
Algorithmic Framework for Improving Heuristics in

Stochastic, Stage-Wise Optimization Problems

A Thesis
Presented to

The Academic Faculty

by

Jaein Choi

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Chemical and Biomolecular Engineering
Georgia Institute of Technology

November 2004

Algorithmic Framework for Improving Heuristics in

Stochastic, Stage-Wise Optimization Problems

Approved by:

Jay H. Lee, Committee Chair

Matthew J. Realff, Advisor

Andreas S. Bommarius

Shabbir Ahmed

Hayriye Ayhan

Date Approved: 22 November 2004

To My Parents, Sunghyung Choi and Jueogsoon Goh,

and

To Wife, Eunmyung Hong and Daughter, Seoyoon Choi

With Love ...

iii

ACKNOWLEDGEMENTS

As I stand at the threshold of earning my doctorate, I am overwhelmed when I recall all

the people who have helped me get this far. Many people have been on my side, in different

way, in this wonderful learning experience, both on a personal and a scientific level

First and foremost, I would like to thank my Ph.D. advisors, Professor Jay H. Lee and

Professor Matthew J. Realff, for their tremendous support, guidance, and inspiration. Both

of them are truly remarkable advisors who grant students a lot of freedom to explore new

ideas, but at the same time interact closely with them. Prof. Lee was patient to make me

a sincere researcher. Besides his excellent technical advice, his personal care for me and

warmly hosted dinners at his home have made me forget that I have been away from my

home. Energetic discussions with Prof. Realff always kept me refreshed and excited to

think new ideas. With them, I have enjoyed numerous meetings we had every week for the

last four years although it was the toughest time in my life. Most of all, thank for their

cheerful optimism that has been very important in a few dark hours and for giving me the

feeling that they trusted me. I look forward to continuing my association with them in the

future.

I would like to thank my thesis committee members, Professors Andreas S. Bommarius,

Shabbir Ahmed, and Hayriye Ayhan, for accepting the burden of sitting in my reading

committee. I am honored that they were called to give the final word on my work.

I would like to thank my former advisor at KAIST, Professor Sunwon Park, for his early

guidance in my M.S. research on process systems engineering area and for his kind advice

both on my work and life.

I have three important elder brothers who have advised and helped me for long time since

I have known them. Gwangsoo Kim, who inspired me to be a good student after I de-

cided Chemical Engineering as my major in my 2nd year at KAIST in 1995. Our life-time

friendship have continued so far wherever we have been. He was the one who taught me

iv

‘enthusiasm’ and ‘independence’ in my work. Even after he moved to U.S. for this graduate

study at MIT and to Canada for this research work in fuel cell area, I never really missed

him because he managed somehow to make me feel his presence. Jongmin Lee, my senior,

friend, and elder brother in Atlanta, who always has been around me during last four and

a half years. Whenever I was in trouble with my work and personal matters, he was the

first person who helped me and cheered me up. My family, including my wife and daughter,

regards him as our family member in Atlanta. Sungyong Moon who encouraged me to study

abroad before he started his Ph.D. study at Purdue University. I still remember a small

lecture room on the 2nd floor of the department of ChE at KAIST where he gave me his

GRE book and made me confident to decide to apply top engineering schools in U.S..

I would like to thank all members of the Lee group (ISSICL). Dr. Kangwook Lee for his

kindness and for taking care of me, especially when I just joined the group in 2000. Andrew

Dorsey, Yangdong Pan, for guiding me as senior students. Niket S. Kaisare for being an

excellent office-mate and a nice friend. I shall not forget so many nights I studied and

discussed with Niket and thank him for considering me a reliable gourmet when we had

‘eating adventures’. And Thidarat Tosukhowong, Manish Gupta, Swathy Ramaswamy, An-

shul Dubey, and Nikolaos Pratikakis for being responsible junior students to interact with.

Over the past years, I have had great opportunities to get to know and to work with many

visiting scholars. I also would like to thank them for their friendship, Prof. Dae R. Yang,

Jochen Till, Hyungjin Park, Dr. Jongku Lee, Dr. Kyung Joo Mo, and Heejin Lim. Espe-

cially, I thank Dr. Jongku Lee for his advice on my future work after graduation. Based on

his abundant industrial experience, he helped me draw an overview of my career paths as

a process systems engineer.

In summer 2004, I had a great experience for working Owens Corning as an engineering

intern. During the internship, I was exposed to interesting industrial problems relevant to

my research meanwhile I also learned to work as a team with great people in MCO (Model-

ing, Control, and Optimiation) Group at Owens Corning. I would like to thank Dr. James

Beilstein for supervising my work as a director of the group, and Dr. Chad Farschman and

project manager Karthick Vaidyanathan for their guidance, valuable discussions, and for

v

advising me with very practical point of view on my project.

Besides the internship experience, I also had a great opportunity to carry on industrially

oriented project with LG Chemical Co. Ltd., the company I will work for after graduation.

For the project, I closely communicated with Dr. Hokyung Lee at LG Chem. and his

insightful overview of the project helped me discover potential of my research in real-world.

The friendship among Korean students and postdocs in the department has been developed

wonderfully since I started my graduate study in 2000. As the youngest one among them,

I have greatly benefited from the association. I thank all of them for their love and care

for each other - Seongho Park, Se-Young Yoon, Young-Soo Kim, Yeu Chun Kim, Jeongwoo

Lee, Ingu Song, Dr. Ketack Kim, Dr. Jaewon Lee, Dr. Weontae Oh, and Dr. Jeonghyun

Yeom.

Most important of all, I would like to express my deep gratitude to my family for being an

unstinting source of support and encouragement. My parents have taught me the value of

education and have worked very hard to provide me the very best of it. Even though I have

been far away from my home, I could have felt their prayers and wishes, that always have

been around and blessed me. My parents-in-law also have supported me and encouraged

me since I got married. They have treated me as a real son and granted me unexpected

gifts, sometimes, to cheer me up. My wife, Eunmyung Hong, has been the greatest help

to me. When I proposed her in winter, 2000, my future was uncertain as a new graduate

student. Regardless of my situation at that time, regardless of uncertain paths ahead of

me, she accepted to be my life-time soul mate because she believed my sincere love to her

and our bright future that we will make together. And eventually, we did it together as

we believed. Last but not the least, I would like thank to my angelic daughter, Seoyoon

Choi, born in July, 2002 as a precious gift to us from the God. Her existence was persistent

motivation to me. As she grows up, she could cheer me up with her fabulous smiles and

innocent words. I will try to spend more time with her from now on to fill up my absence

with her as a busy graduate student.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xiii

SUMMARY . xvi

CHAPTER I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Issues in Practical DP Applications to Optimization Under Uncertainty . . 3

1.3 Outline of the Thesis . 5

CHAPTER II BACKGROUND . 8

2.1 Conventional Deterministic Optimization Methods: Mathematical Program-
ming . 8

2.2 Optimization Under Uncertainty . 12

2.2.1 Stochastic Programming . 13

2.2.2 Stochastic Dynamic Programming 15

CHAPTER III ALGORITHMIC FRAMEWORK FOR IMPROVING HEURIS-
TICS . 17

3.1 Proposed Framework . 17

3.1.1 Simulation of Heuristic Policies . 19

3.1.2 Cost-to-Go calculation for the restricted state space 19

3.1.3 Bellman iteration . 20

3.1.4 Real-time decision making . 22

3.1.5 Generalization of the algorithmic framework in discrete state space 24

3.2 Application to Deterministic Traveling Salesman Problem 26

3.2.1 Introduction . 26

3.2.2 Deterministic Version of Traveling Salesman Problem with an Op-
tional Task . 27

3.2.3 Illustrative Example : Deterministic TSP with a discount coupon . 28

vii

3.2.4 Statistical Analysis of Larger Deterministic TSPs with a Discount
Coupon . 42

3.2.5 Conclusions . 45

3.3 Application to Stochastic Traveling Salesman Problem 47

3.3.1 Introduction . 47

3.3.2 Stochastic Version of TSP with an Optional Task 49

3.3.3 Solution Methods for The Stochastic TSP 50

3.3.4 Stochastic DP in the Subset of the States 59

3.3.5 Illustrative Example : Stochastic TSP with An Investigation Option 61

3.3.6 Conclusions . 65

CHAPTER IV HIGH DIMENSIONAL DISCRETE STATE SPACE: AP-
PLICATION TO STOCHASTIC RESOURCE CONSTRAINED PROJECT
SCHEDULING PROBLEMS . 69

4.1 Introduction . 69

4.2 Problem Description : Stochastic RCPSP 70

4.2.1 Uncertain Parameter Modeling: Markov Chain & Conditional Prob-
ability . 71

4.3 Dynamic Programming Formulation . 73

4.3.1 State Space Definition . 74

4.3.2 Decisions . 75

4.3.3 State Transition Rules . 75

4.3.4 Objective Function : Cost-to-Go . 78

4.4 Dynamic Programming in a Heuristically Confined State Space 79

4.4.1 Simulation of Heuristic Policies . 80

4.4.2 Cost-to-Go Calculation for the confined state space 81

4.4.3 Online decision making . 85

4.5 Suboptimal Policies : Heuristics . 86

4.5.1 Heuristic 1 : High Success Probability Task First 86

4.5.2 Heuristic 2 : Short Duration Task First 87

4.5.3 Heuristic 3 : High Reward Project First 87

4.6 Illustrative Example . 88

4.6.1 Simulation with the 3 Heuristic Policies 91

viii

4.6.2 Implementation of DP in a Heuristically Confined State Space . . . 93

4.6.3 Improved Solution: Online Decision Making 94

4.7 Extensions and Generalizations . 96

4.7.1 Dynamic Task Sequencing . 97

4.7.2 Complicated Task Sequences and Actions 97

4.7.3 Uncertain Resource Requirements and Various Types of Resource
Requirements . 98

4.7.4 New Project Arrival . 99

4.8 Conclusions . 100

CHAPTER V MODEL-FREE STATE TRANSITION RULES: APPLI-
CATION TO STOCHASTIC RESOURCE CONSTRAINED PROJECT
SCHEDULING PROBLEMS WITH NEW PROJECT ARRIVALS . 106

5.1 Introduction . 106

5.2 Problem Description: Stochastic RCPSP with
New Project Arrivals . 107

5.3 Q-Learning for the Stochastic RCPSP . 108

5.3.1 Definition of State . 111

5.3.2 Actions . 112

5.3.3 State Transition Rules . 112

5.3.4 Objective Function: Q-Value . 113

5.4 Suboptimal Policies . 113

5.4.1 Greedy Heuristics . 114

5.4.2 Random Perturbation . 115

5.5 Illustrative Example . 116

5.5.1 Simulation with the three heuristics and random perturbation . . . 119

5.5.2 Implementation of the DP in heuristically restricted state space . . 121

5.5.3 Computational Results . 122

5.6 Conclusion . 125

CHAPTER VI HANDLING LARGE ACTION SPACE: APPLICATION
TO SUPPLY CHAIN MANAGEMENT PROBLEMS 127

6.1 Introduction . 127

6.2 Problem Description: SCM with Multiple Products Under Uncertain Prod-
uct Demands and Prices . 129

ix

6.2.1 Markovian Model of the Uncertain Parameters 130

6.3 Heuristics: Combination of Static Inventory Control Policies 132

6.4 Conventional Stochastic DP Formulation 132

6.4.1 Definition and Aggregation of State 133

6.4.2 Definition of Action . 134

6.4.3 State Transition Rules . 135

6.4.4 Objective Function: Profit-to-Go 135

6.4.5 Bellman Iteration and Real-Time Decision Making 136

6.5 The Algorithmic Framework: DP in A Heuristically Restricted State Space 137

6.5.1 Learning Stage: Simulation of the Heuristic Policies 138

6.5.2 Implicit Sub-Action Space for A State 139

6.5.3 Bellman Iteration over the Confined State Space 139

6.5.4 Real-Time Decision Making . 140

6.6 Illustrative Example . 142

6.6.1 Definition and Aggregation of the State and Action 143

6.6.2 Simulation Results for the Heuristics 147

6.6.3 Restricted State Space and Sub-Action Space 149

6.6.4 Rollout Approach: Online Decision Making with Initial Profit-to-Go 151

6.6.5 Bellman Iteration Over the Restricted State Space 152

6.6.6 Online Decision Making with the Converged Profit-to-Go 153

6.7 Conclusion . 155

CHAPTER VII CONTRIBUTIONS AND FUTURE WORK 158

7.1 Contributions . 158

7.2 Future Work . 159

REFERENCES . 162

VITA . 169

x

LIST OF TABLES

Table 1 Solution Comparison . 41

Table 2 Comparison of Solutions Between the Best Heuristic Solution and the Op-
timal Solution . 42

Table 3 Cost Mode Transition Probability Matrix for the Illustrative Example . . 63

Table 4 Example 1: Comparison of the Solutions by 3 Different Methods for Dif-
ferent Sets of Realizations(The values are the total costs for 10,000 tours) 65

Table 5 Example 2: Comparison of the Solutions by 3 Different Methods for Dif-
ferent Sets of Realizations(The values are the total costs for 20,000 tours) 67

Table 6 Example 1, Probabilities and Parameters 88

Table 7 Example 1, Probabilities and Parameters (Continued) 89

Table 8 Heuristic Solutions: The Maximum Rewards 92

Table 9 Largest Positive Solution Difference Between 2 Heuristics through 50,000
Realizations . 93

Table 10 Online Decision Making Results: 50,000 Realizations 95

Table 11 Online Decision Making Results: Set of 5,000 New Realizations 96

Table 13 Example 1, Probabilities and Parameters 119

Table 14 Probability of Project Appearance Time 120

Table 15 Heuristic Simulation Results for 30,000 Realizations 120

Table 16 Performance of the Heuristics . 121

Table 17 Heuristic Simulation Results for 30,000 Realizations with 0.5% of idling
action and 1% of cancellation action . 121

Table 18 Heuristic Simulation Results for 30,000 Realizations with 0.5% of idling
action and 1% of cancellation action Vs Online Decision Making with Q-
Value . 123

Table 19 Heuristic Simulation Results for 10,000 New Realizations with 0.5% of
idling action and 1% of cancellation action Vs Online Decision Making
with Q-Value . 123

Table 20 Probabilities and Parameters of the Markov chains in the Illustrative Ex-
ample . 142

Table 21 Inventory Cost Parameters for the Illustrative Example 144

Table 22 Plant Parameters for the Illustrative Example 144

Table 23 State Aggregation . 145

xi

Table 24 Heuristic 1 . 147

Table 25 Heuristic 2 . 147

Table 26 Heuristic 3 . 148

Table 27 Heuristic 4 . 148

Table 28 Heuristic 5 . 148

Table 29 Heuristic 6 . 148

Table 30 Results of Simulating the Heuristics for Realization(30,000 horizon) Set #1 149

Table 31 Distribution of the Number of Actions in Sub-Action Space 151

Table 32 Online Decision Making with Initial Profit-to-Go 151

xii

LIST OF FIGURES

Figure 1 The proposed approach: stochastic DP in the restricted state space . . . 18

Figure 2 Cost-to-Go Approximation Type 1 . 21

Figure 3 Cost-to-Go Approximation Type 2 . 23

Figure 4 Real-time Decision Making with A Guiding Heuristic 24

Figure 5 Combining heuristics over state space . 25

Figure 6 Cost Parameters for the Illustrative Example 29

Figure 7 Dynamic Programming for Deterministic TSP 31

Figure 8 Assignment Problem from N cities to N+1 slots 33

Figure 9 Pictorial Illustration of Heuristic 1 for TSP 36

Figure 10 Pictorial Illustration of Heuristic 2 for TSP 36

Figure 11 Number of States and Feasible State Transitions in the Subset of the States
in TSP . 40

Figure 12 Statistical Improvement of the Solutions by the Proposed Method(Rigorous
Original TSP Solver) . 44

Figure 13 Statistical Improvement of the Solutions by the Proposed Method(Pure
Heuristic Original TSP Solver . 46

Figure 14 Overall Procedures of Formulating, Solving and Testing the Stochastic DP 52

Figure 15 The Proposed Approach : Stochastic DP in the restricted state space of
the States . 60

Figure 16 Cost-to-Go for Unexplored Region(Outside the Subset) in the State Space 61

Figure 17 Example 1: Simulation Results of the suboptimal Policies 64

Figure 18 Example 2: Simulation Results of the suboptimal Policies 66

Figure 19 Decreasing Reward Function . 71

Figure 20 Uncertain Parameter Modeling for a Project with 3 Tasks 73

Figure 21 Possible Project Status of a Project with 3 Tasks 74

Figure 22 A Gantt Chart with Events and States 76

Figure 23 Stochastic DP in the Subset of the States 80

Figure 24 Cost-to-Go Approximation Type 1 . 84

Figure 25 Cost-to-Go Approximation Type 2 . 85

Figure 26 online Decision Making with A Guiding Heuristic 86

xiii

Figure 27 RCPSP Illustrative Example . 90

Figure 28 Reward Profile of the Projects in the Illustrative Example 90

Figure 29 Project 1 in the Illustrative Example . 91

Figure 30 Heuristic Simulation Results for 50,000 Realizations 93

Figure 31 Gantt Charts of Heuristic Solutions for the Worst Case Realization # 3398 101

Figure 32 Gantt Charts of Heuristic Solutions for Realization # 39804 102

Figure 33 Evaluation of the Online Decision Making Performance for 50,000 Realiza-
tions . 103

Figure 34 Evaluation of the Online Decision Making Performance for New 5,000 Re-
alizations . 104

Figure 35 Two Different Task Sequences in Project 3 of the Illustrative Example . . 104

Figure 36 A Project with Branching and Merging Tasks, or Outsourcing Options . 105

Figure 37 Outsourcing Actions . 105

Figure 38 Q-Learning Approach . 108

Figure 39 State-Action Pair and Q-Value . 111

Figure 40 Possible project status of a project with three states 111

Figure 41 Definition of Q-Value . 114

Figure 42 Basic SCM Model . 116

Figure 43 Reward profile of the projects in the illustrative example 117

Figure 44 A realized reward profiles in the illustrative example 118

Figure 45 Project 1 in the Illustrative Example . 118

Figure 46 Simulation Results of the Three Heuristics for 30,000 Realizations 120

Figure 47 Evaluation of the online decision making performance for a new set of
10,000 realizations . 124

Figure 48 Gantt charts: the Heuristic #3 vs. the Online Policy for Realization #8863 126

Figure 49 Illustrative Example, SCM with 3 Products Under Uncertainty 130

Figure 50 Representation of An Uncertain Demand and Price with a Markov Chain 131

Figure 51 Profit-to-Go Approximation . 140

Figure 52 Piece-wise Linear Inventory Cost . 143

Figure 53 Increase in number of the States in the Restricted State Space with the
Number of Realizations . 150

Figure 54 Total Profit Improvement with Intermediate Profit-to-Go Values 153

xiv

Figure 55 Maximum Relative Error, ‖ Ji+1−Ji

Ji ‖∞, of the Bellman Iteration 154

Figure 56 Improvement in the total profit with the policy based on the converged
Profit-to-Go: Distribution of Total Profit Improvement for 50 New Sets of
1,000 Realizations . 155

Figure 57 One Stage Total Profit (Cost) Comparison: Online Policy vs. Best Heuris-
tic, Time Horizon 400 to 500 in the Test Realization Set #2 156

Figure 58 The Online Policy: Heuristics Taken for Time Horizon 400 to 500 in the
Test Realization Set #2 . 157

xv

SUMMARY

There have been many developments in methods for optimization under uncertainty

recently. Among these developments, Stochastic Programming and Stochastic Dynamic Pro-

gramming represent two major paradigms for rigorous optimization under uncertainty. On

the other hand, various heuristics prevail in practical applications, production planning and

scheduling, supply chain management, and engineering design, of the optimization under

uncertainty. These two approaches have ever-conflicting advantages and disadvantages in

their computational load and solution quality. Due to the computational infeasibility of the

rigorous approach for many practical applications, problem-specific heuristics are prevalent,

even though they cannot provide any guarantee on the solution’s quality. It is our belief

that for optimization under uncertainty, the needs of solution quality and computational

feasibility should be integrated.

In this thesis, we try to find an answer to the question, ‘What could lie between heuristic

and rigorous approaches?’. We develop an algorithmic framework for improving solutions

from heuristics without adding significant computation time. The proposed algorithmic

framework tries to combine the advantages of heuristics and rigorous methods, in terms

of computational feasibility and solution quality. The proposed framework consists of two

major modules, simulation with heuristic policies and optimization with rigorous solution

method, stochastic dynamic programming. The origin of the computational infeasibility

of stochastic dynamic programming is huge solution space in which the optimal solution

resides. If there is any systematic way to reduce the size of the solution space without elim-

inating the optimal solution, the problem could be solved more efficiently. But, in general,

finding “a significantly reduced solution space” is as hard as solving the original problem.

Indeed, many of the rigorous optimization solvers have been developed from the idea of

successively reducing the solution space. (i.e. The branch and bound algorithm).

xvi

Three critical issues emerge in applying the algorithmic framework to a class of indus-

trially motivated stochastic, stage-wise optimization problems1, Traveling Salesman Prob-

lem(TSP), Resource-Constrained Project Scheduling Problem(RCPSP), Supply Chain Man-

agement(SCM) Problem: (i) high dimensional state space which is inevitably generated in

stochastic dynamic programming for discrete system. (ii) complicated or unknown state

transition rules in complicated problem structure. (iii) high dimensional action space due

to necessity of simultaneous decisions in large systems. In this thesis, those issues are ad-

dressed with relevant examples and overcome by appropriate modifications of the general

algorithmic framework.

The techniques for dealing with the critical issues can be integrated in the proposed algo-

rithmic framework to tailor the algorithmic framework to a particular optimization problem

under uncertainty.

1Parameters of the problems are uncertain and the decisions of the problems should be made in sequential
manner along time or stage

xvii

CHAPTER I

INTRODUCTION

This dissertation is motivated by a need for a new computational framework for solving

optimal stage-wise decision problems that involve significant amounts of uncertainties. Un-

certainty is an integral part of almost every practical optimization problem found in plan-

ning, scheduling, supply chain management in process industries. The approach proposed

in this thesis is geared towards such problems, which cannot be solved effectively by the

currently existing optimization approaches like Stochastic Programming [48] and Stochastic

Dynamic Programming [5, 7]. The proposed approach builds on some ideas developed in

the Artificial Intelligence community, including those of ‘simulation-based’ optimization and

Approximate Dynamic Programming (ADP). These methods were originally developed in

the context of robot planning and game playing, and their direct applications to problems

in the process industries are limited due to the differences in the problem formulation and

size. In order for any new approach to be practical for such problems, it should address

issues such as extremely high dimensional state and action spaces and a very large number

of scenarios.

1.1 Motivation

Optimization approaches can broadly be classified into two categories, heuristics and rig-

orous methods. A heuristic method, tailored for a specific optimization problem, is often

conceptually appealing and computationally efficient but sacrifices the solution quality.

Rigorous methods include several general equation-based mathematical techniques such as

‘Mathematical Programming’ and ‘Dynamic Programming’. These methods can guarantee

the optimality of the solution in finite time for certain types of problems (e.g., P and NP-

complete Problems)[31]. However, for large sized NP and NP-hard class of problems, they

are computationally infeasible. Many practical problems are cast as integer optimization

1

problems that are intractable and are addressed with heuristics, which provide a solution

but without any information on the solution’s quality.

In the case of stochastic optimization, the mathematical programming based approaches

are not efficient methods for handling significant uncertainty in the system due to the lim-

ited ways to represent the uncertainty in an equivalent deterministic form. The size of the

equivalent deterministic form oftentimes increases exponentially with the dimension of the

uncertain parameters because it is a superstructure of a sufficient number of samples of the

uncertain parameters needed to capture the problem variability. In Stochastic Programming

[48], the most practical way to reduce the size of the superstructure is to limit the num-

ber of stages, as evidenced by the predominance of the two-stage stochastic programming

problems in the stochastic programming literature. In practice, this requires shortening the

time horizon of the optimization, or making an unrealistic aggregation of future periods,

leading to an unnatural, restrictive problem representation. Along with the stochastic pro-

gramming, stochastic dynamic programming is a general and rigorous solution method for

stochastic stage-wise optimization problems. However, we have not seen any application

of the conventional stochastic dynamic programming [7] to real industrial problems since

dynamic programming formulations of such problems result in extremely large state and /

or action spaces, which are not amenable to numerical solution approaches like the value

iteration or the policy iteration. This was recognized early and is referred to as the ‘curse

of dimensionality.’[7]

To overcome the curse of dimensionality, two alternative solution approaches, Reinforce-

ment Learning(RL) [79] and Neuro-Dynamic Programming(NDP)[8], appeared in the middle

of the 1980’s. Both approaches are based on performing a large number of simulations and

improves starting suboptimal solutions in an iterative manner. NDP is a suboptimal meth-

ods based on the evaluation and approximation of the optimal value function, through the

use of simulation data and neural networks. In AI terms, NDP can be described as “learning

how to make good decisions by observing the system’s own behavior(simulation) and using

built-in mechanisms for improving their actions though a reinforcement mechanism (iter-

ative schemes for improving the quality of approximation of the optimal value function).”

2

In the DP’s context, ‘the curse of dimensionality’ is resolved by identifying the working

regions of the state space through simulations and approximating the value function in

these regions through function approximation. Although it is a powerful method in general,

in discrete systems, the function approximation can mislead decisions by extrapolating to

regions of the state space with limited simulation data. To avoid excessive extrapolation(or

interpolation) of the state space, the simulation and the Bellman iteration must be carried

out in a careful manner to extract all necessary features of the original state space.

1.2 Issues in Practical DP Applications to Optimization
Under Uncertainty

Central to the DP method is the ‘Bellman Iteration’ Equation, through which the cost-to-go

value of every state in the state space is updated. In discrete systems, the computational

load of the Bellman iteration is directly proportional to the number of states to be eval-

uated and the number of candidate actions for each state. The total number of discrete

states increases exponentially with the state dimension. The stochastic, stage-wise opti-

mization problems addressed in this thesis have the state and action variable dimensions

that cannot be handled by the conventional value iteration. In addition, DP formulation is

highly problem dependent and often requires careful defining of the core elements (states,

actions, state transition rules, and cost functions). In this thesis, the following issues in

applying Approximate Dynamic Programming (ADP) to practical optimization problems

are addressed with relevant examples in the process industries.

1. High dimensional discrete state space: In DP, the state is defined as necessary

and sufficient information for optimial decision making at each time step. To re-

duce unnecessary explosion of the state space, the state has to be defined as compact

as possible while representing all the necessary information for the decision making.

However, for the real-world optimization problems addressed in this thesis, a high di-

mensional state space is inevitable. Furthermore, the state has to contain the current

best knowledge of the uncertainty (e.g., the conditional distribution of the uncertain

3

parameter vector) and the number of state variables needed to represent this infor-

mation is at least as large as the number of the uncertainty sources. For instance, the

state of the stochastic Resource Constrained Project Scheduling Problem (RCPSP),

which will be discussed Chapter 4, consists of the state variables, information state

variables, and resource state variables representing the status of the projects, the

observed outcome of the current tasks in the projects, and the availability of the re-

sources respectively. Furthermore, absolute time is added as a state variable in order

to keep track of the time-dependent reward values of the projects. For a stochastic

RCPSP with M projects and N resources, the state consists of 2M +N +1 state vari-

ables including the state variables mentioned above. Hence, even for small number

of projects and resources, the DP formulation results in high dimensional state space

that makes the conventional DP approaches computationally infeasible.

2. Complicated (or unknown) state transition: In stochastic DP, expected cost-

to-go values are calculated in the Bellman iteration. For a given state and an action,

exact calculation of the expected cost-to-go requires identifying all possible next states

and their realization probabilities. Analytic calculation of the all possible state tran-

sition probabilities is not practically feasible for a large size problem with complex

interactions among states and actions. Furthermore, necessary inclusion of infor-

mation state variables representing uncertainty makes the exact calculation of all

possible state transitions more difficult because transitions of those information state

variables are not controllable but autonomously evolved by underlying probability

models. Hence, obtaining well approximated cost-to-go values while circumventing

“awkwardness” of exact analytical state transition is an important issue to extend

application area of the DP to the stochastic optimization problems addressed in this

thesis.

3. High dimensional action space: Even if high dimensional state spaces can be

handled effectively, the complicated high dimensional, decision structure of the real-

world stochastic optimization problems limit the convergence of Bellman iteration

4

in finite time. For example, the Supply Chain Management problem discussed in

Chapter 6 has a high dimensional discrete action space for simultaneous decisions of

every material flow in the system. In discrete systems, although the number of possible

actions is limited to a finite combination of all actions in the high dimensional action

space, it is far beyond current computational capability to access all the actions.

In conclusion, the ADP approach can be applied to solve stochastic, stage-wise optimiza-

tion problems. For successful application of the ADP, systematic solution approaches for

circumventing, or overcoming, each issue have to be developed.

1.3 Outline of the Thesis

The rest of this thesis is organized to propose the algorithmic framework and to resolve

the important issues with relevant applications. In Chapter 2, conventional optimization

techniques, such as mathematical programming, stochastic programming, and stochastic

dynamic programming, are reviewed. To motivate this work, advantages and disadvantages

of the optimization techniques are addressed. Although the existing methodologies have

been developed and applied to more realistic and challenging problems, those methodolo-

gies are not adequate to solve a class of stochastic, stage-wise optimization problems under

significant uncertainty we are interested in.

In Chapter 3, we suggest an algorithmic framework for solving stochastic, stage-wise opti-

mization problems. In the proposed method, DP is performed in a restricted state space of

the states visited during various suboptimal simulations according to the state transition

rules of the problem and heuristic policies. Therefore, the worst case of the proposed ap-

proach is the best suboptimal solution visited during simulations. We apply the proposed

approach to a new deterministic TSP variant, which illustrates the important notions of

optional and conditional tasks in planning and scheduling applications, to examine the de-

gree of improvement that can be obtained by the method. For a small problem, we compare

the quality of the solution with the globally optimal one. Then, the algorithmic framework

developed for improving heuristics of a new version of deterministic TSP [27] is extended to

stochastic case. To verify the algorithmic framework for the stochastic case, a new variant

5

of the stochastic TSP with an optional task, in which key parameters(cost matrix) of the

problem change according to an underlying Markov model, is introduced in Section 3.3 as

a prototypical stochastic optimization problem. The proposed algorithmic framework finds

the approximate optimal cost-to-go only for the states visited during suboptimal simula-

tion. The results show that the algorithmic framework also works efficiently for stochastic

problems by improving the heuristic policies for making decisions for different realizations

of the Markov chains.

In Chapter 4 and 5, we apply the proposed algorithmic framework to the stochastic Resource

Constrained Project Scheduling Problems (sRCPSP) that have not been solved efficiently

by existing optimization algorithms. In Chapter 4, we propose a novel way of addressing the

uncertainties in the sRCPSP including the uncertainties in task durations and costs, as well

as uncertainties in the results of tasks(success or failure) by using a discrete time Markov

chain, which enables us to model probabilistic correlation of the uncertain parameters. The

proposed approach is tested on a simplified version of sRCPSP that has a fairly compli-

cated stochastic nature, with 1,214,693,756 possible parameter realizations(scenarios), and

involves 5 projects and 17 tasks. As a result, an online policy is obtained, which can use

the information states in real-time decision making and improve the heuristics rather than

a fixed solution obtained by the previous MILP problem formulations.

In Chapter 5, the issue of “complicated state transition rules” is addressed with the sR-

PCPS. The bottleneck is overcome by adopting the idea of Q-Learning approach [86], which

can be used when a model of the system is unavailable, to the proposed framework. The

Q-Learning approach can be viewed as a simultaneous identification of the probabilistic

state transition rule and the cost-to-go function. Hence, it removes the need to perform

the analytical calculation of the transition rule, which can be painstakingly tedious. The

stochastic simulation under the certain suboptimal law (heuristics) is used here to obtain

the empirical state transition probabilities of the states in the restricted state space, which

are defined as combinations of the conventional states and the corresponding actions, and

initial cost-to-go values for the value(Q) iteration.

In Chapter 6, the algorithmic framework is applied to supply chain management (SCM)

6

problem. We represent the uncertainty through Markov chains, and employ the proposed

algorithmic framework which can generate a dynamic operating policy that incorporates

information about the uncertainty in the problem at each time step. For the SCM prob-

lem, conventional stochastic DP is computationally infeasible due to the high dimensional

action space as well as the high dimensional state space. The restricted state space is ob-

tained by simulating various potential scenarios under centralized dynamic inventory and

production policy generated by combining static inventory policy heuristics. Heavy com-

putational load implied by the high dimensional action space is efficiently circumvented by

introducing “implicit sub-action space” in which an action space is defined for each state

with the heuristics used in simulation. The resulting DP policy responds to the time varying

demand for products by stitching together decisions made by the heuristics and improves

overall performance of the SC.

Finally, Chapter 7 summarizes the contributions of the proposed approaches developed in

this thesis and recommends future work.

7

CHAPTER II

BACKGROUND

In this chapter, we give a broad overview of deterministic/stochastic optimization techniques

as applied to problems in process systems engineering and the operations research area.

2.1 Conventional Deterministic Optimization Methods: Math-
ematical Programming

Over the last decade there have been considerable advances in mathematical programming

techniques. For instance, the solution of mixed-integer nonlinear programming problems

and the rigorous global optimization of nonlinear programs have become a reality [30].

There has also been a recent trend towards new logic-based formulations that can facilitate

the modeling and solution of these problems [45, 52]. Finally, the development of modeling

tools that can facilitate the formulation of optimization problems has also seen some great

progress, as well as has the development of alternative solution strategies [15, 12]. In general,

a mathematical programming model is represented in the following form:

min : Z = f(x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0

x ∈ X , y ∈ (0, 1)

where f(x, y) is the objective function (e.g. cost), h(x, y) = 0 are the equations that describe

the performance of the system (mass and heat balances, design equations), and g(x, y) ≤ 0

are inequalities that define the specifications or constraints for feasible choices. The variables

x are continuous and generally correspond to the state or design variables, while y are the

discrete variables, which are generally restricted to take 0-1 values to define the selection

of an item or an action. Problem (MIP) corresponds to a mixed-integer nonlinear program

8

(MINLP) when any of the functions involved are nonlinear. If all the functions are linear,

it corresponds to a mixed-integer linear program (MILP). If there are no 0-1 variables, it

reduces to a nonlinear program (NLP) or a linear program (LP) depending on whether or

not the functions are linear.

MILP solution methods rely largely on the simplex LP-based branch and bound ap-

proach consisting of a tree enumeration in which LP subproblems are solved at each node

and are eliminated based on bounding properties. These methods are being improved

through cutting plane techniques, which produce tighter lower bounds for the optimum.

LP and MILP codes are widely available. The best known general solvers include CPLEX,

OSL and XPRESS, all which have achieved impressive improvements in their capabilities

for solving problems over the last decade. On the other hand, since MILP problems are

NP-complete, it is always possible to run into time limitations when solving problems with

a large number of 0-1 variables, especially if the integrality gap is large.

The solution of NLP problems relies either on the successive quadratic programming

(SQP) algorithm, or on the reduced gradient method. Major codes include MINOS and

CONOPT for the reduced gradient method, and OPT [82] for the SQP algorithm. These

NLP methods are theoretically guaranteed to find the global optimum if the problem is

convex (i.e. convex objective function and constraints). When the NLP is nonconvex,

achieving a global optimum cannot guaranteed. One option is to try to convexify the

problem, usually through exponential transformations, although the number of cases in

which this possible is rather small. Alternatively, one could use rigorous global optimization

methods, which over the last decade have made significant advances. These methods assume

special structures such as bilinear, linear fractional and concave separable. Although this

may appear to be quite restrictive, Smith and Pantelides [74] have shown that algebraic

models are always reducible to these structures, provided they do not involve trigonometric

functions. Computer codes for global optimization still remain in the academic domain, and

the best known are BARON[68], and α-BB[3, 2]. It should also be noted that non-rigorous

techniques such as simulated annealing and genetic algorithms, which have also become

popular, do not make any assumption on the underlying function structure, but then they

9

cannot guarantee optimal solutions or bounds, at least not in finite time [47, 32]. Also,

these methods do not formulate the problem as a mathematical program since they involve

procedural search techniques that in turn require some type of discretization. Furthermore,

violation of constraints is typically handled through ad-hoc penalty functions.

Major methods for MINLP problems include first Branch and Bound (BB), which is a

direct extension of the linear case, except that NLP subproblems are solved at each node.

Generalized Benders Decomposition (GBD) and Outer-Approximation (OA) are iterative

methods that solve a sequence of NLP subproblems with all the 0-1 variables fixed, and

MILP master problems that predict lower bounds and new values for the 0-1 variables. The

difference between the GBD and OA methods lies in the definition of the MILP master

problem: The OA method uses accumulated linearizations of the functions, while GBD

uses accumulated Lagrangian functions parametric in the 0-1 variables. The LP/NLP based

branch and bound essentially integrates both subproblems within one tree search, while the

Extended Cutting Plane Method (ECP) does not solve the NLP subproblems, and relies

exclusively on successive linearizations. All these methods assume convexity to guarantee

convergence to the global optimum. The only commercial code for MINLP is DICOPT

(OA-GAMS), although there are a number of academic versions (MINOPT , a-ECP).

In recent years a new trend that has emerged in the formulation and solution of dis-

crete/continuous optimization problems through a model that is known as Generalized

Disjunctive Programming (GDP) [52]. The basic idea in GDP models is to use boolean

and continuous variables, and formulate the problem with an objective function subject to

two or three types of constraints: (a) global inequalities that are independent of discrete

decisions; (b) disjunctions that are conditional constraints involving an OR operator; and

(c) pure logic constraints that involve only the boolean variables. More specifically the

problem is given as follows:

min : Z =
∑
k∈K

Ck + f(x, y)

s.t. g(x) ≤ 0

10

∨j∈Ik


Yjk

hjk(x) ≤ 0

ck = γjk

 k ∈ K

Ω(Y) = True

x ∈ X, Yj,k ∈ {True,False}

(1)

where x are continuous variables and y are boolean variables. The objective function in-

volves the term f(x) for the continuous variables (e.g. cost) and the charges ck that depend

on the discrete choices. The equalities/inequalities g(x) must hold regardless of the discrete

conditions, and hik(x) = 0 are conditional equations that must be satisfied when the cor-

responding boolean variable yik is True for the ith term of the kth disjunction. Also, the

fixed charge ck is assigned of the value gik for that same variable. Finally, the constraints

Ω(y) involve logic propositions in terms of the boolean variables.

Problem (GDP) represents an extension of disjunctive programming, which in the past

has been used as a framework for deriving cutting planes for the algebraic problem (MIP).

It is interesting to note that any GDP problem can be reformulated as a MIP problem, and

vice versa. It is more natural, however, to start with a GDP model, and reformulate it as

a MIP problem. This is accomplished by reformulating the disjunctions using the convex

hull transformation or with “big-M” constraints. The propositional logic statements are

reformulated as linear inequalities. For the linear case of problem GDP, and when no logic

constraints are involved, Beaumont[4] proposed a branch and bound method that does not

rely on 0-1 variables and branches directly on the equations of the disjunctions. This method

was shown to outperform the solution of the alternative algebraic MILP models. Raman

and Grossmann[62] developed a branch and bound method for solving GDP problems in

hybrid form; i.e. with disjunctions and mixed-integer constraints. For this they introduced

the notion of ”w-MIP representability” to denote those disjunctive constraints that can

be transformed into mixed-integer form without loss in the quality of the relaxation. For

the nonlinear case of problem (GDP), and for the case of process networks, Turkay and

11

Grossmann[81] proposed a logic-based Outer-Approximation algorithm. This algorithm is

based on the idea of extending the Outer-Approximation algorithm by solving NLP sub-

problems in reduced space, in which constraints that do not apply in the disjunctions are

disregarded. This way both the efficiency and robustness can be improved. In this method

the MILP master problems correspond to the convex hull of the linearization of the non-

linear inequalities. Also, several NLP subproblems must be solved to initialize the master

problem in order to cover all the terms in the disjunctions. Penalties can also be added to

handle the effect of nonconvexities as in the method by Viswanathan and Grossmann[85].

This method has been implemented in the computer prototype LOGMIP, a GAMS-based

computer code. Finally, it should be noted that a new method for solving GDP problems

has been recently been reported by Lee and Grossmann[52]. These authors have developed

reformulations and algorithms that rely on the convex hull of nonlinear convex inequalities.

Although the mathematical programming approaches have progressed significantly to be

applicable to various optimization problems in the process systems engineering, applica-

tions of the approaches are largely limited to deterministic problems. In next section, two

major conventional techniques for solving optimization problems involving undertainties,

stochastic programming and stochastic dynamic programming, are discussed.

2.2 Optimization Under Uncertainty

A large number of problems in production planning and scheduling, location, transporta-

tion, finance, and engineering design require that decisions be made in the presence of un-

certainty. Uncertainty, for instance, governs the price of fuels, the availability of electricity,

and the demand for products. From the very beginning of the application of optimization

to these problems, it was recognized that analysis of natural and technological systems are

almost always confronted with uncertainty. A key difficulty in optimization under uncer-

tainty is in dealing with an uncertainty space that is usually huge and frequently leads to

very large-scale optimization models. Decision-making under uncertainty is often further

complicated by the presence of integer decision variables to model logical and other discrete

decisions in a multi-period or multi-stage setting.

12

Approaches to optimization under uncertainty have followed a variety of modeling philoso-

phies, including expectation minimization, minimization of deviations from goals, mini-

mization of maximum costs, and optimization over soft constraints. Main purpose of this

section is to give a broad overview of the main approaches to optimization under uncer-

tainty: stochastic programming and stochastic dynamic programming.

2.2.1 Stochastic Programming

Under the standard two-stage stochastic programming paradigm, the decision variables of

an optimization problem under uncertainty are partitioned into two sets. The first stage

variables are those that have to be decided before the actual realization of the uncertain

parameters. Subsequently, once the random events have presented themselves, further de-

sign or operational policy improvement can be made by selecting, at a certain cost, the

values of the second-stage, or recourse, variables. Traditionally, the second-stage variables

are interpreted as corrective measures or recourse against any infeasibility arising due to

a particular realization of uncertainty. However, the second-stage problem may also be an

operational level-decision problem following a first-stage plan and the uncertainty realiza-

tion. Due to the uncertainty, the second-stage cost is a random variable. The objective

is to choose the first-stage variables in a way that the sum of the first-stage costs and the

expected value of the random second-stage costs is minimized. The concept of recourse has

been applied to linear, integer, and nonlinear programming.

The two-stage formulation is readily extended to a multi-stage setting by modeling the

uncertainty as a filtration process. Under discrete distributions, this reduces to a scenario

tree of parameter realizations. Decomposition schemes that partition the time stage[10] as

well as those that partition the scenario space[65] have been developed for multi-stage linear

programs.

A standard formulation of the two-stage stochastic program is [48]:

min ctx + Eω∈Ω[Q(x, ω)], (2)

s.t. x ∈ X

with Q(x, ω) = min f(ω)ty, (3)

13

s.t. D(ω)y ≥ h(ω) + T (ω)x, y ∈ Y,

where, X ⊆ <n1 and Y ⊆ <n2 are polyhedral sets. Here, c ∈ <n1, ω is a random variable

from a probability space (Ω, F, P) with Ω ⊆ Rek, f : Ω → <n2, h : Ω → <m2, D : Ω →

<m2×n2, T : Ω → <m2×n1. Problem (2) with variables x represents the first stage, which

needs to be decided prior to the realization of the uncertain parameters ω ∈ Ω. Problem (3)

with variables y constitutes the second stage. Under the assumption of discrete distribution

of the uncertain parameters, the problem can be equivalently formulated as a large-scale

deterministic mathematical program, which can be solved using standard mathematical

programming techniques addressed in the previous section 2.1. Convexity properties of

the recourse function Q(·) [88] have been effectively used in decomposition-based solution

strategies [11]. For continuous parameter distributions, these properties have been used

to develop sampling-based decomposition and approximation schemes [40, 44] as well as

gradient-based algorithms [73].

Recently, Schultz et al. [70] proposed a finite scheme for two-stage stochastic pro-

grams with discrete distributions and pure integer second-stage variables. For this prob-

lem, Schultz et al. observe that only integer values of the right-hand side parameters of

the second-stage problem are relevant. This fact is used to identify a finite set in the space

of the first stage variables containing the optimal solution. Schultz et al. propose the

complete enumeration of this set to search for the optimal solution. This set may be very

large and evaluation of each of its elements requires the solution of the second-stage integer

subproblems. Thus, this approach is, in general computationally prohibitive. In most of the

previous work, uncertain parameters are presented with discrete probability distributions.

Except for simple cases that afford closed form solutions, sampling is required when dealing

with continuous distributions of the problem parameters. Thus, convergence proofs for the

resulting algorithm have to be probabilistic. For continuous distributions, Norkin et al.

[55] developed a branch-and-bound algorithm that makes use of stochastic upper and lower

bounds and proved almost sure convergence.

14

2.2.2 Stochastic Dynamic Programming

Dynamic Programming, as the name implies, is an approach developed to solve sequential,

or multi-stage, decision problems. But, as we shall see, this approach is equally applicable

for decision problems where sequential property is induced solely for the computational

convenience. Unlike other branches of mathematical programming, one cannot talk about

an algorithm that can solve all dynamic programming problems. For example, George

Dantzig’s Simplex Method can solve all linear programming problems. Dynamic program-

ming, like the branch and bound approach, is a way of decomposing certain hard problems

into equivalent formats that are more amenable to solution. Basically, what dynamic pro-

gramming approach does is that it solves a multi-variable problem by solving a series of

single variable problems. This is achieved by tandem projection onto the space of each of

the variables. In other words, we project first onto a subset of the variables, then onto a

subset of these, and so on.

The essence of dynamic programming is Richard Bellman’s Principle of Optimality. This

principle, even without rigorously defining the terms, is quite intuitive:

An optimal policy has the property that whatever the initial state and the initial decisions are,

the remaining decisions must constitute an optimal policy with regard to the state resulting

from the first decision.

Since there is no limitation in extending the Principle of Optimality to stochastic systems,

dynamic programming algorithm is not particularly limited to deterministic optimization.

In stochastic systems, the general form of the Bellman equation is written as:

J∗(X(k)) = max
u(k)∈U

E{φ(X(k), u(k)) + αJ∗(X(k + 1)|X(k), u(k))} (4)

where φ(X(k)) is one stage cost for a state X(k) and an action u(k). Next state X(k+1) is

defined by a stochastic state transition equation fI . α is a discounting factor ranged from

0 to 1.

X(k + 1) = fI(X(k), u(k)) (5)

In value iteration, one starts with some arbitrary values for the value function. Then a

transformation, derived from the Bellman optimality equation, is applied on the vector

15

successively till the vector starts approaching a fixed value. A general value iteration in

stochastic Dynamic Programming is defined as following:

� Step 1: Set i = 0 and initialized J0(X) for all X ∈ χ. Specify ε > 0.

� Step 2: For each state X, compute:

J i+1(x) = min
u(k)∈U

E{φ(X(k), u(k)) + αJ i(X(k + 1)|X(k), u(k))} (6)

� Step 3: If

‖(J i+1 − J (i))‖∞ < ε(1− α)/2α, (7)

stop the iteration. Otherwise increase k by 1 and go back to Step 2.

Several important remarks are in order here.

� The max-norm of the difference (J i+1 − J i) decreases with every iteration. The

reason for the use of the expression ε(1 − α)/2α in Step 3 is explained in [34] with

convergence of the value iteration. The condition in Step 3 ensures that when the

algorithm terminates, the max norm of the differences between the cost-to-go values

returned by the algorithm and the optimal cost-to-gos is ε.

� The algorithm’s speed (which is inversely proportional to the number of iterations

needed to terminate) can be increased by other methods such as Gauss Siedel value

iteration and relative value iteration for discounted reward. Detail explanation of the

methods are discussed in [61, 34].

16

CHAPTER III

ALGORITHMIC FRAMEWORK FOR IMPROVING

HEURISTICS

3.1 Proposed Framework

Solving a stage-wise optimization problem requires finding the optimal trajectory of states

in the state space. In general, the number of states visited by the optimal solution is very

small compared to the total number of states in the entire state space. The main idea of

the proposed algorithmic framework comes from following questions.

1. What if we solve DP in a restricted state space of the entire state space which includes

all the states visited by the optimal solution?

2. How to find the restricted state space?

The answer for the first question is simply that we can find the optimal solution and the

computational load of the DP will be significantly reduced. Therefore the second question

is substantial: how to find this restricted state space. We can approximate this restricted

state space using simulation, much as it is used in in RL or NDP. The idea may look

same as NDP which is also based on the main DP framework with simulation and training.

However, the major difference between the proposed approach and NDP is in the way the

simulation data is used. NDP utilizes the simulation data for neural net training to map

the input features to estimations of the cost-to-go function. Thus, it both extrapolates

and interpolates over the examples. On the other hand, the simulation data is used to

construct the restricted state space of the states in the proposed method by memorization

of the states and connecting actions. This results in big differences in the performance of

DP when the original state space is large. In particular, for the problem with a large state

space, it may be impossible to cover the acceptable state space during the simulation. The

extrapolated approximation generated by NDP may then cause the solution to deteriorate.

17

In the proposed method, DP is performed in the restricted state space of the states visited

by different suboptimal simulations according to the state transition rules of the problem.

Therefore, the worst case of the proposed approach can be ending up with the best of the

suboptimal solution visited by the simulations. The the key procedures of the proposed

approach is illustrated in following figure 1.

Figure 1: The Proposed Approach: Stochastic DP in the restricted state space

Generalized steps for applying the algorithmic framework is summarized as following:

1. Step 1 : Stochastic simulation with heuristic policies.

2. Step 2 : Identification of the restricted state space visited by heuristics and the initial

cost-to-go approximation

3. Step 3 : Bellman iteration in a heuristically restricted state space

4. Step 4 : Real-time policy evaluation

A detailed description of the algorithm follows.

18

3.1.1 Simulation of Heuristic Policies

The purpose of the simulation is two-fold. First, the simulation is performed in order to

obtain a meaningful set of the states within which the DP is to be performed. Obtaining

a reasonably sized subset containing trajectories of good policies is critical for solving the

problem because DP over the entire state space is computationally infeasible for the given

problem. For the simulation, a large number of uncertain parameter realization sets are

generated by the underlying Markov chains. Each realization set represents one scenario

out of the enormous number of possible scenarios. Several different heuristics are applied

for each realization and a set(trajectory) of visited states(as defined in 4.3.1) is obtained

from each heuristic. Because each heuristic works in a different way, there can be several

different state trajectories even for the same scenario. Those different state trajectories

will be combined in the state space by the later step, Bellman Iteration, of the algorithmic

framework. The heuristic policies applied for this problem will be described in Section 4.5.

Second, the simulation provides initial ‘cost-to-go’ values, which can be used in the

Bellman iteration step, for the states. According to the definition of the ‘cost-to-go’(4.3.4),

a ‘cost-to-go’ value is calculated for each state in the state trajectories obtained by the

simulation of the heuristic policies. The same state in different state trajectories can have

different estimates of its ‘cost-to-go’ values according to which heuristic is used. For ex-

ample, every state trajectory starts with the unique initial state, shown equation (77), but

different heuristic policies may give different average values of the reward and cost. In the

Bellman iteration step, one(lowest or average among the heuristics tried.) can be assigned

as the initial estimate of the cost-to-go for each state.

3.1.2 Cost-to-Go calculation for the restricted state space

The total number of state trajectories obtained by the simulation of the heuristic policies(30)

is ν×n, where ν is the number of realizations and n is the number of heuristics tried in the

simulation. The subset should consist of all non-redundant states in the ν × n trajectories.

This step requires substantial computation. If one state appears µ times in the set of

trajectories, all the realized cost values obtained from the trajectories are added and divided

19

by µ for the initial ‘cost-to-go’ value calculation. For example, the cost-to-go value for the

initial state is chosen as the mean value of the total rewards minus the total costs over all

the simulations. The initial guess for the ‘cost-to-go’ values obtained in the previous step

are used as Ĵ0 to initialize the Bellman Iteration.

3.1.3 Bellman iteration

we iterate the following equation (8) for each state X(k) in the subset, until Ĵ i meets a

certain convergence criteria, i.e. ||Ji+1−Ji

Ji ||∞ < 0.01:

Ĵ i+1(X(k)) = min
u(k)

E{φ(X(k), u(k)) + αĴ i(X(k + 1)|X(k), u(k))} (8)

In the above, φ(X(k), u(k)) represents the cost incurred by the decision u(k) for the state

X(k). For each state in the subset, we can identify all the possible decisions, u(k). Once

we know the possible decisions, the expected cost can be calculated for each of the possible

decisions using the conditional probability. For each one of these decisions, the possible

next states and their transition probabilities are obtained analytically according to the

state transition rules and the given conditional probabilities. After a sufficient number of

iterations of equation (65), the converged cost-to-go J∗(X(k)) is obtained for every state in

the subset.

� Cost-to-Go Approximation for Partially Connected States

In the Bellman Iteration equation of (65), the calculation of E{φ(X(k), u(k))} is de-

scribed. However, the exact calculation of E{Ĵ i(X(k +1)|X(k), u(k))} is not possible

because there is no guarantee that the subset is closed, i.e., for any state in the sub-

set, all possible next states are in the subset as well. The subset may be open for the

following two reasons:

1. A finite number of heuristic policies, which do not cover the entire

decision space, are applied in simulation to form the subset.

The states in the subset are not arbitrarily chosen. A set of reasonable heuristics

are implemented in simulation to collect all the visited states. Hence, in doing

so, many state transitions, possible with certain decisions not covered by the

20

heuristics, may never have occurred during the simulation. The states involved

in the unrealized transitions would not have been included in the subset. Indeed,

our intention was to reduce drastically the number of states we must examine.

2. Only a finite number of realizations are simulated

If the number of possible scenarios are very large, it is unlikely that one can

realize every possible scenario in simulation because some scenarios have a very

low probability of occurring.

The states not included in the subset due to 1 and 2 have to be distinguished and

dealt with differently in the Bellman iteration. In the case of 1, a group of possible

next states associated with decisions not covered by the chosen heuristics, are not

visited at all in the simulation.

Figure 2: Cost-to-Go Approximation Type 1

In Figure 2, the decision u2(k) has never been made during the heuristic simulation.

To confine the decision to those leading to a state in the subset, we propose to prevent

21

the unseen decision by assigning a large cost-to-go values to those states. The large

cost-to-go value will act as a barrier for the decision and one of the other decisions

will be chosen in the minimization step of the Bellman Iteration. This implies that

the large cost-to-go values will not be propagated to current or previous states. This

cost-to-go approximation is based on the assumption that a reasonable number of

good heuristics have been tried and all good decisions have been covered.

For reason 2, some of the next possible states associated with a simulated decision

may be absent in the subset In Figure 2, a state linked from the decision u3(k) is

not in the subset because the state transition is not only governed by the decision

but by random factors as well. Theoretically, all the possible states under the tried

heuristic policies can be included in the subset by performing a ‘sufficient’ number

of realizations. However, for a problem with an enormous number of scenarios, this

may not be feasible. Thus, an approximation strategy is necessary to deal with this

inevitable absence of some states in the subset. If a state is not in the subset due to

the reason 2, it implies that the probability of transition to the state is comparatively

small. Thus, we suggest that those states can be ignored and the state transition

probabilities for the rest of the states are normalized accordingly as shown Figure 3.

With the proposed approximation methods, the Bellman Iteration gives ‘converged’ cost-to-

go values rather than ‘optimal’ cost-to-go values. The issue of the open subset is re-examined

in the next step of real-time decision making.

3.1.4 Real-time decision making

The ‘converged’ cost-to-go values obtained in the previous step are used for real-time de-

cision making as follows. If the ‘converged’ cost-to-go, Ĵ∗, is the optimal cost-to-go, the

following decision u∗(k) also will also be optimal according to the ‘Principle of Optimality’

22

Figure 3: Cost-to-Go Approximation Type 2

of DP.

u∗(k) = arg min
u(k)

E{φ(X(k), u(k)) + αĴ∗(X(k + 1)|X(k), u(k))} (9)

However, the decision may be suboptimal because the converged cost-to-go, Ĵ∗, is obtained

by the approximation procedure described in section 3.1.2. Furthermore, the real-time

decision making equation of (9) is not valid for every situation because the random factors

may take the system outside the previously experienced subset. The real-time decision has

to be robust for any possible realization, some of which may lead a state trajectory outside

the subset, for which the cost-to-go is not available. In this work, we use the following two

approaches to real-time decision making.

� Method 1 : Real-time decision making with a cost-to-go barrier

A fixed high cost-to-go value is assigned to all states outside the subset, thereby

making a decision leading to a state outside the subset highly unlikely. This approach

is basically the same as the approximation method developed for the Bellman Iteration

step.

� Method 2 : Real-time decision making with a guiding heuristic

In this approach, we allow the state to step outside the subset. We use a heuristic

23

policy whenever a state outside the subset is encountered. The best among the tried

heuristic policies, in terms of the mean value of the reward can be used for this. Once

the state comes back into the subset, the decision making is switched to the mini-

mization of the cost-to-go, as shown in Figure 26.

Figure 4: Real-time Decision Making with A Guiding Heuristic

3.1.5 Generalization of the algorithmic framework in discrete state space

The algorithm framework thus embodies a general idea of combining heuristics over the

restricted state space by rigorous solution method (as pictorialized in Figure 5, dynamic

programming). The approach can be applied to any problem formulated as a dynamic

program, provided that there are reasonable heuristics available for simulation.

Furthermore, the application is also not limited by whether the problem is deterministic

or stochastic, as applications of the basis rigorous solution method, DP, is flexible and

accommodates both. The algorithmic framework is particularly designed to solve stochastic

optimization problems with discrete state space and for those class of problems, we can state

several features of the approach.

24

Figure 5: Combining heuristics over state space

1. The state trajectories obtained by the heuristics guarantee that a feasible solution

exists for a set of experienced realizations.

2. If no states can be connected from different heuristics, the procedure will be no better

than the original heuristics.

3. There is a chance of finding an improved solution by connecting states in the restricted

state space found by different heuristics.

4. If the state space includes all of the states of the global optimum solution, eventually

DP will lead to it – often in dramatically reduced computational time.

In later parts of this thesis, the proposed algorithmic framework is tailored for various

applications in the class of stage-wise optimization problems.

25

3.2 Application to Deterministic Traveling Salesman Prob-
lem

3.2.1 Introduction

To verify the efficacy of the proposed algorithmic framework in the deterministic case(the

stochastic case is studied in section 3.3, a new deterministic combinatorial optimization

problem, a discount coupon traveling salesman problem(TSP), is introduced. The problem

is interesting in itself given its higher combinatorial complexity compared to the original

TSP. For the discount coupon TSP, conventional rigorous optimization problem formula-

tions such as a dynamic program (DP) and mixed integer linear program (MILP) can be

used to find a global optimum solution. However, these methods are limited to small size

problems due to the rapid growth of the solution space that has to be searched with the

size of the problem. Furthermore, the problem also embodies important notions, optional

or conditional tasks, involved in many practical scheduling and planning problems. Here

optional tasks refer to those that the scheduler has the option of determining whether and

when to perform. Conditional tasks refer to those that must be performed if certain condi-

tional requirements are met. For example, cleaning process units to remediate fouling may

be related to an observation of the state of the unit or a measurement of batch quality. Ad-

ditional measurements of current process conditions or batch properties could be made to

enable better downstream processing and batch-to-batch control. Furthermore, measuring

the properties of a batch to reveal a processing problem or an opportunity to reduce the

batch times at the early stage of the batch processes are more difficult(require more cost or

time) but the benefit of the investigation is larger because there are more stages over which

the benefit can accrue.

Scheduling and planning problems with these types of tasks have additional complexities

and some novel features with respect to traditional problem definitions and formulations.

First, the task network structure is no longer fixed; it can be changed by additional tasks that

may not be under the control of the planner. Second, the batch task parameters may assume

values that depend on the performance of the tasks. For example, cleaning a reactor may

increase the product yield. Third, the decision of whether to perform these types of tasks

26

is often based on information about the process state directly gathered from the process

at the time of decision. Fourth, often only partial information to support the decision

is available, thus what information is known at the time must be explicitly represented.

The evolution of the information state is usually coupled with the performance of certain

optional tasks. For example, optional tasks such as measurements, may not change the

state of the process itself, but improve the future information available for decision-making.

These issues regarding information for decision making will be elucidated in section 3.3,

which treats of stochastic version of TSP.

The next section outlines the deterministic TSP variant with a discount coupon pur-

chasing option. In section 3.2.3, four different solution methods including the proposed

algorithmic framework will be introduced with a small size 10-city illustrative example. In

section 3.2.3.4, we conduct a moderate scale numerical study for a 50-city problem, which is

computationally infeasible with the conventional MILP and DP based solution approaches.

Finally, section 3.2.3.5 summarizes our major results.

3.2.2 Deterministic Version of Traveling Salesman Problem with an Optional
Task

The traveling salesmen problem(TSP) is one of a class of seemingly simple problems in

combinatorial optimization with a structure that makes them very difficult to solve. It

is representative of a large number of important scientific and engineering problems[51].

The TSP has been studied in the Chemical Engineering area [57, 56, 33] because of its

relationship to batch scheduling problems. The class of multi-products batch scheduling

problems can be characterized as a TSP because transition costs(time) are incurred by

changing raw or intermediate materials which depend on a particular transition. Therefore,

several scheduling problems of interest to chemical engineers have been formulated as TSPs

or close variants. For example, no-wait Flowshop problem can be transformed into a TSP

[57], resource constrained sequencing problem can be reduced to a resource constrained

TSP [56] and parallel flowshop problem also can be transform into a constrained TSP [33].

In this section, we introduce a new type of deterministic TSP with optional tasks, which

frequently arise in realistic scheduling problems.

27

3.2.2.1 Problem Description

To make the idea of optional tasks more concrete, we have chosen to take a classic problem

in combinatorial optimization and modify it to contain the optional task structure. The

problem belongs to the class of NP-complete optimization problems [31], for which no

algorithm with computation time that scales as a polynomial in the size of the problem is

known. The optional task TSP maintains the same basic structure of the problem, each

city being visited exactly once per tour, but modifies the cost of travel and fixes the starting

city. It is assumed that when a salesman reaches a city, a coupon may be purchased that

will lower the “distance” or, more abstractly, the cost of traveling between the cities he

has not yet visited. The discount is not applied uniformly to the costs of travel and hence

the salesman may bias his tour to reach certain cities early to take advantage of discounts

on other potential legs of the journey. The coupon is to be purchased exactly once or

not at all during the tour, and its cost decreases with the number of cities remaining to

be visited. The decisions that the salesman has to make are both the order in which to

visit the cities from the given starting city and the location at which to buy the coupon.

The introduction of the coupon adds a new dimension to the classic TSP. It disrupts the

original problem structure. For example, to represent the problem as an integer program

requires not just capturing the binary decisions of the connectivity between cities, but also

the relative location of the city within the tour with respect to the coupon purchase.

3.2.3 Illustrative Example : Deterministic TSP with a discount coupon

Consider a small size(10-city) TSP with the option of buying a coupon. The effect of

purchasing the coupon can be conceptualized as switching the cost matrix as shown in

Figure 6. In this example, the coupon prices were chosen by drawing 10 random numbers

from a uniform distribution from 0 to 120 and assigning them to stages 1 through 10 in

order of decreasing value. The discount factor for each cost element was also drawn from a

uniform random distribution between 0 to 0.8.

For the original TSP, without the optional task, a large number of efficient MILP solution

28

Figure 6: Cost Parameters for the Illustrative Example

algorithms and heuristics have been developed [51]. With the optional task however these

methods may not apply, at least not directly. In this paper, four different solution methods

will be introduced, including our novel approach based on combining heuristics within

dynamic programming. Each approach represents a different level of compromise between

the accuracy of solution and computational complexity.

3.2.3.1 Dynamic Programming

Dynamic Programming is a technique that can be used to solve optimization problems with

a certain multi-stage structure. Dynamic programming obtains solutions by working stage

by stage, usually backward from the last stage to the first stage, thus breaking up a large,

unwieldy problem into a series of smaller, more tractable problems. The original TSP has

been formulated as a dynamic programming problem [89] [7], and we modify this for our

29

particular variant.

Definition of State The state, denoted by Xt, consists of three pieces of information:

the first two are the current city, i, and the set of cities already visited before the current

stage t, which is denoted by St. These two are the states used for the original TSP. The

additional state information is a binary variable,γt, indicating whether or not the coupon

has been purchased. It takes the value of 1 if the coupon has already been purchased before

stage t, and 0 if not. This will be termed the coupon status. Hence, the state for our

problem is:

Xt = (i, St, γt) (10)

Once the state is defined, the DP recursion can be formulated using the following equa-

tions.

ft(Xt) = min
j 6∈St,j 6=1,δt∈{0,1}

{gt(Xt, j, δt) + ft+1(Xt+1)} for t = {1, 2, ..., N} (11)

fN+1(XN+1) = 0 ∀XN+1 (12)

Xt+1 = (j, St ∪ j, γt + δt), s.t. γt + δt ≤ 1 (13)

where t = 1, 2, ..., N for N -city TSP and ft(Xt) represents the minimum cost that must be

incurred to complete a tour if the t− 1 cities in the set St have been visited, city i was the

last city visited, and the coupon has been purchased already if γt = 1 (or not purchased

if γt = 0). δt is introduced to represent the decision of purchasing the coupon at stage t.

According to the problem definition in 3.2.2.1, the salesman can buy the coupon only once

throughout the tour; therefore δt is constrained to be 0 if γt is 1. γt+1 can be expressed as

γt + δt. In the equation (11), the current stage cost, gt, is calculated by following equations:

gt = cO
ij ; if γt = 0 and δt = 0,

gt = cD
ij + Pt; if γt = 0 and δt = 1,

gt = cD
ij ; if γt = 1 and δt = 0

where cO
ij is the cost of traveling from the city i to j before buying the coupon, cD

ij is the

cost for doing the same once the coupon has been purchased, and Pt is the coupon price at

30

stage t.

The DP approach checks all the feasible state transitions between stages to find the mini-

mum cost-to-go at each stage. The graphical illustration of this DP approach is shown in

Figure 7 in which the dotted lines represent feasible state transitions.

Figure 7: Dynamic Programming for the Illustrative Example

Computational Load of Dynamic Programming The computational load of this DP

algorithm is directly dependent on the size of state space. Since one must always start from

city 1 with or without buying the coupon, there are 2 states for the first stage. Also, since

one must end at city 1 and one has the option of not buying the ticket at all, there are two

possible states for the last stage.

31

From stage 2 to N , the number of possible states for stage t, (NPt), can be calculated

by the following equation :

NPt =
2(N − 1)!

(N − t)!(t− 2)!
(14)

where, N = the number of cities , t = {2, 3, ..., N} is the stage number. Because the DP

solves the problem though stage-wise recursion, the number of comparisons at each stage t

is given by the multiplication of the number of states at stage t and the number of states

at stage t + 1. Considering the state transition rules (for example, one cannot “unbuy” the

previously bought coupon) and using the equations in (14), the total number of comparisons

required to solve this problem by DP can be calculated. There are NPt and NPt−1 states

at stage t and t − 1 respectively, therefore without considering the state transition rule,

there can be NPt ·NPt−1 cost-go-values incurred by connecting states at t stage and states

at t− 1 stage. The state transitions from “not bought” states at stage t to “bought” states

at stage t− 1 are infeasible. Therefore, at stage t, 3
4NPt ·NPt−1 comparisons of cost-to-go

are required.

For this example(10-city), the number of possible states is 4612 and the number of

comparisons is 2,779,974 calculated by
∑N

t=2(
3
4NPt · NPt−1). On the other hand, to solve

this problem with explicit enumeration requires in the worst case (N − 1)!ln((N − 1)!) =

4, 645, 527 comparisons. Despite the superiority of DP to the explicit enumeration, it is

limited to fairly small TSPs. For example for a 50-city TSP, the total number of states

goes up to 2.76 × 1016. The computational load scales exponentially with the number of

cities and the approach becomes quickly intractable. The solution obtained by using the

DP approach for the given example is listed and compared with the solutions from the other

methods in subsection 3.2.3.5.

3.2.3.2 MILP Formulation

The MILP formulations for the original TSP have been developed by adding constraints for

eliminating subtours in the assignment problem [51]. Unfortunately, these classical MILP

formulations are not directly applicable to our variant of the TSP. The solution of our

variant of the TSP is an incomplete tour if we consider it as a TSP with 2N cities (N cities

32

with original cost matrix and N cities with discounted cost matrix). The compact subtour

elimination constraints cannot be used to develop a MILP model for the given problem.

A MILP model for the given problem can be derived by modifying the assignment

problem (see Figure 8). For a N-city problem, N cities are assigned to N+1 slots. The

sequence of the cities assigned to N+1 slots must be optimized to minimize the total travel

cost. Because of the starting and the ending city constraints of the problem statement, city

1 is assigned to slot 1 and N+1, although a slight modification allows the starting city to

be left unspecified. The binary variables, Xij are introduced to represent the assignment

from city i to slot j.

Figure 8: Assignment Problem from N cities to N+1 slots

Constraints (15)-(17) are the assignment constraints for the problem.

∑
i

Xij = 1 for j = {2, 3, ...N} (15)∑
j

Xij = 1, i = {2, 3, ..., N} (16)

X11 = 1, X1N+1 = 1 (17)

The traveling costs are incurred from the assigned cities in every pair of adjacent slots

according to the ‘coupon status’ at slot j denoted by γj as we denoted γt in DP formulation.

The transition cost from slot j to j + 1 can be expressed by the following constraints:

Cj ≥ cD
ikγj + cO

ik(1− γj)− (2−Xij −Xkj′)M (18)

i, k = {1, 2, ..., N} and j = {1, 2, ..., N} , j′ = j + 1

where, Cj is the transition cost from slot j to j + 1 and γj the coupon status at slot j

M is a big “M” value.

33

The minimum value of Cj satisfying the constraint (18) represents cost incurred between

slot j and j + 1 according to the assignment decisions Xij , Xkj′ and the coupon status γj .

For example, when Xij = 1 and Xkj′ = 1, city i is assigned to slot j and city k is assigned

to slot j +1, which means the segment tour from city i to k is chosen. Hence the transition

cost from slot j to j + 1, Cj , is bounded by Cj ≥ cD
ikγj + cO

ik(1 − γj), and according to

the coupon status, γj , the active bound for Cj is decided. For a reasonable relaxation, the

maximum cost element in the original cost matrix and the discounted matrix can be used

for M .

From the problem definition in 3.2.2.1, the salesman can buy the coupon only once

during his tour and the coupon cannot be “unbought” once purchased. The following

constraints ensure this:

γj ≤ γj′ , j′ = j + 1 (19)

j = {1, 2, ..., N − 1}

Then, the coupon price is calculated by constraints (20)-(21).

Z ≥ γ1P1 (20)

Z ≥ (γj′ − γj)Pj′ (21)

j = 1, 2, ..., N − 1 j′ = j + 1

where, Pj : given coupon price at stage j, for j = {1, 2, ..., N}

Z : optimum coupon price(decision variable)

The objective of this problem is to assign the cities and coupon buying status to the

slots to minimize the total cost incurred by the assignments. This objective can be simply

formulated by the equation (22) under the constraints of (15)-(21).

min
Cj ,z

∑
j

Cj + Z (22)

j = {1, 2, ..., N}

The proposed MILP model is well defined for the problem and can guarantee the optimal

solution of the problem. But the number of constraints and the number of binary variables

34

of the model can become very large even for a small size TSP. For an N -city TSP with

the additional coupon buying option, the number of binary variables is N(N + 2) and the

number of constraints is of order N3 because of the constraints (18). Furthermore, the

“big-M” relaxation introduced in the constraints (18) increases the integrality gap of the

LP relaxation leading to poor computational performance. We cannot tighten the value of

‘big-M’ because any pair of cities can be assigned to any pair of slots, hence the largest cost

element could occur at any slot j.

3.2.3.3 Heuristics

For the original TSP, many heuristics have been developed to find suboptimal but ‘good’

solutions in reasonable time for large N (> 106) TSPs. For our TSP example, we consider

two heuristics for finding suboptimal solutions. The main idea behind the heuristics is to

solve a TSP and then modify the solution using a shortest path problem to reflect the

change in the cost matrix that occurs after buying the coupon.

Heuristic 1 This heuristic can be described by the following procedure and Figure 9.

1. Solve the TSP with the original cost matrix and the fixed starting city to obtain the

optimal tour, set i = 1

2. For the option of purchasing the coupon at the ith city in the optimal tour, follow the

obtained optimal tour until the ith city

3. Solve the shortest path problem with the discounted cost matrix for the rest of the

tour after the ith city

4. i = i + 1, while i ≤ N , repeat from 2.

Heuristic 1 determines the first part of the tour from the optimal tour obtained with the

original cost matrix. The tour after purchasing the coupon is found by solving a shortest

path problem through the rest of the cities. Heuristic 1 generates N different suboptimal

solutions with N different coupon buying locations for the N city problem.

35

Figure 9: Pictorial Illustration of Heuristic 1

Another N suboptimal solution can be obtained by inverting the optimal tour with the

original cost matrix and proceeding as before. As a result, for a N cities problem, the

heuristic 1 generates 2N suboptimal solutions.

Heuristic 2 This heuristic follows the same idea as in Heuristic 1 but we reverse the

sequence. First, we determine the optimal tour for the regular TSP with the discounted

cost matrix. In this case, the tour obtained with the discounted cost matrix gives the second

part of the suboptimal tour because the discounted cost matrix is in effect after buying the

coupon. The the following procedure for Heuristic 2 is also displayed pictorially in Figure

10.

Figure 10: Pictorial Illustration of Heuristic 2

36

1. Solve the TSP with the discounted cost matrix and the fixed starting city to obtain

the optimal tour, set i = N .

2. For the option of buying the coupon at the ith city, follow the obtained optimal tour

from the ith city to the end

3. Solve the shortest path problem with the original cost matrix for the first part of the

tour before the ith city

4. i = i− 1, while i ≥ 1, repeat from 2.

As in heuristic 1, for an N city TSP, 2N suboptimal solutions can be obtained from Heuristic

2.

Quality of the Solution and the Computational Load of the Heuristic 1 and

2 The difficulty of solving the given problem arises from buying coupon, which must be

considered simultaneously with the sequence of cities. This major difficulty is eliminated in

the above heuristics because the coupon buying decision is treated as an iterative routine

from the first city to the last city after separating the problem into a TSP and a shortest

path problem, the latter of which is solvable in polynomial time. The elimination of the

major difficulty is an advantage in terms of computational load but a disadvantage in terms

of the quality of solution. The computational loads of these heuristics are relatively small

compared to those of the DP approach and MILP formulation. They require solving an

original TSP and a shortest path problem for each coupon buying stage. The heuristics

still give a high quality solution, although the problem is separated into 2 parts, a priori,

and the optimal solution is found for each part of the problem. Furthermore, it also checks

every possible coupon buying stage from 1 to N . Hence the best solution among the 4N

suboptimal solutions obtained by the heuristics can be regarded as a ‘good’ suboptimal

solution.

37

3.2.3.4 DP in the Subset of the States Visited by the Heuristics

DP is shown in 3.2.3.1 as a solution method that can guarantee the global optimum for this

type of problem. But DP is often not applicable to practical problems due to the exponential

growth of the state space. In theory, the portion of the state space that has to be visited by

an “intelligent” algorithm consists of just N states, those on the optimal path, a vanishingly

small fraction of the overall state space. Identifying this restricted state space, without

searching the state space, clearly must be as intractable as solving the original problem.

However, finding some small regions of the state space that might contain the optimal (or

very good suboptimal) subset and then searching them rigorously, using DP, could prove

to be a tractable approach for large problems. The idea is to use heuristics to identify the

relevant regions of the states and use DP to “patch” these states together. The proposed

method in this section describes how to obtain this relevant subset of the states and find

an optimal path of states within the subset. When there are several reasonable heuristics

and an appropriate state definition and DP formulation for a certain optimization problem,

the heuristic solutions can be translated to a set, or trajectories, of states defined in DP

formulation. The same state can be visited by different suboptimal(heuristic) solutions and

this will happen more frequently when heuristics that exploit the problem structure in a

similar manner are used. The key idea of our method comes from hypothesizing that the

states visited by several reasonable heuristics represent a ‘good’ subset of the state space,

within which search for a ‘good’ solution can be conducted. The DP in the restricted state

space follows the same algorithms as the full DP, except some of the states in adjacent

stages cannot be connected.

DP in the Subset of the States for the TSP example The generalized proposed

method described in 3.2.3.4 can be tailored for the TSP example by using DP formulation(3.2.3.1)

and heuristics(3.2.3.3) for the problem. In subsection 3.2.3.3, two heuristics for the given

problem were developed based on the idea of first finding good lows and then modifying the

before or after coupon purchase. For many well-known types of combinatorial optimization

problems, a large number of heuristics can be and have been developed. Often, certain

38

heuristics can be modified by changing a parametric description of them. For example, the

‘Nearest Neighborhood’ search [89], a well known greedy algorithm for TSP, can be pa-

rameterized by an explicit description of the neighborhood operator. The N city problem

has N stages, thus from one suboptimal solution, N visited states are obtained. Since 4N

suboptimal solutions can be obtained from the two heuristics we introduced earlier, at most

4N states are visited by these heuristics at each stage. The reduction of the search space

is often dramatic, thus making the approach feasible for even very large problems. For the

given 10 city illustrative example, the size of this subset of the states(101 states) is much

smaller than the entire state space (4612 states), which is used for the DP in subsection

3.2.3.1 as shown in Figure 11. Figure 11 also shows the number of feasible state transitions

is also much smaller than that of original state space. The reduction of the state space to

the subset visited by the two heuristics enables a considerable reduction in the computa-

tional load compared to the original DP.

Guideline for Expanding the Subset For the given example, states in the subset is only

2%(101 to 4612) of the original states. Although those states in the subset are “good states”,

it is unlikely that it contains all of the states belong to the global optimal solution trajectory.

The possibility of obtaining a better solution by performing DP within the subset of the

states can be increased by expanding the subset so that it includes more “good states”. The

extreme case of this expansion would be the original state space, in which the DP method

can guarantee the global optimal solution but computationally intractable. Therefore, an

important issue is how to expand the subset intelligently to increase the possibility of

improving the suboptimal solution, while keeping the size of the subset relatively small

compared to the original state space. Moreover, for the given example, just adding states

to the subset in a random manner does not help to improve the solution unless the added

states are connected to the states in the subset according to the state transition rules.

Hence, the added states must be feasible in terms of the state transition as well as ‘good’ to

39

Figure 11: Number of States and Feasible State Transitions in the Subset of the States in
the Illustrative Example

improve the suboptimal solution. We suggest following subset expansion guideline for the

example.

1. Set i = 2

2. Set j = 1

3. Switch the ith city with (i + j)th city in the suboptimal tour obtained by DP in the

subset of the states and add the corresponding new states obtained by the switching

4. j = j + 1, while i + j ≤ N , repeat from step 3

5. i = i + 1, while i ≤ N − 1, repeat from step 2

Using the above guideline, we can add at most 2
∑N−2

k=1 k = N2 − 3N + 2 new states. As a

result, the expanded subset is still small enough to make the DP tractable for a very large

40

N . And all of the added states are feasible in terms of state transition because they are gen-

erated by switching the suboptimal route. In this particular case, the expansion produced

no improvement over the DP in the original subset. In general there is no systematic way

to produce polynomially bounded expansions of the space that can guarantee improvement.

3.2.3.5 Comparison of Solutions

For the illustrative example, the 4 different solution methods have been tested. Among

these 4 solution methods, the DP and MILP approaches can guarantee the global optimum

solution. On the other hand, the other two methods, the heuristics and DP in the subset of

the states are computationally more tractable, even though they cannot guarantee the global

optimum solution. The comparison of the solutions by the four methods must be based on

two points, the degree of optimality of the solutions and the computational time used to

obtain the solutions. However, comparing the MILP method with the other methods is not

appropriate because different languages were used to pose and solve the proposed MILP

from the other solution methods. The proposed MILP is solved by using CPLEX 7.0 in

GAMS [15] and MATLAB is used for the other solution methods. Generally, the speed of

computation based on MATLAB is much slower than that with GAMS. For this reason,

in Table 3.3.5.1, we compare the computational times for the three solutions obtained by

MATLAB only. However, it should be noted that the computational time of solving the

proposed MILP with 0.01 error bound on a same machine is 1015.0 seconds. As a part of

the two heuristics, one must solve the original TSPs without the coupon buying option. For

this purpose, a TSP solver is coded in MATLAB with the simulated annealing algorithm

[1].

Table 1: Solution Comparison

DP Solution The Best Heuristic DP in the SSS+

Total Traveling Cost 416.34 432.54 422.78
Calculation Time (Sec.)* 30546.8 8.80 8.8+1.8=10.6
+ Subset of the States
* On a Pentium III at 800 MHz: 512MB RAM

A greedy heuristic for the original symmetric TSP, the Nearest Neighborhood Search

[89], which can find the globally optimal or nearly optimal solution for relatively small

size(less than 100 cities) instances of TSP is used to provide a good initial solution for the

41

simulated annealing algorithm. The simulated annealing algorithm TSP solver starts its

stochastic cooling from a temperature of 60 until it cools down to 5 with a reduction rate

of 0.99. For most TSPs with less than 50 cities, the TSP solver can find the global optimal

solution owing to the good initial solution and the high temperature reduction rate(0.99).

As we expected, the DP method finds the global optimal solution and the other meth-

ods result in suboptimal solutions. Table 3.3.5.1 highlights the efficiency of the proposed

method for performing DP within the subset of the states visited by the heuristics. The

additional computational time for performing DP within the visited set is trivial because of

the dramatically reduced state space. At the expense of small additional calculation time

on top of the heuristics, we can obtain a significantly improved solution.

Furthermore, we can see that the solution from the DP in the subset of the states approach

is close to the global optimum in this particular example. To measure the quality of each

solution by different solution method, exhaustive enumerations are performed. The best 5

feasible solutions obtained by exhaustive enumerations of all feasible solutions are shown in

Table 2. It turned out that the solution by the method is the second best solution.

Table 2: Comparison of Solutions Between the Best Heuristic Solution and the Optimal
Solution

Solution Method Traveling Cost Route
The Global Opt. DP or MILP 416.34 1-10-8-4-2-6-7-5-9-3-1
2nd Ranked Soln DP in the SSS 422.78 1-10-8-2-6-7-5-9-3-4-1
3rd Ranked Soln Enum+ 427.84 1-10-8-4-6-7-5-9-3-4-1
4th Ranked Soln Enum+ 431.23 1-8-2-6-10-7-5-9-3-4-1
5th Ranked Soln Heuristics* 432.54 1-10-6-2-8-5-7-9-3-4-1
Italic Bold represents discounted tour

+ Solution method: Enumeration
* Solution Method: Best among all the solutions by the heuristics

3.2.4 Statistical Analysis of Larger Deterministic TSPs with a Discount Coupon

In section 3.2.3, we alluded to the computational limitation of the DP and MILP methods

in solving the new TSPs of large sizes. For larger problems, the two heuristics and DP in

42

the restricted state space are the only computationally tractable methods. A specialized

solver for the particular MILP may make the solution of large-size problems feasible, but

developing this was beyond the scope of this research. In this section, the performance

of the proposed method is tested for randomly generated 50 city TSPs with the discount

coupon purchasing option.

Random Parameter Generation In the 50 city example, there are 4500 total pa-

rameters involved with the original and discount cost matrices and coupon prices. All of

these parameters are generated in a random manner using the following procedure:

� Cost Elements in the Original Cost Matrix : Uniform random variables ranging from

24 to 80.

� Discount Factors for the Cost Elements : Uniform random variables ranging from 0.3

to 1.0.

� Coupon Prices at the 50 Stages : Uniform random variables sorted in decreasing order,

ranging from 0 to 850.

Elements of the discounted cost matrix are obtained by multiplying the discount factors

to the corresponding cost elements of the original cost matrix. According to the random

number generation routine for the discount factors, the maximum discount rate can be 70%

of the original cost.

3.2.4.1 Statistics of Improvement

100 sets of parameters were generated by the random parameter generation routine and

the corresponding 50 city TSPs are solved by the proposed method. To implement the

proposed method, 100 TSPs are solved by the two heuristics and for each case the subsets

of the states visited by the heuristics are extracted. For each subset of the states, DP is

performed and the solution of the DP is compared to the best heuristic solution. Figure 12

shows the number of improved cases and the amount of improvement in the solution.

Out of the 100 cases, 35 cases showed improvement from the best solutions found by the

43

Figure 12: Statistical Improvement of the Solutions by the Proposed Method(Rigorous
Original TSP Solver)

heuristics. The occurrence of a small number of improved cases and low percentage im-

provement may be due to two reasons. First, the size of the subset is too small compared

to the entire state space. The average number of states in the subset used by the proposed

method is only 3662. The number of states in the original state space is 2.76×1026. Hence,

the proportion(3662
2.76×1026) of the states in the subset is miniscule. Of course, this propor-

tion can be expanded by employing more heuristics, possibly with better results. Second,

although we cannot verify the optimality gap between the heuristic solution and the global

optimal solution for the larger examples, the heuristic solutions may be optimal or nearly

optimal in many cases and hence no significant improvement may be possible.

3.2.4.2 The Effect of the Suboptimal TSP Solver

The computational time of the proposed method can be attributed to running to the heuris-

tics necessary to obtain the subset of the states. The biggest computational load of the

44

heuristics is in solving N-city symmetric TSPs because the time required for solving the

shortest path problem is trivial compared to that for TSP. As mentioned in 3.2.3.5, for rig-

orous calculation, simulated annealing algorithm was used for the TSP solver implemented

in the heuristic method. The accuracy of TSP solver can be relaxed by decreasing the

temperature reduction factor(hastening the cooling process) of the annealing process. The

complete relaxation of the TSP solver corresponds to obtaining the solution without any an-

nealing process by setting the temperature reduction factor as zero. In the case of complete

relaxation, the solution is same as the initial starting point of the simulated annealing, the

solution of the Nearest Neighborhood(NNH) Search[89]. When the NNH search is used as a

TSP solver, the computational time for the proposed method can be dramatically reduced

by sacrificing the quality of the suboptimal solution.

Solver Rigorousness VS. The Improvement The same 100 TSPs with a discount

coupon option introduced in 3.2.4.1 are solved by the proposed method with a relaxed

heuristic method that performs only the NNH search to obtain the solution of the sub-

problem. The Figure 13 shows the number of improved cases and the amount of improve-

ment from the best heuristic solution by the proposed method.

The Figure 13 shows almost same trend of histogram as the Figure 12. Specifically, in

cases of the largest improvement, bigger than 1.4%, it shows exactly the same trend for

the same sets of the parameters. From the above results, we see that the proposed method

has a similar effectiveness for improving solutions from different heuristics. It implies the

proposed method can be applied to cases with worse heuristics to achieve a certain amount

of improvement.

3.2.5 Conclusions

The algorithmic framework is applied for improving solutions from applying heuristics for

deterministic combinatorial optimization problems. The key idea of the proposed method

is to perform DP in a subset of the states visited by the heuristics. To test the proposed

45

Figure 13: Statistical Improvement of the Solutions by the Proposed Method(Pure Heuris-
tic Original TSP Solver

mathematical framework, a new variant of the deterministic TSP was introduced. This

variant includes an optional task that changes the problem cost structure. A new variant

of the deterministic TSP included the option of switching the cost matrix to a cheaper one

for a price. Four different solution methods, DP, MILP, heuristics, and DP in the subset of

the states were applied to this problem. The performance of these 4 solution methods was

tested for a 10-city illustrative example. Among the 4 solution methods, DP in the subset

of the states showed significant advantages in terms of computational time and solution

quality. The performance of the proposed method was also tested for larger examples of the

TSP variant, which are computationally intractable with the other methods. The proposed

method showed good performance in these problems.

46

3.3 Application to Stochastic Traveling Salesman Problem

3.3.1 Introduction

Planning and scheduling problems for chemical production systems are a major focus of

study as companies seek to lower operating costs with minimal capital investment. A sig-

nificant challenge is to represent and account for the diverse sources of uncertainty that arise

as the scope and complexity of the problem expand [71]. These uncertainties include pro-

cessing time variations, rush orders, failed batches, equipment breakdowns, market trends

and every problem will have its own unique set of uncertainties. The intractability of the

general problem has led to the formulation and solution of deterministic scheduling and

planning problems in chemical production systems [60, 41, 42, 63, 49, 72]. The progress in

solving problems that involve uncertainty, [76, 84, 39, 59], has been limited to synthesizing

solutions that are robust to the uncertainty rather than reactive to the changing conditions

as they are realized, with the exception of [76]. There is little work on how to systemat-

ically use the information gained during the execution of the partial schedule proactively

to influence future scheduling decisions based on revised information, [26]. Therefore, de-

veloping a systematic way to model uncertainties in the process and applying it to find

the optimal solution, is one of the most challenging issues in the scheduling and planning

area. One type of uncertainty is within the process itself, such as the quality of a batch at

an intermediate stage. In this case, additional measurements of current process conditions

or batch properties could be made to enable better downstream processing and batch-to-

batch control. These measurements are labelled optional tasks [27] and may trigger new

processing tasks to be performed on batches that do not meet specifications. Scheduling

or planning problems involving these optional tasks and stochastic parameters require the

solution of decision problems that have significant combinatorial complexity, layering the

decisions about whether and when to perform the optional tasks on top of other decisions.

Furthermore, the dynamically evolving nature of information for decision making makes the

problem multi-stage in nature, as the new information state can be used to revise existing

scheduling or planning decisions.

The purpose of this work is three-fold. First, we extend the algorithmic framework for

47

improving heuristic solutions developed and verified for the deterministic case in section 3.2

to the stochastic case. Second, we introduce a new version of TSP, stochastic TSP with

an optional task(investigation) for reducing uncertainties. Several variants of the original

deterministic TSP have been studied in the chemical engineering area and related to cer-

tain batch scheduling problems [57, 56, 33]. The original TSP itself represents the parallel

flowshop scheduling problem because the scheduling problem can be transformed into an

extension of the original TSP, the generalized TSP(GTSP)[33], which can be transformed

back into the original TSP [54]. Hence, in this study, we add a stochastic component and

an optional task to the original deterministic (symmetric) TSP to make it representative

of scheduling problem with uncertainties. Third, a discrete-time Markov process is intro-

duced as a way to model uncertainties in key parameters. Besides developing an efficient

solution method, developing proper ways to represent uncertainties in the formulation of op-

timization problems is also very important for practical applications. In previous literature

uncertainties in scheduling problems were introduced in two different ways, with scenario

based representation [84, 75] and with probability distribution functions [39, 59, 76]. In

both approaches, solution methods were based on MILP(or MINLP) formulations for de-

terministic equivalent or stochastic models of the problems. However, these formulations

have some inherent limitation for solving complex stochastic scheduling problems because

it only considers a “snapshot” of uncertain parameters by means of their expected values.

Even with the reactive scheduling framework in which the expected values can be updated,

this inherent limitation cannot be removed. Some recent literature [90, 50] point to the fact

that Markov process is an attractive alternative for representing uncertainties in planning,

scheduling and supply chain problems. Suppose the uncertain parameters are changing at

each time unit according to some underlying probability distribution, unknown to the deci-

sion maker. Some of uncertain parameters are strongly correlated(i.e. processing time and

processing cost) so that they vary together as a set.

With the Markov process representation, DP, which theoretically guarantees the optimal

solution, is the natural solution method for the problem since the use of Markov process

automatically implies that the problem has stage-wise characteristics.

48

The progression of the work is as follows. Section 3.3.2 will present the details of the

stochastic TSP with an optional task. Section 3.3.3 contains the possible solution meth-

ods for the given problem, stochastic DP, suboptimal heuristic policies, and the proposed

method, stochastic DP in the subset of the states. Section 3.3.4 will verify the efficacy of

the proposed method with an illustrative example. This is followed by some concluding

remarks and future works in section 3.3.5.

3.3.2 Stochastic Version of TSP with an Optional Task

In the past decade, the stochastic version TSP has been introduced by modeling each cost

element as a random variable [64, 58]. In this work, we address a new version of stochastic

TSP in which several cost modes, set of the cost elements, are changing stochastically

according to a Discrete-Time Markov Process. A new feature, an optional task [27], is

introduced to the new version of stochastic TSP to represent an opportunity to investigate

the identity of the current cost mode.

3.3.2.1 Problem Description

A salesman is assigned to travel a set of N cities H times. If the cost matrix of the problem

is deterministic, he need to follow the same route obtained by the deterministic cost matrix

at every tour to minimize the total traveling cost for H tours. Instead, suppose that the

cost matrix evolves tour to tour according to a given Markov process. Suppose there are

M cost matrices with N × N cost elements(for a N -city TSP). Each matrix represents

one possible cost mode, in which the salesman must find the optimal tour, which can be

different for different cost modes. At the end of each tour or stage, one of the M modules is

chosen according to the Markov process, which is unknown to the salesman. The transition

probabilities from a mode i to j, Pij , thus form an M×M transition matrix, which describes

the governing dynamics of the cost mode change. We make two further refinements to this

model:

� Unobserved Stochastic Process : The salesman does not know which cost mode

he will experience on any given tour. However, he is informed of the cost matrix that

governs his first tour.

49

� Cost Mode Investigation : Before starting a tour, the salesman has the option to

determine the current cost mode by paying an investigation fee, β.

The investigation option complicates the decision problem, affecting the choice of optimal

tours at subsequent stages. Therefore, to minimize the total cost of traveling over a cer-

tain number of tours, the tours before which the investigation is to be performed become

important decisions. Frequent investigation will enable an accurate decision for the current

tour but the total cost may be increased by the high investigation fees. On the other hand,

too rare investigation may increase the total cost, because of the inaccurate decisions due

to increased uncertainty.

3.3.3 Solution Methods for The Stochastic TSP

For the given problem, stochastic dynamic programming [7, 8] is an exact solution method,

which can guarantee the optimal expected cost over a given horizon. However, stochastic DP

requires significant computation to obtain the optimal cost-to-go value for each state because

the dimension of the state increases due to the necessary information state introduced by

the uncertainty of the system. The Bellman iteration(cost iteration) has an exponential

complexity in the number of states. In this section, we develop suboptimal policies of high

computational efficiency as well as the stochastic DP for the given problem. The role of

suboptimal policies corresponds to the “heuristics” for the deterministic TSP developed in

our previous work [27].

3.3.3.1 Stochastic Dynamic Programming

To develop an appropriate stochastic DP formulation for the given problem, all the necessary

information of the problem must be represented explicitly in the state. The key information

is the conditional probability of each cost mode at each tour. The information state x̂(k)

is defined as the conditional probability of the ‘cost mode’ at tour k before the decision.

50

x̂(k) =



Pr{CM1}

Pr{CM2}
...

Pr{CMM}


(23)

where Pr{CMi} denotes the conditional probability of realizing ’cost mode’ i. For the state

x̂(k) defined in (23), the state transition rules can be derived from the transition matrix

of the Markov chain. With the investigation at step k, we set the investigation indicator

δ(k) = 1 and the information state for the tour decision changes to ẑ(k), which represents

the exact knowledge of the cost mode at tour k be the tour, as a benefit of the investigation.

If the current cost mode is Ci,

ẑ(k) = ei (24)

where, ei is M × 1 elementary vector with all zero elements except 1 in ith position. For

example, if the cost mode is 3 at tour k, the information state is reset to [0 0 1 · · · 0]T .

If the particular realization of the cost mode at the time of investigation is i, then the next

state x̂(k + 1) is calculated by following Markov transition equation.

x̂(k + 1) = P T ẑ(k) (25)

On the other hand, without investigation at time k(δ(k) = 0),

ẑ(k) = x̂(k) = P T x̂(k − 1) (26)

This is the information state propagates by the same transition rule of the equation (81)

The overall procedures of the stochastic DP are summarized in the following Figure 14.

Simulation and the First Cost-to-Go Approximation The first step is realizing the

random cost mode for simulation purposes. The realization of the random cost mode is

51

Figure 14: Overall Procedures of Formulating, Solving and Testing the Stochastic DP

started by choosing an arbitrary cost mode at time 0 and then evolving the cost mode

according to the state transition probability matrix P . For sufficiently long cost mode

sequences, the overall portion of each cost mode should be same according to the limiting

probability of P , denoted by P∞. However, for different realizations the cost mode sequences

are different. The next step of the stochastic DP is to identify all the possible discrete values

of the state. The identification can be performed by the simulation of a suboptimal policy

designed to visit all the states. As results of the simulation of ν realizations of the cost

modes, we can obtain following data sets, Sdata and Cdata :

Sdata =



x̂data(1)

x̂data(2)
...

x̂data(ν)


, Cdata =



φdata(1)

φdata(2)
...

φdata(ν)


(27)

where, Sdata is the set of visited states(x̂data(k)) by the simulation and Cdata contains the

corresponding traveling costs(φdata(k)) for the states in Sdata. Once Sdata and Cdata are

obtained, we can calculate the cost-to-go values for all the states in, Sdata by following the

state trajectories and summing the Cost-to-Go over an approximation horizon of H with

52

the discounting factor α < 1.

Ĵ(x̂data(k)) =
H∑

j=0

αjφdata(k + j) (28)

Then, we have the approximated cost-to-go set, Jdata.

Jdata =



Ĵ(x̂data(1))

Ĵ(x̂data(2))
...

Ĵ(x̂data((ν −H))


(29)

Because of the large value of ν needed to cover the entire set of possible states, the same

state can be visited in many stages by the simulation. After eliminating redundant states

in the set Sdata, the following set of states, S can be obtained.

S =



x̂(1)

x̂(2)
...

x̂(n)


(30)

Let L(i) be the number of x̂data(k) satisfying the condition, x̂data(k) = x̂(i), where, k is the

index of set Sdata and i is the index of set S. Then the expected cost-to-go for the state

x̂(i) is obtained by averaging these data.

Ĵ(x̂(i)) =
1

L(i)
{

L(i)∑
`=1

ˆJ(i)(x̂data(`, i))} (31)

Where x̂data(`, i) represents the `th data point of x̂data(k) = x̂(i). As a results of the above

calculation, we obtain the first approximation of the cost-to-go values, which will be used

as initial values in the Bellman iteration, for the states x̂(i) in the set S.

J =



Ĵ(x̂(1))

Ĵ(x̂(2))
...

Ĵ(x̂(n))


(32)

53

Bellman Iteration The Bellman equation for the given state x̂(k) can be formulated as:

J∗(x̂(k)) = min
δ(k)∈[0,1]

E{φ(ẑ(k)) + βδ(k) + αJ∗(x̂(k + 1))|x̂(k)} (33)

J∗(x̂(k)) is the optimal cost-to-go for the state x̂(k) and φ(ẑ(k)) is the cost of the tour k,

which will be chosen based on ẑ(k) obtained after the investigation decision. Based on the

above equation, we propose the following Bellman iteration scheme.

1. Set Ĵ1 = Ĵ(x̂(k)), for k = 1, 2, ..., n , where Ĵ(k) is in the set  in the equation (32)

2. Repeat following equation (34) for each x̂(k) in S, until Ĵ i is converged (i.e. ‖Ĵ i+1(x̂(k))−

Ĵ i(x̂(k))‖ < ε), for k = 1, 2, ..., n

Ĵ i+1(x̂(k)) = min
δ(k)i∈[0,1]

E{φ(ẑ(k)) + βδ(k)i + αĴ i(x̂(k + 1))|x̂(k)} (34)

Although the cost-to-go update equation in (34) looks simple, the update is quite subtle.

The detailed calculation procedures for the equation (34) can be derived using the properties

of expectation operator E and conditional probability.

� Detail Calculation Procedures to Obtain Ĵ i+1(x̂(k))

1. For δi(k) = 0

{Ĵ i+1(x̂(k))|δi(k) = 0} = E{φ(ẑ(k)) + αĴ i(x̂(k + 1))|x̂(k)} (35)

� Calculating E{φ(ẑ(k))|x̂(k)} : The current tour must be obtained for the given

condition x̂(k). With δi(k) = 0, ẑ(k) = x̂(k) and the expected cost matrix(Ĉ)

can be calculated by the following equation.

Ĉ =
M∑
i=1

x̂i(k)Ci (36)

Then, the optimal tour(tour∗(k)) for the state x̂(k) can be obtained by solving

a single TSP with the Ĉ obtained from the equation (36). The expected current

cost can be calculated with the given conditional probabilities, x̂(k), of the cost

modes.

E{φ(ẑ(k))|x̂(k)} =
M∑
i=1

x̂i(k){φ(tour∗k)|Ci} (37)

54

which means Ci is realized with probability x̂i(k).

� Calculating E{αĴ i(x̂(k + 1))|x̂(k)}:

E{αĴ i(x̂(k+1))|x̂(k)} = αĴ i(x̂(k+1)), because the approximate cost-to-go term

Ĵ i(x̂(k + 1)) is a constant value for a given x̂(k + 1). Hence, we can take the

cost-to-go term out of the expectation summation. When δi(k) = 0. The next

state, x̂(k + 1) is calculated by the state transition rule in the equation (81).

x̂(k + 1) = P T x̂(k)

Find the next state in the set S, x̂(l) = x̂(k + 1) for x̂(l) ∈ S. Then,

Ĵ i(x̂(k + 1)) = Ĵ(x̂(l)) (38)

Combining the equation (37) and (38), we can calculate Ĵ i+1
δi(k)=0

(x̂(k)).

2. For δi(k) = 1

{Ĵ i+1(x̂(k))|δi(k) = 1} = E{φ(ẑ(k)) + β + αĴ i(x̂(k + 1))|x̂(k)} (39)

� Calculating E{φ(ẑ(k))|x̂(k)}:

After an investigation, δi(k) = 1, the state ẑ(k) can be one of e` for ` = 1, 2, ...,M .

Because x̂(k) is the probability vector of the cost modes before the investigation,

the probability of cost mode ` after the investigation(Pr(ẑ(k) = e`)) is given by

x̂`(k). Then, the expected current cost for the given x̂(k) is,

E{φ(ẑ(k))|x̂(k)} =
M∑
`=1

x̂`(k)φ(e`) (40)

where φ(e`) represents the tour cost for the cost mode `.

� Calculating E{αĴ i(x̂(k + 1))|x̂(k)}:

Once the investigation is performed, ẑ(k) becomes one of the e`s with probability

x̂`(k). Therefore, x̂(k + 1) = P T e` with the probability x̂`(k).

αE{Ĵ i(x̂(k + 1))|x̂(k)} = α
M∑
`=1

x̂`(k)Ĵ i(P T e`) (41)

55

In the above equation, it is obvious that P T ei ∈ S because all e`s are visited by

the selected suboptimal policy through the large number of cost mode realizations

and all of their next states, P T e` are also visited by the suboptimal policy.

Combining the equation (40) and (41), we can calculate Ĵ i+1
δi(k)=1

(x̂(k)).

3. Decision for Ĵ i+1(x̂) :

With the results of step (1) and (2), the equation (34) simply becomes as following,

Ĵ i+1(x̂(k)) = min{Ĵ i+1
δi(k)=0

(x̂(k)), Ĵ i
δi(k)=1(x̂(k))} (42)

real-time Performance Evaluation The off-line obtained optimal cost-to-go J∗ can be

used for real-time decision making. Here we evaluated the performance of the resulting

policy for different sets of cost mode realization though stochastic simulation.

The policy can be described as follows.

1. At the time k, solve,

J∗(ẑ(k)) = min
δ(k)∈[0,1]

E{φ(ẑ(k)) + βδ(k) + αJ∗(x̂(k + 1))|x̂(k)} (43)

where, J∗ is the optimal cost-to-go from the Bellman iteration in 3.3.3.1.

(a) Calculate,

J∗
δ(k)=0(x̂(k)) = E{φ(ẑ(k)) + αĴ∗(x̂(k + 1))|x̂(k)} (44)

as derived for Ĵ i+1
δ(k)=0(x̂(k)) as in the equation (35).

(b) Calculate,

J∗
δ(k)=1(x̂(k)) = E{φ(ẑ(k)) + β + αĴ∗(x̂(k + 1))|x̂(k)} (45)

as derived for Ĵ i+1
δ(k)=1(x̂(k)) in the equation (39).

(c) Compare J∗
δ(k)=1 and J∗

δ=0 and choose δ(k)

2. Depending on δ(k), obtain ẑ(k) and solve a deterministic TSP with the expected cost

matrix conditioned by x̂(k) to determine the current tour.

56

3. Evaluate the real cost and store.

4. Update x̂(k + 1) from ẑ(k) according to the state transition rules in the section 4.5.

5. k = k + 1 and repeat from step (1)

The real-time performance of the optimal policy with the optimal cost-to-go J∗ should

be robust for any set of cost mode realizations because it is obtained by considering the

underlying stochastic characteristic of the problem.

3.3.3.2 Suboptimal Policies

Two suboptimal policies have been developed for the given problem. One is ‘no investigation

policy’ which repeats a same traveling route for every tour. The other is an ‘investigation

policy’ based on a threshold on uncertainty in the cost mode.

No Investigation Policy The first suboptimal policy repeats the same traveling route

optimal in the sense of the mean traveling cost. One property of a Markov chain where

every state is reachable and there are no attractor states is the existence of limiting prob-

ability distribution over the states P∞. P∞ can be found by calculating the steady state

of the transition equation. P∞ represents the long-run distribution of the cost modes.

Thus, if the salesman follows the tour(mtour) obtained from the mean cost matrix with

the limiting probability, his long-run average performance without investigation could be

optimized. When there are M cost modes, the optimal tour(mtour) can be determined by

the deterministic optimization with the ‘mean cost matrix(C)’, which is

C =
M∑
i=1

P∞
i Ci (46)

and

mtour = arg
(

min
mtour

‖ (φ|C) ‖
)

(47)

where, Ci is the cost matrix for cost mode i. Although this policy seems reasonable, it is

far from being the optimal policy because the salesman cannot realize the potential benefit

of accurate information provided by the investigation opportunity.

57

Investigation Policies Without investigation, the salesman’s knowledge of which cost

mode he will encounter (x̂(k)) eventually converges to the limiting probability, P∞. When

x̂(k) is close to P∞, the salesman has only limited information about the cost mode because

of the diluted probabilities of the cost modes in x̂(k). To decide the proper investigation

frequency, we define following variable, γ(k) as an approximate indicator of the uncertainty.

γ(k) = ‖x̂(k)‖∞ (48)

The maximum value of γ(k) is 1 if the salesman executes the investigation option at step k

and it decreases as the salesman proceeds from tour to tour without investigation.

� Investigation Criteria : The salesman decides to investigate when γ(k) is less than

a certain constant θ.

δ(k) = 1 , if γ(k) < θ (49)

In equation (49), if the value of θ is close to 1, the salesman investigate very frequently.

Thus, suboptimal policies can be generated by varying the parameter θ leading to different

frequencies of investigation.

� Tour Decision : For given state x̂(k), the expected cost matrix(Ĉ) and the optimal

tour(tour∗(k)) for the expected cost matrix is calculated by following equation.

Ĉ(k) =
M∑
i=1

ẑi(k)Ci (50)

tour∗(k) = arg
(
min ‖ (φ|Ĉ(k)) ‖

)
(51)

The equations (50) and (51) reflect the benefit of investigation in the decision of the tour

at time k because, with the state transition rules in (24) and (81), if the investigation is

performed at time k, the Ĉ in (50) becomes exactly same as the cost matrix of the particular

realization of the cost mode at time k. Nevertheless, we have not found a systematic way to

determine the optimal value of θ. In addition, it is unlikely that a rule of this form is optimal.

58

Investigation Policy for Entire State Identification As mentioned in 3.3.3.1, to

start Bellman iteration for the stochastic DP, the entire state must be given with an initial

cost-to-go value for each state. The suboptimal policy proposed in section 3.3.3.2 can be

modified to visit all the possible states by changing the investigation criteria.

� Investigation Criteria : The salesman decides to investigate when x̂(k) becomes

same as the limiting probability of the state transition probability matrix, P∞.(within

some small tolerance), i.e.

δ(k) = 1 , if |x̂(k)− P∞| < ε (52)

If the investigation is performed at time k when x̂(k) ' P∞, the state x̂(k) is reset to ẑ(k)

according to the equation (24) which is then propagated again until it reaches P∞. Hence,

using the investigation criteria in (52), this suboptimal policy can visit all of the accessible

states over the course of many simulations.

3.3.4 Stochastic DP in the Subset of the States

The idea of finding solution in the subset of the state applied for the deterministic TSP

can be extended to replace the full Stochastic DP derived in 3.3.3.1. From the simulation

results of reasonable suboptimal policies, the ‘good’ states can be identified and patched

to obtain a subset of the states that can be searched rigorously in reasonable time. The

overall idea of the proposed method is shown in Figure 15.

The proposed method can be derived from the modification of the stochastic DP method

shown in 3.3.3.1. The three important modifications can be summarized as follows:

1. Simulation of Heuristics and Subset Identification:

Instead of the suboptimal policy shown in 3.3.3.2, the suboptimal policies shown

in 3.3.3.2 are used for simulation to find ‘good’ states with different value of the

investigation criteria, θ. The ‘good’ states are found by evaluating different suboptimal

policies in terms of the total cost of tours over a number of stages. The first cost-to-go

approximation procedure for the proposed method is exactly same as shown in 3.3.3.1

59

Figure 15: The Proposed Approach : Stochastic DP in the restricted state space of the
States

except the Sdata and Cdata in the equation (27) consist of the visited states and their

current costs by the selected suboptimal policies.

2. Bellman Iteration for Disconnected States:

In the subset of the states, for some x̂(k), it is possible that the next state of x̂(k)

is not in the set of the state S because the subset of the states are extracted from

the selected suboptimal policies. In this case, the selected suboptimal policies execute

the investigation option for the state following x̂(k). As a result of this investigation,

the intermediate state following ẑ(k) is set to ei, therefore x̂(k + 1) obtained by the

state transition rule for the case δi(k) = 0 will never appear in S. Therefore, for those

states, the investigations should be performed to approximate the cost-to-go inside

the subset. To avoid any state transition to the states outside the subset, we can

assign large cost-to-gos for all of the states outside the subset as pictorially described

in Figure 16.

60

Figure 16: Cost-to-Go for Unexplored Region(Outside the Subset) in the State Space

3. Cost-to-Go Barrier for the Real-time Performance Evaluation:

Before the real-time performance evaluation procedure shown in 3.3.3.1 is executed,

high values of cost-to-go must be assigned to the unexplored states as described in

Figure 16. This leads to a high cost barrier to prevent visiting unexplored states

during the real-time decision making.

The reduction of the number of states by the proposed method can dramatically decrease

the computational time for the Bellman iteration, which is the major computational load

of the stochastic DP.

3.3.5 Illustrative Example : Stochastic TSP with An Investigation Option

The proposed method was verified for 2 different stochastic TSP examples, small(5 cost

modes, 5 cities) and larger(20 cost modes, 5 cities) size of Stochastic TSPs. According to

the definition of the state in (23), the dimension of state is same as the number of cost

61

modes. Hence, although the number of cities in both examples is 5, the complexity of the

larger one(20 cost modes) is much higher than that of small one due to large state space.

The choice of a very small TSP was made to avoid large computational costs for each step

and would not affect the overall conclusions with the stochastic part of the problem.

3.3.5.1 Stochastic TSP Example 1 : 5 Cost Modes, 5 Cities

Obviously, the first example is a very simple but we choose this as we wanted to compare

the solutions obtained by the proposed method with the optimal solution. The 5 symmetric

cost matrices that represent corresponding cost modes consists of cost elements generated by

realizing uniformly distributed random variables ranged from 10 to 70 as shown in equation

(53)-(57).

Cost Mode 1 =



0 29 45 16 38

29 0 25 20 13

45 25 0 13 21

16 20 13 0 46

38 13 21 46 0


(53)

Cost Mode 2 =



0 34 11 41 31

34 0 21 23 25

11 21 0 33 24

41 23 33 0 29

31 25 24 29 0


(54)

Cost Mode 3 =



0 22 16 24 19

22 0 38 50 18

16 38 0 26 25

24 50 26 0 15

19 18 25 15 0


(55)

62

Cost Mode 4 =



0 19 38 30 25

19 0 26 18 37

38 26 0 56 43

30 18 56 0 25

25 37 43 25 0


(56)

Cost Mode 5 =



0 22 30 16 19

22 0 43 32 23

30 43 0 31 44

16 32 31 0 65

19 23 44 65 0


(57)

Another important parameter, the transition probability matrix P of the underlying

Markov chain, is given by the following 5 by 5 matrix in Table 3.

Table 3: Cost Mode Transition Probability Matrix for the Illustrative
Example

0.8071 0.0147 0.0608 0.0640 0.0534
0.0043 0.5891 0.2241 0.0348 0.1477
0.0425 0.1353 0.7359 0.0154 0.0709
0.0745 0.4210 0.0151 0.0482 0.4412

The corresponding limiting probability, P∞, of P is
[

0.1125 0.2326 0.2321 0.3157 0.1069
]

and the investigation cost β is given as 60. For simulation of the suboptimal policies, 10,000

cost mode sequences are generated according to the underlying Markov chain. Figure 17

shows the performance of several suboptimal policies with different values of θ. The subop-

timal policies inside the shaded area of Figure 17 are used for extracting the subset of the

states.

The stochastic DP using the entire state space was executed and the total number of states

for the given problem turned out to be 315. The subset of the states contains 46 elements

determined by the proposed method.

63

Figure 17: Example 1: Simulation Results of the suboptimal Policies

The total cost of 10,000 tours for the first realization of the cost mode sequences are

calculated by the real-time performance evaluation using the 2 different optimal cost-to-go

values obtained by the stochastic DP in the entire space and just in the subset of the states.

The optimal solution by the stochastic DP in the entire space is 1303591 and the solution

obtained by the proposed method is 1306110 which is a 65.6% improvement of the best of

the suboptimal solutions, 1310927. To verify the robustness of the cost-to-go obtained by

the proposed methods, the real-time performance evaluation was performed for different sets

of 10,000 cost realizations. The results of this policy evaluation verify the policy obtained

by the proposed method is robust with respect to different cost modes realizations and not

just for the realization set used for cost-to-go construction shown in Table 1.

3.3.5.2 Stochastic TSP Example 2 : 20 Cost Modes, 5 Cities

A larger example with 20 cost modes is introduced in this section. Although the number

of cities(5) in this example is same as the previous one, the complexity of the problem is

64

Table 4: Example 1: Comparison of the Solutions by 3 Different Methods for
Different Sets of Realizations(The values are the total costs for 10,000 tours)

Realization Set # 1 + 2 3 4 5
Full DP * 1303591 1302743 1292996 1296222 1297076
DP in the Subset * 1306110 1303299 1296291 1297953 1300475
The Best of Heuristics 1310927 1311197 1304445 1305716 1307001
% of Improvement ++ 65.60 93.42 71.20 81.70 65.76
* 315 States : Computational Time for BI = 12834 seconds
** 46 States : Computational Time for BI = 485 seconds

for ε < 0.01, where ‖Ĵ i+1(x̂(k))− Ĵ i(x̂(k))‖ = ε
on a Pentium III at 800 MHz: 512MB RAM

+ Realization Used for Cost-to-Go Construction.
++ The amount of improvement from the best of the heuristic solutions.

increased dramatically due to larger number of cost modes. All parameters of the prob-

lem(20, 5 by 5 cost matrices, a 20 by 20 state transition matrix and a investigation cost)

will be supplied by the authors upon request. For simulation of the suboptimal policies

developed in 4.5, 20,000 cost mode sequences are generated according to the underlying

Markov chain. Figure 18 shows the performance of optimal policies with different values of

investigation criteria θ.

As the proposed method is applied to the previous example, the suboptimal policies inside

the shaded area of Figure 18 are used to extracting the subset of the states. The total

number of states in the entire state space of the problem turned out to be 1748. On the

other hand, the subset of the states contains 176 states. The computational results for the

problem is summarized in following table 2.

The computational results shown in table 2 imply that the proposed method is efficient

in finding solutions within 0.5% of optimality in computation times much reduced from the

full stochastic DP, and also robust with respect to different cost mode realizations.

3.3.6 Conclusions

Planning and scheduling problems under uncertainty are a challenging class of stochastic

optimization problems. Finding reasonable ways to represent the uncertainty is crucial,

particularly when the decision involves actions whose sole purpose is to reduce uncertainty

65

Figure 18: Example 2: Simulation Results of the suboptimal Policies

and modify the information state. To begin to develop solution approaches for this class

of problems we introduced a new variant of the stochastic TSP. As a rigorous solution

method for the problem, a conventional stochastic optimization method, stochastic DP was

developed. However, due to the complexity of the problem, the conventional stochastic DP

approach incurs high computational costs, especially in the Bellman iteration procedure

for obtaining the optimal cost-to-go. The computational complexity of the conventional

DP formulation was reduced, without significantly compromising the solution quality, by

extending the heuristic synthesis used for the deterministic case by modification of the

conventional stochastic DP formulation. We tested the computational and performance

improvement via the method on 2 different examples with different problem sizes(small:

5 cost modes, 5 cities and larger: 20 cost modes, 5 cities). Finally, the basic idea of the

proposed method, solving optimization problem through the rigorous search of a solution

space that is composed of the states visited by suitable heuristics is quite general. The

66

Table 5: Example 2: Comparison of the Solutions by 3 Different Meth-
ods for Different Sets of Realizations(The values are the total costs for
20,000 tours)

Realization Set # 1 + 2
Full DP * 3732861 3717465
DP in the Subset ** 3735435 3723314
The Best of Heuristics 3748535 3741832
% of Improvement ++ 83.58 76.00
* 1748 States : Computational Time for BI = 5.5 days
** 167 States : Computational Time for BI = 2.5 hours

for ε < 0.01, where ‖Ĵ i+1(x̂(k))− Ĵ i(x̂(k))‖ = ε on a Pentium III at
800 MHz: 512MB RAM

+ Realization Used for Cost-to-Go Construction
++ The amount of improvement from the best of the heuristic solu-

tions.

introduced stochastic TSP is kept intentionally simple to facilitate the exposition of the main

idea. Obviously, we could have complicated the problem further by, for example, introducing

the possibility of cost transition after each segment of a tour, which will necessitate an

information state update and a new decision at every segment. The proposed method can

be generalized to this case without any difficulty. In fact, we expect it can be applied to

many types of optimization problems, multi-stage, stochastic, or multi-objective, as long as

some initial heuristics exist for their solutions.

Nomenclature for the Stochastic TSP

� Problem Description

– Ci : cost matrix i for cost mode i, for i = 1, 2, ...,M

– P : Markov Chain matrix for the cost mode transition

– P∞ : the limiting probability of P

– β : investigation cost

� States

– x̂ : information state vector, which represents the conditional probability of each

cost mode

67

– ẑ : information state after the investigation decision

– x̂data : the state visited by the simulation of the suboptimal policies

– ei : possible realization of the information state after the investigation, for i =

1, 2, ...,M

� The suboptimal Policies

– δ(k): investigation indicator, i.e. δ(k) = 1 ≡ investigation at time k, δ(k) = 0 ≡

no investigation at time k.

– γ(k) : ‖x̂(k)‖∞, an uncertainty size indicator.

– θ : investigation criteria threshold parameter

– C : mean cost matrix from X∞

– mtour : the optimal tour for the C

– Ĉ(k) : expected cost matrix from x̂(k)

– tour∗(k) : the optimal tour for the Ĉ(k)

� Current Cost and Cost-to-Go

– φ(x̂) : single tour cost

– φdata(x̂) : a tour cost from the simulation results of the suboptimal policies

– φperfect
i (x̂) : the optimal current cost with cost mode i

– Ĵ(x̂) : approximate cost-to-go value for state x̂

– Ĵ i(x̂) : approximate cost-to-go at the ith Bellman iteration

– J∗(x̂) : the optimal cost-to-go from the Bellman iteration

– α : discount factor for the cost-to-go calculation

68

CHAPTER IV

HIGH DIMENSIONAL DISCRETE STATE SPACE:

APPLICATION TO STOCHASTIC RESOURCE

CONSTRAINED PROJECT SCHEDULING PROBLEMS

4.1 Introduction

A challenge in highly regulated industries, such as pharmaceuticals and agrochemicals, is

the process of selecting, developing, and efficiently manufacturing new products that emerge

from the discovery phase. Candidate products must undergo a set of tests related to safety,

efficacy, and environmental impact, to obtain certification. The problem of scheduling these

tasks and associated analysis can be considered as a generalization of the well-known job

shop scheduling problem. The case in which all the problem data have known values belongs

to the NP-hard class of combinatorial problems[14]. In general, task success or failure is

uncertain and the time value of project reward varies, which adds more complexity to

the scheduling problem. In a specialized R&D pipeline management problem, the time

value of project reward decreases as the time to introduction of the product increases

due to incoming competitive products and fixed patent periods. Hence a company has to

manage its various resources, manpower, lab space, capital, pilot facilities, etc. to ensure its

best return on its new product pipeline, with the added complication that the outcome of

tasks is uncertain. Besides the uncertainty about the success of the task, there are several

additional uncertain parameters in real problems such as uncertainties in task duration and

resource(cost) requirement.

The project scheduling problem with unlimited resource [69] was introduced to the pro-

cess systems engineering area using a mathematical programming(MILP) based solution ap-

proach. In the case of unlimited resource, the overall objective function(net present value)

of the problem can be separated into the individual objective functions of each project since

69

one project does not influence the others. There has been significant progress in solution

methods [46, 13, 53, 66] for the problem with resource constraints as well as uncertainty in

the task outcome. However, previous solution methods for RCPSP have considered only a

subset of the potential uncertainties and have been based on mathematical programming

techniques. Even though the mathematical programming approach can account for uncer-

tainties of the problem via scenario generation, the approach is limited to a fairly small

number of scenarios due to the exponential increase in the computational load. Limitations

in the mathematical programming approach lie not only in the computational tractability

but also in the awkwardness in capturing richer representations of uncertainty. Notable

exceptions are [77, 76, 78] where a broader set of uncertainties in the problem are addressed

within a simulation and optimization (SIMOPT) framework. The SIMOPT framework de-

veloped in [77, 76, 78] achieved substantial improvement in combining stochastic simulation

and optimization by taking a discrete-event dynamic system’s view of the RCPSP. However,

outer iteration process of the SIMOPT where constraints are added to the MILP to steer

it away from decisions that gave poor outcomes in simulation cannot does not fully and

rigorously account for the way information and outcomes can influence the decisions.

In this study, we address the uncertainties in the RCPSP using a discrete time Markov

chain, which enables us to model correlations among the uncertain parameters. For example,

the probability of success of a future task may not be independent of the outcomes of

current or previous tasks. Furthermore, a novel solution method, dynamic programming in

a heuristically confined state space developed and illustrated in [27, 23, 21], is tailored to the

problem to obtain high quality solutions. The proposed approach is focused on solving the

RCPSP as a multi-stage online decision making problem. Finally, the proposed approach

is demonstrated by effectively solving a fairly complex stochastic RCPSP that can have up

to 1.2 billion different outcomes depending on realization of the uncertainty.

4.2 Problem Description : Stochastic RCPSP

We consider a simplified version of RCPSP with M projects, each of which consists of mi

tasks, for i = 1, ...,M . There are N resources(Laboratories), a specific resource has to

70

be used to perform each task. In the example formulation studied in this work, the re-

sources are represented as Laboratories(Lab.). Several problem parameters of a task, the

result(success or failure), the duration, and the cost, are uncertain. A detailed description

of the uncertainty model is given in section 4.2.1. A time-varying reward function is given

for each project to represent the decreasing value of the project with time. The reward func-

tion(equation (58)) is characterized by three parameters: ‘stiffness parameter’, α, ‘project

deadline indicator’, PD, and ‘final value’, β.

R(0) = R0 at k = 0

R(k) = R0 − eαk for 0 < k ≤ PD (58)

R(k) = β for k > PD

Figure 19 shows the reward function with R0 = 5, 000, α = 0.235 and PD = 34.

Figure 19: Decreasing Reward Function

4.2.1 Uncertain Parameter Modeling: Markov Chain & Conditional Probabil-
ity

RCPSPs with diverse representations of uncertain parameters have been addressed in the

literature [69, 46, 13, 53, 66, 77, 76, 78]. However, it appears that probabilistic correla-

tion among the uncertain parameters in the RCPSP has not been addressed previously.

71

Our problem representation is based on the premise that the result, duration and cost of

adjacent tasks in a project are correlated. For example, if a current task takes longer to

complete, then the duration of the next task also tends to be longer. The assumption is

particulary appropriate for the drug development pipeline management problem because

a candidate(drug) has to pass similar types of tests with varying number of patients. In

general, the correlation can exist between any 2 tasks in a project and can be modeled

by introducing corresponding transition probability. However, in this work we assume the

probabilistic correlation between 2 adjacent tasks only for simplification. The probabilistic

correlation among uncertain parameters can be modeled with discrete time Markov chains.

The nth task of a project i has rni realizations and each realization consists of the values

of the result, duration, and cost of the task from a discrete set as shown in Figure 2. For

example, ‘F, D11i, C11i’(the first realization set of the task 1 in Figure 2) represents failure

of the task with D11i duration and C11i cost. The possible discrete values for the parameters

may represent the actual values or the mean values for the parameters. Furthermore, to

represent the quality of the task result, multiple success levels can be introduced. For ex-

ample, the result of task can be classified into ‘failure(F)’, ‘moderate success(S1)’ and ‘high

success(S2)’ as shown in Figure 2. In the case of ‘high success’, the probability of success

in the next task can be made higher by specifying the underlying Markov state transition

probability accordingly. An explicit representation of the probabilistic correlation of the

uncertain parameters in a project with 3 tasks is shown in Figure 20.

Here, there are 3, 2, and 3 possible realizations for tasks 1, 2, and 3 respectively(r1i = 3,

r2i = 2 and r3i = 3). A Markov model for project i is defined with 3 probability matri-

ces(vector), PIi, PM1i and PM2i. The realization of the first task in project i is governed

by ‘initial probability vector’(PIi), which consists of r1i probabilities and for different po-

tential realization of the task. The realization of the second and third tasks are conditioned

by the realization result of the previous task and governed by r2i by r1i(PM1i) and r3i by

r2i(PM2i) transition matrices respectively. The summation of each column of the matrix is

equal to 1 and the ith column of the matrix represent a conditional probability vector when

the previous task is completed with the ith realization. In the matrices PM1i and PM2i,

72

Figure 20: Uncertain Parameter Modeling for a Project with 3 Tasks

the columns with zeros represent the state transition probabilities, which are identically

zero, which indicate that the task 2 is not performed if the task 1 fails. The shaded realiza-

tion linked with dashed lines in Figure 20 represents the scenario of ‘2(moderate success,

duration D21i, cost C21i)-2(success, D22i, C22i)-3(high success, D33i, C33i)’: each number

represents realization index of the task. For the project in Figure 20, there can be 9 pos-

sible scenarios, 6 scenarios with a completion of all the three tasks, 2 scenarios ended with

a task 2 failure and 1 scenario with a task 1 failure. With the propose uncertain parame-

ter representation, the illustrative example with 1,214,693,756 scenarios is represented with

one parameter table(Table 1 and 2). In summary, the proposed representation compactly

represents quite complex interactions between task outcomes.

4.3 Dynamic Programming Formulation

The RCPSP is characterized by a sequence of combinatorial decisions made with respect to

portfolio composition and resource allocation, both of which may depend on the state of the

system at the time of the decision. The problem can be classified as a ‘multi-stage stochastic

optimization problem with recourse’ or a ‘stochastic optimal feedback control problem’.

Stochastic dynamic programming(DP)[7] is widely considered to be an effective way to

solve these types of problems. However, it suffers from what Bellman[5] referred to as “the

73

curse of dimensionality”, meaning that its computational requirements grow exponentially

with the number of state variables. If we can handle “the curse of dimensionality”, DP will

give us an optimal policy for the decision making based on the states(including the uncertain

information) at the time of each decision. In this section, we develop a DP formulation,

consisting of a definition of the state and action(decisions), the state transition rules, and

the objective function(cost-to-go). The formulation can yield the optimal solution but is

computationally infeasible. In the next section, an algorithmic framework that can overcome

the computational intractability of the DP formulation and provide a suboptimal but good

policy will be presented based on our previous work[27, 23].

4.3.1 State Space Definition

In defining the state of a system, it is important to adopt as parsimonious a state repre-

sentation as possible because any redundancy will increase the computational complexity.

Consider a RCPSP with M projects and N types of available resources(Laboratories). We

propose the following definition of the state for the problem :

X = [s1, s2, · · · , sM , z1, z2, · · · , zM , L1, L2, · · · , LN , t]T (59)

In (59), si for i = 1, 2, · · · ,M represents the current status of project i, containing the

formulation of which tasks are finished and which task is on-going for project i. Because a

finite number of tasks are involved in a project, si can be represented as an integer variable.

For example, there can be 7 possible states(circled number) in a project with 3 tasks as

illustrated in Figure 21.

zi for i = 1, 2, · · · ,M represents the information state of project i, which indicates the

Figure 21: Possible Project Status of a Project with 3 Tasks

result for the most recent task in the project. As explained in the problem description, the

parameters(i.e., the duration, cost, and result(‘success’ or ‘failure’)) of each task are realized

74

according to the conditional probabilities in the corresponding Markov chain. Once the task

in project i is completed, zi is updated. zi is an integer variable ranging from 1 to rni. rni

is the number of possible realizations for the nth task(the most recently realized) in project

i. The other state variables, Lj for j = 1, 2, · · · , N represents the time that the resource

has been used for the currently on-going task. And Lj = 0 indicates that the resource is

idle. Finally, time t is added as a state variable in order to consider the time-varying value

of the reward of each project. The state definition is distinguished from the one introduced

in [21] by the elimination of the state variables that represent the time spent so far for a

task in each project. In the definition of state and its transition rules(4.3.3), only the states

that influence the decisions are considered. This means, the state variable t, representing

time does not have to increase uniformly between consecutive state transitions.

4.3.2 Decisions

With the state defined as in equation (59), the decision(action), U , can be defined as in the

following equation (60).

U = [δ1, δ2, · · · , δM]T (60)

δi is a binary variable which represents whether to perform a task(1) or not to perform

a task(0) in the project i, for i = 1, 2, · · · ,M . The decision can be made only when an

appropriate resource is available, that is, ∃ Lj = 0 for some j = 1, 2, · · · , N . Otherwise, the

decision remains a null vector, U = [0, 0, · · · , 0]T .

4.3.3 State Transition Rules

In a discrete time system, the state at time k + 1, X(k + 1) can be derived from the state

at k, X(k), and the control action(decision) at k, U(k). For this application, the state

transition rules are given in an implicit rather than an explicit functional form.

1. Initial State
According to the definition of the state(Section 4.3.1), there is only one initial state
at time t = 0.

X(0) =

 1, · · · , 1︸ ︷︷ ︸
Status of M Projects

,

M Information States Variables︷ ︸︸ ︷
0, · · · , 0 , 0, · · · , 0︸ ︷︷ ︸

N Types of Resource

,

Time︷︸︸︷
0


T

(61)

75

2. Event-Based State Transition

As introduced in a previous part of this work(Section 4.3.1), state transition occurs

only after an ‘event’. An event is defined as the completion or start of a task. In

general, the start of a new task and the completion of a previous task happen at a

same time because there are always tasks ready to be executed. The concept of an

‘event’ is a more efficient way of representing the state transition than the one in our

previous work[21]. A common Gantt chart for a RCPSP with 5 projects(Figure 27)

is shown in Figure 22 with indications(dotted lines) of the ‘events’ and corresponding

states, x(k). where k is the state index in terms of the event. According to the

definition of an ‘event’, the Gantt chart can be represented with the 15 states instead

of the 31 states with a uniform time discretization.

Figure 22: A Gantt Chart with Events and States

(a) Starting of a Task with an Action(Decision)

Suppose that an action, U(k) = [δ1, δ2, · · · , δM]T is given by a certain decision

rule. According to the action, the current state, X(k), transitions to a temporary

state X ′(k+1). This temporary state transitions to the next state X(k+1) after

the completion of one or more of the on-going tasks. State transition from the

current state, X(k), to the temporary state, X ′(k + 1), is defined by following

76

equation.

X ′(k + 1) = f(X(k), U(k))

=
[
s′1, s

′
2, · · · , s′M , z1, z2, · · · , zM , L1, L2, · · · , LN , t

]T (62)

where, X(k) = [s1, s2, · · · , sM , z1, z2, · · · , zM , L1, L2, · · · , LN , t]T ,

U(k) = [δ1, δ2, · · · , δM]T and s′i = si + δi for i = 1, ...,M . Besides si, the other

state variables of X ′(k + 1), zi, Lj and t, are kept exactly the same as those

of X(k). The information state variable, zi is updated after the completion of

the corresponding task. The time spent in type j resource, Lj , also cannot be

updated before the realization because we have no idea when the ‘event’ will

occur. The 2nd step of state transition from X ′(k + 1) to X(k + 1) is always

accompanied by the completion of a task.

(b) Completion of a Task with a Realization

Given a decision with multiple actions, there can be more than one on-going

project in the temporary state X ′(k + 1). Suppose an on-going task(being per-

formed in resource type n) in the `th project is completed earlier than the other

on-going tasks and the mth values of the parameters were realized for the task.

Then the state transition from X ′(k + 1) to X(k + 1) will be :

X(k + 1) =
[
s′1, · · · , s′′` , · · · , s′M , z1, · · · , z′`, · · · , zM , L1, · · · , L′

n, · · · , LN , t′
]T(63)

where, X ′(k +1) = [s′1, s
′
2, · · · , s′M , z1, z2, · · · , zM , L1, L2, · · · , LN , t]T , s′′` = s′` +1,

z′l = m, L′
n = 0 and t′ is the time at which the task is completed. In some cases,

more than one on-going task can be coincidently completed at a same time. In

the case of simultaneous completion of multiple tasks, the corresponding state

variables for those tasks are updated in the same manner as it is described in

equation (63).

3. Terminal States

One characteristic of the RCPSP is that the task network of the problem is not de-

terministic due to uncertain outcomes(success or failure) of the tasks in the problem.

77

Even though there is a unique initial state, the problem can end with one of numerous

terminal states according to the realization. For example, in the Gantt chart(Figure

22), all the tasks in projects 3, 4 and 5 are completed. However, only one task in

projects 1 and 2(task I1 and I3, respectively) is performed due to task failures. The

number of possible terminal states depends on the stochastic complexity of the prob-

lem. We define the terminal state as the state where all the project are terminated.

The termination condition for each project is defined either by the successful comple-

tion of the final task or the failure of an intermediate task.

4.3.4 Objective Function : Cost-to-Go

The objective of the RCPSP is the maximization of the final reward after finishing all

projects. However, for the convenience of comparing solutions, the “Net Present Value”

of the solution(schedule) has been generally used in previous problem formulations[77, 76,

46, 69, 13, 53]. In this study, we will set the objective function as the final reward of the

problem for an exact evaluation of the solution. This objective can be translated into a

‘cost-to-go’ value, which represents the expected cost(-profit) to be spent from the current

state to the terminal state. As described in section 4.2, the value of reward for each project

decreases with time t. This reward decrease can be considered as an increase in the cost.

Therefore, the expected ‘cost-to-go’, J(X(k)), at current state X(k) is defined follows

J(X(k)) = E{Future Cost to Complete All Remaining Projects

− Rewards of Remaining Projects to be Retrieved in the Future} (64)

A large negative ‘cost-to-go’ means a high probability of retrieving a large amount of reward

in the future. On the other hand, if the ‘cost-to-go’ is positive, one can expect more cost

to be spent in order to complete the projects with less future rewards. To obtain initial

guess values of the cost-to-go in the equation (64), simulations can be performed with the

suboptimal heuristics introduced in section 4.5 and the cost-to-go values are evaluated for

all the points of the state trajectories visited by the heuristics.

It should be noted that the DP formulation developed in this section is limited to the

RCPSP, which has fairly simple problem structure, described in Section 4.2. However, the

DP formulation is flexible to be extended for richer problem structure by modifying the

78

state definition and introducing new actions. Further extension of the DP formulation for

more realistic RCPSP description will be discussed in Section 4.7.

4.4 Dynamic Programming in a Heuristically Confined State
Space

All the necessary elements of the DP are defined in the previous section. Thus, the problem

can be solved using the appropriate Bellman equation. However, the computational load

of the DP for realistic size examples will be beyond current computational capabilities.

Suppose that a problem is given with 3 projects, each of which consists of 3 tasks. Suppose

each task has 3 possible realizations and 2 types of resources are available and the longest

task duration is about 5 time units. If all the projects can be completed at t = 20, the

approximate number of states defined by the state definition(4.3.1) is about 4,630,500(7×

7 × 7 × 3 × 3 × 3 × 5 × 5 × 20 = 4, 630, 500). The number of states tends to increase

exponentially with the problem size, number of projects, number of possible realizations,

and number of resources. In this work, a DP approach with a systematic approximation,

DP in heuristically confined state space[27, 23, 21] is tailored for the given problem. The

main idea of the algorithmic framework is to first find an important set of states via a large

number of simulations with various heuristic policies and then solving the DP over the set

of states visited by the heuristics to obtain an optimal solution within the confined state

space as illustrated in Figure 23. The general steps for applying the algorithmic framework

will be similar to those shown in [23].

1. Stochastic Simulations with Heuristic Policies.

2. Identification of the set of visited states and the first cost-to-go approximation.

3. Bellman iteration in a heuristically confined state space

4. Online evalutaion

A detailed description of the algorithm follows.

79

Figure 23: Stochastic DP in the Subset of the States

4.4.1 Simulation of Heuristic Policies

The purpose of the simulation is two-fold. First, the simulation is performed in order to

obtain a meaningful set of the states within which the DP is to be performed. Obtaining

a reasonably sized subset containing trajectories of good policies is critical for solving the

problem because DP over the entire state space is computationally infeasible for the given

problem. For the simulation, a large number of uncertain parameter realization sets are

generated by the underlying Markov chains. Each realization set represents one scenario

out of the enormous number of possible scenarios. Several different heuristics are applied

for each realization and a set(trajectory) of visited states(as defined in 4.3.1) is obtained

from each heuristic. Because each heuristic works in a different way, there can be several

different state trajectories even for the same scenario. Those different state trajectories

will be combined in the state space by the later step, Bellman Iteration, of the algorithmic

framework. The heuristic policies applied for this problem will be described in Section 4.5.

Second, the simulation provides initial ‘cost-to-go’ values, which can be used in the

Bellman iteration step, for the states. According to the definition of the ‘cost-to-go’(4.3.4),

a ‘cost-to-go’ value is calculated for each state in the state trajectories obtained by the

80

simulation of the heuristic policies. The same state in different state trajectories can have

different estimates of its ‘cost-to-go’ values according to which heuristic is used. For ex-

ample, every state trajectory starts with the unique initial state, shown equation (77), but

different heuristic policies may give different average values of the reward and cost. In the

Bellman iteration step, one(lowest or average among the heuristics tried.) can be assigned

as the initial estimate of the cost-to-go for each state.

4.4.2 Cost-to-Go Calculation for the confined state space

The total number of state trajectories obtained by the simulation of the heuristic policies(30)

is ν×n, where ν is the number of realizations and n is the number of heuristics tried in the

simulation. The subset should consist of all non-redundant states in the ν × n trajectories.

This step requires substantial computation. If one state appears µ times in the set of

trajectories, all the realized cost values obtained from the trajectories are added and divided

by µ for the initial ‘cost-to-go’ value calculation. For example, the cost-to-go value for the

initial state is chosen as the mean value of the total rewards minus the total costs over all

the simulations. The initial guess for the ‘cost-to-go’ values obtained in the previous step

are used as Ĵ0 to initialize the Bellman Iteration, where we iterate the following equation

(65) for each state X(k) in the subset, until Ĵ i meets a certain convergence criteria, i.e.

||Ji+1−Ji

Ji ||∞ < 0.01:

Ĵ i+1(X(k)) = min
u(k)

E{φ(X(k), u(k))−R(X(k + 1)|X(k), u(k)) + Ĵ i(X(k + 1)|X(k), u(k))}(65)

In the above, φ(X(k), u(k)) represents the cost incurred by the decision u(k) for the state

X(k) and R(X(k + 1)|X(k), u(k)) is the reward retrieved at the completion of a project as

a result of decision making. The reward value will be zero unless a project is completed at

state k + 1. It should be noted that the Bellman Iteration equation(65) is consistent with

the cost-to-go definition shown in the equation (64). Suppose that mth state is the terminal

state of a certain state trajectory. The total reward of the solution(state trajectory) is a

consequence of all the costs spent and all the rewards retrieved along the state trajectory

from the initial state to the terminal state. The total reward(TR) can be obtained by

81

following equation (66),

TR =
m−1∑
k=0

(R(X(k + 1)|X(k), u(k))− φ(X(k), u(k))) (66)

Thus, if we convert the total reward into the cost-to-go, the cost-to-go value for the initial
state, J(X(0)), is

J(X(0)) = −TR =

m−1∑
k=0

(−(R(X(k + 1)|X(k), u(k)) + φ(X(k), u(k))) (67)

= φ(X(0), u(0)) − R(X(1)|X(0), u(0)) + J(X(1))

= φ(X(0), u(0)) − R(X(1)|X(0), u(0)) + φ(X(1), u(1)) − R(X(2)|X(1), u(1)) + J(X(2))︸ ︷︷ ︸
J(X(1))

...

The Bellman Iteration equation shown in the equation (65) is a generalization of the equa-

tion (67) with the expectation evaluation and cost-to-go minimization over the various

stages.

For each state in the subset, we can identify all the possible decisions, u(k), from the

definition in 4.3.2. Once we know the possible decisions, the expected cost can be calculated

for each of the possible decisions using the conditional probability. For each one of these

decisions, the possible next states and their transition probabilities are obtained analytically

according to the state transition rules and the given conditional probabilities. Each of those

possible next states has the cost-to-go value calculated from the previous iteration and the

information about the status of all the projects for the retrieved reward, R(X(k + 1)),

calculation. In the calculation of the reward, the last state variable, t, and the given reward

functions(equation (58)) have to be used for obtaining the exact value of the reward at the

time of its retrieval. After a sufficient number of iterations of equation (65), the converged

cost-to-go J∗(X(k)) is obtained for every state in the subset.

� Cost-to-Go Approximation for Partially Connected States

In the Bellman Iteration equation of (65), the calculation of E{φ(X(k), u(k))} and

E{R(X(k + 1)|X(k), u(k)))} can be done exactly for every possible case. However,

the exact calculation of E{Ĵ i(X(k + 1)|X(k), u(k))} is not possible because there is

no guarantee that the subset is closed, i.e., for any state in the subset, all possible

82

next states are in the subset as well. The subset may be open for the following two

reasons:

1. A finite number of heuristic policies, which do not cover the entire

decision space, are applied in simulation to form the subset.

The states in the subset are not arbitrarily chosen. A set of reasonable heuristics

are implemented in simulation to collect all the visited states. Hence, in doing

so, many state transitions, possible with certain decisions not covered by the

heuristics, may never have occurred during the simulation. The states involved

in the unrealized transitions would not have been included in the subset. Indeed,

our intention was to reduce drastically the number of states we must examine.

2. Only a finite number of realizations are simulated

If the number of possible scenarios are very large, it is unlikely that one can

realize every possible scenario in simulation because some scenarios have a very

low probability of occurring.

The states not included in the subset due to 1 and 2 have to be distinguished and

dealt with differently in the Bellman iteration. In the case of 1, a group of possible

next states associated with decisions not covered by the chosen heuristics, are not

visited at all in the simulation.

In Figure 24, the decision u2(k) has never been made during the heuristic simulation.

To confine the decision to those leading to a state in the subset, we propose to prevent

the unseen decision by assigning a large cost-to-go values to those states. The large

cost-to-go value will act as a barrier for the decision and one of the other decisions

will be chosen in the minimization step of the Bellman Iteration. This implies that

the large cost-to-go values will not be propagated to current or previous states. This

cost-to-go approximation is based on the assumption that a reasonable number of

good heuristics have been tried and all good decisions have been covered.

For reason 2, some of the next possible states associated with a simulated decision

may be absent in the subset In Figure 24, a state linked from the decision u3(k) is

83

Figure 24: Cost-to-Go Approximation Type 1

not in the subset because the state transition is not only governed by the decision

but by random factors as well. Theoretically, all the possible states under the tried

heuristic policies can be included in the subset by performing a ‘sufficient’ number

of realizations. However, for a problem with an enormous number of scenarios(i.e.

Illustrative Example in Section 4.6), this may not be feasible. Thus, an approximation

strategy is necessary to deal with this inevitable absence of some states in the subset.

If a state is not in the subset due to the reason 2, it implies that the probability of

transition to the state is comparatively small. Thus, we suggest that those states

can be ignored and the state transition probabilities for the rest of the states are

normalized accordingly as shown Figure 25.

With the proposed approximation methods, the Bellman Iteration gives ‘converged’ cost-to-

go values rather than ‘optimal’ cost-to-go values. The issue of the open subset is re-examined

in the next step of online decision making.

84

Figure 25: Cost-to-Go Approximation Type 2

4.4.3 Online decision making

The ‘converged’ cost-to-go values obtained in the previous step are used for online decision

making as follows. If the ‘converged’ cost-to-go, Ĵ∗, is the optimal cost-to-go, the following

decision u∗(k) also will also be optimal according to the ‘Principle of Optimality’ of DP.

u∗(k) = arg min
u(k)

E{φ(X(k), u(k))−R(X(k + 1)|X(k), u(k)) + Ĵ∗(X(k + 1)|X(k), u(k))}(68)

However, the decision may be suboptimal because the converged cost-to-go, Ĵ∗, is obtained

by the approximation procedure described in section 4.4.2. Furthermore, the online decision

making equation of (68) is not valid for every situation because the random factors may

take the system outside the previously experienced subset. The online decision has to be

robust for any possible realization, some of which may lead a state trajectory outside the

subset, for which the cost-to-go is not available. In this work, we use the following two

approaches to online decision making.

� Method 1 : Online decision making with a cost-to-go barrier

A fixed high cost-to-go value is assigned to all states outside the subset, thereby

making a decision leading to a state outside the subset highly unlikely. This approach

is basically the same as the approximation method developed for the Bellman Iteration

step.

85

� Method 2 : Online decision making with a guiding heuristic

In this approach, we allow the state to step outside the subset. We use a heuristic

policy whenever a state outside the subset is encountered. The best among the tried

heuristic policies, in terms of the mean value of the reward can be used for this.

Once the state comes back into the subset, the decision making is switched to the

minimization of the cost-to-go, as shown in Figure 26.

Figure 26: online Decision Making with A Guiding Heuristic

4.5 Suboptimal Policies : Heuristics

To apply the algorithmic framework developed in [23], developing a set of reasonable heuris-

tics for the problem is very important so that a reasonable subset of the states can be formed.

In this section, three heuristics, which utilize information from the state as defined in 4.3.1,

are developed for the Resource-Constrained Project Scheduling Problem(RCPSP). These

heuristics emphasize different information about the problem and hence combining them

together could lead to a better overall performance.

4.5.1 Heuristic 1 : High Success Probability Task First

In RCPSP, the result(success or failure) of the task is a very important factor affecting

the final reward, as well as the remaining part of the scheduling solution. Heuristic 1 is

86

developed based on maximizing the probability of the success of the next allocated task. For

the decision, the expected success probability of each task is calculated based on the current

information state, zi(k) for i = 1, 2, ...,M . Once we know zi(k) for each task, we can also

obtain the corresponding conditional probability for each outcome. The expected success

probability of the task can be calculated by summing the probability of each successful

outcome. This heuristic can be modified for the case of multiple level of success by assigning

appropriate weighting factors for the different levels of success.

4.5.2 Heuristic 2 : Short Duration Task First

Another way to increase the final reward of the projects in the RCPSP is to finish the

projects as quickly as possible in order to minimize the loss of reward with time. Heuris-

tic 2 considers the time value of the project in a greedy way by performing a task with

shortest expected duration first in cases of resource conflicts. The expected duration can

be calculated by utilizing current information state, zi(k),as in the calculation of expected

success.

4.5.3 Heuristic 3 : High Reward Project First

Heuristic 3 gives priority to the impending task of the project which has the highest potential

reward. This is a very greedy decision to get a highest reward in a short time with the

smallest reward decrease. Heuristic 3 may work well if the project with the high reward

is completed successfully. Its drawback is the other projects can be delayed too long.

Therefore, if a project with the highest reward fails, the total reward can be decreased

significantly. In the R&D pipeline management problem, priority of each project is decided

in the order of initial reward value. The decision making procedure is straightforward, all

the tasks in the project with the highest reward are performed first and so on. If there is

an idle resource after assigning a pending task in the target project, the resource is used to

perform a task in the next priority project.

87

Table 6: Example 1, Probabilities and Parameters
Project Realized Result, Duration and Cost of the Task

I1 I2 P1 F 3 250
F 5 500
S1 4 300
S1 4 300
S2 5 400

 [
F 4 350
S1 5 300
S2 6 250

] 
F 4 300
F 7 650
S1 5 500
S1 4 450
S1 3 300
S2 3 400


Project 1 PI1 PM11 PM21 0.1897

0.2441
0.2842
0.2276
0.0543

 [
0 0 0.1797 0.3013 0.0084
0 0 0.4143 0.6562 0.3001
0 0 0.4061 0.0425 0.6915

] 
0 0.2646 0.0057
0 0.1193 0.1109
0 0.0871 0.1964
0 0.0067 0.1991
0 0.3273 0.2430
0 0.1951 0.2449


I3 I4 P2

F 3 300
F 5 400
S1 4 350
S1 6 500
S1 5 600
S2 3 350


 F 5 700

F 6 650
S1 8 900
S1 7 600
S2 5 400

 [
F 4 550
S1 6 600
S2 5 450

]
Project 2 PI2 PM12 PM22 0.1897

0.2441
0.2842
0.2276
0.0543

 [
0 0 0.1797 0.3013 0.0084
0 0 0.4143 0.6562 0.3001
0 0 0.4061 0.0425 0.6915

] 
0 0.2646 0.0057
0 0.1193 0.1109
0 0.0871 0.1964
0 0.0067 0.1991
0 0.3273 0.2430
0 0.1951 0.2449



4.6 Illustrative Example

As an illustrative example of the RCPSP, we consider a generalized R&D pipeline problem

that has 5 projects with 2 resources. AoN(Activity-on-Node) graph of the example is shown

in Figure 27. The AoN displays the sequence of tasks involved in each project with the

resources required to complete the tasks(e.g. task ‘I1’ has to be performed in Laboratory

1 (Lab.1)). A parenthesized number over each task represents the possible number of

outcomes(in terms of the duration, cost, and result, the multiple levels of success or failure

of the task) of the task. A Markov chain is given for each project to represent correlations

among the outcomes of adjacent tasks of a project. For example, for task I1, which has 5

possible outcomes, a 5×1 probability vector is assigned each element of which represents a

probability of the corresponding outcome. The conditional probabilities for the outcomes

of the task I2 is assigned based on the realized outcome of I1. Since I1 and I2 have 5 and

3 possible realizations respectively, the size of the probability matrix for I2 is 3×5. Each

column represents the conditional probability vector for the possible outcomes of I2. All

the probabilities and parameters of the example are summarized in Table 13 and 7.

Ri, for i = 1, ..., 5, indicates the initial reward of project i at time k = 0. After time

k = 0, the reward of each project decreases as shown in Figure 28. The reward profile in

88

T
ab

le
7:

E
xa

m
pl

e
1,

P
ro

ba
bi

lit
ie

s
an

d
P
ar

am
et

er
s

(C
on

ti
nu

ed
)

P
ro

je
c
t

R
e
a
li
z
e
d

R
e
su

lt
,
D

u
ra

ti
o
n

a
n
d

C
o
st

o
f
th

e
T
a
sk

I
5

I
6

I
7

P
3

   F
4

4
0
0

F
6

6
0
0

F
7

6
5
0

S
1

4
5
0
0

S
1

5
4
5
0

S
1

3
3
0
0

S
2

2
2
5
0

   
[F

4
4
0
0

S
1

6
5
5
0

S
1

5
4
5
0

S
2

3
1
5
0

]
 F

3
8
0
0

F
6

5
0
0

S
1

5
4
5
0

S
1

5
7
0
0

S
2

7
3
0
0

 
[F

5
6
0
0

S
1

7
3
0
0

S
1

4
4
5
0

]
P

r
o
je

c
t

3
P

I
3

P
M

1
3

P
M

2
3

P
M

3
3

   0
.0

8
2
7

0
.2

4
8
0

0
.1

8
7
7

0
.1

0
6
4

0
.1

9
2
3

0
.0

6
9
2

0
.1

1
3
6

   
   

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

9
7
0

0
.3

3
7
6

0
.3

2
5
8

0
.0

3
9
6

0
.3

2
3
8

0
.3

1
4
9

0
.2

5
1
8

0
.1

0
9
5

0
.1

0
6
7

0
.3

6
9
6

0
.4

1
7
2

0
.1

0
6
5

0
.1

2
3
8

0
.1

2
6
1

0
.1

3
8
4

0
.6

1
1
7

   T
 0

0
.0

7
0
3

0
.1

7
1
8

0
.0

0
3
3

0
0
.1

9
0
7

0
.1

7
0
5

0
.0

2
9
0

0
0
.2

8
5
6

0
.1

6
8
0

0
.1

7
5
4

0
0
.1

9
6
4

0
.1

5
3
7

0
.3

8
3
4

0
0
.2

5
7
1

0
.3

3
6
1

0
.4

0
8
9

 
 

0
0

0
0

0
0

0
.4

6
6
6

0
.0

1
2
3

0
.5

2
1
2

0
.3

0
5
4

0
.3

2
1
7

0
.3

7
2
8

0
.1

0
6
0

0
.3

9
9
6

0
.4

9
4
4

 T

I
8

I
9

I
1
0

P
4

[F
4

4
5
0

F
6

5
5
0

S
1

3
6
0
0

S
2

4
4
0
0

]
  F

7
6
0
0

F
3

4
5
0

S
1

4
3
0
0

S
1

7
8
0
0

S
1

5
5
0
0

S
2

2
3
0
0

  
[F

7
4
0
0

S
1

5
5
0
0

S
2

6
3
5
0

]
 F

3
3
0
0

F
8

7
0
0

S
1

6
4
5
0

S
1

4
6
0
0

S
2

2
5
0
0

 
P

r
o
je

c
t

4
P

I
4

P
M

1
4

P
M

2
4

P
M

3
4

[0
.0

4
2
9

0
.2

2
1
1

0
.3

2
4
8

0
.4

1
1
2

]
  0

0
0
.1

2
8
5

0
.0

3
2
3

0
0

0
.1

6
6
4

0
.0

4
8
4

0
0

0
.1

8
2
5

0
.1

4
7
5

0
0

0
.0

3
3
5

0
.2

2
2
4

0
0

0
.2

6
5
8

0
.2

5
7
7

0
0

0
.2

2
3
3

0
.2

9
1
8

  
  

0
0

0
0

0
0

0
.3

7
3
3

0
.2

0
1
0

0
.4

2
5
8

0
.2

2
0
3

0
.3

0
7
8

0
.4

7
2
0

0
.2

8
6
3

0
.5

5
4
2

0
.1

5
9
4

0
.0

4
2
2

0
.3

0
6
6

0
.6

5
1
1

  T
 0

0
.1

5
6
4

0
.0

5
5
0

0
0
.0

9
1
2

0
.0

0
9
3

0
0
.2

1
1
1

0
.1

7
6
9

0
0
.3

0
0
7

0
.4

0
2
0

0
0
.2

4
0
6

0
.3

5
6
8

 
I
1
1

I
1
2

P
5

[F
4

4
5
0

F
6

5
5
0

S
1

3
6
0
0

S
2

4
4
0
0

]
  F

7
6
0
0

F
3

4
5
0

S
1

4
3
0
0

S
1

7
8
0
0

S
1

5
5
0
0

S
2

2
3
0
0

  
 F

3
3
0
0

F
8

7
0
0

S
1

6
4
5
0

S
1

4
6
0
0

S
2

2
5
0
0

 
P

r
o
je

c
t

5
P

I
5

P
M

1
5

P
M

2
4

[0
.2

0
3
1

0
.5

6
6
3

0
.2

3
0
6

]
    0

0
.0

4
1
9

0
.0

0
0
4

0
0
.1

5
6
0

0
.0

0
2
5

0
0
.0

5
4
6

0
.0

3
8
9

0
0
.2

0
3
5

0
.0

7
1
7

0
0
.0

2
9
9

0
.1

6
5
5

0
0
.1

1
3
7

0
.1

9
8
6

0
0
.1

9
5
1

0
.2

3
9
1

0
0
.2

0
5
4

0
.2

8
3
3

    
    

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

5
2
8

0
.2

3
2
6

0
.2

6
0
5

0
.3

5
4
0

0
.0

9
5
4

0
.2

7
2
7

0
.3

1
3
6

0
.3

1
8
4

0
.3

1
1
6

0
.3

5
3
9

0
.0

7
6
2

0
.2

5
8
3

0
.0

0
1
3

0
.2

6
8
8

0
.3

4
9
0

0
.3

8
1
0

0
.0

5
6
4

0
.2

5
4
7

0
.3

1
9
0

0
.3

6
9
9

    T

89

Figure 28 represents the “time value” of each project due to competitive market situation.

If a project is delayed for too long(longer than PDi, ‘project deadline’), the reward from

completing the project can be insignificant because similar drugs(products) developed by

competitors may have taken a large market share.

Figure 27: RCPSP Illustrative Example

Figure 28: Reward Profile of the Projects in the Illustrative Example

� Stochastic Complexity of the Example

The illustrative example is a small size RCPSP, which consists of only 5 projects. How-

ever, it is actually a large size problem due to its stochastic complexity. One measure

90

of the stochastic complexity of the problem is total number of possible scenarios under

different parameters realizations. Figure 29 shows project 1 in the illustrative exam-

ple and its realization data. According to the realization data, there are 36 scenarios,

6×2×3(6 realizations in P1, 2 realizations in I2 linked to P1 and 3 realizations in I1

linked to I2), in case of project termination with P1 completion, i.e. all three tasks

in the project are completed. In same way, in case of project termination with I2 and

I1 completions, there are 3 and 2 scenarios respectively. Thus, the total number of

scenarios of the project 1 is 41.

In summary, with given realization data in Table 13, total number of scenarios of

Figure 29: Project 1 in the Illustrative Example

the project 2,3,4 and 5 is 46, 139, 94, and 47 respectively. The scenarios of each

project are independent of each other, thus, total number of scenarios of the problem

is 1,214,693,756 found by multiplying the number of scenarios of all projects.

4.6.1 Simulation with the 3 Heuristic Policies

The three Heuristics introduced in section 4.5 were implemented on the illustrative example.

For the simulation, 50,000 uncertain parameters realizations were performed according to

the underlying Markov chains for each heuristic. The simulation results of Heuristic 1, 2 and

3 are shown in Figure 30. For all three heuristics, -8200 is the worst realized reward value

corresponding to Project1 3-3-2(failure), Project2 5-4-2(success), Project3 4-2-3-1(failure),

Project4, 4-6-2-1(failure) and Project5 3-5-1(failure). All the projects are successful before

91

the final tasks and all the final tasks fail except for project 2. Therefore, a large amount of

money had been spent to perform all the tasks without any reward. The one project(P2),

which has been completed successfully, retrieves only the minimum reward of the project(0)

due to the long delay of the project under the heuristic rules. On the other hand, the max-

imum rewards of the heuristics and the corresponding realizations in which the maximum

rewards are obtained are different for different heuristics, as summarized in Table 8. To

achieve large rewards, projects 3,4, and 5 have to be completed successfully and quickly.

Heuristic 1 works effectively to meet this requirement based on the expected success prob-

ability of each task. The first tasks(I1 and I3) in projects 1 and 2 are performed at the

end, as shown in Figure 32, and all the other projects are completed before their project

deadline. Heuristic 3 also works in a similar way to Heuristic 1 though it completes projects

4 and 5(at time 19 and 15) earlier than Heuristic 1(at time 24 and 20) does. In the case of

the Heuristic 2, tasks I1 and I3 in the failed projects are performed at earlier stages due

to their short expected durations and the other projects are delayed. Most of all, the delay

of the project 5 is critical because it is completed after its ‘project deadline’. In summary,

the simulation results(Table 8, 9 and Figure 30 to 32) indicate that none of the heuristics is

uniformly superior. The relative performances of the different heuristics vary by realization.

To obtain better results, the decision policy has to capture the overall stochastic complexity

of the problem and utilize the information state appropriately. The simulation results will

be used for obtaining a policy that performs better than any of the heuristics and this is

done by performing DP within the visited region of the state space. The details of imple-

mentation procedures and results of the DP for the illustrative example will be described

in the next section.

Table 8: Heuristic Solutions: The Maximum Rewards

Realization #39804 Realization #7181 Realization #6452
Heuristic 1 Reward 27714* 20242 18502
Heuristic 2 Reward 16685 24902* 15531
Heuristic 3 Reward 25651 20429 25907*

* The chosen realizations correspond to those giving the maximum rewards for the three heuristics.

92

Figure 30: Heuristic Simulation Results for 50,000 Realizations

Table 9: Largest Positive Solution Difference Between 2 Heuristics through 50,000 Real-
izations

||H1s
*−H2s|| ||H2s −H1s|| ||H1s −H3s|| ||H3s −H1s|| ||H3s −H2s|| ||H2s −H3s||

15571 10400 21943 12265 15822 26672
* Solution Obtained by the Heuristic 1

The results shown in Table 9 shows the possibility of improving the solutions given

by the three heuristics by searching over the subset of the states visited by the heuristics

because none of the heuristics is dominant for all cases.

4.6.2 Implementation of DP in a Heuristically Confined State Space

The state of the illustrative example consists of 13 variables according the state definition

in 4.3.1 as shown in equation (69).

X = [s1, s2, s3, s4, s5, z1, z2, z3, z4, z5, L1, L2, t]
T (69)

The calculation of the total state space size is complex due to the inability of certain

combinations of completed tasks and event times to be realized. It is expected that the

duration of the whole schedule will be about 40 time units. Using this and estimates of the

longest task durations and an idea of the possible task parameter sets, approximately 230

93

billion states could be experienced.

4.6.2.1 Confining the State Space & Calculating the Initial Values of the Cost-to-Go

As a result of the heuristic simulation, 150,000 sets(trajectories) of states are obtained.

The total number of states in the sets is 1,741,484 including redundant states. The initial

state is visited most frequently(150,000 times) during the simulation because every heuristic

simulation starts with a unique initial state. Each of the 150,000 initial states may have

different values due to different realization and decision policy applied for the state. The

first approximation of the ‘cost-to-go’ for the initial state is given as an average of those

150,000 values. The initial ‘cost-to-go’ values of the other states are obtained in same

way. Although the idea is quite simple, this step requires significant computation. The

identification step took about 49.3 hours implemented in MATLAB on a Pentium 4 at 2.4

GHz with 2GB RAM. The resulting subset is consist of 371,168 non-redundant states. The

size of this subset is about 0.00016%(= 371,168
227,820,600,000)of the size of the the entire state space.

4.6.2.2 Bellman Iteration & Converged Cost-to-Go

For the 371,168 states in the subset, the Bellman iteration, equation (65), is performed with

the initial cost-to-go values obtained in previous step. In the Bellman iteration, a ‘cost-

to-go’ approximation procedure is necessary because the size of the subset is vanishingly

small compared to that of the entire state space. Accordingly, the approximation methods

developed in Section 4.4.2 are used for the iteration. At every iteration, 371,168 cost-

to-go values are updated for corresponding states in the subset. The iteration scheme

converged within an error tolerance ||Ji+1−Ji

Ji ||∞ < 0.01 after 14th iteration and took 7.9

days implemented in MATLAB on a Pentium 4 at 2.4 GHz with 2GB RAM.

4.6.3 Improved Solution: Online Decision Making

The decision policy obtained by the proposed approach is represented by the converged

cost-to-go values and the online decision making equation (68). Thus, once we have the

converged cost-to-go values, we can make a valid decision for any realization generated by

the underlying Markov chain model. In the online decision making, the future results of the

94

currently on-going tasks are not known at the point of decision. The transition from the

current state is a consequence of both the decision made according to equation (68), and the

parameter values chosen by the random process. State transitions outside the subset are

handled by two different methods, a cost-to-go barrier and a guiding heuristic, as explained

in Section 4.4.3.

4.6.3.1 Online Decision Making for the Realizations Used for Simulation of the Heuris-
tic Policies

To verify the performance of the policy obtained by the proposed approach, it is compared

to the heuristic solutions for the 50,000 realization used to synthesize the policy. The results

shown in Table 10 indicates that the proposed approach improves the mean performance

by about 8.5%. compared to the best heuristic policy, Heuristic 1. For the online decision

policy with a guiding heuristic, the best heuristic, Heuristic 1, is used as a guiding heuristic

and the policy is slightly more effective than the policy with a ‘cost-to-go’ barrier. This

result can be explained by observing the overall behavior of the policy, which tends to

work similarly to the best heuristic, the Heuristic 1, in many cases. Accordingly, for some

realizations for which the other heuristics are preferable, the policy using Heuristic 1 as a

guide does not really improve the solutions.

Table 10: Online Decision Making Results: 50,000 Realizations

H1 H2 H3 Best* Online 1+ Online 2-

Mean 7760.0 3963.3 7654.8 8409.1 8422.7 8450.4

Max. 27714 24902 25907 27714 28468.5 28468.5

Min. -8200 -8200 -8200 -8200 -8200 -8200

* The best heuristic solution for each realization.

+ Online decision making with cost-to-go barrier.

- Online decision making with a guiding heuristic.

As shown in Figure 33, the policy outperforms the heuristics even when the decision maker

presciently chooses the best heuristic for each given realization, an option impossible to

implement in practice since realization is not known ahead. However, the comparison

95

Table 11: Online Decision Making Results: Set of 5,000 New Realizations

H1 H2 H3 Best Online 1 Online 2
Mean 7758.9 3960.8 7636.1 8396.1 8445.8 8460.7
Max. 28123.6 21928.4 26479.5 28123.6 28168.5 28168.5
Min. -6950 -6950 -6950 -6950 -6950 -6950

demonstrates that there is a synergy among the heuristics and new policies that connect

the best parts of the heuristic solutions are synthesized. The proposed approach is also

computationally efficient. Average computational time of the online decision making for

each realization is only 7.5 seconds.

4.6.3.2 Online Decision Making for A Set of New Realizations

As explained in the previous part of this section, the stochastic complexity of the problem

is very high with 1,214,693,756 scenarios. The policy should be robust for any of these

scenarios even though they were not seen during its creation. To demonstrate the robustness

of the policy, it is tested for 5,000 realizations from the underlying Markov chain model that

were not part of the the training set. The computational results summarized in Table 11

and Figure 34 shows the robustness of the proposed approach in this example.

4.7 Extensions and Generalizations

In this section, potential extensions of the basic DP formulation(Section 4.3) for the sim-

plified version of the RCPSP described in Section 4.2 are discussed. Once the target prob-

lem(RCPSP in this work) is clearly defined as a stage-wise optimization problem, it can be

solved by the DP approach with appropriate definitions of the state and state transition

rules. Thus, the basic DP formulation developed in Section 4.3 is quite flexible and can

be extended to handle richer problem representations. The key ideas (e.g., definitions of

state and actions) for the extensions are briefly addressed in this section. We leave the de-

tailed state transition rules and other elements necessary for the extensions as future work

96

because along with the definitions of state and transition rules appropriate algorithmic en-

hancements need to be made to handle the substantially larger state space resulting from

the extensions.

4.7.1 Dynamic Task Sequencing

In the simplified version of the RCPSP, a fixed sequence of tasks is assumed. However, the

sequence of tasks can be a decision variable in real problems. Dynamic task sequencing can

be embedded in our framework by adding a new state variable, qi for i = 1, 2, ...,M , which

is used to represent different possible task sequences in a project i. With the additional

state variable qi, the original state definition in equation (59) is modified as following.

X = [s1, s2, · · · , sM , q1, q2, · · · , qM , z1, z2, · · · , zM , L1, L2, · · · , LN , t]T (70)

If tasks I6 and I7 of project 3 in the illustrative example in Section 4.6 and Figure 27 are

exchangeable, the new state variable q3 can be used to distinguish between the two different

task sequences as shown in Figure 35.

The state variable si for project status indication remains the same as defined in Section

4.3.1 but it represents various project status combined with the given project sequencing

variable qi. The choice of task sequence can be a part of the decision with a slight modi-

fication of the sequence decision variable δ3. In equation (60), δ3 was defined as a binary

variable; however, in the case where task sequence is to be chosen, after the task I5 is

successfully completed(s3 = 3), δ3 can be 0(not to perform either task), 1(to perform a task

I6, with q3 = 1), or 2(to perform a task I7, with q3 = 2). Appropriate state transition rules

need to be developed according to the new definitions. Of course, options for task sequences

can take on a much more complex form, which can enlarge the state space and complicate

the transition rule.

4.7.2 Complicated Task Sequences and Actions

In real RCPSPs, there can be branching or merging of the task sequence rather than a

straight sequence assumed in the simplified version of the RCPSP [46, 78]. Such complicated

task sequences can be handled by the DP formulation in Section 4.3 by modifying the state

97

variable si, which represents the project status, while keeping the state vector the same as

in equation (59). Suppose that a project has a branching and merging task sequence as

shown in Figure 36.

For the project shown in Figure 36, the state variable si can be defined as summarized in

Table ?? to distinguish among the various states of the project.

As illustrated in Figure 36 and Table ??, the extension is not limited to a specific type

of structure as long as the state variable si can be appropriately defined. For example, we

may have another branching to task I3′ as shown in the Figure 36. Task I3′ can be a task

that must be completed prior to task I4, or it can be an outsourcing option, in which case

it is treated as an alternative path to task I3. In addition to the modified state variables,

additional action variables may be necessary to describe the decision regarding the options

in the new structure. Figure 37 illustrates the extended action space at si = 3 for the task

structure shown in Figure 36.

4.7.3 Uncertain Resource Requirements and Various Types of Resource Re-
quirements

In more realistic RCPSPs, multiple types of resources may be required for a task. The

multiple resource requirement can be considered in the current state definition in equation

(59) by extending the value space of the state variables Lj for j = 1, 2, ..., N . Suppose

that we have 5 type-1 Laboratories(equipment) and 3 type-2 Laboratories, then we need to

define state variables, L1 and L2 as the number of remaining units for the respective resource

type. For example, if two type-1 Laboratories and one type-2 Laboratories are required to

perform a task when [L1 L2] = [5 3], the state variables become [L1 L2] = [3 2] after the task

is started. Besides the equipment, amount of labor(number of technician) can be treated

as a resource[46] and the requirement for this type of resource can be uncertain[76]. The

labor(resource) requirement can be incorporated into the model by introducing additional

state variables, pi, for i = 1, 2, ..., L. where L is the number of different types of labor.

X = [s1, s2, · · · , sM , z1, z2, · · · , zM , L1, L2, · · · , LN , p1, p2, · · · , pL, t]T (71)

98

The state variable, pi, is an integer variable ranging from 0 to the maximum number of units

for the ith type labor and indicates the number of units available at the time. For example,

if we have two different types of labor for a RCPSP with five projects, p1 and p2 are added

as state variables to the previously defined state. Suppose the maximum available number

of type-1 labor and type-2 labor are 20 and 30 respectively and p1 = 10 and p2 = 0. Then

we have 10 type-1 and 0 type-2 labor available at the time.

The uncertain labor requirement can be considered in the Markov chain, not in the

definition of state and state transition rules, similar to how the cost of a task is treated as

an uncertain parameter in Section 4.3.1.

4.7.4 New Project Arrival

In realistic RCPSP, new projects may arrive while the current project scheduling is on-

going. At the simplest level, one can reformulate the problem and develop a new policy

at that point. However, for problems where new projects occur on a frequent basis, the

decisions prior to their arrival may need to account for the possibilities of new projects. For

example, one may want to reserve some resource in order to be able to accommodate very

promising projects that may come later. Complicating this is that information about future

projects including the number, arrival time, and characteristics of the projects is not known

exactly. Hence, one can assume certain statics about these unknowns and accommodate

them in the simulation based methodology.

In such a case M in the state definition would represent the maximum number of projects

that can go on at any particular time. This way not all M projects may be active at any

given time. Whenever a new project arrives, one of the “inactive” project slot is “activated.”

Also, once a project is completed or cancelled, the state variables relevant to that project

are reset so that it can represent another project in the future.

It should be noted that all the extensions discussed in this section can be superimposed

to represent a more complicated RCPSP structure. It doesn’t require a fundamental change

to the methodology. However, two practical limitations exist, which are the capability of

the algorithm to handle a very large state space and the existence of reasonable heuristics.

99

Hence, for meaningful treatment of these extended problems, these issues will have to be

resolved. This, however, is beyond the scope of the current work.

4.8 Conclusions

A stochastic resource-constrained project scheduling problem(sRCPSP) has been addressed

by using Markov chains to model key uncertainties(the duration, cost, and result of a task).

To solve the problem, a DP formulation has been developed with the appropriate definitions

of state, including the information state variables, state transition rules, and actions. The

conventional stochastic DP approach cannot be used as a solution method for the problem

due to the enormous state space. A novel algorithmic framework, DP in a heuristically

confined state space[23], was tailored for the problem. The algorithmic framework has

been tested by solving an illustrative SRCPSP with significant stochastic complexity. By

simulating the problem with three heuristic policies, we obtained a set of visited states,

which corresponds to only about 0.00016% of the entire state space. We then performed

DP over the states with reasonable computation time. The policy obtained by solving

the DP showed superior performance to any of 3 heuristic policies. Indeed, the solution

obtained by the policy on average outperformed the best heuristic solution chosen for each

different realization. Furthermore, the robustness of the policy was confirmed by solving

the problem with a different set of realizations, data of which were not used to create the

policy.

The proposed algorithmic framework, DP in a heuristically confined state space, is a

general solution approach that can handle a much wider class of sRCPSP. For example,

including decisions to cancel an on-going project [66] is an important issue in problems in

which new projects arrive during the scheduling period. This feature can be incorporated

into our methodology by providing a reasonable way to represent project arrivals within the

state space framework. Some extensions of the proposed approach needed to handle more

realistic RCPSPs were discussed in Section 4.7. Beyond sRCPSPs, the algorithm approach

presented may have applicability in supply chain planning and process design[18].

100

Figure 31: Gantt Charts of Heuristic Solutions for the Worst Case Realization # 3398

101

Figure 32: Gantt Charts of Heuristic Solutions for Realization # 39804

102

Figure 33: Evaluation of the Online Decision Making Performance for 50,000 Realizations

103

Figure 34: Evaluation of the Online Decision Making Performance for New 5,000 Realiza-
tions

Figure 35: Two Different Task Sequences in Project 3 of the Illustrative Example

104

Figure 36: A Project with Branching and Merging Tasks, or Outsourcing Options

Figure 37: Outsourcing Actions

105

CHAPTER V

MODEL-FREE STATE TRANSITION RULES:

APPLICATION TO STOCHASTIC RESOURCE

CONSTRAINED PROJECT SCHEDULING PROBLEMS

WITH NEW PROJECT ARRIVALS

5.1 Introduction

In many Resource-Constrained Project Scheduling Problems(RCPSP), the set of projects to

be performed is dynamic. For example, while performing the projects according to a certain

decision policy, a new project can emerge. To make an appropriate decision for the problem

with dynamic project arrivals, project cancellation decisions [66] have to complement the

conventional scheduling decisions.

In this study, a stochastic RCPSP(SRCPSP) with dynamic project arrivals is addressed

with an appropriate project cancellation strategy. The proposed solution strategy is based

on the simulation-based Dynamic Programming(DP) approach, which we have developed

and applied to small SRCPSPs in our previous work [24, 22]. From an algorithmic stand-

point, the approach is modified to handle an extended problem structure, dynamic project

arrivals and expected profit changes. However our previous work has limitations in handling

complicated SRCPSP. The analytic calculation of the all possible state transition probabil-

ities is not practically feasible for a large size problem due to complex interactions among

states, actions, and uncertain parameters. The bottleneck is overcome by developing an ap-

propriate Q-Learning algorithm [86, 79, 8], which can be used when a model of the system

is unavailable, for the problem. The Q-Learning algorithm can be viewed as a simultaneous

identification of the probabilistic state transition rule and the Q-Values function. Hence, it

removes the need to perform the analytical calculation of the transition rule, which can be

painstakingly tedious. Stochastic simulation under certain suboptimal policies (heuristics)

106

is used to obtain the numerical state transition probabilities as well as the subset of states,

which are defined as combinations of the conventional states and the corresponding actions,

and initial cost-to-go values for the value (Q-Value) iteration.

In next section, we present a SRCPSP with new project arrivals and its complicated de-

cision problem structure. Then, a generalized Q-Learning algorithm for the problem is

discussed with appropriate definitions of state, action, state transition rules, and objective

function. Finally, the proposed approach is verified by solving a SRCPSP with dynamic

project arrivals and billions of scenarios.

5.2 Problem Description: Stochastic RCPSP with
New Project Arrivals

We consider a RCPSP with M projects, each of which consists of mi tasks, for i = 1, ...,M .

There are N resources (laboratories), a specific resource has to be used to perform each

task. On top of the basic structure of the RCPSP, there are L potential projects that

can randomly emerge while performing tasks in the initially given M projects. A ‘new

project arrival’ changes decision structure of the problem dramatically because of various

types of decisions, such as cancelling on-going project or idling available resource for future

usage, can be made to improve the overall profit upon the ‘new project arrival’. Arrivals

of the L potential projects are governed by arrival time distributions and their realization

probabilities. Major problem parameters of a task, the result (success or failure), the

duration, and the cost, are uncertain. The uncertainty is modelled by (underlying) discrete

time Markov chain to represent correlation among uncertain parameters as we introduced

earlier. A time-varying nonlinear reward function is given for each project to represent the

decreasing value of the project with time (see Section4.2). For the new project candidates,

the reward function starts at the time of corresponding project arrival.

107

5.3 Q-Learning for the Stochastic RCPSP

Our previous work on the RCPSP[24] was successful and gave a prototype stochastic dy-

namic programming formulation for the problem. Furthermore, we also developed an ap-

propriate algorithmic framework to circumvent infamous ‘curse of dimensionality’ of con-

ventional dynamic programming. However, application of the algorithmic framework for

larger sizes of the RCPSP, with more complicated structure, is still limited due to heavy

computational load of analytical state transition rules, in which all possible next states and

their conditional probabilities of realizations are calculated. From a programming perspec-

tive, the analytical state transition rules are awkward to apply since the state, represented

as integer to indicate a certain ‘status’ of a project, transition rules imply many logical

constraints for the exact calculation of the every possible next state. Especially, with the

new project arrival, the analytical state transition becomes much more complicated with

the various types of decisions that can be made. We are motivated to develop more pow-

erful solution method, Q-Learning approach, a model-free simulation-based optimization

algorithm for the given problem because of the limitation of our previous work. The overall

procedure of applying the Q-Learning algorithm for the given problem is similar to the

algorithmic framework developed in our previous work[24] as shown in following Figure 38.

The objective of the heuristic simulation is to explore the system under a large number

Figure 38: Q-Learning Approach

108

of realizations. As a result of the simulation, an initial Q-Value table is obtained as a

function of state-action pair. At the beginning of the simulation, the state-action table is

empty set and new state-action pairs are added as the simulation goes on. The heuristic

simulation also can be viewed as an empirical model building process because it extends a

coverage of the model for new state-action pairs as well as refines current Q-Value in the

table for revisited state-action pairs. Since heuristic policies are applied in the simulation,

the initial Q-Value table is not optimal. A generalized Q-Value iteration equation is shown

in equation (72) and the equation is specialized for the given problem with fixed ‘forgetting

factor’, γ = 1, as in equation (73). The ‘forgetting factor’ γ represents relative ratio of ‘pre-

vious information’, previous Q-Value, to ‘new information’, current Q-Value in calculating

new Q-Value so that the Q-Value can be updated while exploring the system. However,

in this work, we propose to set γ = 1 because simultaneous exploration and updating of

the Q-Value is meaningless for the given problem due to significant stochastic complexity

of the problem. In other words, any Q-Value is not reliable until the simulation covers a

certain amount of states and it is why we propose to perform the Q-Value iteration after

completion of the heuristic simulation as shown in the Figure 38. The initial Q-Value is

iterated over the restricted state-action space built in the simulation stage and the Q-Value

eventually converges.

Q(x(k), u(k)) = (1− γ)Q(x(k), u(k)) + γ{g(x(k), x(k + 1), u(k))

+α max
u(k+1)∈Ux(k+1)

E[Q(x(k + 1), u(k + 1))]} (72)

Q(x(k), u(k)) = E{g(x(k), u(k)) + α max
u(k+1)∈Ux(k+1)

Q(x(k + 1), u(k + 1))} (73)

Then, the converged Q-Value table is utilized for the online decision making with equation

(74).

u∗(k) = arg max
u(k)∈Ux(k)

Q(x(k), u(k)) (74)

The major difference between the stochastic DP based algorithmic framework and the Q-

Learning approach is the ‘state-action pairs’ which are recorded during learning stage, which

109

is the stochastic simulation stage with suboptimal policies (heuristics). Any state visited

in the simulation is recorded with the action taken at the state as well as resulting next

state of the state and its state transition frequency. Since the simulation is performed

over many realizations, the state transition frequency from a state to another state as a

result of the action approximates the conditional probability of the corresponding state

transition. Different state transitions from the same state with same action is due to the

stochastic realization governed by the underlying Markov chains. Thus, in the Q-Learning

approach, the objective of simulation is not only to obtain relevant states (or state-action

pairs) but also to explore the system and identify empirical state transition rules. Another

major difference of the algorithmic framework and the Q-Learning approach is the objective

function. Instead of the cost-to-go value which is a function of the state, a Q-value, which

is a function of the state and action is calculated in the Q-Learning approach. As a result,

the Q-Learning approach requires more memory and computation in its iteration stage than

the algorithmic framework because the iteration has to be done over every state-action pair

instead of every state. However, this apparent computational drawback can be reconciled

by its empirical state transition rule, which is computationally much more efficient than

the analytic state transition rule, built in the simulation stage of the algorithm. Figure 39

illustrates the conceptual diagram of the state-action pair and the Q-value representation.

The state transition probabilities, P1, P2, ..., Pn, in Figure 39 are empirical conditional

probabilities obtained vis simulation. Suppose that for a state, x(k), an action, u(k), was

taken N times in the simulation and the state transition frequency from state x(k) to state

xi(k + 1) as a result of action u(k) is Ni for i = 1, 2, ..., n. From the definitions of N and

Ni, it is obvious that
∑

i Ni = N and Pi = Ni
N .

Due to similarity of the stochastic DP and the Q-Learning approach, all the necessary

elements, state, action, and state transition rules, the mathematical formulation of the Q-

Learning approach, are the same as those of the stochastic DP. Detailed definitions of the

state, action, and state transition rules of the Q-Learning algorithm for the given problem

are discussed in following sections. It should be noted that all following definitions are

directly extension of the stochastic DP formulation developed in our previous work[24].

110

Figure 39: State-Action Pair and Q-Value

5.3.1 Definition of State

In defining the state of a system, it is important to adopt as parsimonious a state repre-

sentation as possible because any redundancy will increase the computational complexity.

For a RCPSP with M projects and R potential projects that may emerge in the future, the

state is defined as following with L types of available resources (laboratories).

X = [s1, s2, ..., sM , s1, ..., sR, z1, z2, ..., zM , z1, ..., zR, L1, L2, ..., LL, a1, a2, ..., aR, t]T (75)

In (75), si for i = 1, 2, ...,M and r = 1, 2, ..., R represents the current status of project i,

containing the information of which tasks are finished and which task is on-going for project

i. Because each project consists of a finite number of tasks, si can be represented as an

integer variable. For example, there can be 7 possible state (circled number) in a project

with 3 tasks as illustrated in Figure 40.

zi for i = 1, 2, ...,M + R represents the information state of project i, which indicates

Figure 40: Possible project status of a project with three states

the result of the most recent task in the project. As explained in the problem description,

111

the parameters (i.e. the duration, cost, and result (‘success’ or ‘failure’)) of each task are

realized according to the conditional probabilities in the corresponding Markov chain. Once

a task in project i is completed, zi is updated according to the realized result of the task. zi

is an integer variable ranging from 1 to rni where rni is the number of possible realizations

for the nth task (the most recently completed and realized) in project i. The third set of

state variables, Lj for j = 1, 2, .., N represents the time that the resource has been used for

the on-going task. And Lj = 0 indicates that the resource is idle. The next set of state

variables, ar for r = 1, 2, ..., R represents the realized arrival time of project r. Finally, time

t is added as a state variable in order to consider the time-varying value of the reward of

each project.

5.3.2 Actions

With the state defined as in equation (75), the action, U , can be defined as in following

equation (76).

U = [δ1, δ2, ..., δM]T (76)

δi is an integer variable which represents whether to perform a task (δ = 1) or not to

perform a task (δ = 0) or to cancel a task (δ = 2) of the project i. The decision can be

made only when an necessary resource for the task is available, that is, ∃Lj = 0 for some

j = 1, 2, ..., L.

5.3.3 State Transition Rules

In the Q-Learning approach, the state transition rules are much simpler than the rules in our

previous work[24] since complicated analytical calculation of state transition probabilities

are not required. The Q-Value iteration and the online decision making stages do not

require any state transition rules since the state transitions rules are already imposed in the

Q-Value table obtained in the heuristic simulation stage. However, simple state transition

rules have to be defined in the heuristic simulation stage to explore the system for many

scenarios. According to the definition of the state (Section 5.3.1), there is only one initial

112

state at time t = 0.

X(0) =

 1, · · · , 1︸ ︷︷ ︸
M Initial Projects

,
︷ ︸︸ ︷
0, · · · , 0

R Potential Projects
,
M+R Information SV

0, · · · , 0︸ ︷︷ ︸ ,
︷ ︸︸ ︷
0, · · · , 0

L Types of Resource
, 0, · · · , 0︸ ︷︷ ︸
R Arrival Time

,
Time︷︸︸︷

0

T

(77)

The initial state evolves with actions taken by heuristics and realizations of uncertain pa-

rameters until it reaches a terminal state. One characteristic of the RCPSP is that the task

network of the problem is not deterministic due to uncertain outcomes (success or failure)

of the tasks in the problem. Even though there is a unique initial state, the problem can

end with one of numerous terminal states according to the realization of uncertainty. The

number of possible terminal states depends on the stochastic complexity of the problem.

We define the terminal state as the state where all the projects are terminated. The termi-

nation condition for each project is defined either by the successful completion of the final

task or the failure of an intermediate task.

5.3.4 Objective Function: Q-Value

The objective of the RCPSP is the maximization of the final reward after finishing all the

projects. The Q-Value iteration equation (73) also represents definition of the Q-Value as a

recursive addition of one-stage profit function g(x(k), u(k)) so that it naturally reflects final

reward. The one-stage profit g(x(k), u(k)) is a summation of cost incurred by an action,

u(k) and reward(profit) retrieved after successful completion of projects at the state, x(k).

Since the Q-Value table is expanded by the heuristic simulation, the Q-Value at the initial

state with the optimal action, Q(x(0), u∗(0)), represents expected final reward of the online

policy.

5.4 Suboptimal Policies

Defining or inventing suboptimal policies in Q-Learning is very important since it affects

resulting model free state transition rules as well as quality of the final solution. In this

section, three greedy heuristics, which utilize information from the state as defined in 5.3.1,

are developed for the SRCPSP. These heuristics emphasize different information about the

problem and hence combining them together could lead to a better overall performance.

113

Figure 41: Definition of Q-Value

On top of the greedy heuristics, special types of actions (cancellation and idling), which

cannot be taken by the heuristics, are randomly added.

5.4.1 Greedy Heuristics

5.4.1.1 Heuristic 1: high success probability task first

In the SRCPSP, the result (success or failure) of a task is a very important factor affecting

the final reward, as well as the remaining part of the scheduling solution. Heuristic 1 is

developed for maximizing the probability of the sucecess of the next allocated task. For the

decision, the expected success probability of each task is calculated according to the current

information state, z(k) for i = 1, 2, ...,M . Once we know zi(k) for each task, we can also

obtain the corresponding conditional probability for each outcome. The expected success

probability of the task can be calculated by summing the probability of each successful

outcome. This heuristic can be modified for the case of multiple level of success by assigning

appropriate weighting factors for the different levels of success.

5.4.1.2 Heuristic 2: short duration task first

Another way to increase the final reward of the projects in the SRCPSP is to finish the

projects as quickly as possible in order to minimize the loss of reward with time. Heuris-

tic 2 considers the time value of the project in a greedy way by performing a task with

114

shortest expected duration first in cases of resource conflicts. The expected duration can

be calculated by utilizing current information state, zi(k), as in the calculation of expected

success.

5.4.1.3 Heuristic 3: high reward project first

Heuristic 3 gives priority to the impending task of the project which has the highest potential

reward. This is a very greedy decision to get the highest reward in the shortest time

with the smallest reward decrease. Heuristic 3 may work well if the project with the

highest reward is completed successfully. Its drawback is the other projects can be delayed

too long. Therefore, if a project with the highest reward fails, the total reward can be

decreased significantly. In the R&D pipeline management problem, the priority of each

project is decided in the order of initial reward value. The decision making procedure is

straightforward, all the tasks in the project with the highest reward are performed first and

so on. If there is an idle resource after assigning a pending task in the target project, the

resource is used to perform a task in the next priority project.

5.4.2 Random Perturbation

The SRCPSP addressed in section 5.2 includes new project arrivals that can be realized while

some initial projects are on-going. To maximize total reward for the new project arrivals,

one may reserve resources (available laboratories) for the potential new project instead of

utilizing them for currently on-going projects that may not be profitable. Furthermore,

complete cancellation of currently on-going projects also has to be considered to allocate

more resources for profitable new projects. Those ‘idling’ and ‘cancellation’ actions are

not considered in the three heuristics because it cannot easily accommodate them due to

their inherently greedy nature. To utilize benefits of the various actions, the cancellation

and idling actions are added randomly in the heuristic simulation. The random actions

are chosen with small probability to avoid significant perturbations that cause the overall

reward to deteriorate significantly.

115

5.5 Illustrative Example

As an illustrative example of the RCPSP, we consider a R&D pipeline problem that has 3

initially given projects and 2 new project candidates. The activty-on-node (AoN) graph of

the example is shown in Figure 27. The AoN displays the sequence of tasks involved in each

project with the resources required to complete the tasks (e.g. task ‘I1’ has to be performed

in laboratory 1 (Lab.1)). A parenthesized number over each task represents the possible

number of outcomes (in terms of duration, cost, and result and the multiple levels of success

or failure) of the task. A Markov chain is given for each project to represent correlations

among the outcomes of adjacent tasks in a project. For example, for task I2, which has

three possible outcomes, a 3× 1 probability vector is given to represent a probability of the

three possible outcomes. The conditional probabilities for the outcomes of the task P1 are

assigned based on the realized outcomes of I2. Since both of I2 and P1 have three possible

realizations, the size of the probability matrix of P1 is 3 × 3. Each column represents the

conditional probability vector for the possible outcomes of P1. All the probabilities and

parameters of the example are summarized in Table 13.

Ri, for i = 1, ..., 5, indicates the initial reward of project i at time k = 0. After time k = 0,

Figure 42: RCPSP example

116

the rewards of three initial projects decrease as shown in Figure 43. Those reward profiles

represent the “time value” of each project due to competitive market situation. If a project

is delayed for too long (longer than PDi, ‘project deadline’), the reward from completing

the project can be insignificant because similar drugs (products) developed by competitors

may have taken a large market share. Reward profiles of the potential project candidates

are introduced at the time of their arrival. Figure 44 shows one of possible realizations of

the reward profiles of this example in which both of potential project 4 and 5 arrive at time

t = 10. Probabilities of the new project arrivals are summarized in Table 14 which implies

16 new project arrival scenarios including no project arrival case.

Figure 43: Reward profile of the projects in the illustrative example

� Stochastic Complexity of the Example

The illustrative example is a small size RCPSP, which consists of only 5 projects

including 3 initial projects and 2 potential new project candidates. However, it is

actually a large size problem due to its stochastic complexity. One measure of the

stochastic complexity of the problem is the total number of possible scenarios under

different parameters realizations. Figure 45 shows project 1 in the illustrative example

and its realization data. According to the realization data, there are 6 scenarios,

3×2×1(3 realizations in P1, 2 realizations in I2 linked to P1 and 1 realizations in I1

117

Figure 44: A realized reward profiles in the illustrative example

linked to I2), in case of project termination with P1 completion, i.e. all three tasks

in the project are completed. In same way, in case of project termination with I2 and

I1 completions, there is 1 scenario respectively. Thus, the total number of scenarios

of the project 1 is 8.

In summary, with given realization data in Table 13, total number of scenarios of

Figure 45: Project 1 in the Illustrative Example

the projects 2,3,4 and 5 is 7, 7, 7, and 13 respectively. Furthermore, total number

of new project arrival scenarios is 16. The scenarios of each project and new project

arrivals are independent of each other, thus, total number of scenarios of the problem

is 570,752 obtained by multiplying the number of scenarios of all projects.

118

Table 13: Example 1, Probabilities and Parameters
Project Realized Result, Duration and Cost of the Task

I1 I2 P1[
F 3 300
S1 5 600

] [
F 4 350
S1 4 300
S2 5 200

] [
F 4 300
F 7 650
S1 5 400

]
Project 1 PI1 PM11 PM21[

0.30
0.70

] [
0 0.25
0 0.50
0 0.25

] [
0 0.20 0.08
0 0.30 0.02
0 0.50 0.90

]
I3 I4 P2[

F 3 300
S1 4 450
S2 5 600

] [
F 5 700
S1 7 500

] [
F 4 400
S1 6 600

]
Project 2 PI2 PM12 PM22[

0.25
0.40
0.35

] [
0 0.30 0.05
0 0.70 0.95

] [
0 0.25
0 0.75

]
I5 I6 I7 P3[

F 3 400
S1 4 300

] [
F 5 700
S1 7 400

] [
F 4 500
S1 7 600
S2 5 300

] [
F 5 250
S1 3 300

]
Project 3 PI3 PM13 PM23 PM33[

0.15
0.85

] [
0 0.30
0 0.70

] [
0 0.25
0 0.60
0 0.15

] [
0 0.25 0.10
0 0.75 0.90

]
I8 I9 P4[

F 5 500
S1 7 450
S2 5 600

] [
F 3 400
S1 6 300

] [
F 2 800
S1 6 450

]
Project 4 PI4 PM14 PM24[

0.35
0.45
0.20

] [
0 0.25 0.15
0 0.75 0.85

] [
0 0.20
0 0.80

]
I10 I11 I12 P5[

F 5 600
S1 5 400
S2 6 900

] [
F 5 700
S1 7 400

] [
F 3 400
S1 5 800
S2 6 950

] [
F 4 1000
S1 5 700

]
Project 5 PI5 PM15 PM25 PM35[

0.30
0.55
0.15

] [
0 0.25 0.02
0 0.75 0.98

] [
0 0.20
0 0.65
0 0.15

] [
0 0.20 0.05
0 0.80 0.95

]

5.5.1 Simulation with the three heuristics and random perturbation

The three heuristics introduced in Section 5.4 are implemented on the illustrative example.

For the simulation, 30,000 uncertain parameters realizations are performed, according to the

underlying Markov chains, for each heuristic. The simulation results of Heuristic 1, 2, and

3 are shown in Figure 46. The simulation results shows all heuristics can generate a large

loss in the worst case realizations in which all projects progress successfully until the last

task which fails. Therefore, a large cost has been incurred to perform all the tasks without

any reward. The simulation results (Table 15 and 16 and Figure 46) indicate that none

119

Table 14: Probability of Project Appearance Time
10 20 30 never

P4 0.3 0.5 0.1 0.1
P5 0.4 0.3 0.2 0.1

Table 15: Heuristic Simulation Results for 30,000 Realizations
Total
Profit

Heuristic 1 Heuristic 2 Heuristic 3

Mean 5914.00 3967.85 7276.98
Max. 30340.20 28726.64 32097.61
Min. -9000 -9100 -8750

of the heuristics is uniformly superior. The relative performance of the different heuristics

vary by realization.

Figure 46: Simulation Results of the Three Heuristics for 30,000 Realizations

Since the heuristics are not able to take ‘unusual’ actions such as ‘cancelling’ and ‘idling’,

those actions are randomly mixed with the actions chosen by the heuristics during the

simulation. At each decision, the idling and the cancellation decisions replace the heuristic

120

Table 16: Performance of the Heuristics
H1>H2 H1>H3 H2>H1 H2>H3 H3>H1 H3>H2

of Cases 7188 13575 6839 4942 10881 16234
Mean 6190.36 2695.00 3662.54 2537.51 5441.92 6860.18

Table 17: Heuristic Simulation Results for 30,000 Realizations with 0.5% of idling action
and 1% of cancellation action

Total Profit Heuristic 1 Heuristic 2 Heuristic 3
Mean 5932.52 3927.43 7270.81
Max. 30340.20 28733.22 32050.05
Min. -9000 -9100 -8750

decisions with 0.5% and 1.0% of probabilities respectively. The cancellation decision is

applied to on-going projects and cancellation of a project is considered as failure of the

project with zero action cost and zero reward. The idling decision for available resource is

also considered as ‘cost-free’ action and the idling action is continued until next event(state).

Table 17 shows performance of the heuristics with randomly introduced ‘cancelling’ and

‘idling’ actions for the same set of 30,000 realizations. Since the actions are introduced with

small probabilities, overall performance of the heuristics is similar to the one (Table 15)

without random actions.

The simulation is performed over 10 sets of 30,000 realizations, the three heuristics are

applied with randomly mixed ‘cancellation’ and ‘idling’ actions.

5.5.2 Implementation of the DP in heuristically restricted state space

The state of the illustrative example consists of 15 state variables according to the state

definition in 5.3.1 as shown in equation (78).

X = [s1, s2, s3, s4, s5, z1, z2, z3, z4, z5, L1, L2, t, p4t, p5t] (78)

The calculation of the total state space size is complex due to the inability of certain

combinations of completed tasks and event times to be realized. It is expected that the

duration of the whole schedule will be about 40 time units, based on estimates of the longest

task duration and an idea of possible task parameter sets, approximately 950 million states

could be experienced.

121

5.5.2.1 State-Action pairs

As a result of the simulation, 263,053 non-redundant state-action pairs are obtained. Each

of the 263,053 state has a Q-Value representing expected total reward from the current

state to the terminal states. Among the 263,053 state-action pairs, 29,599 states have ‘no

action’ to choose because they are identified as terminal states.

5.5.2.2 Q-Value Iteration

For the 263,053 state-action pairs, the Q-Value iteration, Equation (73), is performed with

the initial Q-Values obtained in previous step. For a given state-action pair, the Q-Value

iteration equation finds an optimal action for potential next state. The iteration scheme

converged within an error tolerance ||(Qi+1 −Qi)/Qi|| after the 21st iteration and took 3.1

hours for each iteration.

5.5.2.3 Improved Solution: Online Decision Making

The decision policy obtained by the proposed approach is represented by the converged Q-

Values and the online decision making equation (74). Thus, after the converged Q-Values

are obtained, we can make a valid decision for any realization generated by the underlying

Markov chain model. In the online decision making, the future results of the currently

on-going tasks are not know at the point of decision. The transition from current state is

a consequence of both the decision made according to equation (74), and the parameter

values chosen by the random process.

5.5.3 Computational Results

To verify the performance of the policy obtained by the proposed approach, it is compared

to the heuristic solutions for the 30,000 realization used to synthesize the policy. The results

shown in Table 18 indicates that the proposed approach improves the mean performance

by about 39.13% compared to the best heuristic policy, the Heuristic #3. This significant

improvement can be explained by the appropriate ‘cancelling’ and ‘idling’ decisions made

by the policy. Although those actions are randomly mixed with the heuristics during the

simulation, some of those actions are chosen appropriately to maximize total reward in the

122

Table 18: Heuristic Simulation Results for 30,000 Realizations with 0.5% of idling action
and 1% of cancellation action Vs Online Decision Making with Q-Value

Total Profit H1 H2 H3 Online
Mean 5914.00 3967.85 7276.98 10124.63
Max. 30340.20 28726.64 32097.61 30385.45
Min. -9000 -9100 -8750 -8050

Table 19: Heuristic Simulation Results for 10,000 New Realizations with 0.5% of idling
action and 1% of cancellation action Vs Online Decision Making with Q-Value

Total Profit H1 H2 H3 Online
Mean 6054.31 4021.65 7339.34 10321.67
Max. 29874.99 28762.29 29974.99 30856.05
Min. -8600 -8800 -8350 -7450

Q-Value iteration. The ‘cancellation’ and ‘idling’ actions are mainly chosen to prevent the

‘worst’ case in which a negative total cost is expected due to major project failure. The

results in Table 85 shows that the minimum reward, the worst case, is increased to −8050.

On the other hand, the maximum reward of the online policy is in same ranges as those

of the heuristics. Hence, the significant improvement of the mean value is mainly due to

reducing the worst case results (loss) with appropriate use of the cancellation or the idling

actions.

The stochastic complexity of the problem is very high with 642,096 scenarios. The policy

should be robust for any of these scenarios even though they were not seen during its

creation. To demonstrate the robustness of the policy, it is tested for 10,000 realizations

that were not part of the training set. The computational results summarized in Table 19

and Figure 47 shows the robustness of the proposed approach in this example. The Figure

47 shows an obvious shift of negative reward cases in the positive direction.

Figure 48 shows how the online policy can improve the total reward dramatically for

a certain realization, realization #8863, among the 10,000 realizations used for the policy

evaluation. In realization #8863, two of the three initial projects, project 1 and project 3,

123

Figure 47: Evaluation of the online decision making performance for a new set of 10,000
realizations

turn out to fail in their second tasks. Meanwhile, both of the potential project candidates,

project 4 and project 5, arrive at time 10 and both are successfully completed. The best

heuristic, Heuristic #3, allocates resource to the project 1 and project 3 until they are

completed with failure. However, the online policy cancels project 3 after its successful

completion of the first task. Furthermore, after the new projects arrive at t = 10, it allocates

resource to the new project and cancels the project 1. All these decisions are made by the

online decision policy based on the Q-Value calculation, equation (74 and coupled with

high level success of the first task of the project 2. (note that realization result ‘3’ in the

first task of project 3 indicates high level success of the task.). As a result of appropriate

uses of the cancellation actions for less profitable projects, the online policy can boost the

final reward up to 20588.36, which is more than a 60% improvement compared to the best

heuristic result, 12752.99.

124

5.6 Conclusion

A stochastic resource-constrained project scheduling problem (sRCPSP) has been addressed

by using Markov chains to model key uncertainties (the duration, cost, and results of a task).

On top of the basic problem structure of the sRCPSP, a practical feature of the problem,

new project arrival, is added to present realistic cases. To solve the problem, a Q-Learning

approach has been developed with appropriate definitions of state, including the information

state variables, and actions. The Q-Learning approach enables us to induced an empirical

state transition rules from the simulation so that analytical calculations of highly compli-

cated state transition can be avoided. The maximize advantages of using the empirical state

transition rules, special types of actions, project cancellation and resource idling, that are

difficult to include in randomly added in the simulation. Some of the random actions are

filtered and confined during the Q-Value iteration and appropriately utilized in online deci-

sion making to maximize the total reward of the system. The proposed solution method has

been tested by solving an illustrative sRCPSP with significant stochastic complexity with

642,096 scenarios. The solution obtained by the policy on average outperforms the best

heuristic solution. Furthermore, by utilizing cancellation and idling actions properly, the

resulting policy can reduce the worst case losses. The robustness of the policy is confirmed

by solving the problem with a new set of realizations, the data of which were not used to

create the policy.

125

Figure 48: Gantt charts: the Heuristic #3 vs. the Online Policy for Realization #8863

126

CHAPTER VI

HANDLING LARGE ACTION SPACE: APPLICATION

TO SUPPLY CHAIN MANAGEMENT PROBLEMS

6.1 Introduction

A significant problem for complex supply chain (SC) management is the effective handling

of uncertainty in the system. The resulting SC operating policy has to be flexible enough

to deal effectively with uncertain parameter variations, such as the volume and timing

of market demands. Failure to account for significant product demand fluctuations by

deterministic planning models may either lead to excessively high production costs (trans-

lating to high inventory charges) or unsatisfied customer demand and loss of market share.

Recognition of this fact has motivated recent work aimed at studying process planning and

scheduling under demand uncertainty. Most of the research on this problem has largely

focused on mathematical programming approach [43, 71, 67, 80, 35, 6, 36]. The stochastic

attributes of the problem are translated into an equivalent deterministic form with certain

types of uncertain parameters, often normally or exponentially distributed.

On the other hand, a general supply chain can be viewed as serial and distributed in-

ventory systems, referred to as ‘multi-enchelon’ inventory systems, if production facilities

involved in the supply chain are simplified (i.e., assumed to be without large lead time in

production). Previous research [28, 17, 83, 29] on the ‘multi-enchelon’ inventory systems

have been focused on finding analytical optimal ‘order-up-to-policies’ for variants of the

system under the ‘balanced assumption’, negative stock allocations to the retailers are pos-

sible. Although the analytical optimal policies for the multi-enchelon inventory systems

are not directly applicable to the supply chain system addressed in this study, for which

the balanced assumption is not valid, the ‘order-up-to-policies’, (s,S) policy, are adopted to

generate heuristics for control (section 6.3 and 6.6.2).

127

This study develops a novel solution method that expands the representation of uncertainty

to include a wider class of problems than addressed in the literature to date far. The solu-

tion of the SCM problem is a policy that can be interpreted as a series of decisions at each

time unit. Thus, it is a “multi-stage decision making problem” with significant number of

uncertain parameter realizations. Stochastic dynamic programming (DP)[7] can be used to

solve this type of problem. However, stochastic DP is faced with the “curse of dimensional-

ity”, an exponential increase in the state space as the problem size increases. Hence, most of

the research on the DP approach for SCM is limited to small sizes of the problem[9, 19, 38].

The size of the state space is coupled not only to the state of the supply chain but also

factors in the “information states”, which represent observed information regarding uncer-

tain parameter variations. To overcome the computational intractability of the conventional

DP approach, we employ an evolutionary algorithmic framework utilizing information ob-

tained from stochastic simulation of the heuristics, which we call “DP in a heuristically

restricted state space”[27, 23, 25]. This approach was applied to a stochastic resource con-

strained project scheduling problem (RCPSP) in [25], where the ability to address a large

state space was verified by confining the original state space (with 230 billion states) and

to obtain a reasonably sized confined state space(with 371,168 states). The development

required to apply this to the SCM problem is taming the action space complexity. The de-

cisions in the RCPSP and corresponding combination of the actions are much simpler than

those of the SCM problem. In the SCM problem, the action space is continuous and, even

though the actions can be aggregated and represented using a discrete action space, there

are large number of actions for a supply chain involving multiple material flows between

manufacturing sites. For example, if 10 material flows are involved in a supply chain and

each material flow is discretized to 3 discrete values, the total number of possible actions

at each time point is 59,049(= 310). Thus, we cannot avoid large numbers of actions in the

DP formulation of the problem. In conventional DP, a large number of actions makes the

Bellman Iteration and online decision making procedures computationally intractable due

to increased search space for the optimal action for each decision stage. In summary, the

key contributions of this study are, first, developing an appropriate DP formulation for the

128

SCM problem, and second, enhancing the methodology of “DP in a heuristically confined

state space” to handle the inevitable action space complexity.

The chapter is organized as follows. A SCM problem will be formulated with a Markov

chain model to represent uncertain demand. An appropriate heuristic method for the given

problem will be presented. Then, the conventional stochastic DP formulation will be de-

veloped as a basis for the “DP in a heuristically confined state space”. A summary and

further discussion will be given in the last part of the chapter.

6.2 Problem Description: SCM with Multiple Products Un-
der Uncertain Product Demands and Prices

The prototypical process industry SCM problem addressed in this chapter has most of

the essential components of a supply chain including production and inventory control

decisions and intermediate product lines. It suppresses the details on logistics such as

various transportation options and multiple customer(market) locations as these are often

not as significant for the business-to-business component of supply chain. We consider a

SCM problem with M products and the products are manufactured from pi plants and

stored in qi inventories, for i = 1, ...,M . The plants that produce the product i have

their own raw material inventory linked to ri suppliers, for i = 1, ...,M . Thus, the supply

chain is a partially connected network involved with
∑

i pi plants,
∑

i qi inventories, and∑
i ri raw material suppliers. Connections between supply chains involved with different

production/distribution lines arise due to product recipes that use raw materials to produce

intermediates for other products. An illustrative example of such a supply chain is depicted

in Figure 49. In this study, the focus is on the uncertainty in demand for products and

that in raw material prices. This makes the allocation of intermediates to final production

steps a very important decision. A detailed description of the uncertainty model is given

in the next section. As stated earlier, logistic elements of the problem are kept simple by

considering only one transportation option and unit transportation time for every material

flow. Manufacturing time for the products are given as a multiple of time units and appear

as manufacturing time delays in the plant. Other than the demands and prices of the

129

products, all the problem parameters (inventory costs, manufacturing costs, manufacturing

time, and default setup cost for one batch of production) take known deterministic values.

Figure 49: Illustrative Example, SCM with 3 Products Under Uncertainty

6.2.1 Markovian Model of the Uncertain Parameters

Demand and price variations encountered by retailers or manufacturers have many different

sources. They are often correlated, both amongst themselves, due to an underlying cause

such as oil prices, and in time such as in a seasonal variation. In previous supply chain

literature, demand and price uncertainties in the SCM problem have been represented as

Gaussian(normal) or exponential random variables [90, 37, 80, 36] or uniformly distributed

random variables [87]. However, it appears that auto-and-cross correlation among the

uncertain parameters in this context has not been addressed previously in the context of

process supply chains with the exception of the contribution of [59], in which uncertain

product demands are represented by a normal multivariate probability distribution. In

our problem formulation, demand and price of each product are modeled with a Markov

chain. This mirrors our previous work using Markov chains for applications in stochastic

resource constrained project scheduling[25]. The use of Markov chain in modeling of market

demand and price offers some advantages over the previous approaches. For example, if the

130

demand of a certain product is very high, the probability of a sharp demand decrease at

next time unit (a week or a month) would be very small. Thus, the current demand can be

an important indication of the future demand realization. Furthermore, demand and price

may not be varied independently in the market due to their natural correlation. In our SC

model, we assume the uncertain demand and price of a product are realized as a set and

there are several different sets of demand and price evolving according to a given Markov

chain. The possible discrete values for the uncertain demand and price may represent the

actual values or the mean values of the parameters. In summary, random (but correlated)

uncertain demand and price for a product in the market are represented with n sets of

demand and price and n by n state(in the Markov chain) transition probability matrix as

depicted in Figure 50. In the illustrative example (Figure 49), 5 Markov chains are given to

represent uncertain demands and prices of 3 products and uncertain price of raw materials

from 2 external suppliers.

Figure 50: Representation of An Uncertain Demand and Price with a Markov Chain

131

6.3 Heuristics: Combination of Static Inventory Control
Policies

A crucial step in applying our framework is to develop heuristics, which give a reasonable

solution (policy) for the given problem and can be simulated without a significant compu-

tational burden. In this section, we propose to develop such heuristic policies by combining

available static inventory control policies. The given SCM problem has many material flows

that have to be decided at each time unit. Each of those material flows is linked to two

inventories in the supply chain. Thus, the decision of each material flow can be made by

a single inventory control policy. One of the simplest inventory control policies is a static

inventory control policy[16], also known as an (s,S) policy, in which s is given as a reorder

point to replenish the inventory level up to S. Even though the static inventory control pol-

icy is simple, with appropriate choice of s and S parameters, it is applicable to a wide range

of operating conditions. Furthermore, under certain assumptions, the (s,S) policies can be

shown to be optimal inventory control policies for classes of supply chain systems similar

to the ones addressed in this study[28, 17, 83, 29]. However, for the given SCM problem,

the static inventory control policy is not sufficient to get good overall performance policy

due to the need to vary the replenishment levels under the uncertain demand. It would be

better to employ a dynamic (s,S) policy that could respond to specific realizations of the

uncertainty. As mentioned earlier, we as starting policies a set of static inventory control

policies, which work reasonably and in a complementary manner. Each of the heuristics will

be used for stochastic simulation in the next step of the solution framework as illustrated

in section 6.5.1.

6.4 Conventional Stochastic DP Formulation

In this section, we develop a DP formulation, defining the state, action(decisions), the

state transition rules, and the objective function(profit-to-go). Appropriate Bellman(value)

iteration and online decision making equation will be presented in the last part of this

section.

132

6.4.1 Definition and Aggregation of State

For the given SCM problem, three types of information are necessary to describe the status

of the system.

1. Inventory Level All inventory levels in the system have to be included in the state.

Thus, for the Q inventories in the system, the inventory level at time k, Ij1(k), for

j1 = 1, ..., Q, is defined as a state variable.

2. On-Going Production For P plants in the system, the amount of on-going produc-

tion started at time k − ` at the plant j2 is devoted by Oj2(k − `), for j2 = 1, ..., P

and ` = 1, ..., τj2− 1. where, τj2 is the production time delay(time delay from the raw

material inventory to the product inventory of the plant) for the plant j2.

3. Information State In addition to the physical state variables defined above, the

information state, which represents the most current status of the uncertain param-

eters, also should be included in the state. The information state variable, which is

represented as an integer, is a realized “state” of the Markov chain for the correspond-

ing uncertain parameter or set of uncertain parameters. For L Markov chains in the

system, the information state, zj3(k), for j3 = 1, ..., L, is including in the state vector.

zj3(k) can be one of integers ranging from 1 to Sj3 when the Markov chain j3 has Sj3

possible states.

In summary, the state of the given problem is defined as follows:

X(k) = [I1(k), ..., IQ(k), O1(k − 1), ..., O1(k − τ1 + 1)

, ..., OP (k − 1), ..., OP (k − τP + 1), z1(k), ..., zL(k)] (79)

All the state variables in (79) are integers since the SCM problem is assumed to be a

discrete system. The explosion of the state space is governed by the number and range

of the inventory levels. To avoid a state space explosion, the state variables have to be

aggregated and represented with discrete integer values. Besides the information state

variables, zj3, for j3 = 1, ..., L, which are naturally discrete, all other state variables(for

133

inventory and on-going production) are aggregated. The state aggregation is defined with

three elements, 1) aggregation ranges, 2)representative index, 3) representative value. The

aggregated range defines the range of the state values to be treated as belonging to a same

state. Once a state variable is aggregated, a representative index is assigned to the state

variable and represented in the state space with the index. The representative value of an

aggregated state is required to disaggregate the state to an actual value (for example, an

actual inventory level) and usually chosen as the median of the aggregation range.

6.4.2 Definition of Action

An action, u, of the problem is defined as a decision on all the material flows in the system.

u = [T1, T2, ..., TR]T (80)

Tj4 is an integer variable which represents a material flow j4, for j4 = 1, 2, ..., R. Some of

the state variables, on-going production, defined in (79) are included in previous actions as

production decisions. According to the definition of action in (80), the size of action space

imposed of all possible actions is often too large to be investigated fully in the Bellman

iteration and in the real-time decision making step of the DP. Thus, the action space also

has to be aggregated as well as the state space. The simple aggregation rules suggested

for the state in 6.3 is not appropriate for the action space. In general, a supply chain

network includes many different material flows and the ranges of the material flows are

diverse and large. Thus, the number of all possible actions will be astronomical even after

aggregation. For example, if a supply chain network consists of 10 material flows to be

decided at every unit time and each of the material flow is aggregated to just 3 representative

values. The total number of actions in the action space will be 310 = 59, 049. Therefore, the

computational infeasibility of DP in a supply chain application is partly the result of the

large number of possible actions. Note that, in a discrete system, the computational load

of the Bellman iteration in equation (84) is proportional to multiplication of the number

of states and number of actions to be investigated. The computational problem created by

large action(decision) spaces is circumvented by introducing an ‘implicit sub-action space’

which will be explained in section 6.5.2 in detail.

134

6.4.3 State Transition Rules

In a discrete time system, the state at time k + 1, X(k + 1) can be derived from the state
at time k, X(k), and the control action(decision), u(k). For the given problem, the state
transition rules are linear material balance equations of all inventories as generalized in
equation (81)1

Inventory Level at Time k + 1 = Inventory Level at Time k + Input at Time k − Output at Time k (81)

The state variables can be classified into two types of variables in state transition. 1.

Controllable State Variables: Those state variables that represent physical properties

of the system such as the inventory levels and on-going productions are evolved with the

current and previous actions. The inventory levels are partially controllable because of the

uncertain demands also affects those state variables’ transitions. The on-going productions

are fully controllable state variables because they are actual actions taken in the past. If

random yields were included in the problem, then this assumption would not hold, however.

2. Uncontrollable State Variables: Transitions of the information state variables are

irrelevant to any action because the transitions are governed by the underlying Markov

chains. The information state variables at time k only depends on the realized uncertain

parameters at time k.

Due to the uncontrollable state variables, the state at time k + 1 is not unique even though

it evolves from same state at time k and same action by the state transition equation (81).

According the underlying Markov chains, all possible next states, X(k + 1) are calculated

with their realization probabilities for given X(k) and u(k). The realization probabilities

of the possible next states are used in the calculation of the expected objective function

value(profit-to-go) corresponding to the X(k + 1) states.

6.4.4 Objective Function: Profit-to-Go

The objective function to be maximized is the overall profit of the system. Since the

operation of the supply chain is not limited to a specific finite time horizon, the problem

is considered as an optimal control problem over an infinite time horizon. And the overall

1Detail state transition rules are illustrated with an example in Section 6.6.1.1 from equation (93) to
(104).

135

profit is defined as the summation of one stage profit at each unit time over the infinite time

horizon. To maximize the overall profit of the system in infinite horizon, an approximated

‘profit-to-go’ function, J(X(k)), is defined as following.

J(X(k)) = E{Sum of all future profit}

' Ĵ0(X(k)) = E{
H∑

i=0

αiφ(X(k + i), u(k + i))} (82)

One stage profit at time k, φ(X(k), u(k)), is defined by the following equation (83).

φ(X(k), u(k)) = Revenue(k) − Inventory Cost(k) − Manufacturing Cost(k) − Raw Material Cost(k) (83)

The profit-to-go function over an infinite horizon can be approximated as shown in equation

(82) with an approximation horizon H and a discounting factor α. φ(X, u) is a current profit

function of the given state, X, and action, u. The initial value of the approximated profit-

to-go, Ĵ0(X), is calculated from appropriate sub-optimal simulation data and the Ĵ0(X) is

used as an initial profit-to-go in the Bellman iteration step of DP, which refines it to the

optimal profit-to-go, J∗(X).

6.4.5 Bellman Iteration and Real-Time Decision Making

In DP, one calculates numerically the optimal profit-to-go function J∗ via the Bellman

iteration step. This computation can be done offline, i.e., before the policy is applied to the

actual system. For the SCM problem, the Bellman iteration equation is given as follows:

J i+1(X(k)) = max
u(k)∈U

E{φ(X(k), u(k)) + αJ i(X(k + 1)|X(k), u(k))} (84)

In the above, U is a discrete action space of all actions defined in (80). In finding optimal

u(k), infeasible action, that make an inventory negative or violate the maximum production

capacities of the plants in the system, have to be excluded. The Bellman iteration is

continued until J i meets a certain convergence criterion, e.g. ‖ Ji+1−Ji

Ji ‖∞< 0.01. If the

J i meets the convergence criterion, it is considered as the optimal profit-to-go, J∗ and used

for online decision making as follows. According to the ‘Principle of Optimality’ of DP, the

following decision u∗(k) is the optimal action for the state, X(k) given at any time k.

u∗(k) = arg max
u(k)∈U

E{φ(X(k), u(k)) + αJ∗(X(k + 1)|X(k), u(k))} (85)

136

6.5 The Algorithmic Framework: DP in A Heuristically
Restricted State Space

All the necessary elements of the DP are defined in the previous section. Thus, the problem

can be solved by using the appropriate Bellman equation shown in equation (84). However,

the computational load of the full DP for a realistically sized example will be beyond the

current computational capability. For example, the illustrative example shown in Figure

49 has a state composed of 5.832 × 1010 discrete states even with the state aggregation2.

Furthermore, the number of discrete action defined in equation (80) will be very large even

with the action space aggregation as discussed in the introduction part of this chapter.

The number of states tends to increase exponentially with the problem size, number of

inventories, number of products, and number of possible realizations. In out approximate

DP framework, the part of the state space within which the cost-to-go is evaluated through

the Bellman iteration is restricted to those visited during the simulation of the heuristic

policies. The effectiveness of the algorithmic framework in handling large state space has

been tested previously in [25]. However the algorithmic framework is not appropriate for

the given problem with large number of actions. In this chapter, the algorithmic framework

is modified to handle a large number of actions by introducing implicit sub-action space for

each state in the restricted state space. The implicit sub-action space is defined with actions

generated by a set of heuristics that have been applied during the heuristic simulation step

of the framework. The general steps of applying the algorithmic framework will be similar

to those shown in [25] except the Bellman iteration and online decision making is performed

over the confined state space and the implicit sub-actions spaces of the states.

1. Stochastic simulation with the heuristic policies

2. Identification of the restricted state space which is composed of the states visited in

the simulation and the first estimation of the profit-to-go values for the restricted

state space using the simulation data.

2calculation of the number of states will be explained in later section 6.6 “illustrative example”

137

3. Bellman iteration in the heuristically restricted state space and corresponding implicit

sub-action space

4. Evaluation of the policy performance when applied to real-time decision making

Detailed descriptions of the steps are given in the next sections.

6.5.1 Learning Stage: Simulation of the Heuristic Policies

The purpose of the simulation is three-fold. First, the simulation is performed in order

to obtain meaningful, manageably sized, set of the states within which the DP is to be

performed. Obtaining a reasonably sized subset containing trajectories of good policies is

critical for solving the problem because DP over the entire state space is computationally

infeasible for the given problem. For the simulation, a large number of uncertain param-

eter realization sets are generated by the underlying Markov chains. Each realization set

represents one scenario along a certain time horizon out of the large number of possible

scenarios. In the simulation, several different heuristics are applied for each realization and

a set (trajectory) of visited states (as defined in the previous section) is obtained from each

heuristic. Because each heuristic works in a different way as they are designed to do, there

can be several different state trajectories even for the same scenario. Different state tra-

jectories are obtained with different heuristics even for a same realization scenario. Those

different state trajectories will be combined in the state space as profit-to-go in the later

step, Bellman iteration, of the algorithmic framework. The heuristic policies applied for the

given problem will be described in a later section.

Second, the simulation provides initial ‘profit-to-go’ values, which can be used to start up

the Bellman iteration. There can be different ‘profit-to-go’ values for a same state evolving

into different trajectories (corresponding to different heuristic or realization scenario). The

initial ‘profit-to-go’ for the state is an averaged ‘profit-to-go’ value considering the number

of times the state was visited.

Third, the initial ‘profit-to-go’ values can be directly used for the ‘Rollout’ approach to find

quick solution(policy) of the problem without the Bellman iteration. The rollout approach

is described in section 6.6.4 for the illustrative example.

138

6.5.2 Implicit Sub-Action Space for A State

As stated earlier, the problem has a large action space due to many material flows involved

in the supply chain. To reduce the computational load of the Bellman iteration and the

online decision making steps of the algorithmic framework, we propose to make a decision

in an “implicit sub-action space”, UX(k), a set of actions taken by the heuristics during

the heuristic simulation, for each state in the confined state space. Hence, the number of

the states in “sub-action space” is the same as the number of states in the restricted state

space. Instead of a set of aggregated actions, the set of heuristics that visited the state

in the simulation are recorded for the implicit sub-action space. In this way, we can avoid

distorted state transitions introduced by action aggregation. The definition of action in

equation (80) is kept the same other than that implicit heuristic rule hi is applied for the

state, X(k), to reproduce a set of possible actions to be evaluated for the state.

ui = hi(X(k)) for i = i1, ..., iN (86)

UX(k) = {ui1 , ..., uiN } (87)

where i is the index of the heuristics that visited the state X(k) in the simulation. Restrict-

ing the decision in the sub-action space may prohibit choosing the optimal decision(action)

for the given state. However, it ensures that a chosen action is feasible and increases the

possibility of the next state being in the restricted state space.

6.5.3 Bellman Iteration over the Confined State Space

The Bellman iteration step of the proposed approach is same as in the conventional DP

described in the previous section except for the following two details. First, it is done over

the restricted state space instead of the entire state space for the obvious reason. Second in

each iteration, the entire action space, U , is replaced with implicit sub-action space, UX(k),

to provide possible actions to be evaluated.

J i+1(X(k)) = max
u(k)∈UX(k)

E{φ(X(k), u(k)) + αJ i(X(k + 1)|X(k), u(k))} (88)

In the calculation of equation (88), the current cost, φ(X(k), u(k)), is deterministic for

a given state, X(k), and an action, u(k). The profit-to-go of the next state, J(X(k +

139

1)|X(k), u(k)) is stochastic due to the uncertain demand and price parameters. The exact

expected value of J(X(k+1)|X(k), u(k)) may not be calculated because all the possible next

states may not be included are not in the restricted state space due to the limited number

of realizations simulated. To obtain an approximate value of the J(X(k + 1)|X(k), u(k)),

the cost-to-go approximation method, in which normalized weighting factor of the profit-

to-go(or cost-to-go) is applied for the state in the restricted state space as shown in Figure

51. Detailed description of the approximation method is given in our previous work, [25].

Figure 51: Profit-to-Go Approximation

6.5.4 Real-Time Decision Making

The ‘converged’ profit-to-go values obtained in the previous step are implemented for real-

time decision making as follows.

u∗(k) = arg max
u(k)∈UX(k)

E{φ(X(k), u(k)) + αJ∗(X(k + 1)|X(k), u(k))} (89)

The calculation in the online decision making is the same as in the Bellman iteration except

that it is needed only for the specific encountered state at the time. The decision gets

implemented and the actual system (ranther than the model) provides the next states.

Because the decision belongs to the sub-action space, the next state is probabilistically

assured to be in the restricted state space, if the enough simulations have been performed

to allow for all probabilistically feasible outcomes. However, since those may not necessarily

140

hold, and could encounter an unvisited state not in the restricted state space. The state

transitions can also be misled by the distortion induced by the state aggregation due to

aggregation and disaggregation of the state in the state transition calculation. That is,

even though the state is actually in the restricted state space, it could be represented as

a state not in the restricted state space due to the distortion in the state aggregation and

disaggregation processes . In this case, the current state is replaced with the most ‘similar’

state in the restricted state space according to the ‘state similarity criteria’. In the given

problem, the state is defined with three types of state variables as it is represented in

equation (79).

X(k) = [Inventory Level,On-Going Production, Information State] (90)

In finding the most similar state in the confined state space with the current state, prior-

ities of the state variables are given in the order of information state variables, on-going

production state variables, and then inventory level state variables. The information state

variables are considered the most important have to be matched first. Because the infor-

mation state variables are not aggregated or disaggregated in state transitions, existence

of the states with exactly same information state variables in the restricted state space is

assured under the assumption that the restricted state space is obtained with a sufficient

number of realizations. The ‘similar state’ in the confined state space is searched in the

following order.

1. States in the restricted state space with the same information state as the information

state in the current state are searched

2. Among the states obtained in the previous step, states with the same on-going pro-

duction of the current state are searched

� If none of the states obtained in the previous step has the same on-going pro-

duction state variables with the current state variable, find a state that has the

minimum infinity norm of the difference with the current state.

141

Table 20: Probabilities and Parameters of the Markov chains in the Illustrative Example
Markov Chain Demand & Price Probability Matrix

MC1
(Product A)

 50 54
32 41
20 37


 0.60 0.10 0.10

0.30 0.50 0.20
0.10 0.40 0.70


MC2

(Product B)

 47 75
33 73
25 64


 0.50 0.30 0.15

0.35 0.50 0.25
0.15 0.20 0.60


MC3

(Product C)

[
58 42
38 36

] [
0.8 0.3
0.2 0.7

]
Markov Chain RM Price Probability Matrix

MC4
(RM for A)

[
18
25

] [
0.82 0.25
0.18 0.75

]
MC5

(RM for B and
C)

[
30
40

] [
0.85 0.40
0.15 0.60

]

3. Among the state obtained in the previous step, find a state that has the minimum

infinity norm of the difference with the current state.

6.6 Illustrative Example

As an illustrative example of the SCM problem with uncertainty, we consider a supply

chain with three products and multiple inventories linked to external suppliers, plants, and

markets (customers) as shown in Figure 1. As stated earlier, the objective is to maximize

the overall profit by controlling all the relevant material flows in the system. Demand

and price of each product are uncertain in the market and evolve according to underlying

Markov chains. Besides the demand and price, the raw material price is also assumed to

follow an independent Markov chain. Five Markov chains(three for the products and two

for the raw materials) are introduced in the example to represent the uncertain parameter

variations. All transition probability matrices and uncertain parameters for the Markov

chains are summarized in Table 20.

Inventory cost arises from every inventory in the system and the cost is assumed to be

piece-wise linear function shown in Figure 52. It is assumed that outsourcing is available for

every inventory and hence the capacity of each inventory is infinite. However, as the amount

142

of product in an inventory increases, the total inventory cost increases more rapidly due to

the higher inventory cost parameters(i.e. IC1 < IC2 < IC3 in Figure 52). The inventory

parameters of the problem are summarized in the Table 21.

Figure 52: Piece-wise Linear Inventory Cost

Three batch plants are involved in the example and each plant has certain maximum

production capacity(/unit time), production time, and minimum production cost for a single

batch of production. Those parameters for the three plants are summarized in Table 22.

Besides the parameters mentioned above, we set a fixed internal transaction cost(= 33) for

the product A in the material flow TA3 and TA4. The internal transaction price will be

used to evaluate the profit of the different product lines classified in Figure 49. Note that

the overall profit of the entire system is same regardless of the internal transaction price for

the product A.

6.6.1 Definition and Aggregation of the State and Action

The state for the illustrative example is defined as follows.

X(k) = [IA1(k), IA2(k), IA3(k), IB1(k), IB2(k), IB3(k), IC1(k), IC2(k), IC3(k)︸ ︷︷ ︸
Inventory Levels

, TA2(k − 2), TA2(k − 1), TB2(k − 1), TC2(k − 1)︸ ︷︷ ︸
On-going Production Amounts

,

143

Table 21: Inventory Cost Parameters for the Illustrative Example
Inventory Parameters

IA1 Range 0 ≤ i ≤ 60 60 < i
Inv. Cost(/unit) 1.5 2.4

IA2 Range 0 ≤ i ≤ 40 40 < i ≤ 100 100 < i
Inv. Cost(/unit) 1.3 1.8 2.2

IA3 Range 0 ≤ i ≤ 30 30 < i ≤ 50 50 < i
Inv. Cost(/unit) 1.5 2.0 3.0

IB1 Range 0 ≤ i ≤ 60 60 < i ≤ 100 100 < i
Inv. Cost(/unit) 1.1 1.7 2.3

IB2 Range 0 ≤ i ≤ 60 60 < i
Inv. Cost(/unit) 1.4 2.0

IB3 Range 0 ≤ i ≤ 60 60 < i ≤ 100 100 < i
Inv. Cost(/unit) 1.6 2.2 2.9

IC1 Range 0 ≤ i ≤ 60 60 < i
Inv. Cost(/unit) 1.5 2.5

IC2 Range 0 ≤ i ≤ 60 60 < i ≤ 100 100 < i
Inv. Cost(/unit) 1.7 2.4 3.0

IC3 Range 0 ≤ i ≤ 50 50 < i ≤ 90 90 < i
Inv. Cost(/unit) 1.9 2.5 3.3

Table 22: Plant Parameters for the Illustrative Example

Plant A Plant B Plant C
P. Cost(/unit) 5 9 4
Max. Capacity 120 70 70

P. Time 3 2 2
Fixed Cost(/batch) 120 100 95

Ratio(R:P)* 1:1 1:1 1:2

* Raw Material to Product Conversion Rate

Z1(k), Z2(k), Z3(k), Z4(k), Z5(k)︸ ︷︷ ︸
Information State

] (91)

As discussed earlier, the state has to be aggregated to avoid an unmanageably large state

space. Table 23 shows parameters used for the aggregation of the inventory levels and the

on-going production state variables(TA2(k − 2), TA2(k − 1), TB2(k − 1), TC2(k − 1)).

144

Table 23: State Aggregation

Rep. Index* 1 2 3 4 5

Range of IA1** 0-25 25-50 50-75 75-100 100-∞

Rep. IA1*** 13 38 63 88 113

Range of IA2 0-25 25-50 50-75 75 - 100 100 -∞

Rep. IA2 13 38 63 88 113

Range of IA3 0-25 25-50 50-75 75 - 100 100 -∞

Rep. IA3 13 38 63 88 113

Range of IB1 0-25 25-50 50-75 75-100 100-∞

Rep. IB1 13 38 63 88 113

Range of IB2 0-25 25-50 50- 75 75 - 100 100-∞

Rep. IB2 13 38 63 88 113

Range of IB3 0-25 25-50 50- 75 75 - 100 100-∞

Rep. IB3 13 38 63 88 113

Range of IC1 0-25 25-50 50- 75 75 - 100 100-∞

Rep. IC1 13 38 63 88 113

Range of IC2 0-25 25-50 50-75 75-100 100 - ∞

Rep. IC2 13 38 63 88 113

Range of IC3 0-25 25-50 50-75 75-100 100-∞

Rep. IC3 13 38 63 88 113

Rep. Index 0 1 2 3 4

Range of TA2 0 0 - 35 35 - 70 70 - 105 105 - ∞

Rep. TA2 0 18 43 78 120

Range of TB2 0 0 - 20 20 - 40 40 - 60 60 - ∞

Rep. TB2 0 10 30 50 70

Range of TC2 0 0 - 20 20 - 40 40 - 60 60 - ∞

Rep. TC2 0 10 30 50 70

* Representative Index in State Representation

** Aggregation Range of the Inventory Level

*** Representative Inventory Level in Reverse-Aggregation

Based on the state aggregation table and the state definition of the problem, the total

number of states in the entire state space can be calculated to be 8.79 ·1010 = 59 ·54 ·(32 ·23).

145

For the illustrative example, action consists of the 11 relevant material flows in the system.

U(k) = [TA1(k), TA2(k), TA3(k), TA4(k), TA5(k)︸ ︷︷ ︸
Regarding the Product A

,

TB1(k), TB2(k), TB3(k)︸ ︷︷ ︸
Regarding the Product B

, TC1(k), TC2(k), TC3(k)︸ ︷︷ ︸
Regarding the Product C

] (92)

6.6.1.1 State Transition Rules

Next state transition rules are defined. As discussed in section 6.4.3, there are two types

of state variables, controllable and uncontrollable state variables. For the controllable state

variables, the state transition rules are simply represented with the following material bal-

ance equations.

� State Transition Rules of the Controllable State Variables

IA1(k + 1) = IA1(k)− TA2(k) + TA1(k) (93)

IA2(k + 1) = IA2(k)− TA5(k)− TA4(k)− TA3(k) + TA2(k − 2) (94)

IA3(k + 1) = IA3(k)−DA(k) + TA5(k) , if IA3(k + 1) > 0 (95)

IA3(k + 1) = 0 , if IA3(k + 1) ≤ 0 (96)

IB1(k + 1) = IB1(k)− TB2(k) + TB1(k) + TA4(k) (97)

IB2(k + 1) = IB2(k)− TB3(k) + TB2(k − 1) (98)

IB3(k + 1) = IB3(k)−DB(k) + TB3(k) , if IB3(k + 1) > 0 (99)

IB3(k + 1) = 0 , if IB3(k + 1) ≤ 0 (100)

IC1(k + 1) = IC1(k)− TC2(k) + TC1(k) + TA3(k) (101)

IC2(k + 1) = IC2(k)− TC3(k) + 2 ∗ TC2(k − 1) (102)

IC3(k + 1) = IC3(k)−DC(k) + TC3(k) , if IC3(k + 1) > 0 (103)

IC3(k + 1) = 0 , if IC3(k + 1) ≤ 0 (104)

Among the variables in controllable state transition equations, the retail inventory levels,

IA3(k), IB3(k), IC3(k), are only ‘partially’ controllable because demands of the products,

146

Table 24: Heuristic 1
sa1 Sa1 sa2 Sa2 sa3 Sa3
80 120 100 200 80 150
sb1 Sb1 sb2 Sb2 sb3 Sb3
70 150 90 150 70 150
sc1 Sc1 sc2 Sc2 sc3 Sc3
90 130 80 95 70 120

Table 25: Heuristic 2
sa1 Sa1 sa2 Sa2 sa3 Sa3
80 100 120 220 60 130
sb1 Sb1 sb2 Sb2 sb3 Sb3
80 120 70 100 80 120
sc1 Sc1 sc2 Sc2 sc3 Sc3
100 150 60 110 100 150

DA(k), DB(k), DC(k), are uncertain. However, the state transition equations of those re-

tained inventory levels are deterministic with particular realizations of the product demands.

The state transitions of the uncontrollable(information) state variables depends solely on

the realization of the five underlying Markov chains.

6.6.2 Simulation Results for the Heuristics

Heuristics can be created by combining static inventory control policies for all the inven-
tories in the system to control the supply chain. Six heuristics are proposed where each
heuristic consists of nine static inventory control policies. The stationary inventory control
parameters, s and S, of each heuristic are summarized in Tables 24 through 29. In the
heuristics, the two raw material inventories of the product B and C, IC1 and IB1, are
replenished by the external supplier and the inventory IA2 with the ratio of 8 to 2(80%
from the supplier, 20% from the inventory IA2). In distributing the internal material flows,
TA3 and TA4, in all of the heuristics, TA4(to IB2) is considered first and TA3(to IC2) is
considered later if IA2 still has surplus inventory after fulfilling the required TA3 according
to the given heuristic. As an initial step of the algorithmic framework, the behavior of
the supply chain under the 6 heuristics are simulated for a large number of realizations
of Markov chains. Table 30 shows the performance of the heuristics for a certain set of
realizations(30,000 time horizon).

147

Table 26: Heuristic 3
sa1 Sa1 sa2 Sa2 sa3 Sa3
50 100 180 250 100 130
sb1 Sb1 sb2 Sb2 sb3 Sb3
50 120 100 160 100 120
sc1 Sc1 sc2 Sc2 sc3 Sc3
50 120 120 180 100 150

Table 27: Heuristic 4
sa1 Sa1 sa2 Sa2 sa3 Sa3
80 100 120 220 70 130
sb1 Sb1 sb2 Sb2 sb3 Sb3
80 120 100 160 100 150
sc1 Sc1 sc2 Sc2 sc3 Sc3
70 120 100 250 80 150

Table 28: Heuristic 5
sa1 Sa1 sa2 Sa2 sa3 Sa3
80 100 120 220 70 130
sb1 Sb1 sb2 Sb2 sb3 Sb3
80 120 100 160 100 150
sc1 Sc1 sc2 Sc2 sc3 Sc3
50 120 100 180 80 130

Table 29: Heuristic 6
sa1 Sa1 sa2 Sa2 sa3 Sa3
80 140 110 230 80 110
sb1 Sb1 sb2 Sb2 sb3 Sb3
90 140 90 160 100 130
sc1 Sc1 sc2 Sc2 sc3 Sc3
40 80 100 170 120 160

148

Table 30: Results of Simulating the Heuristics for Realization(30,000 horizon) Set #1

Profit A Profit B Profit C Total Profit CSLA* CSLB CSLC

H1 2.340e+6 2.107e+7 1.306e+7 3.647e+7 0.9441 0.9761 0.8882

H2 4.637e+6 1.585e+7 1.144e+7 3.193e+7 0.9546 0.7168 0.9199

H3 3.628e+6 2.078e+7 1.692e+7 4.133e+7 0.9796 0.8602 0.9525

H4 4.684e+6 2.004e+7 1.382e+7 3.854e+7 0.9608 0.9836 0.9249

H5 4.794e+6 2.002e+7 1.429e+7 3.910e+7 0.9618 0.9835 0.8009

H6 2.438e+6 2.011e+7 1.608e+7 3.863e+7 0.9164 0.9751 0.9287

* Customer Service Level of the Product A

From

the simulation result shown in the Table 30, Heuristic # 3 is better than the other heuristics

in terms of the total profit. On the other hand, Heuristic # 4 is the best in terms of the

average customer service level of the products. The customer service level of a product is

defined as the amount of fulfilled demand over the total demand for the product. The re-

sults shown in Table 30 points to the possibility of improving the solutions obtained by the

six heuristics by searching actions over the restricted state space visited by the heuristics

in the simulation because none of the heuristics is universally best for all cases.

6.6.3 Restricted State Space and Sub-Action Space

In the previous section, the simulation is performed over 20 sets of realizations, which

correspond to 600,000 realizations (20 sets with 30,000 realizations), which are used to

obtain the restricted state space for the given problem. For each heuristic and each set of

realization, the simulation is carried out with 3 different initial inventory conditions, low,

medium, and high, to capture different transient state trajectories until the supply chain

operation reaches a stable pattern. Thus, the total number of individual realizations in

the series of simulation is 10,800,000. For each individual realization, its profit-to-go value

for the visited state, Ĵ(X)sim can be calculated from simulation data by the profit-to-go

approximation equation (82) with H = 100 and α = 0.95. If the state is already in the

storage, the profit-to-go value of the state in the confined state space, Ĵ(X)old
cs , is updated

by the following equation.

Ĵ(X)new =
nĴ(X))old + Ĵ(X))sim

n + 1
(105)

149

where, n is the total number of times of the state X was visited in the series of simulations.

On the other hand, if the state is not among the stored states, it is added as a new state in

the storage with visiting time of n = 1 along with the profit-to-go value Ĵ(X)sim. During

the simulation, 1,433,694 states are visited and those states are recorded to define the

restricted state space. The size(number of states) of the restricted state space increases as

more and more simulation data are added. Figure 53 shows the increase of the states space

size with the total number of realizations. As can be seen from the figure, the restricted

state space is ‘saturated’ with 1,433,694 states implying probabilistically ‘closed’ at least

for the 600,000 realizations used for the simulation. The sub-action space is also obtained

Figure 53: Increase in number of the States in the Restricted State Space with the Number
of Realizations

along with each state in the restricted state space. By restricting the action space for an

individual state, in the Bellman iteration and in the real-time decision making, we can reduce

the computational load dramatically because the action space is represented with only 6

heuristics applied for the given problem rather than the enormous number represented by

all possible combination of the individual actions. Out of 1,433,694 stored states, 1,335,784

states have a sub-action space defined by only one heuristic due to the limited overlap in

the ranges of inventories in which the various heuristics operated. For such states, decision

150

Table 31: Distribution of the Number of Actions in Sub-Action Space
of

Heuristics
of States

1 1,335,784
2 807,807
3 13,903
4 2,759
5 449
6 19

Table 32: Online Decision Making with Initial Profit-to-Go
Profit A Profit B Profit C

Total
Profit

CSLA CSLB CSLC

Rollout
Approach

3.664e+6 2.109e+7 1.744e+7 4.219e+7 0.9809 0.8624 0.9578

Best Heuristic 3.628e+6 2.078e+7 1.692e+7 4.133e+7 0.9796 0.8602 0.9525

making is trivial because there is only one action to take. Table 31 shows tje distribution

of the number of actions(taken by the heuristics) over the stored states.

6.6.4 Rollout Approach: Online Decision Making with Initial Profit-to-Go

The restricted state space and the sub-action space can be directly used for online decision making

even without the Bellman Iteration. This way of approximating the ‘Profit-to-Go’ is called the

‘Rollout Approach’ and is particularly well-suited for deterministic combinatorial problems[7]. Based

on the hypothesis that the heuristic simulation is done for enough number of realizations, the initial

profit-to-go, Ĵ0, naturally contains complex stochastic variation of the system and is good enough

to be used for the real-time decision making as shown in the following equation (106).

u(k) = arg max
u(k)∈UX(k)

E{φ(X(k), u(k)) + αĴ0(X(k + 1)|X(k), u(k))} (106)

The online policy obtained by the Rollout Approach is tested for the same set of realizations used for

the results shown in Table 30. Computational results of the performance of the policy represented

by the equation (106) are summarized in Table 32.

Comparing Table 32 with Table 30, the solution obtained by the ‘Rollout Approach’ is

slightly better(about 2.1%) than the best heuristic policy, the Heuristic #3. The online

decision making with the initial profit-to-go can be a quick alternative solution method

when the Bellman iteration is not computationally feasible due to the large state space.

151

Average computational time of the decision making for each realization(unit time) was only

0.3 second when implemented in MATLAB on a machine with 2.66GHz CPUs and 2GB

RAM.

6.6.5 Bellman Iteration Over the Restricted State Space

The Bellman iteration proposed in equation (88) is much faster than the conventional

Bellman iteration in equation (84), for the given example because of the small sub-action

space. As shown in Table 31, for more than 93%(1,335,784 out of 1,433,694) of the states

in the state space, the decision making is trivial because only one exists action in the

sub-action space. At every iteration, 1,433,694 profit-to-go values are updated for the

states in the restricted set. The Bellman iteration is performed until a certain convergence

criterion(i.e.‖ Ji+1−Ji

Ji ‖∞< 0.01) is met. According to the Bellman iteration equation in

(88), a new set of profit-to-go values are obtained at each step of the iteration. With the

intermediate profit-to-go values, online decision policy can be constructed by replacing the

converged profit-to-go, J∗, with the intermediate profit-to-go, Ĵ i.

u(k) = arg max
u(k)∈UX(k)

E{φ(X(k), u(k)) + αĴ i(X(k + 1)|X(k), u(k))} (107)

Figure 54 shows the improvement in the total profit with the intermediate online policies

when tested on the 30,000 realizations used for the simulation of the heuristics. As the

profit-to-go values are updated by the Bellman iteration, the total profit of the intermediate

solution are improved gradually. It should be noted that the profit improvement may be

less new sets of realizations that are not experienced during the simulation. Comprehensive

computational analysis of the online policy with the converged profit-to-go will be shown

in the next section for various sets of realizations to verify the robustness of the proposed

approach. The iteration was converged with the error tolerance of ‖ Ji+1−Ji

Ji ‖∞< 0.01 after

the 15th iteration and took 8.2 days when implemented in MATLAB on a machine with

two 2.66GHz Xeon CPUs and 2GB RAM. Figure 55 shows the maximum relative error,

‖ Ji+1−Ji

Ji ‖∞< 0.01, of the profit-to-go values in the Bellman iteration. The converged

profit-to-go, J∗, is tested for online decision making next.

152

Figure 54: Total Profit Improvement with Intermediate Profit-to-Go Values

6.6.6 Online Decision Making with the Converged Profit-to-Go

The online decision making with the sub-action space and the converged profit-to-go de-

fined in equation (89) is also computationally efficient compared to the conventional one in

equation (85). If the state space is obtained with enough realizations under the simulated

heuristics, the online decision making is guaranteed to be superior to any of the heuristics

tested. To test the performance of the online supply operating policy based on the con-

verged profit-to-go, 50 new sets of realizations were generated with the underlying Markov

chain. Each set of realizations corresponds to 1,000 unit time horizon. Figure 56 shows

the total profit improvement for the the supply chain system with the resulting operating

policy compared to the best heuristic, Heuristic #3.

The average improvement is 4.53% with 1.32% and 7.84% being the minimum and

maximum improvements respectively. The results in Figure 56 demonstrate that the online

policy with the converged profit-to-go performs well even for new sets of realizations that

are not used in the training stage. However, the performance improvements are irregular

and depend on the realization because the profit-to-go is approximated over a relatively

153

Figure 55: Maximum Relative Error, ‖ Ji+1−Ji

Ji ‖∞, of the Bellman Iteration

long time horizon with H = 100 and α = 0.95.

Figure 57 shows one stage total profits obtained by the best heuristic and the DP policy

over a certain time horizon, 400 to 500, in one of the realization set (index #2) generated

for the test shown in Figure 56. As we can see in the Figure, the new policy acts more

‘conservatively’ than the best heuristic. The one stage total profit of the DP policy neither

results in as much profit nor incurs as much cost as the best heuristic. Indeed, for the given

set of realization #2, standard deviations of the one stage total profits are 2396.44 and

2301.26 for the best heuristic and the DP policy respectively. The ‘conservative’ behavior of

the DP policy is mainly due to its ability to blend future information into the decision. The

profit-to-go value represents an approximate value of future profit and the online decision

making equation considers all possible next states and their realization probabilities in the

decision making action. Thus, the DP policy does not take an extreme action if a high loss

is expected in the future. We hypothesized that the DP policy will be a combination of

the heuristics used in the simulation. Figure 58 shows the ‘shape’ of the DP policy for the

154

Figure 56: Improvement in the total profit with the policy based on the converged Profit-
to-Go: Distribution of Total Profit Improvement for 50 New Sets of 1,000 Realizations

same realization set shown in Figure 57. Since the action space is implicitly represented

by the sub-action space introduced in section 6.5.2, every discrete action taken by the DP

policy corresponding to a specific heuristic. Hence, the DP policy can be viewed as a

piecewise combination of the heuristics. It chooses the best heuristic (heuristic #3) for the

experienced state at each time, thus bringing an improvement over any single heuristic.

6.7 Conclusion

Supply chain management problems are growing in importance in the continuous process in-

dustries as the production of materials often involves a global enterprise. Solution methods

for these problems need to address both the potentially complex models of the individual

manufacturing facilities as well as the uncertainty in the information surrounding their op-

eration, such as the market demands. We have developed an approach to apparently solve

the stochastic dynamic programming problem that results from considering the evolution

of the uncertain parameters as a Markov chain and allowing the decisions to be based on

155

Figure 57: One Stage Total Profit (Cost) Comparison: Online Policy vs. Best Heuristic,
Time Horizon 400 to 500 in the Test Realization Set #2

the information available at each time step. The approach is based on the idea of perform-

ing rigorous dynamic programming over a state space that is deliberately restricted. The

restricted space is constructed by simulating a set of heuristics and storing the states that

are visited during the simulation. The optimal trajectory constructed from these states can

be significantly better than the individual heuristics that generated them. This results from

the ability to choose the action based on a good estimate of the cost-to-go and context sen-

sitive information. The approach can be applied to any problem formulated as a stochastic

dynamic programm, provided that there are reasonable heuristics available for simulation.

The major effort is in building the necessary simulation program and the Bellman iteration

over the restricted space, which can still be very large for realistic problems.

156

Figure 58: The Online Policy: Heuristics Taken for Time Horizon 400 to 500 in the Test
Realization Set #2

157

CHAPTER VII

CONTRIBUTIONS AND FUTURE WORK

7.1 Contributions

The goal of this thesis is the development of a computationally tractable solution method

for stochastic, stage-wise optimization problems. In order to achieve the goal, we have de-

veloped a novel algorithmic framework based on DP for improving heuristics. The proposed

method represents a systematic way to take a family of solutions and patch them together

as an improved solution. However, ‘patching’ is accomplished in state space, rather than in

solution space.

In Chapter 3, a generalized version of the algorithmic framework, which can be applied to

any deterministic/stochastic optimization problem formulated as a DP, is presented. Then,

the efficiency of the proposed framework is verified by tailoring and applying the framework

for deterministic/stochastic variants of traveling salesman problem.

In Chapter 4, the proposed framework is applied to a stochastic RCPSP, a real-world opti-

mization problem with a high dimensional state space and significant uncertainty equivalent

to billions of scenarios. The high dimensional state space is an inevitable consequence of

DP formulation for the RCPSP, as we have pointed out in Section 1.2. The real-time deci-

sion policy obtained by the proposed algorithmic framework outperforms the best heuristic

applied in simulation stage to form the policy. In Chapter 5, the proposed framework is

applied to a RCPSP with new project arrivals which has complicated state transition rules,

the second practical issue mentioned in Section 1.2. The complicated state transition in-

creases the computational load for analytical state transitions, and eventually makes the

Bellman iteration step of the framework computationally infeasible. To deal with the com-

plicated state transition rules, we have adopted the idea of the Q-Learning approach, which

enables us to build empirical state transition rules through simulation, into the proposed

framework.

158

In Chapter 6, a stochastic supply chain management problem is addressed as an example

of real-world problem with high dimensional state space and high dimensional action space,

the last issue of practical importance mentioned in Section 1.2, it also has a high dimensional

state space. The high dimensional action space, which describes astronomical numbers of

discrete actions, increases the computational load of the Bellman iteration and real-time

decision making enormously. We introduce the concept of an “implicit sub-action space”, a

systematic way of circumventing the high dimensional action space, and successfully added

the idea to the proposed framework. The implicit sub-action space is defined with heuris-

tic action operators mapping each state to corresponding discrete actions generated by the

heuristics. Therefore, the implicit sub-action space provides significant computational bene-

fits, in the Bellman iteration and in real-time decision making, by enumerating much smaller

number of actions restricted by the heuristic operators, rather than all possible actions.

7.2 Future Work

There are a number of directions in which this thesis could be extended, including further

computational improvements and a wider scope of applications.

� Theoretical Proofs Improving Heuristics

Though the most important property of the proposed approach for, improving heuris-

tics, is demonstrated via solving several practical applications in this thesis, the prop-

erty has not been theoretically established. However, one should be able to show

that the proposed approach can guarantee to improve heuristics in a given discrete

state space under certain prerequisite conditions because of the underlying probability

model for state action pairs. It should be noted that this guarantee will take the form

of performance relative to the heuristics and not in an absolute sense with expect to

the true optimal solution.

� Efficient Bellman Iteration Scheme: Multi-Layered Bellman Iteration

Bellman iteration is a necessary step of the proposed approach, even if this takes

place in a restricted state space. However, for large problems even the restricted

state and action spaces can become large and the Bellman iteration slows down to an

159

unacceptable level. Therefore it would be beneficial to accelerate the Bellman iteration

itself. The states in the restricted state space can be classified by the frequency they

are visited which can be obtained during simulation. Since the Bellman iteration is

performed over the restricted state space, ‘Cost-to-Go’ values of the frequently visited

states are rapidly propagated with high conditional probabilities of realization. Thus,

Bellman iteration over a subset of the states, consisting of the frequently visited states

in the restricted state space, may converge faster than the Bellman iteration over the

restricted state space and the converged cost-to-go values may be closer to the original

cost-to-go values obtained by the Bellman iteration over the entire restricted state

space. Once the ‘cost-to-go’ values are converged over the subset of the restricted

state space, one may extend the subset and perform the Bellman iteration over the

extended subset of the restricted state space. Since the cost-to-go values are already

converged over the previous subset, the second Bellman iteration may converge faster

over the extended subset. In same way, the Bellman iteration can be performed

over the extended subsets of the restricted state space until it becomes same as the

entire restricted state space. Extensive computational study and investigation of this

tentative idea of ‘multi-layered’ Bellman iteration may lead to a systematic way of

accelerating the Bellman iteration in the proposed framework.

� Complicated Action Sampling: Adopting Deterministic Mathematical Pro-

gramming Approach as A Heuristic

Complicated actions (decisions) are involved in real-world optimization problems un-

der uncertainty. For example, the SCM problem introduced in Chapter 6 has a high-

dimensional action space for simultaneous determination of the material flows in the

supply chain system. As the decision structure gets complicated, in general, it is not

easy to invent or choose reasonable heuristics for the problem. To obtain reasonable

heuristics for stochastic optimization problems, one may utilize the deterministic so-

lution method, mathematical programming, which can handle complicated decisions.

With fixed problem parameters, the deterministic solutio method only provides a

‘snapshot’ solution that is only valid and feasible for a certain realization for to the

160

fixed problem parameters. Therefore, a single snapshot solution cannot be a robust

action for stochastic optimization problem. However, a set of deterministic snapshot

actions obtained by different realizations of the uncertain parameters can be a useful

‘pool’ of actions for stochastic optimization problems. The idea of utilizing math-

ematical programming was verified with a small size of SCM problem with grade

transitions [20]. However, the idea has to be tested on more complicated, larger sized,

stochastic optimization problems to be generalized.

161

REFERENCES

[1] Aarts, E. and Korst, J., Simulated annealing and Boltzmann machines : a stochastic
approach to combinatorial optimization and neural computing. Wiley Press, 1st ed.,
1989.

[2] Adjiman, C., Androulakis, I., and Floudas, C., “A global optimization method,
abb, for general twice-differentiable constrined nlps - ii. implementation and computa-
tional results,” Computers and Chemical Engineering, vol. 22, p. 1159, 1998.

[3] Adjiman, C., Dallwig, S., Neumaier, A., and Floudas, C., “A global optimiza-
tion method, abb, for general twice-differentiable constrained nlps - i. theoretical ad-
vances,” Computers and Chemical Engineering, vol. 22, p. 1137, 1998.

[4] Beaumont, N., “A generalization of binary variables,” Asia-Pacific Journal of Oper-
ational Research, vol. 9, no. 2, pp. 177–181, 1992.

[5] Bellman, R., Dynamic Programming. Princeton University: New Jersey, 1st ed.,
1957.

[6] Belvaux, G. and Wolsey, L., “Modelling practical lot-sizing problems as mixed-
integer programs,” Management Science, vol. 47, no. 7, pp. 993–1007, 2001.

[7] Bertsekas, D., Dynamic Programming and Optimal Control, vol. 1,2. Athena Scien-
tific, Belmont, Massachusetts, 2nd ed., 1995.

[8] Bertsekas, D. and Tsitsiklis, J., Neuro-Dynamic Programming, vol. 1. Athena
Scientific, 1st ed., 1996.

[9] Bhattacharjee, S. and Ramesh, R., “A multi-period profit maximizing model for
retail supply chain management: An itegration of demand and supply-side mecha-
nisms,” European Journal of Operational Research, vol. 122, no. 3, pp. 584–601, 2000.

[10] Birge, J., “Decomposition and partitioning methods for multistage stochastic linear
programs,” Operational Research, vol. 33, pp. 989–1007, 1985.

[11] Birge, J. and Louveaux, F., “A multicit algorithm for two-stage stochastic linear
programs,” European Journal of Operational Resesarch, vol. 34, no. 3, pp. 384–392,
1988.

[12] Bisschop, J. and Roelfs, M., AIMMS : The User’s Guide. Paragon Decision Tech-
nology, 3.5 ed., 2004.

[13] Blau, G., Mehta, B., Bose, S., Pekny, J., Sinclair, G., Kuenker, K., and
Bunch, P., “Risk management in the development of new products in highly regulated
industries,” Computers and Chemical Engineering, vol. 24, no. 2-7, pp. 659–664, 2000.

162

[14] Blazewicz, J., Lenstra, J. K., and Kan, A. H. G. R., “Scheduling subject to re-
source contraints: Classification and complexity,” Discrete Appl. Maths, vol. 5, pp. 11–
24, 1983.

[15] Brooke, A., Kendrick, D., Meeraus, A., and Raman, R., GAMS : A User’s
Guide. GAMS Development Corporation, 1st ed., 1998.

[16] Buchan, J. and Koenigsberg, E., Scientific Inventory Management. Englewood
Cliffs, NJ: Prentice-Hall, 1st ed., 1963.

[17] Chen, F., “Optimal policies for multi-echelon inventory problems with bactch order-
ing,” Operations Research, vol. 48, no. 3, pp. 376–389, 2000.

[18] Cheng, L., E.Subrahmanian, and Westerberg, A., “Design and planning under
uncertainty: issues on problem formulation and solution,” Computers and Chemical
Engineering, vol. 27, pp. 781–801, 2003.

[19] Cheng, T. and Kovalyov, M., “Single supplier scheduling for multiple deliveries,”
Annals of Operations Research, vol. 107, pp. 51–63, 2001.

[20] Choi, J., Lee, J., Lee, J., Realff, M., Lee, H., and Lee, J., “Optimization of a
large scale, multi-product supply chain with grade transition operations under demand
uncertainty,” AIChE 2004 Fall Meeting, vol. Austin, TX, 2004.

[21] Choi, J., Lee, J., and Realff, M., “Simulation based approach for improving heuris-
tics in stochastic resource-constrained project scheduling problem,” 8th International
Symposium on Process Systems Engineering, Kunming, China, 2003.

[22] Choi, J., Lee, J., and Realff, M., “Simulation based approach for improving heuris-
tics in stochastic resource-constrained project scheduling problem,” 8th International
Symposium on Process Systems Engineering, pp. 439–444, 2003.

[23] Choi, J., Lee, J., and Realff, M., “An algorithmic framework for improving heuris-
tic solutions part II : A new version of stochastic traveling salseman problem,” Com-
puters and Chemical Engineering, vol. 28, no. 8, pp. 1297–1307, 2004.

[24] Choi, J., Lee, J., and Realff, M., “Dynamic programming in a heuristically con-
fined state space: A stochastic resorce-constrained project scheduling appplication,”
Computers and Chemical Engineering, vol. 28, no. 6-7, pp. 1039–1058, 2004.

[25] Choi, J., Lee, J., and Realff, M., “Dynamic programming in a heuristically con-
fined state space: A stochastic resorce-constrained project scheduling appplication,”
Computers and Chemical Engineering, vol. 28, no. 6-7, pp. 1039–1058, 2004.

[26] Choi, J., Lee, J., Realff, M., Park, H., and Park, S., “Decision making under
uncertainty,” AIChE Fall Annual Meeting, Reno, USA, Nov 2001.

[27] Choi, J., Realff, M., and Lee, J., “An algorithmic framework for improving heuris-
tic solutions part I : A deterministic discount coupon traveling salseman problem,”
Computers and Chemical Engineering, vol. 28, no. 8, pp. 1285–1296, 2004.

[28] Clark, A. and Scarf, H., “Optimal policies for a multi-echelon inventory problem,”
Management Science, vol. 6, pp. 475–490, 1960.

163

[29] Diks, D. and de Kok, A., “Optimal control of a divergent multi-echelon inventory
system,” European Journal of Operational Research, vol. 111, pp. 75–97, 1998.

[30] Floudas, C., Nonlinear and Mixed-Integer Optimization : Fundamentals and Appli-
cations. Oxford University Press, 1 ed., 1995.

[31] Garey, M. and Johnson, D., Computers and interactability : a guide to the theroy
of NP-completeness. W.H. Freeman, 1st ed., 1979.

[32] Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, 1st ed., 1989.

[33] Gooding, W., Pekny, J., and Mccroskey, P., “Eunymerative approaches to par-
allel flowshop scheduling via problem transformation,” Computers and Chemical En-
gineering, vol. 18, no. 10, pp. 909–927, 1994.

[34] Gosavi, A., Simulation-Based Optimization: Prametric Optimization Techniques and
Reinforcement Learning. Kluwer Academic Publishers, 1st ed., 2003.

[35] Grahovac, J. and Chakravarty, A., “Sharing and lateral transshipment of in-
ventory in a supply chain with expensive low-demand items,” Management Science,
vol. 47, no. 4, pp. 579–594, 2001.

[36] Gupta, A. and Maranas, C., “Managing demand uncertainty in supply chain plan-
ning,” Computers and Chemical Engineering, vol. 27, no. 8-9, pp. 1219–1227, 2003.

[37] Gupta, A., Maranas, C., and McDonald, C., “Mid-term supply chain planning
under demand uncertainty: Customer demand satisfaction and inventory manage-
ment,” Computers and Chemical Engineering, vol. 24, pp. 2613–2621, 2000.

[38] Hall, N. and Potts, C., “Supply chain scheduling: Batching and delivery,” Opera-
tions Research, vol. 51, no. 4, pp. 566–584, 2003.

[39] Harding, S. and Floudas, C., “Global optimization in multiproduct and multipur-
pose batch design under uncertainty,” Industrial and Engineering Chemistry Research,
vol. 36, no. 5, pp. 1644–1664, 1997.

[40] Higle, J. and Sen, S., “Stochaistic decomposition: An algorithm for two stage
stochastic linear programs with recourse,” Mathematics of Operations Research, vol. 16,
no. 0, pp. 650–669, 1991.

[41] Ierapertritou, M. and Floudas, C., “Effective continuous-time formulation for
short-term scheduling. 1. multipurpose batch processes,” Industrial and Engineering
Chemistry Research, vol. 37, no. 11, pp. 4341–4359, 1998.

[42] Ierapertritou, M. and Floudas, C., “Effective continuous-time formulation for
short-term scheduling. 2. continuous and semicontinuous processes,” Industrial and
Engineering Chemistry Research, vol. 37, no. 11, pp. 4360–4374, 1998.

[43] Ierapetritou, M. G. and Pistikopoilos, E. N., “Batch plant design and operations
under uncertainty,” Computers and Chemical Engineering, vol. 24, pp. 2613–2621,
2000.

164

[44] Infanger, G., Planning under uncertainty: Solving large scale stochstic linear pro-
grams. Boyd and Fraser Publishing Co., 1st ed., 1994.

[45] Jackson, J. and Grossmann, I., “A disjunctive programming approach for the op-
timal design of reactive distillation columns,” Computers and Chemical Engineering,
vol. 25, no. 11-12, pp. 1661–1673, 2001.

[46] Jain, V. and Grossmann, I., “Resource-contrained scheduling of tests in new product
development,” Industrial and Engineering Chemistry Research, vol. 38, no. 8, pp. 3013–
3026, 1999.

[47] Kalivas, J., Adaption of Simulated Annealing to Chemical Optimization Problems
(Data Handling in Science and Technology, Vol 15). Elsevier Publishing Company,
1st ed., 1995.

[48] Kall, P. and Wallace, S., Stochastic Programming. Willey, 1st ed., 1994.

[49] Kondili, E., Pantelides, C., and Sargent, R., “A general algorithm for short-
term scheduling of batch operations-i. milp formulation,” Computers and Chemical
Engineering, vol. 17, no. 2, pp. 211–227, 1993.

[50] Kushner, H. and Yin, G., Stochastic Approximation Algorithms and Applications.
New York: Springer, 2nd ed., 1997.

[51] Lawler, E. and Eugene, L., The Traveling Salesman Problem : A guided Tour of
Combinatorial Optimization. Wiley Press, 2nd ed., 1985.

[52] Lee, S. and Grossmann, I., “Generalized convex disjunctive programming: Nonlinear
convex hull relaxation,” Computational Optimization and Applications, vol. 26, no. 1,
pp. 83–100, 2003.

[53] Maravelias, C. and Grossmann, I., “Simultaneous planning for new product de-
velopment and batch manufacturing facilities,” Industrial and Engineering Chemistry
Research, vol. 40, no. 26, pp. 6147–6164, 2001.

[54] Noon, C. and Bean, J., “An efficient transformation of the generalized traveling
salesman problem,” INFOR, vol. 31, no. 1, pp. 39–44, 1993.

[55] Norkin, V., Ermoliev, Y., and Ruszczynski, A., “On optimal allocation of indi-
visibles under uncertainty,” Operations Research, vol. 46, pp. 381–395, 1998.

[56] Pekny, J., Miller, D., and Kudva, G., “An exact algorithm for resource constrained
sequencing with application to production scheduling under an aggregate deadline,”
Computers and Chemical Engineering, vol. 17, no. 7, pp. 671–682, 1993.

[57] Penky, J. and Miller, D., “Exact solution of the no-wait flowshop scheduling prob-
lem with a comparison to heuristisc methods,” Computers and Chemical Engineering,
vol. 15, no. 11, pp. 741–748, 1991.

[58] Percus, A. and Martin, O., “The stochastic traveling salesman problem : Finite
size scaling and the cavity,” Journal of Statistical Physics, vol. 94, no. 5-6, pp. 739–758,
1999.

165

[59] Petkov, D. and Maranas, C., “Multiperiod planning and scheduling of multiprod-
uct batch plants under uncertainty,” Industrial and Engineering Chemistry Research,
vol. 36, no. 11, pp. 4864–4881, 1997.

[60] Pinto, J. and Grossmann, I., “Assignment and sequencing models for the scheduling
of process systems,” Annals of Operations Research, vol. 81, pp. 433–466, 1998.

[61] Puterman, M., Markov Decision Processes. Wiley Interscience, 3rd ed., 1994.

[62] Raman, R. and Grossmann, I., “Modeling and computational techniques for logic-
based integer programming,” Computers and Chemical Engineering, vol. 18, no. 7,
pp. 563–578, 1994.

[63] Recklaitis, G., “Overview of scheduling and planning batch process operations, tech-
nical report,” NATO Advanced Study Institute, 1992.

[64] Rhee, W. and Talagrand, M., “A sharp deviation inequality for the stochastic
taveling saleman problem,” Annals of Probability, vol. 17, no. 1, pp. 1–8, 1989.

[65] Rockafellar, R. and Wets, R., “Scenarios and policy aggregation in optimization
under uncertainty,” Mathematics of Operations Research, vol. 16, no. 1, pp. 119–147,
1991.

[66] Rogers, M., Gupta, A., and Maranas, C., “Real options based analysis of opti-
mal pharmaceutical research and developement portfolios,” Industrial and Engineering
Chemistry Research, vol. 41, pp. 6607–6620, 2002.

[67] Sabri, E. and Beamon, B., “A multi-objective apporach to simultaneous strategic
and operational planning in supply chain design,” Omega-International Journal of
Management Science, vol. 28, no. 5, pp. 581–598, 2000.

[68] Sahinidis, N., “Baron: A general purpose global optimization software package,”
Journal of Global Optimization, vol. 8, no. 2, pp. 201–205, 1996.

[69] Schmidt, C. and Grossmann, I., “Optimization models for the scheduling of testing
tasks in new product development,” Industrial and Engineering Chemistry Research,
vol. 35, no. 10, pp. 3498–3510, 1996.

[70] Schultz, R., Stougie, L., and van der Vlerk, M., “Solving stochastic programs
with integer recourse by enumeration: A framework using grobner basis reductions,”
Mathematical Programming, vol. 83, pp. 229–252, 1998.

[71] Shah, N., “Single-and multisite planning and scheduling : Current status and future
chellenges,” 3rd International Conference on Foundations of Coputer-Aided Process
Operations, AIChE Symposium Series, vol. 94, no. 320, pp. 75–90, 1998.

[72] Shah, N., Pantelides, C., and Sargent, R., “A general algorithm for short-term
scheduling of batch operations-ii. computational issues,” Computers and Chemical En-
gineering, vol. 17, no. 2, pp. 229–244, 1993.

[73] Shapiro, A. and Wardi, Y., “Convergence analysis of gradient decent stochastic
algorithm,” Journal of Operation Theory and Applications, vol. 91, pp. 439–454, 1996.

166

[74] Smith, E. and Pantelides, C., “Global optimisation of nonconvex minlps,” Com-
puters and Chemical Engineering, vol. 21, no. S, pp. S791–S796, 1997.

[75] Subrahmanyam, S., Pekny, J., and Reklaitis, G., “Design of batch chemical plant
under market uncertainty,” Industrial and Engineering Chemistry Research, vol. 33,
p. 2688, 1994.

[76] Subramanian, D., Pekny, J., and Recklaitis, G., “A simulation-optimization
framework for research and development pipeline management,” AIChE Journal,
vol. 47, no. 10, pp. 2226–2241, 2001.

[77] Subramanian, D., Pekny, J., and Reklaitis, G., “A simulation-optimization
framework for addressing combinatorial and stochastic aspects of an r&d pipeline man-
agement problem,” Computers and Chemical Engineering, vol. 24, pp. 1005–1011, 2000.

[78] Subramanian, D., Pekny, J., and Reklaitis, G., “Simulation-optimziation frame-
work for stochastic optimization of r&d pipeline management,” AIChE Journal, vol. 49,
no. 1, pp. 96–112, 2003.

[79] Sutton, R. and Barto, A., Reinforcement Learning. The MIT Press, 3rd ed., 2000.

[80] Tsiakis, P., Shah, N., and Pantelides, C., “Design of multi-echeon supply chain
networks under demand uncertainty,” Industrial and Engineering Chemistry Research,
vol. 40, no. 16, pp. 3585–3604, 2001.

[81] Turkay, M. and Grossmann, I., “Logic-based minlp algorithms for the optimal
synthesis of process networks,” Computers and Chemical Engineering, vol. 20, no. 8,
pp. 959–978, 1996.

[82] Vasantharnjan, S., Viswanathan, J., and Biegler, L., “Reduced successive
quadratic-programming implementation for large-scale optimization problems with
smaller degrees of freedom,” Computers and Chemical Engineering, vol. 14, no. 8,
pp. 907–915, 1990.

[83] Verrijdt, J. and de Kok, A., “Distribution planning for a divergent n-echelon net-
work without intermediate stocks under service restrictions,” International Journal of
Production Economics, vol. 38, pp. 225–243, 1995.

[84] Vin, J. and Ierapetritou, M., “Robust short-term scheduling of multiproduct batch
plans under demand uncertainty,” Industrial and Engineering Chemistry Research,
vol. 40, no. 21, pp. 4543–4554, 2001.

[85] Viswanathan, J. and Grossmann, I., “A combined penalty-function and outer-
approximation method for minlp optimization,” Computers and Chemical Engineering,
vol. 14, no. 7, pp. 769–782, 1990.

[86] Watkins, C., “Learning from delayed rewards,” Ph.D. Thesis, Cambridge University,
1989.

[87] Weng, Z. and McClurg, T., “Cordinated ordering decisions for short life cycle prod-
ucts with uncertainty in delivery tiem and demand,” European Journal of Operational
Research, vol. 151, pp. 12–24, 2003.

167

[88] Wets, R., “Stochastic programs with fixed recourse: The equivalent deterministic
program,” SIAM Review, vol. 16, pp. 309–339, 1974.

[89] Winston, W., Operations Research : Applications and Algorithms. Duxbury Press,
3rd ed., 1993.

[90] Yin, K., Liu, H., and Johnson, N., “Markovian inventroy policy with application
to the paper industry,” Computers and Chemical Engineering, vol. 26, pp. 1399–1413,
2002.

168

VITA

Jaein Choi was born in Seoul, Korea on November 23rd, 1976. He graduated from Hansung

Science High School in 2 years, 1994. Then he had attended Korea Advanced Institute of

Science and Technology (KAIST) at Teajon, Korea in 1994 until he obtained a B.S. degree

as the 1st ranked student in Department of Chemical Engineering in February 1998. He then

continued a graduate study in Process Systems Laboratory at KAIST until he graduated in

August 2000 with a M.S. in Chemical Engineering. In August 2000, he attended Georgia

Institute of Technology at Atlanta, Georgia. From May to August 2004, he worked for

Owens Corning as an engineering intern at ‘Modeling, Control, and Optimization’ team in

Manufacturing Technology Center, Granville, Ohio. His dissertation title was “Algorithmic

Framework for Improving Heuristics in Stochastic, Stage-Wise Optimization Problems”.

He defended his thesis on November 19th, 2004 and obtained his Ph.D. in Chemical and

Biomodecular Engineering with a Minor in Stochastic Optimization on December 11th,

2004.

169

