in-stream aerator", Hydraulic Engineering
'93, p 2165

Gulliver J. S., Rindels A. J., "Measurement of air-water oxygen transfer at hydraulic structures",
Journal of Hydraulic Engineering, 119, 3, 1993, p 327
Gulliver J. S., Stefan H. G., "Stream productivity analysis with dorm -I Development of
computational model", Water Res., 18, 12, 1984, p 1569

Gulliver J. S., Sundquist M., Voigt R. L., Jr., Hibbs D. E., "The Brasfield hydroelectric project A
model-prototype comparison", Waterpower '95, San Francisco CA, p 2361

Gulliver J. S., Wilhelms S. C., " Water quality enhancement technology for river-reservoir
systems", Proc. Natl. Conf. Hydraul. Eng., 1994 , p 1331

Hadjerioua B., Eldredge T. V., Mobley M. H., "Reservoir oxygenation by oxygen diffusers",Int.
Water Res. Eng. Conf. Proc. 1995, New York NY, p 1451

Harshbarger E. D., Mobley M. H., Brock W. G., "Aeration of hydroturbine discharges at Tims
Ford dam", Waterpower '95, 1995, San Francisco CA, p 11

Herringe R. A., Davis M. R., "Structural development of gas-liquid mixture flows", J. Fluid
Mech.,73, 1, 1976, p 97

Hibbs D. E., Gulliver J. S., "Prediction of dissolved gas supersaturation below spillways",
Waterpower '95, 1995, San Francisco CA, p 173

Hesketh R. P., Etchells A. W., Russell T. W. F., "Bubble breakage in pipeline flow", Chemical
Engineering Science, 46, 1, 1991, p 1

Hesketh R. P., Etchells A. W., Russell T. W. F., "Experimental observations of bubble breakage
in turbulent flow", Ind. Eng. Chem. Res., 30, 1991, p 835

Hughmark G. A., "Drop breakup in turbulent pipe flow", AIChE journal, 17. 4, 1971, p 1000

Jun K. J., Jain S. C , "Oxygen transfer in bubbly turbulent shear flow", Journal of Hydraulic
Engineering, 119, 1, 1993, p 21

Lewis D. A., Davidson J. F., "Mass transfer in a recirculating bubble column", Chemical
Engineering Science, 40, 11, 1985, p 2031

Luo H., Svendsen H. F., "Theoretical model for drop Breakup in turbulent dispersion", AIChE
Journal, 42, 5, 1996, p 1225

24

Michaelides E. E., "Review - The transient equation of motion for particles, bubbles, and
droplets", J. Fluid. Eng., 119, 1997, p 233

Mobley M., Tyson W., Webb J., Brock G., "Surface water pumps to improve dissolved oxygen
content of hydropower releases", Waterpower '95, 1995, San Francisco CA, p 21
Motarjemi M., Jameson G. J., "Mass transfer from very small bubbles - The optimum bubble
size for aeration", Chemical Engineering Science, 33, 1978, p 1415

Munson B. R., Young D. F., Okiishi T.H., "Fundamentals of fluid mechanics", John Willey and
Sons, 1994

Neti S., Mohamed O. E. E., "Numerical simulation of turbulent two-phase flows", Int. J. Heat
and Fluid Flow, 11,3, 1990, p 204

Newman J. N., "Marine Hydrodynamics", The MIT Press, 1977, p 32

Rindels A. J., Gulliver J. S., "Air-water oxygen transfer at spillways and hydraulic jumps",
Waterforum'86, p 1041

Roberts G. O., Kornfeld D. M., Fowlis W. W., "Particle orbits in a rotating liquid", J. Fluid
Mech.,229, 1991, p 555

Rowe P. N., "Drag forces in a hydraulic model of a fluidised bed- part II", Trans. Instn. Chem.
Engrs, 39, 1961, p 175

Shinnar R., "On the behavior of liquid dispersions in mixing vessels", J. Fluid Mechanics, 10, 2,
1961, p 259

Su W., Tao B., Xu L., "Three-dimensional separated flow over a prolate spheroid", AIAA
Journal, 31, 11, 1993, p 2175

Tamburrino A., Gulliver J. S., "Free-surface turbulence measurements in an open-channel flow",
FED-Vol. 181, ASME 1994, p 103

Ventikos, Y., Sotiropoulos, F., and Patel, V. C. "Prediction of Turbulent Flow through a
Hydroturbine Draft-Tubes Using a Near-Wall Turbulence Closure," Proc. of XVIIIIAHR Symp.
on Hydraulic Machinery and Cavitation (Cabrera, Espert, and Martinez, Eds.), vol. I, pp. 140-
149.

Wace P. F., Burnett S. J., "Flow patterns in gas-fluidised beds", Trans. Instn Chem. Engrs, 39,
1961, p 168

25

1995, San Francisco CA, p 1

Waldrop W. R., "Overdview of autoventing turbine technology development project", Proc.
National Conf. On Hydraulic Engineering, 1995, New York N.Y., p 257

Weiss P. T., Oakley B. T., Gulliver J. S., Semmens M. J., "The performance of a vertical fiber
membrane aerator", FED-Vol. 187, ASME 1994, p 59

Wells M. R., Stock D. E., "The effects of crossing trajectories on the dispersion of particles in a
turbulent flow", J. Fluid Mech., 136, 1983, p 31

Wetzel J. M., Voigt R. L., Gulliver J. S., Georgiou- Foufoula E., Stefan H. G., Arndt R. E. A.,
"The benefits of applied research to hydropower development", Proceedings of the American
Power Conference, 1995, p 472

26

APPENDIX A: Users Manual

In the sequel, we shall describe the structure and operation of the Fortran code created.
Text that appears under C o u r i e r f o n t s corresponds to file names, code constants, variables
and subroutines and in general to elements of the actual computer program. The files necessary
for a computation are:

the source Fortran code b u b b l e . f
the include common block file corn-bubble
the executable obtained from compiling the source Fortran code b u b b l e . f
the include common block file corn-bubble
the main data file CONTROL
a grid specification file (name defined in main data file CONTROL)
a solution specification file (name defined in main data file CONTROL)

Description of the code

The result of the research effort described so far is the Fortran computer code
b u b b l e , f. The code has been tested in various platforms, from personal computers and
workstations to supercomputers, for portability and performance. The hardware and software
requirements for a successful execution of the code are:

REQUIREMENTS Minimum Suggested

CPU3 RISK processor or
PENTIUM 200 MHZ

Last generation RISK
processor (R8K, Alpha,
R10K, Ultra) or PENTIUM H
233 MHZ

MEMORY 64 Mbytes 128 Mbytes

HARD DISK SPACE 60 Mbytes per draft tube
configuration

130 Mbytes per draft tube
configuration

OPERATING SYSTEM UNIX or WINDOWS NT UNIX or WINDOWS NT

FORTRAN COMPILER ANSI Fortran or newer ANSI Fortran or newer

Table 2. System requirements
A compromise between modularity/adaptability and execution speed has been made.

More specifically, core parts of the algorithm that are extremely time consuming and are not
bound to serious updates in future versions, are quite efficiently but rather obscurely coded. On
the other hand, most of the physical modeling part is very easy to adapt and upgrade.

Although the program will run on medium power, Pentium based, personal computers, it is best suited for
high-end Unix workstations, where a few thousand bubbles can be tracked simultaneously within reasonable time.

27

The global variable approach has been used during the construction of the code, meaning
that most variables are globally addressable throughout the code. To facilitate this, the use of a
single include file containing all the variable definitions has been implemented and call from
every subroutine of the code.

A single data file (named CONTROL) is used to specify all user supplied data to the code.
The structure of this file is described in the sequel. The grid and solution files necessary to run
the code
correspond to the format of the Georgia Tech solver. An average Fortran programmer can very
easily alter the appropriate read statements in the r e a d f i e l d subroutine to enable the code to
input differently formatted data.

Flowchart

Read Control File
i •

Read Grid & Solution

Advance Bubbles to
New Location

Estimate New Bubble
Properties

Estimate Oxygen
Transfer

Evaluate Possible
Bubble Breakup

Write Results
and Exit Yes

Evaluate Possible
Bubble-Pair Coalecence

Figure 11. The code flowchart
A schematic representing the flow of the execution of the code is presented. Most of the

modules presented in this diagram correspond to real code modules (or set of modules).

The subroutines of the code
prog ram NORRIS_AVT

28

1 l i e m a i n j j i c g i c u i i v^-aiii a i t w j j i c p a i CILUI y ouUlUULlUCo d l iu UI1C aUUlUUllllG L.J_clJt;C_U WHICH UUCa

the actual work.

s u b r o u t i n e e n s t n t s
This subroutine specifies the values of all the important constants for the code. The Metric Unit
System is used for all dimensional constants.

s u b r o u t i n e r e a d f i e l d
This subroutine reads the grid and the flowfield as computed from a CFD program. In the present
form of the code, it is adjusted to the Norris project 2-pier draft tubes and reads the data as a
single
block, with extra geometrical information defining the left side of every pier

s u b r o u t i n e i n i t p o s
This subroutine specifies the initial position of the bubbles, i.e. their points of entry in the draft
tube. If the unsteady option is activated for an inlet boundary, this boundary is marched in time in
an annular fashion.

s u b r o u t i n e t r a j e c t
c This subroutine is the core of the code. It integrates the equations of motion for the bubbles in
the draft-tube, propagates the bubble and performs all the necessary checks for the evolution of
the bubble

s u b r o u t i n e l o c a t e (i c o n t i)
This subroutine finds in what cell of the computational mesh the center of the bubble is.

s u b r o u t i n e ambien t
This subroutine determines the local conditions the bubble is sensing in its current location.

s u b r o u t i n e march
This subroutine *advances* the bubble to the next location along its trajectory. "Advances"
means time marching integration of all three equations of motion.

s u b r o u t i n e p r e p a r e
This subroutine precomputes main cell volumes for faster execution of subsequent steps

s u b r o u t i n e i n i v o l (x f 1 , x i j k , x i l j k , x i j l k , x i j k l ,
This is the subroutine where the actual volumes are precomputed

s u b r o u t i n e compdt
This subroutine evaluates the time step to be used for the simulation

s u b r o u t i n e f o r c e s
This subroutine computes and adds up all the forces exerted on the

s u b r o u t i n e p h y s i c s
This subroutine estimates the various physical properties of the bubble

29

s u b r o u t i n e s h i f t e r
This subroutine properly shifts all bubble-related arrays to make space for the newly-to-be-
injected
bubbles

s u b r o u t i n e s w a p t h e m
This subroutine investigates the state of each bubble (existent or inexistent) and rearranges all
bubble-related arrays to carry only existent bubbles

s u b r o u t i n e c d r e y n (v e l r e l)
This subroutine computes the bubble Reynolds number and the corresponding drag coefficient

s u b r o u t i n e c r e a t e _ b r (g n e w , r n e w , i b r , i b g i v e)
This subroutine arranges the new bubble, created from bubble breakup, in its temporary arrays

s u b r o u t i n e n e w b u b s (i b r o k e n)
This subroutine adds the bubbles created by breakup to the main bubble arrays

s u b r o u t i n e c o m p l a m d a
This subroutine computes the aeration ratio of the flow, lamda

s u b r o u t i n e geom
This subroutine pre-computes the directions of the grid cells, to speed up subsequent force
computations

Variables and Constants
Throughout the construction of the code, effort has been made to have seli'-explanatory

names of variables. A list of the most important program variables and constants, along with
their meaning and significance follows. Arrays and matrices are specified as such and the role of
the indices is explained. The Fortran naming convention (all variables are real except those
starting with I,J,K,L,M,N) has been followed.

fngrid,fnsolu
are the file names for the grid and the solution of the flow field

i x , i y , i z
are the dimensions of the computational grid

i p r (2) , k p r (2)
specify the positions where the piers are

x (m i , m j , m k) , y (m i , m j , m k) , z (m i , m j , m k)
hold the position of the grid nodes

x p (2 , m i , m j) , y p (2 , m i , m j) , z p (2 , m i , m j)
hold the position of the piers= back face

30

i n i t n u m
total number of bubbles to be injected at every injection-enabled time step

x i n l e t (1 0 0) , y i n l e t (1 0 0) , z i n l e t (1 0 0) ,
position of every bubble injection opening

inlettype(lOO)
type of opening (0 for stationary, 1 for opening rotating with the runner)

r a d o r i f (1 0 0)
initial radius of bubble

c f s a i r (m g b l b)
airflow rate in m3/s

p (mi,mj , mk) , u (mi ,mj ,mk) , v (mi ,mj ,mk) , w (mi,mj , mk)
pressure and three velocity components for every grid node

x k (m i , m j , m k) , e p s (m i , m j , m k) , i t u r b u l
turbulence quantities and type of turbulence model (0 for k-,, 1 for k-T)

r e y n o l d s
Reynolds number of the flow

xlamda
airflow rate/(waterflow rate + airflow rate)

ububble(mgblb),vbubble(mgblb),wbubble(mgblb),pbubble(mgblb),xkbub
ble(mgblb)
velocity components, pressure and turbulence dissipation rate for each bubble

ububbml(mgblb) ,vbubbml(mgblb) ,wbubbml(mgblb)
velocity components for each bubble, previous time step

ububbm2(mgblb) ,vbubbm2(mgblb) ,wbubbm2(mgblb)
velocity components for each bubble, one before previous time step

memoryi (mgblb) ,memoryj (mgblb) , memoryk (mgblb)
grid cell where each bubble was found during last search

m c o n t i (m g b l b) , i d (m g b l b)
tags specifying new or old bubble and bubble identification of origin (point of injection)

x c e n (m g b l b) , y c e n (m g b l b) , z c e n (m g b l b)
position of each bubble
xcenml (mgblb) ,ycenml (mgblb) , zcenml (mgblb)
position of each bubble, previous time step

31

-?S.v̂ t i i l l l lZ i ^ l l i y i J X i J y / _y <—trllillZj ^ I l ly J-J J.XJ J , Z.v_c2IllUZ ^ I l ly U J - U /

position of each bubble, one before previous time step

umean,vmean,wmean,pmean,xkmean,epsmean
velocity, pressure and turbulence dissipation energy sensed by bubble

umeanl (mgblb) , vmeanl (mgblb) , wmeanl (mgblb) , epsmeanl (mgblb)
velocity, pressure and turbulence dissipation energy sensed by bubble, previous time step

r p m , r a d p s e c
revolutions per minute and radians per second of the runner

velscale,scale
bulk inlet velocity (m/s) and diameter of the inlet plane (m)

d e p t h
depth of the top of the exit plane of the draft tube (from tailrace free surface) (m)

a c u r a
specification of the quality of the grid

r a d (m g b l b)
radius of each bubble

f x b u b (m g b l b) , f y b u b (m g b l b) , f z b u b (m g b l b)
three Cartesian directions components of force acting on the bubble

gmass(mgblb)
air mass of each bubble

deng (mgblb) ,denw,viscw
density of the air of each bubble, density of water, dynamic viscosity of water

consdo,conssat
DO concentration of forebay water, saturation concentration of water

cdcoe f
drag coefficient of the bubble

All variable names ending with . . . sw correspond to intermediate bubble arrays used for
temporary storage of properties and swapping.

All variable names ending with . . . b r correspond to intermediate bubble arrays craeted from
bubble breakup and are used for temporary storage of bubble properties.

The data file CONTROL (sample and explanation)
The code data file CONTROL allows the user to specify all the necessary data to the code.

32

comment line, describing the data line that follows. This data file and all of the programming
performed is using the metric (SI) unit system. A typical sample of the CONTROL file is:

Ni, Nj and Nk dimensions of grid and solution
65 41 121
I location of pier start (grid cells)
30 30
K location of pier start (grid cells)
41 81
Speed of turbine (rpm)
112.5
File name where the grid block resides
grid.dat
File name where the solution resides
solu
Turbulence model used (0 for k-e, 1 for k-w)
1
Forebay water temperature and DO saturation concentration
(kg/m"3)
25 0.0462
Forebay water density, water dynamic viscosity, DO cone. (kg/m^3)
998.2 0.001002, 0.001
Geometry scale, bulk velocity, depth of top part of outflow plane
4.208 9.399 4.016
Max No of time steps, injection step and bubble write step
200000 2000 500
Number of initial locations of air injection
80
x,y,z coord, for air inj . points, type of inj . , m3/sec of air, radius of
opening

9.9999998E-03 0.0000000E+00 0.2400000 1 .0789 .02

The quote Atype of injections at the last line of input control whether the corresponding
injection point is stationary (0) or rotating with the runner (1).

The common block corn-bubble
The same identical common block file is included in every subroutine. This way, it is

very easy to change the dimensions defining the CFD solution and grid sizes as well as the
number of bubbles the code can store. The parameters appearing in this file (along with their
respective meaning) are:

mi is the maximum -I- direction grid capacity
mj is the maximum -j- direction grid capacity
mk is the maximum -k- direction grid capacity
mif is an inactive constant which must always be set to 1

33

XllJ J_ 1 o d l l Jl ldL-LJVC V-/VJllolcUll VVI11H1 l l l U o l d l W d y j j U C o C l LU 1

mgblb is the total number of bubbles the program can simulate

The common block file is:

parameter (mi=65,mj=41/mk=121)
parameter (mif=1,mjf=1,mgblb=10 00 0)
common/controll/main,itraj,mtraj,time,itrajcount
common/control2/maxts,jumpts,iwrite,isteper
common/injectl/initnum,xinlet(100),yinlet(100)
common/inject2/zinlet(100),inlettype(100),radorif(100)
common/geoml/ix,iy,iz,volini(mi,mj,mk,9)
common/geom2/x(mi,mj,mk),y(mi, mj,mk),z(mi,mj,mk)
common/geom3/xp(2, mi ,mj) ,yp(2,mi,mj) ,zp(2,mi,mj) ,ipr (2) ,kpr(2)
common/flowl/u(mi,mj,mk),v(mi,mj,mk),w(mi,mj,mk)
common/flow2/p(mi,mj,mk),xk(mi,mj,mk)
common/flow3/eps(mi,mj,mk),reynolds,bbreak,iturbul
common/constants/pi,gi,dt,temp,runiv,pabs,tabs,xctrans,xlamda
common/fgeom/xbub(mif,mj f) ,ybub(mif,mj f) ,zbub(mif,mj f) ,ixf,jxf
common/fvall/pbubble(mgblb),xkbubble(mgblb)
common/fval2/ububble(mgblb),vbubble(mgblb),wbubble(mgblb)
common/fval2ml/ububbml(mgblb),vbubbml(mgblb),wbubbml(mgblb)
common/fval2m2/ububbm2(mgblb),vbubbm2(mgblb),wbubbm2(mgblb)
common/fforce/fxbub(mgblb),fybub(mgblb),brtime(mgblb),
+fzbub(mgblb),xmass(mgblb),gmass(mgblb),perbubble
common/fprop/deng(mgblb),denw,viscw,consdo,conssat,cdcoef
common/stats/xkkilled,colkilled,coakilled
common/che/iput(mif,mj f) ,jput(mif,mj f) ,kput(mif,mj f)
common/helper/iputlast,jputlast,kputlast,acura
common/means/umean,vmean,wmean,pmean,xkmean,epsmean
common/operat/rpm,radpsec,velscale,scale, depth
common/surrstore/umeanl(mgblb),vmeanl(mgblb),wmeanl(mgblb),
+epsmeanl(mgblb)
common/direx/xdirl(mi,mj,mk),xdir2(mi,mj,mk),xdir3(mi,mj,mk),
+ydirl(mi,mj,mk),ydir2(mi,mj,mk),ydir3(mi,mj,mk),
+zdirl(mi,mj,mk),zdir2(mi,mj,mk),zdir3(mi,mj,mk)
common/bubsl/ ibub,ibubble,rad(mgblb),xcen(mgblb)
common/bubs2/ ycen(mgblb),zcen(mgblb),cfsair(mgblb)
common/bubs2ml/xcenml(mgblb),ycenml(mgblb),zcenml(mgblb)
common/bubs3ml/xcenm2(mgblb),ycenm2(mgblb),zcenm2(mgblb)
common/bubs3/ memoryi(mgblb),memoryj(mgblb)
common/bubs4/ memoryk(mgblb),mconti(mgblb),id(mgblb)
common/swap/memoryisw(mgblb),memoryjsw(mgblb),brtimesw(mgblb),

+memoryksw(mgblb),radsw(mgblb),xcensw(mgblb),ycensw(mgblb),
+zcensw(mgblb),mcontisw(mgblb),idsw(mgblb),ububbmlsw(mgblb),
+wbubbmlsw(mgblb),ububbm2sw(mgblb),vbubbm2sw(mgblb),
+dengsw(mgblb),xmasssw(mgblb),gmasssw(mgblb),vbubbmlsw(mgblb),
+wbubbm2sw(mgblb),xcenmlsw(mgblb),ycenmlsw(mgblb),
+zcenmlsw(mgblb),xcenm2sw(mgblb),ycenm2sw(mgblb),
+zcenm2sw(mgblb),ububblesw(mgblb),vbubblesw(mgblb),wbubblesw(mgblb)
common/breakup/gmassbr(mgblb),xcenbr(mgblb),ycenbr(mgblb),zcenbr(mgblb),
+xcenmlbr(mgblb),ycenmlbr(mgblb),zcenmlbr(mgblb),xcenm2br(mgblb),
+ycenm2br(mgblb),zcenm2br(mgblb),radbr(mgblb),mcontibr(mgblb),
+idbr(mgblb),memoryibr(mgblb),memoryjbr(mgblb),memorykbr(mgblb),
+ububblebr(mgblb),vbubblebr(mgblb),wbubblebr(mgblb),ububbmlbr(mgblb),
+vbubbmlbr(mgblb),wbubbmlbr(mgblb),ububbm2br(mgblb),vbubbm2br(mgblb),
+wbubbm2br(mgblb),dengbr(mgblb)
common/files/fngrid,fnsolu
character*20 fngrid,fnsolu

34

APPENDIX B: The code b u b b l e . f

A listing of the actual code follows. The code is richly commented, standard Fortran has
been used throughout and should be very easily comprehensible to an average Fortran
programmer.

program NORRIS_AVT

This program computes the trajectories of spherically shaped bubbles
in draft tubes and estimates the DO exchange from the bubbles to the
water. This particular code is adjusted to run for 2-pier draft tubes
like the TVA's Norris project draft tubes.
A lot of the coding in this program was originally oriented towards
the tracking of a 3D, arbitrarily shaped body in a multiblock CFD
solution domain. Most of the multi-block-related code has been
cleaned, however a small part concerning the body surface coding
is still here. This part is inactive, unusable and does not affect the
execution speed.

include'corn-bubble'
character*l zzz

File 'CONTROL' contains the basic data necessary for each run. It is
self-explanatory, since it is formatted in a way that allows one line
of data to be preceeded by on line of description of this data.

write(*,*)
write(*,*) 'Reading control file1

open(1,file='CONTROL')
100 format(80al)

1Z

ipr(2)

kpr(2)

•3.14157)/60.

read(l,100) zzz
read(1,*) ix,iy,
read(l,100) zzz
read(l,*) ipr(l)
read(l,100) zzz
read(l,*) kpr(l)
read(l,100) zzz
read(l,*) rpm
radpsec=(rpm*2.
read(l,100) zzz
read(1,5) fngrid
read(l,100) zzz
read(1,5) fnsolu
format(a20)
read(l,100) zzz
read(l,*) iturbul
read(l,100) zzz
read(l,*) temp,conssat
read(l,100) zzz
read(1,*) denw,viscw,consdo
read(l,100) zzz
read(l,*) scale,velscale,depth

35

read(l,100) zzz
read(l,*) maxts,jumpts,iwrite
read(l,100) zzz
read(1,*) initnum
read(l,100) zzz
do i=l,initnum
read(l,*) xinlet(i),yinlet(i),zinlet(i) ,
+inlettype(i),cfsair(i),radorif(i)
enddo
closed)

c
c This subroutine computes the air/water+air flowrate xlamda
c

call complamda
c
c Subroutine cnstnts gives values to all the hardcoded constants of the
c code, like acceleration of gravity etc.
c

call cnstnts
c
c Subroutine readfield read the grid geometry (x,y,z) and the
c solution flowfield on that geometry (p, u, v, w, k, e)
c

call readfield
c
c Subroutine geom pre-computes grid lines directions to enhance
c computational efficiency
c

call geom
c
c
c In order to speed up the search algorithm, the main tetrahedron
c volumes are precomputed
c

call prepare
c
c In order to enhance the spead of the search algorithm and the a
c accuracy of the integration, an "optimum" is precomputed
c

call compdt
c
c Subroutine traject computes the trajectories of the bubbles
c and performs all necessary computations for the DO transfer
c estimation
c

call traject
stop
end

c
Q *

C

subroutine cnstnts
c
c This subroutine specifies the values of all the important constants for
c the code. The Metric Unit System is used for all dimensional constants
c

include'com-bubble'
c Pi

pi=3.14159265359
c Acceleration of gravity

36

c Universal gas constant
runiv=2 8 6.9

c Absolute pressure
pabs=1.013E5

c Absolute temperature
tabs=273.15

c reynolds number of the flow (needed for Kl formula)
reynolds=ve1scale*seale*denw/visew
write (*,*) 'Flow Reynolds number is:', reynolds

c front part of air transfer formula
xctrans=(8.3 3E-5)*(reynolds**(0.363))*xlamda**(-0.225)

c surface tension (sigma) of water
sigma=0.00734

c critical bubble weber number
wecr=l.1

c bubble breakup criterion term
bbreak=((wecr/2.)**(0.6))*(sigma**(0.6))/((denw*denw)**(0.2))

c
c
c
c Constant required for the locator part of the tracking algorithm. In the
c rare case that the grid is particularly "bad" and "points not found" are
c reportea,d this should be increased slightly (from .9 to 1.2 or something)
c

acura=l.1

return
end

subroutine readfield
c
c This subroutine reads the grid and the flowfield. It is adjusted to
c the Norris project 2-pier draft tubes and reads the data as a single
c block, with extra geometrical information defining the left side of
c every pier
c

include'corn-bubble'
c

write(*,12) fngrid
write(*,13) fnsolu

12 format(' Reading from grid file: ', a20)
13 format(' Reading from solution file: ', a20)

open(2,file=fnsolu,form='unformatted')
read(2) (((p(i,j,k),k=l,iz),j=l,iy),i=l,ix)
read(2) (((u(i,j,k),k=l,iz),j=l,iy),i=l,ix)
read(2) (((v(i,j,k),k=l,iz),j=l,iy),i=l,ix)
read(2) (((w(i,j,k) ,k=l, iz) ,j=l,iy) ,i = l,ix)
read(2) (((xk(i,j,k),k=l,iz),j=l,iy),i=l,ix)
read(2) (((eps(i,j,k),k=l,iz),j=l,iy),i=l,ix)
close(2)
open(l,file=fngrid,form='unformatted')

c
read(l) (((x(i,j,k),k=l,iz),j=l,iy),i=l,ix)
read(l) (((y(i,j,k),k=l,iz),j=l,iy),i=l,ix)
read(l) (((z(i,j,k),k=l,iz),j=l,iy),i=l,ix)
do 333 n=l,2
read(l) ((xp(n,i,j),j=l,iy),i=ipr(n),ix)
read(l) ((yp(n,i,j),j=l,iy),i=ipr(n),ix)

37

read(1) ((zp(n,i,j),j=l,iy),i=ipr(n), ix)
333 continue

close (1)
c
c Scale grid, velocity and pressure from CFD dimensionless data to
c real data
c
c ck constant of k-e turbulence model, needed for transformation

ck=0.09
do i=l,ix
do j=l,iy
do k=l,iz

c If k-w turbulence model, transform omega to epsilon
if(iturbul.eq.1) then
eps(i, j , k)=eps(i, j,k)*ck*xk(i,j,k)
endif
p(i , j,k)=p(i,j,k)*denw*velscale**2
p(i , j,k)=p(i,j,k)+denw*gi*depth-p(ix-1,iy-1,iz-1)
u(i,j,k)=u(i,j,k)*velscale
v(i,j,k)=v(i,j,k)*velscale
w(i,j,k)=w(i,j,k)*velscale
xk(i,j,k)=xk(i,j,k)*(velscale**2)
eps(i,j,k)=eps(i,j,k)*(velscale**3)
x(i,j,k)=x(i,j,k)*scale
y(i,j,k)=y (i,j,k)*scale
z(i,j,k)=z(i,j,k)*scale
enddo
enddo
enddo
do n=l,2
do i=ipr(n),ix
do j=l,iy
xp(n,i,j)=xp(n,i,j)*scale
yp(n,i,j)=yp(n,i,j)*scale
zp(n,i,j)=zp(n,i,j)*scale
enddo
enddo
enddo

c
return
end

c

subroutine initpos
c
c This subroutine specifies the initial position of
c the bubbles, i.e. their points of entry in the draft tube. If the
c unsteady option is activated for an inlet boundary, this boundary is
c marched in time in an annular fashion

include'corn-bubble'

do 1 i=l,initnum
if (inlettype(i).eq.0) then
xcen(i)=xinlet(i)
ycen(i)=yinlet(i)
zcen(i)=zinlet(i)
endif
if (inlettype(i).eq.1) then
xcen(i)=xinlet(i)

38

yy=yinlet(i)*cos(time*radpsec)+ zinlet(i)*sin(time*radpsec)
zz=zinlet(i)*cos(time*radpsec)-yinlet(i)*sin(time*radpsec)
ycen(i)=yy
zcen(i)=zz
endif
id(i)=i
mconti(i)=0

c initialize breakup delay (something very big)
brtime(i)=10000000.

1 continue
c

return
end

c
Q *

c
subroutine traject

c
c This subroutine integrates the equations of motion for the
c bubble in the draft-tube and propagates the bubble.
c

include'corn-bubble'
c

time=0.
isteper=0
ibubble=0

c
c Main loop identifier (back here whenever new bubbles are injected)
c
1073 continue

c
c Initialize statistics
c

xkkilled=0
colkilled=0
coakilled=0

c
c
c Inject new bubbles
c initial position

call initpos
c

ibubble=ibubble+initnum
c
c Secondary loop identifier (back here every time step)
3454 continue

c
c counter and time step increment

isteper=isteper+l
time=time+dt
write(*,6699) isteper,time,ibubble

6699 format('Step no: ',i7,' at time ',el2.5,' with ',i6,' bubbles')
c
c loop scaning all bubbles per time step

do 9999 ibub=l,ibubble
c
c prepape data for locate

xbub(1,1)=xcen(ibub)
ybub(1,1)=ycen(ibub)
zbub(1,1)=zcen(ibub)
iconti=mconti(ibub)

39

c
c find position of bubble

call locate(iconti)
c compute ambient flow field

call ambient(enappros)
c determine properties of bubble

call physics
c compute forces exerted on bubble

call forces
c propagate bubble to its new location

call march
c mark bubble as "old"

mconti(ibub)=1
c
c end of "every bubble" loop
c
9999 continue

c
c Bubble passes air to the water
c

do 4634 i=l,ibubble
uxrel=ububble(i)-umeanl(i)
vyrel=vbubble(i)-vmeanl(i)
wzrel=wbubble(i)-wmeanl(i)
velrel=sqrt(uxrel**2+vyrel**2+wzrel**2)
surface=4.*pi*rad(i)**2
defic=conssat-consdo
trans=dt*xctrans*velrel*surface*defic
if((gmass(i)-trans).gt.(l.e-20)) then
gmass(i)=gmass(i)-trans

c XXX put trans in proper sum
else
id(i)=0

c XXXX Pass all air to water
write (*,*) 'bubble',i,1 passed all air to water1

endif
4634 continue

c
c The following evaluation for the fate of the bubble takes
c place at the new location. This implies that we accept that
c none of the following criteria are satisfied at the injection
c location.
c
c Evaluate possible bubble breakup
c Bubble Breakup occurs when Hasketh criterion is
c satisfied. Bubble breakup is binary.
c

do 8226 i=l,ibubble
if (id(i).eq.O) goto 8226

c Critical radius per Hesketh
dcrhesk=bbreak*(epsmeanl(i)**(-0.4))/(deng(i)* *(0.2))

c write(*,*) 'hesk1,2.*rad(i), dcrhesk,i
if ((2.*rad(i)).gt.dcrhesk) then
brtime(i)=aminl(brtime(i),(time+0.5))
endif

8226 continue
c

ibroken=0
do 8227 i=l,ibubble
if(brtime(i).le.time) then

40

c equi-distribution of mass
gmass(i)=gmass(i)/2 .

c new radius
rad(i)= rad(i)/1.2599
brtime(i)=10000000.

c call subroutine to arrange new matrix
call create_br(gmass(i),rad(i),ibroken,i)
endif

8227 continue
c
c attach the bubbles from breakup to the main bubble arrays
c

if(ibroken.ne.0) then
call newbubs(ibroken)
do i=l,ibubble
write(*,*) 'olaxcen',i,xcen(i)
enddo
endif

c
c

do 8877 i=lfibubble
c
c Evaluate possible bubble coalescence
c Bubble coalescence occurs when the distance between 2
c bubble centers is smaller that 1.2 times the sum of their radii
c 1.2 is a factor that accounts for local pressure reduction due
c to flow acceleration between bubbles, and deviation from
c perfect-spherical shape
c

do 8874 j=l,ibubble
if (id(i).eq.O) goto 8874
if (id(j).eq.O) goto 8874
if (i.eq.j) goto 8874
distbb=sqrt(((xcen(i)-xcen(j))**2)+
+((ycen(i)-ycen(j))**2)+((zcen(i)-zcen(j))**2))
totrad=rad(i)+rad(j)
if((1.2*totrad).gt.distbb) then
write (*,*) i,j,id(i) ,id(j) ,distbb,1.2*totrad
coakilled=coakilled+l
id(i)=0
gmass(j)=gmass(j)+gmass(i)
brtime(j)=aminl(brtime(i),brtime(j))
goto 8877
endif

8874 continue
8877 continue

c
c If a bubble gets very close to the solid wall, it is bound
c to create a pocket of air there. Take such bubbles out of
c circulation and mark the corresponding cells as "pocket dangerous"
c

do 8821 i=l,ibubble
if (id(i).eq.O) goto 8821

c Exit of draft tube
if(memoryi(i).ge.(ix-1)) then
id(i)=0
goto 8821
endif

c Bottom wall
if(memoryj(i).eq.1) then

41

i).eq.(iy-1)) then

eq.1) then

eq.(iz-1)) then

id(i)=0
goto 8821
endif

c Top wall
if(memoryj
id(i)=0
goto 8821
endif

c Left wall
if(memoryk(i)
id(i)=0
goto 8821
endif

c Right wall
if(memoryk(i)
id(i)=0
goto 8821
endif

c Left side of left pier
i f((memoryk(i) .eq.kpr(1)-1) .and. (memoryi(i)
id(i)=0
goto 8821
endif

c Right side of left pier
i f((memoryk(i) .eq.kpr(1)) .and. (memoryi(i) .ge.ipr(1))) then
id(i)=0
goto 8821
endif

c Left side of right pier
if((memoryk(i).eq.kpr(2)-1).and.(memoryi(i).ge.ipr(2))) then
id(i)=0
goto 8821
endif

c Right side of right pier
if((memoryk(i).eq.kpr(2)
id(i)=0
goto 8821
endif

8821 continue

ge.ipr(1))) then

.and.(memoryi(i).ge.ipr(2))) then

clear the original bubble arrays from inexistant
bubbles

call swapthem

Output

if(mod(isteper,iwrite).eq.O) then

This is the trajectory results files.
open(18,file='RESULTS-TRAJ.001')
do i=l,ibubble
write(18,19)time,isteper,id(i),xcen(i),ycen(i),
+zcen(i),rad(i),gmass(i)
enddo
close(18)
endif

end (or not) the simulation
if (isteper.eq.maxts) goto 1111

inject (or not) new bubbles
if (mod(isteper,jumpts).ne.0) goto 3454

42

c if injection is decided, shift old bubbles by
c initnum places in their arrays, to make space

call shifter
goto 1073

1111 continue
c
c
c Output
c
c This is the trajectory results files.

open(18,file='RESULTS-TRAJ.001')
do i=l,ibubble
write(18,19)time,isteper,id(i),xcen(i),ycen(i),
+zcen(i),rad(i),gmass(i)

19 format(fll.5,i8,i3,4fll.4,el2.4)
enddo
close(18)
write(*,*) xkkilled,colkilled,coakilled
return
end

c
Q *

c
subroutine locate(iconti)

c
c This subroutine finds in what cell of the computational
c mesh, the center of the bubble is.
c Note: This routine and the subroutines/functions called from
c this one, are the core of this program. Do not change anything
c unless you are absolutely sure you know what you are doing.
c

include'corn-bubble'
c
c These arrays hold the vertices of each cell (pos. 2-9)
c and the bubble center (pos. 1), temporarily for each locate scan
c

dimension xt(9) ,yt(9) ,zt (9)
c
c Generalized 3D lattice locator matrices
c
c small lattice
c

dimension ipl(6),ip2(6),ip3(6),ip4(6)
data ipl
+/3,7,7,4,2,3/
data ip2
+/4,8,9,5,3,5/
data ip3
4-/6,9,6,6,5,2/
data ip4
+/7,4,4,9,6,6/

c
c
c see discusion on time step
c

ispan=l
if=l
jf=l
isecond=0

c
c define search subdomain

43

istart=memoryi(ibub)-ispan
jstart=memoryj(ibub)-ispan
kstart=memoryk(ibub)-ispan
iend=memoryi(ibub)+ispan
jend=memoryj(ibub)+ispan
kend=memoryk(ibub)+ispan
if (istart.lt.l) istart=l
if (jstart.lt.1) jstart=l
if (kstart.lt.l) kstart=l
if (iend.gt.ix-1) iend=ix-l
if (jend.gt.iy-1) jend=iy-l
if (kend.gt.iz-1) kend=iz-l
else
istart=l
jstart=l
kstart=l
iend=ix-l
jend=iy-l
kend=iz-l
endif

5634 continue

: search subdomain
do 20 i-istart,iend
do 20 j=jstart,jend
do 20 k=kstart,kend

=xbub(if
=ybub(i f
=zbub(if
=x(i
=y(i
= z(i
=x(i
=y(i
= z(i
=x(i
=y(i.
= z(i.
=x(i.
=y(i.

j+l
j + l

j+l

xt (1
yt(i
zt (l
xt(2
yt(2
zt (2
xt (3
yt(3
zt(3
xt (4
yt(4
zt (4
xt (5
yt(5
zt(5
xt (6
yt(6
zt(6
xt(7
yt(7
zt(7
xt(8
yt(8
zt(8
xt(9
yt(9
zt (9

do 5 ilat=l,6
iii=ipl(ilat)
jjj=ip2(ilat)
kkk=ip3(ilat)

jf)
jf)
jf)

k)
k)
k)
k+1)
k+1)
k+1)

j+l,k+1)
j+l,k+1)

= z (i,j+l
=x(i+l,j
=y(i+l
=z(i+l
=x(i+l
=y(i+l
=z(i+l
=x(i+l
=y(i+l
=z(i+l
=x(i+l
=y(i+l
= z (i + 1

k)
k)
k)
k)
k)

j,k)
j,k)
j,k+l)
j,k+l)
j,k+l)
j+l,k+1)
j + l
j+l
j + l
j + l
j + l

k+1)
k+1)
k)
k)
k)

44

jstart.lt

volinaki=volini(i,j,k,ilat)
idecis=

+icheck(xt(1),xt(iii),xt(jjj)
+ , yt(l),yt(iii),yt(jjj)
+ , zt (1) ,zt(iii),zt(jjj)
+volinaki)

xt(kkk),xt(lll)
yt(kkk),yt(lll)
zt(kkk),zt(111),acura,

if (idecis.eq.1) then
iput(if,jf)= i
jput(if,jf)= j
kput(if,jf)=k
memoryi(ibub)=i
memoryj(ibub)=j
memoryk(ibub)=k
write(*,*) iput(if,jf),jput(if,jf),kput(if,jf)
goto 10
endif
continue

0 continue
if (iseco
write(*,*
+memoryj(i
write(*,*
write (*
write (*
write(*
write (*
+y(memoryi
+z(memoryi
write(* , *
+y(memoryi
+z(memoryi
write(*,*
+y(memoryi
+z(memoryi
write(*,*
+y(memoryi
+z(memoryi
write(*,*
+y(memoryi
+z(memoryi
write(*,*
+y(memoryi
+z(memoryi
write(*,*
+y(memoryi
+z(memoryi
write(*,*
+y(memoryi
+z(memoryi
goto 10
else
isecond=l
istart=l
jstart=l
kstart=l
iend=ix-l

nd.eq.l) then
) 'Finally not found! I,J,K', memoryi(ibub),
bub),memoryk(ibub)

1uvwmean', umean,vmean,wmean
1uvwbub', ububble(ibub),vbubble(ibub),wbubble(ibub)
'xyzcen', xcen(ibub),ycen(ibub),zcen(ibub)
'cell'
x(memoryi(ibub),memoryj(ibub),memoryk(ibub)),

ibub),memoryj(ibub),memoryk(ibub)),
ibub),memoryj(ibub),memoryk(ibub))
x(memoryi(ibub),memoryj(ibub)+1,memoryk(ibub)),

ibub),memoryj(ibub)+1,memoryk(ibub)),
ibub),memoryj(ibub)+1,memoryk(ibub))
x(memoryi(ibub),memoryj(ibub)+1,memoryk(ibub)+1),

ibub),memoryj(ibub)+1,memoryk(ibub)+1),
ibub),memoryj(ibub)+1,memoryk(ibub)+1)
x(memoryi(ibub),memoryj(ibub),memoryk(ibub)+1),

ibub),memoryj(ibub),memoryk(ibub)+1),
ibub),memoryj(ibub),memoryk(ibub)+1)
x(memoryi(ibub)+1,memoryj(ibub),memoryk(ibub)),

ibub)+1,memoryj(ibub),memoryk(ibub)),
ibub)+1,memoryj(ibub),memoryk(ibub))
x(memoryi(ibub)+1,memoryj(ibub)+1,memoryk(ibub)),

ibub)+1,memoryj(ibub)+1,memoryk(ibub)),
ibub)+1,memoryj(ibub)+1,memoryk(ibub))
x(memoryi(ibub)+1,memoryj(ibub)+1,memoryk(ibub)+1)

ibub)+1,memoryj(ibub)+1,memoryk(ibub)+1),
ibub)+1,memoryj(ibub)+1,memoryk(ibub)+1)
x(memoryi(ibub)+1,memoryj(ibub),memoryk(ibub)+1),

ibub)+1,memoryj(ibub),memoryk(ibub)+1),
ibub)+1,memoryj(ibub),memoryk(ibub)+1)

45

kend=iz-l
goto 5634
endif

c
10 continue

return
end

c
Q *

c
integer function icheck(xf1,xijk,xiljk,xijIk,xijkl,

+yfl,yijk,yiljk,yijlk,yijkl,zfl,zijk,ziljk,zijIk,zijkl,acura,
+volinaki)

c
c This function examines if the center of a bubble is in
c a particular cell of the grid
c

icheck=0
c
c volume of main tetrahedron (this is precomputed)
c

volIf=volinaki
c
c subvolumes inside tetrahedron 1
c
c subvolume 1
c

volll=volu(xfl,xiljk,xijlk,xijkl,
+ yf1,yiljk,yijIk,yijkl,
+ zf1,ziljk,zijIk,zijkl)

c
c subvolume 2
c

voll2=volu(xfl,xijk,xijlk,xijkl,
+ yf1,yijk,yijlk,yijkl,
+ zf1,zijk,zijlk,zijkl)

c
c subvolume 3
c

voll3=volu(xfl,xiljk,xijk,xijkl,
+ yf1,yiljk,yijk,yijkl,
+ zf1,ziljk,zijk,zijkl)

c
c subvolume 4
c

voll4=volu(xfl,xiljk,xijlk,xijk/
+ yf1,yiljk,yijlk,yijk,
+ zf1,ziljk,zijIk,zijk)

c
vollc=volll+voll2+voll3+voll4
voldif=abs(vollf-vollc)/vollf
if (voldif.le.acura) then
icheck=l
endif
return
end

c

46

real function volu(xl,x2,x3,x4,yl,y2,y3,y4,zl,z2,z3,z4)
this function computes the volume of a tetrahedron with
vertices (x,y,z)_l,2,3,4

dxl=x2-xl
dx2=x3-xl
dx3=x4-xl
dyl=y2-yl
dy2=y3-yl
dy3=y4-yl
dzl=z2-zl
dz2=z3-zl
dz3=z4-zl
volu =abs(dxl*dy2*dz3+dyl*dz2*dx3+dzl*dx2*dy3-

dyl*dx2*dz3-dxl*dz2*dy3-dzl*dy2*dx3)

Note: The exact formula of the volume of a tetrahedron requires
multiplication by 1/6, a term that can and is omited (since
only comparisons of volumes take place) for the sake of performance

return
end

subroutine ambient

This subroutine determines the local conditions the bubble is
sensing in its current location.

include'corn-bubble
dl =
+sqrt((xbub
++(xbub(l,1
++(ybub(l,1
++(zbub(l,l

d2 =
+ sqrt((xbub
++(ybub(l,l
+ + (zbubd, 1
d3 =
+sqrt((xbub
++(ybub(l,l
++(zbub(l,1
d4 =

+sqrt((xbub
++(ybub(l,l
++(zbub(l,1
d5 =
+ sqrt((xbub
++(ybub(l,1
++(zbub(l,1
d6 =
+sqrt((xbub
++(ybub(l,l
++(zbub(l,1
d7 =
+sqrt((xbub
+kput(1,1)+
++(ybub(l,l
++(zbub(l,1

1 , 1) - x (i p u t
- x d p u t (1 , 1
- y (i p u t (1 , 1
- z (i p u t (1 , 1

1,1)-x(iput
-y(iput(1,1
-z(iput (1,1

1,1)-x(iput
-y(iput(1,1
-z(iput(1,1

1,1)-x(iput
-y(iput(1,1
-z(iput(1,1

1,1)-x(iput
-y(iput(1,1
-z(iput(1,1

1,1)-x(iput
-y(iput(1,1
-z(iput(1,1

1,1)-x(iput
))**2
-y(iput(1,1
-z(iput (1,1

1,1),jput(1,1),kput(1,1)))**2
,jput(1,1),kput(1,1)))**2
,jput(1,1),kput(1,1)))**2
,jput(1,1),kput(1,1)))**2)

1,1),jput(1,1),kput(l,l)+l))**2
,jput(1,1),kput(1,1)+1))**2
,jput(1,1),kput(1,1)+1))**2)

1,1),jput(1,1)+l,kput(1,1)+1)) **2
,jput(1,1)+1,kput(1,1)+1))**2
,jput(1,1)+1,kput(1,1)+1))**2)

1,1),jput(1,1)+l,kput(1,1)))**2
,jput(1,1)+l,kput(1,1)))**2
,jput(1,1)+1,kput(1,1)))**2)

1,1)+1,jput(1,1),kput(1,1))) **2
+ 1,jput (1,1) ,kput(1,1)))**2
+1,jput(1,1),kput(1,1)))**2)

1,1)+1,jput(1,1),kput(l,l)+l))**2
+1,jput(1,1),kput(l,l)+l)) **2
+1,jput(1,1),kput(1,1)+1))**2)

1,1)+1,jput(l,l)+l,

+ 1 , j p u t (1 , 1) + l , k p u t (1 , 1) + 1)) * * 2
+ 1 , j p u t (1 , 1) + l , k p u t (1 , 1) + 1)) * * 2)

47

+sqrt((xbub(l,l)-x(iput(1,1)+1,jput(1,1)+1,kput(1,1))]
++(ybub(l,l)-y(iput(1,1)+1,jput(1,1)+l,kput(1,1)))**2
++(zbub(l,1)-z(iput(1,1)+1,jput(1,1)+1,kput(1,1)))**2)
dl=dl**(-3.5)
d2=d2**(-3.5)
d3=d3**(-3.5)
d4=d4**(-3.5)
d5=d5**(-3.5)
d6=d6**(-3.5)
d7=d7**(-3.5)
d8=d8**(-3.5)
dtot=dl+d2+d3+d4+d5+d6+d7+d8
umean=(dl*u(iput(1,1),jput(1,1),kput(1,1))
++d2*u(iput(1,1),jput(1,1),kput(l,l)+l)
++d3*u(iput(1,1),jput(1,1)+l,kput(1,1)+1)
++d4*u(iput(1,1),jput(1,l)+l,kput(1, 1))
++d5*u(iput(1,1)+1,jput(1,1),kput(1,1))
++d6*u(iput(1,1)+1,jput(1,1),kput(1,1)+1)
++d7*u(iput(1,1)+1,jput(1,1)+l,kput(1,1)+1)
++d8*u(iput(1,1)+1,jput(1,1)+l,kput(1,1)))/dtot
vmean=(dl*v(iput(1,1),jput(1,1),kput(1,1))
++d2*v(iput(1,1),jput(1,1),kput(1,1)+1)
++d3*v(iput(1,1),jput(1,1)+1,kput(1,1)+1)
++d4*v(iput(1,1),jput(1,1)+1,kput(1,1))
++d5*v(iput(1,1)+l,jput(1,1),kput(1,1))
++d6*v(iput(1,1)+l,jput(1,1),kput(l,l)+l)
++d7 *v(iput(1,1)+1,jput(1,1)+1,kput(1,1) +1)
++d8*v(iput(1,1)+1,jput(1,1)+l,kput(1,1)))/dtot
wmean=(dl*w(iput(1,1),jput(1,1),kput(1,1))
++d2*w(iput(1,1),jput(1,1),kput(1,1)+1)
++d3*w(iput(1,1),jput(1,1)+l,kput(1,1)+1)
++d4*w(iput(1,1),jput(1,1)+l,kput(1,1))
++d5*w(iput(1,1)+1,jput(1,1),kput(1,1))
++d6*w(iput(1,1)+1,jput(1,1),kput(1,1)+1)
++d7*w(iput(1,1)+1,jput(1,1)+1,kput(1,1)+1)
++d8*w(iput(1,1)+1,jput(1,1)+1,kput(1,1)))/dtot
pmean=(dl*p(iput(1,1),jput(1,1),kput(1,1))
++d2*p(iput(1,1),jput(1,1),kput(l,l)+l)
++d3 *p(iput(1,1),jput(1,1)+1,kput(1,1) +1)
++d4*p(iput(1,1),jput(1,1)+l,kput(1,1))
++d5*p(iput(1,1)+l,jput(1,1),kput(1,1))
++d6*p(iput(1,1)+1,jput(1,1),kput(1,1)+1)
++d7*p(iput(1,1)+1,jput(1,1)+l,kput(1,1)+1)
++d8*p(iput(1,1)+1,jput(1,1)+l,kput(1,1)))/dtot
epsmean=(dl*eps(iput(1,1),jput(1,1),kput(1,1))
++d2*eps(iput(1,1),jput(1,1),kput(1,1)+1)
++d3 *eps(iput(1,1) ,jput(1,1)+1,kput(1,1)+1)
++d4*eps(iput(1,1),jput(1,1)+1,kput(1,1))
++d5*eps(iput(1,1)+1,jput(1,1),kput(1,1))
++d6*eps(iput(1,1)+1,jput(1,1),kput(1,1)+1)
++d7 * eps(iput(l,l)+l,jput(l,l)+l,kput(1,1)+1)
++d8*eps(iput(1,1)+1,jput(1,1)+1,kput(1,1)))/dtot
umeanl(ibub)=umean
vmeanl(ibub)=vmean
wmeanl(ibub)=wmean
epsmeanl(ibub)=epsmean
continue
return
end

48

Q ***

C

subroutine march
c
c This subroutine *advances* the bubble to the next location
c along its trajectory. "Advances" means time marching integration
c of all three equations of motion
c

include'com-bubble'
c
c
c F = Me * du/dt Integration
c

ububble(ibub)=
+(4.*ububbml(ibub)-ububbm2(ibub)+
+(2.*dt*fxbub(ibub)/xmass(ibub)))/3.
vbubble(ibub)=
+ (4 .*vbubbml(ibub)-vbubbm2(ibub)+
+(2.*dt*fybub(ibub)/xmass(ibub)))/3.
wbubble(ibub)=
+(4.*wbubbml(ibub)-wbubbm2(ibub)+
+ (2.*dt*fzbub(ibub)/xmass(ibub))) /3 .

c
c update values of u,v,w ml & m2 (leaves ml = current)

49

