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SUMMARY

Telecommunication systems have evolved significantly since their inception

and the recent convergence of telephony infrastructure allows users to communicate

through a variety of ways including landlines, mobile phones and Voice over IP (VoIP)

phones. While cellular and public switched telephone (PSTN) networks use Caller ID

to identify users, VoIP networks employ user ids, similar to email, to identify users.

However, in all these networks this identity is locally asserted and is therefore easily

manipulated. It is easiest to assert any identity within IP networks and this has

resulted in VoIP spam (e.g., the recent Skype Computer Repair spam calls). As IP

networks converge with other PSTN and cellular networks, it has also become easy

to assert any Caller ID across these networks. The larger issue of Caller-ID spoofing

has increasingly contributed to credit card fraud and identity theft. To address this,

we introduce the notion of effective identity which is a combination of mechanisms

to (1) establish identity of the caller that is harder to manipulate, and (2) provide

additional information about the caller when necessary.

In this dissertation, we first look at the specific issue of determining the legiti-

macy (additional information) of a user id within IP networks to address the VoIP

spam problem. We propose CallRank, a novel mechanism built around call duration

and social network linkages to differentiate between a legitimate user and a spam-

mer. We realize that any system that determines the legitimacy of users based on

their social network linkages leaks private information. To address this, we create a to-

ken/credential framework that allows a user to prove the existence of a social network

path between him/her and the user he/she is trying to initiate contact with, without

actually revealing the path. We combine the privacy properties of two techniques in

xiv



cryptography: Delegatable Anonymous Credentials (DAC) and E-Cash to create this

framework. We then look at the broader issue of determining identity across the en-

tire telecommunication landscape to address the issue of Caller ID spoofing. Towards

this, we develop PinDr0p, a technique to determine the provenance of a call - the

source and the path taken by a call. In particular, we show that the codec transfor-

mations applied by multiple intermediary networks, in combination with packet loss

and noise characteristics, allow us to develop profiles for various call sources based

solely on features extracted from the received audio. In the absence of any verifiable

metadata, these profiles offer a means of developing specific fingerprints that help

uniquely identify a call source. We show that the audio can also provide valuable

additional information. We use anomalies in timbre created by different undersea

telecommunication cables to develop London Calling, a mechanism to identify geog-

raphy of a caller. Together, the contributions made in this dissertation create effective

identities that can help address the new threats in a converged telecommunication

infrastructure.

xv



CHAPTER I

INTRODUCTION

Telecommunications has evolved significantly since its inception in the 1800s to a

thriving $4 trillion sector in 2010. The current telecommunication infrastructure al-

lows users to communicate using a variety of technologies. Circuit switched landlines,

which operate on Public Switched Telephone Networks (PSTN), continue to provide

telephony to the majority of homes and businesses. Mobile phones now offer service

to more than four billion users [161]. Voice over IP (VoIP) allows users to inexpen-

sively communicate with each other irrespective of the geographical distances, with

systems such as Skype [27] currently serving over 400 million users [25].

One fundamental question in a telecommunication system is when a person re-

ceives a call, should he answer it. Two aspects governing this decision are: (1) the

identity of the caller, and (2) associated information about the caller. If a call recip-

ient knows the caller, then it is easy for him to determine whether or not to take a

call. Unfortunately, in telecommunication networks identity has always been locally

asserted. In VoIP, user ids are self picked. In PSTN and cellular networks, identity is

provided by Caller ID which is volunteered by the calling side. Further complicating

this situation is that people often receive calls from people they do not know and

yet it is important for them to answer that call. For example, consider a call from a

friend of one’s parent who is visiting the city and needs someone to show him around.

In such cases, identity is not sufficient and the recipient needs additional informa-

tion about the source of a call. We define effective identity to be a combination of

provided credentials and inferred feature values about a particular caller that helps a

call recipient determine if that call will result in a desirable interaction.
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The lack of such effective identities in telecommunication networks has made it

vulnerable to easy attacks. Within VoIP systems, since user ids are self picked, call

spam attacks have emerged where attackers have created accounts claiming to be

well established computer repair shops. The introduction of VoIP has also eroded

much of the trust associated with traditional telephony, making it easy to claim any

Caller-ID, resulting in Caller ID spoofing attacks. Caller ID spoofing has contributed

significantly to credit card fraud, identity theft and disruption of 911 services. For

example, in 2009, a single criminal ring used Caller-ID spoofing to steal close to 15

million dollars.

1.1 Dissertation Contribution

Creating effective identities in telecommunication networks has several challenges.

First, from a call recipient’s perspective, we need to identify which calls require only

identity and which need effective identities to ensure that the call results in a desirable

interaction. Second, we need to identify what additional information is useful in

making effective identities. Third, since call interactions are extremely personal, we

need to ensure that the additional information we provide does not reveal confidential

information about calls to people not participating in a call. Fourth, we need to ensure

that effective identity itself is robustly determined and cannot be easily manipulated.

Finally, we need to measure our ability to reduce current attacks such as VoIP spam

and Caller ID spoofing that exist in telecommunication systems due to a lack of

effective identities. We hypothesize that privacy preserving effective identities

can be created in a converged telecommunication infrastructure to reduce

VoIP spam and Caller ID spoofing. This dissertation investigates mechanisms

to create such effective identities.

We first start by looking at VoIP systems, where there have been many mecha-

nisms for establishing basic identity. We provide details of these mechanisms in the

2



background and related work in Chapter 2. As mentioned before, there are many

situations where people receive calls for the first time, from people they do not know

and would be willing to answer it (e.g. parent’s friend). This is known as the in-

troduction problem in peer to peer systems. As current systems do not provide any

additional information, attackers have exploited this to spam users into accepting

calls by claiming to be friends and then going on to sell them unwanted products.

In Chapter 3, we introduce CallRank, a system that provides both local and global

reputation information about callers that can be used to differentiate between a le-

gitimate user and a spammer. Our approach is motivated by the simple observation

that a legitimate user typically makes and receives calls and many of the calls last for

reasonable durations. On the other hand, a spammers/telemarketers goal is to deliver

information to as many people as possible by making a large number of relatively brief

calls. For a spammer, the call pattern is largely unidirectional with short call duration

while it is bidirectional for legitimate users with relatively longer call durations. We

take advantage of this difference in call patterns and create credentials that callers

can provide to recipients as proof of an implicit level of trust. These credentials es-

sentially determine Social Network (SN) linkages [35] between users, enabling us to

distinguish between legitimate users and spammers. We also use call duration along

with the Eigentrust algorithm [93] to develop a global view of the reputation of all

users who either belong to or interact with a domain. We implement CallRank and

demonstrate its ability to identify spammers with high specificity and sensitivity even

in the presence of a significant number of spammers.

We realize that any system that determines the legitimacy of users based on their

social network linkages leaks private information. To illustrate, let us suppose that

Alice wants to prove to Bob that she is a legitimate user (and not malicious) by

showing that that they have a good mutual friend in Charlie. To prove Charlie is a

friend, Alice will need to reveal previous interactions with Charlie that indicate that
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the two are friends. The more recent and the longer these interactions are, the more

convinced Bob is of Alice and Charlie’s friendship. However, revelation of these inter-

actions is a sacrifice of both Alice’s and Charlie’s privacy. To address this, in Chapter

4, we introduce Privacy Preserving Grapevines, a token/credential framework that

allows a user to prove the existence of a social network path between him/her and

the user he/she is trying to initiate contact with, without actually revealing the path.

We combine the privacy properties of two techniques in cryptography: Delegatable

Anonymous Credentials (DAC) [36] and E-Cash [47] to create this framework. We

show that though this framework has cryptographic overheads that affect call setup

times, we can achieve practical tradeoffs to keep this call setup time low. In addition,

this framework maintains the high specificity and sensitivity of CallRank.

We then look at the broader issue of determining identity across the entire telecom-

munication landscape to address the issue of Caller ID spoofing. Towards this in

Chapter 5, we develop PinDr0p1, an infrastructure to assist users in determining the

provenance of a call - the source and the path taken by a call. Through a combination

of signal processing and machine learning techniques, we show that regardless of the

claimed source, the audio delivered to the receiver exhibits measurable features of

the networks through which the call was delivered. For example, calls that traverse a

VoIP network experience packet loss that results in perceivable effects in the final call

audio. Such artifacts are noticeably absent in calls that have only traversed cellular

or Public Switched Telephone Networks (PSTNs). In particular, the codec trans-

formations applied by multiple intermediary PSTNs, VoIP and cellular networks, in

combination with packet loss and noise characteristics, allow us to develop profiles

for various call sources based solely on features extracted from the received audio. In

1Our mechanisms take advantage of audio and path artifacts that, like the sound made by the
drop of a pin, are largely unobservable to the human ear.
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the absence of any verifiable metadata, these profiles offer a means of developing spe-

cific fingerprints that help identify a particular call source. Using these fingerprints

we show that we are able to distinguish between calls made using specific PSTN,

cellular, Vonage, Skype and other hard and soft phones from locations across the

world with high accuracy. In Chapter 6 we extend techniques developed in Pindr0p

to use anomalies in timbre created by different undersea telecommunication cables to

develop London Calling, a mechanism to identify geography of a caller.

Our results provide strong evidence to support our hypothesis that it is possible

to create privacy preserving effective identities that reduce VoIP spam and Caller ID

spoofing. We finally conclude this thesis in Chapter 7.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Background

Telephony networks are exceedingly complex systems. While once designed, manufac-

tured and run by a single company, today’s networks are an elaborate combination of

many different technologies. We offer a very high-level description of these systems,

how voice is encoded in them and the transformations that occur as voice crosses

between different classes of networks.

As shown in Figure 1, there are three general classes of telephony networks. PSTNs

represent traditional circuit-switched telephony systems. These networks are gener-

ally characterized by lossless connections and high fidelity audio. While pieces of the

core of some of these networks are being replaced by IP connections, these provider

owned links are tightly controlled to ensure near zero packet loss. Like PSTN systems,

cellular networks have a circuit switched core, with portions currently being replaced

by IP links. While these networks can have considerably different technologies de-

ployed in their wireless interfaces, their cores are extremely similar. Finally, VoIP

networks by name run on top of IP links and generally share the same paths as all

other Internet-based traffic. Accordingly, VoIP systems virtually always experience

packet loss.

In all these networks there are two parts to enable calling, (1) signaling that

establishes and tears down the call, and (2) media which carries the voices of the call

participants. These are achieved by different mechanisms in each of these networks

and we discuss these mechanisms in the next couple of subsections.
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Figure 1: A high-level description of modern telephony systems. Note that a call
between two endpoints may cross a variety of networks. At each gateway, calls are
re-encoded using that network’s codec.

2.1.1 Signaling

The core signaling mechanism used for call setup, routing and control in PSTN and

cellular networks is the common channel signaling system no. 7, SS7. Within the

SS7 protocol stack, the Integrated Services Digital Network (ISDN) User Part (ISUP)

defines the procedures to setup, manage and release trunk circuits that carry voice

and data calls. Despite its name, ISUP is used for both ISDN and non-ISDN calls.

To initiate a call, the calling party goes off hook and dials the directory number

of the called party. These numbers are transmitted as DTMF digits to the closest

telephone exchange’s service switching point (SSP). SSPs are switches that originate

or terminate calls. The SSP then transmits an ISUP Initial Address Message (IAM)

to the destination SSP. This IAM consists among other things the dialed digits and

the voice trunk circuit reserved for this call. The calling party name (Caller ID) is also

transmitted as an optional parameter. When Caller ID is requested to be blocked,

this information is not sent as part of the IAM. The IAM is routed via a packet

switch called a signal transfer point (STP). An STP routes each incoming message to

an outgoing signaling link based on routing information contained in the SS7 message.
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Figure 2: SIP Call Trapezoid. Call duration represents the time between the end of
call setup (200 OK) to the start of call teardown (BY E)

Once the destination SSP confirms that the called party’s line is available for ringing,

it transmits an acknowledgment which translates to the ring tone heard by the calling

party. Once the called party picks up a phone an ISUP answer message (ANM) is

transmitted to the calling party and the two parties then use the reserved trunk to

transmit voice between them.

The signaling mechanism for VoIP is similar to SS7 and is enabled using either the

Session Initiation Protocol (SIP)[126], proposed by the IETF or H.323[155] proposed

by the ITU. Since SIP is de facto standard, we discuss how call setup and teardown

is achieved using SIP.

For two users to communicate with each other using SIP, they need to know

each other’s SIP URIs (Universal Resource Identifier). SIP then uses an application

overlay consisting of proxy servers and location services to locate these end points.
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Table 1: Audio Codecs and their typical deployment.

.

Codec Networks Applications
G.711 PSTN, VoIP Standard Telephony
GSM-FR Cellular Cellular Telephony
iLBC VoIP VoIP over Cable
Speex VoIP XBox Live
G.729 VoIP SkypeOut/SkypeIn

A typical SIP call trapezoid is shown in Figure 2. When Alice identified by SIP

URI sip:alice@wonderland.com, calls Bob, sip:bob@music.org, the call request message

(INV ITE) is sent to the proxy server responsible for the wonderland.com domain,

P1. P1 then determines how to route the call to the proxy responsible for Bob’s

domain, music.org, P2. Once P2 receives the request it looks up user Bob and then

routes it to the appropriate endpoint. On receipt of the INV ITE message, Bob’s user

agent (UA) starts to ring, shown by the 180 Ringing in Figure 2. When Bob picks up

the phone, the UA sends a 200 OK message. This initial message exchange forms the

call setup transaction. When Bob or Alice hang up, the respective UA sends a BY E

message and this initiates the call tear-down transaction. Call duration represents the

time between the end of call setup (200 OK) to the start of call teardown (BY E) (see

Figure 2). Call duration is the basic building block of the CallRank scheme proposed

in Chapter 3.

2.1.2 Media

Voice is encoded and decoded in each of these networks using a variety of codecs.

Specific codecs are selected for different networks based on competing goals including

sound quality, robustness to noise and bandwidth requirements. While a large number

of codecs exist, we describe and study the five most commonly used narrow band

codecs in this work. We summarize these codecs and their typical environments in

Table 2.1.2.

The codec used all over the world in PSTNs is G.711 [149], with North America
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and Japan using the mu-law compression algorithm and Europe and the rest of the

world using A-law. Both the algorithms generate a 64 kbps (20 ms audio frames)

Constant Bit Rate (CBR) stream for speech sampled at 8kHz, which is relatively

bandwidth intensive when compared to other codecs. In cellular networks, the GSM

full rate (GSM-FR) [80] codec was the first digital cellular coding standard and is still

widely used in networks around the world. Unlike G.711, which is a waveform coder,

GSM-FR uses predictive coding, which is more common among modern codecs and

allows a large reduction in bandwidth requirements, with GSM-FR having an average

bit rate of 13 kbps.

A plethora of codecs have been specifically designed for VoIP systems. The Inter-

net Low Bit-rate codec (iLBC) [75] is extremely robust to packet losses and operates

on a bit rate of 13.33 kbps (30 ms audio frames) and 15.20 kbps (20 ms audio frames).

iLBC is a mandatory standard for VoIP over Cable and is also used by Google Voice

and Skype [27]. Speex [22] is a Variable Bit Rate (VBR) codec that supports a wide

range of bit-rates from 2.15 kbps to 44 kbps and uses 20 ms audio frames. Speex, in

addition to being supported on many VoIP soft phones, is commonly used in gaming

teleconferencing systems such as Xbox Live [23]. A large number of VoIP systems

also use G.729 (10 ms audio frames) [150], which requires very low bandwidth as it

supports a CBR of 8kbps. Skype also uses G.729 when making and receiving calls

to landlines and mobile phones (SkypeOut/SkypeIn service). It is also used by most

Cisco hard IP phones [26]. Finally, a number of VoIP phones also support G.711,

which is used in PSTN systems.

Audio must be reencoded when passing between two different telephony networks.

For instance, whereas the audio in a call between two PSTN users is likely to only

have been encoded in G.711, both G.711 and GSM-FR will be applied to the audio for

a conversation between users on a PSTN and cellular network, respectively. Encoding

changes occur in media gateways located at the edge of telephony networks, meaning
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that VoIP calls can traverse multiple Internet autonomous systems without necessarily

being reencoded. Through this infrastructure, phone calls can be delivered seamlessly

between users. It is these transformations and the characteristics of the underlying

networks that we seek to measure to establish call provenance proposed in Chapter 5.

2.2 Related Work

The lack of common signaling mechanisms between the different networks has resulted

in easy assertion of any identity. This has resulted in both VoIP spam and in Caller

ID spoofing. We first look at related work in the VoIP spam area and show how are

solution compares with the others. As a large number of proposed solutions including

ours use social networks to identify the legitimacy of a user there are immediate pri-

vacy risks when such information is exchanged. This tradeoff between accountability

and privacy has been studied in peer to peer networks that exchange token informa-

tion to determine the legitimacy of a peer and we highlight this research. Finally,

as we broaden our context across the entire telecommunication landscape, we look

at how other systems have addressed the provenance of information and discuss how

that relates to determining the provenance of a call.

2.2.1 VoIP Spam

Rosenberg et al. [128] provide a comprehensive reference for the various possible

solutions that can be explored for VoIP spam. Techniques from email spam such

as Blacklists, Statistical Blacklists, Greylists, Whitelists and Consent Based Systems

are adopted for VoIP in [57, 135, 82]. The techniques mentioned above are subverted

easily by the creation of new identities, a mechanism used in attacks such as the Sybil

attack[64]. We show that CallRank, however, is resistant to these kind of attacks in

Section 3.3.3.1. Spam based on anomalous characteristics of a spam call is explored

in [145], [134] and [163]. However, the characteristics being monitored are easily

subvertible, once known. Strong authentication is probably the best counter measure
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against SPIT, however techniques based on DKIM[83], P-Asserted-Identity[89] and

SAML[156] specified in [145] and [128] will only be as successful as the fraction of user

base that utilizes it. Establishing absolute identity on the Internet is always going

to be a hard problem. It is unlikely that we will have a practical and a universally

deployable solution based completely on absolute identity.

In the democratic setting of the Internet, reputation based techniques seem to

be most practical and effective. Dantu et al.[57] and Rebahi et al.[120] suggest the

use of buddylists and user ratings for buddies to create dynamic localized whitelists.

However, this restricts the group of users that can call to strictly the user’s SN linkage

and it requires explicit user feedback in the form of ratings. CallRank on the other

hand, uses call duration, which is recorded automatically by the system without

requiring explicit user action.

2.2.2 Accountability and Privacy

Accountability and fairness in P2P systems have predominantly used tokens[103,

55, 28]. Anagnostakis et. al.[28] advocate the notion of transferable tokens and

show the improvements in scalability and redundancy afforded by introducing such

tokens. An alternative to tokens for accountability in P2P systems is the use of

micropayments[174, 159, 87, 84]. In essence, all these schemes prove the existence of

a transfer path by revealing information about that path and therefore have significant

privacy concerns.

Adding privacy requirements to incentive mechanisms(like tokens) has been stud-

ied extensively in reputation and recommender systems[119] and social networks[50],

utilizing a host of cryptographic techniques. Laurent et. al.[46] use group signa-

tures, while Carminati et. al.[50] use digital signatures to provide anonymity. Kai et.

al.[167] use group signatures to add anonymity to the micropayment scheme proposed

in [174]. For our setting, we have demonstrated how the underlying techniques used
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by these schemes still leak privacy. Belenkiy et. al.[37] try to achieve accountability

without losing privacy by using an E-Cash mechanism to provide a currency model

in P2P. However their system does not support transferable coins. A transferable

E-Cash mechanism using the meta proof technique is described in Canard et. al.[49].

However, the meta proof technique is a general circuit based proof that is inefficient

in practice. To solve this, we create Privacy Preserving Grapevines, where we allow

users to act as banks in their own right, creating, issuing and transferring tokens

to each other, since tokens are meaningful only to the issuer (he is the one getting

spammed).

2.2.3 Information Provenance

The concept of data provenance in computing was first studied in database systems.

The proposed techniques seek to identify the source of a piece of data and the process

by which it arrived at the database [45, 79, 38]. Such information can be proactively

added at the source and transformation points as metadata [70, 59] or reactively

obtained through techniques such as query inversion [169, 56]. Such techniques have

been adapted and extended to other platforms including web servers with trusted

hardware [111]. The presence of such mechanisms provides a significantly improved

infrastructure for performing audits and determining data quality [109].

More recently, a number of researchers have attempted to provide provenance

information for networks. Traceback techniques [131, 176, 81] attempt to determine

the true path of packets in the presence of potentially spoofed source information.

Such information can either be added directly to the packets as metadata [131, 140,

172, 118], or by state stored and queried from within the routers themselves [177].

A range of watermarking tools also exist to identify the provenance of flows in IP

networks [165, 99, 85]. The diversity of telephony networks (i.e., circuit switched

PSTN, cellular and VoIP) makes such watermarks extremely difficult. Specifically,
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metadata introduced in one network (e.g., watermarks, path information) is generally

lost when the call is transmitted over another network.

We are not aware of previous work that attempts to identify the provenance of

a phone call in a diverse telephony environment. However, techniques in a purely

Internet-based environment have been considered [146]. Perhaps the closest to our

work are caller identification (Caller-ID) services that provide the caller’s number

or name in PSTN and mobile networks. Calls originating from IP networks tradi-

tionally have no unique associated number or name and therefore cannot be used

to identify the caller [139]. Moreover, a variety of techniques already exist to spoof

phone numbers [12]. Artifacts of calls themselves may provide significant provenance

information. Specifically, because call quality relies greatly on a combination of the

codec [106, 21], the range of end devices [44] and network degradations [61, 125, 102],

the detection of these characteristics using tools designed to measure single-ended

call quality [61, 106, 125] can potentially be used to further improve the provenance

of a call.

In this thesis we will explore several related problems that arise due to a lack of

effective identities. We start by discussing CallRank and how it addresses the VoIP

spam problem in the next chapter. In chapter 4, we propose an extension to CallRank

that continues to use social network linkage information to differentiate legitimate

users and spammers while addressing the privacy risk of sharing such information.

We finally discuss establishing the provenance of calls in Chapters 5 and 6 and show

how that addresses the problem of detecting fraudulent calls and Caller ID spoofing

in a diverse telephony infrastructure.
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CHAPTER III

CALLRANK: COMBATING VOIP SPAM

Voice over Internet Protocol (VoIP) systems rely on an IP network to set up voice calls

and transmit voice packets. The growing popularity of VoIP, the relatively low cost of

access to IP networks, and the vulnerabilities that exist in systems connected to such

networks makes VoIP an attractive tool for spammers. Spammers and telemarketers

will use VoIP to make unsolicited calls and to send voice mails for the same purposes

for which email spam is currently used. VoIP spam would not only degrade our con-

fidence in telephony but it would be more difficult to handle because of the real-time

processing requirements of voice calls. Examples of large scale VoIP spam already

exist - a company sent out voice mails to all its customers detailing its initial public

offering[132]. If we are not able to combat VoIP spam effectively, we face an unhappy

future where picking up a ringing phone would be a frustrating experience and voice

mailboxes would become clogged with advertisements for unwanted products.

The first stage of voice communication is call setup, a handshake mechanism

between the caller and the call recipient after which the phones start ringing. At this

stage the only information provided is the identity of the caller and the call recipient.

It is only after the call recipient accepts the call, that voice media is exchanged. A

spam engine that filters based on the media content, however successful it is, will not

be able to prevent the phone from ringing constantly. In addition unlike email, voice

packets must be delivered to the user synchronously. Any delay in delivery due to

spam engine processing will result in degraded call quality. Thus, an effective method

for dealing with VoIP spam must rely on a robust identity of the caller rather than

call content. However, determining the exact identity of a user on the Internet is a
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hard problem. It is sufficient if we are able to differentiate between a legitimate caller

and a spammer. In this work, our focus is on developing a scheme that achieves this

goal.

This work proposes CallRank, a novel mechanism built around call duration,

to differentiate between a legitimate user and a spammer. Our approach is moti-

vated by the simple observation that a legitimate user typically makes and receives

calls and many of the calls last for long durations. On the other hand a spam-

mer’s/telemarketer’s goal is to deliver information to as many people possible, in as

little time, by making a large number of short calls. A spammer will typically receive

no calls or a much smaller number of calls. The difference in call patterns is that,

for a spammer, the call pattern is largely unidirectional while it is bidirectional for

legitimate users. We take advantage of this difference in call patterns and use call

duration to create call credentials that callers can provide to call recipients.

The following simple scenario shows how our call credential based approach can

be used to identify spammers. Assume that Alice makes a call to Bob. If Bob picks

up the phone and talks to Alice, after completion of the call, a call credential can be

generated signifying that Bob and Alice trust each other enough to talk for a certain

duration of time. The longer the call duration, stronger is the call credential. As basic

intuition suggests, if a user receives calls of significant duration on a regular basis, it

is likely that he/she is a legitimate user and not a spammer. There are several ways in

which call credentials can be created when calls are made. For example, when Alice

calls Bob and talks to him for t time, she can create a call credential and provide it

to Bob who can use the credential when making another call to show that he is not

a spammer. It is also possible that the recipient of the call (Bob) generates a call

credential for Alice. Although several of these options exist, in this work we explore

a mechanism where a caller, when he/she speaks to a call recipient, provides a call

credential to the call recipient.
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For each user we use call credentials to determine Social Network (SN)[35] linkages.

We also use call duration along with the Eigentrust algorithm[93] to develop a global

view of the reputation of all users that either belong to or interact with a domain.

For a spammer to be successful in the resulting system, CallRank, he/she must get

other legitimate users to call and speak to him/her for significantly large durations.

We believe this will be extremely hard as people rarely call up a spammer. If they

inadvertently do make a call to a spammer, the conversation will not last for very

long.

The following are the key contributions of this work:

• We introduce call duration based credentials as the uniform underlying mecha-

nism to support a number of techniques to determine if a caller is a spammer.

• We explore the use of SNs based on the call credentials to allow two users to

make a call.

• If SN linkages are unavailable between users, we use a variation of the Eigentrust

algorithm to assign global reputations based on call durations.

• We perform a detailed evaluation of CallRank and show that we are able to

achieve low false negative and low false positive rates even in the presence of a

significant fraction of spammers.

The rest of the chapter is as follows. Section 3.1 discusses SNs, and Section 3.2

discusses the Eigentrust algorithm. The key components of CallRank are presented

in Section 3.3. An evaluation of CallRank and its results are discussed in Section 3.4.

3.1 Local Reputation Using Social Network Linkages

In CallRank, SNs are used to decide when to accept a call credential. SNs model

associations that exist between a set of entities (typically humans). A distinctive

feature of these networks is their tendency to cluster, measured by the clustering
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coefficient[166]. Mathematically, an SN can be described as a graph G = (V,E),

where V , the set of vertices/nodes represent people and E, the set of edges represents

some relationship/association between the people. G is referred to as the community.

Consider a three vertex community consisting of nodes A, B and C. If a particular

node, A, is connected to the other two nodes, B and C, then for the community to

exhibit a high clustering coefficient B and C must also be connected. This tendency

to form triangles from wedges is the nature of a highly clustered SN. In a voice

communication system if there is a scenario where user A calls user B and user B

calls user C, then due to the similar clustering nature in these systems, it is highly

likely that user C will at some point call user A. This high likelihood coupled with

call credentials is used in CallRank to provide a local mechanism to determine if a

caller is a spammer or not.

3.2 Global Node Reputation Using Eigentrust

We utilize the Eigentrust algorithm[93] to determine the reputation of a set of peers

based on their interactions. In Eigentrust, each peer i decides a normalized local

trust value for another peer j, based on the number of satisfactory and unsatisfac-

tory transactions it has had with that peer. This value is represented as cij It then

uses a transitive notion of trust to aggregate these local trust values to a system

wide reputation value for all peers. If
−→
t represents a vector containing these val-

ues, the eigentrust algorithm determines this vector by solving
−→
t = (CT )n ∗ −→e for

n = large number of iterations. C is the matrix containing the normalized local

trust values [cij], ∀i, j. −→e is the unit 1-norm, that is ei = 1/m, where m is the total

number of peers in the system.
−→
t converges to the left principal eigenvector of C.

In case there exists pre-trusted peers P , we need to ensure that these end up with

high reputations. Therefore to converge faster, we can use −→p , instead of −→e where

pi = 1/|P | if i ε P and pi = 0 otherwise. The system to solve, in the presence of

18



Figure 3: Call duration represented as a reputation credential. This is the building
block for both establishing local reputation through social network linkages and global
reputation through Eigentrust

pre-trusted peers, is
−→
t = (CT )n ∗ −→p .

3.3 CallRank Overview

3.3.1 Voice Call Duration

Consider a call from Alice to Bob where the call duration is 10 minutes, as shown

in Figure 3. This, to us, represents an implicit statement that Alice trusts Bob

enough to speak to him for 10 minutes. On termination of the call, Alice’s user agent

(UA) will then automatically hand a secure call credential to Bob stating that ”Alice

spoke to Bob for 10 minutes”, represented by CCAB. We ensure its security through

cryptographic primitives discussed in Section 3.3.5. The next section discusses how

we can combine this credential and SN theory to determine what call credentials can

be trusted.

3.3.2 Using SNs to Accept a Call Credential

Consider, once again, the system as described in Figure 3, following which Bob talks

to Charlie for 15 minutes. At this point Bob’s UA hands a credential capturing this

information to Charlie, CCBC . At a later point in time assume Charlie tries to call

Alice. If Charlie’s UA presents CCBC to Alice’s UA at call setup time, then Alice can

accept the call since she knows Bob (as she has recorded information of the call from

her to Bob). In a general scenario, the caller UA will present to the call recipient’s
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UA a set of credentials when initiating a call. The call recipient’s UA will see if any

of the credentials can be used to establish a SN linkage and then decide either to

accept or reject the call. Such a decision may consider several factors to determine

how important or useful a particular credential is. For example, when Alice receives

call credential CCBC from Charlie, which has been generated by Bob, the factors that

will influence Alice’s decision to accept the call are: (1) How strong is CCBC?, and

(2) How fresh is CCBC?

The strength of the credential is dependent on the call duration value encapsu-

lated within it. Thus, Bob speaking to Charlie for an hour will generate a stronger

credential than Bob speaking to Charlie for a couple of minutes. Alice’s UA also

checks for the freshness of the credential. For this we assume that the UA’s have

access to approximately synchronized common clocks and we believe most phones

will be time synchronized in a commercial VoIP deployment. Alice’s UA can be con-

figured with a policy stating that only call credentials with durations greater than a

particular threshold, say TCD, and timestamps within a certain time window shall be

considered. We use the average call duration of the user as the value for TCD, that is

TCD =

∑
Duration of Callsmade by user

Total number of callsmade by user
.

A simpler scenario is when Alice speaks to Bob and Bob later wants to talk to

Alice. Bob can use the credential that Alice provided to him. In this case there is a

direct relationship between caller and call recipient and the call can be accepted. In

general, calls are accepted only if there exists, between caller and call recipient either

a direct relationship, or a transitive single hop SN linkage. We restrict the linkage to

a single hop because then callers can only use credentials directly presented to them.

This restricts misuse of credentials and keeps the design simple.

In our evaluation of CallRank, each UA maintains a record of all the people he/she

called and a list of call credentials from users who made calls. The decision to accept

or reject a call is then at the UA level and no other SIP component needs to get
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involved. This forms a scalable load distributed solution as each UA is responsible

for the calls it accepts or rejects. In most commercial phones, similar call history

information is maintained under Dialled Calls and Received Calls. We can extend

Received Calls to also store the call credentials.

3.3.2.1 Threats to SN Based Scheme

If a spammer needs to defeat our SN based model and make a call to a particular user,

he/she will have to penetrate the immediate SN of the user. Consider the scenario

where a spammer wants to call Alice. He/She will either have to get a call credential

directly from Alice or from someone to whom Alice makes calls. Since it is unlikely

that a legitimate user, such as Alice, or her immediate SN will call the spammer and

talk to him/her for sufficiently long periods of time, the spammer will find it hard to

obtain such a credential.

Assume the spammer manages to convince a user Bob (who is part of Alice’s

immediate SN) to talk to him/her for a sufficient duration. This may happen when

Bob inadvertently calls the spammer once. Since the spammer now has a credential

from Bob, he/she is able to spam everyone who makes calls to Bob including Alice.

However, the freshness constraint of the credential will only allow the spammer a

short time window where he/she can spam users who call Bob. If the spammer, on

the other hand, is able to get Bob to call him/her regularly, then he/she will have a

constant supply of fresh credentials. In such a case, Alice on being spammed, can now

decide that she will no longer accept calls which present call credentials from Bob.

Again, the spammer is only successful for a short duration. If the spammer needs to

disseminate information to a large number of users, he/she will need to penetrate all

their possibly disjoint SNs in a similar fashion. The down side of our SN scheme is

that there will be situations where even legitimate users will not be able to use call

credentials because there exists no SN linkage between them. The global reputation
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Figure 4: The left principal eignevector of the sample matrix is the global reputation
of this matrix. The matrix cannot be rank deficient and therefore each row must at
least have one non zero entry

scheme discussed in the next section will be used to address this problem.

3.3.3 Global Reputation Using Eigentrust

Over the course of some period of time, assume that Alice talks to Bob, Charlie

and Dave and the talk times are as shown in Figure 4. We can use call duration

to represent the reputation value that Alice implicitly assigns to people she calls.

Formally, the normalized local reputation value provided by a user i who calls a user

j is calculated as

rij =
Duration of all calls to j∑

k Duration of all calls to user k
. (1)

This ensures that rij is between 0 and 1 and for any row i,
∑
∀j rij = 1. This

is analogous to the normalized local trust value in the Eigentrust system[93]. The

advantage of normalizing is that reputation values are not arbitrarily high or low.

This prevents users who form a malicious collective from assigning a high reputation

value to other users in the collective and low value to legitimate users.

The first row in Figure 4 represents Alice’s reputation values towards Bob, Charlie

and Dave based on equation (1). Similarly the reputation values that Bob, Charlie
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and Dave assign to each other and Alice can be calculated and form the subsequent

rows in a reputation matrix, R. For the system comprising only of Alice, Bob, Charlie

and Dave, the reputation matrix is shown in Figure 4. If we need a system wide view

of reputation values then we have to aggregate these local reputation values. We

discussed in Section 3.2 that this is the leading left eigenvector, λ of the matrix R.

λi then represents the reputation of user i as perceived by the system as a whole. In

calculating the leading eigenvector, we use the power method specified in [76]. We

deviate from the method by normalizing the trust vector obtained at the end of each

iteration using its 1-norm (the method in [76] uses the 2-norm). Using the 1-norm

ensures that the final eignevector, λ, is such that 0 ≤ λi ≤ 1, ∀i and
∑

i λi = 1. Thus

the system as a whole has a total possible reputation of 1 and each individual has

some fraction of this reputation. Using a 1-norm over a 2-norm does not seem to

affect the convergence rate in our experiments.

Proxies that provide billing services maintain call duration information for all

users within their domain. The proxy is, therefore, the best place to maintain and

update the reputation matrix. Periodically it can calculate and update the leading

eigenvector of the matrix. In addition the proxy can also include users (from other

domains) who have either made or received calls to or from this domain in its repu-

tation matrix. In CallRank, when a proxy server receives a call request, it consults

the eigenvector calculated to obtain the reputation value for the caller and appends

this information to the request. The call recipient can then decide based on a thresh-

old value if calls will be accepted or not. In our evaluation only the call recipient’s

proxy appends a reputation value which makes the value hard to be tampered with.

We can also have the caller’s proxy provide a reputation value but that will be less

trustworthy.

23



3.3.3.1 Threats to Global Reputation Scheme

We discussed how it is hard for a spammer to penetrate a legitimate user’s SN and

thus compromise CallRank’s effectiveness. It is equally hard for the spammer to

obtain a high global reputation value. This is because the reputation value is based

on call interactions with a number of users and takes into account the reputation

of these users. If a spammer needs to have a high reputation value, he/she will

need a significant number of moderately reputed users to call him/her and speak

for sufficiently long durations. This is an unlikely occurrence. A legitimate user, on

the other hand, will have a high reputation value due to call interactions with other

legitimate users (a feedback loop). This implies even fairly sophisticated attacks like

the Sybil attack[64] can be thwarted because coming to the system with a new identity

implies no SN linkages or reputation and this is detrimental towards making calls.

3.3.4 The Introduction Problem

When a new legitimate user joins a VoIP system, he has no social network linkages in

that system and a low reputation value. This will change if other users call him/her

increasing his reputation value and providing him/her with call credentials. However,

other users are unaware of his entry into the VoIP system. In order to notify other

users he will need to make the first call. In CallRank, however, all calls he makes

will be flagged as spam calls, which amounts to a false positive. We can fix this by

combining CallRank with other schemes proposed for VoIP spam such as an audio

Turing test or a computational puzzle. When a user is flagged as a spammer, he will

then be subject to the Turing test or a computational puzzle or even a personalized

question from the call recipient (what is my high school nickname). The call is

accepted if the caller is able to successfully answer any of these tests. In our simulation

we have not included such a Turing test and this forms part of our future work.
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3.3.5 Call Credentials

The call credential needs to have accurate and secure information about the call

durations. A call credential CC consists of A, the identity of the caller, B, the

identity of the call recipient, t, the call duration and TS, the time stamp of the call

along with a digital signature of the same information. We assume that each user

has a public/private key pair which is used to generate the digital signature. If not

already available, this pair can be generated by the UA on first use. Associating a

public key with a particular user is done with key rings in the manner proposed in

[100], thus avoiding the use of an infrastructure such as PKI.

The accuracy of the information within the credential can be verified by the proxy

which also records call duration information. We assume the proxy has an accurate

value of call duration as it provides billing services. Therefore, the proxy does not

need call credentials for calculating reputation values. In fact, if the proxy is also

used to determine the SN linkage for a call, we do not need call credentials. The call

duration information recorded by the proxy is sufficient. However, we believe moving

the SN linkage detection to the proxy makes the system unscalable.

To understand the call credential better, we consider what it means from a hu-

man perspective. This credential is a record of the user’s past observed behavior in

the system or his/her call history. If the user is an active member of a particular

VoIP community, making and receiving calls, he/she will accumulate the community

relevant credentials through his/her interactions, making it easier to identify him/her

accurately within the community. This is exactly how it works in the real world.

If for some reason there is a sufficiently long break from the community then when

he/she re-enters, he/she will once again have to reestablish himself/herself. Since

credential collection is transparent, users can use the system with minimal impact on

usability. Using call duration as a building block has the following advantages. It is

(1) implicit, (2) quantifiable (3) easily verifiable, and (4) easily understood.
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3.3.6 Discusssion of CallRank Algorithm

To summarize, the CallRank algorithm works as follows. On receipt of a call setup

message, the UA first checks to see if any call credentials presented by the caller

belong to users to which the UA has made calls. If such a credential is found and

it satisfies the policy duration and freshness constraints, the call is accepted. If no

credential satisfies the constraints then the algorithm checks the reputation value of

the caller. If this satisfies a particular acceptable reputation threshold, then the call is

accepted. Otherwise, the call is deemed spam and is rejected. Another technique like

a Turing test may be used at this point but the present implementation of CallRank

does not support this.

CallRank does have some limitations. The first limitation is that legitimate users,

who make a large number of outgoing calls but receive very few incoming ones, would

not be able to collect call credentials. Typical examples are emergency services and

banks. Since these systems are part of critical infrastructure, they can be seeded

with high global reputation values. The second concern is one of privacy because

the collection of call credentials provides user with call history information of their

immediate SN. We discuss how we address this in the next chapter.

3.4 CallRank Evaluation

We simulate CallRank with a synthetic call workload to evaluate its effectiveness. In

particluar, we measure how quickly users can distinguish between legitimate callers

and spammers and the results are discussed in Sections 3.4.1, 3.4.2 and 3.4.3. We

study legitimate caller acceptance in Section 3.4.4.

Our initial experimental setup consists of DNS, proxy and statistics servers and

user agents. Initially, only the DNS and the statistics server are running. Each proxy

server registers with the DNS server, and the user agents register with the proxy. User

agents either behave as reputed users (seeded with high reputation values), legitimate
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users (users who make legitimate calls but are not seeded with high reputation values),

or as spammers. A legitimate or a reputed UA makes calls to other phones with inter

call and call duration values that are Poisson distributed. The choice of call recepient

is Zipfian distributed. Spamming UAs, however, make calls to as many other UAs as

possible.

Call setup goes through proxies which consult the DNS server and then route

the call to the proxy in the call recipient domain, which in turn forwards to the call

recipient. During the learning period, which can be set, a call recipient will accept all

calls. After the learning period, a call is accepted or rejected based on call credentials

and reputation value. All call interactions are recorded at the statistics server which

track number of accepted and rejected calls for both legitimate users and spammers.

Our initial setup consists of three domains each served by a proxy server and 200 users

initially registered in each domain. 1% of the 600 users are reputed. The number of

spammers and regular users is varied based on the experiment. We use a simulated

call workload model. To simulate call processing for a sufficient period of time, 100

seconds of system time models 1 day of simulated time.

3.4.1 Effect of Spammers

The first set of experiments determines the effect of spammers on CallRank. Three

runs are conducted where the spammers present are varied from 1%, 10% and 20%

and the fraction of spam calls accepted for each case is measured. The results are as

shown in Figure 5 which plots the fraction of spam calls accepted with time. When

legitimate users join the system, they have a learning period during which time they

accept ALL calls. This period is essential for the user to gather credentials and build

reputation. However, they are vulnerable to spam calls. The spammer thus needs to

detect a new user within this learning period time window and then send all the spam

they can generate. In our simulation the learning period for all UAs is fixed at 1 day.
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Figure 5: Effect of spammers. This experiment assumes an aggressive threat model
where spammers identify new users in the system as soon as they join.

All three scenarios initially show increase as spammers learn about more and more

legitimate users and are able to send spam to them successfully. This increase lasts

roughly for the learning period and then starts decreasing rapidly. This is because

legitimate users, using the CallRank scheme, are now able to differentiate between

spammers and legitimate users. For all three scenarios there are no new spam calls

accepted after 4.5 days.

As the percentage of spammers increases from 1% to 10% to 20% the probability

of some spammer discovering a legitmate user increases and the ability to send larger

amounts of spam increases as well. This is seen in Figure 5 as each of the curves shows

higher false negative rates of 1% to 10% to 22% respectively. Thus, the false positive

rate increases linearly with the number of spammers. However, these numbers are

contingent on the fact that legitimate users are discovered by spammers within their

short learning period time window. If the legitimate user is undiscovered then the

rates will drop down even further. In fact, once a legitimate user crosses his/her

learning period he/she is able to identify spammers (old and new) with ease.
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Figure 6: Impact of new spammers. As users stay in the system longer, CallRank
helps them to be robust against new spammers.

3.4.2 Addition of New Spammers

We start with an initial population of 600 user agents, 1% of which are reputed

UAs, 10% spammer UAs and the rest are legitimate UAs. We wait until the system

stabilizes, that is no new spam calls are accepted or no new legitmate calls are rejected.

From Figure 6 we see this occurs after 2 days and the number of accepted spam calls

has saturated around 1000 calls. We then add spammers, 1%, 10% and then 20%

of the current UA population. As seen the addition of these spammers does not

increase the number of accepted spam calls illustrating that CallRank’s mechanisms

ensure that new spammers do not affect existing legitimate users. The reason behind

this is that a new spammer, when introduced, does not have any SN linkage or

reputation. Therefore, existing legitimate users will not accept any calls originating

from them. Thereafter a spammer, due to his behavior, will not improve either his

SN or reputation implying that at no stage will a legitimate user accept a call from

him. This is a big advantage of the CallRank scheme where older users by virtue of

their good call history become more adept at rejecting spam calls. Attacks such as
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Figure 7: Adding legitimate users. The false positive rate increases to 3% but reduces
significantly as legitimate users are recognized by the system to be legitimate

the Sybil attack which work very well against techniques such as blacklists will not

succeed against CallRank.

The addition of new spammers generates more spam and we can see this in the

increase in the number of rejected spam calls in Figure 6. At each stage of the

introduction (marked by arrows) we can see an increase in the slope of rejected spam

calls thus corroborating CallRank’s effectiveness.

3.4.3 False Positives

Although not shown in the previous experiments, the false positive rates are also

extremely low. For example, in the simulation run that involved 600 users, 1% of

which are reputed and 10% spammers, there were only 3 calls that were wrongly

rejected to give a false positive rate of .02%. This low rate is because all users are

introduced at the same time and their learning periods coincide. Therefore, all users

were simultaneously aware of the rest of the users by the end of this period. However,

in a realistic scenario, users join a system over a period of time. To simulate this we

created 600 users, 200 in each domain, over a period of 10 days. Within a domain
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Figure 8: Legitimate user acceptance. If a user behaves legitimately, it takes him 3.5
days of simulation time to be accepted by half the user base.

users are created 3 hrs (simulated time) of each other. The false positive rate of such

a system is as shown in Figure 7. The rate initially increases to a high of 3% and

then reduces gradually. This is because, when a user joins the system, he has no SN

linkage and no reputation which by CallRank’s perspective is the characteristics of a

spammer. Therefore, most of his calls will be rejected. However, if the user behaves

legitimately, this rate drops soon enough showing that CallRank is able to determine

that the user is legitimate. False positives do not have the same connotation as in

the email world, where it implies a permanent loss of information. In the VoIP world,

since interactions are synchronous, a user whose call is rejected can be asked to take

an audio Turing test. This will only result in occasional longer call setup times,

typically occurring when the user initially joins the system.

3.4.4 User Acceptance

We studied the acceptance of a legitimate user into a system containing 1000 existing

users. This is shown in Figure 8. As we can see a legitimate user is accepted by half

the total user base in 3.5 days. However, this factor can be used by a spammer to
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alternate between being a legitimate user and a spammer, thus, providing him with

the ability to spam a large set of users. This threat is not as large as it seems, because

behaving as a legitimate user entails getting people with significant SN linkages or

moderate reputation values to talk to the spammer on a continuous basis. When a

legitimate user joins a voice communication system, almost immediately there are

other legitimate users who talk to him thus creating his SN and establishing his

reputation. This happens naturally for most people who have an established life

outside the VoIP system. Their SN linkages or their reputations are just extensions

of their real world persona. On the other hand a spammer has no existence outside

the VoIP system, and so, legitimate users will never call him when he gets introduced

into the system.

We also see that the graph in Figure 8 saturates at 70% (say set S) of the user

base. That implies that anytime this user calls any of the users belonging to the

remaining 30% (S ′), he will be treated as a spammer. This is because there exists no

SN linkage between the user and S ′ and the user’s reputation value is significantly

lower than users in S ′. From our logs we see that S ′ consist of either the initially

pre-reputed users or users that have been in the system in a legitimate fashion long

enough to have become extremely reputed. This behavior is beneficial as it implies

spamming users who are very reputed is going to be extremely hard.

3.5 Conclusion

Within VoIP systems there are multiple mechanisms to establish identity. However,

for scenarios where users need additional information (e.g., when it is a parent’s friend

calling and the identity just says it is Joe calling) there are no suitable options to

be able to take a call . To create these effective identities, we proposed CallRank, a

system that uses call duration in conjunction with social network linkages and global

reputation to determine if a user is a spammer or not. Our simulation explored the
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effectiveness of CallRank and showed that it adapts over time, allowing users with

legitimate call history to make calls easily while defeating spammers. In addition,

our system is able to accept new legitimate users relatively easily while ensuring that

new spammers are not able to affect existing users. This shows that CallRank is able

to create effective identities that reduce VoIP spam. However in the next chapter,

we discuss how expanding CallRank to consider social network paths of larger than

two hops immediately reveals confidential information. To address this limitation we

then develop a system that creates effective identities that are privacy preserving and

continue to be robust against VoIP spam.
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CHAPTER IV

PRIVACY PRESERVING GRAPEVINES: PRIVATELY

CAPTURING SOCIAL NETWORK INTERACTIONS

As discussed in the previous chapter VoIP systems suffer from the spam problem

[4, 16], primarily due to the inability of these systems to determine whether a user

initiating contact for the first time is honest or malicious - the introduction problem.

For example, in IM systems such as Yahoo Messenger or Google Talk, users explic-

itly invite people that they would like to chat with. To counteract this, in AIM[1],

spammers provide unsolicited content as part of the initial invite request itself. Some

systems like Google Talk allow users who have had prior email correspondence to

automatically chat with each other. Automatic introduction is especially important

in real time systems like VoIP, where a call needs to be accepted or rejected as soon as

it is received. To illustrate, consider a scenario where Alice’s father’s friend’s son, say

Bob, would like to talk to her about admission to a university program (or job open-

ings at her workplace). Social network (SN) theory suggests that higher the number

of such weak ties between users, higher the likelihood of of a new direct tie being

established between them[77, 33]. In VoIP, such a tie could be gleaned by looking

at the call graph between users. In this case, there would exist a call path between

Alice and Bob. Alice should not have to explicitly determine whether there exists

such a call path as she could be subjected to spam in the process. We, thus, need an

automated framework that is able to establish the existence of a SN call path between

two users that are trying to communicate for the first time.

In addition to the introduction problem, it is equally important to determine

whether a user would like to continue communicating with people that he has been
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introduced to. To illustrate, consider a user who is travelling to France and calls a

travel agent to make trip plans. If the travel agent does not specialize in flight tickets

to France, he could get fellow travel agents (his SN) to talk to the user. As long

as the travel agent and/or his SN provides valuable information to the user, there

is continued communication between them. However, when the travel agent starts

contacting the user with promotional offers, the user will stop taking his calls. Since

this information is unsolicited by the user, it again constitutes spam. Therefore, in

addition, to being able to determine SN call paths, the framework should be able to

capture the willingness of a user to continue communicating with a particular user.

In essence, to provide a good user experience in the presence of a spammer threat

model, a system needs to address two different challenges. The first allows users

without a direct link to communicates with each other, and the second monitors the

quality and validity of a link that exists between two users. CallRank[29], tries to

address this problem by encapsulating call duration as a digitally signed call creden-

tial that is transferred from a caller to call recipient. The call recipient uses this call

credential to talk to the user or to the user’s immediate friends. Since a spammer

hardly receives calls and when he does, finds it hard to engage users in conversation,

he is unable to obtain call credentials necessary to call and spam legitimate users.

Specifically, in CallRank, at the end of a VoIP call between Alice(caller) and Bob(call

recipient) that lasts 10 minutes, Alice issues a digitally signed call token to Bob,

represented by TA→B. At a later instance when Bob wants to talk to Alice’s friend,

Charlie, with whom he has had no previous direct interaction, he presents TA→B to

prove to him that someone in his SN (namely Alice) was willing to talk to him. The

factors that influence Charlie’s decision to accept this call credential include how well

he knows Alice, how long was the call and how recent was it. This provides Charlie

great control on the calls he accepts. However, he also gets to know precisely when
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and for how long Alice and Bob talked, something that violates their privacy. Call-

Rank restricts itself to immediate friends (two hops) as the loss in privacy, illustrated

above, is aggravated as the number of hops increase. Though we used the notation

CCAB in CallRank, we use TA→B in this chapter as we consider a larger number of

hops and need to clearly establish what constitutes a SN path. The two notations

are equivalent. The CallRank setting clearly shows how SN call history provides a

valuable mechanism to differentiate between regular users and spammers. However,

these credentials are not privacy preserving. In addition, since they only allow a

two hop SN, they are restrictive and lose valuable weak tie information that can be

obtained by considering a larger hop SN.

In this chapter, we create a token framework that uses delegatable anonymous

credentials (DACs)[36] to create N hop transferable tokens that allow a user to prove

the existence of a transfer path between him and the user he is trying to initiate

contact with, without actually revealing the path. If a token transfer is associated

with a VoIP call then the token transfer path represents a chain of calls between two

callers. This information can be used by legitimate users to prove the existence of a

weak social tie (father’s friend’s son) between them and the user they are trying to

call. In addition, we need these tokens to be single use to capture a user’s continued

endorsement of a direct link(strong social tie). Towards this we extend DACs with

techniques from E-Cash[47] to create single use tokens with the ability to identify

token double spenders. Single use tokens also ensure that malicious users cannot

indefinitely reuse tokens that they either obtain directly or through some call path.

We implement the token framework using the Pairing Based Cryptography (PBC)

library[24] and utilize it in the VoIP setting to explore its performance in the presence

of a spammer threat model. We believe other communication systems and SN based

services can also use this framework with minor modifications.

This chapter makes the following contributions:

36



1. We identify the requirements for a framework that allows a new user, Bob, to

prove the existence of SN call path between him and Alice, without revealing the

actual path. In addition, the framework allows us to capture Alice’s willingness

to continue communicating with Bob.

2. We create a transferable single use token mechanism that extends delegat-

able anonymous credentials[36] with techniques from E-Cash[47] to realize this

framework.

3. We provide an implementation of this framework using the PBC library and

experimentally evaluate the costs associated with its operations.

4. We apply this framework to a VoIP setting and demonstrate that it can combat

the spam problem with low false positive and false negative rates.

The rest of the chapter is organized as follows. In section 4.1 we discuss the

requirements of the desired framework, followed by possible approaches in section 4.2.

We show that none of these approaches satisfy all the requirements and we develop

our solution by first discussing the building blocks: DACs and E-Cash in section 4.3.

In section 4.4 we discuss how to combine DACs and E-Cash to create our single use

privacy preserving transferable token framework. We discuss implementation details,

and results that include operation times of our framework and the performance of the

framework with respect to the VoIP spam threat model in section 4.6.

4.1 Token Setting and Required Properties

An example multi-hop call chain is shown in figure 9 and provides the setting for our

token framework. In this setting, a user A1 calls another user A2, speaks for a certain

duration and at the end of the call issues a token, TA1 to A2. A2 can use this token

to call A1 back at a later time. In this example, A2 subsequently calls A3 and at the

end of their call transfers TA1 to A3. A2 could also issue his own token and we discuss
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Figure 9: Multi-hop Token Transfer. A token from A1 is transferred k hops until it
is finally used by Ak+1 to talk to A1. The token must be constructed to prove that
this k−hop path is legitimate.

a good strategy of deciding when A2 issues his own token or transfers someone else’s

token in section 4.6.2. For now, A3 gets the transferred token and can, once again,

either use this to talk to A1 or transfer it further. As shown in figure 9 this token is

subsequently transferred to a user Ak+1, k hops away. Finally, Ak+1 decides to use

the token to talk to A1 with whom he has had no previous interaction and presents

TA1 . Using TA1 , A1 can decide whether to accept or reject the call. In fact, since any

user Ai, 2 ≤ i ≤ k + 1 can use the token to talk to A1, at the very least, the token

should contain the identity of the token issuer. We assume this information does not

need to be anonymized and argue that requiring this is both inefficient and does not

provide a greater level of privacy.

Considering this setting, the three broad goals for a token are:

1. It can prove the existence of a transfer path between two users trying to estab-

lish communication for the first time. When Ak+1 calls A1, the token should

convince A1 that there exists a transfer path between them.

2. It can capture the willingness of a user to continue communication with a partic-

ular user and his SN. Tokens given to A2 and his SN should not allow unlimited

accessibility to A1 as such a scheme can be misused.

3. It should achieve 1 and 2 above in a privacy preserving and efficient manner.

38



These goals translate to one or more of the properties listed below:

Unforgeability and Verifiability: The unforgeability property requires unforge-

ability of the token with respect to its issuing entity and the transfer path information

that it carries. Specifically, when user A1 calls user A2, the token issued at the end

of the call, TA1 , should be unforgeable. This implies no other user should be able

to issue a token on A1’s behalf. As the token is transferred, information about each

transfer is appended to the token and this information should also be unforgeable.

Specifically, when the token claims that it was transferred from user Ai−1 to Ai then

such a transfer should have actually occurred. This ensures that when A1 finally

receives the token from Ak+1, the unforgeability of the token issuer and the unforge-

ability of the transfer path information will allow Ak+1 to prove the existence of such

a path. We make the assumption that honest users transfer tokens only during calls

and we note that without an all observing trusted third party there is no way of

ensuring token transfers are tied to a call. Malicious entities may choose to transfer

the tokens without a call. Despite this, a malicious entity should not be able to issue

a token on behalf of an honest user or claim the existence of a transfer or a transfer

path without it having occurred. The verifiability property requires that along with

the token issuer, any user should be able to verify that the token is indeed issued by

the issuer and the transfer path information is verifiably correct. This prevents the

existence of bogus tokens in the system that are only discarded when they are finally

submitted to the issuer.

A scheme that satisfies the above requirement can address goal (1). On the other

hand, a user’s willingness (or unwillingness) to continue interactions with another

user, is useful in capturing the evolving nature of interactions. Since connections can

be fleeting, as in the travel agent example, or can go away after a longer association

(for example, relationships gone sour), deactivation is necessary. Also, a malicious

entity might gain the trust of users and then start behaving maliciously. Essentially,
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a scheme that assumes a user’s behavior is going to always remain the same fails to

realize any of these scenarios. In order to address goal (2) the token needs to satisfy

the following requirement:

Single Use Tokens: Revisiting the travel agent example, we see that an infinitely

reusable/non revocable token cannot capture the user’s unwillingness to talk to the

travel agent and his SN. Therefore tokens need to either be single use, have a restricted

lifetime or support a revocation policy. Single use tokens provide a fair exchange for a

users’ interaction time. In the VoIP setting, if A1 talked to A2 for 10 minutes then the

token TA1 provides A2 or his social network the ability to talk to A1 for a proportional

period of time. If A1 is no longer willing to talk to A2, as in the travel agent example,

then A2 only has a fixed supply of A′1s tokens that he will eventually run out of. A

more time sensitive approach is the use of token lifetimes where tokens expire after

a specified time limit. However, determining what is a good token lifetime is hard,

particularly when tokens are transferable, as the time between token issue and token

use will vary. In addition, token lifetimes reveal information about the time of token

issue. A more elaborate mechanism is incorporating token revocation. Anytime an

issuer would like to deactivate a link to another user and his SN, he could send a

token revocation to the user. However, this would require the user to keep state of all

the other users to whom that token was transferred. All users who received this token

would also need to maintain similar state and an elaborate revocation propagation

mechanism would need to be put in place. In this light, single use tokens seem a

practical token control mechanism to gauge a user’s willingness to interact. They

also allow issuers to decide the number of tokens to issue, thus requiring malicious

users to obtain a steady supply of tokens for any user they wish to spam. However,

single use tokens do not prevent token double spenders, users who transfer the same

token to different users. Since only one of these tokens will be honored by the issuer,

an honest user’s call might be rejected in the process. Therefore, in addition to being
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single use, it is important to be able to identify a token double spender.

Privacy: For honest users, a token is transferred during a call and contains

sensitive call information. In achieving the above two requirements the scheme should

ensure that details of a call should only be known to users directly participating in

that call. Consider a call sequence: Ai−1 → Ai → Ai+1 for token TA1 . In this case

when Ai transfers the token to Ai+1, Ai+1 should only be able to identify that the

token was issued originally by A1 and that it has been verifiably transferred at each

hop culminating at Ai. The token should not reveal the identities of previous holders

of the token, including the fact that it was transferred from Ai−1 to Ai. Therefore, a

user in the transfer chain should only know who the token issuer is, who the token

was received from and to whom it is being transferred. A user not in the transfer

chain(example, someone who snoops a token off the wire) can at most know the

identity of the token issuer as this information does not reveal any of his interactions.

This notion of privacy should be preserved for all the contents of the token. We

assume that the token issuer, for tokens issued by him, never acts maliciously.

Efficiency: The token scheme will essentially need to support the following op-

erations: (a) token issue, (b) token transfer, (c) token submit and (d) double spender

identification. In relation to VoIP, a caller at the beginning of a call submits a token.

The call recipient accepts the call if the token is correct and is not duplicated, else

the call is rejected. At the end of an accepted call the caller either issues a token of

his own or transfers another users’ token. Since these operations are tied to call setup

and teardown in VoIP, they must be efficient in practice.

4.2 Possible Approaches

Before arriving at our proposed solution, we considered a number of possible ap-

proaches. None of them satisfy all the requirements but provide insights into the
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challenges for creating a feasible scheme. We provide a brief overview of these ap-

proaches.

The simplest construct would be creating a token using a message authentication

code (MAC) under the secret key of the issuer. The token issuer can always verify

the validity of the token once it is submitted back to him. However, none of the other

users can verify that the MAC was indeed generated by the issuer. To address this,

we can create tokens using digital signatures (DS)[50]. The token issuer signs the

token with his secret key and any user can verify that the token is generated by the

issuer. However, this does not verifiably prove the existence of a transfer path. In

addition, a malicious entity can snoop the token off the wire and make many copies

of the token and transfer it across different paths. Even if there exists some serial

number mechanism that prevents the token from being reused, there will be no way

of identifying the user who made copies (double spent) of the token. Since the token

double spender cannot be caught, tokens themselves become useless and cannot really

ensure fair use of the system.

To prove the existence of a transfer path, user certificates could be employed

to validate the transfer. If a user, A1 wants to issue a token TA1 to user A2, he

can associate a certificate with the token by signing A2’s public key with his secret

key, CertA1(pkA2). A2 can use his secret key to prove to any user that he holds a

valid certificate from A1. A2 can transfer the token to A3 and in doing so, needs

to provide a similar certificate for A3, CertA2(pkA3). A3 now holds the token and

the associated certificate chain (CertA1(pkA2), CertA2(pkA3)) to prove that he is the

valid owner of the token. To prove the validity of a token any user must show an

associated certificate chain that leads up to him. However, this clearly reveals all the

interactions that have occurred so far. For example, when user A3 further transfers

the token to A4, he has to reveal the certificate to prove token validity, which in turn

reveals the interaction A2 → A3. To hide the identity of a user in a certificate chain,
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we can assume each user belongs to a group and use group signatures. Since we don’t

have to hide the token issuer’s identity, A1 can issue a certificate signing A2’s group

public key with his secret key, yielding CertA1(pkA
G
2 ), where A2 belongs to group AG

2 .

When A2 transfers the token to A3, he can prove that he is part of group AG
2 by

using the group secret key. He then provides a certificate of the form CertA
G
2 (pkA

G
3 )

to complete the token transfer. The certificate chain (CertA1(pkA
G
2 ), CertA

G
2 (pkA

G
3 ))

allows A3, who is part of the group AG
3 to prove he has a valid token. When A3 wants

to further transfer the token to A4 he can reveal this certificate chain. A4 only gets

to know that the original issuer of the token is A1, and that some member of group

AG
2 transferred the token to A3. He no longer gets to know the identity of A2. This

scheme seems to capture the transfer path in a privacy preserving manner except for

one problem. A4 may transfer the token back to A2 as he does not know that A2

was previously an owner of this token. Though the associated credential chain is of

the form (CertA1(pkA
G
2 ), CertA

G
2 (pkA

G
3 ), CertA

G
3 (pkA

G
4 )), due to the uniqueness of the

embedded information in the token(for example, the serial number), A2 knows this is

the same token that he transferred to A3. Due to the deterministic nature of the way

the token grows in size (this cannot be avoided[52]), A2 also knows that this token has

undergone only one transfer and therefore knows A3 → A4, again a loss in privacy. In

addition, for group signatures, clients have the overhead of creating sub groups and

electing group managers. We could use ring signatures but since members of a ring

need not voluntarily participate, the trustworthiness of a transfer path significantly

degrades. We could avoid using groups or rings completely by using a zero knowledge

(ZK) proof system to hide the identity of previous owners of a token. However, just

like the group signature scheme, when a previous owner of a token sees the token

again, he will be able to glean private interaction information. Detecting a cycle is

impossible as a privacy preserving solution cannot reveal previous owners of a token.

However, if cycle detection is impossible then we need to limit the maximum number
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Table 2: Scheme Comparison
Scheme Unforgeability

Verifiability
Single
Use

Privacy Efficiency

MAC/DS X X X X
Certificate X X X X

Group Sign. X X X X
E-Cash X X X X
DAC X X X X

Our scheme X X X X

of hops that a token can be transferred. An added requirement to our token scheme is

that, in order to avoid looping in a cycle forever, the scheme should be able to restrict

the number of hops.

The occurrence of cycles in a token transfer path forms the hardest challenge in

determining a scheme that satisfies our goals. For a token to not leak privacy, we

observe that all the information it carries must be sufficiently randomized at each

transfer such that a user who has seen a token previously cannot identify it when it

is transferred to him again (unlinkability). The inadequacy of the schemes discussed

above along with two other possibilities, DACs and E-Cash (discussed in section 4.3)

is summarized in table 2. Going forward we show how combining DACs and E-Cash

gives us a mechanism to satisfy all the properties required by our token scheme.

4.3 Building Blocks

4.3.1 Delegatable Anonymous Credentials

Delegatable anonymous credentials (DACs) is a cryptographic mechanism to delegate

access rights repeatedly without revealing the identity of the participants. DACs

provide similar functionality as a certificate chain but do not reveal the identity of

the intermediate entities of the chain. Towards achieving this, Belinkiy et. al.[36]

propose an authentication scheme that creates a tag that authenticates a vector of

messages under a secret key. For example, user A1 can authenticate a set of messages,

~m under his secret key skA1 . If ~m includes the secret key of another user A2, skA2 , the

tag becomes a user certificate from A1 to A2. The scheme is summarized by the set
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Table 3: DAC Cheat Sheet
Algorithm Name Description

AuthSetup(1k) Generates groups G1, G2, GT of prime order p whose bit
length is proportional to k, a bilinear map e : G1 ×
G2 → GT , and group elements g, u, u∗, u1, · · · , un ∈ G1 and
h ∈ G2. It outputs the complete parameter list parA =
(G1, G2, e, p, g, u, u∗, u1, · · · , un, h).

AuthKg(parA) Generates sk
$← Zp and pk ← hsk, and returns (sk, pk).

Auth(sk, ~m = (m1, · · · ,mn), parA) Generates K∗,K1, · · · ,Kn
$← Zp. It outputs an au-

thenticator authsk→~m = (g
1

sk+K∗ , hK∗
, u∗K

∗
, {g

1
K∗+Ki

, hKi , u
Ki
i , g

1
Ki+mi }1≤i≤n). The authenticator is used to

prove that ~m is authenticated under secret key sk. The need
for intermediate keys K∗,K1, · · · ,Kn and the properties of
this authentication mechanism can be found in [36].

VerifyAuth(pk, ~m = (m1, · · · ,mn), authsk→~m, parA) Parses authsk→~m = (A∗, B∗, C∗, {Ai, Bi, Ci, Di}1≤i≤n and
verifies {e(A∗, pk ·B∗)·e(g, h−1) = 1∧e(u∗, B∗)·e(C∗, h−1) =
1 ∧1≤i≤n (e(Di, Bih

mi ) · e(g, h−1) = 1)}. Returns 1, if all
equations match, else 0.

of algorithms shown in table 3. Using Auth, a user A1 can authenticate the secret key

of user A2. However, since A2’s secret key should not be revealed to A1, they carry

out a secure two party computation (2PC) of the authentication scheme between A1

and A2, shown below:

2PCAuth(I(skI , {mi}1≤i≤l),O(pkI , {mi}1≤i≤n)) is a secure two party computation

between an authentication issuer I and a message owner O such that I does not get

any information about (mi)l+1≤i≤n as well as {g
1

Ki+mi }l+1≤i≤n.

At the end of 2PCAuth, A2 possesses an authenticator authA1→A2 from A1, which

is essentially a certificate on his secret key. Such an authenticator itself is unchanging

and therefore reveals the identity of a user. The DAC system uses the notion of user

pseudonyms to get around this. In pseudonym systems[105], a user has a single secret

key but multiple public keys. User A2 who has a secret key skA2 , can choose a random

value o and use the commitment Commit(skA2 , o) as a public key. Different values of

o result in different public keys or pseudonyms for the same user. A2 can be known

to user A1 with public key pkA2 and to user A3 with public key pk′A2 . Though an

adversary cannot link pkA2 and pk′A2 , user A2 can prove that they are actually com-

mitments to the same secret. In this case, A1 rather than provide the authenticator
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directly, provides a non interactive zero knowledge (NIZK) proof for the authentica-

tor, πA1→A2 authenticating the contents of pseudonym pkA2 . The NIZK proof system

used is the Groth Sahai proof system[78] which allows the proofs to be (re)randomized

everytime they are presented. When A2 wants to delegate his access right to A3,

he randomizes the pseudonym, proof pair (pkA2 , πA1→A2) to (pk′A2 , π′A1→A2) where

π′A1→A2 authenticates the contents of pk′A2 . The new pseudonym, proof pair can be

further randomized by users who don’t know the underlying contents. This allows

user A3 to once again randomize the credential while delegating to another user A4

and this ensures that the credential changes each time it is transferred, thus providing

strong unlinkability guarantees. The same procedure is followed between each pair of

users. Specifically, A2 will also use its secret key skA2 to provide an NIZK proof of

an authenticator for A3’s secret key skA3 , πA1→A2 , which again can be randomized.

A3’s credential will then be (π′A1→A2 , πA2→A3) and will be completely unlinkable to

the credential that A2 had, (πA1→A2).

Though DACs provide the desirable level of anonymity, the credentials are not

single use. When access rights are delegated to a user, the user can repeatedly

delegate the rights to any number of other users. If we used just the DAC system in

the VoIP setting, a user who has a token can transfer it to a large number of other

users, all of whom can call the token issuer, which is undesirable. In addition, once a

user has a token, he can reuse it multiple times, regardless of the issuer’s interaction

experiences with that user. To address this we need to extend DACs to create single

use tokens.

4.3.2 E-Cash

Electronic cash refers to mechanisms that allow coins to be exchanged electronically.

Typically e-cash schemes contain three entities, the bank, the user and the merchant.

The user withdraws coins from the bank and spends them at a merchant who then
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deposits the coins at the bank. Like all digital data, coins can be copied and hence e-

cash schemes provide a mechanism to prevent double spending. Camenisch et. al.[47]

introduced the first efficient anonymous e-cash scheme that identified double spenders

without needing the bank to be online for each transaction. To illustrate their e-cash

scheme, suppose a bank has a key pair (skB, pkB = g(skB)), where g is a generator of

some group G of prime order p. Similarly, the user has key pair (skU , pkU = g(skU)).

A user on coin withdrawal from a bank receives a signature on a set of values (skU ,

s, t) where s, t
$← Zp. s is the seed for the serial number and t is the seed for the

double spending equation. The serial number is of the form S ← g
1

s+x , where x ∈ Zp.

The double spending equation for a coin is of the form T ← pkU · g
r

s+x , where r
$← Zp

is chosen by the merchant. If a user U double spends the coin and the merchant(s)

chooses two random values r1 and r2 for each of the transactions then the two double

spending equations T1 ← pkU · g
r1
s+x and T2 ← pkU · g

r2
s+x reveal the identity of the

double spender by computing ( (T1)r2

(T2)r1
)

1
r2−r1 = pkU .

As seen in table 2, DACs satisfy all our requirements except for allowing single use

tokens. The most recent transferable E-Cash scheme[47] uses meta proof techniques

which are inefficient. In our scheme, we use serial number and tags from E-Cash to

extend DACs and create single use tokens that satisfy all our goals.

4.4 Single Use Anonymous Transferable Token Scheme

A token contains three integral components: (i) the identity of the token issuer, (ii)

transfer/call path information, (iii) information that ensures single use and double

spender identification. DACs allow us to create tokens where (i) and (ii) satisfy the

necessary properties: unforgeablity, verifiablity, privacy and efficiency. To satisfy (iii),

in addition to creating single use tokens, we need to ensure the token continues to

be unlinkable and therefore privacy preserving. To do this we use techniques from

E-Cash to create serial number and tags to make single use tokens. We then show
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how these can be made privacy preserving.

4.4.1 Cryptographic Preliminaries

We use the DAC authentication scheme, E-Cash and ElGamal encryption to meet

the different requirements of the token framework. These constructs require common

parameters, described in ParamGen, that are shared across all users. The clients also

need to generate a set of keys for different parts of the scheme, and this is described

in KeyGen.

• ParamGen(1k) is probabilistic algorithm that outputs the common parameters for

the token scheme, parTS. It runs AuthSetup(1k)(section 4.3.1) to get parA. Then

it generates ḡ ∈ G1 and h̄ ∈ G2 for the ElGamal encryption. It returns parTS =

(parA, ḡ, h̄). These common parameters are shared by all users of the system and are

used for all the token operations.

• KeyGen(parTS) is a probabilistic algorithm that outputs the key pair for a user, Ai,

(skAi , pkAi) and is run by each user after they obtain the common parameters. This

algorithm parses parTS and uses parA to generate (sk′Ai , pk′Ai
1 ) ← AuthKg(parA)

(section 4.3.1). Remember pk′Ai
1 ← h(sk

′Ai
1 ). It then computes another public key,

pk′Ai
2 ← usk

′Ai (∈ G1). The token issue protocol uses these keys. The algorithm then

generates s̄k
Ai $← G1. It uses this secret key to compute p̄k

Ai

1 ← ḡs̄k
Ai

and p̄k
Ai

2 ←

h̄s̄k
Ai

. These keys are used for ElGamal encryption whenever Ai is a token issuer.

Finally, skAi ← (sk′Ai , s̄k
Ai) and pkAi ← (pk′Ai , p̄k

Ai)← ((pk′Ai
1 , pk′Ai

2 ), (p̄k
Ai

1 , p̄k
Ai

2 )).

4.4.2 Construction

In our setting, the token issuer acts like an E-Cash bank. Since, each user is a bank,

the situation is analogous to a user behaving like a country with its own currency.

As described in E-Cash, the first step in generating the serial number and tags is

generating the seeds for them. In the basic DAC scheme, the message vector that

an issuer A1 authenticates contains the secret key of the token recipient, A2. To this
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message vector we now add seeds for the serial number and the tags as shown in figure

10. Specifically, A1 authenticates the message vector ~mA2 = {sk′A2 , sA2 , rA2 , t̂A2 , ťA2}

with his secret key sk′A2 . sA2 is the seed for the serial number and rA2 , t̂A2 , ťA2 are

seeds for the tags. This entire procedure essentially forms token issue, at the end of

which user A2 obtains an NIZK proof for the above authenticator from A1. A2 then

calculates the serial number as S ← g
1

sk′A2+sA2 . Since the serial number is a function

of sk′A2 and sA2 , A2 can prove that it was formed only with secrets authenticated by

the token issuer, A1.

In E-Cash, tags are used to identify a user who tries to double spend a coin(same

serial number). These tags need to be created everytime a coin is transferred. A user

initiating a token transfer creates partial tags and the user receiving the token com-

pletes the tags such that if the same token was transferred twice, the two completed

tags are different enough to yield the token duplicator’s identity. Unlike E-Cash, we

need two sets of tags to determine a double spender for the cases when: a) the token is

double spent to two different users, and b) the token is double spent to the same user.

Consider the first time an issued token is transferred. In Figure 10, when A2 transfers

the token issued by A1 to A3, he creates partial tags of the form, T̂A2
1 ← g

1

sk′A2+t̂A2 ,

T̂A2
2 ← pk′A2

2 · (T̂A2
1 )r

A2 and ŤA2 ← g
1

sk′A2+ťA2 . In order to make sure that A2 does not

double spend, A3 completes the tags by generating a random number, rA3 and then

calculating T̂11 ← T̂A2
2 · (T̂A2

1 )sk
′A3 , T̂12 ← pk′A3

1 · CrA2 , Ť11 ← pk′A2
2 · (ŤA2)r

A3 , and

Ť12 ← hr
A3 . The public key that satisfies the following equation is the public key of

the double spender.

e(T̂l1, T̂ ′l2)

e(T̂ ′l1, T̂l2)
= e(pkDS,

T̂ ′l2

T̂l2
) (2)

To see why this is the case, consider a user Ai who transfers the same token to
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both Aj and Ak.

For Aj ,

T̂l1 ← pk′Ai
2 · (T̂

Ai
1 )sk

′Aj +rAi T̂l2 ← (h)sk
′Aj +rAi

For Ak ,

T̂ ′l1 ← pk′Ai
2 · (T̂

Ai
1 )sk

′Ak+rAi T̂ ′l2 ← (h)sk
′Ak+rAi

Note that the random values, rA2 , t̂A2 , ťA2 used to generate the token tags will be

the same when Ai transfers the token to both Aj and Ak. Plugging in these values

into the left hand side of equation 2 gives:

e(T̂l1, T̂ ′l2)

e(T̂ ′l1, T̂l2)
=
e(pk′Ai

2 · (T̂
Ai
1 )sk

′Aj +rAi , (h)sk
′Ak+rAi )

e(pk′Ai
2 · (T̂

Ai
1 )sk

′Ak+rAi , (h)sk
′Aj +rAi )

=
e(pk′Ai

2 , (h)sk
′Ak+rAi )

e(pk′Ai
2 , (h)sk

′Aj +rAi )

= e(pk′Ai
2 ,

T̂ ′l2

T̂l2
)

From this, pkDS = pk′Ai
2 and thus, Ai will be correctly identified as the double

spender. This explains the need for the first set of tags, T̂l1 and T̂l2. The second set

of tags helps catch the token double spender if he transfers the same token twice to

the same user. This is useful, as users never need to store the details of a token once

they have transferred it. In this case, consider the user Ai who transfers the same

token twice to Aj. The first set of tags will both be of the form (pk′Ai
2 · (T̂

Ai
1 )sk

′Aj +rAi ,

(h)sk
′Aj +rAi ). On the other hand, the second set of tags, (Ťl1, Ťl2) will be different

as Aj generates a new random number, rAj for each token transfer. In this case a

similar equation to equation 2 can be used to identify Ai as the double spender, and

is shown in equation 3.

e(Ťl1, Ť ′l2)

e(Ť ′l1, Ťl2)
= e(pkDS,

Ť ′l2

Ťl2
) (3)
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Figure 10: Single Use Anonymous Transferable Token Scheme. Question marks are
used to indicate that an identity has been anonymized.

As shown in figure 10, after the first transfer, the token contains, a serial number

and the tags representing the first transfer. When this token needs to be trans-

ferred again (second transfer), the serial number and tags need to be randomized.

In addition, the issuer, A1 needs to be able to retrieve the original serial number

and the tags, to detect and catch a double spender. To satisfy these requirements,

we encrypt the serial number and tags with the public key of the issuer, p̄k
A1 , a

technique introduced in [48]. As shown in figure 10, when A3 transfers the token

to A4, (S, T̂11, T̂12, Ť11, Ť12) gets encrypted to (EncA1(S), EncA1(T̂11), EncA1(T̂12),

EncA1(Ť11), EncA1(Ť12)), the two sets being unlinkable with each other. The se-

rial number and tags can be encrypted each time, maintaining the unlinkability of

tokens. We use the ElGamal encryption as the token issuer requires a single decryp-

tion operation even if the contents (serial number and tags) are encrypted multiple

times. Specifically, EncA1(S) ← ((p̄k
A1

2 )r̄1 · S, ḡr̄1), EncA1(T̂11) ← ((p̄k
A1

2 )r̄2 · S, ḡr̄2),
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EncA1(T̂12) ← ((p̄k
A1

1 )r̄3 · S, ḡr̄3), EncA1(Ť11) ← ((p̄k
A1

2 )r̄4 · S, ḡr̄4), EncA1(Ť12) ←

((p̄k
A1

1 )r̄5 · S, ḡr̄5), where r̄1, · · · , r̄5
$← Zp.

Encrypting the serial number and tags makes it hard to check if they have been

generated correctly. To resolve this, we attach the ZK proofs that show that the

encrypted serial number and tags are generated correctly. For example, for EncA1(S)

whose first term is of the form P ·S, A3 generates commitments of P and S, CP and

CS respectively. It creates a proof to shows CP and CS have been generated correctly

and a proof that the multiplication of CP and CS is the commitment to P ·S. Similar

proofs are generated for the other encrypted values. Using the Groth Sahai proof

system[78] we concatenate all of the proofs generated, into one final proof, πEnc
1 . We

note that the authenticator information also shown in figure 10 is randomized using

DACs as discussed in section 4.3.1

Finally for transfers beyond the second transfer, the first set of serial number

and tags needs to be randomized again to preserve unlinkability. The ciphertexts

encrypting the serial number and tags after the second transfer are of the form (A =

(ḡx)r ·m,B = ḡr), where ḡx is the public key of the decryptor. Then a user who has

the ciphertext and the decryptor’s public key can re-encrypt it again by computing

((ḡx)r
′ · A, ḡr′ · B). We can then modify the commitments and the proofs according

to the new random value r′ using the Groth Sahai proof system[78].

The above discussion shows how the serial number for the token and double

spender tags to catch user A2 can be created and randomized at each transfer. How-

ever we need to create tags for each new user in the transfer path. When A3 decides

to transfer the token we need to create similar tags for him too. In this case, A2

creates an authenticator for A3’s secret key and the the tag seeds as shown in figure

10. The randomization procedure for these new tags is exactly similar. This con-

cludes the token transfer operation. Submitting a token involves randomizing all the

components of the token and submitting it to the issuer. There is no need to carry
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out the DAC authentication scheme in this case.

Our construction is almost complete except for one final subtlety. In the DAC

setting, users have one secret key and many public keys. In order to catch double

spenders we need to have at least one of these public keys registered with a certificate

authority (CA). In VoIP systems, the authentication server of VoIP providers like

Skype, Google Talk and Vonage can play the role of the CA. In fact, in Skype, user

accounts are already associated with a public key, which they use for communication.

We, however, need a new certificate issuing protocol because a conventional certifi-

cate reveals the identity of the certificate holder and we need one that reveals the

identity only in direct interaction with a user and when the user behaves dishonestly

(for example, double spends a token). To do this we can once again use the DAC au-

thentication scheme with a CA providing an NIZK proof of an authenticator for each

user as shown in figure 10. A user on transferring a token also adds his certificate.

Since this certificate can also be randomized it continues to maintain unlinkability of

the token. On randomization the certificate no longer reveals the identity of the user

but only shows that the certificate has been generated by the CA.

With this knowledge, the components of a token are (see figure 10): (1) the

identity of the token issuer, (2) randomized certificates for all users so far in the

transfer path, (3) a chain of DAC NIZK proof of authenticators which validates the

actual transfer/call path information, and (4) randomized serial number information

+ randomized tag information for all previous transfers + tag information for the

current transfer. Other than the identity of the token issuer, the remaining content of

the token is randomizable everytime it is transferred. To summarize, our construction

provides a way to (a) use the DAC authentication scheme to create certificates and

generate seeds for the serial number and double spender tags, (b) create serial number

and tags from these seeds, (c) identify a double spender, and (d) randomize the serial

number and tag information at each transfer.
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4.4.3 Scheme Definition

We formalize the algorithms that define our token scheme as follows:

• ParamGen(1k) is probabilistic algorithm that outputs the system parameters

parTS.

• KeyGen(parTS) is a probabilistic algorithm that outputs the key pair of user,

Ai: (skAi ,pkAi). This pair represents all the keys that are generated.

• IssueToken(A1(skA1 , pkA2), A2(skA2 , pkA1)) is an interactive protocol where A1

issues a token to A2. After this protocol ends, A1 gets either its view V issue
A1

or

⊥, and A2 gets either a token TokenA1
0 or ⊥.

• TransferToken(Ai(sk
Ai , pkA1 , pkAi+1 ,TokenA1

i−2),

Ai+1(skAi+1 , pkA1 , pkAi)) is an interactive protocol between Ai and Ai+1. pkA1

is the public key of the issuer of TokenA1
i−2’. At the end, Ai has its view V transfer

Ai

or ⊥, and Ai+1 has either a token TokenA1
i−1 or ⊥.

• SubmitToken(Ak+1(skAk+1 , pkA1 ,TokenA1
k−1),

A1(skA1 , pkAk+1 , DA1)) is an interactive protocol between Ak+1 and A1. A1 will

accept TokenA1
k−1 if it was correctly issued by A1 and has never been submitted

before. DA1 represents A1’s token database. At the end of this protocol, Ak+1

gets either its view Vsubmit
Ak+1

or ⊥, and A1 gets either an updated list D′A1 , or

two tokens TokenA1
k+1 and TokenA1

l which have the same serial number, or ⊥.

• Identify(TokenA1
l ,TokenA1

l′ ) is a deterministic algorithm. If both TokenA1
l and

TokenA1

l′ come from the same TokenA1
0 , it outputs the public key of the token

double spender. Otherwise it returns ⊥.

• VerifyGuilt(pkAi ,Π) is a deterministic algorithm which outputs 0 if Π is a correct

proof that the owner of pkAi double spent the token, or 1 otherwise.
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Theorem 4.4.1 Protocols ParamGen, KeyGen, IssueToken, TransferToken, SubmitToken,

Identify, and VerifyGuilt achieve correctness, unforgeability, double spender identifica-

tion and anonymity assuming HSDH, BB− HSDH, BB− CDH, and SXDH

Most of the proofs follow from the underlying schemes, namely DAC and e-cash,

except anonymity. We need to define a new anonymity game analogous to the one

in [48]. In Canard et. al.[48], the adversary, Adv runs the e-cash credential transfer

protocol (spending protocol) with a challenged user ib, where b could be either 0 or 1,

and has to determine b. In our case, since the identity of a user is known in a direct

interaction, Adv can easily win the same game. We, therefore, modify the game such

that the challenged user ib runs the token transfer protocol with an intermediate user

Aj first. Aj, then, transfers it to Adv, who then tries to determine b. This game

captures the concept of interaction anonymity where the concern is the privacy of

previous interactions.

4.5 Security Evaluation

4.5.1 Algorithms and protocols

We formalize and summarize the algorithms described in the previous sections as

follows:

• ParamGen(1k) is probabilistic algorithm that outputs the system parameters

parTS.

• KeyGen(parTS) is a probabilistic algorithm that outputs the key pair of user,

Ai: (skAi ,pkAi). This pair represents all the keys that are generated.

• IssueToken(A1(skA1 , pkA2), A2(skA2 , pkA1)) is an interactive protocol where A1

issues a token to A2. After this protocol ends, A1 gets either its view V issue
A1

or

⊥, and A2 gets either a token TokenA1
0 or ⊥.
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• TransferToken(Ai(sk
Ai , pkA1 , pkAi+1 ,TokenA1

i−2), Ai+1(skAi+1 , pkA1 , pkAi)) is an in-

teractive protocol between Ai and Ai+1. pkA1 is the public key of the issuer of

TokenA1
i−2’. At the end, Ai has its view V transfer

Ai
or ⊥, and Ai+1 has either a token

TokenA1
i−1 or ⊥.

• SubmitToken(Ak+1(skAk+1 , pkA1 ,TokenA1
k−1), A1(skA1 , pkAk+1 , DA1)) is an interac-

tive protocol between Ak+1 and A1. A1 will accept TokenA1
k−1 if it was correctly

issued by A1 and has never been submitted before. DA1 represents A1’s token

database. At the end of this protocol, Ak+1 gets either its view Vsubmit
Ak+1

or ⊥,

and A1 gets either an updated list D′A1 , or two tokens TokenA1
k+1 and TokenA1

l

which have the same serial number, or ⊥.

• Identify(TokenA1
l ,TokenA1

l′ ) is a deterministic algorithm. If both TokenA1
l and

TokenA1

l′ come from the same TokenA1
0 , it outputs the public key of the token

double spender. Otherwise it returns ⊥.

• VerifyGuilt(pkAi ,Π) is a deterministic algorithm which outputs 0 if Π is a correct

proof that the owner of pkAi double spent the token, or 1 otherwise.

4.5.2 Correctness

We say a token submit is correct if an honest issuer gets an updated database as part

of running protocol SubmitToken with the token submitter, only when the submitter

submits a valid token. We say that a token issue and token transfer are correct

if a honest user gets a valid token by running IssueToken or TransferToken protocol

respectively, such that the token can be submitted or transferred and the submitter

on running SubmitToken with the issuer, will never have the issuer outputting ⊥.

4.5.3 Security and anonymity

This section shows the security and anonymity model that any token transfer scheme

needs to satisfy. It then provides the security proofs of our token transfer scheme
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under this model.

4.5.3.1 Definition of oracles

We follow a similar approach as [48]. Suppose that the parameter parTS is given

to the oracles. All the users’ public keys and secret keys are initially created and

managed by the oracles in databases PK and SK. They also manage the set of views

of tokens. There are three tables IT, OT and ST. The tokens issued from the oracles

are stored in IT, those issued to, or transferred from or to the oracles in OT, and

those submitted to the oracles in ST. To evaluate the security of our scheme we use

the following oracles:

• OCreateUser(i) executes KeyGen(parTS ) and stores the output public key pkAi

in PK[i] and the secret key skAi in SK[i].

• OCorrupt(i) outputs skAi and sets SK[i] = ⊥. When an adversary executes this

oracle he gets all of Ai’s tokens. After this protocol is run, the adversary can

act as Ai as well as any of the other users that he has corrupted.

• OIssueI(pkA1 , pkA2) runs IssueToken protocol playing the token issuer. The ad-

versary should have the secret key skA2 to execute this oracle. The oracle stores

V issue
A1

in IT[1].

• OIssueU(pkA1 , pkA2) runs IssueToken playing the token receiver, A2’s side. The

adversary should have skA1 to execute this oracle. The oracle stores the resulting

token in OT[2]

• OIssueI&U(pkA1 , pkA2) runs IssueToken protocol playing both the token issuer

and receiver. If the result of the protocol is V issue
A1

and TokenA1
0 , they are stored

in IT[1] and OT[2], respectively. The adversary should have neither skA1 nor

skA2 .
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• OTransferS(pkAi ,TokenA1
i−2, pk

Ai+1) runs TransferToken protocol playing the user

who is transferring the token. The adversary should have secret key skAi+1 to

execute this oracle. If OT[i] does not have the token, the protocol is aborted. If

the protocol is successful then TokenA1
i−2 is removed from OT[i] and sent to the

adversary. OT[i] is updated with the view V transfer
Ai

.

• OTransferR(pkAi ,TokenA1
i−2, pk

Ai+1) runs TransferToken protocol playing the to-

ken receiver, Ai+1’s side. The adversary should have skAi and TokenA1
i−2 be-

fore executing this oracle. If the protocol completes successfully, the resulting

TokenA1
i−1 is stored in OT[i+ 1].

• OTransferS&R(pkAi ,TokenA1
i−2, pk

Ai+1) runs TransferToken protocol playing both

sides. If OT[i] does not have the token, the protocol is aborted. Otherwise,

after running the protocol, TokenA1
i−2 is removed from OT[i] and sent to Ai+1.

TokenA1
i−1 is now stored in OT[i+1]. Ai’s output, V transfer

Ai
is now stored in OT[i].

• OSubmitS(pkAk+1 ,TokenA1
k−1, pk

A1) runs SubmitToken protocol playing Ak+1. The

adversary should have skA1 to execute this oracle. If the protocol is not aborted

OT[k + 1] is updated with Ak+1’s view of the protocol, Vsubmit
Ak+1

. If SubmitToken

outputs TokenA1
l ,TokenA1

k−1, it runs Identify(TokenA1
l ,TokenA1

k−1, ) and outputs the

resulting public key.

• OSubmitR(pkAk+1 ,TokenA1
k−1, pk

A1) runs SubmitToken protocol playing the is-

suer’s side. The adversary should have both TokenA1
k−1 and skAk+1 to run this

oracle. skA1 should not belong to the adversary. It updates ST if the proto-

col completes successfully. If SubmitToken outputs TokenA1
l ,TokenA1

k−1, it runs

Identify(TokenA1
l ,TokenA1

k−1, ) and outputs the resulting public key.
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4.5.3.2 Unforgeability

As in [48], the unforgeability requirement reduces to the fact that any set of users

should not be able to spend more tokens than those issued or transferred to them.

Game. Suppose an adversary Adv is a probabilistic polynomial-time Turing Ma-

chine that has access to all of the user’s public keys in PK and parTS ← ParamGen(1k).

Adv can play with the oracles OCreateUser, OCurrupt, OIssueI, OIssueI&U, OTransferS,

OTransferR, OTransferS&R and OSubmitR, as many times as he wants. Adv wins the

game if qI +qR < qS where qI is the number of successful queries to the oracle OIssueI,

qR is the number of successful queries to the oracle OTransferS, and qS is the number

of successful queries to the oracle OTransferR.

Theorem 4.5.1 The proposed scheme is unforgeable.

Proof: Suppose the adversary, Adv succeeds in forging a token in the unforgeability

game. This means Adv produces at least one new token that is acceptable by the

oracle OTransferR. Based on the number of transfers that the token has undergone,

we can divide this into three cases. If the new token is a directly issued token, then

the entire token is essentially a delegatable anonymous credential. The existence of

the new token means breaking F-unforgeability[36], which is a contradiction based

on the computational assumption in [36]. If the new token has undergone a single

transfer then it consists of the delgatable anonymous credential, a serial number, and

a tag. The existence of the new token then breaks F-unforgeability, or violates the

weak BB assumption [39]. Based on the assumptions in [36], this is infeasible. The

final case is where the new token has undergone more than one transfer. In this case,

the new token is a GS-NIZK proof. Because of the extractability of the GS-NIZK

proof, we can extract the witness of the proof. Thus, like the second case, we can show

that this means breaking the F-unforgeability or violating the weak BB assumption.

Therefore, the proposed scheme is unforgeable.
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4.5.3.3 Anonymity

For the token scheme to be privacy preserving, in our setting, we need it to have

strong anonymity guarantees. In this section we define the exact anonymity require-

ments, and call it interaction anonymity. We define the interaction anonymity game

analogous to the one in [48]. In [48], the adversary, Adv runs the e-cash credential

transfer protocol (spending protocol) with a challenged user ib, where b could be ei-

ther 0 or 1, and has to determine b. In our case, since the identity of a user is known

in a direct interaction, Adv can easily win the same game. We, therefore, modify

the game such that the challenged user ib runs the token transfer protocol with an

intermediate user Aj first. Aj, then, transfers it to Adv, who tries to determine b.

This game captures the concept of interaction anonymity where the concern is the

privacy of previous interactions. We have previously used A∗ to define all our users.

We use i0 and i1 to maintain a similar notation as [48], enabling us to highlight the

difference between the two anonymity games. i0 and i1 could represent any two users.

We define the anonymity game more precisely as follows:
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Gameanonymity(1k)

1 parTS $← ParamGen(1k)

2 SK, PK, IT, OT, and ST are created.

3 pki0 , pki1 , pkAj ,TokenA1 ,Token′A1 $← AdvSetofOracles,

where SK[1] 6= ⊥, SK[j] 6= ⊥, SK[i0] 6= ⊥, SK[i1] 6= ⊥.

TokenA1 ,Token′A1 have the same length.

4 Suppose TokenA1 belongs to Am, and Token′A1 belongs to An,

where both users could be corrupted by Adv.

OTransferR(pkAm , pki0 ,TokenA1) and OTransferR(pkAn , pki1 ,Token′A1) are executed.

5 b
$← {0, 1} and OTransferS&R(pkib , pkAj) is executed.

6 OTransferS(pkAj , pkA
Adv

) is executed, where AAdv can be any user who is corrupted by Adv.

7 b′ ← AdvSetofOracles′

8 If b = b′ return 1. Else, return 0.

(*)Adv cannot use OSubmitR more than once for each token

TokenA1 and Token′A1 through the whole experiment,

even when they are transferred to other users controlled by oracles.

(*) SetofOracles means Adv can play with all the oracles.

(*) SetofOracles′ means Adv can play with all oracles except

OTransferS(pki0 ,TokenA1 , ·), OTransferS(pki1 ,Token′A1·),

OSubmitS(pki0 ,TokenA1 , A1), and OSubmitS(pki1 ,Token′A1 , A1) are not allowed.

In the above game, the following inequality should hold for a scheme if it has to

meet interaction anonymity :

|Pr[Gameanonymity(1k) = 1]− Pr[Gameanonymity(1k) = 0]| < 1

p(k)

Theorem 4.5.2 The proposed scheme preserves interaction anonymity.
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Proof: From the anonymity experiment, the token has undergone at least 3 transfers

after which the adversary, Adv needs to determine whether i0 or i1 owned it previously.

This means that the token is composed of GS-Proofs, a serial number, and tags. The

serial number and tags are encrypted with the issuer’s public key. The harder case

is if the adversary has seen the token before, by corrupting users Am and An. Since

the GS-proofs are randomized [36], and the serial number and tags are re-encrypted

with a new random number at every transfer, both of which ensure unlinkability,

Adv cannot link the token that he obtains to any of the tokens that he previously

owned. More precisely speaking, the randomizability of GS-proofs[78] shows that

the randomized GS-proof cannot be distinguishable from a simulated GS-proof that

is generated based on simulated parameters even though the adversary knows the

trapdoor information of the proof. This means the GS-proofs that were part of the

token owned by the Adv are unlinkable to the GS-proof in the token that he obtains

at the end of the experiment. As far as the serial number and tags are concerned, any

of the re-encrypted Elgamal ciphertexts are indistinguishable from the two random

element tuple (gr1 , gr2), where r1, r2
$← Zq based on DDH assumption. Therefore, the

serial number and tags previously seen by the adversary are unlinkable to the ones

that are part of the token that he obtains at the end of the experiment. The proposed

scheme therefore preserves interaction anonymity.

4.5.3.4 Identification of double spender

No user can double spend or transfer a token twice without revealing his identity. We

define this requirement through the following game:

Game. Let an adversary Adv be a polynomial probabilistic Turing Machine that

has access to all of the users’ public keys in PK and parTS. Adv can play any number of

times with all of the oracles. Then Adv chooses a challenge token Token that belongs

to one of the users that he has corrupted, Ai. After that, Adv uses Token twice
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using either OTransferR or OSubmitR. Adv can again play with all of the oracles any

number of times. Adv wins the game if, on running OSubmitR, the Submit protocol

outputs Token′, T oken′′, where both tokens come from Token, and the output of

Idenitfy(Token′, T oken′′) is not a public key whose secret key is ⊥ in SK.

Theorem 4.5.3 The proposed scheme identifies double spenders.

Proof: We divide the double spending into two cases. The first case is where a

user Ai transfers his token to two different users, Am and An. Am and An use their

public keys to make the first set of tags (T̂l1, T̂l2). Therefore, these two tags are

different ensuring that when the issuer receives both these tokens, no matter how

many transfers the tokens have undergone, the double spending will be detected as

shown in equation 2. The only way the tags are not different is if Am and An use

the same public key, which is not possible, as for them to be regarded as different

entities, their (registered) public keys should be different from each other. If they are

the same entity the situation is considered in the next case.

The second case is if Ai transfers the same token twice, as the receiving user does

not have access to the serial number of the token he receives. In this case, the second

set of tags (Ťl1, Ťl2) for the two copies of the double spent token are different as the

receiving user will use a different random number for each interaction. When these

tokens are submitted to the issuer, (Ťl1, Ťl2) will reveal the double spender, Ai as

shown in equation 3. Ai can transfer the token to another user corrupted by Adv, Aj

who uses the same random number for both interactions. Aj will then transfer these

tokens to some other set of users. However when these tokens are submitted to the

issuer, Aj will instead be caught as the double spender.
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4.6 Implementation and Evaluation

Our scheme is built on recent cryptographic primitives (DAC - Crypto 2009 and the

underlying GS Proof System - Crypto 2008), and we are not aware of implementations

that exist for them. We, therefore, first built these primitives, in C, on top of the PBC

library[24] which performs pairing based mathematical operations. We use type ’D’

MNT curves with group order of 159-bit length. We then implemented the different

algorithms of our token scheme on top of these primitives. Since the token scheme

implements several cryptographic primitives, we first study it’s performance with

respect to the time taken and the message lengths (network bandwidth) generated

by each of its protocols.

4.6.1 Operation Costs

Startup Costs: From a cryptographic standpoint there are two primary entities in

our system, the certificate authority (CA) and the user (client). Each of these entities

on startup perform a particular set of operations. The CA on startup generates

common parameters and then generates it’s keys using these common parameters. A

client on startup obtains the common parameters from the CA, generates its keys and

finally gets them certified by the CA. The cost of each of these startup operations

were measured on an Intel Xeon 5160 with a 3 GHz processor. Each operation was

run 10 times and the mean and standard deviation values were calculated and the

results are shown in figures 11 and 12. Figure 11 shows the time taken by each

operation, and figure 12 measures the lengths of messages that need to be passed

over the network (bandwidth utilized). Generating the common parameters includes

generating the bilinear groups and all the group generators as described in ParamGen

in section 4.4.1. From the figures, the block marked Common Parameter Generation

shows that it takes around 240 ms to generate these parameters and they can be

encapsulated in a message of length ≈ 4 KB. All clients (including the CA) on
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startup contact the CA to obtain this 4 KB message and use it to generate their

secret keys and their public keys, (sk′Ai , pk′Ai) and (s̄k
Ai , p̄k

Ai) as described in the

algorithm KeyGen in section 4.4.1. The key generation is a costly operation as seen

in the block marked Key Generation and takes on average ≈ 7 s with a standard

deviation of ≈ 5 s. At this point the CA is done with its startup costs.

The clients still need to certify their public keys pk′Ai , from the CA. Towards

this, the client and the CA engage in a 2PC protocol for creating the NIZKPK proof

of the authenticator [36]. In figures 11 and 12, Certificate Issue Protocol shows the

time taken and the lengths of the messages exchanged between the client and the

CA are shown in the block marked Certificate Issue Protocol. All the messages are

under 2KB, and the overall time of the operation notwithstanding network latencies

is roughly .5 s. After this, the clients are ready interact with each other either issuing,

transferring or submitting tokens. The total startup time for a client on average is

≈ 8 s.

Cost of Token Operations: After the one time startup cost, clients can engage

in token issue, transfer and submit. The token issue protocol is a three way exchange

between the token issuer and the receiver. They carry out a secure 2PC of the issuer
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authenticating the receiver’s secrets as described in IssueToken. The time taken and

the length of messages generated are depicted by the block Token Issue in figures 11

and 12. A token issue takes on average 1.5 s to complete. Once a token is issued

the receiving client can submit it back or transfer the token further. The cost of

submit or transfer operations varies based on the number of times the token has

been transferred. The length of a token being submitted or transferred based on the

number of previous transfers is shown in figure 14. Belinkiy et. al. [36] were the

first to introduce DACs with proof size that increased linearly in the number of hops

from the token issuer. To that we add E-Cash tags (the serial number is constant

size) which also grow linearly with the number of transfers. Figure 14 corroborates

this showing a linear increase in size of the token based on the number of transfers it

has undergone. Furthermore, the close similarity between the length of a token being

submitted after L transfers (L ≥ 2) and a token being transferred L + 1 hops, is

due to the fact that, in order to submit an L hop transferred token, the owner needs

to randomize the token in the exact fashion as a token transfer. For tokens being

submitted, the token lengths increases by 15KB each transfer. This is important
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as we plan to use this framework in a VoIP setting where call signaling and call

teardown is performed over both UDP and TCP. In IPv4, for UDP, the maximum

packet size is 65507 which implies for UDP based applications, without splitting the

packets, we restrict ourselves to only allowing 4 hops/3 transfer tokens (size 58 KB).

For UDP, a token can therefore be transferred at most 3 times after which it must

be submitted. We note that the size of the token being submitted when there are no

transfers is significantly lower (≈ 3KB for 0 transfer, compared to ≈ 28KB for 1

transfer) because we optimize away the randomizations and perform them only when

the token is first transferred.

Figure 13 depicts the most significant time activity for token transfers and submits,
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averaged over 10 runs (low variance). When a token is submitted the receiver only

needs to validate the token. On the other hand, when a token is transferred, a 2PC

computation needs to be carried out for generating the authenticator and the double

spending tags. Due to this the overall time taken for token transfer is significantly

more than that of token submit. In figure 13 we see that the time taken for token

submit increases linearly by 1.5 s per hop and that of token transfers by 4 s per hop.

These values will dictate feasibility of the token framework in a particular application

setting. In the next section we discuss the implications of these costs in a VoIP setting

and analyze its performance with respect to a spammer threat model.

4.6.2 Applying The Token Scheme To Prevent VoIP Spam

We assume the call setup and teardown signaling is provided by the Session Initiation

Protocol (SIP)[127]. For two users to communicate with each other using SIP, they

need to know each other’s SIP Uniform Resource Identifier (similar to an email id).

SIP then uses a three-way handshake mechanism to establish a call and a two way

handshake to teardown a call. We piggyback our token mechanisms on top of the

SIP call signaling messages. We piggyback our token submit protocol on top of the

call setup as users will accept and reject the call based on the token. Token issue

and transfer occur at the end of a successful call and are piggybacked on top of call

teardown. For call setup, E.721[160] recommends an average delay of no more than

3.0, 5.0 or 8.0 s, for local, toll and international calls, with the 95th percentiles set

at 6.0, 8.0 and 11.0 s, respectively. Looking at the token submit times from Figure

13, we see that other than for direct tokens that are submitted (x = 0), token submit

times are greater than 3 s and increase by 1.5 s every hop. This implies that direct

tokens offer acceptable call setup delays while tokens that have undergone one or

two transfers will fall within the 95th percentile. Tokens that have undergone three

transfers (four hops away) and beyond seem to have unacceptable call setup times.
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We, however, note that for callers who are more than three hops away, this might be

a fair penalty to pay to be introduced to a user. VoIP systems like Google Talk use a

Turing Test for all users who are calling for the first time and successfuly completing

the test takes more than the 9 s that our system requires for a user four hops away. In

addition, this serves as a potential deterrent for malicious users who could eventually

obtain tokens after a large number of hops. Furthermore, this is a one time cost, as

after the introduction call, if interactions are favourable then the newly introduced

user will start receiving direct tokens. Nonetheless, taking this and the UDP packet

size limit into account, we only allow up to three transfers (users four hops away) in

this implementation.

During call teardown after a successful call (based on a thresold call duration

value), the caller can decide to either issue a token of his own or transfers another

user’s token. In this chapter, we use a simple strategy to make this decision. Specif-

ically, when user A1 calls user A2, he issues tokens if A2 has lesser than a threshold

number of A1’s tokens, or if A1 does not have sufficient number of tokens of any other

user to transfer. In all other cases, A1 transfers the token of a user from whom it has

collected the maximum number of tokens.

To evaluate the combined system, we setup a simulation with 4 domains, each

serviced by a proxy that handles 50 users, a total of 200 users in the system. In addi-

tion, we have a DNS server, a cryptography server and a statistics server. The DNS

server translates domain names to the correct proxy IP address. The cryptography

server generates the common parameters and doubles up as the CA. The statistics

server calculates statistics including true positives, true negatives, false positives and

false negatives. Initially each client requests the cryptography server for the common

parameters and uses them to generate keys. It gets the keys certified by the CA and

then it is ready to make and receive calls. The distribution with which it makes calls

is dependent on the type of user the client represents. Clients can behave either as
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an honest user or one of two types of spammers: (1) engaging spammers are able to

engage users with a certain probability both when they receive calls and when they

make calls, (2) fleeting association spammers are able to engage users only till the

completion of some activity. Honest users makes calls to other phones with inter call

and call duration values that are Poisson distributed. The choice of call recipient is

Zipfian distributed. Spammers make calls to as many other users as possible. Honest

users issue or transfer tokens based on a threshold call duration strategy. Spammers

issue or transfer tokens to increase the number of spam calls. All spammers are in-

clined to collude with other spammers. In the simulation, 100 s of simulation time is

equivalent to 1 day of real time. Each run lasts 20 days (2000 s).

Choice of Learning Period: The learning period is a duration of time just after

a user is introduced into the system. During this time, the user accepts all calls to

obtain a sizeable starting set of tokens from his SN. These tokens enable the user to

call his SN and also disseminate his tokens so that others can call back. The learning

period ensures that when a honest user is introduced into the system, he becomes

selective about the calls he accepts only when he has a significant supply of tokens

from members of his SN and his SN has a significant supply of his tokens. We assume

that during this learning period spammers do not discover the user and therefore

cannot spam the user. The graph in figure 15 shows the false positive rate (FPR)

for 200 users, all honest, for different initial learning periods. The time axis starts 1

day into the running of the system as this is the minimum learning period that was

used. The stabilized false positive rate shows an exponential drop with increasing

learning periods. For learning periods of 1, 2 and 3 days it is ≈ 11%, ≈ 3%, ≈ 1.7%,

respectively and thereafter stays around ≈ 1.5% for higher learning periods. After

learning periods of 3 days or more, users have a significant supply of tokens and can

obtain tokens of users who are four hops away through the token transfer mechanism,

resulting in a low false positive rate. Shue et. al.[136] studied the onset of spam
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and found that accounts that post their addresses on less popular websites will be

discovered and receive spam only after 3 days. If we assume this holds for VoIP

addresses too, then as long as users do not aggressively broadcast their addresses,

a learning period of 3 days is feasible and provides a low enough FPR. In addition,

since learning periods of more than 3 days do not reduce the FPR significantly, we

use a 3 day learning period for the rest of the simulations.

Spammers that Engage Users In Conversation: In our system, users issue or

transfer tokens only when a call lasts for more than a threshold duration. Spammers

without the ability to engage users will never get tokens, even if they do manage to

get users to inadvertently call them. However, spammers thrive because some honest

users are fooled into believing the legitimacy of the spam content. To model this,
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we associate with all users a value between 0 and 1 that represents the ability to

engage another user in conversation. This value is set high for honest users and we

configure spammers with various levels of engagability. Based on the engagability of

the spammer, a user will inadvertently either issue or transfer tokens to spammers.

Spammers can collude and therefore can collaboratively glean tokens. Spammers

are introduced into the system immediately after the learning period (3 days). The

results for different values of spammer engagability for a system with 20% spammers

are shown in figure 16. For all cases our token framework is able to achieve a high

sensitivity, of over 99%, in blocking spam calls. Spammers will find it hard to engage

users in conversation and even when they do, the single use tokens only allows a

limited number of calls. On the other hand, an honest user, due to his ability to

carry on a conversation will first receive tokens of his immediate SN, and then receive

tokens from his extended SN. From figure 16, small values of engagability (5%, 10%

and 15%) result in a low false negative rate (FNR) and this rate stabilizes early in

the run. However, spammers with a higher ability to engage users (25%), are able to

make more calls at an ever increasing FNR, largely due to the collusions with other

spammers. For spammers with 25% engagability, the final stabilized FNR was close

to 1% and for 35% the FNR was close to 1.3%.

We also studied the effects of introducing 10% fleeting association spammers who

behave adaptively. When just introduced to a user, they behave legitimately but

soon start spamming the user. Spammers that behaved normally for periods of 1

and 2 days and then started spamming were able to achieve a FNR of ≈ 4.5% and

≈ 17%. These values show that the success of a spammer increases significantly with

the amount of time he is able to behave normally. However, the system reacts quickly

and within a day reduces the FNR to under 10%.
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4.7 Conclusion

In this chapter, we created a single use transferable token framework that captures

interaction history in a privacy preserving manner by enhancing delegatable anony-

mous credentials. This allows us to prove the existence of a social network path

without revealing the intermediate actors in the path. We show how we can use this

to enhance CallRank by using it in a VoIP setting to prevent VoIP spam while being

privacy preserving. We now broaden our scope and look at ways to create effective

identities across the entire telecommunication landscape.
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CHAPTER V

PINDR0P: USING SINGLE ENDED AUDIO FEATURES

TO DETERMINE CALL PROVENANCE

The current telephony infrastructure allows users to communicate using a variety

of technologies that pass through various providers within PSTN, cellular and VoIP

networks. Each of these telecommunication networks adopt their own set of standards,

from the underlying transport protocols to the codecs used to transmit media. Yet,

they seamlessly interact through a variety of conversion mechanisms. A call may

traverse multiple such networks, taking advantage of the benefits offered by each

before reaching its final destination.

The diversification of telephony infrastructure significantly reduces the integrity

associated with call metadata, such as Caller-ID [2], as it is either not transferred

across these networks or is transferred without verification. This allows easy ma-

nipulation of metadata by hardware and software including soft phones on desktop

computers. For example, between January 21st and 26th of 2010, customers of banks

in four states received calls asking them to reveal personal information including

credit card and PIN details. Many of these attacks use VoIP phones to anonymously

and inexpensively dial a large number of customers while forging the Caller-IDs of

these banks [104].

In this chapter, we develop PinDr0p1, an infrastructure to assist users in deter-

mining the provenance of a call — the source and the path taken by a call. Through

a combination of signal processing and machine learning, we show that regardless of

1Our mechanisms take advantage of audio and path artifacts that, like the sound made by the
drop of a pin, are largely inaudible to the human ear.
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the claimed source, the audio delivered to the receiver exhibits measurable features of

the networks through which the call was delivered. For example, calls that traverse a

VoIP network experience packet loss that results in perceivable effects in the final call

audio. Such artifacts are noticeably absent in calls that have only traversed cellular

or Public Switched Telephone Networks (PSTNs). In particular, the codec trans-

formations applied by multiple intermediary PSTNs, VoIP and cellular networks, in

combination with packet loss and noise characteristics, allow us to develop profiles

for various call sources based solely on features extracted from the received audio.

In the absence of any verifiable metadata, these features offer a means of developing

source fingerprints that help compare and distinguish different incoming calls.

We make the following contributions:

• Identify robust source and network path artifacts extracted purely

from the received call audio: We show that the received call audio provides

extractable features that are strong identifiers of the networks that the call has

traversed, allowing us to determine the provenance of a call. These include

degradations (packet loss in VoIP) and noise characteristics of codecs unique to

each network.

• Develop call provenance classifier architecture: We develop a multi-label

machine learning classifier based on the extracted features to correctly identify

the provenance of an incoming call with 91.6% accuracy with as little as 15

seconds of audio. Because PinDr0p does not rely on metadata available in some

networks (e.g., VoIP) or cryptography, it is more readily deployable across the

diverse devices and networks that make up modern telephony systems.

• Demonstrate our robustness in identifying call provenance for live

calls: We make calls using PSTN phones, cellular phones, Vonage, Skype and

other soft phones from locations across the world and are able to distinguish
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between them with 90% accuracy with only a small sample being labeled. As

we increase the number of such labels we are able to distinguish between these

calls with 100% accuracy. This demonstrates that PinDr0p makes VoIP-based

phishing attacks harder and provides an important first step towards a Caller-ID

alternative.

We note that while our approach does not provide the same guarantees as the

use of end-to-end cryptography, it is also not encumbered with the difficulties of key

distribution, management and the requirement that both endpoints are capable of

such operations. The guarantees provided by our approach are instead more akin to

traceback techniques from IP networks [131]. However, PinDr0p does not mandate

the modification of the core infrastructure to attach additional metadata in-transit

as our provenance information is extracted directly from the received audio. While

adversaries may attempt to modify their attack in order to circumvent PinDr0p (e.g.,

change codecs, replicate the noise profile and change the physical location from which

an attack is launched to match packet loss characteristics), our approach significantly

increases the difficulty of successfully launching such an attack and improves the

chances of identifying an attacker.

The remainder of this chapter is organized as follows: Section 5.1 discusses the de-

tails of our proposed call provenance mechanism; Section 5.2 details our experimental

setup and results; Section 5.3 presents experimental results from a real-world attack

scenario; Section 5.4 offers further insight into our scheme and discusses trade-offs

and limitations;

5.1 Call Provenance

The provenance of a call describes the characteristics of the source and traversed net-

works. This information can be used to create fingerprints that help distinguish and

compare different calls in the absence of verifiable end to end metadata. For example,
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provenance can be used to identify if a call has passed through a VoIP network and,

if it has not typically done so, alert the receiver of the change. At the very least,

provenance must be able to distinguish between traffic that has traversed different

telephony networks: PSTN, cellular and VoIP. We investigate whether this can be

achieved with only the audio content available at the receiving end of a call. This ap-

proach is attractive as provenance can be determined without access or modification

to intermediate network elements such as gateways or routers.

As a call traverses multiple networks, the audio is repeatedly re-encoded with the

network’s choice of codec. To illustrate, a Skype call to a landline is initially encoded

using G.729 and re-encoded using G.711 when it encounters the VoIP-PSTN gateway.

If we can extract artifacts of each of the applied codecs from the received audio then

simple codec to network translation (G.729 =⇒ VoIP) determines call provenance.

In addition, identifying the codec used in a particular network helps characterize

that network. However, codecs like G.711 are widely used in both PSTN and VoIP

systems, implying codec detection alone is insufficient. Therefore, we seek additional

differentiators.

Networks themselves introduce degradations into call audio. In VoIP, there are

packet losses which are not seen in circuit switched PSTN networks. Similarly, mobile

phones have bit errors due to fading effects on radio channels. The loss of an entire

packet containing 20 ms of speech is measurably different from a small number of

incorrect bits. These features are more robust than simply extracting codec informa-

tion as packet loss and bit errors are hard for an adversary to control — an adversary

bounded by a lossy connection, many miles away, cannot spoof a lossless, dedicated

PSTN line to a bank.

Solution Overview: To identify and characterize the different networks a call

has traversed, we focus on degradations specific to each network. We first demon-

strate how we can identify and characterize a VoIP network by detecting packet loss
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Figure 17: Packet Loss and Corresponding Energy Drop. The breaks in the signal
(top) that occur due to packet loss are more accurately determined using the short
time energy (bottom) of the signal.

or concealed packet loss in the received audio. We then show how PSTN and cellular

networks can be identified and characterized due to their vastly different noise char-

acteristics. Finally, since the quality of the received audio significantly degrades with

the number of networks traversed, we extract quality specific features. We create

a feature vector that aggregates feature values obtained from the packet loss, noise

and quality measurements and use it to train a multi-label classifier to identify the

networks that a call originated and traversed. In addition, we demonstrate how the

feature vector provides call provenance fingerprints that can be used to consistently

identify a call source.

5.1.1 Identifying VoIP Networks

5.1.1.1 Detecting Packet Loss

Within an IP network a lost packet can be easily identified using the sequence numbers

present in each packet (metadata). However, these sequence numbers are lost once the

call is retransmitted over another telephony network. Accordingly, we must identify

artifacts of these lost packets from the received audio. The top graph in Figure 17

shows two seconds of speech encoded with G.711 and transmitted through a VoIP
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network with a packet loss rate of 5%. The effect of a lost packet is sometimes visibly

identifiable by a break in the waveform (annotated by arrows). However, such loss

can be detected more accurately by determining the short-time average energy of the

signal, as shown in the bottom graph in Figure 17.

Short-time average energy (STE) is traditionally used in speech analysis to detect

words surrounded by pauses as they cause abrupt drops in energy levels. This can

be adapted to detect a packet loss, which also causes an abrupt decrease in energy.

STE for a signal y(n) is defined as:

En =
∞∑

m=−∞

y2(m) · w(n−m),

where En is the STE for a window of speech w(n). Specifically, w(n) is a sliding

Hamming window of length N , where the speech samples closer to n are weighted

more than those at the window edge. For the codecs we consider, a packet contains

at least 10 ms of audio represented by 80 samples of speech. By making our window

length less than 80, multiple values of En are completely influenced by a dropped

packet. This results in the breaks in energy shown in Figure 17. We detect packet loss

by looking for a significant drop in energy followed by an energy floor, accompanied

by a significant energy rise.

We note that the presence of all three of these characteristics is necessary to detect

packet loss as each appears individually even in speech that has not experienced

any packet loss. For instance, in Figure 17, we see a significant rise in energy at

approximately 2 seconds due to the start of a speech segment. This is a result of

Voice Activity Detection (VAD) in VoIP systems where packets are only sent during

active speech to reduce bandwidth. Similarly, when a speech segment ends there is

a significant drop in energy. Figure 18 shows the STE of a 15 second speech sample,

encoded with G.711 and transmitted through a network with 5% packet loss. The

dots at the bottom are the actual packet losses and the ones above are the packet
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Figure 18: Packet Loss Prediction. The dots below show the actual losses and the
ones above are identified by our algorithm. The close correspondence between the
two indicates that we detect lost packets accurately.

losses identified by our detection mechanism. The close correspondence between the

two shows that our detection mechanism identifies packet loss accurately.

Figure 19 shows false positive and false negative cases for our detection mechanism.

In the top graph, a packet loss occurs at the start of a speech segment (7 seconds).

Since we classify packet losses based on an energy drop, floor and rise, such losses

are not detected. Note that this conservative approach reduces our false negatives at

the cost of potentially missing a small number of losses at the beginning and end of

speech. False negatives are shown in the bottom graph in Figure 19 at 3.2 seconds

and occur in the rare case when speech stops and starts in quick succession, with

the stop duration corresponding to a multiple of 80. This pattern occurs only when

there is a voiced “plosive,” or a stop sound in speech, such as the b sound in the word

“about.”

Each time a packet loss is detected, the length of the energy floor also reveals the

codec used in a particular VoIP network. Figure 20 shows the effect of packet loss

on two VoIP networks using different codecs: iLBC which encodes 30ms and Speex

which encodes 20 ms of speech per packet. The length of the energy floor is larger
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Figure 19: Scenarios showing a false negative (top at 7 seconds) and a false positive
(bottom at 3.2 seconds).
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Figure 20: Packet loss affect codecs differently. iLBC encodes 30 ms of audio per
packet and therefore a packet loss results in more audio lost in comparison to Speex
which encodes 20 ms of audio.
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for iLBC than Speex. In addition, since G.729 encodes 10 ms and G.711 encoded 20

ms per packet by default, the length of the energy floor is a good indication of the

codec used. We might identify the wrong codec when consecutive packets are dropped

as two consecutive packets dropped in a network using G.729 (10 ms audio) will be

similar to a single packet dropped in a network using G.711 (20 ms audio). However,

the probability of consecutive packets being dropped is lower that the probability of

a single dropped packet and we can identify the codec based on the most commonly

occurring energy floor length.

To summarize, short time energy provides a highly accurate mechanism to deter-

mine packet losses and the detection mechanism can also be used to identify the codec

used. Therefore, when a call traverses a potentially lossy VoIP network, the packet

loss rate and the codec used in that network can be extracted from the received audio.

5.1.1.2 Detecting Concealed Packet Loss

Some VoIP systems employ packet loss concealment (PLC) algorithms to prevent

short speech gaps from affecting call quality. Such concealment can be carried out

at the receiver (reactive) or with the assistance of the sender (proactive). In reac-

tive recovery, the lost packet is concealed either with silence, noise or is regenerated

by interpolating previously received packets. Proactive recovery algorithms include

redundant information such as the previous packet’s audio with each packet. This

approach incurs a bandwidth overhead and is rarely used. We focus on identifying

the effects of receiver side recovery algorithms on the audio and leave sender side

algorithms to future work.

When the concealment mechanism is silence or noise substitution, the STE-based

algorithm from the previous section can be used to detect packet losses by suitably ad-

justing the energy floor to correspond to the noise floor. Most VoIP codecs, however,

reconstruct lost packets from previous packets. G.711 uses waveform substitution
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Figure 21: The iLBC packet loss concealment detection algorithm. Because lost
packets are regenerated in a largely deterministic fashion from the residual and syn-
thesis filters of the previous packet, such packets can be detected by measuring the
correlation between the residuals of sequential packets.

to repeat a portion of the previous packet [151]. In codecs designed specifically for

VoIP such as iLBC or Speex, the concealment algorithm is more elaborate in order

to improve robustness to high packet loss rates. Fortunately, we observe that con-

cealment techniques are predominantly deterministic and a detection mechanism can

be created that exploits the correlation between reconstructed packets and previous

packets. We discuss the details of the PLC algorithm in iLBC to provide further

clarity.

iLBC uses a linear predictive coding (LPC) algorithm to represent speech in a

significantly compressed form. LPC is based on the source filter model of speech

production, where the larynx (source) produces sound energy, which when voiced

consists of a fundamental frequency (pitch) and its harmonics. This sound energy is

then shaped (synthesis filters) by the vocal tract (throat and mouth) into enhanced

frequency bands known as formants, which provide speech its intonation. The LPC

algorithm inverse-filters the formants from the speech signal to leave behind the orig-

inal sound energy, known as the residual. A codec like iLBC uses the residual, the

synthesis filters and dynamic codebook encoding to reduce the original speech into a

set of parameters which can be transmitted. The decoder uses these parameters to

reconstruct the residual and the synthesis filters which when combined re-synthesize

the speech. When a packet is lost, the decoder uses the residual from the previous
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Figure 22: The result of testing for the presence of highly correlated in-sequence
packets based on the iLBC packet loss concealment algorithm. The algorithm specif-
ically detects iLBC (solid blue lines) while remaining agnostic to other codecs such
as Speex (dotted green lines)

packet and creates a new pitch synchronous residual for the packet to be concealed.

Additionally, a random excitation is added to the new residual (non-deterministic

part). The new residual along with the synthesis filters from the previous packet are

used to create speech that will be substituted for the lost packet. Therefore the new

residual will be strongly correlated to the previous packet’s residual. To detect PLC

in iLBC we first split the received audio into packets containing 30 ms audio each (the

default for iLBC’s). We then create a pitch synchronous residual from each packet

and compare it to the residual extracted from the next packet. As these quantities

are generally not highly correlated, the detection of an association between sequen-

tial packets is a very strong indicator of iLBC’s packet loss concealment algorithm.

The packet loss concealment algorithms for the other codecs, though different, can

be detected based on how sequential packets are correlated.

Figure 21 shows a detailed block diagram for the iLBC PLC detection algorithm.

Since the encoding procedure in iLBC already extracts the residual from the audio,

we first split the audio into 30 ms chunks and apply the encoding steps defined in

Section 3.1 to 3.3 of iLBC RFC 2951 [75]. This includes running a high pass filter
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to remove noise in the audio, performing LPC analysis to extract the synthesis filters

and then using the synthesis filters along with the data to extract the residual, r. We

use r to generate a pitch synchronous residual r′ as defined in Section 4.5 of iLBC

RFC 2951. r′ will be strongly correlated to the residual from the next chunk of 30

ms of audio if that packet had been lost. We calculate r and r′ for each chunk and

report high correlations between as indications of PLC.

Figure 22 shows the correlation between residuals of a 15 second speech sample

encoded with the iLBC codec (solid blue lines) and transmitted through a VoIP

network with a loss rate of 10%. At each high correlation point (above 0.8) we confirm

from our logs that the particular packet was lost. To show that the PLC detection

algorithm is specific to iLBC, we run it on the same 15 second speech sample encoded

with Speex instead and transmitted through the 10% loss rate VoIP network. The

results are again shown in Figure 22 as the dashed green lines. Though packets were

lost in this case too, the detection algorithm does not show high correlation between

residuals, confirming that we can create PLC detection algorithms specific to the way

each codec conceals packets. Since all the codecs use different concealment strategies,

in addition to detecting concealed packet losses our algorithms also provide a strong

indication of the codec used in a particular VoIP network.

Finally, in Figure 22 we observe that for the 15 second sample encoded with iLBC,

54 out of the 501 packets (loss rate = 52
501

= 10.38%) were lost and we are only able

to identify 9 correlations. This is largely due to the fact that the PLC algorithm is

not completely deterministic (random excitation). However, the number of concealed

packets detected is still indicative of the loss rate. To show this, we ran our detection

algorithm over 15 seconds of 20 male and female American English speech samples

from the Open Speech Repository [164] encoded with iLBC and transmitted through

VoIP networks with 0, 1, 5 and 10% loss rates. The association between the number of

concealed packets detected and the packet loss rate are shown in Figure 23. It shows
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Figure 23: Number of concealed packets detected with increasing loss rate in a 15s
speech sample. The median number of concealed packets detected by our algorithm
increases with increasing loss rate.

the median and the 25th and 75th percentiles with whiskers specified as .5 times the

interquartile range. We see that the median number of concealed packets increases

significantly as the loss rates increase. Therefore, the PLC detection algorithm can

make approximations of the loss rate but is not as accurate as the detection algorithm

for unconcealed packet losses.

Our packet loss and packet loss concealment detection algorithms identify three

aspects about the provenance of a call: (1) Whether the call traversed a VoIP network,

(2) the packet loss rate in that network and (3) the codec used in that network. (1)

identifies if there are VoIP networks in the path of a call and (2) and (3) characterize

the VoIP network.

5.1.2 Identifying PSTN and Cellular Networks Through Noise Profiling

Now that we are able to identify and characterize VoIP networks, we can look for

codec specific artifacts in the received audio to identify PSTN and cellular networks.

Waveform codecs like G.711 are used mostly in PSTN networks as they capture

speech without any compression and require much higher bandwidth (64 kbps) than

most other codecs. They tend to introduce noise only during speech activity resulting
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Figure 24: The noise profile of G.711 is significantly different from other codecs,
allowing us to identify it when it is used in a network.

in a strong correlation between the noise and the signal. This is known as multiplica-

tive noise and its presence can be determined based on spectral statistic metrics:

spectral level range and the spectral level deviation. Furthermore, the spectral clar-

ity for such a codec, or the measured crispness of the audio, is very high. In contrast,

since cellular networks require efficient use of bandwidth they use high compression

codecs like GSM-FR (13 kbps). The spectral clarity of such codecs suffer due to the

significant compression. Spectral clarity quantifies the perceptible difference in call

quality that we experience when talking on a landline versus a mobile phone. Fig-

ure 24 shows the spectral clarity, the spectral level range and deviation for 20 male

and female American English speech samples from the Open Speech Repository [164]

encoded and decoded using the different codecs. We see that G.711 and GSM-FR

can be clearly identified. Once we identify the codec using these metrics we can do

a simple codec to network translation to determine if a call has traversed a PSTN

network or has originated from a cellular network. Furthermore these three metrics

provide a noise profile of the network thereby characterizing it.
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Figure 25: The PinDr0p call provenance extraction algorithm. After the applied
codecs have been detected, packet loss rates are compared against individual source
profiles. The resulting signature can be used to judge the provenance of an incoming
call.

5.1.3 Extracting Provenance Data

We have seen how packet loss and packet loss concealment detection identifies and

characterizes any traversed VoIP network. Similarly, the noise profiles identify and

characterize any PSTN and cellular network. Together, we can create fingerprints

that detail the provenance of a call.

Call provenance fingerprints consist of two parts: (1) the path traversal signature

and (2) detailed characterization of each network in the path traversal signature. The

path traversal signature identifies the networks that a call traversed and the codec

used. The characterization provides more details of each network. The features we

extract can be used towards both these parts as shown in Figure 25. To obtain the

path traversal signature we first train a multi-label classifier as shown in Figure 25

using a repository of speech samples. Each sample is subjected to codec transfor-

mations and network degradations depending on the networks it traverses (details in

Section 5.2). For each of the resulting audio samples, we first look for packet losses.

If present, we calculate the packet loss rate which forms the packet loss profile and

then add the extracted codec information and the rate (as G.711 with some loss rate
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Table 4: Call Traversal Scenarios.
Configuration Scenario # Simulated Samples

Single Network Traversal
PSTN - PSTN Plain old telephone call 20
Mobile - Mobile Short distance call b/w cell phones 20

VoIP - VoIP Unfederated call b/w VoIP clients e.g., Google Talk 60
Two Network Traversal

PSTN - Mobile Call b/w PSTN landline and cell phone 320
PSTN - VoIP Call b/w PSTN landline and VoIP client e.g., Skype-

Out
360

Mobile - VoIP Call b/w cell phone and VoIP client 560
Three Network Traversal

PSTN - VoIP - Mobile International call using calling cards 1200
PSTN - VoIP - PSTN Same as above 240
Mobile - VoIP - Mobile VoIP call bridging b/w two mobile phones e.g., Google

Talk
960

Mobile - PSTN - VoIP Call b/w mobile using a PSTN core network and a
VoIP client

400

Mobile - PSTN - Mobile Similar as above 80
VoIP - PSTN - VoIP Call b/w two commercial VoIP clients e.g., typical

Vonage call
720

Total = 4940

indicates a VoIP network) to the feature vector. Next, we apply the correlation algo-

rithm to detect packet loss concealment. If the correlation algorithm finds concealed

losses, the corresponding codec is again added to the feature vector along with the

number of concealed packets (PLC profile). We then extract the noise profile for the

call audio and add the spectral metrics to the feature vector. Since the quality of

speech degrades with the number of networks traversed we also obtain call quality

metrics from a single ended quality tool, P.563 [152] and add this to the feature vector.

The multi-label classifier is then trained on each sample’s feature vector and label.

A sample has five labels, each indicating the presence or absence of a codec. For

example a speech sample in our repository that was encoded using GSM-FR (origi-

nated at a cellphone), then re-encoded using iLBC (traversed a VoIP network) and

finally re-encoded using G.711 (receiving end point is a landline) would have a ’1’ for

three labels (GSM-FR, iLBC and G.711) and a ’0’ for Speex and G.729. Multi-label

classifiers have been used significantly in text categorization [157, 108, 175] and we

use a set of standard reduction techniques to convert the multi-label data into a single

label model. The classifier then learns which features best predict the presence or

absence of a label.
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For any new call audio we perform the same procedure, but do not add any label as

the classifier will predict a set of labels based on the learned model. The prediction

of the classifier for the path traversal signature, along with packet loss, noise and

quality profiles, represents the call provenance fingerprint for a particular source in

PinDr0p.

5.1.4 Security Implications

The path traversal signature and the complete provenance fingerprint provide a useful

security framework in the absence of any verifiable metadata. The traversal signature

alone can be used against adversaries who are bound by operating constraints. For

example, adversaries trying to spoof a dedicated line to the bank might use VoIP due

to the fact that they can remain largely anonymous and can make a large number of

inexpensive calls. However, the path traversal signatures for these two calls will be

different. To address this, the adversary can switch to a landline, in which case he has

lost the ability to easily make a large number of calls and potentially compromised

his anonymity.

We can also use the complete provenance fingerprint against adversaries as it

also characterizes individual networks. Since this involves capturing detailed profiles

of these networks traversed, an adversary trying to spoof a call needs to be able

to match all these profiles. We show in Section 5.3 that our fingerprints are able

to discriminate between sources that are in the same city using the same provider,

demonstrating that matching an entire fingerprint is extremely difficult. Accordingly,

we believe our approach is a significant first step in creating suitable defenses against

a host of attacks possible in today’s diverse telephony infrastructure.

5.2 Evaluation

We evaluate our approach based on two metrics: (1) the accuracy of our multi-label

classifier in predicting the correct network traversal signature of a call and (2) the
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ability of our provenance fingerprint to consistently identify a call source. We discuss

the evaluation of the first in this section and analyze the second in the following

section.

5.2.1 Experimental Setup

We train and test the multi-label classifier against a repository of speech samples

that are subjected to a representative set of real-world call traversal scenarios and

network degradations. We assume calls can traverse one, two or three networks as

most call scenarios fall into one of these cases; however, our methodology can be

extended to deal with additional transcoding. Table 4 shows the considered call

traversal configurations. Single network traversals represent calls that are contained

within one system. For example, the VoIP-VoIP scenario occurs when two Skype users

call each other. Since both clients are connected to the Internet, they communicate

through a set of relays (supernodes) and the call stays completely within the IP

network. Two network traversals are calls from users on one telephony technology

to users on another. There are six possible combinations and for brevity we only list

three of them, in each case subsuming the symmetric traversal scenario (i.e., PSTN-

Mobile and Mobile-PSTN are categorized as a single scenario). Finally, three network

traversals occur when providers attempt to take advantage of the benefits offered by

each telephony technology. For instance, while calls between two Vonage clients

within the US can be completely VoIP-VoIP, Vonage specifically transmits the call

over the PSTN backbone due to its QoS guarantees. Similarly, most international

calling card services use VoIP across the Internet as this provides an inexpensive

calling alternative.

Our experiments use speech samples from the Open Speech Repository [164],

which contains samples of 20 different American English speakers, 10 male and 10

female, speaking phrases from the Harvard sentence list [13]. These samples are used
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for standardized testing of PSTN, VoIP and cellular systems as recommended by the

IEEE Recommended Practices for Speech Quality Measurements [20]. Each sample

is 40 seconds long, but we consider only the first 15 seconds, as call quality algorithms

such as P.563 typically use this length to determine call quality metrics.

We consider the most popular narrowband codecs for encoding calls in our exper-

iments. Specifically, we use G.711 for PSTN systems, G.711, G.729, iLBC and Speex

for VoIP systems, and GSM for cellular systems. Calls traversing two telephony net-

works (e.g., VoIP to cellular) are transcoded to the new codec.2 Since transcoding is

not always defined for a pair of codecs, we follow the common practice of converting to

and from an intermediate G.711 form. We use the PJSIP [117] suite of applications

to encode and perform the necessary conversions between codecs. PJSIP contains

open source SIP and media stacks and is part of the European Broadcasting Union

Audio over IP standard [66]. It supports G.711, iLBC, Speex and GSM. For G.729,

we integrate the Intel Integrated Performance Primitives Library [86] into PJSIP.

In addition to the codecs, each traversed network is characterized by its signal

degradation characteristics. VoIP networks experience packet losses which typically

increase in correlation with factors such as routing distances, “last-mile” unreliability,

network congestion and over-subscription. For VoIP networks, we simulate packet

loss rates of 1, 5 and 10%. For bit errors occurring from multi-path fading radio

channels in mobile networks, we use a GSM traffic channel simulator developed for

Simulink [107].

Experiments are conducted by taking one speech sample from the Open Speech

Repository and encoding it with the appropriate codec using PJSIP. Samples cor-

responding to packet losses or signal degradations found in the traversed telephony

network are also generated and tested (e.g., packet loss in iLBC, multi-path fading

2Recall that VoIP calls can cross multiple autonomous systems throughout the Internet without
being transcoded.
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Table 5: Accuracy of multi-label classifier using C 4.5 decision trees.
Metric Definition BR LP RAkEL

Hamming
Loss

1
|D| ·

∑|D|
i=1

|Yi4Pi|
|L| .09 .1 .05

Accuracy 1
|D| ·

∑|D|
i=1

|Yi∩Pi|
|Yi∪Pi| 83.7% 83.7% 91.6%

Precision 1
|D| ·

∑|D|
i=1

|Yi∩Pi|
|Pi| 91.5% 89.3% 93.7%

Recall 1
|D| ·

∑|D|
i=1

|Yi∩Pi|
|Yi| 90.3% 89.3% 97%

in GSM). We also append the codec multi-label for each generated sample. We ag-

gregate all possible resulting speech samples into a corpus. The number of samples

for each of the traversal scenarios is shown in Table 4.

We run the feature extraction algorithms described in Section 5.1.3 on each of the

speech samples and then train and test a multi-label classifier on the resulting feature

vector and label. We use Mulan [153], an open source Java library for multi-label

learning, to create our machine learning classifier.

5.2.2 Classification Results

Multi-label classifiers can use a variety of reduction techniques including Binary Rele-

vance (BR), Label Power (LP) set and Random k-Labelsets (RAkEL) [158] to convert

the multi-label into a single label. The resulting labels can then be classified by any

of the traditional single-label classifiers. We use C4.5 decision trees as the underlying

single-label classifier as it outperforms other classifiers that we considered including

Naive Bayes and Neural Networks. Using the corpus described above, we use 10-fold

cross validation to measure the accuracy of the multi-label classifier under the three

reduction techniques. Our results are described in Table 5. We define the metrics as

specified in the multi-label classification literature [157]. Let the multi-label dataset

consist of |L| labels (five in our case) and |D| instances in the test set, with each

instance i represented by feature vector fi and label Yi. The classifier C makes label

predictions Pi = C(fi) for each instance fi. For a test instance with known path
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Figure 26: We tested our system using multiple sources from four continents: North
America, Europe, Asia and Australia. Specifically, we recorded incoming calls from
five different PSTN phones in Atlanta, GA, Dallas, TX, and France; four different
mobile phones in Atlanta, GA, New York City, NY, San Jose, CA and London, UK; six
VoIP phones in Atlanta, GA (Skype and Vonage), Baltimore, MD(MajicJack), Pune,
India(MagicJack), Dubai, UAE(Vonage) and Melbourne, Australia (MyNetPhone).

traversal signature, the classifier predicts a label using only the feature vector. The

metrics defined help quantify the difference between the predicted and actual labels.

We find that RAkEL has the lowest Hamming loss and the highest accuracy of

91.6%. The results show that we are able to predict which networks a call traversed

with high accuracy. We also find that the majority of misclassifications occur for

samples that traversed a VoIP network with 0% packet loss rate.

5.3 Real-World Testing

The complete provenance fingerprint of a call consists of the path traversal signature,

and profiles for packet loss, concealment, noise and quality. If this fingerprint remains

consistent for a call source, it provides valuable metadata that can be used to identify

and distinguish different calls purely from the received audio. We asked different

users to make a set of 10 live calls to our testbed in Atlanta, GA from 16 different

locations around the world, including Australia, India, United Arab Emirates, United

Kingdom and France. The complete list of locations is shown in Figure 26.

Each call lasts approximately 20 seconds. We extract features and profiles from
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Figure 27: The confusion matrix for the live-captured call data trained with labels
for (a) one set of calls, (b) three sets of calls and (c) five sets of calls from all call
sources. The accuracy on even a singly labeled training set is 90% and quickly jumps
to 100% with 5 labeled training sets.

the received audio and then label all calls from a call source with the same unique

label. We then train a neural network classifier for N sets of the 10 call sets (set =

one call from each source). We vary N from one to five and then test with five new

call sets. This represents the scenario that a user labels a set of calls and expects

subsequent calls coming from the same source to be labeled correctly by our algorithm.

Our experiment evaluates the tradeoff between labeling effort and accuracy.

The results show that even if a single set of 16 calls is labeled, the remaining five

sets of calls from the 16 different locations are identified with the correct call source

label with 90% accuracy. The accuracy increases quickly to 96.25% for two, 97.5% for

three, 97.5% for four and 100% for five labeled sets. Figure 27 shows the confusion

matrix for 1, 3 and 5 training sets.

Even with a singly labeled training set (Fig 27(a)) we find that all VoIP calls
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are correctly identified as they are easily distinguishable from the other networks.

They are also distinguishable among themselves as they are geographically spread

across Atlanta, Maryland, Dubai, Pune and Australia and each has a different packet

loss concealment profile. In some cases we were pleasantly surprised by the actual

differentiator. We found that Vonage calls from Atlanta were distinguishable from

all the other VoIP calls based on its high spectral level range (noise profile) rather

than the packet loss profile. We suspect that this is due to the fact that Vonage calls

almost immediately transfer to the PSTN backbone for quality of service, while other

services predominantly use VoIP. However, we did not observe this in the international

Vonage call from Dubai where the call path would be predominantly VoIP, instead,

to make the call affordable.

Figure 27(a) shows that even with a singly labeled training set we are able to

distinguish between the three landlines from Atlanta, including the two from within

the Georgia Tech campus, demonstrating that even for similar call sources the char-

acteristics can be significantly different. We also see that three of the five calls from

the London mobile phone are misclassified as a mobile phone call from New York and

one call was misclassified as a landline call from France. The provenance of the call

from London seems to be misclassified based on either the distance similarity (both

coming from Europe) or the same origin network (cell). The number of misclassifica-

tions for the test set containing 80 calls (16 locations ×5) drops significantly from 10

to 3 and then to 2 with increasing the number of training sets. With five labeled call

sets being trained we have no misclassification showing that with each extra label the

classifier becomes increasingly accurate.

The profiles that we capture for each source are consistent for the same call source

but have enough variability to allow us to distinguish different call sources. Although

we still require 15 seconds of call audio before being able to identify the provenance,

we believe that an attempt to steal sensitive information (e.g., bank account numbers)
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from a potential victim requires significantly more time. Accordingly, users should

be sure to wait at least this amount of time before disclosing such information. We

plan to investigate the uniqueness of a larger number of call sources as part of future

work.

5.4 Discussion

In this section, we investigate some of the limitations of our current infrastructure

and discuss a number of future extensions that will both improve the accuracy of our

detection and its resistance to more active adversaries.

5.4.1 Limitations

Our call provenance infrastructure is designed to detect codecs and path character-

istics associated with a given source. In spite of its relative strength, there exist a

number of limitations associated with our current system. For instance, unlike Caller-

ID systems, our call provenance infrastructure requires that the receiver answer the

call before its source can be verified. This may not be useful to those using Caller-ID

as a means of deciding whether or not to take a call. This shortcoming could poten-

tially be addressed by pushing our mechanism into the cloud. Incoming calls could

potentially be forced to first interact with a recording, which could collect sufficient

audio for analysis, before reaching the intended target.

We currently rely heavily on packet loss characteristics of the path between sources

and our testbed to differentiate VoIP fingerprints. While instantaneous packet loss

rates certainly fluctuate, paths and their corresponding loss patterns are relatively

stable in the Internet [114]. However, we recognize that our packet loss profiles may

need to be more accepting of diurnal cycles and temporary anomalies and plan to

study such issues in the future.

As an implementation decision, we currently associate a source with a single fin-

gerprint. This assumption is appropriate when dealing with an immobile source such
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as a corporate calling center. However, individual users may take advantage of the

mobility allowed by VoIP software such as Skype to legitimately place calls from a

number of different locations. The advantage in such a scenario is that the receiver

is likely to recognize the caller’s voice and can therefore manually associate new fin-

gerprints to a particular source.

Lastly, we have attempted to analyze the most widely used codecs in our study.

However, other less widely use codecs were not considered in this initial study. For

instance, the Adaptive Multi-Rate (AMR) codec, which provides higher audio quality

and is beginning to compete with GSM on mobile devices, and a handful of others

such as the Enhanced Variable Rate Codec (EVRC) for CDMA networks will be

considered as part of our future work.

5.4.2 Additional Applications

We have focused the work in this chapter on using call provenance to address Caller-

ID spoofing attacks. However, the utility of PinDr0p is not limited to this task. While

stories of VoIP-based phishing (vishing) have become popular in the media [168, 144],

the extent to which such calls are occurring compared to traditional telephony fraud

is unknown. The deployment of our infrastructure in a distributed fashion may help

to answer this question. In particular, the use of call provenance in this space can

assist in determining the prevalence and potentially the identity of individual vishing

campaigns. While we leave the details of such an infrastructure to future work, we

hope to be able to provide the security community with a tool for better understanding

such attacks.

PinDr0p may also be useful as a means of authenticating channels. For instance,

credit card and home security companies often use Caller-ID information as a second

factor of authentication when customers call with account questions. Such organiza-

tions could increase the number and difficulty of questions asked of the caller based
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on the measured provenance of the incoming call. In multi-factor authentication anal-

ysis, PinDr0p can be used to determine if information exchange through a website

and a phone call are truly independent. Finally, PinDr0p could also be used by law

enforcement agencies for call forensics.

5.5 Conclusion

Caller-ID has long been viewed as a reliable means of identifying the source of a

call. However, this mechanism is now easily spoofable through a variety of free and

low-cost techniques. In this paper, we take a first step towards a mechanism capable

of determining call provenance — the source and the path taken by a call. We

leverage attributes of the audio delivered to the receiver, including characteristics of

the applied codes, packet loss profiles and bit error rates. We use these measurable

elements to identify the codecs applied to incoming calls passing through as many

as three intermediary types of telephony networks with a 91.6% accuracy. Moreover,

fingerprints for specific sources were identified with between 90% and 100% accuracy

with one and five training sets, respectively. This demonstrates that PinDr0p makes

VoIP-based phishing attacks harder and provides an important first step towards a

Caller-ID alternative. In our quest to create effective identities, we extend this work

in the next chapter to obtain geographical information about a call.
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CHAPTER VI

LONDON CALLING: EXTENDING CALL PROVENANCE

TO DETECT GEOGRAPHY OF A CALLER

From Chapter 3, we realize that there are situations where we need more information

than just identity. In the absence of common signaling and the impracticality of

introducing elements within the telecommunication core, obtaining social network

linkages for calls that traverse through multiple networks is infeasible. From the

previous chapter we are encouraged by audio artifacts revealing the type of network

a call traverses through. We now look at extending call provenance to determine

the geography of a caller. Geography is attractive as it provides both organizations

and consumers vital information about the legitimacy of a call. Financial institutions

have expressed to us that geography can be used in conjunction with information

that they record to determine if a particular call is fraudulent. For example, knowing

that a customer call is coming from eastern Europe when a credit card transaction by

the same customer was recorded a couple of hours back at Atlanta, provides a strong

indication that the call is fraudulent. Towards determining geography, we need to

first identify artifacts that are specific to certain paths. We then use these artifacts

to see if we can group all calls coming over those paths. To understand why this is

possible we first look at the notion of timbre of sound.

6.1 Timbre of Call Path

Timbre refers to the texture that is introduced into sound as a result of being produced

by a specific sound production unit. For example, people with a keen ear are able to

distinguish the same note at the same pitch and the same loudness produced by a
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Timbre

Anomaly

Figure 28: Anomalies in timbre are due to the call path. We hypothesize this will
provide an indication of the path that a call takes.

Fender Stratocaster versus a Les Paul guitar. When a call goes over a certain path

we hypothesize that the path adds a certain timbre to the call that can be used to

identify geography. However, since a call is predominantly human voice, the voice

itself adds timbre to the call. Therefore timbre that cannot be added by a human

voice is essentially timbre created by the call path. We therefore look for anomalies in

the sound that could not have been created by a human voice and use that to profile

the call path as shown in Figure 28.

6.2 Identifying Anomalies in Timbre

Timbre in sound depends to a large extent on the envelope or how sound varies

over time and to some extent on the spectrum. Therefore, determining anomalies in

timbre is reduced down to identifying anomalies in the spectral envelope of the sound.

We use two techniques traditionally used in sound to capture the spectral envelope,

linear predictive coding and the cepstrum and we discuss these techniques in the next

sections.

101



6.2.1 LPC and Cepstrum

We used LPC in chapter 6 to detect concealed packet losses in the iLBC codec.

LPC can be used to model the geometry of the vocal tract through the duration

of the call. In particular, we use it to model the back of the throat, the middle of

the throat and the mouth. Since these are controlled by human muscles they can

(1) only take on certain shapes, e.g. the mouth can only be stretched to a certain

extent, and (2) the geometry can only have a certain rate of change, e.g. the throat

cannot be wide at one instant and constricted in the next instant. We look for

anomalies in the geometry, namely, excessively large sizes for the tracts or excessively

fast changes in the geometry. Since these can not be caused by human voice they

are artifacts introduced by the path. Similar to the LPC, another technique used to

detect excessively fast variations is the cepstrum which produces information about

the rate of change of different spectrum bands. In essence we use both LPC and

cepstrum to profile call paths.

6.2.2 Identifying Anomalies in Vocal Tract Using LPC

LPC is based on the source filter model of speech production, where the larynx

(source) produces sound energy, which when voiced consists of a fundamental fre-

quency (pitch) and its harmonics. This sound energy is then shaped (synthesis fil-

ters) by the vocal tract (throat and mouth) into enhanced frequency bands known

as formants, which provide speech its intonation. For unvoiced speech, there is no

fundamental frequency. Voiced speech is the sound produced when uttering a vowel

while unvoiced speech corresponds to consonants. Therefore, LPC considers voiced

and unvoiced segments separately when analyzing and synthesizing speech. The basic

model of operation for LPC is that it considers a block of speech, decides whether it is

voiced or unvoiced and then decides the pith and the synthesis filters as parameters.

For voiced segment, to determine the pitch we use the average magnitude difference
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function (AMDF) as proposed in government standard 1014, also known as LPC-10.

For determining the filter coefficients, the LPC estimates the current sample se(t) at

time t by p previous samples as se(t) =
∑p

i=1 ais(t − i), where ai is the filter coeffi-

cient. These coefficients are chosen to minimize the difference between the estimated

value of the sample and the true value of the sample. These coefficients then give an

accurate representation of the shape of the vocal tract.

The quantization of filter coefficients creates a major problem since errors in the

filter coefficients can lead to instability in the final vocal tract filter and an inaccurate

output signal. Instead, we use the Levinson-Durbin algorithm to generate reflection

coefficients that can be used to rebuild the filter coefficients. From the reflection coef-

ficients, we can then derive the uniform cross-sectional areas of the different elements

of the vocal tract. This allows us to model the back of the throat, the middle of the

throat and the mouth for each segment of speech. Based on well defined models of

speech production there are threshold values for how large these areas can be and

what are possible configurations. We use these values to determine if there are vi-

olations of these thresholds or infeasible configurations. We also look at vocal tract

variations from one block of speech to the next and see if there are any unnaturally

quick variations. Both of these are essentially the anomalies in the the vocal tract that

must have been created by the path and the number and nature of such anomalies

becomes a profile for the path that is producing them.

6.3 Evaluation

To evaluate PinDr0p we had asked family and friends, of the coauthors of that paper,

located all over the world to make a large number of calls to our testbed in Atlanta.

This approach was cumbersome and labor intensive. To avoid this, we instead decided

to capture path profiles by making calls (instead of receiving) to different phone

numbers across the world. The audio stream coming from the call recipient to us (the
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caller) is still traveling the call path and will still contain all the artifacts introduced

by this path. We can then measure how well anomalies detected by the LPC and the

cepstrum can be used to profile certain geographies. We therefore made calls from our

phone testbed in Atlanta, Georgia to 10 countries which include Philippines, Mexico,

Japan, Canada, Venezuala, Russia, South Africa, Australia and Great Britain.

To ensure that there were no humans being bothered by these calls, we made

calls to customer service numbers with IVR systems. The customer service numbers

were scraped from a variety of Internet sources which include customerservicenum-

bers.com, the yellow pages, government, banking and transportation organizations of

each of these countries. We looked at the length of the message and used that as

an approximation as to whether we reached an IVR or a human. In our experience,

if the call reached a human, they would hang up the phone immediately while an

IVR would mindlessly continue providing a set of options. Though we can use more

rigorous techniques to determine if we reached an IVR or a human (ask the recipient

to press a DTMF tone if they have received the call in error), we found this technique

to be quick and effective. We identified 9 customer service numbers in each country

and made 10 calls to each of these numbers resulting in 10 phone calls/number * 9

numbers/country * 9 countries = 810 calls. Out of these, only 751 calls were actually

placed as certain calls were not completed (e.g. the line being busy). To ensure that

these calls were actually going to the right country, we did not call any numbers

that were toll free as these numbers are typically forwarded to some other number

potentially not in the same country. All numbers scraped had area codes specific to

that country. In each call we recorded 30 seconds of IVR audio and ran algorithms

to detect anomalies in the LPC and cepstrum and then determined the extent and

distribution of these anomalies. We then labeled all calls with the country that was

being called and used a 10 fold cross validated neural network classifier to see if we

can identify a country from the call provenance profile.
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Figure 29: Confusion matrix for geography detection. Each country is represented by
its two letter country code. Canada has the highest true positive rate while Australia
has the lowest

6.4 Timbre of Call Path

The confusion matrix is as shown in Figure 29. 630 of the 751 calls are correctly

classified providing an accuracy of 83.9%. As seen, certain countries are classified

more accurately than others. For example, Canada has the highest true positive

rate of 91% while Australia has the lowest true positive rate of 70.8%. Even more

interesting are the misclassifications. We find Philippines is most often misclassified

as Japan, while Russia is most often misclassified as Great Britain and Australia is

misclassified as both Japan and South Africa. To understand these misclassifications,

we further investigated the paths taken by these calls and looked at the undersea

telecommunication cables between the US and other countries as shown in Figure 30.

We find that 3 out of the 4 undersea cables from Phillipines pass through Japan in

order to come to the US. Our calls to Russia were predominantly to West Russia

whose telecommunication access to the US is through Great Britain, again explaining

these misclassifications. Since we called both west and east Australia, these two

regions take completely different routes to the US with cables going through Japan,
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Figure 30: Undersea cables between the US and other countries. Though not shown,
the cables travel across either the Atlantic or the Pacific to reach the US.

Great Britain and South Africa. However the undersea cables do not explain some of

the other misclassifications, like Mexico being misclassified as Great Britain. As part

of future work, we are investigating these to see what other effects are in place.

We further tried grouping countries into continents: Phillipines and Japan into

Asia, Canada, Venezuala and Mexico into America, Great Britain and Russia into

Europe and South Africa as Africa and used a neural network to predict the continent

using 10 fold cross validation. We find we are able to classify 618 of the 679 calls

correctly (we did not consider Australia) giving us an accuracy of 91%. This is

because many of the misclassifications that arose due to common undersea cable

from continents can be avoided. As part of future work we would like to see if we

can use clustering algorithms to automatically determine a tradeoff between size of

region and desired accuracy.

6.5 Conclusion

There are artifacts in call audio that can help us estimate the geography of a call.

We used LPC and cepstrum to detect anomalies in timbre due to the call paths and
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achieved an accuracy of over 83%. This provides additional information to determine

if a call will result in a desirable interaction or not.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

The thesis hypothesized that it was possible to create effective identities in a con-

verged telecommunication landscape that reduced both VoIP spam and Caller ID

spoofing. We also wanted to determine that additional information shared to create

these effective identities were privacy preserving. Towards the creation of effective

identities to combat threats that undermine trust in telephony, we explored multiple

techniques to determine if a call would lead to a desirable interaction. This thesis

makes the following contributions:

• CallRank: We proposed CallRank, a system that uses call duration in com-

bination with social network linkages and a global reputation to determine if

a user is a spammer or not. In particular, we introduced call duration based

credentials as the uniform underlying mechanism to determine if a caller is a

spammer. We then explored the use of SNs based on the call credentials to allow

two users to make a call. When SN linkages are unavailable between users, we

used a variation of the Eigentrust algorithm to assign global reputations based

on call durations. We finally performed a detailed evaluation of CallRank and

show that we are able to achieve low false negative and low false positive rates

even in the presence of a significant fraction of spammers.

• Privacy Preserving Grapevines: Though CallRank was effective in dealing

with VoIP spam it shared sensitive information to prove the existence of a so-

cial network path. To address this limitation, we created Privacy Preserving

Grapevines which proves the existence of a social network path without reveal-

ing the participants of that path. Specifically, we identified the requirements

108



for a framework that allows a new user, Bob, to prove the existence of SN call

path between him and Alice, without revealing the actual path. In addition, the

framework allows us to capture Alice’s willingness to continue communicating

with Bob. We then created a transferable single use token mechanism that ex-

tends delegatable anonymous credentials[36] with techniques from E-Cash[47]

to realize this framework. We implemented this framework using the PBC li-

brary and experimentally evaluated the costs associated with its operations.

Finally, we applied this framework to a VoIP setting and demonstrated that it

can combat the spam problem with low false positive and false negative rates.

CallRank and the privacy preserving extension to it show that within VoIP sys-

tems we can create effective identities that are able to reduce VoIP spam while

ensuring the privacy of the users of the system.

• Call Provenance: We then broadened our focus and considered the entire

telecommunication landscape. Here we observe that Caller-ID has long been

viewed as a reliable means of identifying the source of a call. However, this

mechanism is now easily spoofable through a variety of free and low-cost tech-

niques. To address this we created mechanisms capable of determining call

provenance — the source and the path taken by a call. In particular, we showed

that the received call audio provides extractable features that are strong iden-

tifiers of the networks that the call has traversed, allowing us to determine the

provenance of a call. These include degradations (packet loss in VoIP) and noise

characteristics of codecs unique to each network. We developed a multi-label

machine learning classifier based on the extracted features to correctly iden-

tify the provenance of an incoming call with 91.6% accuracy with as little as

15 seconds of audio. Because PinDr0p does not rely on metadata available in

some networks (e.g., VoIP) or cryptography, it is more readily deployable across

the diverse devices and networks that make up modern telephony systems. We
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made calls using PSTN phones, cellular phones, Vonage, Skype and other soft

phones from locations across the world and are able to distinguish between them

with 90% accuracy with only a small sample being labeled. As we increase the

number of such labels we are able to distinguish between these calls with 100%

accuracy. This demonstrates that PinDr0p makes VoIP-based phishing attacks

harder and provides an important first step towards a Caller-ID alternative. In

addition to identity, we then extend provenance to obtain additional informa-

tion in the form of geography of a call. Though not as powerful as identifying

the social network linkages, this information is useful for financial institutions

to determine the likelihood of a call to be coming from one of their customers.

For example, this geography information can raise a flag when a user who has

recently bought an item with a credit card in Atlanta, GA and a couple of

hours later calls from a location across the Atlantic. This shows how effective

identities can be use in the broader context of preventing Caller ID spoofing

and even detecting potentially fraudulent calls.

7.1 Future Work

Through this thesis we have created effective identities in both VoIP networks and

across the broader telecommunication landscape. This has opened up a large number

of future avenues that we can pursue. These include:

• Improvements to systems created: Within Privacy Preserving Grapevines

we found that we could only accommodate users four hops away as beyond that

call setup times become unreasonable. We need to explore information available

from real social networks to determine how often do people get introduced to

users who are more that four hops away and what is the likelihood of spammers

breaking such systems. Within PinDr0p we can improve the robustness of the
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system through a number of extensions. While admittedly difficult, an adver-

sary capable of replicating all of the codecs and path characteristics associated

with the path between a legitimate source and target receiver would potentially

be able to be identified as the profiled source. This process not only implies that

the adversary has correctly guessed all of the codecs applied by intermediary

hops, but that they can ensure that their traffic exhibits similar packet loss, bit

error and noise characteristics as a legitimate connection. This is exceptionally

difficult as an adversary, for example, can not decrease the packet loss char-

acteristics of an intermediary network that they do not control. Our approach

therefore represents a significant improvement over the current state of the art.

While we currently detect the presence of as many as three different codecs

applied to audio, our mechanisms do not uncover the order in which the codecs

were applied. Determining codec order is an extremely difficult problem on

the surface. Knowledge of this ordering will make spoofing attempts by an

adversary located off the path more difficult.

Finally, we are interested in extending our analysis to include a larger number

of intermediary networks. While highly uncommon, it is possible that some

international calls may be transcoded by as many as five different codecs while

in flight between their source and destination. The repeated decoding and

encoding of audio information drastically reduces its quality at the receiver end

of the call and may also obscure the presence of the intermediary networks given

the elevated noise levels present in the sample.

• Identifying other categories of contextual information to create ef-

fective identities: Within VoIP systems we used social network linkages and

global reputation to provide additional information and within the telecom-

munication networks we used network type and geography. We would like to
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explore other categories of contextual information that can be used to determine

whether a call is beneficial or potentially malicious. We know that there are a

large number of instances where people meet at conferences or classrooms and

exchange phone numbers. In such cases there are potentially no social network

linkages and yet calls initiated after such a meeting are legitimate. Capturing

such social interactions would be extremely useful. One way to do this is to

extend the system to consider cross channel information. For example all con-

ference attendees can be considered a group and potential email interactions

that register a user into a conference can be used to detect group member-

ship. Therefore, we can use prior information from email interactions, create

credentials out of these interaction and use them to determine the legitimacy

of a subsequent call. In addition, we would like to explore other contextual

information that can be extracted purely from call audio such as the actual

telecommunication device (e.g., Skype softphone versus IPhone) being used in

a call.

• Effective identities in social networks: We believe that the benefits of

effective identities are not restricted to telecommunication systems. Our notion

of identifying a metric that truly captures interactions between users (e.g., call

duration in CallRank) and using that to determine the legitimacy of a call can

be applied to parallel systems. For example, within Twitter we have looked at

using Twitter specific conversation constructs such as @-mentions and retweets

to identify legitimate users from noise makers/spammers. We would like to

further explore the use of effective identities in such systems.
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