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SUMMARY 

 I have developed a method which can quickly measure the Rayleigh wave Q for a 

test material using a minimally invasive laser probe. The probe was donated to our lab by 

Dr. Alex Maznev at Phillips AMS in Natick, Ma. The machine was originally used to 

measure ultra thin film metal thicknesses; however we have utilized it to suit our needs.  

The optics head relies on a technique known as the transient grating method to generate a 

dispersion curve. This dispersion curve is then operated on by a local approximation for 

the Kramers-Kronig relations. The Kramers-Kronig relations for acoustic waves relate 

the real and imaginary parts of the dynamic compressibility to one another. The real part 

of the compressibility relates to the phase velocity of the wave and the imaginary part 

relates to the attenuation. Once the attenuation for the corresponding range of frequencies 

is determined the last step is to apply both the dispersion data and the attenuation data to 

the material Q equation to find Q over a range of frequencies. My thesis discusses the 

design of the machine, the theory behind the Kramers-Kronig relations and surface 

acoustic waves, the experimental procedure, and lastly results generated by the technique. 
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CHAPTER 1 

INTRODUCTION 

 Many RF filters, biosensors, and other microelectronic devices rely on surface 

acoustic waves for operation. Surface acoustic wave resonators especially rely on one 

figure of merit, Material Q. Material Q is the ratio of energy stored per cycle divided by 

energy lost per cycle as the acoustic wave propagates within the medium. The higher the 

Material Q, the higher the upper limit for the total Q of a resonator or other such acoustic 

wave device.   

 There is limited information available for material Q values of Rayleigh waves in 

literature and in texts. The motivation of this thesis is to be able to rapidly measure the 

material Q of a given substrate, using minimally invasive techniques. In less than one 

minute the material Q of a solid can be measured without the need for an IDT to be 

fabricated on the surface. This thesis describes a novel method we have developed in 

order to measure material Q based on just the dispersion data. This is done by applying 

the Kramers-Kronig relationship to the dispersion data over frequency and calculating the 

corresponding attenuation. Typically in the study of acoustics and geology, attenuation 

data is first gathered and the Kramers-Kronig relationship is used to calculate the 

dispersion data. [4, 5] This technique has the added benefit of calculating material Q from 

one set of data, rather than having to measure the dispersion and attenuation before the 

calculation can be done.  

1.1 Laser Probe Overview 

Chapter 3 of this thesis will discuss the details of the laser probe. The laser probe 

used in the experiment was kindly donated by Alex A. Maznev at Phillips AMS in Natick, 
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MA. The donated optics head was part of a system called the Impulse 300 which costs in 

excess of $1,000,000. The optics head and motor stage that was donated to our lab totaled 

a value in excess of $180,000. The entire system was originally designed for thickness 

measurements of ultra thin metal films on CMOS circuits. This metrology tool has found 

much success in the semiconductor industry the measurements were done using a method 

known as Transient Grating (TG) or Impulsive Stimulated Thermal Scattering (ISTS). A 

diffraction grating is used to diffract an excitation beam. The two first order diffractions 

of the beam pass through a set of lenses that recombine the beams at the surface of a test 

wafer. The angle of recombination dictates the fringe pattern which in turn dictates the 

wavelength of the acoustic wave generated. The resulting surface acoustic wave is then 

measured by an IR probe beam which is shone directly on the “ripple” of the surface. The 

first order diffracted beam is then detected by a high speed avalanche photo receiver and 

that signal is in turn output to a 2 Gb/s  LeCroy Oscilloscope.  

 The resulting signal can then be analyzed by MATLAB to extract information 

about the wave. I perform an FFT on the signal to determine the frequency of the 

propagating wave. The phase velocity of the wave is then calculated using the familiar 

equation: 

fVs ⋅= λ  (1.1) 

whereλ is the wavelength of the SAW wave and is the frequency of the wave. The 

resultant signal can also be operated on in other ways to provide data useful for 

calculating material Q for different substances. A detailed description regarding the 

nature of acoustic waves, more specifically Rayleigh waves will be given in chapter 2.  

f

1.2 Dispersion Data and Kramers-Kronig Calculations 
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 The dispersion curve can be created from the collected velocities at different 

wavelengths. The dispersion curve is plotted over frequency to view the trend in the 

change of acoustic phase velocity as the frequency increases. The dispersion data is then 

operated on by a set of approximations based off the Kramers-Kronig relationship. The 

Kramers-Kronig relationship was first developed to relate the real and imaginary part of a 

complex wave number. Essentially, this relationship allows dispersion data to be 

translated into attenuation data for the corresponding frequencies and vice versa. 

Unfortunately, advanced knowledge of a point in the destination data set is necessary for 

the relationship. To mitigate the problem a set of approximations have been developed to 

allow for dispersion data that is relatively constant over a small range of frequencies to be 

used to find the corresponding attenuation data. [5, 6] 

 After the dispersion data is gathered and the corresponding attenuation data has 

been calculated material Q can be calculated for the corresponding range of frequencies. 

The formula used for the final calculation of Q is: 

aV
Q

⋅⋅
=

α
ω

2
  (1.2) 

where ω  is the angular frequency, α  is the attenuation coefficient and  is the velocity 

of the acoustic wave. [3] Further discussion regarding material Q will be held in chapter 2. 

A derivation of the Kramers-Kronig relations as well as the approximations used in this 

experiment will be presented in Chapter 4. 

aV

3 



1.3 Experimental Procedure 

  The fifth chapter will detail the steps needed to perform the experiment. First, the 

preliminary preparations including wafer preparation, setting up the laser probe, properly 

aligning the system and other steps will be discussed. Second, the actual control of the 

machine and operation of the system will be discussed. Last, a description of the Labview 

based dispersion curve program and the MATLAB mathematical analysis software will 

both be presented to better explain the code. 
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CHAPTER 2 

BACKGROUND ON SURFACE ACOUSTIC WAVES IN SOLIDS 

 This chapter will provide the necessary background information regarding surface 

acoustic waves in solids. This chapter is relevant to this thesis because the acoustic waves 

generated by the laser probe are surface modes. This chapter will focus on the physics of 

first order surface waves, known as Rayleigh waves, since they are the waves of study in 

this thesis. Higher order modes, such as Sezawa modes, can be generated by the laser 

probe when a thick enough surface layer is present. In my experiment however, the top 

layer is kept acoustically thin enough that these modes are not present.  

This section will be divided into two parts, the first discussing Rayleigh Wave 

physics and propagation, the next discussing material Q for acoustic waves, primarily 

Rayleigh waves. Discovered in 1887 by Lord Rayleigh, Rayleigh waves are surface 

acoustic waves that are confined to the surface of a medium. The energy of the wave 

decays exponentially into the substrate and is typically non existent at a depth on the 

order of a wavelength. Material Q for Rayleigh waves is an important figure of merit 

since it is a necessary parameter used by engineers when designing acoustic devices. 

2.1 Rayleigh Wave Background 

A subset of all surface acoustic wave polarizations, the Rayleigh wave is a 

common mode seen anywhere from resonators and sensors, to earthquakes traveling 

along the earth’s surface. A Rayleigh wave has an elliptical polarization where the center 

of the rotation is located along the y-axis as seen in figure 2.1. 
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Figure 2.1. Elliptical Polarization of Rayleigh Waves [1] 

 

 

 

 

 

 

 

Ocean waves are similar to Rayleigh waves with the exception of the polarization of the 

elliptical particle displacement. While Rayleigh waves are polarized in the 

counterclockwise rotation, ocean waves posses a clockwise rotation and ultimately result 

in a different wave profile as seen in figure 2.2. The elliptical shape of the polarization is 

due to the fact that the air has lower impedance than the solid. This results in more 

displacement along the direction normal to the surface. [2] 

 

 

 

 

 

 

Ocean Waves (CW) Rayleigh Wave in a solid (CCW)

Figure 2.2. Profile of Ocean Waves versus Rayleigh Waves 

 The Rayleigh Wave itself is actually a combination of a longitudinal mode and a 

shear transverse mode propagating on an infinite substrate. If the substrate is not 

considered infinite, a Lamb Wave can develop. A lamb wave occurs when the energy  
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rom a Rayleigh Wave on one side of a substrate couples to the other side creating 

ymmetric or anti-symmetric propagating waves (figure 2.3). For the experiments in this 

hesis the substrate is considered infinite because the thickness (~500 um) is an order of 

agnitude greater than the length of the acoustic wavelength (~10 um).  

The characteristic equation used to relate the velocities of the longitudinal and 

hear components of a Rayleigh wave takes the form: 
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here  and  are the longitudinal and shear component velocities and  represents 

he Rayleigh velocity. takes the form: 

sV lV RV

RV

R
RV

β
ω

=  (2.2) 

he solution for 
s

R

V
V must be real and positive and therefore only one solution exists. 

igure 2.4 gives the solution as a function of the shear and longitudinal velocities in the 

ubstrate. This solution can also be approximated by using the formula:  
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Figure 2.4. Exact versus approximate solution to the 
Rayleigh wave characteristic equation[2] 

 

 

 

 

 

 

 

 

This figure shows how good of an approximation equation 2.3 is for estimating the 

solution to the Rayleigh wave characteristic equation. [2] 

 The field pattern for Rayleigh waves is shown in figure 2.5 below and clearly 

demonstrates how the energy of the wave decays going into the bulk. The partial velocity 

field is a combination of the longitudinal field partial wave and the shear field partial 

wave. The two partial wave velocity field patterns follow the equations: 
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The particle displacement field distribution is elliptically polarized in the yz plane. Near 

the surface the Rayleigh wave motion is retrograde yet it reverses its sense at roughly a 

fifth of a wavelength into the bulk. Along with the varying polarization, the aspect ratio 

of the elliptical polarization varies with depth. [2] 

 

 

Figure 2.5. (a) Particle velocity field distribution, (b) Particle displacement field 
distribution [2] 

2.2 Material Q Background 

 In general the quality factor is a figure of merit which attempts to measure the 

amount of energy saved per cycle divided by the amount of energy lost per cycle. This 

figure of merit is used across all fields of wave theory. Acoustic waves, like all waves, 

simply do not propagate with out any loss to the signal. If this were the case then Hooke’s 

Law (T = CS) would be a precise equation requiring no modification for advanced 

calculations. Unfortunately, this is not the case due to viscous damping forces and 

nonlinearities within a solid and as a result Hooke’s Law must be compensated to account 

for this. Equation 2.6 accounts for loss due to viscosity in Hooke’s Law. 
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dt
dSCST η+=  (2.6) 

Viscosity is represented by η  and has units of N s/m2. The time derivative in the equation 

is due to the relaxation of strain as it settles toward equilibrium. [3] 

 The imperfect propagation of acoustic waves due to these damping forces and 

nonlinearities within the medium is measured by absorption. Absorption is the amount of 

energy lost versus the distance the wave has traveled.  Derived in Rosenbaum [3] using 

the wave equation in 2.7 and complex wave number (equation 2.8), the expression for 

absorption takes the form seen in equation 2.9. 
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In the above equations C is the stiffness constant, ρ  is the density of the material, η  is 

the viscosity of the material, and Q represents the material quality factor.  

Material Q itself is defined as the ratio of the amount of energy stored versus the 

amount of energy lost per cycle [4]. More specifically the value for material Q can be 

calculated using the absorption coefficient, velocity, and frequency in equation 2.9.  

av
Q

α
ω

2
=    (2.9) 

Material Q varies over frequency and for homogenous material tends to be inversely 

proportional to frequency. This is because the absorption coefficient is proportional to the 

frequency squared. Typically in practice, the frequency dependence is , where 1.2 < n nω
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< 1.4 for poor quality materials and n > 1.8 for high quality materials. When n < 1.7 one 

can expect reduced absorption if the crystal growth conditions are improved. For 

heterogeneously layered materials the slope of the Q factor is less predictable as 

frequency changes. For anisotropic media material Q can also vary but usually no more 

than 5% to 10% over direction, however a notable exception to this is paratellurite (TeO2) 

where the Q value can vary over orders of magnitude. [3] 

In the case of acoustic resonators, material Q serves as the upper bound for the 

potential value of the resonator Q [7].This means it is very important to know the 

material Q of the design materials ahead of time to ensure the resonator can be built with 

at least a certain Q value. I will now derive the equation for total resonator Q. To do so, 

the generalized definition for Q must be revisited. Equation 2.10 represents the energy 

lost divided by energy stored per cycle, where 0ω  is the frequency of the wave, is the 

energy stored, and is the energy loss rate.  

sE

LP

L

s

P
EQ 0ω=  (2.10) 

The first step in the derivation begins with considering all the different energy 

losses, including the loss due to the material, and losses due to the efficiency of the 

resonator in an ideal situation. 

( )LNsonatorLLMaterial

s
Total PPP

EQ
+⋅⋅⋅++

=
Re

0ω   (2.11) 

By taking the inverse of both sides of the equation as in 2.12 and 2.13 it becomes 

possible to split each energy loss into its own term. 
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Once each term is alone it becomes clear that each energy loss term is simply the inverse 

value for Q. Equation 2.14 accounts for not only the material and resonator Q values but 

any other loss mechanisms that may be accounted for within the system.  

NsonatorMaterialTotal QQQQ
1111

Re

+⋅⋅⋅++=  (2.14) 

Much like the equation for adding parallel resistive terms in electronic circuitry, the 

smallest Q value in the system dominates the total value for Q. Conversely, larger Q 

values tend to have less of an affect on the overall Q for the system. As a result of this, 

whenever the material Q is large in comparison to the other aspects of the system it plays 

a minor role in affecting the total Q value. If the material Q value is the smallest amongst 

the other Q values in the system it then dominates the entire system and the total Q can 

never be anything greater than the value of material Q.  
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CHAPTER 3 

 THE LASER PROBE  

 This chapter will go into detail of the laser probe optics head design, the 

preparatory work done to bring it online, and the underlying physics of operation. The 

optics head of the laser probe is a very space efficient design and relies completely on 

transmissive components. The details of this design are discussed in the first section of 

this chapter. The original commercial laser probe included many features that were not 

necessary for our application; i.e. wafer handling. This led to only the principle 

components being donated to our lab including the optics head and the motor stage. The 

second section of this chapter will discuss the preparations, modifications, and software 

written we had to do to bring the entire laser probe system online. The last section of this 

chapter will explain, in detail, the physics behind the laser probe. 

3.1 Laser Probe Design 

 The first version of the metrology tool was built very elegantly with consideration 

to the space the optical components took up. An image of the optics head is pictured on 

the left of figure 3.1 and a diagram for the system is pictured on the right side of the 

figure. This section will be broken down into the subsystems of the laser probe: the 

excitation beam, the probe beam and receiver, the camera view, and the motor control. 
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Figure 3.1. The laser probe optics head and corresponding schematic 
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3.1.1 Excitation Beam 

 The excitation beam is generated by a ND:YAG laser which creates a beam with a 

wavelength of 1064 nm. The beam is pulsed with duration of ~100 picoseconds and is 

passively Q switched at 200 us. A frequency doubler is used on the excitation laser 

resulting in an actual wavelength of 532 nm. The excitation beam first travels through a 

neutral density filter in order to control the intensity of the beam on the surface. The 

attenuated light then passes through a cylindrical lens which elongates the beam. Next the 

excitation beam passes through a phase mask which diffracts the beam. The two first 

order diffracted beams are then passed through a set of lenses above the test wafer and 

refocused on the surface to create an interference pattern. The size of the interference 

pattern is ~300 microns thick and roughly a millimeter in the direction of the generated 

acoustic wave. The width of the pattern varies depending on which phase mask is used. 

Figure 3.2 is a diagram representing the path of the excitation beam through the optics 

head on the way to the device under test. 

                    

Fig  

 

 

 

 

 

 

 

1. ND:Yag (532nm)

2. NDF

3. Cylindrical Lens

4. Phase Mask

5. Refocusing Lenses

1. ND:Yag (532nm)

2. NDF

3. Cylindrical Lens

4. Phase Mask

5. Refocusing Lenses

 

ure 3.2. The optical path of the excitation beam
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3.1.2 Probe Beam 

 The probe beam consists of a continuous wave AlGaAs IR diode laser with an 

optical wavelength of 808 nm. The probe beam is directed onto the surface of the device 

under test at a position incident to the excitation beam pattern. The spot size of the beam 

on the surface of the sample is roughly 100 microns. The acoustic waves generated by the 

excitation beam act as a diffraction grating for the IR probe beam. The probe light that is 

reflected from the surface is directed towards a stop while the diffracted light is aimed at 

a lens that directs the light toward the high speed detector. The detector utilizes a Silicon 

avalanche photodiode with a frequency range of 1 MHz up to 1 GHz. The photoreceiver 

outputs the signal to a LeCroy Oscilloscope which is in turn connected to the desktop 

computer. The schematic for the optical arrangement is depicted in Figure 3.3. 

 

Structure Under Test

Excitation Laser

Detector
Probe Laser

Structure Under Test

Excitation Laser

Detector
Probe Laser

Excitation Laser

Detector
Probe Laser

 
Figure 3.3. The optical path of the probe beam 

3.1.3 Motor Control, Laser Control, and Camera View 

 The stage motor control and the stepper motors in the optics system take full 

advantage of a CAN Open network. Five total amplifiers are used; three for the XYZ 

stage, one for the NDF stepper motor and one for the phase mask stepper motor. The 
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stage motors have a precision to a third of a micron allowing for reliable and precise 

targeting of the laser. The stepper motors within the optics system allow for fast NDF and 

phase mask setting changes. Whenever a certain phase mask or NDF setting is selected, 

the software tells the amplifiers to go to the preset locations. The CAN Open network 

also assists in the controls of the stage light and laser using a few of the pins on amp 4 

that have been configured to act as outputs. The output sends a high signal to the 

Nanolase power supply which controls the pulsing of the laser.  

 The CCD camera focus is controlled by the Optem Zoom 100D optics set. 

Initially the system relied on a motor controlled focus lens set, however to save 

amplifiers a hand controlled optics Zoom 100D was selected. The image from the CCD is 

sent to the desktop computer and displayed in the control software.  

3.2 Laser Probe Preparation 

 The components of the system that were donated include the motor stage, the 

optics head, and the nanolase power supply. The total value of the donated equipment 

came to $180,000. To bring the system online more components were necessary. Power 

sources for the nanolase power supply, the photoreceiver, and CCD camera were 

introduced to the system. This DC power supply came from an old laser based 

experiment previously done in the MAG lab. Each motor also needed an amplifier to 

control it. The solution was found using a CAN Open amplifier network. These robust 

amplifiers are networked together and independently addressed. This allowed for 

improved simplicity when programming the software to control the system. The 

amplifiers were directly controlled by a desktop computer purchased solely for the 

operation of the laser probe. 

16 



 Another important component for the system that was not donated to our lab was 

the control software. While this was initially an obstacle in the set up of the laser probe, 

the flexibility for software adaptation in later experiments came to be a strong advantage 

of our system. I developed the graphical user interface in LabView 8.0 and designed it to 

be capable of controlling virtually every aspect of the laser probe. Appendix B includes 

screen shots the GUI for the laser probe.  

In the upper left corner of the interface are the relative position controls. The 

distance in micro steps are entered into the numeric input and the direction buttons move 

the stage the input distance in the selected direction. Each micro step corresponds to one 

third of a micron. Below the relative position controls are the absolute position controls. 

By entering in the coordinates of each axis and pressing GO, the motor stage will 

accurately position the laser over that location. Underneath the absolute position control 

are a few buttons that include control over the stage light, and lasers themselves. Control 

of the NDF and phase mask motors are done by selecting the position on the sliding index 

bar. Whenever a new position is selected the green light to the right of the bar comes on 

and the software will not respond to any other commands until the slide is in position. To 

the right of these controls is the camera image. The cross hairs in the middle of the image 

represent the location of the lasers being fired on the device under test. At the bottom of 

the GUI is the waveform as it is seen on the oscilloscope. The user can download the data 

from the oscilloscope onto the computer by selecting the “capture waveform” button. If 

the user wishes to store the downloaded waveform, he can do so but selected the save 

button next to the waveform.  

17 



The slowness curve controls are used to gather velocities over a range of 

frequencies from isotropic solids. This program relies on the aluminum wafer used to 

orient wafers over direction discussed in chapter five. To run the program the user must 

first input the start and finish angles as well as the increment size between angles. Then 

the software will prompt the user to move the aluminum plate to the correct starting angle. 

Once completed, the user clicks “OK” for the software to capture a waveform at that 

orientation. Once the capture is complete, the program prompts the user rotate the plate to 

the next angle and waits for the user to indicate completion. This cycle continues until all 

angles have been visited. 

 The dispersion curve button runs a script that prepares a set of waveforms from 

the phase masks selected by the array input. For each phase mask selected the laser probe 

will take a summed average of the waveform for 500 sweeps. After each averaged 

waveform has been downloaded onto the computer, the software saves all the data in a 

text file where all the odd columns correspond to the time axis of each waveform and all 

the even columns correspond to the amplitude axis of each waveform. A more detailed 

description of this program will be covered in chapter five. 
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3.3 Laser Probe Theory of Operation 

 This section will discuss why and how the laser probe works and how to interpret 

the resultant waveforms. This subsection will be broken into sections describing the 

optics of the excitation beam, acoustic generation by thermal expansion, and lastly 

interpretation of the data. The goal of this section is to give a general understanding of 

how the waves are being generated and measured. 

3.3.1 Excitation Beam Optics 

 The principle optical component of the laser probe itself is the transmissive phase 

mask along the path of the excitation beam. The purpose of this binary phase mask is to 

diffract the beam as it passes through the glass. Approximately 80% of the incident light 

is propagated into the +1 and -1 diffraction orders[8]. The angle of diffraction of the two 

first order beams diffracted through the phase mask follow the equation below: 

n
ii ⋅Λ

−=
λθθ sinsin   (3.1) 

where iθ  represents the angle of diffraction for the ith order, Λ  represents the grating 

spacing, n is the index of refraction of the air around the phase mask and λ  is the 

wavelength of the light[9]. Figure 3.5 is a diagram of the excitation pulse passing through 

the phase grating. 

The angle that the two first order beams are diffracted from the phase mask is 

equal to the angle at which the two beams recombine on the test surface. Earlier designs 

of the laser probe relied on a reflective phase mask which took up a great deal more space. 

The transmissive grating allows for a much more space efficient design because no extra 

mirrors are necessary to direct the beams. 
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dden, spatially periodic heating followed by thermal expansion. 

 results in the launching of counterpropagating acoustic waves. 
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The wave vector of these acoustic waves correlates to the spatial wavelength of the 

interference pattern. The ripple of the acoustic wave acts as a diffraction grating for the 

probe beam to interact with. The vertical displacement of this ripple due to the thermal 

absorption at the interference pattern is on the order of 100 nm [10, 11].  
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3.3.3 Waveform Analysis 

 The waveform generated by the laser probe carries a wealth of information that 

can be analyzed to learn many characteristics of the material. A typical waveform, such 

as the one seen in figure 3.6, consists of a periodic dampened oscillation after an initial 

spike from thermal expansion. The decay of the total amplitude of the signal is from the 

surface displacement of the material over time. The oscillations within the envelope of 

the signal directly correspond to the frequency of the wave, which can be used to 

calculate the wave velocity if the wave vector is known. [8, 10, 11] 

The ability to rapidly select a different phase mask allows for the generation of 

multiple waveforms for different acoustic k vectors in a short amount of time. This makes 

it very easy to create dispersion curves which can later be used for further calculations. 

By taking the fast Fourier transform of the signal it is easy to extract the frequency. The 

waveform must be cleaned up to obtain the frequency of the signal. Figure 3.6 shows 

before and after images of the cleaning process of the waveform.  

 

 

 

 

 

 

 

Before HPF at 300 MHzBefore HPF at 300 MHz After HPF at 300 MHzAfter HPF at 300 MHz

Figure 3.6. Before and after image of a cleaned up waveform generated by a binary 
phase mask with a spatial period of 10.5 um 
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It is clear from these diagrams that the low frequency components generated by thermal 

decay are sufficiently filtered out and the remaining acoustic data can freely be operated 

on.  
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CHAPTER 4 

KRAMERS-KRONIG RELATIONS  

The most essential part for the calculations of this experiment relies on the 

relationship known as the Kramers-Kronig relations. This relationship was first pioneered 

in the mid 1920s by Ralph Kronig and Hendrik Anthony Kramers to explain the 

absorption and dispersion in the X-Ray spectra [12, 13]. In essence, this pair of equations 

provides the ability to take dispersion data over a range of frequencies and calculate the 

corresponding set of attenuation data and vice versa. An analogous version to the 

Kramers-Kronig relationship used to describe optical waves has been developed [5, 6] to 

explain acoustic waves using the real and imaginary part of the dynamic compressibility. 

Like the optical counter part, the acoustic version of this relationship requires the system 

to be both causal and linear.  

Much like the original Kramers-Kronig relationship for optical systems, a priori 

information is required in order to translate imaginary or real data to its counterpart. In 

other words, for a given set of dispersion data to be converted to the attenuation data of 

the same frequency range, it is necessary to have information about the attenuation data 

ahead of time. For some applications, such as this experiment, the “anchor point” may 

not be known and a set of approximations are needed to circumvent the lack of 

information. The Kramers-Kronig relations are also a nonlocal relationship. In other 

words, in order for the attenuation to be calculated from the dispersion, the dispersion for 

all frequencies must be known. The approximations I have used in this thesis also 

approximate the Kramers-Kronig relationship locally. This section will first discuss the 
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origin and derivation of the Kramers-Kronig relationship and end with the derivation of 

the approximations used in this experiment. 

4.1 Derivation of the Kramers-Kronig Relations 

 The original utility of the Kramers-Kronig relations was to relate the imaginary 

and real parts of the complex permittivity of an electromagnetic wave. This section will 

derive the Kramers-Kronig relationship based on the derivation found in the second 

edition of Semiconductor Optoelectronic Devices by Pallab Bhattacharya [14]. This 

derivation will begin with the complex dielectric constant of material for electromagnetic 

waves where the constant is given by: 

( ) ( ) ( )ωωω rrr j∈′′+∈′=∈     (4.1) 

In the time-invariant form the electric field E and the electric flux density D are related 

by  

( )
E

ED

0

0 1
∈=∈
+=∈

r

eχ
      (4.2) 

where is the electric susceptibility. Any temporal response of D due to a change or 

switching of E must include the change of polarization with time. The below expression 

expresses the causality relationship between the electric field and electric flux density. 

eχ

( ) ( ) ( ) ( ) ( )∫ ∞−∞ ′′′−∈+∈′=∈
t

tdtttfttt EED 00 δ   (4.3) 

This integral represents how the system at time t responds to the applied field at E at a 

previous time t’. The Fourier transforms for both D and E are written as 

( ) ( )∫
∞

∞−

−= ωω
π

ω det tjDD
2
1     (4.4) 

and 
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( ) ( )∫
∞

∞−

−= ωω
π

ω det tjEE
2
1 .    (4.5) 

By substituting the Fourier transforms into the above causality relation one finds 

( ) ( )( ) ( )[ ωωωω ω def tj∫
∞

∞−

−
∞ +∈′∈− ED 0 ]   (4.6) 

with 

( ) ( )∫
∞

∞−
= dtetff tjω

π
ω

2
1 .    (4.7) 

Because equation 4.6 must be valid for all values of t, the relation 

( ) ( )( ) ( )ωωω ED f+∈′=∈ ∞0     (4.8) 

is valid between the Fourier components, so that 

( ) ( )∫
∞

∞−∞ +∈′=∈ dtetf tj
r

ω

π
ω

2
1    (4.9) 

( )ωf+∈′= ∞       (4.10)  

 

The Cauchy principle value theorem can be shown as 

( ) ( ) 0=−
−′

′′
∫
∞

∞−
ωπ

ωω
ωω fjdfP     (4.11) 

where P represents that the principle value of the integral. The second part of the above 

equation represents the infinitesimally small semi-circle about the simple pole ωω =′ . 

The contour integrated over by the Cauchy principle value theorem is shown in figure 4.1 

From equation 4.11, by application of the Cauchy theorem to the function 

( )[ ] ( )ωωω −′∈′−∈′ ∞ /r , the following relations can be derived. 

( ) ( )
∫
∞

∞ −′
′∈′′′

+∈′=∈′
0 22

2
ωω
ωωω

π
ω dP r

r    (4.12) 
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( ) ( )[ ]
∫
∞

∞

−′
′∈′−∈′

−=∈′′
0 22

2
ωω

ωω
π

ω dP r
r    (4.13) 

These integrals are the Kramers-Kronig relations for the complex permittivity of material. 
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Derivation of the Kramers-Kronig Approximations for Acoustic Applications 

ω′
ω

C

∞+∞−

Figure 4.1. The infinite half-circle contour used in the Cauchy
principle value theorem, with no poles above the real axis [14]

ω′
ω

C

∞+∞−
ω′

ω

C

∞+∞−

Figure 4.1. The infinite half-circle contour used in the Cauchy
principle value theorem, with no poles above the real axis [14]

Acoustic wave theory and optical wave theory are analogous in the governing 

ions. Figure 4.2 compares the one-dimensional acoustic equations to Maxwell’s 

ions for both the fundamental physical laws and the constitutive relations. 
 
Figure 4.2. A comparison between the common acoustic and 
optical governing equations [3] 
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From the table it is worth noting how the stiffness constant C is analogous to the 

electromagnetic permittivity. The compressibility K is the inverse of the stiffness 

constant. For the Kramers-Kronig relationship for acoustic waves the real and imaginary 

parts of the compressibility are used and the relationship can be defined as 

( ) ( ) ( )
∫
∞

′
−′

′′
+∞=

0 22
2

11
2 ω

ωω
ωω

π
ω d

K
PKK     (4.14) 

( ) ( )
∫
∞

′
−′

′
−=

0 22
1

2
2 ω

ωω
ωω

π
ω dKPK    (4.15) 

where K1 and K2 are the real and imaginary part of the adiabatic compressibility of a 

medium. This relationship has been verified by various researchers studying the 

properties of acoustic waves [5, 6, 15]. The remainder of this section will derive the 

approximation equations used in this experiment; the derivation will come from the M. 

O'Donnell, E. T. Jaynes, and J. G. Miller paper published in the Journal for the 

Acoustical Society of America[5]. 

 The compressibility of an acoustic wave is related to the wavenumber of that 

wave by 

( )ωρω Kk 0
22 =      (4.16) 

where k is the wavenumber and  is the density of the medium. The complex 

wavenumber is expressed as  

0ρ

( ) ( )ωα
ω
ω j

C
k +=ˆ      (4.17) 

where C is the phase velocity and α  represents the absorption coefficient. The 

compressibility can be related to the absorption and phase velocity by substituting 

equation 4.17 into equation 4.16 yielding 
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( ) ( ) ( )
( ) ( ) ( )[ ]ωωρω
ω
ωωαωα

ω
ω

210
22

2

2 2 iKK
C
i

C
+=+− . (4.18) 

By separating the imaginary and real components of the previous equation one yields  

( ) ( ) ( )ωρωωα
ω

ω
10

22
2

2

K
C

=−     (4.19) 

and 

( )
( ) ( )ωωρ
ω
ωα

20
2 K
C

= .     (4.20) 

These equations decouple for the usual case in which the magnitude of the imaginary part 

of the wavenumber is much less than the magnitude of the real part  

[i.e., ( ) ( ) 1/ <<ωωωα C ] for all frequencies. The decoupled equations that relate K1 

with ( )ωC , and K2 with ( )ωα  can be written as 

( ) ( )[ 2/1
10/1 ωρω KC = ]       (4.21) 

( ) ( )[ ] ( )ωωωρωα 20 2/ KC=     (4.22) 

Equations 4.14, 4.15, 4.21, and 4.22 allow for a complete relationship between the 

attenuation coefficient and phase velocity in the frequency domain. Unfortunately, this 

relationship is non local since the computation of one variable necessitates knowledge of 

the complementary variables for all frequencies. 

 The next part of this derivation will rely on the analogy between the acoustic 

Kramers-Kronig relation and the relationship between the frequency dependence of the 

gain and phase shift of an electrical amplifier. This relationship will allow for the 

derivation of the approximation over a small frequency range in a non resonant system. 

Bode demonstrated that at any frequency, the phase shift is directly related to the change 

in amplitude over frequency [16]. Provided the system exhibits no resonances, the 
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approximation is very accurate over a limited frequency range centered at the frequency 

of interest. The derivation of this similar approximation for attenuation and phase 

velocity begins with equation 4.15 and by implementing a change of variable 

( )ωω /ln ′=x  to evaluate the integral. The imaginary part of the compressibility becomes 

( ) ( ) ( )
∫
∞

∞− −−
∞−

−= dx
ee
GxGK xxπ

ω 2
2    (4.23) 

where ( ) ( )ω′= 1KxG  and ( ) ( )∞=∞ 1KG  since x is infinite for ω′  equal to infinity. Using 

integration by parts, the imaginary component of compressibility reduces to 

( ) ( )
∫
∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= dx

x
dx

xdGK
2

cothln2
2 π
ω .  (4.24) 

From the behavior of the function ( )2/cothln x  seen in figure 4.2 the above equation can 

be cast into an approximate local form. The sharp singularity around the point x=0 causes 

the magnitude of the integral to be dominated by the value of x=0. The integral is now 

rewritten as 

( ) ( )∫
∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= dx

x
xFK

2
cothln1

2 π
ω ,   (4.25) 

where  is equal to .  ( )xF ( ) dxxdG /

An approximation to integral 4.25 can be found by expanding ( )xF  about x = 0. The 

integral can further be rewritten as 

( ) ( )
( )∑ ∫

∞

=

∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0
0

2
2

2 2
cothln

!2
02

n

n
n

dx
x

x
n

FK
π

ω  , (4.26) 
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because the function ( 2/cothln x )  is even and the odd powers of x in the expansion 

vanish. The  term in equation 4.26 corresponds to the 2nth derivative of ( )02nF ( )xF  

evaluated at x=0.  
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sion shows how  is related to the sum of the even derivatives of 2K ( )xF  

 x = 0. So long as both the phase velocity and attenuation coefficients are 

ing in terms of frequency, the equation 4.27 can be approximated by the first 

quations 4.28 and 4.29 represent the equation in 4.27 under these conditions. 

) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′′+−= )0(

96
)0(

8
4 42

FF ππ
π

  (4.28) 

 for  yields ( )xF
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( ) ( ) ( )
+−−=

== 0
3

33

0
2 242 xx dx

xGd
dx

xdGK ππω   (4.29) 

The component is related to the dispersion,( ) dxxdG / ( ) ωω ddC / , and evidence to this 

will be provided below. The higher derivatives of G(x) also correspond to the higher 

derivatives of the phase velocity in the frequency domain. As long as the change of 

dispersion is small over a limited frequency range, the higher order derivatives can be 

neglected. When the first order derivative dominates, the higher order terms can be 

neglected and the leading term in equation 4.29 can be written as  

( ) ( )
ω
ωωω

ω
ω

d
dK

dx
d

d
dK

dx
dG

xx

1

0

1

0

==
==

,   (4.30) 

and ( )ω2K  becomes 

( ) ( )
ω
ωωπω

d
dKK 1

2 2
−= .    (4.31) 

This last equation relates the imaginary component of the compressibility at a given 

frequency to the local rate of change of the real component at the same frequency. 

Looking at equation 4.21, which relates the phase velocity to the real component of the 

compressibility, the derivative of ( )ω1K  in the frequency domain becomes 

( )
( )

( )
ω
ω

ωρω
ω

d
dC

Cd
dK

3
0

1 2
−=     (4.32) 

Now equation 4.32 can be combined with equation 4.31 and 4.22 so that ( ) ωω ddC /  

becomes 

( ) ( ) ( ) 22 /2 πωωαω
ω
ω C

d
dC

= ,    (4.33) 

and ( )ωα  becomes 
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( ) ( )
( )
ω
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ω
πωωα

d
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C 2

2

2
= .    (4.34) 

Equation (4.33) can be rewritten as  

( )
( )

( ) ω
ω
ωα

ω
ω d

C
dC

22
2

= ,     (4.35) 

in order to integrate both sides from some reference frequency 0ω  to ω . By doing this, 

the phase velocity can be related to the attenuation coefficient according to the expression  

 ( )
( ) ,211

0
2

0

ω
ω
ωα

πω
ω

ω
′

′
′

=− ∫ d
CC

    (4.36) 

where is the sound velocity at 0C 0ω . Equations 4.34 and 4.36 represent nearly localized 

approximations relating the attenuation coefficient and the phase velocity. The magnitude 

of the dispersion is usually small; therefore these equations can be further simplified to 

( ) ( )
ω
ωπωωα

d
dC

C 2
0

2

2
= ,     (4.37) 

( ) ( )
∫ ′

′
′

=−=∆
ω

ω
ω

ω
ωα

π
ω

0
2

2
0

0
2 dCCCC    (4.38) 

where ( )ωC  is written as ( )ωCC ∆+0 with ( ) 0CC <<∆ ω , and only terms of order ( )ωC∆  

are retained. For calculations used in this experiment, equation 4.37 is the only necessary 

approximation needed. Equation 4.37 is applied to each point of the dispersion curve 

generated by the laser probe data in order to generate an attenuation coefficient curve 

over the same range of frequencies. This attenuation curve can then be used in 

conjunction with the dispersion to calculate Material Q as seen in equation 1.2. 
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CHAPTER 5 

EXPERIMENTAL PROCEDURE 

 This chapter will outline the experimental method I have developed to measure 

material Q over frequency. The first section will discuss the preparation of the wafer and 

the laser probe so that acoustic data can be measured by the probe. The second section 

walks through how to acquire data using the laser probe and describes how the dispersion 

curve acquisition software works. The last section will present the software I have written 

along with Ryan Westafer, to extract the necessary data from the measured waveforms. It 

will also discuss the other software program I have written which applies the Kramers-

Kronig approximations to calculate the attenuation and ultimately material Q. 

5.1 Experimental Preparation 

 Once a material is selected to be characterized by the laser probe, preparation of 

the material for excitation beam absorption is essential. If the absorption spectrum of the 

material is known to be very strong for 532 nm green light, no extra preparation is needed. 

If the test material poorly absorbs 532 nm light a thin layer of copper should be 

evaporated onto the surface of the wafer. The thickness of the copper should be 

something that is acoustically thin enough to have a minimal effect on the Rayleigh 

waves of the substrate, yet optically thick enough to absorb a significant amount of green 

light to generate a thermal grating. We have found ~100 nm of copper to be a suitable 

thickness. Once the copper layer is evaporated on the surface of the test material, the 

material should be lined up on the aluminum plate. The aluminum plate is 8.5 inches in 

diameter and has straight lines etched perpendicular to each other. These lines are used to 

line up the flats of a wafer in a given direction so the experimenter has more precise 
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control over the wave propagation direction. Below where the wafer sits, angles are 

labeled, ranging from negative 45 degrees to positive 45 degrees. Four notches were 

made into the side of the plate so the experimenter could line up the lines on the plate 

with the angles labeled on the side of the motor stage. Figure 5.1 is a diagram of what the 

aluminum plate looks like. Figure 5.2 shows the aluminum plate aligned with the angle 

strip on the side of the wafer stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.5 in. dia.8.5 in. dia.

Figure 5.1. The aluminum plate used to align the direction of 
the test wafers with the desired direction of the acoustic wave 
Figure 5.2. The angles labeled from -45 to +45 degrees on the side of the wafer stage.
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Once the wafer is in place it is ok to turn on the system. However, before turning 

on the system it is essential protective eye wear is worn to prevent eye damage from the 

laser beams. Of the two lasers used, it is better to use eye protection designed for infrared 

light. The visible green light can trigger the natural human reaction to look away from an 

intense light source. While not visible to the human eye, the infrared light is still intense 

enough to damage eyesight. With no ability for the human eye to react and look away 

from invisible light, the infrared light poses a greater threat to the experimenter. Turning 

on the system is done by making sure the amplifiers for the motors, the power supply for 

the photoreceiver, and the Nanolase power supply for the excitation and probe lasers are 

all turned on. Once the system is online it is ok to run the GUI software for the laser 

probe.  

After the software has finished homing the motors, finite alignment is then 

required of the motor stage. Each test sample may be of a different thickness therefore it 

is possible the target may be misaligned in the vertical direction. If the target is 

misaligned the two excitation beams and probe beam will not be coincident on the sample 

and little or no signal will be visible on the oscilloscope. To align the system, simply fire 

the laser while adjusting the height of the stage until the waveform on the oscilloscope is 

maximized. Figure 5.3 shows the laser arrangement depending on the height of the wafer. 
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Figure 5.3. The excitation (green) and probe (red) laser 
beam arrangement depending on alignment 
 the signal is maximized it then becomes necessary to determine which NDF 

citation beam should pass through to ensure the metal does not melt during 

nt. If the setting is not already known this information can be found 

y targeting a “scrap” area of the surface and increasing the NDF setting until 

ins to melt. One can tell if the metal is melting, if the oscilloscope signal 

ome deformed or if there is exceptional scattering of the target spot on the 

 Before and after images of the waveform and scattered light off the melted 

seen in Appendix B. 

s point, the experimenter must then input the wavelengths that are used for 

 curve by selecting the phase mask settings that correspond to the desired 

 Table 5.1 shows the wavelengths generated by each phase mask. To input 

sks for the program to use, enter each one into the array box next to the 

37 



dispersion curve “Go” button. In order for the MATLAB software to interpolate properly, 

at least nine phase masks should be selected prior running the program. 

Table 5.1. Corresponding wavelength values for each phase mask 
Phase Mask 
Number 

Wavelength 
(microns) 

Phase Mask 
Number 

Wavelength 
(microns) 

1 60 13* 9.43 
2 50 14* 8.825 
3 30 15* 8.23 
4 25 16* 7.755 
5* 20.75 17* 7.25 
6* 17.15 18 6.5 
7* 14.1571 19 6.0 
8* 12.3875 20 5.5 
9* 11.333 21 5.0 
10* 10.8625 22 4.0 
11* 10.2875 23 3.0 
12* 9.71 24 5.25 (3-beam) 
* determined by SEM imaging on an interference pattern burnt spot 

5.2 Acoustic Data Acquisition 

Once these steps have been completed the user is then ready to collect dispersion 

data. The program itself takes less than 1 minute to collect data and the mathematical 

analysis of the data is also very quick and finishes in a matter of seconds. The program 

starts by aligning the first selected phase mask into the path of the excitation beam and 

the laser is turned on. The oscilloscope is then cleared from any previous data and the 

math settings are set up to average the data for 500 sweeps. Averaging the signal is 

necessary to remove any noise that may randomly occur during a single sweep of the 

signal. Once the data is collected, the laser is turned off and the next phase mask is 

selected. Every iteration takes roughly two seconds to complete and another half second 

to move between phase masks, resulting in 2.5 seconds between every cycle. The 

waveforms are collected as a time array and an amplitude array. On a time scale of 20 ns 

with a sampling rate of 2 Giga-samples/second a total of 401 data points are generated 
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per waveform. These arrays are then appended to the data matrix where each odd column 

is a time array and each even column is the corresponding amplitude array. A header row 

is also included to distinguish which column corresponds to which phase mask. Once all 

the phase masks have been visited by the optics head the file is saved as a text file that 

can be opened by MATLAB.  

5.3 Mathematical Analysis Software 

 Appendix A includes the m-files used in analyzing the data matrix created by the 

dispersion curve program from the previous section along with a sample data matrix file. 

When the file DispersionCurves.m is run within MATLAB, the program first asks to load 

a data matrix file so that it can extract each individual waveform. The header row of the 

data matrix is used to keep track of which phase mask goes with which waveform. An 

example of the data matrix is included in Appendix A as well. Next, the software reads 

the header and uses the data seen in table 5.1 to assign a wavelength value to each 

waveform. Each waveform is then individually analyzed to determine the frequency of 

the acoustic wave measured. In order to analyze the frequency spectrum of the waveform 

the thermal decay component of the data must be removed to eliminate the low frequency 

content generated by the decay. This is done by using the decimate function in MATLAB. 

The decimate function acts as an eighth order Chebyshev low pass filter and filters the 

frequency content below the specified cut off frequency. This program defaults to a 300 

MHz cut off frequency which is suitable for most waveform measured on most materials. 

If the center frequency of the acoustic content of a waveform is less than or equal to 300 

MHz, a lower cut off frequency can be entered to preserve accuracy. Figure 5.4 

represents a waveform of a 10.5 micron surface acoustic wave on a silicon substrate with 
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100 nm of copper evaporated on top. Plot A represents the initial waveform before any 

filtering. Plot B represents the time signal after low pass filtering at 150 MHz. Lastly, 

Plot C represents the “cleaned up” time domain waveform after filtering.  
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Figure 5.4. (Prefiltered signal A) – (150 MHz Low Pass Filtered B) = 
(150 MHz High Pass filtered C) 
ce the waveform is cleaned up, a FFT is performed on the clean waveform. 

orm is zero-padded ten fold to improve the resolution of the frequency domain.  

are then searches the remaining data for the maximum point of the spike in the 

domain such as the one in figure 5.5. 
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Figure 5.5. FFT the cleaned up waveform from Figure 5.7 C 

 

 

 

 

 

 

 

 

 

 Once each waveform’s frequency has been determined, it is then possible to 

calculate the phase velocity of the wave using the known wavelengths. A dispersion 

curve over frequency can then be generated knowing each waveforms velocity and 

frequency. The software program then applies the Kramers-Kronig approximation to go 

from the dispersion curve to the values for the attenuation coefficients. Equation 4.37 

from chapter four is used to attain the attenuation coefficients. Next, the attenuation 

coefficients are converted to Nepers/meter so the values can be used to calculate Material 

Q. The equation for material Q (equation 1.2) is then applied using the attenuation and 

dispersion data to generate values. Finally, the software program plots the three curves 

for dispersion, attenuation, and Material Q all over frequency. An example of these plots 

will be shown in the next chapter regarding the analysis of the experimentally measured 

data. 
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CHAPTER 6  

ANALYSIS OF RESULTS 

The purpose of this chapter is to provide results measured by the experimental 

technique outlined in this thesis. We evaporated 100 nm of copper onto the surface of a 

silicon wafer and took measurements in the (100) direction and 30 degrees off of (100). 

The Microwave Acoustics Handbook by A.J. Slobodnik et al. [17] define the nominal 

Rayleigh wave velocities of 100 cut Silicon and isotropic copper as 5.032 km/s and 2.235 

km/s respectively. Noting that the copper surface layer has a much slower velocity than 

the substrate, it stands to reason that the Rayleigh velocity will actually decrease as the 

wavelength decreases because more of the acoustic energy is in the surface film. Due to 

this, an increase in frequency will also result in a decrease in velocity as a higher 

percentage of the surface wave propagates within the surface layer. This decrease in 

velocity as frequency increases for this particular range is observable in both the 

theoretical data as well as the experimental data. The theoretical data was generated using 

an FDTD (Finite Difference Time Domain) simulation program written and developed by 

Saeed Mohammadi at Georgia Tech. Both the experimental data as well as the 

theoretically calculated data for the dispersion, attenuation, and material Q will be 

presented in this chapter. 

Before comparing the data acquired by the laser probe to the theoretically 

determined data I would like to quickly discuss the FDTD method used in this 

experiment. The strength of the FDTD method is the ability to characterize wave 

propagation in non-uniform and nonlinear media. This numerical technique was first 

pioneered by K. S. Yee in 1966 in order to discretize the differential form of Maxwell’s 
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equations[18]. He used an electric-field grid that was offset both spatially and temporally 

from a magnetic field grid. This was done in order to have update equations that yield the 

present fields throughout the computational domain in terms of the past fields. These 

update equations for the electric and magnetic fields were used in a leap frog manner to 

calculate the fields in the time domain. While the FDTD method has been around since 

the sixties, it has only been since the advent of today’s computing power that engineers 

and scientists have been able to fully take advantage of this technique. PC clusters are 

often used to take advantage of the parallelism in the FDTD method and to minimize the 

time to run the simulation [18, 19]. The FDTD technique has also been utilized in the 

field of acoustics especially in the study of phononic crystals.[20] While the FDTD used 

in my experiment was originally designed for acoustic wave propagation in periodic 

lattices, it proved to be more than sufficiently designed to study bi-layered media. 

6.1. Experimental vs. Theoretical Data 

 The experimental data measured in this experiment was collected from a p-doped 

100 cut silicon wafer with 100 nm of copper evaporated onto the surface. The wafer was 

oriented on the laser probe stage so the generated wave would propagate in the 100 

direction. Phase masks 9-17 were used in the dispersion curve software program which 

give a wavelength range of 7.25 um to 11.333 um. Very little is published with regards to 

Rayleigh wave material Q values and therefore there is no data available in literature to 

compare my results. However, because the Kramers-Kronig relations for acoustic waves 

have been verified by various sources [5, 6, 15], the need for preexisting Q values is no 

longer necessary. I have, however, provided theoretical dispersion data generated by the 

FDTD method to compare my experimental data to what can be predicted. Due to the 
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intense processing time necessary for the FDTD method to calculate a dispersion curve 

with a high enough frequency resolution, an alternative approach was used. The FDTD 

method was run over a wavelength range of .8 um all the way up to 160 um for about 15 

points and the data was interpolated. The calculation of these 15 points took over a day to 

calculate on one computer. I now present the Dispersion data measured by the laser probe 

with the corresponding theoretical data calculated by the FDTD method over the range of 

interest.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Theoretical (red) and experimental (blue) results for 100 nm of copper 
on Silicon in the (100) direction 

Figure 6.1 shows the velocity measured by the laser probe. A linear fit was done 

to the points to better show the trend of the velocity as frequency increases. The red line 

in the plot represents the theoretically determined data. The two lines differ by only about 
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2.5% and both share the same downward trend as frequency increases. This negative 

slope counters the typical dispersion trend of the velocity increasing over frequency. The 

velocities decrease as frequency increases because the surface copper layer has a much 

slower velocity than the bulk silicon (2.235 km/s vs. 5.032 km/s). As the frequency 

increases and the wavelength decreases, a greater percentage of the Rayleigh wave exists 

in the surface layer. As a result the velocity will decrease until the wavelength of the 

surface wave is less than thickness of the top layer. 

As previously mentioned in chapter five, once the dispersion data is measured, the 

attenuation coefficients can then be calculated using the Kramers-Kronig approximations 

for a local dataset. Figure 6.2 is the plot of the calculated attenuations coefficients for 

both the experimental and theoretical data. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6.2. Calculated Attenuation Coefficients for the Theoretical (red) and 
Experimental (blue) data using the Kramers-Kronig approximations for local data 
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Unlike the dispersion data, the attenuation data shows a trend that coincides more with 

the common notion that the attenuation of a wave increases as the frequency increases. It 

is also worth noting that the measured attenuation is greater than the theoretical 

attenuation. This is due to the losses in the material that can not be accounted for in the 

FDTD simulation. 

 Having both the attenuation data and the dispersion data known for a range of 

frequencies, the final step to calculate Material Q can be taken. Figure 6.3 shows the final 

material Q values for the FDTD simulated data and the experimentally measured data 

from the laser probe. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3. The measured Material Q for both the FDTD simulated data (red) as well 
as the experimentally measured laser probe data (blue) 
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The data provided here shows the Material Q for this local frequency range on the order 

of 104. Like the dispersion curve, this particular range of frequencies does not exhibit the 

correct trend as frequency increases. This once again has to do with the fact that the top 

layer becomes a factor as the wavelengths decrease. From this data it becomes clear that 

as the wavelength gets shorter and a higher percentage of the surface wave exists in the 

top layer, the acoustic energy propagates more efficiently within the material. The 

material Q values calculated from the theoretical data are higher and appear more 

efficient than the experimentally determined material Q values. This once again stems 

from the inability for the FDTD software to account for all loss mechanisms that maybe 

be occurring as the wave propagates. 

6.2. Material Q over Direction 

 This next section will present two extra sets of Material Q calculations for the 

same physical arrangement of copper evaporated on silicon that was seen in the previous 

section. Figures 6.4 and 6.5 show the measured data of the test structure in the (100) 

direction and 30 degrees off the (100) direction. Figure 6.4 clearly shows a phase velocity 

range beginning at 4.9 km/s and ending around 4.75 km/s. The material Q for this 

direction begins at 20,000 and ends around 37,500. Figure 6.5 shows a slightly faster 

velocity beginning just under 5 km/s and ending just above 4.8 km/s. The attenuation data 

for this direction also appears marginally higher than that of the (100) direction. As a 

result the material Q is slightly lower starting at just under 20,000 and finishing right 

around 35,000 at 650 MHz. This shows that if both the attenuation coefficient and 

dispersion curves are greater in magnitude a lower Q value will be determined.  
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Figure 6.5. Measured data 30 degrees from the (100) direction 

Figure 6.4. Measured data in the (100) direction 
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CHAPTER 7 

CONCLUSION 

 In this thesis, I have demonstrated a non invasive means of measuring the 

Rayleigh wave Q for a given material with a laser probe. The probe itself relies on the 

transient grating method to generate Rayleigh waves on the surface using a series of 

binary phase masks. While the optics head was originally designed to measure ultra thin 

film metal thicknesses for CMOS circuits, we have found another way to interpret the 

data to suit our needs. We have written our own programs to automate the laser probe and 

measure the frequency of waves generated by a range of phase masks. Knowing the 

wavelength of the generated acoustic wave and after the frequency of the wave is 

determined, the phase velocity for each wave can be calculated and dispersion data for a 

range of ultrasonic becomes known. In order to generate the attenuation data needed for 

the calculation of material Q, a local approximation of the Kramers-Kronig relations that 

was developed by M. O’Donnell et al. [5] is used. The Kramers-Kronig relations for 

acoustic waves relate the real and imaginary parts of the dynamic compressibility for a 

material. While the real part of the compressibility relates to the velocity, the imaginary 

part can be related to the attenuation. Given both the attenuation and dispersion, material 

Q can easily be calculated for surface waves of the given sample. The results chapter of 

this thesis shows measurements I have taken and discusses the behavior of dispersion, 

attenuation, and material Q curves. Since very little is found in literature regarding the 

Rayleigh Wave Q values for different materials, the need for rapid measurement can be 

found useful. In summation, my technique has demonstrated the ability to quickly 

measure material Q while remaining minimally invasive to the test structure. 
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APPENDIX A 

MATLAB CODE USED FOR ANALYSIS OF DISPERSION DATA 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function [Q,Attenuations,Frequencies,Wavelengths,Velocities] = 
DispersionCurves(varargin) 
% DispersionCurves; allows the user to open a Dispersion Data file 
% generated by the laser probe and calculate material Q 
% 
% DispersionCurves('Plot') allows the user to also plot every waveform that 
% was acquired by the laser probe 
% By Eric Massey 2006 
 
% determine whether or not to plot each waveform 
if isempty(varargin) 
    Plot='no'; 
else 
    Plot=cell2mat(varargin(1)); 
end 
 
% import the file with the different waveforms 
S=uiimport('-file'); 
 
% get the names of each waveform 
Names=S.colheaders; 
 
% from the names retrieve the values of the phase masks used 
PM=zeros(1,length(Names)); 
for I = 1:length(Names) 
    PM(I)=sscanf(char(Names(I)), 'PM%d'); 
end 
PM=downsample(PM,2); % this was done b/c each phase mask was listed twice 
 
 
% Here are the wavelengths that correspond to each phase mask 
PMIndex=[60.0 50.0 30.0 25.0 20.0 17.0 14.0 12.0 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 
7.0 6.5 6.0 5.5 5.0 4.0 3.0 5.25]; 
 
 
A.1. Matlab code for the function DispersionCurves.m 
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% SEM images were done on burnt scrap test pieces to determine the 
% wavelengths of each phase mask...these are the SEM values 
PMIndex(19)=12/2; 
PMIndex(18)=13/2; 
PMIndex(17)=7.25; 
PMIndex(16)=15.51/2; 
PMIndex(15)=8.23; 
PMIndex(14)=8.825; 
PMIndex(13)=9.43; 
PMIndex(12)=9.71; 
PMIndex(11)=10.2875; 
PMIndex(10)=10.8625; 
PMIndex(9)=11.3333; 
PMIndex(8)=12.3875; 
PMIndex(7)=14.1571; 
PMIndex(6)=17.15; 
PMIndex(5)=20.75; 
PMIndex=PMIndex.*1e-6; % convert all wavelengths to microns 
 
% prepare the Wavelengths array 
WAVELENGTHS=zeros(1,length(PM)); 
 
% create an array with all the wavelengths used by the laser probe 
for I = 1:length(PM) 
    WAVELENGTHS(I)=PMIndex(PM(I));  
end 
 
% the cut off freq used by the program WaveData.m to clean up the waveform 
CutOffFreq=300000000; 
 
% prepare the Velocities array 
Velocities=zeros(1,length(WAVELENGTHS)); 
 
% Extract each waveform array (time,amp) and send it to WaveData.m for 
% analysis. For each waveform the wavelength (already known), frequency  
% and velocity can be learned 
for I = 1:length(WAVELENGTHS) 
    D(:,1)=S.data(:,2*I-1);    % D(:,1) is the time column 
    D(:,2)=S.data(:,2*I);    % D(:,2) is the Amp column 
    [Freq Wavelength Velocity]=WaveData(D,WAVELENGTHS(I),CutOffFreq,Plot);
    Velocities(I)=Velocity;   
    Frequencies(I)=Freq; 
    Wavelengths(I)=Wavelength; 
end 
 
A.1. Matlab code for the function DispersionCurves.m (cont.) 
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% convert from Hz to radians 
Omegas0=Frequencies.*2.*pi; 
 
% smooth the velocity data to find the derivitive 
ftype=fittype('smoothingspline'); 
fit1=fit(Frequencies',Velocities',ftype); 
VelCol=Velocities'; 
Vdiff=differentiate(fit1,VelCol); 
% This is eqation 30a from O'Donnell et al:  
% Relation between attenuation and velocity 
% J. Acoust. Soc. Am.,Vol.69,No.3, March 1981 
Attenuations=(pi.*Omegas0.^2/(2*Velocities(1))).*Vdiff' 
 
 
Att=10*log10(Attenuations); % convert to decibels/m 
Attenuations=Att./100;              %convert to db/cm 
Np=Att./8.7; % convert to Np/m 
Q=Omegas0./(2.*Velocities.*Np); % Find Q factor 
 
% This code is redundant and was done a second time as well and redundant 
Velocities=Velocities 
Frequencies=Frequencies 
Wavelengths=Wavelengths 
Attenuations=Attenuations 
Q=Q 
 
% Plot that SOB! 
figure 
hold off; 
cla; 
subplot(3,1,1); 
plot(Frequencies./1e6,Velocities./1e3); 
title('Dispersion Curve'); 
ylabel('Velocities (km/s)'); 
subplot(3,1,2); 
plot(Frequencies./1e6,Attenuations); 
title('Attenuation Curve'); 
ylabel('Attenuation (cm^-1)'); 
subplot(3,1,3); 
plot(Frequencies./1e6,Q); 
title('Material Quality Factor'); 
ylabel('Quality Factor (Q)'); 
xlabel('Frequency (MHz)'); 
 
 
A.1. Matlab code for the function DispersionCurves.m (cont.) 
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function [varargout] = WaveData(varargin) 
% []=WaveData(Waveform), This will just plot the waveform and an fft 
% 
% [Frequency,Wavelength,Velocity]=WaveData(Waveform,Wavelength) 
% input the wavelength of the waveform and the waveform itself to get the 
% output variables 
% 
% [Frequency,Wavelength,Velocity]=WaveData(Waveform,Wavelength,Plot) 
% input the wavelength of the waveform and the waveform itself to get the 
% output variables, Plot must be = to 'Plot' to plot the waveform 
% 
% [Frequency,Wavelength,Velocity]=WaveData(Waveform,Wavelength,CutOffFreq)
% input the wavelength of the waveform and the waveform itself to get the 
% output variables, CutOffFreq filters out all the junk below that 
% frequency 
% 
% 
[Frequency,Wavelength,Velocity]=WaveData(Waveform,Wavelength,CutOffFreq,Plo
t) 
% input the wavelength of the waveform and the waveform itself to get the 
% output variables, Plot must be = to 'Plot' to plot the waveform 
% By Eric Massey, edited by Ryan Westafer 2006 
 
 
% This block of code determines which variables have been entered into the 
% function 
Waveform=cell2mat(varargin(1)); 
if length(varargin)==1 
    plotme=1; 
    Wavelength=0; 
    CutFF=0; 
    outvars=0; 
elseif length(varargin)==2 
    plotme=0; 
    Wavelength=cell2mat(varargin(2)); 
    CutFF=0; 
    outvars=3; 
elseif length(varargin)==3 
    if ischar(cell2mat(varargin(3))) 
        plotme=1; 
        Wavelength=cell2mat(varargin(2)); 
        CutFF=0; 
        outvars=3; 
 
 
A.2. Matlab code for the function WaveData.m 
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PPENDIX A 

DESCRIPTION OF DEFAULT SUBHEADING SCHEME 

This appendix illustrates the default style of subheadings as described in the 

raduate Studies Thesis Manual, available at http://www.grad.gatech.edu/thesis. You

epartment may have its own style guide and its own way of formatting subheadings.

hichever scheme you use, you must use it consistently throughout the document or

raduate Thesis Office will require you to make revisions until it is acceptable. 

The default format for chapter-level headings is bold, all upper case, and cent

    else 
        plotme=0; 
        Wavelength=cell2mat(varargin(2)); 
        CutFF=cell2mat(varargin(3)); 
        outvars=3; 
    end 
else 
    if strcmp(cell2mat(varargin(4)),'Plot') 
        plotme=1; 
    else 
        plotme=0; 
    end 
    Wavelength=cell2mat(varargin(2)); 
    CutFF=cell2mat(varargin(3)); 
    outvars=3; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
% Time data sampling frequency 
Fs=2e9;  % 2GHz 
 
% Set up the time data to start at t = 0 
TimeIn=Waveform(:,1); 
AmplitudeIn=Waveform(:,2); 
 
% Make vector with first time point == 0 
if TimeIn(1) ~= 0 
    Time0=TimeIn-TimeIn(1); 
else 
    Time0=TimeIn; 
end 
 
% Define MeasurementDuration 
MeasurementDuration = Time0(end); 
 
% Get time indices from t==0 up to t==MeasurementDuration 
TimeStop = find(Time0>=MeasurementDuration,1); 
% Truncate Time and Amplitude accordingly 
Time = Time0(1:TimeStop); 
Amp = AmplitudeIn(1:TimeStop); 
 
A.2. Matlab code for the function WaveData.m (cont.) 
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% Do Low-pass Filtering? 
if CutFF ~= 0 
    % do low-pass filter 
    % Compute R according to 'doc decimate' 
    R=fix(.8*(Fs/2)/CutFF); 
    % down-sample to throw out high frequencies 
    DecimatedAmp=decimate(Amp,R); 
%     figure; 
% %     subplot(3,1,1); 
%     plot(TimeIn,Amp); 
    % up-sample to original rate w/ only low freq. remaining 
    LowPassedAmp=interp(DecimatedAmp,R); 
    % subtract off low-frequency time signal 
    NewAmp = Amp - LowPassedAmp; 
 
else 
    % Do nothing 
    NewAmp = Amp; 
end 
 
 
% DO ZERO-PADDED FFT 
ZPad=10; 
% Set # of points for fft to be ZPad * original# 
ZPadLength=ZPad*length(NewAmp); 
FFTAmp=fft(NewAmp,ZPadLength); 
 
% Power spectrum, don't care to normalize by # points 
PP=FFTAmp.*conj(FFTAmp); 
% frequency starts at zero, so subtract 1 
% divide by padding length (#PadPoints) 
% to get back to original #points 
f=(2*Fs) * (1-1:length(PP)-1)/ZPadLength; 
% only take lower symmetric half 
halff = fix(length(f))/2; 
% only take up to Fs/2 
Fs2 = halff/2; 
% truncate frequency and power spectrum 
f=f(1:Fs2); 
P=PP(1:Fs2); 
% find frequencies above cutF 
cutF=find(f>=CutFF,1); 
 
A.2. Matlab code for the function WaveData.m (cont.) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 % The wavelength can be entered in terms of MHz or Hz, however the 
% frequency scale is always MHz 
% i.e. Wavelength = 200 --> 200 MHz 
%  or  Wavelength = 200e6 --> 200 MHz 
% this block allows for that 
if Wavelength>1e-3 
    Wavelength=Wavelength*1e-6; 
end 
 
% if plot was selected then plot the waveform 
if plotme 
    figure; 
    plot(f,P); 
    title(sprintf('FFT of Filtered Time Domain Response at %g 
um',Wavelength*1e6)); 
    xlabel('Hertz'); 
end 
 
 
% find the center frequency of the "cleaned" up waveform 
Frequency=f(find(P(cutF:end)>=(max(P(cutF:end))),1)+cutF-1); 
Velocity=Frequency*Wavelength; 
 
% handle outputs for the function 
if outvars==0 
    varargout={}; 
else 
    varargout(1)={Frequency}; 
    varargout(2)={Wavelength}; 
    varargout(3)={Velocity}; 
end 
 
A.2. Matlab code for the function WaveData.m (cont.) 
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PM8,PM8,PM9,PM9,PM10,PM10,… 
-2.162500E-8,0.000525,-2.162500E-8,0.000586,-2.162500E-8,0.000110,… 
-2.137500E-8,0.000562,-2.137500E-8,-0.000610,-2.137500E-8,0.000159,… 
-2.112500E-8,3.662110E-5,-2.112500E-8,-0.000220,-2.112500E-8,0.000781,… 
-2.087500E-8,-1.220703E-5,-2.087500E-8,0.000183,-2.087500E-8,0.000757,… 
-2.062500E-8,3.662110E-5,-2.062500E-8,0.000940,-2.062500E-8,9.765625E-5,… 
-2.037500E-8,-0.000330,-2.037500E-8,-0.000146,-2.037500E-8,-0.000244,… 
-2.012500E-8,-0.000439,-2.012500E-8,0.000220,-2.012500E-8,0.000342,… 
-1.987500E-8,-0.000122,-1.987500E-8,-4.882813E-5,-1.987500E-8,0.000293,… 
-1.962500E-8,0.000159,-1.962500E-8,0.000513,-1.962500E-8,0.000403,… 
-1.937500E-8,-0.001099,-1.937500E-8,0.000525,-1.937500E-8,0.000159,…  
. 
. . 
.  . 
.   . 
.    . 
.     . 
.      . 
.       . 
A.3. An example WaveData file 
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APPENDIX B 

GRAPHICAL USER INTERFACE IMAGES 
Figure B.1. A strong signal on an NDF setting that isn’t destroying the material 
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Figure B.1. A deformed signal due to melting of the material 
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