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The problems of vision-based localization and mapping are currently highly active areas of research for
aerial systems. With a wealth of information available in each image, vision sensors allow vehicles to gather
data about their surrounding environment in addition to inferring own-ship information. However, algorithms
for processing camera images are often cumbersome for the limited computational power available onboard
many unmanned aerial systems. This paper therefore investigates a method for incorporating an inertial mea-
surement unit together with a monocular vision sensor to aid in the extraction of information from camera
images, and hence reduce the computational burden for this class of platforms. Feature points are detected
in each image using a Harris corner detector, and these feature measurements are statistically corresponded
across each captured image using knowledge of the vehicle’s pose. The investigated methods employ an Ex-
tended Kalman Filter framework for estimation. Real-time hardware results are presented using a baseline
configuration in which a manufactured target is used for generating salient feature points, and vehicle pose
information is provided by a high precision motion capture system for comparison purposes.

I. Introduction

Traditionally, the task of determining position and attitude for an aircraft has been handled by the combination of an
inertial measurement unit (IMU) with a global positioning system (GPS) receiver. In this configuration, accelerations
and angular rates from the IMU can be integrated forward in time, and position updates from the GPS can be used
to bound the resulting errors that result from this integration. This solution to the localization problem makes aircraft
prone to certain modes of failure due to their reliance on the reception of external signals from the GPS satellite
network. GPS signals can suffer from obstructions or multipath in cluttered environments, and the reception of these
signals can furthermore be jammed or otherwise denied. Similarly, the task of mapping the surrounding environment
is commonly approached by using ranging sensors to scan areas of interest. However, these sensors typically rely
on the emission and reception of a signal to determine range which is sometimes undesirable if the vehicle needs to
remain undetected.

Vision sensors have demonstrated immense potential for application to localization and mapping since they provide
data about the surrounding environment, and simultaneously allow for the possibility of inferring own-ship information
from these images. However, the majority of results presented in these areas have been applied to ground robots where
size and payload considerations are often not a limitation. This means that most of the algorithms currently available
for extracting information from the 2D images of an image sensor are often too computationally intensive to be
handled by the limited processing power onboard many unmanned aerial systems (UAS’s) such as the one shown in
Figure 1. Over recent years, it has been proposed that adding an IMU to a vision system could help to alleviate the
computational burden of such algorithms because the inclusion of inertial sensors allows for the prediction of camera
motion from frame to frame and also helps with resolving scale ambiguity. A navigation and mapping system that
uses only a combination of inertial and vision sensors would also be a fully self-contained one that would not be prone
to jamming or detection.

Previous work in the application of inertial sensors to the problems of vision-based localization and mapping have
included Kim and Sukkarieh who have successfully demonstrated simultaneous localization and mapping (SLAM) for
a UAS using these sensors.1 In their setup, targets of known size were placed on the ground, and the camera provided
measurements of the bearing, elevation, and range to each target. The range information was computed from the size
of the targets in each image. An Extended Kalman Filter (EKF) was used to estimate the vehicle’s ego-motion as well
∗Graduate Research Assistant, School of Aerospace Engineering, AIAA Student Member.
†Lockheed Martin Associate Professor of Avionics Integration, School of Aerospace Engineering, AIAA Member.

1 of 25

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation and Control Conference and Exhibit
18 - 21 August 2008, Honolulu, Hawaii

AIAA 2008-7441

Copyright © 2008 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



Figure 1. Small unmanned aerial systems, such as the Hornet UAS with a weight of 2.4 lbs and a 2.3 ft rotor diameter, are often not capable
of carrying large computer systems.

as the locations of the targets. Langelaan also presented results where he used an IMU and a monocular camera for
performing SLAM through an environment populated with obstacles.2 Langelaan implemented an Unscented Kalman
Filter (UKF) to estimate the states of a small vehicle along with the positions of obstacles located in a ground plane.
Hardware results were presented using a ground robot, and simulation results were presented for a UAS in a 3D
environment. Another approach to the SLAM problem was also presented by Mourikis and Roumeliotis.3 In their
approach, they estimated the motion of a ground vehicle through an environment using an EKF, but would perform the
measurement corrections only after a feature has left the field of view or after a certain number of measurements of a
feature have been obtained. They also proposed a residual that was independent of errors in the feature point location
to within a first order accuracy. Lowe’s Scale Invariant Feature Transform (SIFT) was used for feature point extraction
and tracking. Additional efforts in this area also include those by Koch et al. who used a feature point tracker looking
at the ground with an IMU for state estimation of a helicopter. They assumed a known altitude above the ground,
and from the knowledge of the the helicopter’s altitude, they could compute the inertial position of the feature point
from the pixel position in the camera. An EKF framework was used as the estimation scheme with an image sensor,
an IMU, a magnetometer, and a sonar as the sensors. A Lucas-Kanade feature point tracker was implemented for
tracking the points on the ground. Software simulations and a flight test with the helicopter demonstrated the accuracy
of the navigation system without GPS. Many others have also looked into the application vision-based localization
and mapping for UAS’s.5−10

The focus of this paper will be on methods that use an IMU and a monocular camera to track feature points.
A single camera is used because systems with multiple cameras are more complex due to the spatial and temporal
calibrations required. Furthermore, for many small UAS’s, it is difficult to separate the cameras far enough to form a
substantial baseline between the cameras. Feature points are used as targets because simple image processing methods
exist for extracting these from images, and furthermore, no prior knowledge of the environment is required to obtain
measurements of them. The estimation problem using a monocular camera to track feature points is a difficult problem
because a point feature in a camera image only provides bearing and elevation angle measurements, and the range
information is lost in the projection from the 3D world onto the 2D image. Further complicating this task is the fact
that it is difficult to correspond features from one image to the next. This paper will look at an implementation based
on the method proposed by Langelaan.2 This method is implemented in a hardware setup, and is compared to a motion
capture system as a baseline measurement to analyze the effectiveness of the method in a hardware configuration. This
paper will first outline some background information regarding the estimation method used as well as an overview of
the image processing. Then a description of the experimental hardware setup is provided, followed by an analysis of
the results.
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II. Background Information

This section provides some background information for the problem at hand. First a description of how the camera
is modeled as a pinhole camera is provided. This is followed by a brief overview of the fundamental equations used in
the Extended Kalman Filter. Some modifications are needed for the Extended Kalman Filter in this problem though to
handle the uncertain number of measurements as well as the problem of corresponding measurements obtained to their
actual point in inertial space. These issues are also discussed in the overview of the Extended Kalman Filter. Finally,
a brief discussion of image processing techniques is provided to address how the feature points are actually extracted
from a given image frame.

A. Relating 3D Position to 2D Images
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Figure 2. Camera perspective projection model used for relating 3D position to position in 2D images. The point (A, B, C) is projected
onto the camera image plane to the point (b, c).

A perspective projection model of a pinhole camera allows position in a 2D camera image to be inferred from 3D
position as shown in Figure 2. The model projects an arbitrary point (A,B,C) to a pixel point (b, c) on the image
plane (the camera image) according to the following relations:

b = f
B

A
(1)

c = f
C

A
, (2)

where f is the focal length of the camera. The focal length can be computed from knowledge of the width of the
camera image plane (w) and the angle of the horizontal field of view (γ), both of which are characteristics of the
physical camera, according to

f =
w

2 tan
(

γ
2

) (3)

B. Reference Frames

Three primary frames of reference are needed for this estimation problem. The inertial reference frame is a local
inertial frame with its axes aligned in the North, East, and down directions. The camera frame has its origin at the
camera’s principal point with the xc axis along the camera’s optical axis and the zc axis pointing downwards. The
body frame is fixed to the vehicle center of mass with the xb axis directed out the nose of the aircraft and the zb axis
pointing downwards. Vector components in the different reference frames can be transformed using direction cosine
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matrix sequences as follows:

Lcb =




cos θc 0 − sin θc

0 1 0
sin θc 0 cos θc







cos ψc sin ψc 0
− sin ψc cos ψc 0

0 0 1


 (4)

Lbi =




q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4


 (5)

Lci = LcbLbi . (6)

Lcb is a rotation matrix that converts vectors from components in the body frame to components in the camera frame
by using the pan (ψc) and tilt (θc) angles of the camera. Note, however, that the transformation from the body to the
camera frame accounts for only the orientation differences between the two frames. The fact that the camera frame is
centered at the camera’s location, whereas the body frame is centered at the vehicle center of mass, is neglected. Lbi

is a standard rotation matrix from the body to the local inertial frame expressed in quaternions. The inverse rotations
are obtained by swapping the matrix subscript indices and taking the transpose of the appropriate matrix.

C. Overview of the Extended Kalman Filter

The EKF formulation used for the vision-based estimation tasks is a mixed continuous-discrete time filter. The EKF
algorithm can be broken up into two main phases: prediction and correction. In the prediction phase of the EKF, a
nonlinear continuous-time process model is used to propagate the current best state estimate forward in time to come
up with a new predicted state estimate. Meanwhile, the correction phase runs at discrete intervals and uses sensors to
correct the estimate predicted by the process model. By comparing predicted values of the measurement vector with
actual measurements from the image processor, the EKF is able to estimate the desired states.

1. Extended Kalman Filter Prediction

In the prediction phase of the EKF estimation algorithm, the state estimate x̂ and the covariance matrix P are updated
using a nonlinear model of the vehicle dynamics. The following equations are used for these updates:

˙̂x = f (x̂(t), t) (7)
Ṗ = AP + PAT + Q (8)

where f (x̂(t), t) is a nonlinear process model for the system dynamics, A = (∂f/∂x̂) |x̂ is a Jacobian matrix repre-
senting a linearization of the dynamics, and Q is a positive definite matrix representing the process noise inherent in
the system.

2. Extended Kalman Filter Correction

The EKF makes use of a measurement model h(x̂−) that takes in the current best state estimate and computes an
expected measurement vector for that given state. By comparing this expected measurement with the actual measure-
ment from the sensor, corrections for the state estimate and the covariance matrix from the prediction phase of the
filter are computed. The equations for these corrections are as follows:

K = P−CT (CP−CT + R)−1 (9)
x̂ = x̂− + K[z− h(x̂−)] (10)
P = (I−KC)P− (11)

where K is the Kalman gain, R is a diagonal matrix representing measurement noise in the sensor, and C =
(∂z/∂x̂) |x̂ is the Jacobian of the measurement vector with respect to the state vector. Minus superscripts in the
above equations denote a priori values obtained from the prediction phase equations. The results from (9) - (11) are
used by the prediction phase in the next time step to further propagate the state vector and the covariance matrix, and
the procedure is repeated.
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The EKF corrections can also be performed using a sequential processing of the measurement update. Given the
time updated state x̂− and error covariance matrix P−, and a measurement vector z(tk) = [z1(tk)T · · · zr(tk)T ]T ,
it may happen that the different components of the measurement vector may come in at different rates or that they
may not all be available at a given time step. Applying a sequential measurement update allows each component of
the measurement vector to be applied independently of the others as they become available. For l = 1, 2, · · · , r (r r
different measurements at time t),

Kl
k = Pl−1

k Cl
k

T
(x̂l−1

k )
[
Cl

k(x̂l−1
k )Pl−1

k Cl
k

T
(x̂l−1

k ) + Rl
k

]
(12)

x̂l
k = x̂l−1

k + Kl
k

[
zl

k − h(x̂l−1
k )

]
(13)

Pl
k =

[
I−Kl

kC
l
k

]
Pl−1

k (14)

where the starting initial conditions for the sequential measurement update at time t = tk are x̂0
k = x̂−k , P0

k = P−k ,
and the final result of the measurement updates are x̂r

k = x̂k and Pr
k = Pk. For every measurement not available at

time t = tk, the measurement update for that step l can be skipped. Whenever a measurement is available at any time
instant t = tk, that measurement can be included for this sequential update processing.

3. The Correspondence Problem

The correspondence problem of relating target measurements to their states or for correlating measurements from
frame to frame can be solved using the statistical z-test. The z-test uses the state error covariance matrix, P, and the
measurement noise matrix, V, to define a Z value that ranks the correlation between the measurement and target state
estimate. The Z value is defined for the EKF as

Z = eT
(
CPCT + R

)−1
e (15)

where the residual is defined as
e = z− h(x̂) (16)

so that good matches are indicated by small Z values. Note that the magnitude of Z depends not only on the residual,
but also on the covariance matrices, and will be small when P and R are large. Therefore, even if the residual is large,
great uncertainties in the estimates and the measurements will help to keep the value of Z small. In other words, when
the accuracy of the state estimate is poor, the z-test allows for larger residuals because of the high uncertainty. The
z-test correlates the measurements and estimates by comparing the magnitude of Z to a critical value. If Z is larger
than the critical value, then they do not correspond. Otherwise, the best matching pairs with the lowest Z values are
used.

D. Detecting Feature Points

Three of the most common methods for detecting feature points are the Kanade-Lucas-Tomasi (KLT) Tracker,11

Lowe’s Scale-Invariant Feature Transform (SIFT),12 and the Harris corner detector.13 The KLT and SIFT formula-
tions handle both the detection and tracking of feature points. However, they are more computationally intensive than
the simple Harris corner detector, and for now, the correspondence (or tracking) of points is handled by the statistical
z-test described above. The Harris corner detector works by first computing the Harris matrix (denoted M) which is
given by

M =




∑
I2
x

∑
IxIy

∑
IxIy

∑
I2
y


 (17)

In other words, the Harris matrix for a given pixel consists of summations of products of the horizontal and vertical
image intensity gradients over a window surrounding the pixel. These summations are taken over 3x3 windows in this
work. The following measure is then computed for each pixel

Mc = det(M)− κ [Tr(M)]2 (18)

which indicates a feature point if the Mc value is greater than a certain threshold value. This measure looks for
strong eigenvalues in more than one direction for corner detection without actually needing to explicitly compute the
eigenvalues, thereby reducing the computational requirements of the image processing. Each image is separated into
a uniform grid so that feature points are selected uniformly across each image. A minimum separation of distance is
also enforced between each selected feature point.
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III. Estimating Vehicle States Using Known Feature Points

This section addresses the problem of determining vehicle state using vision-aided inertial navigation when the
positions of the feature points are already known in inertial space. This problem tackles part of the SLAM problem
in that if GPS is available and feature point positions are being estimated, then in the case of a GPS outage, the
combined inertial and vision state estimator could be used for stabilizing the vehicle until GPS returns. Alternatively,
this formulation has some usefulness in its own right since the vehicle could have access to a database of positions
of recognizable patterns to allow for navigation around a previously marked area. With this a priori knowledge of
features, the vehicle could navigate autonomously through the area.

A. Extended Kalman Filter Formulation

The states to be estimated are as follows:

• vehicle position in inertial space: pi =
[
pxi

pyi
pzi

]T

• vehicle velocity in inertial space: vi =
[
vxi

vyi
vzi

]T

• vehicle attitude in quaternions: q =
[
q1 q2 q3 q4

]T

The measurements we have available from sensor information are:

• body-axis angular rates from the IMU: ωb =
[
p q r

]T

• body-axis specific forces from the IMU: fspb
= (ab − gb) =

[
fx fy fz

]T

• pixel position for feature point n: zn =
[
Xn Yn

]T

Therefore the true state vector for the vehicle is

x =
[
pi vi q

]T

=
[
pxi pyi pzi vxi vyi vzi q1 q2 q3 q4

]T

and the estimated state vector is

x̂ =
[
p̂i v̂i q̂

]T

=
[
p̂xi p̂yi p̂zi v̂xi v̂yi v̂zi q̂1 q̂2 q̂3 q̂4

]T

B. Process Model

In this work, the process model comes from the integration of the accelerations and the angular rates as provided by
the IMU. The following equations constitute the process model for the state update:

˙̂pi = v̂i (19)

˙̂vi = L̂ibab (20)
= L̂ib (fspb

+ gb) (21)

= L̂ibfspb
+ gi (22)

˙̂q =
1
2




0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0


 q̂ (23)
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Writing out these equations gives:

˙̂pxi
= v̂xi

(24)
˙̂pyi = v̂yi (25)
˙̂pzi

= v̂zi
(26)

˙̂vxi
=

(
q̂2
1 + q̂2

2 − q̂2
3 − q̂2

4

)
fx + 2 (q̂2q̂3 − q̂1q̂4) fy + 2 (q̂2q̂4 + q̂1q̂3) fz (27)

˙̂vyi
= 2 (q̂2q̂3 + q̂1q̂4) fx +

(
q̂2
1 − q̂2

2 + q̂2
3 − q̂2

4

)
fy + 2 (q̂3q̂4 − q̂1q̂2) fz (28)

˙̂vzi = 2 (q̂2q̂4 − q̂1q̂3) fx + 2 (q̂3q̂4 + q̂1q̂2) fy +
(
q̂2
1 − q̂2

2 − q̂2
3 + q̂2

4

)
fz (29)

˙̂q1 = 0.5 ( − pq̂2 − qq̂3 − rq̂4) (30)
˙̂q2 = 0.5 (pq̂1 + rq̂3 − qq̂4) (31)
˙̂q3 = 0.5 (qq̂1 − rq̂2 + pq̂4) (32)
˙̂q4 = 0.5 (rq̂1 + qq̂2 − pq̂3 ) (33)

The following equations are the non-zero components of the Jacobian matrix A obtained by linearizing (24)-(33):

∂ ˙̂pxi

∂v̂xi

= 1,
∂ ˙̂pyi

∂v̂yi

= 1,
∂ ˙̂pzi

∂v̂zi

= 1 (34)

∂ ˙̂vxi

∂q̂1
= 2 ( q̂1fx − q̂4fy + q̂3fz)

∂ ˙̂vxi

∂q̂2
= 2 ( q̂2fx + q̂3fy + q̂4fz) (35)

∂ ˙̂vxi

∂q̂3
= 2 (−q̂3fx + q̂2fy + q̂1fz)

∂ ˙̂vxi

∂q̂4
= 2 (−q̂4fx − q̂1fy + q̂2fz) (36)

∂ ˙̂vyi

∂q̂1
= 2 ( q̂4fx + q̂1fy − q̂2fz)

∂ ˙̂vyi

∂q̂2
= 2 ( q̂3fx − q̂2fy − q̂1fz) (37)

∂ ˙̂vyi

∂q̂3
= 2 ( q̂2fx + q̂3fy + q̂4fz)

∂ ˙̂vyi

∂q̂4
= 2 ( q̂1fx − q̂4fy + q̂3fz) (38)

∂ ˙̂vzi

∂q̂1
= 2 (−q̂3fx + q̂2fy + q̂1fz)

∂ ˙̂vzi

∂q̂2
= 2 ( q̂4fx + q̂1fy − q̂2fz) (39)

∂ ˙̂vzi

∂q̂3
= 2 (−q̂1fx + q̂4fy − q̂3fz)

∂ ˙̂vzi

∂q̂4
= 2 ( q̂2fx + q̂3fy + q̂4fz) (40)

∂ ˙̂q1

∂q̂2
= −0.5p,

∂ ˙̂q1

∂q̂3
= −0.5q,

∂ ˙̂q1

∂q̂4
= −0.5r, (41)

∂ ˙̂q2

∂q̂1
= 0.5p,

∂ ˙̂q2

∂q̂3
= 0.5r,

∂ ˙̂q2

∂q̂4
= −0.5q, (42)

∂ ˙̂q3

∂q̂1
= 0.5q,

∂ ˙̂q3

∂q̂2
= −0.5r,

∂ ˙̂q3

∂q̂4
= 0.5p, (43)

∂ ˙̂q4

∂q̂1
= 0.5r,

∂ ˙̂q4

∂q̂2
= 0.5q,

∂ ˙̂q4

∂q̂3
= −0.5p, (44)

C. Measurement Model

The measurement model here describes how the expected measurement ẑ = h(x̂) is computed from the propagated
state estimate. In order to describe these equations in a succinct manner, the vectors in Figure 3 are first introduced
where p is the position of the vehicle, pfp is the position of a feature point, and r is the relative position of the
feature point with respect to the vehicle. We will denote the relative position vector r in the camera frame as rc =
[Xfpc Yfpc Zfpc ]

T , and similarly in the body frame as rb = [Xfpb
Yfpb

Zfpb
]T and in the local inertial frame as

ri = [Xfpi Yfpi Zfpi ]
T .
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Figure 3. Vectors used in describing the EKF measurement model.

For each feature point, the expected measurement is computed as ẑ = [X̂ Ŷ ]T , where from the relations given in
(1) and (2) we have

X̂ = f
Ŷfpc

X̂fpc

(45)

Ŷ = f
Ẑfpc

X̂fpc

(46)

The following describes the calculations of the partial derivatives needed for computing the Jacobians in the
Kalman update based off of this measurement model. The partial derivatives of the measurement vector with respect
to vehicle position in the inertial reference frame is computed as

∂ẑ
∂p̂i

=
(

∂ẑ
∂r̂c

)(
∂r̂c

∂p̂i

)
(47)

∂ẑ
∂r̂c

=




∂X̂
∂X̂fpc

∂X̂
∂Ŷfpc

∂X̂
∂Ẑfpc

∂Ŷ
∂X̂fpc

∂Ŷ
∂Ŷfpc

∂Ŷ
∂Ẑfpc


 (48)

∂X̂

∂X̂fpc

= −f
Ŷfpc

X̂2
fpc

= − X̂

X̂fpc

,
∂X̂

∂Ŷfpc

=
f

X̂fpc

,
∂X̂

∂Ẑfpc

= 0 (49)

∂Ŷ

∂X̂fpc

= −f
Ẑfpc

X̂2
fpc

= − Ŷ

X̂fpc

,
∂Ŷ

∂Ŷfpc

= 0,
∂Ŷ

∂Ẑfpc

=
f

X̂fpc

(50)

∂ẑ
∂r̂c

=
1

X̂fpc

[
−X̂ f 0

−Ŷ 0 f

]
(51)

∂r̂c

∂p̂i
=

∂ (p̂fpc − p̂c)
∂p̂i

=
∂p̂fpc

∂p̂i
− ∂p̂c

∂p̂i
= 0−

∂
(
L̂cip̂i

)

∂p̂i
= −L̂ci (52)

The partial derivatives of the measurement vector with respect to the attitude quaternions are similarly computed as

∂ẑ
∂q̂

=
(

∂ẑ
∂r̂c

)(
∂r̂c

∂q̂

)
=

(
∂ẑ
∂r̂c

)
∂ (Lcbr̂b)

∂q̂
=

(
∂ẑ
∂r̂c

)
Lcb

(
∂r̂b

∂q̂

)
(53)
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∂X̂fpb

∂q̂1
= 2

(
q̂1X̂fpi + q̂4Ŷfpi − q̂3Ẑfpi

) ∂X̂fpb

∂q̂2
= 2

(
q̂2X̂fpi + q̂3Ŷfpi + q̂4Ẑfpi

)
(54)

∂X̂fpb

∂q̂3
= 2

(
−q̂3X̂fpi + q̂2Ŷfpi − q̂1Ẑfpi

) ∂X̂fpb

∂q̂4
= 2

(
−q̂4X̂fpi + q̂1Ŷfpi + q̂2Ẑfpi

)
(55)

∂Ŷfpb

∂q̂1
= 2

(
−q̂4X̂fpi

+ q̂1Ŷfpi
+ q̂2Ẑfpi

) ∂Ŷfpb

∂q̂2
= 2

(
q̂3X̂fpi

− q̂2Ŷfpi
+ q̂1Ẑfpi

)
(56)

∂Ŷfpb

∂q̂3
= 2

(
q̂2X̂fpi

+ q̂3Ŷfpi
+ q̂4Ẑfpi

) ∂Ŷfpb

∂q̂4
= 2

(
−q̂1X̂fpi

− q̂4Ŷfpi
+ q̂3Ẑfpi

)
(57)

∂Ẑfpb

∂q̂1
= 2

(
q̂3X̂fpi

− q̂2Ŷfpi + q̂1Ẑfpi

) ∂Ẑfpb

∂q̂2
= 2

(
q̂4X̂fpi

− q̂1Ŷfpi − q̂2Ẑfpi

)
(58)

∂Ẑfpb

∂q̂3
= 2

(
q̂1X̂fpi

+ q̂4Ŷfpi
− q̂3Ẑfpi

) ∂Ẑfpb

∂q̂4
= 2

(
q̂2X̂fpi

+ q̂3Ŷfpi
+ q̂4Ẑfpi

)
(59)

IV. Estimating Feature Point Positions With Known Vehicle States

This section addresses the problem of determining the positions of feature points when the vehicle states are
known. This problem tackles the other part of the SLAM problem in that when GPS is available, the position and
attitude information of the vehicle can be used to figure out the inertial positions of the feature points. With the
estimated positions of the feature points, the vehicle can use this information to navigate in the event that GPS is lost.
This ties in with the previous estimation filter in that this part comes up with the positions of feature points so that we
can assume they are known.

A. Extended Kalman Filter Formulation

In this problem, it is assumed that the position (pi), velocity (vi), and orientation (q) of the vehicle are known. The
states to be estimated are pfpi for each feature point to be estimated. The measurements that are used in the EKF are
the pixel positions of the feature points in the image plane (zn = [Xn Yn])

B. Process Model

Since the feature points are assumed to be stationary, the process model for this problem is very simple. The stationary
points have no dynamics, so we have that f(x̂) = 0 and likewise A = 0. This means that the only update that occurs
in the prediction phase for this problem is the update of the covariance matrix according to

Ṗ = Q (60)

C. Measurement Model

As before, the equations for the expected measurement for each feature point is computed as ẑ = [X̂ Ŷ ]T , where

X̂ = f
Ŷfpc

X̂fpc

(61)

Ŷ = f
Ẑfpc

X̂fpc

(62)

The following describes the calculations of the partial derivatives needed for computing the Jacobians in the
Kalman update based off of the above measurement model equations.

∂ẑ
∂p̂fpi

=
(

∂ẑ
∂r̂c

)(
∂r̂c

∂p̂fpi

)
(63)

∂ẑ
∂r̂c

=
1

X̂fpc

[
−X̂ f 0

−Ŷ 0 f

]
(64)
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∂r̂c

∂p̂fpi

=
∂ (p̂fpc

− pc)
∂p̂fpi

=
∂p̂fpc

∂p̂fpi

− ∂pc

∂p̂fpi

=
∂ (Lcip̂fpi

)
∂p̂fpi

− 0 = Lci (65)

V. Results

Results for the above method were obtained using a hardware setup where an NTSC camera and an IMU were
attached to a rigid aircraft body for testing purposes as shown in Figure 4. This vehicle is marked with reflective
markers so that it can be tracked with a high precision Vicon motion capture system. The Vicon motion capture
system provides position and attitude measurements of the vehicle at a rate of 100 Hz, and it has been claimed to have
on the order of millimeter accuracy. This vehicle was then moved around by hand to simulate motion during these
tests.

Figure 4. The experimental setup used for testing the localization and mapping algorithms. The Vicon system consists of the infrared
cameras shown in the background. The vision sensor and the IMU are on the black vehicle marked with the reflective markers. A sample
target is shown on the ground with black rectangles against a white background.

The IMU used was a Microstrain 3DM-GX1 IMU. Targets of black rectangles against a white background were
placed on the ground for the camera to look at. The camera and IMU were directly connected to a desktop computer
with a dual core 2.4 GHz processor with 2GB of RAM. A framegrabber card digitizes interlaced images from the
camera at a rate of 30 frames per second, and the IMU data is read directly over a RS-232 serial port at a rate of 100
Hz. A sample output of the framegrabber and image processor is shown in Figure 5.
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Figure 5. Sample output image from the framegrabber and image processing. The detected features are marked by the green crosses.
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A. Results for Localization

In this setup, the targets used are two black rectangles with dimensions 4.5 inches in height and 7 inches in width. The
positions of these targets are assumed to be known so that the vehicle can use the locations of the eight total corners
for localization. Figures 6 to 14 show results for estimating the vehicle position and attitude using only measurements
from the IMU and the monocular camera. Figures 6 to 12 show the estimated positions and attitude angles of the
aircraft compared with those provided by the Vicon motion capture system. The results from the Vicon system have
been bias shifted by [0.425 − 0.175 0.25]T ft in position and -5.7 degrees in heading angle. The filter is initialized to
have a position of [0.00.0− 3.0]T ft with zero velocity and a 90 degree downwards pitch angle.
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Figure 6. Position North for the vehicle when using vision and IMU only for vehicle pose estimation. The Vicon values in this plot have
been bias shifted by 0.425 ft.
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Figure 7. Position East for the vehicle when using vision and IMU only for vehicle pose estimation. The Vicon values in this plot have been
bias shifted by -0.175 ft.
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Figure 8. Position Down for the vehicle when using vision and IMU only for vehicle pose estimation. The Vicon values in this plot have
been bias shifted by 0.25 ft.
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Figure 9. Position errors.
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Figure 10. Roll attitude for the vehicle when using vision and IMU only for vehicle pose estimation.
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Figure 11. Pitch attitude for the vehicle when using vision and IMU only for vehicle pose estimation. The Vicon values in this plot have not
been biased.
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Figure 12. Yaw attitude for the vehicle when using vision and IMU only for vehicle pose estimation. The Vicon values in this plot have been
bias shifted by -5.7 degrees.
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Figure 13. Euler angle errors for the attitude of the vehicle. The Vicon values in this plot have not been biased.
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Figure 14. Number of points used in estimation. This depends on the number of feature points in the camera’s field of view, and which
points the state estimator expects to be in the field of view.
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B. Results for Mapping

In this setup, the target used is a single black rectangle with a height of 22 inches and a width of 28 inches so that
there are only four features to detect. The target is placed on the ground so that it’s center is located approximately at
the origin of the local inertial frame. The position and attitude of the aircraft are provided to the estimation computer
by means of the Vicon motion capture system. In this setup, the camera starts out resting on the ground with the lens
pointing downwards and no features visible. After resting on the ground for a period of time, the vehicle is then lifted
off the ground to a position where all four feature points are visible within the camera’s field of view. The vehicle is
then moved around in small rapid motions at a roughly constant altitude to provide the estimator with as many different
perspectives as possible to aid in the observability of the system. These movements, however, attempt to keep all four
corners of the target within the camera’s field of view whenever possible.

Figures 15 and 16 show the vehicle position and attitude throughout the test. Figures 17 through 20 show the
estimates of the positions of the feature points. Even though we know the size of the target, the initial estimates are
given to be a few inches off from the expected positions. Figure 21 shows the number of feature points being used
at a given time in the estimation. The estimates of the location of the feature points take some time to converge, but
the estimator is at least stable and the estimates remain bounded. Figure 22 shows the time evolution of the estimates
of the feature points in the North-East plane. The circles represent the initial guesses for the features and the squares
represent the most recent estimate of the features. The true locations of the features is not known, but the dimensions
of the black target rectangle are known and can be used for comparison. Ideally, the estimates of the feature points
should be such that they represent the corners of a 28”x22” rectangle. However, by looking at Figure 22, it can be seen
that the estimated corners roughly represent a rectangle with dimensions 35”x28”.
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Figure 15. Vehicle position as given by the Vicon system while the vehicle is estimating the locations of the feature points.
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Figure 16. Vehicle attitude in Euler angles as given by the Vicon system while the vehicle is estimating the locations of the feature points.
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Figure 17. The estimated location of feature point 1 (lower right corner of target). The initial guess for the location is [−1.167 1.365 0.0]T .
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Figure 18. The estimated location of feature point 2 (top right corner of target). The initial guess for the location is [1.167 1.365 0.0]T .
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Figure 19. The estimated location of feature point 3 (top left corner of target). The initial guess for the location is [1.167 − 1.365 0.0]T .
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Figure 20. The estimated location of feature point 4 (lower left corner of target). The initial guess for the location is [−1.167 −1.365 0.0]T .
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Figure 21. The number of feature points being estimated at a given moment. This depends on the number of feature points in the camera’s
field of view, and which points the state estimator expects to be in the field of view.
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Figure 22. The North and East positions of the estimated points. The green circles represent the initial guesses and the red squares represent
the most recent estimated locations of the points to show the progression of the estimates. Note that the actual target is 2.33 ft wide and
1.83 ft in height.
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VI. Observations from the Hardware Experiments

There were a few interesting observations from the hardware implementation of the vision-aided inertial local-
ization and mapping algorithms used in this paper that are worth noting. It was found that when using these two-
dimensional targets, the performance of the localization algorithm was significantly better when the target was placed
on the ground as opposed to mounting the target in an upright position such as on a wall (see Figure 23). In fact, it was
difficult to get the filter to even converge when the target was mounted on a vertical surface. Conceptually, this occurs
because when the vehicle is moving around and looking at the target, the measurements from the image processor may
not necessarily change significantly because of the geometry of the problem. Rotation parallel to the target is well
determined, but the assistance of the knowledge of the gravity vector is required for the other directions. So when the
target is on the ground, gravity helps to resolve this discrepancy by providing information about the pitch and yaw of
the vehicle. Similarly, if the target was placed on a vertical surface, a magnetometer could probably assist the filter in
a similar manner.

g

A
B

Figure 23. Placing the image processing targets on the ground (configuration A) provided markedly better results than when the target was
placed upright on a wall (configuration B). This is because when the camera is looking down at the target, then the gravity vector assists in
determining the relative pose of the vehicle.

With the target on the ground, the localization estimator proved to work reliably. Some care did however need
to be taken in the initialization of the estimator since the initial position used by the estimator heavily affected the
correspondence of the points. The vehicle needed to be in a position that would correctly associate the measurements
with the correct points in the feature database by starting off with each point in the image processor being the closest
measurement to the predicted measurement of its associated database point.

With regards to the results from the mapping algorithm, it was found that the filter would at least converge and
bound the estimates of the locations of the feature points. However, convergence for these cases would sometimes take
more than 10 seconds, and they would also drift towards incorrect values. Simulations were performed to investigate
what properties of the vision sensors would most likely cause this type of problem to occur. Effects such as latency,
errors in the field view, and errors in vehicle position and attitude from the Vicon system were investigated. Out of all
these, it was found that errors in the camera’s field of view (and equivalently focal length) could potentially cause this
sort of a performance degradation. Figures 24 and 25 show results comparing situations where the field of view of the
camera is known exactly (Figure 24) and where the assumed field of view is incorrect (Figure 25). These simulations
simulate a camera which has a 50 degree field of view in both the horizontal and vertical directions (note that most
cameras have a 4:3 aspect ratio, but for simplicities sake we just assume them to be identical in this simulation). The
camera is pointing North the whole time and is moving in a circle around the origin in the East-Down plane with a
radius of 10 ft at a velocity of 1 ft/s. The feature point is located at [30 2 2]T ft. The initial guess has a 5 ft error
in all three axes. Figure 24 shows the estimation errors for when the correct field of view values are used. However,
Figure 24 shows the estimation errors when it is assumed that the horizontal field of view is known correctly, but the
vertical field of view is erroneously measure as 47 degrees (a 3 degree error). In the case of the incorrectly measured
vertical field of view, convergence takes substantially longer and the steady state error is non-zero. This suggests that
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a careful calibration of the camera or a more sophisticated camera model might be needed to improve the mapping
performance.
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Figure 24. Estimation errors for the observation of feature point in a simulated case where the field of view parameters of the camera are
exactly known. The vehicle maintains a constant orientation and moves in a circular motion while facing the feature point and maintaining
it in sight at all times.
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Figure 25. Estimation errors for the observation of feature point in a simulated case where the field of view parameters of the camera are
not exactly known. A 3 degree error is induced in the vertical field of view in this case. The vehicle maintains a constant orientation and
moves in a circular motion while facing the feature point and maintaining it in sight at all times.
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VII. Conclusion

Preliminary results for separately performing localization and mapping were presented in this paper. The local-
ization performance was compared with a high precision motion capture system for comparison purposes. In the
mapping section, the vehicle pose was provided by the motion capture system, and the vehicle used this information
to estimate the locations of four feature points. The obtained results demonstrate that vision sensors have the potential
to provide accurate estimates for the position and attitude of a vehicle given good initial conditions, and suggest that
the localization algorithm can potentially be applied to vision-aided inertial navigation relative to a known stationary
target. Work still remains with getting the mapping portion to a satisfactory level. This includes investigating more
sophisticated camera calibration models as well as possibly other estimation schemes that are more robust to these
parametric uncertainties. It is hoped that these algorithms can be made robust enough to eventually be combined into
an integrated method that allows for vision-aided inertial navigation in uncertain environments.
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