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SUMMARY 

 
The focus of this dissertation is problem of batch production scheduling for 

perishable products with setup times, with the main applications in answering 

production planning problems faced by manufacturers of perishable products, such as 

beers, vaccines and yoghurts. The benefits of effective production plans can help 

companies reduce their total costs substantially to gain competitive advantages 

without reduction of service level in a globalize economy.  

 

We develop concepts and methodologies that are applied to two fundamental 

problems: (i) the batch production scheduling problem for perishable products with 

sequence-independent setup times (BPP-SI) and (ii) the batch production scheduling 

problem for perishable products with sequence-dependent setup times (BPP-SD). 

 

The problem is that given a set of forecast demand for perishable products to 

be produced by a set of parallel machines in single stage batch production, with each 

product having fixed shelf-life times and each machine requiring setup times before 

producing a batch of product, find the master production schedule which minimizes 

total cost over a specified time horizon.  We present the new models for both 

problems by formulating them as a Mixed Integer Program (MIP) in discrete time.  

Computational studies on BPP-SI and BPP-SD for industrial problems are presented. 

In order to efficiently solve the large BPP-SI problems in practice, we develop five 

efficient heuristics. The extensive computational results show that the developed 

heuristics can obtain good solutions for very large problem sizes and require a very 

short amount of computational time.  
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CHAPTER I 

INTRODUCTION 

 
This research addresses the complex set of production decisions in a single stage of 

batch processes for a manufacturer of fixed shelf-life products.  Due to the higher flexibility 

in producing a wide variety of products, batch production processes have gained considerable 

popularity over the last two decades. Some examples of batch process used in production of 

perishable products include the fermentation process for beers, the mixing process for 

medicines, and the incubation process for vaccines.  Production planning for batch 

production is very difficult because of large varieties of constraints, such as non-preemptive 

processes, intermediate storage policy, lot sizing, processing sequences, shared resources, 

many pieces of processing equipment with varying operational characteristics, etc.  

 

This research is motivated to help a manufacturer of fixed shelf-life products 

determine an efficient Master Production Schedule (MPS) for a single batch operation stage, 

while incorporating several issues, such as setup times (sequence independent setup times or 

sequence dependent setup times), lot size (discrete or continuous),  capacity of machines, 

fixed processing time, shelf-life of products, deterministic demand for products, and number 

of machines available in order to minimize total cost, comprising costs of inventory, 

spoilage, production, setup and penalty for unmet demand.   
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The resulting MPS indicates the amount of products to be produced in each period, 

sequencing of production of products on each of the machines, as well as, timing of setup on 

the machines. This MPS plan is useful for planners to efficiently allocate resources among 

products. 

 

Our focus is on one batch processing unit for production of perishable products, since 

the batch process step typically accounts for most of the residence time of products in the 

system and is the bottleneck step, such as a fermentation tank used to brew beer (Virkajarvi, 

2000) or an incubator for flu vaccine production (A report from the American Academy of 

Microbiology, 2005). Main features of this batch operation are 

• Batch operation is non-preemptive.  

• Each machine can process at most one product at a time. 

• Each batch of product requires a setup whenever a new batch is released on machine.  

Figure 1.1 represents three major components in the BPP problem arising in industries. 

 

 

 

 

 

 

 

 

Figure 1.1 Venn Diagram for Three Major Components in the BPP Problem 

A = Setup time

B = Batch processing time

C = Fixed shelf-life time
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This dissertation presents a new integrative approach for dealing with batch 

production scheduling problems for fixed shelf-life products with setup times on a single 

processing unit of parallel machines. This dissertation differs from previous work done under 

lot-sizing and scheduling problems and inventory management for perishable products in that 

our models incorporate several practical issues, such as the limited shelf-life of products, the 

change in number of available machines and the penalty for unmet demand into the models, 

which also include the issues of lot-sizing and setup-times. We formulate the discrete-time 

MIP models for the batch production scheduling problems for fixed shelf-life products for 

the case of sequence-independent setup times (BPP-SI), and the case of sequence-dependent 

setup times (BPP-SD).  Furthermore, we develop five efficient heuristics for solving the 

batch production scheduling problems with sequence-independent setup times (BPP-SI). The 

extensive computational results show that the developed heuristics can obtain good solutions 

for very large problem sizes and require a very short amount of computational time. 

Moreover, we apply both optimization and heuristic approaches to solve problems in 

industry. We also examine factors of interest on the system performance and analyze the 

performance of heuristics.  

 

This chapter provides the background for general batch production scheduling 

problems for perishable products (BPP) and the overview of two types of manufacturing 

industries in which the BPP problems usually take place. The relevant academic literature is 

reviewed in Chapter II.  In Chapter III, a formal definition of BPP-SI and the mathematical 

model are provided.  Chapter IV covers a formal definition of BPP-SD and the mathematical 

model. Chapter V presents the numerical study for BPP-SI and BPP-SD for three different 
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configuration settings.  In Chapter VI, the solution strategies for BPP-SI problems are 

presented. Chapter VII presents a numerical study for large BPP-SI problems in three 

industries including beer, vaccine and yoghurt. Chapter VIII investigates the performance of 

heuristics for BPP-SI problems by a computational study. The summary and future 

extensions are overviewed in Chapter IX.  Next we briefly explain two industries in which 

the BPP problems usually arise.  

 

1.1 Overview of Brewing Industry 

According to the report of The Brewers Association in 2006,   the overall U.S. 

brewing industry dollar volume was $83 billion in 2005, and total U.S. beer sale was 205.65 

million barrels (1 barrel = 31 U.S. gallons).  There are 1,452 U.S breweries, which   consist 

of craft breweries (1415), large breweries (21), and regional breweries (16).  Craft breweries 

include brewpubs (9.2%), microbreweries (10.9%), regional craft breweries (66%), and 

contract breweries (13.9%) with a growth rate of 9% in 2005.   According to the industry 

data of Beer Institute, per U.S. capita consumption for 2003 is 30.6 gallons of beer per 

person.  

The basic ingredients of beer are water, malted barley (the main source of starch and 

enzymes), yeast, and hops.  

The process of brewing beer includes 

• Mashing:   Malted grains are crushed and soaked in warm water in order to create 

a malt extract. The mash is held at constant temperature for converting starches into 

fermentable sugars. 
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• Filtering: Water is filtered through the mash to dissolve the sugars. The darker, 

sugar-heavy liquid is called the “wort”.  

• Boiling: The wort is boiled in order to remove excess water and kill any 

microorganisms. Hops are added at this stage for favor enhancement.  

• Fermentation: The yeast is added or pitched and the beer is left to ferment in 

fermentation tank. Yeast is used to convert fermentable carbohydrates into alcohol, carbon 

dioxide, and numerous byproducts. Fermentation depends on the composition of wort, yeast, 

and fermentation condition. After primary fermentation, the beer may be allowed a second 

fermentation for further settling of yeast.  

• Down-stream processing:  filtration, stabilization, and packaging. Figure 1.2 

illustrates the process of brewing lager beer by Linko et al. (1998). 
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.  

Figure 1.2: The Process of Brewing Lager Beer 

 

 Beer is perishable, since it deteriorates due to the action of bacteria, light, and air.  

Beer is not legally required to carry a "sell by" date.  However, some companies, such as 

Boston Beer Company, carry a freshness date. Anheuser-Busch uses "born on" dates.  

Freshness period or shelf-life of beer varies with the type of beers and the storage conditions. 

According to the Beverage Testing Institute, the freshness period for a lager is 4 months, 

stronger craft-brewed ales is 5 months. High-gravity, high-strength beer varies from 6 to 12 

months, if beers are properly handled and stored. Bradt, a board of directors for the Brewers 
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Association, said that “in general, most brewers are comfortable with a shelf life of 3-4 

months for standard-strength bottles" on the news in July, 2005 by the Lawrence company. 

 

According to Virkajarvi (2000), the fermentation is the most time consuming step in 

the production of beer and is a batch process. Therefore, the effective use of fermentation 

tanks is an important element to brewing economy. In his paper, the fermentation time for 

lager beers typically lasts from 2 to 4 weeks.  The capacity of a fermentation tank ranges 

from 600 to 50,000 gallons. According to a source of Thai Asia Pacific Brewery Company, 

the setup times for cleaning a fermentation tank is approximately 2-3 hours, which do not 

significantly vary with the type of beer to be fermented, and is very relatively small 

compared to the fermentation time. Consequently, this setup time can be considered as 

sequence-independent.  

 

In summary, the fermentation process for beer provides a good environment to 

demonstrate the effectiveness of our proposed model, namely, the batch production 

scheduling problem for a perishable product with sequence-independent setup times (BPP-

SI). The result of the model is the optimal production schedule for fermenters over the 

planning horizon. The mathematical model is presented in Chapter III and the numerical 

result for simulated problems is in Chapter V.  
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1.2  Overview of Vaccine Industry 

The aim of a vaccine is to stimulate our body’s immune system to prevent illness by 

destroying the foreign invader or making it harmless. A vaccine contains a dead or weakened 

form of the organism (virus, bacterium or other organisms) that causes a particular disease. 

When given to a person, the vaccine stimulates his immune system to produce antibodies 

against the organisms. If he/she is exposed to the disease, in which he/she has been 

vaccinated, then the antibodies will destroy the invading germ. 

 

The first vaccine against smallpox was used in 1798 by Edward Jenner. According to 

World Vaccine Congress of 2006, the global vaccine market was around $10 billion in 2005.  

Walsh (2003) estimated that around 500,000 adults die annually in U.S.A. from the 

conditions, which could have been prevented by vaccination. Vaccines have been used to 

prevent several diseases, such as smallpox, rubella, polio, measles, mumps, chickenpox, 

typhoid, etc. The World Health Organization (WHO) and the Centers for Disease Control 

and Prevention (CDC) recommend that all travelers be up-to-date with the routine vaccines, 

such as Diphtheria/tetanus/pertussis (DTP), Hepatitis B (HBV), Poliomyelitis, Haemophilus 

influenza type b (Hib), Measles/mumps/rubella (MMR).  

 

CDC classifies four types of traditional vaccines: 

• Live attenuated vaccines are live micro-organisms that have been cultivated under 

conditions, which disable their virulent properties. Examples are vaccines against yellow 

fever, measles, and mumps. 
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• Killed vaccines contain killed virulent micro-organisms by chemicals or heat. 

Examples are vaccines against flu, cholera, and hepatitis A 

• Toxoid vaccines are inactivated toxic compounds from micro-organisms 

Examples of these vaccines are tetanus and diphtheria. 

• Component vaccines contain parts of the whole bacteria or viruses. Example is 

vaccine against Hepatitis B (HBV). 

Innovative vaccines are Conjugate, Recombinant Vector, and DNA vaccination (See 

detail in Crowcroft (1999), Henahan (1997), Walsh (2003)).  

 

The manufacture of vaccines is one of the most highly regulated and rigorously 

controlled manufacturing processes in order to produce safe and effective vaccines according 

to Good Manufacturing Practice (GMP). The following factors contributing to the safe 

manufacture of vaccines include: the design and layout of manufacturing facility, raw 

materials (such as vaccine strains, chemicals) and equipment used, manufacturing process, 

the training and commitment of employees relating to manufacturing operations, etc. 

 

Because the manufacturing process for each of vaccines is different depending on the 

strain of vaccine, growth media, etc, we will not discuss the detail of    manufacture of 

vaccine in this thesis. The interested reader is referred to Walsh (2003), Plotkin and Mortimer 

(1994), The World Health Organization (WHO).  

 

The incubation step is one of the most time consuming processes in manufacture of 

vaccines. Cell culture is the culturing of cells under controlled conditions (growth media, pH, 
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temperature). For example, the cell cultures should be incubated for 2 weeks for influenza 

vaccine, and 4 weeks for smallpox vaccine, according to the recommendation for the 

production and quality control of vaccine by WHO.  Furthermore, it is the necessary step to 

activate the freeze-dried vaccines. For instance, the smallpox vaccine in its freeze-dried form 

has to be incubated at 37 degrees C for one month so as to maintain its full potency by 

International standard requirement. 

 

An Incubator is an apparatus, which is used to grow and maintain cell cultures. The 

incubator keeps cultures at an optimal temperature and humidity. CO2 incubators regulate the 

oxygen and carbon dioxide (CO2) content. The capacity of a CO2 incubator ranges from 14 to 

170 liters (Information on incubators can be found on the websites of NuAire Inc., Voigt 

Global Distribution Inc., and Wolf Laboratories Limited).  Due to the strict rules on the safe  

manufacture of vaccines, the manufacturers have to follow the cleaning, decontamination, 

and sanitation (CDS) procedures in order to prevent cells from contaminants. The procedure 

of cleaning CO2 incubators can be found in Moody (2002).   The setup time for cleaning an 

incubator is four to eight hours, depending on the sequence of vaccines to be produced. 

 

 A vaccine has a limited shelf life, which is dependent on the type of vaccines, storage 

condition (i.e. temperature, sunlight).   For example, the measles vaccine can maintain its 

potency for 4 weeks at 37 degrees C, and 8 months at room temperature. However, the 

reconstituted vaccine remains potent for 2 days at 20-25 degrees C, and 7 hours at 37 degrees 

C (See Plotkin and Mortimer (1994)). 
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In short, the model of the batch production scheduling problem for perishable 

products with sequence-dependent setup times (BPP-SD) can be applied to the problem of 

production scheduling of incubation process for manufacture of vaccine. The mathematical 

model is presented in Chapter IV and the numerical results for the BPP-SD problem is in 

Chapter V. 
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CHAPTER II 

REVIEW OF RELEVANT LITERATURE 

 

This chapter reviews the literature and background, which are closely related to our 

research. This includes lot sizing and scheduling, batch production process, scheduling with 

batching and inventory management of perishable items.  

 

2.1  Literature Review of Lot Sizing and Scheduling Problem 

Lot-sizing and scheduling are dependent decisions. The lot-sizing step needs 

information about setup times, which is determined by item sequence and machine 

assignment from the result of scheduling step. Meanwhile, the scheduling step requires the 

production quantity as input in order to determine item sequence and machine assignment.  

An integrative solution approach is needed to simultaneously solve the lot-sizing and 

scheduling problem. Therefore, the optimal production plan is obtained. 

Eppen and Martin (1987) classify lot sizing problems with finite planning periods into 

two models - small bucket and big bucket models. Small bucket models have relatively short 

periods.  In the small bucket model, at most one type of item can be produced and one setup 

can incur on the machine during each time period.  Examples of this type of model are the 

Discrete Lot Sizing Problem (DLSP), and Continuous Lot Sizing Problem (CSLP). In DLSP, 

production must be at capacity if a machine is used to produce an item. In CLSP, the amount 

of production can vary, but is limited by the capacity of a machine. The solution of the small 

bucket problem contains production sequence of items on the machine. On the other hand, 
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big the bucket model has fewer, but longer period without restriction on the number of items 

or setups per period and machine. In the large bucket model, many different items can be 

produced on the same machine in one time period. Examples of large bucket models are the 

Capacitated Lot Sizing Problem (CLSP), and the General Lot sizing and Scheduling Problem 

(GLSP).  

The big bucket model does not take into account the item sequence in a period and its 

solution does not contain the production schedule. With the same length of planning period, 

the number of periods in the small bucket model is much larger than that of the large bucket 

model, so the small bucket model takes more computational time. We next discuss the 

research on the major types of lot sizing and scheduling problems. 

 

2.1.1 The Single-Level, Single Item, Lot-Sizing Problem 

Research on lot-sizing models began with the classic Economic Order Quantity 

model (EOQ model). Ford W. Harris (1915) develop the simple EOQ model, in which 

demand is assumed to be stationary, no stock-outs are permitted, only holding and fixed 

order costs are present, and a single-level production has no restriction on capacity. The EOQ 

model is a continuous time model with an infinite planning horizon. The EOQ model can be 

easily extended to the case in which items are produced internally with a finite production 

rate. The optimal batch size can be obtained by the EOQ formula with a modified holding 

cost.  Hadley and Whitin (1963) develop the EOQ model for resource-constrained multiple 

items. Examples of limited resources include budget and space.  They showed that when the 

ratio of the item value or space consumed by the item over the holding cost is the same for all 
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items, the solution can be obtained easily. When the ratio is different, they propose using 

Lagrange multiplier to solve this problem. 

 

The Wagner-Whitin problem is an extension of EOQ model where demands are 

dynamic, planning horizon is finite, and capacity limits are not considered. Wagner and 

Whitin (1958) develop the dynamic programming algorithm in order to optimally solve the 

single-item, uncapacitated lot sizing problem.  The authors also prove that there exists an 

optimal solution that satisfies the Wagner-Whitin property. Under an optimal lot-sizing 

policy, either the inventory carried from a pervious period to period t+1 will be zero or the 

production quantity in period t+1 will be zero. Federgruen and Tzur (1991), Wagelmans et al. 

(1992), Aggarwal and Park (1993) develop more efficient algorithms for this problem. 

 

De Matteis (1971) and Silver and Meal (1973) develop heuristic approaches to solve 

the uncapacitated, single item, single-level lot-sizing problem. However, when the finite 

capacity of facility is incorporated into the model, this capacity constraint considerably 

complicates the analysis. 

 

2.1.2 Economic Lot Scheduling Problem (ELSP) 

The objective of the Economic Lot Scheduling Problem (ELSP) is to find the optimal 

schedule that allows to cyclic production pattern for each item produced by a single machine 

so that the total of inventory and setup costs is minimized and no stock-outs occur during the 

production cycle.  The ELSP is a single-level, multi-item problem, where the capacitated, 

single facility is commonly used to produce several items. Like the EOQ model, ELSP is a 
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continuous time model with an infinite planning horizon.  Comprehensive research on the 

ELSP is found in Maxwell (1964), Elmaghraby (1978), Silver et al. (1998), and Nahmias 

(2005). 

The underlying assumptions of the traditional ELSP model are as follow: 

-  Only one item can be produced at a time. 

-  Demand rates are deterministic, and stationary. 

-  Production rates are constant, and deterministic. 

-  Production capacity is capacitated, and sufficient to meet total demand. 

-  There is a setup cost and a setup time associated with producing each item. 

-  No backordering for any demand is allowed. 

-  Inventory of each item is charged at a linear time-weighted holding cost rate.   

Next, we define the following notation used in the ELSP model. 

i =  index for item (i =  1,…,N) 

Di =   Demand rate for item i (in units of item per period) 

Pi =   Production rate for item I (in units of item per period) 

hi =   Holding cost per unit per time for item i (in dollars/unit/period) 

Ki  =   Setup cost of the machine to produce item i (in dollars/setup) 

si  =   Set time for item i  (in periods) 

Qi  =   lot sizes for item i (in units of item) 

T =   Cycle time (in periods) 

T* =   Optimal cycle time when setup time is assumed to be zero (in periods) 
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Ensuring that the machine has sufficient capacity to satisfy the demand for all items leads to 

the constraints
1
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When the setup time for an item is incorporated, one has to ensure that the total time required 

for setups and production during each cycle does not exceed the cycle time T.  

This condition can be expressed as
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The cycle time T for ELSP with nonzero setup time is the larger of Tmin and T* 

min  min{T ,T*}T ≥   Lot sizes for item i are given by Qi  =   Di T 

Hsu (1983) shows that ELSP is NP-hard.  There have been a number of heuristic procedures 

developed by Dobson (1987), Zipkin (1991) and Gallego (1994) for solving the ELSP.  In the 

next section, we discuss the Capacitated Lot Sizing Problem (CLSP), which is a typical 

example of the large bucket model.  
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2.1.3 Capacitated Lot Sizing Problem (CLSP) 

The Capacitated Lot Sizing Problem (CLSP) consists of determining the lot sizes of 

multi-items over a finite planning horizon in order to minimize setup and inventory holding 

costs. The CLSP is a single-level, multi-item problem where limited capacity is shared by 

items produced in each period, no backorders are permitted, and demands for items are 

assumed to be dynamic, and deterministic.  In each period in which an item is produced, a 

setup cost is incurred. Unlike ELSP, CLSP assumes that several items can be produced per 

period, so CLSP is a large bucket problem. The planning horizon typically is less than six 

months. A period usually represents a time period of approximately one week.  We define the 

“setup carry-over” as the continuation of production of an item from one period to the next 

without an additional setup. The fundamental assumption of the CLSP is that setup costs 

occur for each lot in a period.  In CLSP model, setup carry-over is not allowed, i.e., setup is 

incurred even if the same item was produced last in period t and produced first in period t+1. 

Consequently, a result from CLSP model could cause a substantial setup cost. Another 

disadvantage of CLSP is that the optimal solution, based on aggregate data, could be more 

expensive than the optimal solution obtained by using disaggregated data, if we apply CLSP 

to the short term planning problems with small periods. It should be noted that the CLSP 

does not include the sequence decision in the solution. 
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The following notation is used to model CLSP, DLSP and CSLP 

Indices: 

i =  index for items (i =  1,…,N) 

t =  index for time periods (t =  1,…,T) 

 

Data: 

ai =   The number of setup periods required before production of item i (in periods) 

di,t =   Demand for item i in period t  (in units of item)  

hi =   Holding cost per unit per time for item i  (in dollars/unit/period) 

Ki  =   Setup cost of the machine to produce item i (in dollars/setup) 

ki  =   Setup cost per setup period for item I (in dollars/period) 

Ii,0 =   Initial inventory for item i (in units of item) 

Ct =   Available capacity of the machine in period t   

ri  =   Capacity needed to produce one unit of item i  (in unit of capacity/unit of item)

 

Variables: 

qit =  Production quantity of item i in period t (in units of item) 

Iit =   Amount of inventory at the end of period t of item I (in units of item) 

yit  =   Binary variable indicating whether item I is produced in period t (yit = 1)  

     or not  (yit = 0) 
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vit  =   Binary variable indicating whether the machine is set up for item i in period t  

     (vit = 1) or not  (vit = 0) 

 

Mathematically, the CLSP can be formulated as a mixed integer program model: 

Minimize   (Objective)             Minimize Total Cost 

  ( ) CLSP i it i it
i t

Z min K y h I= +∑∑
2.1 - Sum of setup and holding costs  

Subject to:   

, 1 , , ,               i t i t i t i tI q d I− + − =  ,i t∀  2.2 - Inventory balance for item 

t   Ci it
i

r q ≤∑  
t∀  2.3 - Amount of production is limited by  

capacity 

                              i it t itrq C y≤  ,i t∀  2.4 - Logical constraint on setup 

0,  I 0,it itq ≥ ≥ { }  0,1ity ∈  ,i t∀  2.5 - Variable constraints 

 

The objective function (2.1) is to minimize total inventory and setup costs.  Equations (2.2) 

express the inventory flow balance in each period. Constraints (2.3) ensure that total 

production in each period does not exceed the capacity.  Constraints (2.4) ensure that a setup 

is performed in each period in which an item is produced. Constraints (2.5) define non-

negative variables, and binary variables for setup respectively.    
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Florian, Lenstra and Rinnooy Kan (1980) and Bitran and Yanasse (1982) show that 

solving the CLSP optimally is NP-hard. Many attempts have been made to solve a mixed 

integer program of the CLSP by using exact solution approach, such as the branch and bound 

technique, cut-generation technique, and variable redefinition technique. Barany et al. (1984) 

use cut-generation technique by adding strong valid inequalities, which are facets for the 

single-item uncapacitated problem. The reformulated problem results in a good 

approximation of the convex hull of feasible solutions to the CLSP. Then the resulting 

reformulated problem is solved using a branch-and-bound algorithm. Eppen and Martin 

(1987) use variable redefinition technique for converting the traditional CLSP formulation 

into a graph-based representation. The resulting reformulation has more variables and 

constraints, but provides tighter linear relaxation than the traditional formulation.  The LP-

relaxation problem is first solved and then a branch and bound algorithm is used to obtain the 

optimal solution.  They solve the multi-item capacitated lot-sizing problem instance up to 

200 items and 10 periods. Belvaux and Wolsey (2000) develop strong formulations and a 

specialized branch-and-cut system for practical lot-sizing problems. 

 

Due to the complexity of the problem, it is unlikely that one can develop any efficient 

exact method to solve CLSP. Therefore, several efficient heuristics are proposed for the 

CLSP. Dixon et al. (1981), Dogramact et al. (1981) and Gunther (1987) employ a period-by-

period heuristic approach, where lot sizes of items are determined by a cost saving criterion.  

Thizy and van Wassenhove (1985) develop a Lagrangean based heuristic for CLSP. This 

method includes a primal partitioning scheme with a network flow subproblem. Cattrysse et 
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al. (1990) propose a set partitioning and column generation heuristic for multi-item, single-

level capacitated dynamic lot-sizing problems.  

 

Maes et al. (1991) show that finding a feasible solution of the multi-item capacitated 

lot-sizing problem with setup time (MCL) is NP-complete. Many authors have developed 

heuristic methods to solve MCL. Trigiero, Thomas, and McClain (1989) develop a 

Lagrangean heuristic for MCL. This algorithm iterates between primal and dual procedures.  

A smoothing heuristic is implemented after each primal step.  The dual procedure employs 

subgradient optimization to compute dual prices for capacity in each period.  The primal 

procedure uses dynamic programming to solve the set of uncapacitated, single-item problem, 

which results from the Lagrangean relaxation. The smoothing heuristic is used to modify the 

primal solution, seeking to eliminate overtime.  The authors points out that when the capacity 

constraint is tight, a feasible solution is not always obtained.  Diaby et al. (1992) propose a 

Lagrangean relaxation-based heuristic to solve very large scale MCL with limited overtime. 

The authors relax the capacity constraints and solve the resulting transportation formulation.  

Miller et al. (2000) solve the multi-item capacitated lot sizing problem with setup times using 

a branch-and-cut algorithm.   
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2.1.4 Small Bucket Models  

In this section, we discuss the small bucket models, such as DLSP, CLSP, and PLSP. 

In small bucket models, the planner decides what is to be done in each time period. That is, 

he has to determine which item the machine is producing in each time period (production 

variable), and whether or not production has changed to a new item in this time period (setup 

variable).  We discuss the small bucket models in detail, since our problem of interest has 

some similar features with this model.  

 

2.1.4.1 Discrete Lot sizing and Scheduling Problem (DLSP) 

The standard discrete lot sizing and scheduling problem (DLSP) is the problem of 

determining lot sizing and sequencing for a number of different items on a single machine 

over a discrete and finite planning horizon. The objective is to find a minimal cost production 

schedule such that dynamic demand is fulfilled without backlogging.  In DLSP, we divide the 

finite macro-periods into several micro-periods. In each time period, at most one type of item 

can be produced. The setup on machine can occur only once in each time period.  The main 

assumption of DLSP is “all-or-nothing production”. That is, only one item can be produced 

per period, and if so, the full capacity is used.  

To describe the setup cost structure in DLSP, Cattrysse et al. (1993) define  

“a batch of item i” as an uninterrupted sequence of periods in which production takes place 

for item i. After a machine finishes set-up periods for an item, it can be used to produce the 

item for an uninterrupted sequence of periods without another set-up.  If the machine is idle, 

a setup is needed before producing an item. As a result, the DLSP does not preserve the setup 

state over idle periods. We next compare the main differences between CLSP and DLSP. 
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• Unlike CLSP, the DLSP is a small bucket problem because at most one item can be 

produced per period.  For CLSP, the setup cost is incurred in every period in which 

production takes place. The periods in DLSP are relatively shorter than those in CLSP, 

such as hours, or shifts.  Due to short period in DLSP, the setup cost is incurred only 

when the production of a new lot starts. The DLSP has the same objective function as 

CLSP, but some constraints need to be modified in order to cover the issue of a certain 

setup period before producing an item.  

DLSP has many important practical applications. For example, Van Wassenhove and 

Vanderhenst (1983) describe the application of DLSP in a decision support system for 

production planning in a large chemical plant.  Jans and Degraves (2004) consider an 

extension of the standard DLSP to an industrial production planning problem for a tire 

manufacturer. 

The standard DLSP can be formulated as a mixed integer program, which was 

proposed by Fleischmann (1990). 

Minimize   (Objective)              Minimize Total Cost 

 DLSP i it i it
i t

Z min K v h I= +∑∑  
2.6 - Sum of setup and holding costs  

Subject to:   

t  =   Ci it itrq y  ,i t∀  2.7 - Amount of items produced in each period  

, 1 , , ,               i t i t i t i tI q d I− + − =  ,i t∀  2.8 - Inventory balance for item 

    1it
i

y ≤∑  
t∀  2.9 - Machine can produce at most one type of 

item in each time period 

, , 1        i t it i tv y y −≥ −  ,i t∀  2.10- Changeover requires a new setup 
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0,  I 0,it itq ≥ ≥  ,i t∀  2.11- Nonnegative variables 

{ }  v , 0,1it ity ∈  ,i t∀  2.12- Binary variables for setup and production  

The objective function (2.6) is to minimize total inventory and setup costs.  Constraints (2.7) 

ensure that the quantity produced in each period is either zero or full production capacity 

(“all or nothing production”). Equations (2.8) express the inventory flow balance in each 

period. A set of machine capacity constraints (2.9) guarantees that in each period, the 

machine produces at most one type of item.  

A set of constraints (2.10) ensure the correct sequence of setup and production periods for 

items. When producing different types of items, a new setup is required. 

Non-negativity constraints are defined in inequalities (2.11). Conditions (2.12) define binary 

variables for the setup status and production status of machine in each period respectively.  

Note that the following valid inequalities  ,   i t itv y≤ ,i t∀  (2.13) and  , , 1    1i t i tv y −≤ − ,i t∀  

(2.14) may be added to improve the computational time. Constraints (2.13) imply that 

machine will produce an item i in period t if a setup for item i incurs at the beginning of 

period t. Constraints (2.14) imply that machine will not be setup for an item i in period t if it 

produces such item in previous period t-1, because DLSP allows setup carryover for the same 

item in consecutive periods. It should be noted that in the standard DLSP, the setup cost is 

included into the model, but setup time is assumed to be zero.  

To account for DLSP model, in which the number of setup periods required before 

producing an item i (ai) is not zero, one has to modify the standard DLSP model by replacing 

the objective function (2.6) with equation (2.6a) and replacing constraints (2.9-2.10) with 

constraints (2.9a, 2.10a, 2.10b, 2.10c). This model was proposed by Bruggemann and Jahnke 

(2000). 
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Minimize   (Objective)              Minimize Total Cost 

 DLSP st i it i it
i t

Z min k v h I− = +∑∑
2.6 Sum of setup and holding costs  

Subject to:   

t  =   Ci it itrq y  ,i t∀  2.7 - Amount of items produced in each period  

, 1 , , ,  i t i t i t i tI q d I− + − =
 

,i t∀  2.8 - Inventory balance for item 

( )    1it it
i

y v+ ≤∑  
t∀  2.9a - Prevent simultaneous setup and  

production on the machine 

, , 1  
ii t a it i tv y yτ− + −≥ −  ,  

1,...,
0,..., 1

i

i

i
t a T

aτ

∀
= +
= −

 
2.10a- Setup for item with nonzero setup 

periods 

, , 1 
ii t a it i tv y yτ− + −≥ − , ,   0ii t a∀ =  2.10b- Setup for item with zero setup period. 

 = 0ity  ,   1,..., ii t a∀ =  2.10c- Logical constraints on production 

0,  I 0,it itq ≥ ≥  ,i t∀  2.11- Nonnegative variables 

{ }  v , 0,1it ity ∈  
,i t∀  2.12- Binary variables for setup & production 

We then describe the new constraints in the detail. Constraints (2.9a) are used to 

prevent simultaneous action of setup and production on the same machine.  Constraints 

(2.10a and 2.10b) relate the correct sequence of setup and production periods for the 

machine.  Constraints (2.10c) enforce that there is no production of item i during periods 

[1,…, ai] with no preceding setup. 

We next discuss recent literature on the Discrete Lot-Sizing and Scheduling Problem 

(DLSP). A comprehensive overview of DLSP literature can be found in Hasse (1994), 

Jordon (1996), Drexl and Kimms (1997), and Quadt (2004).  
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Fleischmann (1990) develops a generic model for the DLSP and presents a branch 

and bound approach based on Lagrange relaxation of the capacity constraints. They solve the 

DLSP whose sizes are up to 12 items and 122 periods or 3 items and 250 periods. 

 

Magnanti and Vachni (1990) describe a solution approach based on polyhedral 

methods for DLSP on a single machine with sequence independent set-up costs and zero 

setup times. They solve problems with 2 items and 20 periods, and 5 items and 15 periods by 

using cutting planes. They found that the inequalities effectively reduce the integrality gap 

between the value of an integer program formulation and its linear program relaxation by a 

factor of 94 to 100% 

 

Solomon et al. (1991) introduce a six-field classification scheme for different DLSP 

variants and analyze the computational complexity of single machine, and parallel machine 

variants of DLSP. They show that solving the DLSP optimally is NP-hard. If either setup 

times or parallel machines are considered, even the feasibility problem is NP-complete. 

Bruggemann and Jahnke (1997) and Webster (1999) correct some proofs of Solomon’s 

computational complexity of DLSP.  

 

Cattrysse et al. (1993) propose a heuristic for the DLSP on a single machine with 

setup times. The DLSP is formulated as a Set Partitioning Problem (SPP). A column 

generation scheme is applied and the dual prices are computed with a dual ascent method and 

subgradient optimization. Further, the heuristic generates lower and upper bounds. 
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Computational results on the medium sized problem of 6 items and 60 periods show that the 

heuristic is effective, both in terms of quality of the solutions and computational time.   

 

Van Hoesel and Kolen (1994) propose a mixed integer program formulation for 

DLSP and present an optimal solution procedure for the DLSP based on variable splitting. 

 

Feischmann (1994) considers the DLSP with sequence-dependent setup costs. His 

heuristic is based on the transformation of the problem into a Traveling Salesman Problem 

with Time Windows. Problems of moderate size are solved using simple local improvement 

based heuristics. Lower bounds to evaluate the quality of the solutions from the heuristics are 

generated by Lagrangean relaxation procedures. His computational study shows that the gap 

between lower and upper bounds could be as large as 30% in some cases.  

 

Salomon et al. (1997) consider DLSP on a single machine with sequence-dependent 

setup costs and setup times (DLSPSD), which is known to be NP-Hard. They reformulate the 

problem as a Travelling Salesman Problem with time windows (TSPTW). They optimally 

solve it using a dynamic programming algorithm, which is proposed by Dumas et al. (1995). 

They solve the lot sizing problems up to 10 items and 60 periods with sequence dependent 

setup costs and times to proven optimality.   

Bruggemann and Jahnke (2000) show the proof for the NP-hardness in the strong 

sense for DLSP and consider an extension of DLSP with batch availability, where items only 

become available after the whole batch is completed.  They construct a two-phase simulated 

annealing (SA) heuristic to solve the DLSP with batch availability. This heuristic searches 
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for a feasible solution in phase 1, and optimizes cost in phase 2.  Production schedules are 

generated by dividing, combining and shifting batches.  

 

Belvaux and Wolsey (2000) discuss a specialized branch-and-cut system for a wide 

variety of lot sizing problems. Their software can be applied to both big bucket and small 

bucket models with both setup times and setup costs.  

 

2.1.4.2 Continuous Setup Lot-sizing Problem (CSLP) 

In CSLP, the lot sizes of items are allowed to be continuous under full capacity. In 

addition, setup carryover over idle periods is permitted.  However, only one item can be 

produced or set up for production in each period.  

In DLSP, set-up carryover is not allowed for idle periods. In the CSLP, no setup occurs 

between two batches of the same item if no other item has been produced during idle periods. 

For example, assume that a batch of item i is finished in period a, and the same item i is 

produced in the subsequent period b. Consider the case where the machine is idle between 

periods [a+1, b-1]. The setup costs for item j are incurred twice in the DLSP model, but setup 

costs incur once in the CSLP model, since setup costs are incurred only when producing a 

different type of item. 

To formulate a mixed-integer program model for the standard CSLP, one simply 

replaces constraints (2.7) in the standard DLSP model with constraints (2.15) 

t     Ci it itrq y≤  ,i t∀  2.15 - Amount of items produced in each period 

This allows the production to be any continuous size between zero and full capacity. One 

disadvantage of the CSLP model is that, when the capacity of a period is not used in full, the 
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remaining capacity is left unused. This problem could be addressed by the proportional lot 

sizing and scheduling problem (PLSP) in the subsequent section. 

 

Continuous Setup Lot sizing Problems (CSLP) have been investigated by several 

researchers.  Karmarkar et al. (1985) consider CSLP where each of the items has a setup 

period of one. They formulate the CSLP as a network problem, and present a Lagrange 

relaxation approach coupled with subgradient optimization to solve it. Pochet et al. (1991) 

solve the single level of CSLP using strong cutting planes.  

 

To get a better understanding of the standard DLSP and CSLP models, we present 

and solve a small example.  Example 2.1: Consider the production planning problem of 2 

items, 1 machine, and 10 planning periods. Assume that the capacity of machine is 50 units 

in each period (Ct=50), and it takes one unit of machine to produce one unit of each item 

(ri=1). Setup time is assumed to be very small, so it can be negligible. Data for demand for 

items, holding cost, and setup cost are given in Table 2.1. Table 2.2 represents the optimal 

production quantity for item in each period (qit) and total cost. The optimal machine schedule 

for DLSP and CSLP is displayed in Figure 2.1 

 

Table 2.1: Data of Example 2.1 for Standard DLSP and CSLP 

Period 1 2 3 4 5 6 7 8 9 10 hi si
Demand for item 1 40 40 60 2 400
Demand for item 2 30 30 40 1.5 150  
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Table 2.2: Optimal Solution for DLSP and CSLP for the Example 2.1 

Model Period (t) 1 2 3 4 5 6 7 8 9 10 Total optimal cost
DLSP q1t 0 50 50 0 0 0 0 0 0 50 1720

q2t 0 0 0 0 50 50 0 0 0 0
CSLP q1t 0 40 0 40 0 0 0 0 10 50 1190

q2t 0 0 0 0 30 30 0 40 0 0  

 

 

      

 

 

Figure 2.1: Gantt Chart for DLSP and CSLP for Example 2.1 

As seen in Figure 2.1 for CSLP, no setup for item 2 is required at the beginning of 

period 6 after the machine is idle in at the end of period 5.  It should be pointed out that the 

set of feasible solutions of DLSP is a subset of the set of feasible solutions of CSLP due to a 

restriction on production in each period. Consequently, the optimal total cost of CSLP is 

always no greater than that of DLSP. 

We further consider the case of DLSP with setup times (DLSP-ST). The machine 

takes one period of time to setup for production of items 1 and 2, then solving DLSP-ST with 

data in example 2.1 yields the following optimal machine schedule shown in Figure 2.2. The 

optimal production quantities and total cost remain unchanged as in DLSP. 

 

. 

 

Figure 2.2: Gantt Chart for DLSP-ST for Example 2.1 
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2.1.4.3 Proportional Lot sizing and Scheduling Problem (PLSP) 

The basic concept of the proportional lot sizing and scheduling problem (PLSP) is to 

use remaining capacity for production of a second item in the period in which the remaining 

capacity is left unused.  In PLSP, a machine produces continuous lot-sizes over one or 

several, either adjacent or non-adjacent periods when the machine is idle. The underlying 

assumption of the PLSP is that at most one changeover is allowed within each period. As a 

result, at most two items can be produced per period. If the first item does not fully use 

capacity in a period, the remaining capacity can be used by the second item.  Similar to the 

CLSP, the PLSP preserves the setup state over idle periods.   PLSP can be formulated as a 

mixed-integer program. The details of the formulation can be found in Hasse (1994) and 

Drexl and Kimms (1997). 

Several variants of the proportional lot sizing and scheduling problem are studied. 

Hasse (1994) introduces the mixed-integer program formulation for the PLSP with setup 

times and the PLSP with sequence dependent setup costs.  Kimms (1999) develops a mixed-

integer program formulation for the multi-level, multi-machine PLSP, and presents a genetic 

algorithm to solve PLSP. 

 

2.1.5 Other Lot Sizing and Scheduling Models 

In this section, we briefly review research of other lot sizing and scheduling models.  

 

2.1.5.1  General Lot-sizing and Scheduling Problem (GLSP)   
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The GLSP is a single-level, single machine, multi-item problem where each lot of 

item is uniquely assigned to a position number in order to determine the sequence of items in 

each period. GLSP is a large bucket model. In contrast to CLSP, decisions on lot sizing and 

scheduling are made simultaneously in order to minimize total setup and holding costs. The 

underlying assumption of the GLSP is that a user arbitrarily imposes the number of lots per 

period. The reason for this is to reduce the computational time for a problem with a large 

number of periods. Note that it is possible to produce the same item at several positions in a 

period. If the maximum number of lots is one in every period, then GLSP is the same as 

CSLP.  Drexl and Kimms (1997) propose mixed integer program for GLSP. However, the 

GLSP has not been received much attention from researchers. 

 

2.1.5.2 Capacitated Lot-Sizing Problem with Linked lot sizes (CLSPL)   

The CLSPL is a big bucket model, where multiple items can be produced by a single 

machine within a period, and at most one setup status for items can be carried over from one 

period to the next. That is, two lots of adjacent periods are linked, requiring an additional 

setup in the second period.  The CLSPL can be formulated as a mixed integer program. 

Haase (1994) developed a stochastic heuristic to solve the CLSPL.  Sox et al. (1999) propose 

a mixed integer program based on a shortest-path representation for the CLSPL without setup 

time.  They present a Lagrangian decomposition heuristic based on subgradient optimization 

and dynamic programming to solve the CLSPL. Gopalakrishnan et al. (2001) develop a tabu-

search heuristic for the CLSPL with sequence dependent setup times and setup costs. CLSPL 

instances with up to 30 items and 20 periods are solved.   Suerie et al. (2003) propose a 

mixed integer program for CLSPL with sequence independent setup times and setup costs. 
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They use a branch and cut approach within a standard MIP solver to solve CLSPL instances 

of up to 30 items and 20 periods. They argue that this solution approach provides a better 

solution quality than other solution algorithms. 

 

2.1.5.3 Multi-level Lot-sizing and Scheduling 

In a practical setting, manufacturers might face multi-level lot sizing and scheduling 

problems with general item structure. Pochet et al. (1991) solve the multi-stage lot-sizing 

problem with general item structure using strong cutting plane. The authors deal with the 

general item structure using echelon stock.  They find near-optimal solutions to problems 

with up to 50 components. Tempelmeier and Derstroff (1996) propose a Lagrangean 

relaxation-based heuristic approach for the dynamic multi-level multi-item lot-sizing 

problem for general item structures with multiple resources and setup times.  Lower bounds 

and upper bounds on the minimum objective function value are derived. The problem with 

up to 40 items, 16 periods, and 6 resources is solved.  

 

2.2 Literature Review of Batch Production Process 

In batch production process, products are produced in batches rather than in a discrete 

or continuous model. Batch processes are widely used in the pharmaceutical, chemical, food, 

paint, and agrichemical industries, because they provide the flexibility to produce various 

products using the same processing facility. Compared with discrete parts manufacturing 

scheduling, such as those used in the electronic and automotive industries,   scheduling batch 

processes is fairly complicated due to the large varieties of constraints, such as non-
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preemptive processes, intermediate storage policy (i.e. unlimited, finite), batch size (i.e. 

variable, fixed) , processing sequences, and shared  resources (i.e. equipment, labor, utilities). 

 According to Orcun et al. (2001), the chemical industry has become more interested 

in batch production processes in the last two decades because of higher flexibility for the 

production of a high variety of products in small amounts, and lower investment in 

comparison with continuous processes. Since customers now require a wide-variety of 

specifications of products, demands for products are subject to uncertainty and rapid 

fluctuations, and demand for a brand new product is more difficult to be forecast. Therefore, 

batch processing has gained considerable popularity.  

 

To obtain high flexibility from batch production processes, the planner should 

effectively coordinate resources, such as equipment, utility, labor, raw materials, and storage 

tank by determining the optimal product mix, and developing efficient production plans, as 

well as, operational scheduling of equipment.  However, in practice, optimizing the 

production scheduling of batch production plants is difficult due to the large variety of 

processing equipment with varying operational characteristics, uncertainty in demand for 

products, etc.  

 

The literature of scheduling of batch processes in chemical plants can be divided in 

two main groups.  The first group addresses the optimal design problem of multi-product 

batch plants by determining the assignment of processing tasks to processing units, and sizes 

of equipments subject to scheduling restrictions so as to minimize total cost (See Coulman 

(1989), Birewar and Grossmann (1990), Voudouris and Grossmann (1996)).  
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The second group deals with the scheduling problems of operations of existing batch 

plants. A good overview of research advances in this area can be found in Floudas and Lin 

(2004). Typical objectives of these problems include makespan minimization, earliness and 

tardiness cost minimization, and profit maximization.  (See Pekny et al. (1990), Kondili et al. 

(1993), Dessouky  et al. (1999), McGraw and Dessouky (2001), Floudas and Lin (2004)). 

The model includes several constraints, such as non pre-emptive operation, intermediate 

storage policy, batch size, processing sequences, changeover, and shared resources. Most of 

the researchers formulate this problem as a MIP. None of these works consider the shelf-life 

of products and a change in the number of available machines over the planning horizon due 

to planed maintenance. Furthermore, all demands are assumed to be satisfied. The 

mathematical models for this problem are generally classified into two classes according to 

the type of time domain representation, namely, discrete-time, and continuous-time 

scheduling methods.  

 

Discrete-time formulations divide the planning horizon into a number of time 

intervals of equal duration (period), and events, such as setup and production, have starting 

and completion times associated with the boundaries of time intervals. Although discrete-

time models are able to account for many operational features, such as storage modes, 

resource constraints, changeovers, mass balance, they have two major drawbacks: the 

discrete approximation of time, and the large size of MIP problems for real industrial 

problems due to very large number of binary variables and constraints. Kondili et al. (1993) 

suggest that a time interval should be sufficiently small in order achieve a suitable 
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approximation of the real-world problem, namely the greatest common factor of the 

processing times and setup times. However, this could result in a very large combinatorial 

problem of intractable size.  

 

Kondili et al. (1993) present a general discrete-time MIP formulation for short-term 

scheduling problems of batch operations in chemical plants, which are represented using a 

state-task network. They consider several operational constraints such as equipment 

allocation, capacity limitation, inventory balance, storage capacity in order to maximize 

profit, which is the difference between total revenue and total cost (i.e., feedstocks, storage, 

and utilities).   

 

 Due to the difficulty in solving large MIP problems for a batch chemical plant based 

on discrete time model, several techniques have been developed in order to improve solution 

efficiency, including    

(i) Reformulating allocation and batch sizing constraints based on variable aggregation or 

disaggregation by Shah et al. (1993), Sahinidis et al. (1991), and Yee et al. (1998).  

(ii) Adding additional constraints (cuts), which reduce the region of integer infeasibility by 

Dedopoulos et al. (1995) and Yee et al. (1998). 

(iii) Intervening the branch-and-bound procedure and fixing variables to values implied 

during branch-and-bound procedure by Dedopoulos and Shah (1995). 

(iv) Using decomposition techniques, which divide a large and complex problem into smaller 

subproblems, by Bassett et al. (1996).  
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In continuous-time models, events are allowed to take place at any point in the 

continuous domain of time using variables related to time event. Variables are used to 

determine the timings of events. Floudas et al. (2004) point out that the continuous-time 

models could eliminate a major fraction of the inactive interval assignments. The resulting 

mathematical models have usually smaller sizes and require less computational time for their 

solutions. However, due to the variable nature of the timings of the events, one faces the 

difficulty in formulating the mathematical models in continuous domain of time, and the 

resulting models may be more complicated compared to their discrete-time ones.  

Continuous-time models do not account for unfulfilled orders, sequence-dependent setup 

costs and products with fixed shelf-life.  By using continuous-time domain, scheduling 

problems of batch operations in chemical plants can be formulated as MIP or MINLP.  Using 

linearization techniques can covert MINLP into MIP (See Glover (1975), Floudas (1995)). 

 

Floudas et al. (2004) classify continuous-time models into two categories based on 

the type of processes, namely sequential processes and general network-represented 

processes.   For sequential processes, most researchers use non-slot based formulations. That 

is, continuous variables are used to directly represent the task timings. (See Ku and Karimi 

(1988), Moon et al. (1996), Cerdá et al. (1997), Méndez et al. (2000), Hui et al. (2000), 

Orçun et al. (2001)).  For general network-represented processes, a review of research in this 

area can be found by Zhang and Sargent (1998), Mockus and Reklaitis (1999), Schilling and 

Pantelides (1996), Floudas and Lin (2004). 
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In our research, we consider the production scheduling problem of multi- product 

batch plants in which products have fixed shelf-life, one stage and parallel machines of batch 

production processes.   Given deterministic demand for products, and restriction on capacity 

of machines, processing time, and shelf-life of products, we formulate this problem as a MIP 

in a discrete time domain. The model incorporates several factors, such as sequence-

dependent setup costs/times, fixed processing time of non preemptive batch operation, fixed 

shelf life of products, batch size (production lot for each release), and other costs associated 

with inventory, unmet demand, spoilage, and production. 

 

This model can be applicable to production scheduling in many real industrial 

problems including fermentation processes for beers and yoghurts, incubation processes for 

vaccine production, and mixing processes for medicine production. 

 

In this research, we interchangeably use the terms “product” and “item”, and 

“machine” and “equipment”.   We define “the batch size of item” (production lot for each 

release) as the amount of the same type of item processed by a machine at the same time.  

That is, a machine can processes at most one type of item for a fixed processing time without 

any interruption (no preemption is allowed).  

 

In this context, “batch” means that a whole of the same type of item goes into and 

goes out from the processing unit (e.g. fermentation tanks, reactors, incubators) at the same 

time.  A one stage of batch production process is shown in Figure 2.3. A setup on a machine 

has to be performed before production of a batch.  
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Figure 2.3: Single Stage of Batch Production Process 

 

To illustrate our concept of a batch production process, consider the following 

illustrative example.  A yogurt homemade producer has one fermentation tank. Suppose  

that the tank can be used to ferment two types of yogurt, Y1 and Y2. The setup time for 

production of each of yogurts takes 1 period, and the fixed process times are 2 and 3 periods 

for Y1 and Y2 respectively.  He would like to determine a feasible schedule for the tank for a 

planning horizon of 12 periods.  One of the feasible schedules for the tank is displayed in 

Figure 2.4  

 

 

 

 

 

Figure 2.4: Gantt Chart for BPP-SI for the Example 2.2 
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The main features of the batch production process are: 

• A setup carryover for the same product is not allowed in the batch production process. As 

seen in Figure 2.4, a new setup is required for batch #2 of yogurt Y-1 at the beginning of 

period 4. On the other hand, DLSP models in the previous section allow a setup carryover 

over period if the same type of product is produced contiguously on a machine. Hence, 

no setup is required for batch #2 in DLSP models. 

• Each batch of product requires a setup whenever a new batch is released to the machine.   

• In batch production processes, each machine can process at most one product at a time, 

while a batching machine, discussed in the subsequent section, is able to process more 

than one product at the same time. 

• The batch operation is non-preemptive, i.e. once begun, an operation cannot be 

interrupted until it is completed. 

 

2.3 Literature Review of Inventory Management of Perishable Items 

 Perishable items can be divided into two categories: fixed or random lifetime. For 

items where the lifetime is fixed, the utility of each unit is constant during a fixed period of 

time. An example of this type of item is blood, which can only be stored for a period of 

approximately 42 days, according to the Red Cross Organization. For items where the 

lifetime is random, the utility of the item gradually decreases throughout its lifetime.  

Examples of random lifetime items are fresh produce, and some types of volatile chemicals. 

An extensive literature review on inventory management of perishable items can be found in 

Nahmias (1982) and Silver et al. (1998). In practice, the life of a perishable product is 
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dependent on the product’s characteristics and the storage conditions, such as temperature, 

humidity level, and air circulation, etc. In general, cool temperatures and low humidity 

provide the best storage conditions.  

 

In our research, we focus on items with a fixed lifetime period by using first-in-first-

out (FIFO) as an inventory management policy.  During their fixed lifetime period, the 

quality of products does not significantly change in taste, color, texture, or nutrient content, 

but the products will then be disposed of after such period.  

 

In the next chapter, we present details of the batch production problem for perishable 

products with sequence-independent setup times (BPP-SI). 
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CHAPTER III 

 
PROBLEM DEFINITION AND MATHEMATICAL MODEL 

FOR BATCH PRODUCTION SCHEDULING FOR 

PERISHABLE PRODUCTS WITH SEQUENCE 

INDEPENDENT SETUP TIMES (BPP-SI) 

 
Our focus is on a single stage batch process, which is used to produce a variety of 

perishable products.  These multiple products share the same production equipment, and 

setup times are significant.  The reasons for batch production include economies of scale due 

to large setup costs and technological restrictions, such as the fixed size of a processing tank 

in a chemical process. The batch production is used in many different environments, i.e., 

pharmaceutical, polymer, food, specialty chemistry industries. As mentioned earlier, the key 

features of the batch production are the operation is non-preemptive, each machine can 

process at most one product at a time, and each batch of product requires a setup whenever a 

new batch is released to the machine. Because products are perishable, the First-In-First-Out 

(FIFO) policy is used to manage inventory. When the setup time on a machine is independent 

of the sequence of products produced, it can be incorporated into the fixed processing time. 

We focus on two cases of batch size either discrete lot size (i.e. full capacity or zero 

production) or continuous lot size (i.e. batch size falls between zero and full capacity)  
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In this chapter, we define the batch production scheduling problems for fixed shelf-

life products with sequence-independent setup time (BPP-SI), develop a Mixed Integer 

Program (MIP) for this problem, and present a numerical study for a small sized problem of 

the fermentation process of beer, previously discussed in Section 1.1. 

 
 

3.1  Problem Statement for BPP-SI  

Master production scheduling is one of key components of short-term plans. The 

resulting optimal schedule indicates how to allocate the products to machines, the sequencing 

of processing products on each machine, and the production quantity of each product.   This 

short-medium term plan typically has a planning horizon of less than six months. The 

operational decisions are made daily or weekly.  In this chapter, we are interested in 

determining the master production scheduling (MPS) for the batch production scheduling 

problem for fixed shelf-life products with sequence-independent setup time (BPP-SI).  The 

costs associated with the batch production problem include: 

• Fixed setup costs    

• Variable production costs 

• Variable holding costs 

• Variable disposal costs 

• Variable costs for unmet demand 

 

In the BPP-SI, the forecast demand for each product and capacity planning during the 

planning horizon are given. The decision maker is concerned with how to efficiently deal 

with one batch processing unit of parallel machines for production of perishable products.   
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The reason for choosing one major batch unit is that the batch operation step typically 

accounts for most of the residence time of products in the system, and is the bottleneck step 

in production system, such as fermentation, drying etc. Furthermore, the cost of equipment 

for this unit is fairly expensive, so it seems reasonable for a manufacturer not having 

excessive pieces of equipment so as to save investment cost.  The minimum total cost is 

considered as our measure of system performance. In the master production scheduling, he 

faces the following questions: 

• How large should each of production lot (batch size) of products be?  

• When should a setup for a machine for each batch of product to be performed?  

• What is the sequence of processing products on each machine?  

• What are the amounts of inventory level, spoilage, and unmet demand for each product 

over the planning horizon? 

 

In order to answer to these questions, one has to simultaneously solve lot-sizing and 

scheduling problems with setup times. If all model parameters are provided, decisions on lot-

sizing and sequencing can be made together by solving a MIP on discrete time domain.    

 

3.2  Model formulation 

We define the BPP-SI in the following way.  The planning horizon of T is divided 

into a number of intervals of equal duration {1,…,T}. For a batch processing unit, each of M 

parallel machines has a capacity of C units.   Each machine can be used to produce N 

perishable products, each having a limited life of LTi periods. Each machine requires a setup 

of STi periods before taking a fixed processing time of BTi periods to produce a batch of 
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product i. That is, each machine requires total production time of ATi (=BTi+STi) periods, 

whenever it used to produce a batch of product i. 

Consider the time line for a planning horizon in Figure 3.1, if the planner schedules to 

setup the machine at the end of period 0 (at the beginning of period 1) for production of a 

batch of product i, which will be finished at the end of period ATi. This batch of product i is 

in good condition during periods [ATi+1, ATi+LTi]. After that interval, this batch will go 

bad. Note that the machine is continuously reserved for one batch of product i during ATi 

periods. 

 

 

 

 

 

 

Figure 3.1: Time Line for Planning Horizon in BPP Problem 

 

Demand for product i in each period t is given by Dit. Initial inventory of product i at 

the beginning of planning horizon is given by Iio.  It is assumed that unit cost of disposing 

spoiled product is dci. Unmet demand for product in a period is lost with a unit penalty cost 

of uci. Leftover product carried over to the next period incurs a unit holding cost of hci per 

period.  Unit production cost for product i is pci. Assuming that if a machine is setup for 

product i, the fixed setup cost of rci incurs, and is independent of sequence of products 

produced and the batch size of product.   
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Due to perishable characteristics, managing inventory of product is based on the 

FIFO. In other words, the first products produced are assumed to be the first sold.  

    Regarding the batch size (production lot) of product in batch production 

environment, we assume that if the equipment (i.e. a mixing tank in chemical process) is used 

for the production, the full capacity of the equipment will be employed, i.e. the batch size is 

equal to full capacity.   If not, production is zero. This assumption is called “all or nothing 

production”.  The capacity of each of equipment might be different. For simplicity, we 

assume that all equipment has the same capacity of C.  For example, suppose that the 

equipment has capacity of 100 gallons, and it takes 5 hours for setup time and batch 

processing time to produce a product.  Therefore, 100 gallons of a product can be produced 

every 5 hours.  Note that we do not use the production rate of 20 gallons per hour to define 

the term of capacity, since we cannot produce a product of 20 gallons within one hour due to 

the characteristics of batch process.  

 

3.2.1 Assumptions for the BPP-SI Model 

The following underlying assumptions are made for the BPP-SI model: 

A0: Each machine can be used to produce at most one product in each period.     

A1: If the production for a product takes place, the batch size, which is equal to full capacity, 

will be produced. If not, production is zero.   

A2: No preemption is allowed. That is, if a machine is scheduled to produce a product in 

period t, the machine will be occupied by such product for next ATi periods without any 

interruption. This assumption is reasonable especially for chemical and food industry, 
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because the setup cost for production is prohibitively expensive, and the batch production of 

product cannot be interrupted to attain the specification of products.  

A3: At most one setup can incur in each period.   

A4: Demand for products is dynamic and deterministic over planning horizon. 

A5: Setup time and batch-processing time are deterministic, independent of product sequence 

on machine and the size of production lot.     

A6: Any products, which lasts over their limited shelf-lives, goes bad (spoilage). 

A7: Assuming that initial inventory is brand new.   

A8: Unmet demands for product are lost with a unit penalty cost. 

A9: Assuming that there is sufficient amount of raw materials used to produce products. The 

material costs are included in the production costs of products. This assumption is reasonable 

to avoid the starvation problem of batch production unit.  

Also, there is no restriction of the storage space for raw materials and products. 

A10: Workforce restriction is not considered, since the batch production step is not labor 

intensive.  

A11: Investing in a new machine is not an alternative way to satisfy demand, since the 

planning horizon is fairly short. 
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3.2.2 BPP-SI with Discrete Batch Size 

The following notation is used for BPP-SI model.  

Indices: 

i =  Index for products (i =  1,…,N) 

j =  Index for machines (j =  1,…,M) 

t =  Index for time periods (t =  1,…,T) 

Data: 

dci  =   Unit disposal cost for spoiled product i ($/unit of product) 

hci =   Holding cost per unit per time for product i ($/period/unit of product) 

pci  =   Unit production cost for product i ($/unit of product) 

rci  =   Fixed setup cost on machine for production of a batch of product i ($/setup)   

uci  =   Unit penalty cost for unmet demand of product i ($/unit of product) 

Di,t =   Demand for product i in period t (unit of product) 

Ii,0 =   Initial inventory for product i (unit of product) 

ATi      =   Production time for product i  (ATi  = BTi + STi)  (periods) 

BTi       =   Batch processing time for product i  (periods) 

STi       =   Setup time for product i  (periods) 

LTi =   Limited shelf life for product i (periods) 

M =  Total number of machines  



 

 49

NMt =  Number of machines available for use in period t 

C =   Capacity of a machine  (unit of product) 

 

Decision Variables: 

Pit =   Amount of  product i obtained at the beginning of period t  

Iit =   Amount of inventory of product i at the end of period t  

Uit =   Amount of unmet demand of product i in period t 

Sit  =   Amount of product i spoiled in period t 

Ot =   Total number of machines used in period t 

qi,j,t =   Amount of product i scheduled to released in period t to machine j 

wi,j,t  =   Binary variable for machine status indicating whether machine j is occupied 

     by product i in period t (wi,j,t = 1) or not (wi,j,t = 0)   

ri,j,t = Binary variable for setup on machine indicating whether machine j is setup to produce 

  product i at the beginning of period t, and the batch will be completed at the beginning

 of period t+ATi (ri,j,t = 1) or not (ri,j,t = 0)   
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The BPP-SI can be formulated as a MIP as follows: 

Minimize  (Objective)   3.1  Minimize Total Cost 

  , =   i t i
t i

I hc∑∑  - Variable holding cost  

,+  i t i
t i

P pc∑∑  - Variable production cost  

    ,  + i t i
t i

U uc∑∑  - Variable penalty cost for unmet demand 

      ,+ i t i
t i

S dc∑∑  - Variable disposal cost for spoiled product 

      , ,+ i j t i
t j i

r rc∑∑∑  - Fixed setup cost of machine (releasing cost) 

   

Subject to:   
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 3.5- Batch release on machine 

during batch production time 
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i
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machines in use  

t tO     NM             ≤  t∀  3.8 - Maximum number of machines 
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, , , , 1
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 3.9 - Machine occupied by a product 

during total production time 
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3.11 Logical  constraints 

i,t i,t i,t i,tI  ,  U  , S  , P   0       ≥  ,i t∀  3.12 - Non-negative variables 

{ }t      0 ,1,2,...     O ∈  t∀  3.13 - Non-negative integer variables  

{ }i,j,t i,j,tw , r    0,1  ∈  , ,i j t∀  3.14 - Binary variables 

 

Objective function (3.1) is to minimize total cost over planning horizon. Total cost consists 

of holding cost, production cost, and penalty cost of unmet demand, disposal cost for 

spoilage, and setup cost. There are two main groups of constraints. The first group of 

constraints (3.2-3.11) are production scheduling constraints, such as inventory balance, 

production, spoilage, batch processing time, number of machines in use, sequence of 

products on machines. The second last group of constraints (3.12-3.13) involves variable 

constraints. 

The meanings of these constraints are as follows:  

• Constraints (3.2) ensure the inventory balance for product in each period.   

• Constraints (3.3) ensure that the amount of product produced at the beginning of 

period t is obtained by releasing full batch of such product at the beginning of period 

t-ATi to each machine.   
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• Constraints (3.4) are used to compute the amount of product spoiled at the beginning 

of each period. To determine the amount of product i spoiled at the beginning of 

period t (Sit), one first needs to know two things, which are the amount of product left 

at the end of period t-1 and total amount of product produced from period t-LTi+1 to 

period t-1. 

The amount of spoilage can be expressed by the following equation:  

1

, , 1 ,
1

= max {0,  -  }
iLT

i t i t i tS I C P τ
τ

−

− −
=
∑  

,i t∀  

This equation can be readily converted into the following inequalities: 

  

1

, , 1 ,
1

,

 -  

0

iLT

i t i t i i t

i t

S I C P

S

τ
τ

−

− −
=

≥

≥

∑  
,i t∀  

,i t∀  

• Constraints (3.5) ensure that a machine can be scheduled to produce the product i only 

once during production time of ATi periods. 

• Constraints (3.6) ensure that a machine can be scheduled to produce at most one product 

in each period. 

• Constraints (3.7) are used to determine total number of machines used in each period.  

• Constraints (3.8) ensure that in each period, total number of machines in use does not 

exceed total number of machines available. 

• Constraints (3.9) ensure that if a machine is initially setup to produce the product i at the 

beginning period t, then the machine must be occupied by the product i from period t 

until period t+ATi-1. 

• Constraints (3.10) ensure that at most one product can occupy a machine in each period. 
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• Constraints (3.11) are logical constraints on batch release and production. 

• Constraints (3.12) are non-negativity constraints on amounts of inventory, unmet 

demand, spoilage, and production of each product in every period. 

• Constraints (3.13) are non-negative integer constraints on the number of machines. 

• Constraints (3.14) impose on binary variables. 
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3.2.3 BPP-SI with Continuous Batch Size (BPP-SI-CB) 

Suppose that we relax assumption A1 of all or nothing production. In other words, the 

production lot (batch size) of product can take on continuous values between zero and full 

capacity, assuming there is no restriction on the minimum production lot (batch size) for each 

product. While the objective function remains unchanged, we need to modify the constraints by 

replacing constraints (3.3-3.4) with constraints (3.15-3.16), and adding constraints (3.17-3.18).  

The BPP-SI-CB can be formulated as a MIP. 

, , ,  
ii t i j t AT

j

P q −= ∑   ,  1ii AT t T∀ + ≤ ≤  

 

3.15- Amount of product produced 

at the beginning of period  

1

, , 1 , ,
1

   - 
i

i

LT

i t i t i j t AT
j

S I q τ
τ

−

− − −
=

≥ ∑∑  ii  ,  LT +1 t T∀ ≤ ≤  

 

3.16 - Amount of product spoiled  

at the beginning of period 

, ,  , ,  Ci j t i j tq r≤    , , 1 1ii j t T AT∀ ≤ ≤ − + 3.17- Batch size of product on  

each machine in a period 

i,j,tq   0       ≥  ,i t∀  3.18- Non-negative variables  

 

3.2.4 Numerical Result for an Example of BPP-SI and BPP-SI-CB  

In this section, we present a small example for BPP-SI and BPP-SI-CB model for the 

fermentation process of beer. There are 3 types of products (beers), 3 machines, and planning 

horizon of 10 periods.  The capacity of each machine (fermentation tank) is 50 units. Assume 

that all of machines do not fail and are scheduled for maintenance. 

Each beer has a fixed shelf life of 3 periods. The amounts of initial inventory are 40, 

50, and 32 units for beer 1, 2, and 3 respectively. Data for demand for beers, costs, and 

production times are given in Tables 3.1, 3.2, and 3.3 respectively. The results of the optimal 
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quantities (production, inventory, spoilage, and unmet demands) for products, machine 

schedule, and the optimal total cost of BPP-SI and BPP-SI-CB are shown in Tables 3.4, and 

3.5 respectively. 

 

Table 3.1:  Demand Data of the Example 3.1 

Product
1 2 3 4 5 6 7 8 9 10

1 20 10 10 20 10 21 0 30 30 40
2 10 20 18 5 15 10 24 3 20 30
3 5 10 15 0 0 15 20 13 4 0

Time Period

 

 

Table 3.2:  Cost Data of the Example 3.1 

Product Setup_Cost Holding_Cost Production_Cost Unmet-
Dem_Cost Disposal_Cost

(i) (RCi) (HCi) (PCi) (UCi) (DCi) 
($/setup) ($/unit) ($/unit) ($/unit) ($/unit)

1 200 2 20 35 3
2 300 3 24 40 4
3 400 4 30 45 5  

 

Table 3.3 Data of Setup Time and Process Time of the Example 3.1 

Product Setup Time Process Time Production Time
 (i) (STi) (BTi) (ATi = STi+BTi)
1 1 2 3
2 1 3 4
3 2 3 5  
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Table 3.4:  Result of BPP-SI for the Example 3.1 

Cost Subtotal
1 2 3 4 5 6 7 8 9 10 ($) cost ($)

Production P1t 50 50 50 3000
(units) P2t 50 50 2400

P3t 50 1500 6900
Inventory at I1t 20 10 0 30 20 0 0 20 40 0 280
end of period I2t 38 18 0 0 34 24 0 0 30 0 432
(units) I3t 25 15 0 0 0 33 13 0 0 0 344 1056
Spoilage S1t 0
(units) S2t 2 1 12

S3t 2 2 20 32
Unmet U1t 1 35
demand U2t 5 3 320
(units) U3t 4 180 535
Setup cost MC1 $200 $200 400
($) MC2 $300 $300 600

MC3 $400 $200 600 1600
Gantt chart MC1 s1 s1 Total 10123

MC2 s2 s2
MC3 s1

Time Period (t)

p2
p1 p1

p2
s3 p3 p1  

Table 3.5:  Result of BPP-SI-CB for the Example 3.1 

Cost Subtotal
1 2 3 4 5 6 7 8 9 10 ($) cost ($)

Production P1t 50 50 50 3000
(units) P2t 49 50 2376

P3t 48 1440 6816
Inventory at I1t 20 10 0 30 20 0 0 20 40 0 280
end of period I2t 38 18 0 0 34 24 0 0 30 0 432
(units) I3t 25 15 0 0 0 33 13 0 0 0 344 1056
Spoilage S1t 0
(units) S2t 2 8

S3t 2 10 18
Unmet U1t 1 35
demand U2t 5 3 320
(units) U3t 4 180 535
Setup cost MC1 $200 $200 400
($) MC2 $300 $300 600

MC3 $400 $200 600 1600
Gantt chart MC1 s1 s1 Total 10025

MC2 s2 s2
MC3 s1s3 p3 p1

Time Period (t)

p2
p1 p1

p2

 



 

 57

From the results in Table 3.4 and Table 3.5, the optimal cost of BPP-SI-CB is slightly 

lower than that of BPP-SI by $98, due to lower costs of spoilage, production, and inventory. 

As BPP-SI-CB has more flexibility of production than BPP-SI in the sense that the 

production lot can be continuous between zero and full capacity, the BPP-SI-CB model 

produces the amount of products as needed, while satisfying the capacity restriction. 

Therefore, there is no spoilage from overproduction, but it could have spoilage from the 

initial inventory.  To show how to compute the amount of spoilage and unmet demand, we 

consider product 2 with initial inventory of 50 units and 3 shelf-life periods. Since total 

demand of product 2 during the first three periods is 48 units, we would rather dispose of 2 

units of the product at the beginning of period 1, instead of holding it until period 4 before 

disposing of it. By doing this, the unnecessary holding cost can be avoid.  Since a machine 

takes 4 periods of production time for one batch of product 2, the demand of 5 units for 

product 2 in period 4 will be unmet. In this example, the setup costs for two models are 

equal, since they have the same Gantt chart. However, it is not necessarily true that the 

machine schedule for both models will always be the same for a given problem. An example 

of this would be when the production cost is very high, and setup cost is very low. This 

example is presented in Chapter VI. 
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CHAPTER    IV 

 
PROBLEM DEFINITION AND MATHEMATICAL MODEL 

FOR BATCH PRODUCTION SCHEDUDING FOR 

PERISHABLE PRODUCTS WITH SEQUENCE DEPENDENT 

SETUP TIMES (BPP-SD) 

 

In some manufacturing settings, the setup times/costs might be significant and 

sequence-dependent. In pharmaceutical tablet production, for example,   the process of tablet 

coating involves setup times (i.e. cleaning time) and setup costs (chemical agents for 

cleaning) for switching types of solution. When switching from a lighter to a darker coating 

solution, a minimum of cleaning is required. However, when switching from a darker to a 

lighter one, the coater must be completely cleaned in order to avoid color residue and 

impurities. The difference in the setup time can take up to 16 hours according to Camelot 

IDPRO AG.   

 

In this chapter, we consider the batch production scheduling problems for fixed shelf-

life products with sequence-dependent setup time (BPP-SD), develop a Mixed Integer 

Program (MIP) for this problem, and present the numerical result for a small problem of the 

incubation process of vaccine.  
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4.1  Problem Statement for BPP-SD 

We assume that setup times/costs, the forecast demand for each product, and capacity 

planning during the planning horizon are given. The decision maker is concerned with how 

to efficiently deal with one batch processing unit of parallel machines for production of 

perishable products, when the setup times/costs are sequence-dependent. The characteristics 

of batch production can be found in section 3.1. 

He would like to determine the master production scheduling, which minimizes total 

cost comprising costs of inventory, spoilage, production, setup and penalty for lost sales. 

MPS indicates the sequencing of production of products on each machine, the production 

quantity of each product in each period, the beginning time and completion time of each 

batch.   The unmet demands are assumed to be lost. 

If all model parameters are provided, decisions on lot-sizing and sequencing for BPP-

SD can be made together by solving a MIP on discrete time domain.  Due to the complexity 

of sequence-dependent setup times/costs, solving this problem is very difficult even for small 

sized problems.   

 

4.2  Model Formulation 

Similar to BPP-SI, we divide the planning horizon of T into a number of intervals of 

equal duration {1,…,T}. At one batch processing unit, each of M parallel machines has a 

capacity of C units.   Each machine can be used to produce N perishable products, each 

having a limited life of LTi periods.  We use the similar concept of the time line in section 

3.2, except the setup times depending on the former and current products.   
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To deal with sequence-dependent setup times/costs, we introduce an artificial i of 

zero, which indicates that the machine is idle.    Furthermore, we incorporate another index k, 

which indicates that the previous product produced or setup on a machine, for two binary 

variables for production and setup respectively (Yk,i,j,t and Vk,i,j,t ).   We assume the setup 

costs/times for switching from product 0 (machine is idle) to other product i is equal to those 

for switching from product i to product i. As mention in the former chapter, each batch of 

production requires setup times/costs for cleaning and changing tools for machines. 

We illustrate the new setup times of BPP-SD.  Suppose that a machine is used for a 

product k at the beginning of period t.  In order for such machine to produce a product i, it 

takes STki periods for setup, and BTi periods for processing this batch. Hence, the batch of 

product i will be obtained at the beginning of period t+STki + BTi. This implies that each 

machine requires total production time of ATki (=STki + BTi) periods, whenever it used to 

produce a batch of product i. Due to the fixed shelf-life periods of LTi for product i, this 

batch of product i will be in good condition during periods [t+ATki+1, t+ATki+LTi]. After 

that interval, this batch will go bad. Note that the machine is continuously reserved for one 

batch of product i during a period of ATki. 

Demand for product i in each period t is given by Dit. Initial inventory of product i at 

the beginning of planning horizon is given by Iio.  It is assumed that unit cost of disposing 

spoiled product is dci. Unmet demand for product in a period is lost with a unit penalty cost 

of uci. Leftover product carried over to the next period incurs a unit holding cost of hci per 

period.  Unit production cost for product i is pci. Assuming that if a machine is setup for a 

product i, the fixed setup cost of scki incurs, and is dependent of sequence of the former 
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product k and current product i.  Managing inventory of product is based on the First-In, 

First-Out (FIFO). The batch size (production lot) of product is either zero or full capacity.    

 

4.2.1 Assumptions for the BPP-SD model 

Almost all of the assumptions of BPP-SD are the same as that of BPP-SD in section 

3.2.1, except that the fixed setup costs of scki  and  the fixed setup times of STki  for switching 

from product k to product i. 

 

4.2.2 BPP-SD with Discrete Batch size 

The following notation is used for the BPP-SD model  

Indices: 

i, k, k’ =  Indices for products (i, k,k’ =  0,…,N) , Index 0 : no production. 

j =  Index for machines (j =  1,…,M) 

t =  Index for time periods (t =  1,…,T) 

Data: 

dci  =   Unit disposal cost for  spoiled product i ($/unit of product) 

hci =   Holding cost per unit per time for product i ($/period/unit of product) 

pci  =   Unit production cost for product i ($/unit of product) 

scki  =   Fixed setup cost of switching from product k to product i ($/setup).   

uci  =   Unit penalty cost for unmet demand of product i ($/unit of product) 

Di,t =   Demand for product i in period t  (unit of product) 
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Ii,0 =   Initial inventory for product I (unit of product) 

ATki =   Production time interval between product k to product i (in periods). 

    That is, it is sum of setup time from switching production of product k to  

    product i,  and  the fixed processing time for product i (ATki = STki + BTi )

BTi  =  Fixed processing time for product i (in periods) 

STki  =   Setup time for switching  from product k to product i (in periods) 

LTi =   Fixed shelf life for product i (in periods) 

C =   Capacity of a machine  (unit of product) 

Decision Variables: 

Pit =   Amount of  product i produced in period t  

Iit =   Amount of inventory of product i at the end of period t  

Uit =   Amount of unmet demand of product i in period t 

Sit  =   Amount of product i spoiled in period t 

Vk,i,j,t =   Binary variable indicating whether machine j is switched from product k 

    to product i at the  beginning of period t, and then the product i will be  

   obtained at the beginning of period t+ATk,i (Vk,i,j,t = 1) or not (Vk,i,j,t = 0)   

Yk,i,j,t =   Binary variable indicating whether the machine j produces product i at the 

      beginning of  period t, while it previously produced product k (Yk,i,j,t = 1)  

     or not (Yk,i,j,t = 0)   
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The BPP-SD can be formulated as a MIP as follows: 

Minimize   (Objective)             4.1  Minimize Total Cost 

  , =   i i t
t i

hc I∑∑  - Variable holding cost  

     , +  i i t
t i

pc P∑∑  - Variable production cost  

    ,  + i i t
t i

ucU∑∑  - Variable penalty cost for unmet demand 

      ,+ i i t
t i

dc S∑∑  - Variable disposal cost for spoiled product 

      , , , ,+ ( )k i k i j t
t j i k

sc Y∑∑∑∑  - Fixed setup cost of machines  

   

Subject to:   

 , , , 1 , , ,                i t i t i t i t i t i tI U I P S D−− = + − −         i=1,…,N;  t∀  4.2 Inventory balance  

, , , ,   i t k i j t
j k

P C Y= ∑∑   ,i t∀  

 

4.3 Amount of product  

produced at the beginning 

of period  
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4.4 Amount of product spoiled  

at the beginning of period 

,
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1

    1     
k iAT
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τ
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4.5 At most one production  

take places during setup 

, and processing periods 

, , ,     1  k i j t
k i

Y ≤∑∑  ,j t∀  4.6 At most one production  

takes place in a period 
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, , ,     1  k i j t
k i

V ≤∑∑  ,j t∀  4.7 At most one setup can  

occur in each period 

,

,

1

, , , , , , , , , ,
1

k i

k i

AT

k i j t AT i i j t k i k i j tV V AT Yτ
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−
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∀
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4.8a Relate the production and  

setup status of machine  

, , , , ', ,
k'

   k i j t i k j tY V≤ ∑  i,k,j,t∀  4.8b Relate production and  

setup status of machine  

', , , 1 , , ,
'

   k k j t k i j t
k

V V− ≥∑  i,k,j, 2 t T∀ ≤ ≤  4.9 Model a setup sequence  

on a machine.  Each  

machine has to be setup 

before processing a product.

, , ,   0 k i j tY =  ,, , ,1 t k ii k j AT∀ ≤ ≤ 4.10 Logical  constraints 

i,t i,t i,t i,tI  ,  U  , S  , P   0       ≥  ,i t∀  4.11 Non-negativity variables 

{ }k,i,j,t k,i,j,tY , V    0,1  ∈  , , ,k i j t∀  4.12 Binary variables 

 

• Objective function (4.1) is to minimize total cost over planning horizon. Total cost 

consists of holding cost, production cost, and penalty cost of unmet demand, disposal 

cost for spoilage, and sequence-dependent setup cost. 

• Constraints (4.2) ensure the inventory balance for product in each period.   

• Constraints (4.3) ensure that the amount of product produced at the beginning of 

period t.  

• Constraints (4.4) are used to compute the amount of product spoiled at the beginning 

of each of periods. Detail is explained in section 3.2.2. 
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• Constraints (4.5) ensure that a machine can produce at most one product during its 

sequence dependent setup period and fixed processing period.  

• Constraints (4.6) ensure that a machine can produce at most one product in a period. 

• Constraints (4.7) enforce that if a machine, which previously processed an product k,   

produces an product i at the beginning of period t,  then such machine can be setup 

only once during setup time of STk,i  periods and fixed processing time of BTi periods. 

• Constraints (4.8a-4.8b) are used to relate the production and setup status of a machine 

by keep tracking the information of a previously processed product and the next 

product to be produced.  In order for machine j to produce a product i in period t, such 

machine must be set up for a product i in period t-ATki, after the machine j previously 

produced product k in at beginning of this period.   

• Constraints (4.9) are used to determine the correct sequence of setup for product on a 

machine. In other words, a machine can be setup for a product i in period t after it was 

previously setup for product k only if the machine was setup for product k in period t-

1. Without these constraints, the sequence of setup could be wrong because the 

previous product, which was setup on machine, is ignored. Hence, the status of 

production and setup of machine may not be related as desired.   

• Constraints (4.10) are logical constraints on production. 

• Constraints (4.11) are non-negativity constraints on amounts of inventory, unmet 

demand, spoilage, and production of each product in every period. 

• Constraints (4.12) impose on binary variables on setup and production. 
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4.2.3 BPP-SD with Continuous Batch Size (BPP-SD-CB) 

In this section, we allow the production lot (batch size) of product to take on continuous 

values between zero and full capacity.  Assuming that there is no restriction on the minimum 

production lot (batch size) for each product. While the objective function remains unchanged, we 

need to modify the constraints by replacing constraints (4.3) with constraints (4.13 -4.15). The 

BPP-SD-CB can be formulated as a MIP. 

, , ,   i t i j t
j

P q= ∑   ,i t∀  

 

4.13- Amount of product produced at the beginning 

of period  

, ,  , , ,   i j t k i j t
k

q C Y≤ ∑  , ,i j t∀ 4.14- Batch size of a product on each machine  

in a period 

i,j,tq   0       ≥  ,i t∀  4.15- Non-negative variables  on batch size 

 

4.2.4 Numerical Result for an Example BPP-SD and BPP-SD-CB 

In this section, we present an illustrative example for BPP-SD and BPP-SD-CB 

model. Example 4.1: Consider a production scheduling problem in the incubation process of 

vaccines. There are 2 types of products (vaccines), 2 machines (incubators), and planning 

horizon of 10 periods.  Assume that the capacity of each incubator is 50 units. Assume that 

all of incubators do not fail and are scheduled for maintenance. 

Each of vaccines has its fixed shelf life of 6 periods. The amounts of initial inventory 

are 26 and 72 units for vaccine A, and B respectively. Data for demand for vaccines, costs, 

and production times are given in Table 4.1, 4.2, and 4.3 respectively. The results of the 

optimal quantities (production, inventory, spoilage, and unmet demands) for products, 
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machine schedule, and the optimal total cost of BPP-SD and BPP-SD-CB are shown in Table 

4.4, and 4.5 respectively. 

 

Table 4.1:  Demand Data of the Example 4.1 

Product
1 2 3 4 5 6 7 8 9 10

A 10 10 10 5 5 5 10 10 10 3
B 15 15 20 25 15 15 10 10 47 50

Time Period

 

 

Table 4.2:  Cost Data of the Example 4.1 

- Data of setup costs ($/setup) for the example 4.1 

From (k) Product A Product B
Product A 100 150
Product B 250 200

To (i)

 

- Data of other costs (in $/unit of product) for the example 4.1 

Product 
(i)

Holding_Cost
(HCi) 

Production_Cost
(PCi) 

Unmet-Dem_Cost
(UCi) 

Disposal_Cost
(PCi) 

A 2 20 35 3
B 3 24 40 4  

 

Table 4.3:  Data of Setup Time and Process Time for the Example 4.1 

- Data of setup times for the example 4.1 

From (k) Product A Product B
Product A 1 2
Product B 2 1

To (i)
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- Data of processing times for the example 4.1 

Product Process Time
 (i) (BTi) 
A 2
B 3  

Table 4.4:  Result of BPP-SD for the Example 4.1 

Cost Subtotal
1 2 3 4 5 6 7 8 9 10 ($) cost ($)

Production PAt 50 1000
(units) PBt 50 100 3600 4600
Inventory at IAt 16 6 0 40 35 30 20 10 0 0 314
end of period IBt 57 42 22 0 35 20 10 0 53 3 726 1040
Spoilage SAt 5 15
(units) SBt 0 15
Unmet UAt 4 3 245
demand (units) UBt 3 120 365
Setup cost MC1 $100 $150 250

MC2 $200 $200 400 650
Gantt chart MC1 s:0-A Total 6670

MC2 s:0-B s:B-B

Time Period (t)

p:B
p:A

p:B
p:Bs:A-B

 

 

Table 4.5: Result of BPP-SD-CB for the Example 4.1 

 

 

Cost Subtotal
1 2 3 4 5 6 7 8 9 10 ($) cost ($)

Production PAt 45 900
(units) PBt 50 97 3528 4428
Inventory at IAt 16 6 0 40 35 30 20 10 0 0 314
end of period IBt 57 42 22 0 35 20 10 0 50 0 708 1022
Spoilage SAt 0
(units) SBt 0 0
Unmet UAt 4 3 245
demand (units) UBt 3 120 365
Setup cost MC1 $100 $150 250

MC2 $200 $200 400 650
Gantt chart MC1 s:0-A Total 6465

MC2 s:0-B s:B-B

Time Period (t)

p:B
p:A

p:B
p:Bs:A-B
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From the results in Table 4.4 and Table 4.5, the optimal cost of BPP-SD-CB is 

slightly lower than that of BPP-SD by $205, due to lower costs of spoilage, production, and 

inventory. In the BPP-SD-CB model, the production lot can be continuous, so we produce 

the amount of products as needed, while still satisfying the capacity restriction. As a result, 

no spoilage incurs from overproduction in case of continuous batch size. In this example, the 

setup costs for the two models are equal due to the same Gantt chart. 
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CHAPTER V 

EXAMINATION OF EFFECT OF FACTORS ON THE 

SYSTEM PERFORMANCE FOR  

BPP-SI AND BPP-SD MODELS 

 
5.1 Introduction  

  In this chapter, we examine the effect of several factors (i.e. type of lot size, product 

shelf-life) on the system performance for the batch production process for limited shelf life 

products with sequence-independent (BPP-SI) and sequence-dependent setup times (BPP-

SD). We randomly simulated the data for problem instances based on real examples found in 

the literature or engineers working on those industries.  

As the number of time periods, number of machines, and number of products 

increase, the number of variables and the number of constraints in the model grow 

exponentially. Consequently the computational time increases dramatically.  For our 

experiment, we choose three different settings of the triple (N, M, T) as listed in Table 5.1. 

 

Table 5.1:  Three Configurations of the Batch Production Scheduling Problem 

Problem size N (# of products) M (# of machines) T (# of periods)
Small 3 4 15
Medium  4 5 20
Large  5 6 25  

The output performance measure (response) is the total cost, comprising the holding 

cost, spoilage cost, production cost, setup cost, and penalty cost for unmet demand.  The 

machine utilization, fill rate, and the computational time are reported.  
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Finally we report the numerical results by solving MIP of the generated problem 

instances for BPP-SI and BPP-SD on discrete time domain in the next two sections. The 

computational environment is performed on Pentium IV 1.6 GHz with 1 GB RAM using 

CPLEX 9.1 as solver in GAMS 22.0. 

 The initial inventory for each product is zero, and there is no demand for a product 

during its first batch processing time. Therefore, there is no unmet demand during these 

periods. 

 

5.2 Extension of BPP-SI to the Beer Production 

In this section, we extend our BPP-SI model to beer production, especially the 

fermentation process, which is the most-time consuming step for beer manufacturing. The 

overview of brewery industry can be found in section 1.1.   Note that, we use the term  

“units” for “gallons” for the beer case, and “fermentation tanks” for “machines”.  Each 

period is one week.   

 

5.2.1 Parameters and Level of Factors 

Table 5.2:  Distribution and Value of Parameters for Beer Production Case 

Symbol Description Unit Distribution / Value
C Capacity of each machine gals 1200
PCi Production cost $/gal U[2,4]
HCi Holding cost $/gal/week 0.10*PCi/52
DCi Disposal cost for spoilage $/gal 0.2*PCi
UCi Penalty cost for unmet demand $/gal 1.5*PCi
SCi Setup cost $/setup U[200,400]
STi Setup time weeks 0
BTi Batch processing time weeks Round ( U[2,4] )  
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The details of each of parameters are explained below: 

Capacity information: 

In our study, we consider that a microbrewery firm, which has annual production capacity of 

approximately 465,000 gallons of beer. This firm has fermentation tanks with a capacity of 

1,200 gallons per tank.    

 

Cost information: 

• We estimate that the production cost is around 20-40% of selling price of beer. On 

average, the selling price for U.S. beer is around $10/gallon, so the estimated production cost 

of one gallon of beer is between $2-4.  Unit production cost for each beer (in dollars/gallon 

of beer) is generated from a uniform [2, 4] distribution.   

• The sequence-independent setup cost for production of beer i (in dollars /setup) is 

generated from a uniform [200,400] distribution.   

• The unit penalty cost for an unmet demand (lost sale) for each beer (in dollars/gallon) is 

150% of unit production cost.  The reason for selecting this value higher than the unit 

production cost is that we would like to satisfy demand as much as possible and avoid the 

occurrence of lost sale.  

• The disposal cost for a unit of spoilage for each beer (in dollars/gallon/week) is 20% of 

unit production cost. 

• The holding cost of a beer is 10% of its production cost divided by 52 (Assuming that a 

plant operates 52 week per year, the annual interest rate is 10%) 
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Time information: 

• Setup time can be negligible when it is compared to the batch processing time. 

• Batch processing time for each product (in weeks) is generated from the rounding of 

uniform [2, 4] distribution.  

 

Factors: 

The input parameters (factors) of interest are demand probability, demand sizes, batch size of 

item, shelf life of beer.  The summary of level of factors is listed in Table 5.3.  

Table 5.3:  Level of Factors for Beer Production Case 

Factor Description Unit
Low level ( - ) High level ( + )

A Demand probability 0.6 0.8
B Demand variation gal/week Round (U[250, 350]) Round (U[200, 400])
C Shelf life time weeks 10 14
D Batch size gals discrete continuous

Distribution / Value

 

5.2.2 Numerical Result for Beer Production Case 

We report the numerical results for solving production scheduling problems for a 

microbrewery with three configuration settings.  By varying the levels of factors, we can 

observe the effect of such factors on the total cost and computational time.  

 

Table 5.4:  Number of Variables and Constraints for Beer Production Case 

Small (3,4,15) Medium (4, 5, 20) Large (5, 6, 25)
No. of total variables 900 1920 3500
No. of discrete variables 540 1200 2250
No. of constraints 896 1900 3477

Problem size (N,M,T)
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Let’s introduce the following two terms, which are used to evaluate the system performance: 

• Fill rate is the proportion of demands that are met from stock. 

i

it

it

FR : Fill rate for product i (%) 1  *100

Where  U  : Unmet demand for product i in period t
            D  : Demand for product i in period t

it
t

it
t

U

D

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
  

 

• The utilization of a machine j in batch production (Utilj) is the fraction of time in which 

the machine is busy over the planning period. 

 

The numerical results for BPP-SI problems report the optimal cost, computational 

time, system performance (i.e. fill rate and utilization) and the breakdown of each of cost 

components, which are shown in table 5.5-5.7.   



 

 75

Table 5.5:  Result Summary for the Small BPP-SI Problems for Beer 

No Comp.
time 

Optimal
 costs 

A B C D (secs) ($) Mean Min Max Mean Min Max Spoilage Inventory Production
Unmet

demand Setup
1 - - - - 2.00 24626.8 89% 88% 89% 27% 20% 40% 399.6 66.7 19200 3261.0 1699.5
2 - - - + 1.30 21970.6 100% 100% 100% 40% 20% 53% 0.0 45.3 19376 0.0 2549.3
3 - - + - 311.16 23305.3 92% 88% 100% 27% 20% 40% 242.5 81.3 19200 2082.0 1699.5
4 - - + + 47.92 21638.5 100% 100% 100% 35% 13% 60% 0.0 58.2 19367 13.5 2199.8
5 - + - - 0.39 24208.3 90% 88% 91% 27% 13% 40% 320.6 67.7 19200 2920.5 1699.5
6 - + - + 0.64 22137.7 100% 100% 100% 40% 33% 53% 0.0 44.4 19544 0.0 2549.3
7 - + + - 465.73 23073.5 93% 88% 100% 27% 20% 33% 185.7 80.3 19200 1908.0 1699.5
8 - + + + 1579.98 21809.7 100% 100% 100% 35% 27% 40% 0.0 59.9 19532 18.0 2199.8
9 + - - - 3.14 26075.8 62% 42% 88% 18% 0% 40% 6.0 44.1 13200 11626.5 1199.2
10 + - - + 75.86 23512.5 96% 87% 100% 35% 20% 53% 0.0 50.5 20369 828.0 2265.0
11 + - + - 8892.88 24455.4 77% 58% 88% 22% 13% 40% 0.0 58.7 16800 6181.5 1415.2
12 + - + + 24.95 23247.0 100% 100% 100% 35% 27% 40% 0.0 61.0 20921 0.0 2265.0
13 + + - - 6.39 25557.0 63% 44% 88% 18% 0% 40% 12.8 45.0 13200 11100.0 1199.2
14 + + - + 117.25 23100.3 96% 88% 100% 35% 13% 60% 0.0 54.3 20046 735.0 2265.0
15 + + + - 2816.27 23881.2 78% 58% 88% 22% 0% 33% 0.0 62.0 16800 5604.0 1415.2
16 + + + + 20.50 22860.0 100% 100% 100% 35% 0% 53% 0.0 59.0 20536 0.0 2265.0

Factor Fill rate (%) Utilization (%) Costs ($)

 

Table 5.6:  Result Summary for the Medium BPP-SI Problems for Beer 

No Comp.
time 

Best current
total cost

Relative
opt. gap Tree size

A B C D (secs) ($) (%) (MB) Spoilage Inventory Production
Unmet

demand Setup
1 - - - - 15888 39813.29 4.73 1870 n/a n/a n/a n/a n/a
2 - - - + 19125 35964.68 0.64 1878 n/a n/a n/a n/a n/a
3 - - + - 14759 38348.69 5.94 1872 n/a n/a n/a n/a n/a
4 - - + + 14644 35964.68 1.27 1878 n/a n/a n/a n/a n/a
5 - + - - 17193 39569.87 4.33 1873 n/a n/a n/a n/a n/a
6 - + - + 17057 35975.98 1.05 1879 n/a n/a n/a n/a n/a
7 - + + - 17085 38127.80 5.35 1872 n/a n/a n/a n/a n/a
8 - + + + 13112 35978.44 1.29 1875 n/a n/a n/a n/a n/a
9 + - - - 16678 47646.31 4.51 1868 n/a n/a n/a n/a n/a

10 + - - + 5640 44541.73 0.50 467 0.0 125 40049.0 63.0 4305.2
11 + - + - 15930 47648.57 5.38 1867 n/a n/a n/a n/a n/a
12 + - + + 18 44544.00 0.50 1 0.0 127 40049.0 63.0 4305.2
13 + + - - 15506 48005.95 5.21 1874 n/a n/a n/a n/a n/a
14 + + - + 9579 44426.90 0.50 1046 0.0 123 39880.0 118.5 4305.2
15 + + + - 14344 47915.00 6.42 1872 n/a n/a n/a n/a n/a
16 + + + + 10 44431.50 0.50 1 0.0 128 39880.0 118.5 4305.2

Factor Costs ($)
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Table 5.7:  Result Summary for the Large BPP-SI Problems for Beer 

No Comp. 
time

Best current 
total cost Relative opt. gap Tree size

A B C D (secs) ($) (%) (MB)
1 - - - - 11743 74609.84 4.94 1883
2 - - - + 13055 71534.28 1.26 1880
3 - - + - 12327 74177.84 4.69 1883
4 - - + + 13057 71152.49 1.19 1881
5 - + - - 11997 75752.77 5.79 1881
6 - + - + 13060 71851.40 0.99 1881
7 - + + - 11363 75270.87 5.20 1882
8 - + + + 13315 71838.73 0.91 1880
9 + - - - 12182 89308.79 4.67 1882

10 + - - + 13878 85890.67 0.86 1880
11 + - + - 12251 88185.44 3.43 1875
12 + - + + 15074 85887.26 0.84 1881
13 + + - - 12714 88736.88 4.54 1883
14 + + - + 12525 85604.03 1.03 1881
15 + + + - 12293 87861.76 3.53 1881
16 + + + + 13274 85634.16 1.05 1880

Factor

 

 

As shown in Tables 5.5-5.7, we make the following observations:  

i) For small problems, it typically takes less than 500 seconds to optimally solve almost all of 

problem instances. However, in certain scenarios, such as when the high level of demand 

probability, the high level of shelf-life, and discrete batch size are used (i.e. scenario#11 and 

scenario#15), the computational time increases greatly up to 8900 seconds.    The continuous 

batch size always results in the better a total cost than does the discrete batch size, while 

other factors remain unchanged. For example, an example of this can be seen by comparing 

the scenario#1 versus scenario#2, one can save total cost of $2656.2 by switching   from the 

discrete batch size to the continuous batch size.  As the shelf-life of beers increases, with 

other factors remaining unchanged, the total cost decreases due to the lower spoilage cost and 

lower cost for unmet demand. For example, when comparing scenario #1 versus scenario #3, 

one can save a total cost of $1321.5 by an increase in the shelf-life of 4 weeks. 
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ii) For medium problems, we are able to optimally solve some of problem instances, when 

the continuous lot size is used.  To obtain the optimal solution faster, we set the value of 

relative optimal gap (optcr) in GAMS to be 0.5%, since the branch and bound converges very 

slowly to the optimal solution after it reaches around 1-5% of the relative optimal gap.  When 

the size of the branch and bound tree becomes extremely large (around 1880 MB), the 

CPLEX scenarios run out of memory while solving the problem and finally terminates. Using 

the continuous lot size produces the solution within 1.5% of relative optimal gap, while using 

the discrete lot size results in the solution within 4-6% of the relative optimal gap.  

iii) As the problem size increases significantly with increase in the number of periods, 

number of products and number of machines, we cannot optimally solve the large BPP-SI 

problems to their optimal solutions within a required computational time of one day, even 

when the continuous lot size is used. The best current solutions using discrete lot size are 

within 3.4-5.8% of the relative optimal gap, while the best current solutions using continuous 

lot size are approximately 0.8-1.3% of the relative optimal gap.   

iv) When the continuous batch size is used (i.e. the production lot can take on the values, 

falling between zero and full capacity), there is no occurrence of spoilage.   

 

In summary, to solve the very large BPP-SI problems, one needs an efficient heuristic 

in order to obtain a fairly good solution in a shorter amount of computational time. We 

introduce our heuristic approach for solving large BPP-SI problems in the subsequent 

chapter. 
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5.3 Extension of BPP-SD to the Vaccine Production  

In this section, we extend our BPP-SD model to the vaccine production, in particular 

the incubation process, which is one of the most-time consuming steps for vaccine 

production. The overview of vaccine industry can be found in section 1.2.    

Note that, we use the term “units” for “liters” for the vaccine case, and “incubators” for 

“machines”.  Each period is one day.   

5.3.1 Parameters and Level of Factors 

Table 5.8:  Distribution and Value of Parameters for Vaccine Production Case  

Symbol Description Unit Distribution / Value
C Capacity of each machine liters 100
PCi Production cost $/liter U[200,400]
HCi Holding cost $/liter/day 0.10*PCi/52
DCi Disposal cost for spoilage $/liter 0.2*PCi
UCi Penalty cost for unmet demand $/liter 1.5*PCi

SCki Setup cost when swtiching from
product k to product i $/setup U[500,1000]

STki Setup time days Round ( U[1,2] )
BTi Batch processing time days Round ( U[4,7] )  

Table 5.9:  Level of Factors for Vaccine Production Case 

Factor Description Unit
Low level ( - ) High level ( + )

A Demand probability 0.6 0.8
B Demand variation liter/day Round (U[17, 23]) Round (U[14, 26])
C Shelf life time days 7 12
D Batch size liters discrete continuous

Distribution / Value

 

5.3.2 Numerical Result for Vaccine Production Case 

In this section, we report the numerical results for solving production scheduling 

problems for a manufacturer of vaccines with two configuration settings (small and medium). 

The large configuration setting is not considered, since its computational time is extremely 

large exceeding 100,000 seconds.  
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Table 5.10:  Number of Variables and Constraints for Vaccine Production Case 

Small (3,4,15) Medium (4, 5, 20)
No. of total variables 2400 5900
No. of discrete variables 1920 5000
No. of constraints 3536 8775

Problem size (N,M,T)

  

Table 5.11:  Result Summary for the Small BPP-SD Problems for Vaccine 

No Comp.
time 

Optimal
 costs 

A B C D (secs) ($) Mean Min Max Mean Min Max Spoilage Inventory Production
Unmet

demand Setup
1 - - - - 68 147816.1 70% 60% 80% 38% 0% 60% 2082.8 354.2 89873 53715.1 1791.0
2 - - - + 2034 115447.2 93% 80% 100% 62% 53% 80% 0.0 298.0 103603 8109.2 3437.0
3 - - + - 5121 131751.8 78% 69% 85% 38% 0% 60% 181.5 450.9 89873 39455.4 1791.0
4 - - + + 2742 115447.2 93% 80% 100% 62% 53% 80% 0.0 298.0 103603 8109.2 3437.0
5 - + - - 64 142915.1 72% 62% 82% 38% 0% 60% 1831.7 343.0 89873 49076.5 1791.0
6 - + - + 6432 113323.9 94% 82% 100% 62% 53% 80% 0.0 296.2 102335 7255.6 3437.0
7 - + + - 1824 131295.6 79% 68% 87% 38% 0% 60% 453.9 435.4 89873 38742.4 1791.0
8 - + + + 6191 113323.9 94% 82% 100% 62% 53% 80% 0.0 296.2 102335 7255.6 3437.0
9 + - - - 2558 149850.2 68% 62% 72% 37% 0% 53% 389.7 317.5 88116 59335.2 1692.0
10 + - - + 4607 136330.0 86% 72% 100% 60% 53% 80% 0.0 320.2 110869 22282.6 2858.0
11 + - + - 4585 149865.2 68% 62% 72% 37% 0% 53% 389.7 332.5 88116 59335.2 1692.0
12 + - + + 6479 136330.0 86% 72% 100% 60% 53% 80% 0.0 320.2 110869 22282.6 2858.0
13 + + - - 1451 149724.6 68% 62% 72% 37% 0% 53% 874.5 291.6 88116 58750.7 1692.0
14 + + - + 4094 133750.2 86% 72% 100% 60% 53% 80% 0.0 300.3 107548 23043.7 2858.0
15 + + + - 4250 149758.3 68% 62% 72% 37% 0% 53% 874.5 325.2 88116 58750.7 1692.0
16 + + + + 1520 133750.2 86% 72% 100% 60% 53% 80% 0.0 300.3 107548 23043.7 2858.0

Factor Fill rate (%) Utilization (%) Costs ($)

 

Table 5.12:  Result Summary for the Medium BPP-SD Problems for Vaccine 

No Factor Relative opt. 
gap 

Tree 
size 

Comp. 
time 

Best current 
total cost 

  A B C D (%) (MB) (secs) ($) 
1 - - - - 14.13 451 26818 200627.46 
2 - - - + 1.03 138 29065 174779.85 
3 - - + - 13.02 290 30304 200647.72 
4 - - + + 1.29 175 29626 175159.46 
5 - + - - 16.30 771 31336 198471.09 
6 - + - + 1.35 244 32045 168545.60 
7 - + + - 15.51 636 32398 198511.40 
8 - + + + 1.91 257 32880 169534.69 
9 + - - - 9.44 69 32596 336478.79 

10 + - - + 2.75 39 32590 313493.97 
11 + - + - 9.40 342 73472 336562.81 
12 + - + + 2.76 73 73970 313532.50 
13 + + - - 9.76 379 74281 330072.76 
14 + + - + 2.26 182 74587 305164.98 
15 + + + - 9.63 191 33362 330072.76 
16 + + + + 2.29 130 92854 305164.98 
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As shown in Tables 5.11-5.12, we make the following observations:  

i) For small problems, we can optimally solve all problem instances within the reasonable 

computational time. The largest computational time is around 6500 seconds. The continuous 

batch size always results in a lower total cost than does the discrete batch size, while other 

factors remain unchanged. Moreover, the system performance obtained by using continuous 

batch size is better than that of discrete batch size, i.e. higher utilization, and higher fill rate.  

When the shelf-life increases and other factors remain unchanged, the total cost decreases 

due to the lower spoilage cost and lower cost for unmet demand.  

ii) For medium problems, we cannot solve any problem instances to optimality. Since the 

number of variables and constraints significantly increases with the problem sizes as shown 

in Table 5.10. The presence of sequence-dependent setup times increases the complexity of 

problems, so the computational time increases dramatically.  There is a large difference 

between the solutions obtained from discrete batch size and those from continuous batch size. 

The difference is up to15% of relative optimal gap.  The best current solutions using discrete 

lot size are around 9-16.5% of the relative optimal gap, while the best current solutions using 

continuous lot size are approximately 1-3% of the relative optimal gap.   

 

In summary, as the problem size increases and there is the presence of sequence-

dependent setup time, the computational time for solving BPP-SD problems is much larger 

than that for solving sequence-independent BPP-SI problems. Efficient heuristics are needed 

for solving the large BPP-SD problems as exact approach requires a significant amount of 

computational time.  
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CHAPTER VI 

    SOLUTION STRATEGY FOR BPP-SI 

 

6.1 Introduction 

In practical applications, the size of batch production scheduling problems is very 

large. For instance, the world’s largest beer producer, Anheuser-Busch Company, has more 

than 12 products and more than 100 fermentation tanks in twelve U.S. breweries. However, 

the company might do the production plan by plant separately. When the problem size 

increases, the computational time for the optimal solution using the branch-and-bound 

technique is prohibitively large, as the results show in Chapter 5. We therefore must develop 

efficient heuristics, which result in good feasible solutions. It is also of interest to compute 

the lower bound on the objective value by solving the LP relaxation of the original problem 

as a means to evaluate the performance of heuristics.  Here we propose five efficient 

heuristics for solving the batch production scheduling problems for perishable products with 

sequence-independent setup times (BPP-SI).  

 

6.2 Heuristic Approach   

In this section, we develop five heuristics, including three Modified Lot-For-Lot 

(MLFL) heuristics, Fixed Order Quantity (FOQ) heuristic, and Hybrid heuristic, in order to 

determine a Master Production Schedule (MPS) for BPP-SI. The amount of solution time 

significantly increases as the length of planning horizon increases. Finding the MPS by 

considering the entire planning horizon at the same time is very time-consuming and difficult 
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to implement.  We define the term “Time Window when considering a product i to produce 

in period t” (TWit) as periods of length LTi starting from period t+ATi to period t+ATi+LTi-

1. Our heuristics are forward-looking and myopic approaches in the sense that in each 

decision period t, heuristics consider a part of the entire planning horizon, i.e. TWit in order 

to identify which product to produce on which machine. Then we move on the next period 

until the end of planning horizon. Using the concept of time window greatly reduces the 

solution time.  In general, the solution obtained from heuristics is not necessarily optimal.  

 

Before implementing heuristics, we need the following inputs: demand over the 

planning horizon, initial inventory, the capacity and availability of machine, costs, 

production times (ATi), and shelf-life times (LTi) for each product. We discuss how to deal 

with the given initial inventory in an efficient way. We should use such inventory to satisfy 

corresponding demands as much as possible before they become spoiled. From an economic 

perspective, we should not dispose of the spoiled products in the period when they become 

spoiled, since this would incur unnecessary inventory cost for holding excess products before 

disposal. Hence we get rid of excess products right after they come out from machines.  This 

implies that the excess of initial inventory should be disposed of in the first period.  Hence, 

the amount of spoilage in the first period can be readily determined. The updated demand can 

be computed by subtracting the fulfilled demand by initial inventory from the original 

demand. 
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The following notations are used in the heuristics: 

TWit =   Time window for product i of LTi periods from period t+ATi to period  

     t+ATi+LTi-1 

itD  =  Original demand for product i in period t 

itD'  =  Remaining demand for product i in period t 

CDemit =  Cumulative remaining demand for product i during time window (TWit) 

= 
i i

i

t+AT +LT 1

ik
k=t+AT

D'
−

∑                                                                  -----      (Equation  6.1) 

Benit =  Benefit from producing one batch of product i in period t 

=  Penalty cost of non-production of one batch  -  Total cost incurs   

    from production of one batch of  product i (i.e. sum of production cost,   

    setup cost, holding cost and spoilage cost) 

Flagt =  Economic indicator in period t 

= 
0  Start of batch production in period t is worthy  
1  Start of batch production in period t is unworthy
    when none of products has positive benefit

⎧
⎪
⎨
⎪
⎩

 

TFit  

 

=   The first period within time window (TWit) in which the cumulative demand 

     for product i starting from period t+ATi will be either equal to or great than  

     the capacity of one machine (C)   

itΔT   =  The length of periods, which makes the cumulative demand for product i 

      starting from period t+ATi first exceed the capacity of one machine  

=  Delta  Time   =    TFit - (t +ATi) + 1                           -----       (Equation  6.2) 

Ft =    Set of products  in period t, which has itΔT  equal to the smallest value of  

      tΔTmin itmin{ΔT }=   
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Rijt 1   if product i is released on machine j in period t
0  otherwise
⎧

= ⎨
⎩

 

Bjt 
= 

1   if the machine j is busy in period t
0  otherwise
⎧
⎨
⎩

 

Nmcat =  Number of machines available for use in period t  

=  Total number of machines – Number of machines used in period t 

=   
M

jt
j=1

M - B∑                                                                       -----      (Equation  6.3)

T_last = The last period in which we can release a batch and obtain the batch within  

   planning horizon 

=  Number of periods in horizon – Minimum of production time of products 

=  T – min(ATi)                                                                   -----      (Equation  6.4)

Eit  = Earliness for product i in period t (periods). That is, if the batch of product 

    i is released in period t and completed in period t+ATi, but such batch will 

   be carried for at least Eit periods to satisfy the first positive remaining                 

   demand of this product in period 
~
t .  

= 
~
t  {s.t. it"D' > 0 for the first time and 

~
t ≥  t+ ATi } – (t+ATi) 

IZEit  

ii,t+AT it

1   if product i has zero earliness of production in period t, 
     i.e. D' > 0 (E  = 0)

0  otherwise

⎧
⎪= ⎨
⎪
⎩

 

ICit  it1   if CDem  C (High demand)
0  otherwise

≥⎧
= ⎨
⎩

 

NumZEt  Number of products with zero earliness of production in period t=  

Classit = The class of product i in period t. This indicator represents the priority of 
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 product to be selected. This classification is used in the Hybrid heuristic. 

- If  ICit = 1 and  IZEit = 1, then Classit = 1 

- If  ICit = 0 and  IZEit = 1, then Classit = 2 

- If  IZEit = 0, then Classit = 3 

 

The reason for introducing the variable “T_last” is to reduce the solution time for 

solving the problem. Intuitively, it is useless to release the batch of product in a period in 

which the batch will be beyond the horizon.  

Before computing the benefit for product i in period t ( itBen ), we first need to 

quantify the amount of unmet demand from non-production. In our proposed heuristics, we 

assign only one machine to a product in each decision and compare CDemit with capacity of 

one machine.  There are two cases to be considered.  

Case 1) itCDem  C≥ :  If we decide not to produce a batch size of C for product i  in period t,  

then this will incur the unmet demand of C units for product i. 

Case 2) itCDem  C< : If we decide not to produce product i with the batch size of CDemit in 

period t,  then this will incur the unmet demand of CDemit units for product i. 

 

Second, we need to compute the amount of spoilage in period t+ATi (Si,t+ATi) in the 

case of discrete batch size. Recall that no spoilage incurs when the continuous batch size is 

used.  

- If itCDem  C≥ ,    Si,t+ATi = 0.  This is because there is enough demand to satisfy the 

production from this batch.  
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- If itCDem  C< ,    Si,t+ATi = C - CDemit     for t+ATi < T.  As mentioned earlier, the excess 

production should be eliminated as soon as it is obtained unless there are future demands.  

However, if itCDem  C< ,    Si,t+ATi = 0   for t+ATi = T.  The spoilage at the end of horizon is 

zero because the excess production, which is just obtained from the machine in the last 

period, is deemed as the ending inventory.  Such amount could be used to satisfy the future 

demand, if the planning horizon is extended.  

 

Third, we describe how to update the status of machine (Bjt) after knowing the value 

of batch release (rijt). Fact 1: No interruption on a machine during batch production.     If 

rijt =1 (i.e. machine j initially takes on product i in period t), then setting values of Bjt to 

Bj,t+ATi-1 to be 1. In other words, the machine j will be busy for period t to period t+ATi-1 for 

this batch of product i.  

 

To determine the batch size after knowing the value of batch release (rijt), we define 

qi,j,t as the batch size of product i released on machine j in period t.  

- If itCDem  C≥ ,   setting qi,j,t = C  for case of discrete or continuous batch size. 

- If itCDem  C<  and the batch size is discrete,   setting qi,j,t  = C 

- If itCDem  C<  and the batch size is continuous,   setting qi,j,t  = CDemit  

Next, we illustrate how to compute the cumulative inventory cost of one batch of 

product i, which is released in period t by the following algorithm. 

 

 



 

 87

Algorithm 6.1: Computing the cumulative inventory cost of one batch (CICit)  

Step 1:  Initialization       

  ti         =   t+ATi      where  ti is the counter of  time period  

      qleft      =   qi,j,t -Si,ti   where qleft is amount of production left to satisfy future demand 

  t_step   =   0             where  t_step is the counter for shelf-life of product  

           CICit =  0         where CICit is cumulative inventory cost of one batch   

Step 2:  Computing the cumulative inventory cost of one batch 

While   (ti ≤  T ) and  (t_step < LTi) and  (qleft > 0) 

     qleft   =   max{qleft- i,tiD' , 0}       “computing the amount of production left” 

 CICit  = InvCostit +  qleft*hci    “computing cumulative inventory cost” 

 ti     =   ti+1 

        t_step     =  t_step +1 

End (for while loop) 

In this research, we consider the benefit as one factor in determining which product to 

produce first.  The benefit for product i in period t ( itBen ) can be computed using the 

following formula:  

Benit 

= 
i i i it it

i it i i it i it it

i it i it i it it

uc C-pc C-rc -CIC  when CDem C , disc. or var. batch size (Eq. 6.5a)
uc CDem -pc C-rc -CIC -sc S , when CDem C, disc. batch size (Eq.6.5b)
uc CDem -pc CDem -rc -CIC , when CDem C, var. batc

≥

<

< h size (Eq. 6.5c)

⎧
⎪
⎨
⎪
⎩

 

After knowing the product i with batch size of Q released in period t, we keep 

updating the remaining demand using the following algorithm. 
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Algorithm 6.2: Updating the remaining demand 

Step 1:  Initialization       

  ti     =   t+ATi      where  ti is the counter of  time period  

      qleft      =   qi,j,t           where qleft is amount of production left to satisfy future demand 

  t_step   =   0             where  t_step is the counter for shelf-life of product  

Step 2:  Updating remaining demand during time window       

While   (ti ≤  T ) and  (t_step < LTi) and  (qleft > 0) 

                x    =   i,tiD'        where x = dummy to keep the remaining demand before update 

       i,tiD'    =   max{x-qleft, 0}         “updating demand” 

     qleft   =   max{qleft-x, 0}      “computing the amount of production left” 

    ti     =   ti+1 

        t_step     =  t_step +1 

End (for while loop) 

6.2.1 Modified Lot-For-Lot (MLFL) Heuristics  

 In this section, we discuss the criterion used by each of MLFL heuristics, their 

advantages and disadvantages.  When itCDem  C< ,  all of three heuristics employ the same 

criterion, which chooses the product i* that has the highest positive benefit ( itBen ) to 

produce first. However, when itCDem  C≥ , three heuristics use different rules to select 

which product to process first, which will be further explained in Algorithm 6.3.  
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• MLFL-A Heuristic  In each period t, this heuristic considers the time interval of  LTi  

periods starting from period t+ATi  to period t+ATi+ LTi -1, and selects the product i* 

that has the highest positive benefit (Benit) to produce first. We call this criterion as 

“High Benefit First” (HBF).     

This heuristic is simple and easy to implement.  The intuition behind this heuristic is 

to seek cost reduction in each decision period by selecting the product with highest positive 

benefit to produce first. However, this heuristic has two major drawbacks.  

 First, it ignores the urgency of actual demand within time window (TWit), before 

selecting the product to produce first. Making the decision on the batch release without 

considering the actual demand could lead to a poor MPS. Thus the resulting total cost could 

be significantly high. The planner furthermore could face the problem of high inventory, 

since the resulting MPS might recommend the planner to release a product too earlier before 

needed, especially when demand for products is lumpy. The lumpy demand patterns occur 

frequently for several reasons: The demand pattern is dominated by large, infrequent 

customer orders; demand patterns may be a result of outlier or unusual conditions.  

To illustrate the effect of lumpy demand on the performance of the heuristic, we 

consider the example 6.2 A: Finding a MPS for one product, one machine with capacity of C 

units, and the planning horizon of T periods.  The production time is one period and its shelf-

life is longer than T periods. No initial inventory for both products is given. Suppose that 

there is only demand of C units in period T.  Obviously, the optimal plan is to release the 

product in period T-1 in order to have zero inventory cost. However, using the MLFL-A 

heuristic results in the poor production plan, which instead release the product in period 1. 

That is, at the beginning of period 1, the CDem1 is C units, and suppose that the benefit of 
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releasing this batch at this period is positive, so it is worth releasing the batch in period 1, 

even though the actual demand incurs in the last period. As a result, this plan incurs the extra 

inventory cost for holding C units of the product for T-2 periods.  

Second, the heuristic does not take into account the production time of product while 

choosing the product to produce first. Consider that case in which the production time of the 

selected product i* is much longer then that of others. Selecting such product i* could 

decrease the number of periods of availability of machine in the future more than selecting 

others. Therefore, the planner could have insufficient number of machines to satisfy the 

future demand for other products. As a result, this could cause a huge of unmet demands, and 

so the total cost dramatically increases.  We called this as “the problem of product-blocking 

on machine”. 

To see this problem, consider the example 6.2 B: Finding the MPS for 2 products (A 

and B), one machine with capacity of 50 units, and the planning horizon of 4 periods.  The 

production times are 3 and 1 periods for A and B respectively.  Their shelf-life times are 5 

periods. No initial inventory for both products is given. Forecast demand for A is 50 units in 

period 4. Forecast demand for B is 50 units in period 2, 3 and 4.  Assume that holding cost 

for both products is very small, so it is negligible. The setup cost for each product is 

$50/setup. The production cost for each product is $2/unit.  The penalty for unmet demand is 

$3.5/units for product A and $3.49/unit for product B.  Clearly, the benefit of A is higher 

than B.  Using HBF rule selects the product A to produce first in period 1. The machine will 

be busy from period 1 to 3, so all of demands for product B are unmet.  
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The MPS from HBF rule is shown in Table below. 

  

Cost Subtotal
1 2 3 4 ($) cost ($)

Demand DAt 0 0 0 50
(units) DBt 0 50 50 50
Production PAt 50 100.0    
(units) PBt -       100.0        
Inventory at IAt -       
end of period IBt -       -            
Spoilage SAt -       
(units) SBt -       -            
Unmet demand UAt -       
(units) UBt 50 50 50 523.5    523.5        
Setup cost ($) MC1 $50 50.0      50.0          
Gantt chart MC1 Total 673.5

Time Period (t)

A  

In contrast to the resulting MPS from HBF rule, the optimal MPS is to produce only the 

product B as shown in the following table.  

  

Cost Subtotal
1 2 3 4 ($) cost ($)

Demand DAt 0 0 0 50
(units) DBt 0 50 50 50
Production PAt -       
(units) PBt 50 50 50 300.0    300.0        
Inventory at IAt -       
end of period IBt -       -            
Spoilage SAt -       
(units) SBt -       -            
Unmet demand UAt 50 175.0    
(units) UBt -       175.0        
Setup cost ($) MC1 $50 $50 $50 150.0    150.0        
Gantt chart MC1 B B B Total 625.0

Time Period (t)

 

In this example, the MPS from MLFL-A heuristic results in higher total cost of $48.5 

(7.76%) than the optimal MPS plan.  
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In summary, using only High Benefit rule to select the product to produce first could 

lead to poor MPS in certain situations as previously explained. As such, we might consider 

the urgency of actual demand in time window (TWit) and the length of batch production time 

as important factors in determining which product and when to produce. The details will be 

discussed in the next two heuristics. 

 

• MLFL-B Heuristic  In each period t, this heuristic considers time interval of  tΔTmin  

periods starting from period t+ATi  to period t+ATi+ tΔTmin -1, finds the set of products 

in Ft,  and selects the product i* from Ft that yields the highest positive benefit (Benit) to 

produce first. We call this criterion as “Small Delta Time first and High Benefit second” 

(SDT-HB). In case where two more candidates satisfy SDT-HB criterion, the Short 

Production Time (SPT) is used as the tiebreaking rule. 

 

The MLFL-B heuristic is more complicated than the MLFL-A heuristic, since MLFL-

B heuristic takes into account the urgency of actual demand in time window (TWit) and the 

benefit from producing products in order to select the product to produce first.   The heuristic 

consists of two main steps. The key concept of the first step is to satisfy the high urgent 

product, whose cumulative demand is no less than capacity during the time window. We use 

the “Small Delta Time” to indicate the urgency of product. That is, the smaller delta time, the 

higher urgency. At the end of this first step, it could be more than one product with the same 

smallest delta time. The key concept of the second step is to reduce total cost by using High 

Benefit rule to select the product to produce.  The advantage of this heuristic is to attempt to 
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satisfy high urgent products, while trying to lower cost  by using  High Benefit rule. On the 

other hand, this heuristic might not work well under the following conditions. 

- Demand for products is lumpy, as explained in example 6.2A. That is, this heuristic 

cannot delay the production of the selected product. 

- The difference between benefit of product candidates with the smallest delta time is 

slightly small, but there is big gap between the production times of such products. In 

this situation, the latter factor might dominate the former factor.     The problem of 

product-blocking on machines could therefore occur as explained in example 6.2 B. 

 

• MLFL-C Heuristic  In each period t, this heuristic considers time interval of  tΔTmin  

periods starting from period t+ ATi  to period t+ATi+ tΔTmin -1, finds the set of products 

in Ft, and selects a product i* from Ft that has lowest value of production time (ATi) to 

produce first. We call this criterion as “Small Delta Time first and Short Production Time 

second” (SDT-SPT). In case where two more candidates satisfy SDT-SPT criterion, the 

High Benefit (HB) is used as the tiebreaking rule. 

 

The MLFL-C heuristic is similar to MLFL-B heuristic in that it first uses the urgency 

of actual demand in time window (TWit) to select the set of candidate products.  However, 

the MLFL-C heuristic then uses the short production time rule to determine the product to 

produce, not the high benefit. The main reason for the second step is to avoid the problem of 

product-blocking on machines. That is, selecting the product with shorter production time 

could save the availability periods of machine to be used for satisfying the future demand. 

However, this heuristic might not work well under the following conditions. 
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- Demand for products is lumpy, as explained in example 6.2A.  

- The difference between the production times of candidate products with the smallest 

delta time is slightly small, but there is big gap between benefits of such products.  

In this situation, the latter factor might dominate the former factor.   Hence, the gain 

from increase in the number of period of machine availability by using short 

production time rule might be less than the gain of high benefit rule.  

Another common problem that occurs when using the three MLFL heuristics is that 

solving the BPP-SI problem using any one of three heuristics cannot guarantee the following 

fact 2.  “As the number of machines increases, the total cost of MPS will improve”. In 

certain instances, solving the BPP-SI problem with the lower number of machines using the 

proposed heuristics could provide the lower total cost than solving the same problem with 

higher number of machines, while all other parameters remain unchanged. This is 

inconsistent with the fact 2. This fact is obviously true. The more resource available, the 

better performance we could obtain (i.e. lower total cost). To get a better understanding of 

this problem, consider the example 6.2 C: Finding a MPS for one product (A), and the 

planning horizon of 3 periods.  The production time is 1 period and its shelf-life is 5 periods. 

No initial inventory is given. There is only demand of 100 units in period 3.   The estimated 

holding cost is $0.5/unit/period and the setup cost is $50/setup.  The production cost is 

$5/unit and the penalty for unmet demand is $6.5/unit. 
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- Suppose that there is one machine with capacity of 50 units.   

The resulting MPS from proposed heuristics is the same as the MPS from branch and 

bound method, as shown in table below. 

 

Cost Subtotal
1 2 3 ($) cost ($)

Demand  (units) DAt 0 0 100
Production PAt 50 50 500.0    500.0        
Inventory at end of period IAt 50 25.0      25.0          
Spoilage (units) SAt -       
Unmet demand (units) UAt -       
Setup cost ($) MC1 $50 $50 100.0    100.0        
Gantt chart MC1 A A Total 625.0

Time Period (t)

 

 

- Suppose that there are two machines with capacity of 50 units.   

The resulting MPS from proposed heuristics is different from that of branch and 

bound method. The following table represents the MPS from proposed heuristics 

Cost Subtotal
1 2 3 ($) cost ($)

Demand  (units) DAt 0 0 100
Production PAt 100 500.0    500.0        
Inventory at end of period IAt 100 50.0      50.0          
Spoilage (units) SAt -       
Unmet demand (units) UAt -       
Setup cost ($) MC1 $50 50.0      

MC2 $50 50.0      100.0        
Gantt chart MC1 A Total 650.0

MC2 A

Time Period (t)
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The following table represents the optimal MPS from branch and bound method. 

Cost Subtotal
1 2 3 ($) cost ($)

Demand  (units) DAt 0 0 100
Production PAt 100 500.0    500.0        
Inventory at end of period IAt -       -            
Spoilage (units) SAt -       
Unmet demand (units) UAt -       
Setup cost ($) MC1 $50 50.0      

MC2 $50 50.0      100.0        
Gantt chart MC1 A Total 600.0

MC2 A

Time Period (t)

 

From the results in the tables above, as the number of machines increases from one to 

two,  the total cost obtained by using MLFL heuristics is $50 higher than that obtained by 

using branch and bound method. However, using the three MLFL heuristics for solving the 

batch scheduling problem with two machines increases total cost by $25. The reason for 

increased total cost is that heuristics attempt to utilize available machines immediately when 

the criterion of selecting product is satisfied. As seen in the resulting MPS from MLFL 

heuristics, the machines are used in the early periods of planning horizon, and are idle 

afterward, so the overall utilization of machines could be low. This could also cause a huge 

inventory cost due to the early releasing batch of products before needed. Furthermore, in 

reality, the space for holding such inventory might be insufficient. However, the optimal 

MPS shows that it would be better to delay releasing the batch of products in order to avoid 

extra inventory cost, which could be alleviated by the next two heuristics. The flow chart of 

MLFL heuristics is in Appendix A1. The algorithm for MLFL heuristics is as follows: 
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Algorithm 6.3: MLFL Heuristics  

Step 0: Initialization  

Set i,t i,t D' D    i,t= ∀      “Remaining demand is set to be the original demand” 

Set j,tB 0      j,t= ∀       “Each machine is available for use” 

Compute T_last using Equation 6.4  

Step 1: For time period t from 1 to T_last 

Step 1.1: Compute Nmcat using Equation 6.3 

Step 1.2: Set Flagt = 0   

Step 1.3: While (Nmcat > 0) and (Flagt = 0),     do the following 

a) For each product i,  with batch production time ATi and shelf-life time LTi, 

compute its cumulative remaining demand during its shelf-life time from period 

t+ATi to period t+ATi+LTi-1 (CDemit) using Equation 6.1. 

b) Determine which product with itCDem  C≥ . Compute the total number of products 

with itCDem  C≥  (Nover).  

Compute the following quantities:          

-  Benit for the MLFL-A heuristic using Equations 6.5a-6.5c           

 -  Benit, TFit , itΔT  and Ft   for the MLFL-B and MLFL-C heuristics. 

c) If (Nover > 0)  

c1)   Determine which product to produce first. Let i* be the product selected.  

Selecting the product depends on the chosen heuristic: 
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• MLFL-A uses “High Benefit First” (HBF). 

• MLFL-B uses “Small Delta Time first and High Benefit second” 

(SDT-HB). 

• MLFL-C uses “Small Delta Time first and Short Production Time 

second” (SDT-SPT). 

c2)    Determine which machine to use. Select the available machine with the 

lowest index to produce the product i*. Let machine j* be selected.  Update the 

status of machine. 

c3)    Compute Nmcat. Determine the batch size.  Determine the spoilage, which 

would incur from this batch. 

c4)   Update the remaining demand for products i,tD'  using Algorithm 6.2.  

else (Nover = 0)   

d1) Compute the benefit for each product using Equation 6.5a-6.5c 

d2) Compute the total number of product with positive benefit (Nben). 

d3) If  (Nben > 0)  (i.e. production is worth) 

-  Determine which product to produce.  

Take the product that has the highest positive benefit. Let product i* be the 

product is selected.  

- Repeat steps c2) to c4)  

 else (Nben ≤  0) 

     - Set Flagt = 1, i.e. the production is unworthy.    

       End (while loop) 

End (for loop) 
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Step 2:  Compute the amount of production for each product in each period. 

Step 3: Compute the inventory and unmet demand for each product in each period by using 

mass balance equation. , , , 1 , , ,                i t i t i t i t i t i tI U I P S D−− = + − − ,i t∀  

Step 4:  Compute the setup cost for each machine and total setup cost. 

Step 5: Compute total production cost, total disposal cost, total penalty cost for unmet 

demand, and total inventory cost.  Compute total cost for production plan and the solution 

time.  

 

6.2.2 Fixed Order Quantity (FOQ) Heuristic  

The basic idea of this heuristic is to attempt to release a batch of full capacity, when 

needed, so the extra inventory cost from early production is reduced, but it does not take 

account into the benefit of releasing a batch in selecting the product to produce. Advantages 

of the heuristic are simple and easy for use. It usually takes very short amount of 

computational time.  At time period t, this heuristic uses demand information in the period 

t+ATi to decide whether to release the batch of product i. That is, releasing the batch of 

product i with the lot size of capacity of one machine in period t, when the following three 

conditions hold: i) There is demand in period t+ATi.  ii) There is available machine for use in 

period t.  iii) Such batch will be finished by the end of planning horizon. However, this FOQ 

heuristic does not consider the benefit of each batch of product in selecting which the product 

to produce first, poor decisions of unworthy batch release could therefore yield the 

considerable total cost. Consequently, using FOQ heuristic could lead to prohibitively high 

inventory and spoilage costs. For example, if the demand of product i in the period t+ATi is 

much less than the capacity of one machine and there is no demand in the next several 
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periods, then the large portion of this batch of product i has to be carried for several periods 

and could become spoiled.  The flow chart of FOQ heuristic is in Appendix A2. The 

algorithm for FOQ heuristic is as follows: 

Algorithm 6.4: FOQ Heuristic  

Step 0: Initialization  

Set i,t i,t D' D    i,t= ∀      “Remaining demand is set to be the original demand” 

Set j,tB 0      j,t= ∀       “Each machine is available to use” 

Compute  T_last   using  Equation 6.4  

Step 1: For period t from 1 to T 

Step 1.1: Compute Nmcat  using  Equation  6.3 

Step 1.2:  Set NumZEt =  0   

      Step 1.3:  “Identify whether the product i has zero earliness in period t or not.” 

For each product i,  

- Set IZEit = 0 

- If  ii,t+ATD' > 0  then  set  IZEit  = 1, NumZEt = NumZEt+1 

Step 1.4: “Select the product and assign it to a machine”  

While  (Nmcat > 0)  and (NumZEt > 0),     do the following 

a) Set  Select = 0 “we have not assigned the product to a machine yet” 

Set  Ipdt  = 1   “ Ipdt is a counter of product” 

Set  PID  = 0   “ PID is a product to be selected” 

While  (Select = 0)  and (Ipdt ≤  N),     do the following   

< Select product to produce>  

If  IZEit  = 1, then  set  PID =  Ipdt, Select = 1. 
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“First product with zero earliness is selected” 

      Else  Ipdt = Ipdt+1  “consider next product” 

End (inner while loop) 

 b)  If   Select = 1    

< Assign the product to a machine>  

b1)    Determine which machine to use. Select the available machine with the 

lowest index to produce the product i*. Let machine j* be selected.  Update the 

status of machine. 

b2)    Compute Nmcat. Use the batch size of capacity of one machine.  Determine 

the spoilage, which would incur from this batch. 

b3)   Update the remaining demand for products i,tD'  using Algorithm 6.2.  

End (outer while loop) 

End (for loop) 

Step 2-5:   Same as the MLFL heuristics 

By using FOQ heuristic to solve the example 6.2 C, we luckily obtain the same MPS 

as in the optimal MPS, which is better than the results from MLFL heuristics. To clearly 

grasp the disadvantage of FOQ heuristic, consider the example 6.2 D: Finding a MPS for one 

product (A), and the planning horizon of 5 periods.  The production time is 1 period and its 

shelf-life is 5 periods. No initial inventory is given. Forecast demands are 1 unit in period 3 

and 99 units in period 5.   The estimated holding cost is $1/unit/period and the setup cost is 

$50/setup.  The production cost is $5/unit and the penalty for unmet demand is $7/unit. 

Suppose that there is one machine with capacity of 50 units.   
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The resulting MPS by using FOQ heuristic is shown in the following table. 

Cost Subtotal
1 2 3 4 5 ($) cost ($)

Demand  (units) DAt 0 0 1 0 99
Production PAt 100 100 1,000  1,000      
Inventory at end of period IAt 1 1        1             
Spoilage (units) SAt 99 99       99           
Unmet demand (units) UAt -     -          
Setup cost ($) MC1 $50 50       50           
Gantt chart MC1 A Total 1150

Time Period (t)

 

As seen in Table above, 99 units of spoilage incur in period 3 since the benefit of 

releasing is not considered in selecting the product to produce for the FOQ heuristic. This 

problem can be solved by using the Hybrid heuristic. 

 

6.2.3 Hybrid Heuristic (Zero Earliness, High Demand and High Benefit 

Heuristic) 

This heuristic uses three measures including zero earliness, high demand, and high 

benefit to determine which product to produce first. More specifically, we first select the 

product with the zero earliness of production by releasing the batch of such product when 

needed to avoid unnecessary holding cost from early production.  If there are more than one 

product candidates, then selecting the product whose cumulative demand during time 

window is no less than the capacity of one machine to produce first yields zero spoilage cost 

for this batch. Finally, using the high benefit determines the product to produce.  

To identify the priority of product, we categorize products into one of three classes (1, 

2 and 3) by using the factors of earliness of production (Eit) and the cumulative demand 
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during time window, which is compared with the capacity of one machine. The priority of 

the classes from high to low is 1, 2 and 3. That is, selecting a product in class 1 before class 

2, and class 2 before class 3. Let Classit be the class of product i in period t.  

- If itCDem  C≥  and  
ii,t+AT itD' > 0 (E  = 0) , then Classit = 1 

- If itCDem  C<  and 
ii,t+AT itD' > 0 (E  = 0) , then Classit = 2 

- If 
ii,t+AT itD' = 0 (E  > 0)  ,  then Classit = 3 

The flow chart of Hybrid heuristic is in Appendix A3. The algorithm for Hybrid 

heuristic is as follows: 

Algorithm 6.5: Hybrid Heuristic 
  
Step 0: Initialization  

Set i,t i,t D' D    i,t= ∀      “Remaining demand is set to be the original demand” 

Set j,tB 0      j,t= ∀       “Each machine is available for use” 

Compute  T_last   using  Equation 6.4  

Step 1: For time period t from 1 to T 

Step 1.1: Compute Nmcat  using  Equation  6.3 

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt =  0   

      Step 1.4:  For each product i,  

- If  
ii,t+AT itD' > 0 (E  = 0) , then  NumZEt = NumZEt+1 

Step 1.5:While (Nmcat > 0) and (Flagt = 0) and (NumZEt>0) ,     do the following 

a) < Determine the class of a product by using IZEit and ICit > 

Let c be index for the class of product {1, 2, 3} 
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Let NPc be the number of products in class c 

- Set NumZEt =  0   

- Set NPc =  0   

For each product i,  

- Set IZEit = 0 

- Set ICit = 0 

- If  
ii,t+AT itD' > 0 (E  = 0) , then   

IZEit  = 1  

 NumZEt = NumZEt+1 

- Compute CDemit using Equation 6.1. 

- If itCDem  C≥ , then set ICit = 1  

- If  ICit = 1 and  
ii,t+AT itD' > 0 (E  = 0) , then  

Classit = 1 

NP1 = NP1+1 

- If  ICit = 0 and 
ii,t+AT itD' > 0 (E  = 0) , then 

 Classit = 2 

NP2 = NP2+1 

- If 
ii,t+AT itD' = 0 (E  > 0)  ,  then  

Classit = 3  

NP3 = NP3+1 

b) < Select the class of product to produce according to the priority rule> 

Let cid* be the class of product to be selected. 

Iclass  = 1    
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While  (NPIclass = 0)  and (Iclass ≤  3),     do the following   

Iclass  = Iclass  + 1    

End (inner while loop) 

cid* = Iclass 

c) < Compute batch size, amount of unmet demand for each  product, and 

associated costs and benefit> 

For each product i,  

- If  discrete batch is used,  batchi = C 

- If  continuous batch is used and ICit = 1, batchi = C 

- If  continuous batch is used and ICit = 0, batchi = CDemit 

- If  ICit = 1,  unmeti = C 

- If  ICit = 0,  unmeti = CDemit 

- Compute unmet demand cost, production cost, setup cost. 

- Compute spoilage cost  (Cspo) 

      Cspoi = Max (batchi - CDemit, 0) 

                              - Compute cumulative holding cost using Algorithm 6.1 
 

- Compute the benefit of batch releasing of each product (Benit) 

d)  Select the product with highest positive benefit from the chosen class in b 

Let pid* be the product with highest positive benefit to be selected. 

 If cid* ≠  3 and Bencid*,t > 0  “Release this batch” 
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d1) Determine which machine to use. Select the available machine 

with the lowest index to produce the product pid*. Let machine j* be 

selected.  Update the status of machine. 

d2)  Compute Nmcat. Set batch size = batchi. Determine the spoilage, 

which would incur from this batch. 

d3) Update the remaining demand for products i,tD'  using Algorithm 

6.2.  

 Else  “Not release this batch due to nonzero earliness or unworthy” 

- Set   Flag = 1 

End (outer while loop) 

End (for loop) 

Step 2-5:   Same as the MLFL heuristics 

The Hybrid heuristic solves the problem of releasing an unworthy batch, which could 

incur from the FOQ heuristic, but it is not always true that Hybrid heuristic outperforms the 

FOQ heuristics in terms of costs.  In some instances like the example 6.2 D, Hybrid heuristic 

yields the lower total cost of MPS than FOQ heuristic by $592.   

Cost Subtotal
1 2 3 4 5 ($) cost ($)

Demand  (units) DAt 0 0 1 0 99
Production PAt 100 500     500         
Inventory at end of period IAt 1 1        1             
Spoilage (units) SAt -     -          
Unmet demand (units) UAt 1 7        7             
Setup cost ($) MC1 $50 50       50           
Gantt chart MC1 A Total 558

Time Period (t)
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However, the Hybrid heuristic could lead to higher total cost than the FOQ heuristic 

in the small example in the next section. In addition, the Hybrid heuristic is more difficult to 

implement than the FOQ heuristic due to several factors used in determining the product to 

produce.  It should be noted that the MLFL heuristics seek to utilize machine immediately 

whenever their conditions are satisfied, even though such batch releasing could cause extra 

inventory cost from early production. In contrast, FOQ and Hybrid heuristics employ the 

earliness of production to release a batch of product. That is, releasing a batch of product 

occurs only when its earliness of production is zero. The resulting MPS from both FOQ and 

Hybrid heuristics tends to have more idle periods of machines due to the delay of batch 

release. The planner might face the problem of running short of machines for use in order to 

satisfy the future demand, if he currently decides not to release a batch of the product 

because of the rule of releasing a batch of produce by the earliness of production with which 

he complies, so the resulting MPS might have a large amount of unmet demand. When the 

increased cost of unmet demand is higher than the benefit from holding cost reduction, the 

both heuristics do not perform well.  

To see this problem, consider the situation in which demand for products is lumpy 

and number of machines is limited. Suppose that there is only one demand of a single 

product in the last period of 11 and there is one machine with capacity of 10 units. Assume 

that such demand is 100 units, which is much more than the capacity of machine. The 

production time is one period. FOQ and Hybrid heuristics result in the same MPS, which has 

only one batch release in period 10, so the demand of 90 units in period 11 will be unmet. In 

case that the shelf-life of product is 10 periods and holding cost is very small, it is worth 
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releasing a batch of 10 units from period 1 to 10 to satisfy all of demand in period 11. Such 

MPS could be obtained by using MLFL heuristics.  

 

6.3 Small Example                    

To illustrate the basic concepts of the heuristics, consider a simplified small example.  

When resources are scarce, finding an efficient scheduling is very important for 

manufacturers to greatly reduce total cost.  In the example, there is only one machine, but it 

does not have enough capacity to fulfill all of the demands. Using each criterion for a batch 

release could result in different MPS and total cost.   

Consider the BPP-SI problem for 2 products (A and B), 1 machine and the planning 

horizon of 7 periods.   Production times (ATi) for products A and B are 1 and 2 periods 

respectively.  Shelf-life times for each product are 6 periods. A machine has capacity of 50 

units. There is no initial inventory of products at the beginning of planning horizon. Data for 

demand and costs for products are given in Tables 6.1 and 6.2.  

Table 6.1: Demand Data of the Small Example 

Product
1 2 3 4 5 6 7

A 0 0 50 52 51 50 45
B 0 0 0 0 20 40 41

Time Period

 

Table 6.2:  Cost Data of the Small Example 

Product Setup_Cost Holding_Cost Production_Cost Unmet-
Dem_Cost Disposal_Cost

(i) (rci) (hci) (pci) (uci) (dci) 
($/setup) ($/unit) ($/unit) ($/unit) ($/unit)

A 40 0.2 3 4.5 0.4
B 50 0.3 4 6 0.5  
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Two cases for batch size to be considered are discrete and continuous.  

6.3.1 Discrete Batch Size  

In this section, we present the optimal solution from the branch and bound method 

and the numerical result from each heuristic in Tables 6.3-6.8. Details of implementing each 

of the heuristics for solving the small example are explained in Appendix A4-A8. 

Table 6.3: The Optimal MPS for the Small Example with Discrete Batch Size 

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 50 750.0    
(units) PBt -       750.0        
Inventory at IAt 5 1.0        
end of period IBt -       1.0            
Spoilage SAt -       
(units) SBt -       -            
Unmet demand UAt 2 1 13.5      
(units) UBt 20 40 41 606.0    619.5        
Setup cost ($) MC1 $40 $40 $40 $40 $40 200.0    200.0        
Gantt chart MC1 A A A A A Total 1570.5

Time Period (t)
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Table 6.4: MPS from MLFL-A Heuristic 

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 300.0  
(units) PBt 50 50 400.0  700.0      
Inventory at IAt 50 5 11.0    
end of period IBt 50 30 40 36.0    47.0        
Spoilage SAt -      
(units) SBt -      -          
Unmet demand UAt 52 51 50 688.5  
(units) UBt 1 6.0      694.5      
Setup cost ($) MC1 $40 $50 $50 $40 180.0  180.0      
Gantt chart MC1 A A Total 1621.5

Time Period (t)

B B
 

 

Table 6.5:  MPS from MLFL-B Heuristic 

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 600.0  
(units) PBt 50 200.0  800.0      
Inventory at IAt 50 50 5 21.0    
end of period IBt 30 9.0      30.0        
Spoilage SAt -      
(units) SBt -      -          
Unmet demand UAt 2 51 238.5  
(units) UBt 10 41 306.0  544.5      
Setup cost ($) MC1 $40 $40 $50 $40 $40 210.0  210.0      
Gantt chart MC1 A A A A Total 1584.5B

Time Period (t)
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Table 6.6: MPS from MLFL-C Heuristic 

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 50 750.0  
(units) PBt -      750.0      
Inventory at IAt 50 50 48 47 45 48.0    
end of period IBt -      48.0        
Spoilage SAt 2 0.8      
(units) SBt -      0.8          
Unmet demand UAt -      
(units) UBt 20 40 41 606.0  606.0      
Setup cost ($) MC1 $40 $40 $40 $40 $40 200.0  200.0      
Gantt chart MC1 A A A A A Total 1604.8

Time Period (t)

 

 

 

Table 6.7:  The MPS from FOQ Heuristic  

 Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 50 750.0    
(units) PBt -       750.0        
Inventory at IAt 5 1.0        
end of period IBt -       1.0            
Spoilage SAt -       
(units) SBt -       -            
Unmet demand UAt 2 1 13.5      
(units) UBt 20 40 41 606.0    619.5        
Setup cost ($) MC1 $40 $40 $40 $40 $40 200.0    200.0        
Gantt chart MC1 A A A A A Total 1570.5

Time Period (t)
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Table 6.8: The MPS from Hybrid Heuristic  

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 450.0  
(units) PBt 50 200.0  650.0      
Inventory at IAt 5 1.0      
end of period IBt 30 9.0      10.0        
Spoilage SAt -     
(units) SBt -     -          
Unmet demand UAt 52 51 463.5  
(units) UBt 10 41 306.0  769.5      
Setup cost ($) MC1 $40 $50 $40 $40 170.0  170.0      
Gantt chart MC1 A A A Total 1599.5

Time Period (t)

B  

6.3.2 Continuous Batch Size  

In this section, we present the optimal solution from the branch and bound method 

and the numerical result from each heuristic in Tables 6.9-6.14. In Appendix A-9, we explain 

how to apply the MLFL-A heuristic for solving the small example when the batch size is 

continuous. Our main focus is on the step which leads to the different production plans 

between discrete and continuous batch sizes. This situation occurs only when all of the 

products have CDemit less than C and it is worth releasing a batch in period t (i.e. there exist 

positive benefit for some products). If that is the case, the batch size is set to be CDemit of 

product whose benefit is highest in case of the continuous batch size, rather than the full 

capacity in case of the discrete batch size.  

By using similar logic, we can apply MLFL-B and MLFL-C heuristics for solving the 

small example with continuous batch size. Since the FOQ heuristic only allows the batch size 
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to be zero or full capacity, the resulting MPS is the same for discrete and continuous batch 

size.  The detail of implementing the Hybrid heuristic is omitted. 

 

Table 6.9: Optimal MPS for the Small Example with Continuous Batch Size 

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 45 735.0    
(units) PBt -       735.0        
Inventory at IAt -       
end of period IBt -       -            
Spoilage SAt -       
(units) SBt -       -            
Unmet demand UAt 2 1 13.5      
(units) UBt 20 40 41 606.0    619.5        
Setup cost ($) MC1 $40 $40 $40 $40 $40 200.0    200.0        
Gantt chart MC1 A A A A A Total 1554.5

Time Period (t)

 

Table 6.10: The MPS from MLFL-A Heuristic  

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 45 285.0  
(units) PBt 50 50 400.0  685.0      
Inventory at IAt 50 10.0    
end of period IBt 50 30 40 36.0    46.0        
Spoilage SAt -     
(units) SBt -     -          
Unmet demand UAt 52 51 50 688.5  
(units) UBt 1 6.0      694.5      
Setup cost ($) MC1 $40 $50 $50 $40 180.0  180.0      
Gantt chart MC1 A A Total 1605.5

Time Period (t)

B B
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Table 6.11:  The MPS from MLFL-B Heuristic  

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 45 585.0  
(units) PBt 50 200.0  785.0      
Inventory at IAt 50 50 20.0    
end of period IBt 30 9.0      29.0        
Spoilage SAt -     
(units) SBt -     -          
Unmet demand UAt 2 51 238.5  
(units) UBt 10 41 306.0  544.5      
Setup cost ($) MC1 $40 $40 $50 $40 $40 210.0  210.0      
Gantt chart MC1 A A A A Total 1568.5B

Time Period (t)

 

 

Table 6.12: The MPS from MLFL-C Heuristic  

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 600.0  
(units) PBt 41 164.0  764.0      
Inventory at IAt 50 50 48 47 39.0    
end of period IBt -     39.0        
Spoilage SAt -     
(units) SBt -     -          
Unmet demand UAt 3 45 216.0  
(units) UBt 20 40 360.0  576.0      
Setup cost ($) MC1 $40 $40 $40 $40 $50 210.0  210.0      
Gantt chart MC1 A A A A Total 1589.0

Time Period (t)

B
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Table 6.13: The MPS from FOQ Heuristic  

  Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 50 50 50 750.0    
(units) PBt -       750.0        
Inventory at IAt 5 1.0        
end of period IBt -       1.0            
Spoilage SAt -       
(units) SBt -       -            
Unmet demand UAt 2 1 13.5      
(units) UBt 20 40 41 606.0    619.5        
Setup cost ($) MC1 $40 $40 $40 $40 $40 200.0    200.0        
Gantt chart MC1 A A A A A Total 1570.5

Time Period (t)

 

 

Table 6.14: The MPS from Hybrid Heuristic  

Cost Subtotal
1 2 3 4 5 6 7 ($) cost ($)

Demand DAt 0 0 50 52 51 50 45
(units) DBt 0 0 0 0 20 40 41
Production PAt 50 50 45 435.0  
(units) PBt 50 200.0  635.0      
Inventory at IAt -     
end of period IBt 30 9.0      9.0          
Spoilage SAt -     
(units) SBt -     -          
Unmet demand UAt 52 51 463.5  
(units) UBt 10 41 306.0  769.5      
Setup cost ($) MC1 $40 $50 $40 $40 170.0  170.0      
Gantt chart MC1 A A A Total 1583.5

Time Period (t)

B
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After solving the small example using the branch and bound method, the five 

heuristics, and solving relaxation of MIP, we summarize the MPS result in Table 6.15. which 

displays total cost, solution time, and optimality gap of each heuristic. Optimality gap 

illustrates the solution quality of the heuristics, compared to the optimal solution from the 

branch and bound method. The resulting Gantt Chart is shown in Figure 6.1. 

 

Table 6.15: Total Cost, Solution Time and Optimality Gap for the Small Example 
  

Method
Total cost

 ($)
Sol. time

 (sec)
Optimality

gap (%)
Total cost

 ($)
Sol. time

 (sec)
Optimality

gap (%)
Branch and bound 1570.50 0.03 0.00 1554.50 0.03 0.00
Relaxation MIP 1528.10 0.01 2.70 1528.10 0.01 1.70
MLFL-A heuristic 1621.50 0.10 3.25 1605.50 0.08 3.28
MLFL-B heuristic 1584.50 0.02 0.89 1568.50 0.01 0.90
MLFL-C heuristic 1604.80 0.01 2.18 1589.00 0.01 2.22
FOQ heuristic 1570.50 0.01 0.00 1570.50 0.01 1.03
Hybrid heuristic 1599.50 0.03 1.85 1583.50 0.02 1.87

Discrete Batch Size Continuous Batch Size

 

 

Figure 6.1: Gantt Chart for the Small Example 
 

Method
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Branch & Bound A A A A A A A A A A
MLFL-A A A A A
MLFL-B A A A A A A A A
MLFL-C A A A A A A A A A
FOQ A A A A A A A A A A
Hybrid A A A A A A

B

B

B B
B

B

B

B B

Time Period (t)
Discrete Batch Size Continuous Batch Size

Time Period (t)
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In this example, all heuristics yield the solution within 4% of the optimality gap. The 

MLFL-A heuristic takes the longest amount of solution time to solve the problem since it 

needs to compute the benefit of all products in each decision. The Hybrid heuristic takes the 

second longest amount of solution time since it takes into account several factors, such as, 

earliness of production, cumulative demand during the shelf-life time, and the benefit of 

production of each batch to determine which product to be selected first. The solution time of 

MLFL-B, MLFL-C, and FOQ heuristics is relatively shorter, since these heuristics do not 

necessarily require that the benefit of all of products be computed. Overall, the solution time 

for each heuristic is relatively short. Among five heuristics, the FOQ heuristic provides the 

lowest total cost when discrete lot size is used, while MLFL-B heuristic yields the lowest 

total cost when continuous batch size is used for this small problem. However, the FOQ 

heuristic usually results in a very poor result for the large BPP-SI problem, which is 

discussed in the subsequent chapter.  

 

6.4 Summary 

In summary, our five heuristics are simple, forward-looking methods to help the 

planner solve practical large BPP-SI problems much faster than the branch and bound 

method. The heuristics require very short amount of solution time around one second with 

small relative gap when compared to the lower bound of the MIP relaxation. The relative gap 

obtained from the heuristics can vary depending on the values of parameters. Also we point 

out the conditions under which each heuristic might not perform well. In the following 

chapter, we present a numerical study of applying heuristics to large BPP-SI problems in 

several industries. 
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CHAPTER VII 

COMPUTATIONAL STUDY FOR INDUSTRIAL 

 LARGE BPP-SI PROBLEMS 

 
7.1 Introduction  

 After developing five heuristics for BPP-SI problems in the previous chapter, we 

apply these heuristics to solve some large problems from several industries such as beer, 

vaccine, and yoghurt. We investigate the effect of several factors including demand 

probability, demand variation, length of shelf-life and type of lot size on the total cost of the 

batch production process, and compare the performance of each heuristic by performing the 

statistical analysis. Also the lower bound on the objective value is calculated by solving the 

relaxation of the original MIP as a means to evaluate the performance of heuristics.  In this 

study, the data for problem instances are randomly simulated on the basis of real examples 

found in the literature or engineers working on those industries.    

Next we present the computational results of large BPP-SI problems using each 

heuristic. The computational environment is performed on Pentium IV 1.6 GHz with 1 GB 

RAM. The relaxation of MIP is solved using CPLEX 9.1 as the primary solver in GAMS 

22.0. The BPP-SI problem is solved by each heuristic using Matlab 7.0.4. 
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7.2 Computational Study for a Beer Manufacturer   

In this section, we apply heuristics to solve a large BPP-SI problem for a beer 

manufacturer in Thailand.  The manufacturer has 10 different types of beer and 20 

fermentation tanks with equal capacity of 50,000 gallons. The manufacturer wishes to 

determine the MPS over the next 26 weeks and evaluate the effect of several factors on the 

system performance.   

7.2.1 Parameters and Level of Factors                 

We summarize the distribution and values of parameters for the large problem of beer 

production in Table 7.1 as well as the two levels of four factors of interest on the system 

performance in Table 7.2. Therefore, the number of scenarios is 16. For each scenario, we 

randomly generate 100 data instances to evaluate the overall performance of heuristics. 

Table 7.1:  Distribution and Values of Parameters for Beer Production Problem 

Symbol Description Unit Distribution / Value 
C Capacity of each fermentation tank  Gals 50000 
PCi Production cost  $/gal U[2,4] 
HCi Holding cost $/gal/week0.10*PCi/52 
DCi Disposal cost for spoilage $/gal 0.2*PCi 
UCi Penalty cost for unmet demand $/gal 1.5*PCi 
SCi Setup cost  $/setup U[1000,2000] 
ATi Batch production time  Weeks Round ( U[2,4] ) 
 

Table 7.2:  Level of Factors for Beer Production Problem  

Factor Description Unit Distribution / Value 
      Low level ( - ) High level ( + ) 
A Demand probability   0.6 0.8 
B Demand variation kgal/week Round (U[25, 35]) Round (U[20, 40]) 
C Shelf life time  weeks 12 16 
D Lot size  gals Discrete Continuous 
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7.2.2. Numerical Result   

We present the numerical results of the large BPP-SI problem for beer production 

obtained by using five heuristics in terms of average and standard deviation of total cost and 

the average lower bound on the total cost of the LP Relaxation of MIP (RMIP) in Table 7.3. 

The relative gap of each heuristic compared to the lower bound and the average solution time 

for each scenario are shown in Table 7.4.  Furthermore, the system performance including 

utilization and fill rate for each scenario is summarized in Table 7.5.  The statistical analysis 

for the effect of factors on the solution quality is shown in Table 7.6. The confidence interval 

of the multiple comparisons of average total cost between heuristics using Tukey’s procedure 

displays in Table 7.7 in order to compare the performance of heuristics.  

 
Table 7.3: Average and Standard Deviation of Total Cost for Each Heuristic and Average 
Lower Bound on Total Cost for Beer Production Problem 
 
No

A B C D RMIP MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 14,188,270 15,206,454 14,443,332 15,266,633 31,372,866 14,416,155 1,761,170 1,613,948 1,735,338 3,558,573 1,624,603
2 - - - + 14,188,270 15,037,193 14,271,616 15,092,643 31,372,866 14,246,475 1,746,637 1,602,862 1,723,760 3,558,573 1,608,316
3 - - + - 14,188,270 15,376,762 14,442,161 15,563,767 30,172,834 14,416,155 1,821,636 1,619,231 1,786,434 3,413,594 1,624,603
4 - - + + 14,188,270 15,211,088 14,271,506 15,388,593 30,172,834 14,246,475 1,801,488 1,603,366 1,768,200 3,413,594 1,608,316
5 - + - - 14,202,079 15,226,553 14,463,849 15,275,806 31,396,038 14,438,134 1,806,363 1,651,786 1,780,146 3,566,993 1,660,447
6 - + - + 14,202,079 15,054,687 14,289,812 15,109,721 31,396,038 14,265,686 1,789,062 1,636,877 1,765,850 3,566,993 1,642,520
7 - + + - 14,202,079 15,399,860 14,463,107 15,586,854 30,196,902 14,438,134 1,859,970 1,655,122 1,830,027 3,428,323 1,660,447
8 - + + + 14,202,079 15,230,688 14,289,732 15,418,391 30,196,902 14,265,686 1,839,736 1,637,237 1,810,898 3,428,323 1,642,520
9 + - - - 14,328,842 15,374,889 14,581,245 15,445,561 31,503,690 14,565,245 1,595,524 1,462,299 1,565,791 3,508,915 1,466,879

10 + - - + 14,328,842 15,201,770 14,406,679 15,268,598 31,503,690 14,389,362 1,578,074 1,449,337 1,549,265 3,508,915 1,454,860
11 + - + - 14,328,842 15,555,134 14,581,245 15,738,840 30,309,412 14,565,245 1,652,748 1,462,299 1,610,830 3,369,505 1,466,879
12 + - + + 14,328,842 15,383,678 14,406,679 15,564,247 30,309,412 14,389,362 1,633,037 1,449,337 1,593,706 3,369,505 1,454,860
13 + + - - 14,331,996 15,372,577 14,583,987 15,440,540 31,507,538 14,566,758 1,615,495 1,478,257 1,595,006 3,501,768 1,482,502
14 + + - + 14,331,996 15,207,056 14,415,185 15,272,423 31,507,538 14,395,383 1,602,942 1,468,405 1,578,992 3,501,768 1,471,966
15 + + + - 14,331,996 15,559,788 14,583,987 15,743,426 30,312,958 14,566,758 1,671,265 1,478,257 1,636,278 3,367,762 1,482,502
16 + + + + 14,331,996 15,387,381 14,415,185 15,577,895 30,312,958 14,395,383 1,655,141 1,468,405 1,621,241 3,367,762 1,471,966

Factor Average total cost ($) Std. Dev. of total cost ($)
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Table 7.4: Relative Gap and Average Solution time for Each Heuristic for Beer Production 
Problem 
No

A B C D MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 7.18 1.80 7.60 121.12 1.61 0.30 0.32 0.23 0.21 0.27
2 - - - + 5.98 0.59 6.37 121.12 0.41 0.22 0.26 0.23 0.21 0.31
3 - - + - 8.38 1.79 9.69 112.66 1.61 0.32 0.25 0.23 0.20 0.27
4 - - + + 7.21 0.59 8.46 112.66 0.41 0.22 0.24 0.23 0.20 0.27
5 - + - - 7.21 1.84 7.56 121.07 1.66 0.22 0.24 0.24 0.21 0.28
6 - + - + 6.00 0.62 6.39 121.07 0.45 0.22 0.25 0.26 0.21 0.27
7 - + + - 8.43 1.84 9.75 112.62 1.66 0.22 0.27 0.24 0.21 0.27
8 - + + + 7.24 0.62 8.56 112.62 0.45 0.22 0.25 0.24 0.20 0.29
9 + - - - 7.30 1.76 7.79 119.86 1.65 0.23 0.24 0.24 0.23 0.27

10 + - - + 6.09 0.54 6.56 119.86 0.42 0.22 0.28 0.24 0.21 0.27
11 + - + - 8.56 1.76 9.84 111.53 1.65 0.26 0.28 0.24 0.20 0.27
12 + - + + 7.36 0.54 8.62 111.53 0.42 0.23 0.24 0.23 0.21 0.27
13 + + - - 7.26 1.76 7.73 119.84 1.64 0.23 0.25 0.23 0.21 0.27
14 + + - + 6.11 0.58 6.56 119.84 0.44 0.22 0.24 0.25 0.21 0.27
15 + + + - 8.57 1.76 9.85 111.51 1.64 0.24 0.24 0.23 0.21 0.27
16 + + + + 7.36 0.58 8.69 111.51 0.44 0.22 0.25 0.24 0.20 0.27

7.27 1.19 8.13 116.28 1.03 0.24 0.26 0.24 0.21 0.27

Factor Relative Gap compared with RMIP (%) Average solution time (secs)

Average  
 

Table 7.5: Average Utilization and Fill Rate for Each Heuristic for Beer Production Problem 

No
A B C D MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid

1 - - - - 63.57 76.52 64.81 93.81 76.22 81.42 97.80 84.86 34.25 97.45
2 - - - + 67.71 80.46 68.91 93.81 79.90 83.47 99.80 86.95 34.25 99.29
3 - - + - 61.68 76.52 60.68 94.54 76.22 79.04 97.81 80.56 39.84 97.45
4 - - + + 65.70 80.41 64.65 94.54 79.90 81.03 99.80 82.57 39.84 99.29
5 - + - - 63.60 76.46 64.84 93.81 76.15 81.42 97.69 84.82 34.25 97.29
6 - + - + 67.71 80.52 69.10 93.81 79.93 83.44 99.73 86.89 34.25 99.14
7 - + + - 61.67 76.46 60.47 94.54 76.15 78.96 97.70 80.29 39.84 97.29
8 - + + + 65.62 80.48 64.56 94.54 79.93 80.95 99.73 82.35 39.84 99.14
9 + - - - 63.80 77.15 64.98 93.77 76.83 80.94 97.79 84.36 34.21 97.38

10 + - - + 68.02 81.16 69.12 93.77 80.59 83.06 99.84 86.50 34.21 99.25
11 + - + - 61.86 77.15 60.78 94.50 76.83 78.49 97.79 79.95 39.79 97.38
12 + - + + 66.04 81.16 64.97 94.50 80.59 80.55 99.84 82.06 39.79 99.25
13 + + - - 63.90 77.05 65.07 93.77 76.72 81.02 97.72 84.44 34.18 97.29
14 + + - + 67.99 81.13 69.21 93.77 80.59 82.99 99.74 86.48 34.18 99.17
15 + + + - 61.85 77.05 60.72 94.50 76.72 78.46 97.72 79.92 39.77 97.29
16 + + + + 65.99 81.13 64.75 94.50 80.59 80.54 99.74 81.91 39.77 99.17

Factor Utilization (%) Fill rate (%)

 

 As shown in Tables 7.3-7.5, we make the following observations:  

• The averages of total cost from the Hybrid and MLFL-B heuristics are very close to 

the lower bound of average total cost in every scenario, which ranges from 0.41% to 

1.84%.   The averages of total cost from the MLFL-A and MLFL-C heuristics result 

in a fairly good solution with the range of their relative gaps between 6% and 10%. 
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However, the FOQ heuristic results in very poor result for the large problem. Its 

relative gap is extremely high up to 121%. The main reason for this is that the FOQ 

heuristic does not take account to the benefit of releasing the batch of product in 

selecting the product to produce first. As a result, unworthy production possibly 

occurs. 

• While the branch and bound method cannot optimally solve for this large problem 

instance within required time limit of one day or 86,400 seconds, the solution time for 

each heuristic is very small of 0.32 seconds or less for the large BPP-SI problems for 

beer production for every scenario. Among heuristics, the Hybrid generally takes the 

longest amount of computational time in almost every scenario due to more 

information needed to be computed for decision making at each period. 

• On average, using continuous lot size slightly reduces the total cost by 1.20% for 

every heuristic except the FOQ heuristic. As the FOQ heuristic employs the lot size 

as zero or full capacity for both discrete and continuous cases, there is no difference 

of total cost.   

• Compared to other heuristics, the Hybrid and MLFL-B heuristics result in very high 

average fill rate around 97-99% and low utilization of 60-70%. Accordingly, the both 

heuristic provides the good result in terms of total cost.   On the other hand, FOQ 

heuristic results in extremely low average fill rate around 30-40%, so its total cost is 

extremely higher than that of other heuristics.  

Next, we examine how factors of interest may affect the solution quality. The 

statistical analysis for testing whether the effect of factors on total cost is significant by using 

analysis of variance with alpha of 0.05 is shown in Table 7.6  
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Table 7.6:   Statistical output for analysis of the effect of factors on total cost of beer production

Analysis of Variance for total cost for a beer manufacturer using MLFL-A

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.05E+11 1.05E+11 1.05E+11 19055.67 0.000
DemVar 1 524661930 524661930 524661930 94.80 0.000
ShelfLife 1 1.27E+11 1.27E+11 1.27E+11 22874.19 0.000
LotSize 1 1.15E+11 1.15E+11 1.15E+11 20840.97 0.000
DemProb*DemVar 1 297217600 297217600 297217600 53.70 0.001
DemProb*ShelfLife 1 81802980 81802980 81802980 14.78 0.012
DemProb*LotSize 1 2665056 2665056 2665056 0.48 0.519
DemVar*ShelfLife 1 6874884 6874884 6874884 1.24 0.316
DemVar*LotSize 1 18496 18496 18496 0.00 0.956
ShelfLife*LotSize 1 69960 69960 69960 0.01 0.915
Error 5 2.77E+07 27671719 5534344
Total 15 3.48E+11

Analysis of Variance for total cost for a beer manufacturer using MLFL-B

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.05E+11 1.05E+11 1.05E+11 19055.67 0.000
DemVar 1 524661930 524661930 524661930 94.80 0.000
ShelfLife 1 1.27E+11 1.27E+11 1.27E+11 22874.19 0.000
LotSize 1 1.15E+11 1.15E+11 1.15E+11 20840.97 0.000
DemProb*DemVar 1 297217600 297217600 297217600 53.70 0.001
DemProb*ShelfLife 1 81802980 81802980 81802980 14.78 0.012
DemProb*LotSize 1 2665056 2665056 2665056 0.48 0.519
DemVar*ShelfLife 1 6874884 6874884 6874884 1.24 0.316
DemVar*LotSize 1 18496 18496 18496 0.00 0.956
ShelfLife*LotSize 1 69960 69960 69960 0.01 0.915
Error 5 2.77E+07 27671719 5534344
Total 15 3.48E+11

Analysis of Variance for total cost for a beer manufacturer using MLFL-C

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.14E+11 1.14E+11 1.14E+11 65834.26 0.000
DemVar 1 578089892 578089892 578089892 334.55 0.000
ShelfLife 1 3.63E+11 3.63E+11 3.63E+11 210094.8 0.000
LotSize 1 1.17E+11 1.17E+11 1.17E+11 67780.24 0.000
DemProb*DemVar 1 241010100 241010100 241010100 139.48 0.000
DemProb*ShelfLife 1 15046641 15046641 15046641 8.71 0.032
DemProb*LotSize 1 139129 139129 139129 0.08 0.788
DemVar*ShelfLife 1 132618256 132618256 132618256 76.75 0.000
DemVar*LotSize 1 66113161 66113161 66113161 38.26 0.002
ShelfLife*LotSize 1 121452 121452 121452 0.07 0.802
Error 5 8.64E+06 8639737 1727947
Total 15 5.95E+11

Analysis of Variance for total cost for a beer manufacturer using FOQ

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 6.1246E+10 6.1246E+10 6.1246E+10 853479.44 0.000
DemVar 1 746218489 746218489 746218489 10398.78 0.000
ShelfLife 1 5.73E+12 5.73E+12 5.73E+12 79867367.2 0.000
LotSize 1 0 0 0 0 1.000
DemProb*DemVar 1 396925929 396925929 396925929 5531.28 0.000
DemProb*ShelfLife 1 26574025 26574025 26574025 370.32 0.000
DemProb*LotSize 1 0 0 0 0 1.000
DemVar*ShelfLife 1 88209 88209 88209 1.23 0.318
DemVar*LotSize 1 0 0 0 0 1.000
ShelfLife*LotSize 1 0 0 0 0 1.00
Error 5 3.59E+05 358801 71760
Total 15 5.79E+12

Analysis of Variance for total cost for a beer manufacturer using Hybrid

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 7.5707E+10 7.5707E+10 7.5707E+10 28600.95 0.000
DemVar 1 593507044 593507044 593507044 224.22 0.000
ShelfLife 1 0 0 0 0 1.000
LotSize 1 1.19E+11 1.19E+11 1.19E+11 44885.86 0.000
DemProb*DemVar 1 283181584 283181584 283181584 106.98 0.000
DemProb*ShelfLife 1 0 0 0 0 1.000
DemProb*LotSize 1 6579225 6579225 6579225 2.49 0.176
DemVar*ShelfLife 1 0 0 0 0 1.000
DemVar*LotSize 1 756900 756900 756900 0.29 0.616
ShelfLife*LotSize 1 0 0 0 0 1
Error 5 1.32E+07 13235044 2647009
Total 15 1.95E+11
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From the statistical analyses in Table 7.6, the following conclusions can be made 

about the effects of factors on total cost of BPP-SI.  Both demand probability and demand 

variation are significant factors affecting total cost for every heuristic. The type of lot size 

is also the significant factor affecting total cost for every heuristic except the FOQ. As 

mentioned earlier, the FOQ heuristic employs the lot size as zero or full capacity for both 

discrete and continuous. There is evidence of shelf-life effect on total cost for MLFL-A, 

MLFL-C, and FOQ heuristics.  

Next, we present the statistical analyses of the pairwise comparisons of the 

average total cost between heuristics.  

Table 7.7: Pairwise Confidence Intervals for Differences of the Average Total Cost         
between Heuristics with the Confidence Level of 95% for Beer Production Problem 
No

A B C D LB UB LB UB LB UB LB UB LB UB LB UB
1 - - - - -873,226 818,872 -1,609,170 82,927 -1,636,347 55,750 -906,228 785,869 -16,952,281 -15,260,184 -17,012,461 -15,320,364
2 - - - + -871,189 820,908 -1,611,626 80,471 -1,636,766 55,331 -901,499 790,598 -17,126,271 -15,434,174 -17,181,721 -15,489,624
3 - - + - -872,055 820,042 -1,780,649 -88,552 -1,806,656 -114,559 -1,033,054 659,043 -15,455,115 -13,763,018 -15,642,120 -13,950,023
4 - - + + -871,079 821,018 -1,785,631 -93,534 -1,810,661 -118,564 -1,023,553 668,544 -15,630,290 -13,938,193 -15,807,794 -14,115,697
5 - + - - -871,764 820,334 -1,608,752 83,345 -1,634,467 57,630 -895,302 796,795 -16,966,280 -15,274,183 -17,015,534 -15,323,437
6 - + - + -870,175 821,923 -1,610,924 81,173 -1,635,050 57,047 -901,083 791,014 -17,132,366 -15,440,268 -17,187,400 -15,495,303
7 - + + - -871,022 821,075 -1,782,801 -90,704 -1,807,774 -115,677 -1,033,043 659,054 -15,456,096 -13,763,999 -15,643,091 -13,950,993
8 - + + + -870,095 822,002 -1,787,004 -94,907 -1,811,051 -118,954 -1,033,752 658,345 -15,624,559 -13,932,462 -15,812,262 -14,120,165
9 + - - - -862,048 830,049 -1,639,693 52,404 -1,655,692 36,405 -916,720 775,377 -16,904,178 -15,212,081 -16,974,850 -15,282,752

10 + - - + -863,366 828,732 -1,641,140 50,957 -1,658,457 33,640 -912,876 779,221 -17,081,140 -15,389,043 -17,147,968 -15,455,871
11 + - + - -862,048 830,049 -1,819,938 -127,841 -1,835,938 -143,841 -1,029,755 662,343 -15,416,620 -13,724,523 -15,600,326 -13,908,229
12 + - + + -863,366 828,732 -1,823,048 -130,950 -1,840,365 -148,267 -1,026,617 665,480 -15,591,214 -13,899,117 -15,771,783 -14,079,686
13 + + - - -863,278 828,819 -1,634,638 57,459 -1,651,867 40,230 -914,012 778,085 -16,913,046 -15,220,948 -16,981,009 -15,288,912
14 + + - + -865,850 826,247 -1,637,920 54,177 -1,657,721 34,376 -911,415 780,682 -17,081,163 -15,389,066 -17,146,530 -15,454,433
15 + + + - -863,278 828,819 -1,821,850 -129,752 -1,839,079 -146,982 -1,029,686 662,411 -15,415,581 -13,723,483 -15,599,218 -13,907,121
16 + + + + -865,850 826,247 -1,818,245 -126,147 -1,838,046 -145,949 -1,036,563 655,534 -15,581,111 -13,889,014 -15,771,626 -14,079,529

CMLFL-A - CMLFL-C CMLFL-C - CFOQ CMLFL-A - CFOQFactor CHybrid - CMLFL-B CMLFL-B - CMLFL-A CHybrid - CMLFL-A

 
 

 According to Table 7.7, we can conclude that there is no evidence that average 

total cost obtained by Hybrid and MLFL-B heuristics are any different since its interval 

includes zero. However, Hybrid provides slightly lower average total cost than MLFL-B 

by approximately 0.2%.  The statistics indicate that when the factor of shelf-life is at low 

level, MLFL-B and MLFL-A heuristics provide different average total cost, and Hybrid 

and MLFL-A heuristics result in the different average total cost. There is no evidence that 

average total costs obtained by MLFL-A and MLFL-C heuristics are any different, but 
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MLFL-A yields very slightly lower average total cost than MLFL-C by 0.4-1.4%.  The 

experiment indicates that the MLFL-C and FOQ heuristics provide different average total 

costs. The MLFL-C heuristic results in the average total cost lower than FOQ heuristic.  

There is evidence that average total costs obtained by the FOQ and MLFL-A heuristics 

are different because its interval does not include zero. The MLFL-A heuristic results in 

the average total cost lower than FOQ heuristic. Ranking heuristics from best to worst is 

Hybrid, MLFL-B, MLFL-A, MLFL-C and FOQ.  

 

7.3  Computational Study for a Vaccine Manufacturer    

In this section, five heuristics are applied to solve a large BPP-SI problem for a 

vaccine manufacturer.  The manufacturer has 8 different types of vaccine and 16 

incubators with equal capacity of 120 liters. The manufacturer is interested in finding the 

efficient MPS over the next 26 weeks and determining key factors, which have 

significant effect on the system performance.   

 

7.3.1 Parameters and Level of Factors                 

We summarize the distribution and values of parameters for large problem of 

vaccine production in Table 7.8 as well as the two levels of four factors of interest on the 

system performance in Table 7.9. Hence, the total number of scenarios is 16. For each 

scenario, we randomly generate 100 data instances to evaluate the overall performance of 

heuristics. 
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Table 7.8:  Distribution and Values of Parameters for Vaccine Production Problem 

Symbol Description Unit Distribution / Value 
C Capacity of each machine   Liter 120 
PCi Production cost  $/liter U[200,500] 
HCi Holding cost $/liter/week 0.15*PCi/52 
DCi Disposal cost for spoilage $/liter 0.25*PCi 
UCi Penalty cost for unmet demand $/liter 1.5*PCi 
SCi Setup cost  $/setup U[500,1000] 
ATi Batch production time  Weeks Round ( U[2,4] ) 
 

Table 7.9: Level of Factors for Vaccine Production Problem 

Factor Description Unit Distribution / Value 
      Low level ( - ) High level ( + ) 
A Demand probability   0.6 0.8 
B Demand variation liter/week Round (U[50, 70]) Round (U[40, 80]) 
C Shelf life time  weeks 4 8 
D Lot size  liter Discrete Continuous 

 

7.3.2. Numerical result   

We present the numerical results of the large BPP-SI problem for vaccine 

production obtained by using five heuristics. The system performance is evaluated in 

terms of average and standard deviation of total cost and the average lower bound on the 

total cost of the LP Relaxation of MIP (RMIP) in Table 7.10. The relative gap of each 

heuristic compared to the lower bound and the average solution time for each scenario are 

shown in Table 7.11.  Furthermore, other measures of system performance including 

utilization and fill rate for each scenario are summarized in Table 7.12.  The statistical 

analysis for the effect of factors on the average total cost is shown in Table 7.13. The 

confidence interval of the multiple comparisons of average total cost between heuristics 

displays in Table 7.14. 
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Table 7.10: Average and Standard Deviation of Total Cost for Each Heuristic and 
Average Lower Bound on Total Cost for Vaccine Production Problem 
 
No

A B C D RMIP MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 3,928,044 4,095,774 4,095,940 4,095,774 10,389,181 3,998,682 400,710 400,688 400,710 1,538,191 394,717
2 - - - + 3,928,044 3,974,269 3,974,266 3,974,269 10,389,181 3,941,802 393,269 393,271 393,269 1,538,191 392,931
3 - - + - 3,928,044 4,164,793 4,048,849 4,145,418 9,704,874 3,997,317 421,289 399,894 418,199 982,682 398,211
4 - - + + 3,928,044 4,077,890 3,978,180 4,057,186 9,704,874 3,941,786 415,614 394,444 409,869 982,682 392,928
5 - + - - 3,926,428 4,198,762 4,198,816 4,198,762 10,388,342 3,999,157 419,219 419,277 419,219 1,542,400 399,186
6 - + - + 3,926,428 3,972,646 3,972,578 3,972,646 10,388,342 3,940,456 402,475 402,404 402,475 1,542,400 402,377
7 - + + - 3,926,428 4,190,599 4,059,113 4,160,789 9,706,111 3,996,779 430,757 405,549 422,752 985,347 405,295
8 - + + + 3,926,428 4,077,126 3,976,471 4,055,628 9,706,111 3,940,435 425,870 403,430 418,939 985,347 402,433
9 + - - - 3,974,919 4,142,918 4,142,918 4,142,918 10,475,819 4,046,642 360,279 360,279 360,279 1,512,470 351,208

10 + - - + 3,974,919 4,020,755 4,020,755 4,020,755 10,475,819 3,988,565 346,560 346,560 346,560 1,512,470 345,984
11 + - + - 3,974,919 4,217,992 4,092,878 4,195,292 9,780,234 4,046,601 374,253 354,966 368,912 967,062 351,313
12 + - + + 3,974,919 4,132,207 4,024,021 4,109,092 9,780,234 3,988,589 365,016 347,968 360,817 967,062 345,975
13 + + - - 3,977,495 4,249,141 4,248,513 4,249,141 10,476,536 4,047,681 378,800 378,372 378,800 1,521,997 356,269
14 + + - + 3,977,495 4,023,255 4,023,095 4,023,255 10,476,536 3,991,255 352,901 352,892 352,901 1,521,997 352,562
15 + + + - 3,977,495 4,244,892 4,102,886 4,211,701 9,784,065 4,047,314 380,307 359,533 373,555 973,782 357,147
16 + + + + 3,977,495 4,135,656 4,026,424 4,111,955 9,784,065 3,991,262 372,023 354,193 367,405 973,782 352,545

Factor Average total cost ($) Std. Dev. of total cost ($)

 

 
 
Table 7.11: Relative Gap and Average Solution time for Each Heuristic for Vaccine 
Production Problem 
 
No

A B C D MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 4.27 4.27 4.27 164.49 1.80 0.22 0.21 0.19 0.17 0.22
2 - - - + 1.18 1.18 1.18 164.49 0.35 0.17 0.18 0.20 0.15 0.23
3 - - + - 6.03 3.08 5.53 147.07 1.76 0.18 0.18 0.17 0.14 0.18
4 - - + + 3.81 1.28 3.29 147.07 0.35 0.16 0.16 0.16 0.14 0.19
5 - + - - 6.94 6.94 6.94 164.57 1.85 0.15 0.16 0.16 0.14 0.18
6 - + - + 1.18 1.18 1.18 164.57 0.36 0.16 0.16 0.17 0.14 0.19
7 - + + - 6.73 3.38 5.97 147.20 1.79 0.15 0.16 0.16 0.16 0.19
8 - + + + 3.84 1.27 3.29 147.20 0.36 0.16 0.16 0.16 0.14 0.19
9 + - - - 4.23 4.23 4.23 163.55 1.80 0.15 0.16 0.16 0.14 0.18

10 + - - + 1.15 1.15 1.15 163.55 0.34 0.16 0.16 0.16 0.14 0.18
11 + - + - 6.12 2.97 5.54 146.05 1.80 0.15 0.16 0.16 0.15 0.20
12 + - + + 3.96 1.24 3.38 146.05 0.34 0.15 0.17 0.16 0.14 0.20
13 + + - - 6.83 6.81 6.83 163.40 1.76 0.18 0.16 0.16 0.14 0.19
14 + + - + 1.15 1.15 1.15 163.40 0.35 0.16 0.16 0.16 0.14 0.19
15 + + + - 6.72 3.15 5.89 145.99 1.76 0.15 0.16 0.16 0.14 0.18
16 + + + + 3.98 1.23 3.38 145.99 0.35 0.15 0.16 0.16 0.14 0.18

4.26 2.78 3.95 155.29 1.07 0.16 0.17 0.16 0.15 0.19

Factor Relative Gap compared with RMIP (%) Average solution time (secs)

Average  

 
 
 
 
 

 
 
 
 
 



 

 128

Table 7.12: Average Utilization and Fill Rate for Each Heuristic for Vaccine Production 
Problem 
No

A B C D MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 64.37 64.37 64.37 93.35 63.70 97.19 97.19 97.19 21.39 97.66
2 - - - + 82.92 82.92 82.92 93.35 67.62 99.99 99.99 99.99 21.39 99.97
3 - - + - 59.42 63.68 60.07 93.62 63.74 90.76 97.43 92.59 33.88 97.75
4 - - + + 67.90 69.66 68.13 93.62 67.56 93.56 99.99 95.71 33.88 99.97
5 - + - - 65.60 65.61 65.60 93.35 63.54 97.11 97.11 97.11 21.39 97.56
6 - + - + 82.95 82.94 82.95 93.35 67.59 99.99 99.99 99.99 21.39 99.95
7 - + + - 59.66 63.59 60.55 93.62 63.54 90.70 97.28 92.91 33.88 97.63
8 - + + + 67.97 69.74 68.18 93.62 67.51 93.51 99.99 95.68 33.88 99.95
9 + - - - 65.04 65.04 65.04 93.31 64.35 97.15 97.15 97.15 20.79 97.57

10 + - - + 83.22 83.22 83.22 93.31 68.36 99.99 99.99 99.99 20.79 99.98
11 + - + - 59.85 64.30 60.58 93.62 64.35 90.29 97.30 92.31 33.58 97.57
12 + - + + 68.07 70.16 68.39 93.62 68.36 93.06 99.99 95.41 33.58 99.98
13 + + - - 66.55 66.56 66.55 93.31 64.45 97.28 97.29 97.28 20.79 97.68
14 + + - + 83.23 83.21 83.23 93.31 68.39 99.97 99.98 99.97 20.79 99.97
15 + + + - 60.23 64.44 61.14 93.62 64.44 90.33 97.37 92.61 33.56 97.67
16 + + + + 68.08 70.19 68.50 93.62 68.39 93.01 99.99 95.38 33.56 99.97

Factor Utilization (%) Fill rate (%)

 

As illustrated in Tables 7.9-7.11, we make the following observations:  

• The averages of total cost from the Hybrid heuristic are very close to the lower 

bound of average total cost in every scenario, which ranges from 0.34% to 1.85%.   

The averages of total cost from the MLFL-A, MLFL-B and MLFL-C heuristics 

result in a fairly good solution with the range of their relative gaps between 1% 

and 7%. However, the FOQ heuristic results in very poor result for the large 

problem. Its relative gap is extremely high up to 165%. As the FOQ heuristic does 

not consider the benefit of releasing the batch of product in selecting the product 

to produce first, unworthy production possibly occurs. 

• Similar to the case for the beer production, the branch and bound method cannot 

optimally solve for this large problem instance within required time limit of one 

day or 86,400 seconds, the solution time for each heuristic is very small of 0.23 

seconds or less for the large BPP-SI problems for vaccine production for every 

scenario.  
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• On average, using continuous lot size slightly reduces the total cost by around 

1.41-5.67% for every heuristic except the FOQ heuristic. As the FOQ heuristic 

employs the lot size as zero or full capacity for both discrete and continuous 

cases, there is no difference of total cost.   

• Among heuristics, the Hybrid, MLFL-A, and MLFL-B, MLFL-C heuristics result 

in fairly high average fill rate over 90%. The Hybrid heuristic in general has the 

lowest utilization of 63-69%. Consequently, the Hybrid heuristic provides the 

lowest average total cost.   On the other hand, the FOQ heuristic results in 

extremely low average fill rate around 20-34%, so its average total cost is 

considerably higher than that of other heuristics.  

Next, we examine how factors of interest may affect the solution quality. The 

analysis of variance with alpha of 0.05 is performed to test whether the effect of factors 

on total cost is significant in Table 7.13  
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Table 7.13:   Statistical output for analysis of the effect of factors on total cost of vaccine production

Analysis of Variance for total cost for a vaccine manufacturer using MLFL-A

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.08E+10 1.08E+10 1.08E+10 34.27 0.002
DemVar 1 4404943715 4404943715 4404943715 14.03 0.013
ShelfLife 1 1.99E+10 1.99E+10 1.99E+10 63.23 0.001
LotSize 1 7.44E+10 7.44E+10 7.44E+10 236.93 0.000
DemProb*DemVar 1 10025139 10025139 10025139 0.03 0.865
DemProb*ShelfLife 1 41348115 41348115 41348115 0.13 0.732
DemProb*LotSize 1 1517208 1517208 1517208 0.00 0.947
DemVar*ShelfLife 1 1495697613 1495697613 1495697613 4.76 0.081
DemVar*LotSize 1 4171706627 4171706627 4171706627 13.28 0.015
ShelfLife*LotSize 1 5635242158 5635242158 5635242158 17.95 0.008
Error 5 1.57E+09 1570105567 314021113
Total 15 1.22E+11

Analysis of Variance for total cost for a vaccine manufacturer using MLFL-B

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 8896120921 8896120921 8896120921 20.02 0.007
DemVar 1 3308809245 3308809245 3308809245 7.45 0.041
ShelfLife 1 8466714218 8466714218 8466714218 19.06 0.007
LotSize 1 6.18E+10 6.18E+10 6.18E+10 139.02 0.000
DemProb*DemVar 1 7026476 7026476 7026476 0.02 0.905
DemProb*ShelfLife 1 6356702 6356702 6356702 0.01 0.909
DemProb*LotSize 1 4329521 4329521 4329521 0.01 0.925
DemVar*ShelfLife 1 2212691041 2212691041 2212691041 4.98 0.076
DemVar*LotSize 1 3231837226 3231837226 3231837226 7.27 0.043
ShelfLife*LotSize 1 9843765048 9843765048 9843765048 22.16 0.005
Error 5 2.22E+09 2221456793 444291359
Total 15 9.9967E+10

Analysis of Variance for total cost for a vaccine manufacturer using MLFL-C

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.02E+10 1.02E+10 1.02E+10 25.68 0.004
DemVar 1 3695819246 3695819246 3695819246 9.32 0.028
ShelfLife 1 8.54E+09 8.54E+09 8.54E+09 21.52 0.006
LotSize 1 7.22E+10 7.22E+10 7.22E+10 182.14 0.000
DemProb*DemVar 1 10267218 10267218 10267218 0.03 0.878
DemProb*ShelfLife 1 12961800 12961800 12961800 0.03 0.864
DemProb*LotSize 1 3079148 3079148 3079148 0.01 0.933
DemVar*ShelfLife 1 1958128876 1958128876 1958128876 4.94 0.077
DemVar*LotSize 1 3564358655 3564358655 3564358655 8.99 0.030
ShelfLife*LotSize 1 6254081348 6254081348 6254081348 15.77 0.011
Error 5 1.98E+09 1982744511 396548902
Total 15 1.08E+11

Analysis of Variance for total cost for a vaccine manufacturer using FOQ

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 2.692E+10 2.692E+10 2.692E+10 499700 0.000
DemVar 1 6115729 6115729 6115729 114 0.000
ShelfLife 1 1.90E+12 1.90E+12 1.90E+12 35211984 0.000
LotSize 1 0 0 0 0 1.000
DemProb*DemVar 1 4305625 4305625 4305625 80 0.000
DemProb*ShelfLife 1 115756081 115756081 115756081 2149 0.000
DemProb*LotSize 1 0 0 0 0 1.000
DemVar*ShelfLife 1 6734025 6734025 6734025 125 0.000
DemVar*LotSize 1 0 0 0 0 1.000
ShelfLife*LotSize 1 0 0 0 0 1.000
Error 5 2.69E+05 269361 53872
Total 15 1.92E+12

Analysis of Variance for total cost for a vaccine manufacturer using Hybrid

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 9579270939 9579270939 9579270939 1463.24 0.000
DemVar 1 1185377 1185377 1185377 1.81 0.024
ShelfLife 1 1080041 1080041 1080041 1.65 0.026
LotSize 1 1.30E+10 1.30E+10 1.30E+10 1986.41 0.000
DemProb*DemVar 1 6094727 6094727 6094727 9.31 0.028
DemProb*ShelfLife 1 723776 723776 723776 1.11 0.341
DemProb*LotSize 1 77145 77145 77145 0.12 0.745
DemVar*ShelfLife 1 115770 115770 115770 0.18 0.692
DemVar*LotSize 1 59658 59658 59658 0.09 0.775
ShelfLife*LotSize 1 1073814 1073814 1073814 1.64 0.256
Error 5 3.27E+06 3272002 654400
Total 15 555893240
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From the statistical analyses in Table 7.13, the following conclusions can be made 

about the effects of factors on total cost of BPP-SI for vaccine production.  Demand 

probability, demand variation and shelf-life are significant factors affecting total cost for 

every heuristic. The type of lot size is also the significant factor affecting total cost for 

every heuristic except the FOQ heuristic. As noted earlier, the FOQ heuristic employs the 

lot size as zero or full capacity for both discrete and continuous cases.  

Next, we show the statistical analyses of the pairwise comparisons of the average 

total cost between heuristics.  

Table 7.14: Pairwise Confidence Intervals for Differences of the Average Total Cost 
between Heuristics with the Confidence Level of 95% for Vaccine Production Problem 
No

A B C D LB UB LB UB LB UB LB UB LB UB LB UB
1 - - - - -396,428 201,911 -299,003 299,336 -396,262 202,078 -299,170 299,170 -6,592,577 -5,994,238 -6,592,577 -5,994,238
2 - - - + -331,635 266,705 -299,172 299,167 -331,637 266,703 -299,170 299,170 -6,714,082 -6,115,743 -6,714,082 -6,115,743
3 - - + - -350,702 247,638 -415,113 183,226 -466,645 131,694 -279,795 318,545 -5,858,626 -5,260,286 -5,839,251 -5,240,911
4 - - + + -335,563 262,776 -398,880 199,460 -435,273 163,066 -278,466 319,873 -5,946,858 -5,348,518 -5,926,154 -5,327,814
5 - + - - -498,829 99,510 -299,115 299,224 -498,775 99,565 -299,170 299,170 -6,488,750 -5,890,410 -6,488,750 -5,890,410
6 - + - + -331,292 267,048 -299,238 299,102 -331,360 266,980 -299,170 299,170 -6,714,866 -6,116,527 -6,714,866 -6,116,527
7 - + + - -361,503 236,836 -430,656 167,684 -492,989 105,350 -269,360 328,980 -5,844,492 -5,246,152 -5,814,682 -5,216,342
8 - + + + -335,206 263,133 -399,824 198,515 -435,861 162,479 -277,672 320,667 -5,949,652 -5,351,313 -5,928,155 -5,329,815
9 + - - - -395,445 202,894 -299,170 299,170 -395,445 202,894 -299,170 299,170 -6,632,071 -6,033,731 -6,632,071 -6,033,731

10 + - - + -331,359 266,980 -299,170 299,170 -331,359 266,980 -299,170 299,170 -6,754,234 -6,155,894 -6,754,234 -6,155,894
11 + - + - -345,446 252,893 -424,284 174,055 -470,561 127,779 -276,470 321,870 -5,884,111 -5,285,772 -5,861,411 -5,263,072
12 + - + + -334,602 263,738 -407,356 190,984 -442,788 155,552 -276,055 322,285 -5,970,312 -5,371,972 -5,947,197 -5,348,857
13 + + - - -500,002 98,338 -299,798 298,542 -500,630 97,710 -299,170 299,170 -6,526,565 -5,928,225 -6,526,565 -5,928,225
14 + + - + -331,010 267,330 -299,330 299,010 -331,170 267,170 -299,170 299,170 -6,752,451 -6,154,111 -6,752,451 -6,154,111
15 + + + - -354,741 243,598 -441,177 157,163 -496,748 101,591 -265,978 332,362 -5,871,534 -5,273,195 -5,838,343 -5,240,003
16 + + + + -334,331 264,009 -408,402 189,938 -443,563 154,777 -275,469 322,870 -5,971,280 -5,372,940 -5,947,579 -5,349,240

CMLFL-A - CMLFL-C CMLFL-C - CFOQ CMLFL-A - CFOQFactor CHybrid - CMLFL-B CMLFL-B - CMLFL-A CHybrid - CMLFL-A

 

 

According to Table 7.10 and Table 7.14, we can conclude that there is no 

evidence that average total costs obtained by the Hybrid and MLFL-A, MLFL-B and 

MLFL-C heuristics are any different since its interval includes zero. The Hybrid heuristic 

provides the lowest average total cost and the smallest standard deviation of average total 

cost for all scenarios, while the FOQ heuristic provides the highest average total cost. 
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7.4 Computational Study for a Yoghurt Manufacturer   

In this section, we apply five heuristics to solve a large BPP-SI problem for a 

yoghurt manufacturer.  The manufacturer has 10 different types of yoghurt and 8 

incubators with equal capacity of 10000 liters. The manufacturer is interested in finding 

the efficient MPS over the next 30 days and determining which factors have significant 

effect on the system performance.  

 

7.4.1 Parameters and Level of Factors                 

We summarize the distribution and values of parameters for large problem of 

yoghurt production in Table 7.15 and the two levels of four factors of interest on the 

system performance in Table 7.16. Hence, the total number of scenarios is 16. For each 

scenario, we randomly generate 100 data instances to evaluate the overall performance of 

heuristics. 

 

Table 7.15:  Distribution and Values of Parameters for Yoghurt Production Problem 

Symbol Description Unit Distribution / Value 
C Capacity of each machine   Liter 10000 
PCi Production cost  $/liter U[0.4,0.6] 
HCi Holding cost $/liter/day 0.0004*PCi 
DCi Disposal cost for spoilage $/liter 0.15*PCi 
UCi Penalty cost for unmet demand $/liter 1.4*PCi 
SCi Setup cost  $/setup U[400,800] 
ATi Batch production time  Day 1 
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Table 7.16:  Level of Factors for Yoghurt Production Problem 

Factor Description Unit Distribution / Value 
      Low level ( - ) High level ( + ) 
A Demand probability   0.6 0.8 
B Demand variation kliter/day Round (U[10, 14]) Round (U[8, 16]) 
C Shelf life time  Days 10 20 
D Lot size  Liter Discrete Continuous 

 

7.4.2 Numerical result   

We present the numerical results of the large BPP-SI problem for yoghurt 

production obtained by using the five heuristics. The system performance is evaluated in 

terms of average and standard deviation of total cost and the average lower bound on the 

total cost of the LP Relaxation of the MIP (RMIP) in Table 7.17. The relative gap of each 

heuristic compared to the lower bound and the average solution time for each scenario are 

shown in Table 7.18.  Furthermore, other performance measures including utilization and 

fill rate for each scenario are summarized in Table 7.19.  The statistical analysis for the 

effect of factors on the average total cost is shown in Table 7.20. The confidence interval 

of the multiple comparisons of average total cost between heuristics displays in Table 

7.21. 
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Table 7.17: Average and Standard Deviation of Total Cost for Each Heuristic and 
Average Lower Bound on Total Cost for Yoghurt Production Problem 
 
No

A B C D RMIP MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 2,083,295  2,208,125 2,145,382 2,205,207 2,378,672 2,138,752 133,006 131,801 133,519 126,294 131,069
2 - - - + 2,083,295  2,203,016 2,145,352 2,199,669 2,378,672 2,136,007 132,719 132,040 133,277 126,294 131,237
3 - - + - 2,083,295  2,224,042 2,145,382 2,221,159 2,378,378 2,138,752 130,358 131,801 131,452 128,021 131,069
4 - - + + 2,083,295  2,218,862 2,145,352 2,216,038 2,378,378 2,136,007 130,222 132,040 131,332 128,021 131,237
5 - + - - 2,084,956  2,208,032 2,162,312 2,204,813 2,380,447 2,139,289 134,812 136,145 135,164 125,780 132,923
6 - + - + 2,084,956  2,202,927 2,161,293 2,199,292 2,380,447 2,136,120 134,504 136,879 135,047 125,780 132,984
7 - + + - 2,084,956  2,224,230 2,162,312 2,221,491 2,379,690 2,139,289 132,344 136,145 133,489 130,798 132,923
8 - + + + 2,084,956  2,219,036 2,161,293 2,216,267 2,379,690 2,136,120 131,938 136,879 133,089 130,798 132,984
9 + - - - 2,093,253  2,221,326 2,159,046 2,217,879 2,389,694 2,152,053 87,007 85,254 86,389 90,862 85,562

10 + - - + 2,093,253  2,216,080 2,159,046 2,212,659 2,389,694 2,149,509 86,833 85,254 86,153 90,862 85,403
11 + - + - 2,093,253  2,237,153 2,159,046 2,234,175 2,389,496 2,152,053 85,309 85,254 86,593 92,122 85,562
12 + - + + 2,093,253  2,231,958 2,159,046 2,228,893 2,389,496 2,149,509 84,975 85,254 86,320 92,122 85,403
13 + + - - 2,094,433  2,208,032 2,162,312 2,204,813 2,380,447 2,139,289 134,812 136,145 135,164 125,780 132,923
14 + + - + 2,094,433  2,202,927 2,161,293 2,199,292 2,380,447 2,136,120 134,504 136,879 135,047 125,780 132,984
15 + + + - 2,094,433  2,224,230 2,162,312 2,221,491 2,379,690 2,139,289 132,344 136,145 133,489 130,798 132,923
16 + + + + 2,094,433  2,219,036 2,161,293 2,216,267 2,379,690 2,136,120 131,938 136,879 133,089 130,798 132,984

Factor Average total cost ($) Std. Dev. of total cost ($)

 

 
 
Table 7.18: Relative Gap and Average Solution time for Each Heuristic for Yoghurt 
Production Problem 
 
No

A B C D MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 5.99 2.98 5.85 14.18 2.66 0.36 0.42 0.30 0.25 0.34
2 - - - + 5.75 2.98 5.59 14.18 2.53 0.35 0.41 0.29 0.24 0.38
3 - - + - 6.76 2.98 6.62 14.16 2.66 0.26 0.33 0.28 0.23 0.32
4 - - + + 6.51 2.98 6.37 14.16 2.53 0.26 0.30 0.28 0.23 0.32
5 - + - - 5.90 3.71 5.75 14.17 2.61 0.26 0.29 0.28 0.23 0.34
6 - + - + 5.66 3.66 5.48 14.17 2.45 0.27 0.29 0.32 0.23 0.32
7 - + + - 6.68 3.71 6.55 14.14 2.61 0.26 0.29 0.30 0.23 0.33
8 - + + + 6.43 3.66 6.30 14.14 2.45 0.27 0.29 0.29 0.23 0.35
9 + - - - 6.12 3.14 5.95 14.16 2.81 0.44 0.54 0.39 0.32 0.43

10 + - - + 5.87 3.14 5.70 14.16 2.69 0.34 0.38 0.59 0.45 0.64
11 + - + - 6.87 3.14 6.73 14.15 2.81 0.45 0.59 0.57 0.45 0.64
12 + - + + 6.63 3.14 6.48 14.15 2.69 0.52 0.57 0.54 0.39 0.65
13 + + - - 5.42 3.24 5.27 13.66 2.14 0.54 0.56 0.54 0.45 0.50
14 + + - + 5.18 3.19 5.01 13.66 1.99 0.27 0.36 0.48 0.51 0.65
15 + + + - 6.20 3.24 6.07 13.62 2.14 0.55 0.57 0.55 0.44 0.63
16 + + + + 5.95 3.19 5.82 13.62 1.99 0.53 0.57 0.44 0.45 0.67

6.12 3.26 5.97 14.03 2.49 0.37 0.42 0.40 0.33 0.47

Factor Relative Gap compared with RMIP (%) Average solution time (secs)

Average  
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Table 7.19: Average Utilization and Fill Rate for Each Heuristic for Yoghurt Production 
Problem 
 
No

A B C D MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1 - - - - 84.94 96.56 89.10 96.57 95.76 59.09 67.27 61.97 59.85 66.64
2 - - - + 87.29 96.57 91.42 96.57 96.54 59.94 67.28 62.85 59.85 66.97
3 - - + - 82.60 96.56 83.21 96.57 95.76 57.44 67.27 57.87 59.87 66.64
4 - - + + 84.95 96.57 85.52 96.57 96.54 58.29 67.28 58.71 59.87 66.97
5 - + - - 84.87 96.45 89.10 96.60 95.78 59.06 67.08 61.96 59.85 66.62
6 - + - + 87.29 96.57 91.51 96.60 96.53 59.94 67.14 62.86 59.85 66.93
7 - + + - 82.45 96.45 83.04 96.57 95.78 57.36 67.08 57.77 59.87 66.62
8 - + + + 84.85 96.57 85.45 96.57 96.53 58.24 67.14 58.65 59.87 66.93
9 + - - - 85.24 96.67 89.49 96.67 95.93 58.87 66.85 61.80 59.56 66.28

10 + - - + 87.51 96.67 91.67 96.67 96.65 59.70 66.85 62.61 59.56 66.57
11 + - + - 82.89 96.67 83.55 96.67 95.93 57.24 66.85 57.70 59.57 66.28
12 + - + + 85.32 96.67 85.94 96.67 96.65 58.10 66.85 58.56 59.57 66.57
13 + + - - 84.87 96.45 89.10 96.60 95.78 59.06 67.08 61.96 59.85 66.62
14 + + - + 87.29 96.57 91.51 96.60 96.53 59.94 67.14 62.86 59.85 66.93
15 + + + - 82.45 96.45 83.04 96.57 95.78 57.36 67.08 57.77 59.87 66.62
16 + + + + 84.85 96.57 85.45 96.57 96.53 58.24 67.14 58.65 59.87 66.93

Factor Utilization (%) Fill rate (%)

 

 As illustrated in Tables 7.17-7.19, we make the following observations:  

• The averages of total cost from the Hybrid heuristic are very close to the lower 

bound of average total cost in every scenario, which ranges from 1.99% to 2.81%.   

The averages of total cost from the MLFL-A, MLFL-B and MLFL-C heuristics 

result in a fairly good solution with the range of their relative gaps around 3-7%. 

However, the FOQ heuristic results in poor result for the large problem. Its 

relative gap is approximately 13-14%. As the FOQ heuristic does not consider the 

benefit of releasing the batch of product in selecting the product to produce first, 

unworthy production possibly occurs. 

• The branch and bound method cannot optimally solve for this large problem 

instance within required time limit of one day or 86,400 seconds, the solution 

time for each heuristic is very small of 0.47 seconds or less for the large BPP-SI 

problems for yoghurt production for every scenario.  
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• On average, using continuous lot size slightly reduces the total cost up to 0.27% 

for every heuristic except the FOQ heuristic. As mentioned previously, the FOQ 

heuristic employs the lot size as zero or full capacity for both discrete and 

continuous cases, so there is no difference on total cost between discrete and 

continuous lot size cases.   

• The Hybrid and MLFL-B heuristics result in the average fill rate around 66-68%, 

while other heuristics yields the average fill rate around 57-62%. The average 

utilization rate obtained by every heuristic is over 82%. The FOQ, Hybrid and 

MLFL-B heuristics have an average utilization of 96%, while the average 

utilization rate for the MLFL-A and MLFL-C heuristics is relatively smaller 

around 82-92%. Consequently, the Hybrid and MLFL-B heuristics outperform 

others in terms of average total cost.    

Next, we examine how factors of interest may affect the solution quality. The 

analysis of variance with alpha of 0.05 is performed to test whether the effect of factors 

on total cost is significant in Table 7.20 
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Table 7.20:   Statistical output for analysis of the effect of factors on total cost of yoghurt production

Analysis of Variance for total cost for a yoghurt manufacturer using MLFL-A

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.72E+08 1.72E+08 1.72E+08 169538.84 0.000
DemVar 1 169728784 169728784 169728784 167220.48 0.000
ShelfLife 1 1.03E+09 1.03E+09 1.03E+09 1010160.02 0.000
LotSize 1 1.07E+08 1.07E+08 1.07E+08 105172.63 0.000
DemProb*DemVar 1 172081924 172081924 172081924 169538.84 0.000
DemProb*ShelfLife 1 210 210 210 0.21 0.668
DemProb*LotSize 1 1444 1444 1444 1.42 0.286
DemVar*ShelfLife 1 82082 82082 82082 80.87 0.000
DemVar*LotSize 1 1089 1089 1089 1.07 0.348
ShelfLife*LotSize 1 2450 2450 2450 2.41 0.181
Error 5 5.08E+03 5075 1015
Total 15 1.65E+09

Analysis of Variance for total cost for a yoghurt manufacturer using MLFL-B

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 187115041 187115041 187115041 4158112.02 0.000
DemVar 1 368332864 368332864 368332864 8185174.76 0.000
ShelfLife 1 0 0 0 0.00 1.000
LotSize 1 1.07E+06 1.07E+06 1.07E+06 23759.02 0.000
DemProb*DemVar 1 187115041 187115041 187115041 4158112.02 0.000
DemProb*ShelfLife 1 0 0 0 0.00 1.000
DemProb*LotSize 1 225 225 225 5.00 0.076
DemVar*ShelfLife 1 0 0 0 0.00 1.000
DemVar*LotSize 1 1008016 1008016 1008016 22400.36 0.000
ShelfLife*LotSize 1 0 0 0 0 1
Error 5 2.25E+02 225 45
Total 15 744640568

Analysis of Variance for total cost for a yoghurt manufacturer using MLFL-C

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 1.66E+08 1.66E+08 1.66E+08 22723.77 0.000
DemVar 1 168694638 168694638 168694638 23095.69 0.000
ShelfLife 1 1.09E+09 1.09E+09 1.09E+09 149447.94 0.000
LotSize 1 1.14E+08 1.14E+08 1.14E+08 15565.68 0.000
DemProb*DemVar 1 165978131 165978131 165978131 22723.77 0.000
DemProb*ShelfLife 1 2730 2730 2730 0.37 0.568
DemProb*LotSize 1 1541 1541 1541 0.21 0.665
DemVar*ShelfLife 1 376689 376689 376689 51.57 0.001
DemVar*LotSize 1 6765 6765 6765 0.93 0.380
ShelfLife*LotSize 1 56288 56288 56288 7.71 0.039
Error 5 3.65E+04 36521 7304
Total 15 1706417710

Analysis of Variance for total cost for a yoghurt manufacturer using FOQ

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 122544900 122544900 122544900 265939.45 0.000
DemVar 1 63728289 63728289 63728289 138299.24 0.000
ShelfLife 1 1.01E+06 1.01E+06 1.01E+06 2183.18 0.000
LotSize 1 0 0 0 0 1.000
DemProb*DemVar 1 122544900 122544900 122544900 265939.45 0.000
DemProb*ShelfLife 1 2304 2304 2304 5 0.076
DemProb*LotSize 1 0 0 0 0 1.000
DemVar*ShelfLife 1 261121 261121 261121 566.67 0.000
DemVar*LotSize 1 0 0 0 0 1.000
ShelfLife*LotSize 1 0 0 0 0 1.00
Error 5 2.30E+03 2304 461
Total 15 31008982

Analysis of Variance for total cost for a yoghurt manufacturer using Hybrid

Source DF Seq SS Adj SS Adj MS F P
DemProb 1 179600202 179600202 179600202 88908.79 0.000
DemVar 1 162600752 162600752 162600752 80493.43 0.000
ShelfLife 1 0 0 0 0 1.000
LotSize 1 3.38E+07 3.38E+07 3.38E+07 16730.67 0.000
DemProb*DemVar 1 179600202 179600202 179600202 88908.79 0.000
DemProb*ShelfLife 1 0 0 0 0 1.000
DemProb*LotSize 1 10100 10100 10100 5 0.076
DemVar*ShelfLife 1 0 0 0 0 1.000
DemVar*LotSize 1 275100 275100 275100 136.18 0.000
ShelfLife*LotSize 1 0 0 0 0 1
Error 5 1.01E+04 10100 2020
Total 15 555893240  
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From the statistical analyses in Table 7.20, the following conclusions can be made 

about the effects of factors on total cost of BPP-SI for yoghurt production.  Demand 

probability and demand variation are significant factors affecting total cost for every 

heuristic. Shelf-life is a significant factor affecting total cost for MLFL-A, MLFL-C and 

FOQ. The type of lot size is a significant factor affecting total cost for every heuristic 

except the FOQ heuristic. Next, we present the statistical analyses of the pairwise 

comparisons of the average total cost between heuristics.  

 

Table 7.21: Pairwise Confidence Intervals for Differences of the Average Total Cost         
between Heuristics with the Confidence Level of 95% for Yoghurt Production Problem 
No

A B C D LB UB LB UB LB UB LB UB LB UB
1 - - - - -57,259 43,998 -120,002 -18,744 -47,711 53,547 -224,094 -122,837 -221,176 -119,919
2 - - - + -59,974 41,284 -117,639 -16,381 -47,281 53,976 -229,633 -128,375 -226,285 -125,027
3 - - + - -57,259 43,998 -135,919 -34,661 -47,746 53,512 -207,848 -106,590 -204,965 -103,707
4 - - + + -59,974 41,284 -133,484 -32,226 -47,805 53,453 -212,969 -111,711 -210,145 -108,887
5 - + - - -73,652 27,606 -119,372 -18,114 -47,410 53,847 -226,262 -125,005 -223,044 -121,786
6 - + - + -75,802 25,456 -117,436 -16,178 -46,994 54,264 -231,784 -130,526 -228,148 -126,891
7 - + + - -73,652 27,606 -135,570 -34,313 -47,890 53,368 -208,827 -107,569 -206,088 -104,831
8 - + + + -75,802 25,456 -133,545 -32,287 -47,860 53,398 -214,051 -112,793 -211,282 -110,024
9 + - - - -57,622 43,636 -119,902 -18,644 -47,182 54,076 -222,444 -121,186 -218,997 -117,739
10 + - - + -60,166 41,092 -117,200 -15,942 -47,208 54,050 -227,664 -126,407 -224,243 -122,985
11 + - + - -57,622 43,636 -135,728 -34,471 -47,651 53,607 -205,951 -104,693 -202,972 -101,715
12 + - + + -60,166 41,092 -133,078 -31,820 -47,564 53,694 -211,232 -109,975 -208,167 -106,910
13 + + - - -73,652 27,606 -119,372 -18,114 -47,410 53,847 -226,262 -125,005 -223,044 -121,786
14 + + - + -75,802 25,456 -117,436 -16,178 -46,994 54,264 -231,784 -130,526 -228,148 -126,891
15 + + + - -73,652 27,606 -135,570 -34,313 -47,890 53,368 -208,827 -107,569 -206,088 -104,831
16 + + + + -75,802 25,456 -133,545 -32,287 -47,860 53,398 -214,051 -112,793 -211,282 -110,024

CMLFL-A - CMLFL-C CMLFL-C - CFOQ CMLFL-A - CFOQFactor CHybrid - CMLFL-B CHybrid - CMLFL-A

 

 

According to Table 7.21, we can conclude that there is no evidence that average 

total cost obtained by the Hybrid and MLFL-B heuristics are any different since its 

interval includes zero.  Moreover, it is clear that average total costs obtained by the 

Hybrid and MLFL-A heuristics are significantly different since its interval excludes zero. 

For every scenario, the Hybrid heuristic results in a lower average total cost than the 

MLFL-A heuristic. Furthermore, the statistics indicate that there is no evidence that 

average total costs obtained by the MLFL-A and MLFL-C heuristics are different. 

However, there is evidence that average total costs obtained by the MLFL-A and FOQ 

heuristics are different. The MLFL-A heuristic usually yields lower average total cost 
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than the FOQ heuristic.  The experiment also indicates that the MLFL-C and FOQ 

heuristics provide different average total costs. MLFL-C heuristic typically results in the 

slightly lower average total cost than the FOQ heuristic.  Ranking heuristics from best to 

worst is Hybrid, MLFL-B, MLFL-A, MLFL-C and FOQ.  
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CHAPTER VIII 

PERFORMANCE OF HEURISTICS FOR  

BPP-SI PROBLEMS 

 
 This chapter investigates the performance of heuristics for BPP-SI problems by a 

computational study. In the preceding chapter, it is very interesting that some of the 

heuristics, such as Hybrid and MLFL-B turn out to work very well for large BPP-SI 

problem instances due to a very small relative gap of around 2-3% with respect to the 

lower bound on total cost obtained by solving the relaxation model. This implies that 

solutions from heuristics are very close to the optimal solutions for those manufacturing 

settings. To see how well the heuristics perform under other conditions, we further 

examine the effect of changing parameters, such as the penalty of unmet demand, setup 

cost and the number of machines on the total cost.  We expect that there are certain 

manufacturing settings in which these heuristics might not work well. For example, when 

the number of machines is limited or insufficient to be used for satisfying all demands, 

the planner might have difficulty in finding an efficient MPS. If that is the case, using the 

heuristics could lead to decisions on production scheduling that are farther from 

optimum.  To evaluate the performance of heuristics, we seek to solve a large BPP-SI 

problem to optimality by the branch and bound method to obtain the optimal benchmark 

solution, solve the problem by our heuristics, and then compute the optimality gap for 

each heuristic with respect to the optimal solution. However, due to the significantly 

large number of binary variables over 5,000, a huge number of constraints over 8,000 in 

the large BPP problem and the complexity of the problem characteristics, we cannot 

optimally solve the problem within the target time of one day. Instead of computing the 

optimality gap, we use the best cut, which is the best fractional solution obtained by 
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branch and bound method, as the benchmark of lower bound on the total cost, so the 

relative gap for each of heuristic with respect to this lower bound is computed. 

The computational result of the effect of parameter control on the total cost for a 

vaccine manufacturer is given in section 8.1. The performance of heuristics for a large 

BPP-SI problem in vaccine production is shown in section 8.2. Recall that the 

manufacturer has 8 products and the length of planning horizon is 26 periods. 

 

8.1 Computational Result of the Effect of Parameters on the Total Cost 

for a Vaccine Manufacturer 

The difficulty of a lot-sizing and scheduling problem may depend on several 

criteria. Therefore, it is interesting to explore the performance of our heuristic approach 

applied to BPP-SI problems with different values of parameters. In the preceding chapter, 

we examine the effect of several factors including demand probability, demand variation, 

length of shelf-life and type of lot size on the total cost. In this section, we investigate the 

effect of following control parameters, such as the penalty of unmet demand, setup cost 

and the number of machines on the total cost for a vaccine manufacturer. Also we 

compare the performance of each heuristic by performing the statistical analysis. 

 

8.1.1 Parameters and Level of Factors                

In this study, we consider the same BPP-SI problem for a vaccine manufacturer in 

section 7.3, focus on the case where all of the low levels for each of four factors in Table 

7.9 are selected, and use the same values of parameters listed in Table 7.8 except 

parameters, which are given in the following Table 8.1.  

 

 



 

 142

Table 8.1:  Values of Parameters for the Large Problem of Vaccine Production 

Symbol Description Unit Low Medium High Very high
UCi Penalty cost for unmet demand $/liter 1000 3000 6000 -
SCi Setup cost $/setup U[5k,10k] U[10k,20k] U[20k,40k] -
M Number of machines 4 8 12 16  

8.1.2 Numerical result   

We present the numerical results of the large BPP-SI problem for vaccine 

production for 36 scenarios using five heuristics. For each scenario, we randomly 

generate 10 data instances to compute the average performance measure.  The percentage 

of average relative gap for each heuristic with respect to the lower bound on the total cost 

of the Relaxation of MIP (RMIP) is shown in Table 8.2. The percentage of average 

utilization result is summarized in Table 8.3. The percentage of average fill rate is shown 

in Table 8.4. Table 8.5 shows the average percentage of the number of binary variables w 

and r, whose values fall between 0.3 and 0.7 from the solution of RMIP.  

For simplicity, we define the set of scenarios as follows: 

• Case 8A: Scenarios where penalty cost of unmet demand is $1000/liter, 

but setup cost and the number of machines vary.  

• Case 8B: Scenarios where setup cost is uniformly distributed on (5000, 

10000), but penalty cost of unmet demand and the number of machines 

vary. 

• Case 8C: Scenarios where the number of machines is 4, but penalty cost of 

unmet demand and the number of machines vary. 

• Case 8D: Scenarios where the number of machines is 16, but penalty cost 

of unmet demand and the number of machines vary. 
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Table 8.2:  Percentage of Average Relative Gap for Each Heuristic for the Large         
Problem of Vaccine Production 

Penalty cost of # MC
unmet demand

($/liter) MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1000 4 79.82 83.69 84.06 132.45 80.14 61.47 65.27 65.39 107.40 61.93 36.18 39.41 39.22 72.66 37.23
1000 8 35.39 37.67 36.08 165.62 35.18 27.77 29.15 28.22 141.07 27.33 16.65 17.94 17.18 107.02 16.62
1000 12 12.45 10.86 12.29 201.41 7.71 10.61 9.41 10.50 177.03 6.35 6.58 6.19 6.59 143.23 4.39
1000 16 29.33 29.33 29.33 238.21 3.95 21.88 21.88 21.88 213.89 3.51 9.53 9.53 9.53 180.15 2.82
3000 4 369.94 374.54 379.38 520.21 370.49 314.16 319.94 322.86 445.56 314.84 238.51 243.42 244.37 341.93 241.87
3000 8 162.77 162.59 162.69 547.13 160.26 140.60 137.27 139.64 473.61 136.50 110.01 107.11 110.29 371.62 107.83
3000 12 29.31 22.63 29.32 580.62 23.45 26.63 20.70 26.63 507.57 20.28 22.41 17.78 22.39 406.24 15.92
3000 16 41.39 41.39 41.39 617.16 5.57 40.52 40.52 40.52 544.19 5.38 39.08 39.08 39.08 442.98 4.97
6000 4 803.07 808.29 819.41 1098.95 803.83 691.31 699.97 706.59 950.60 692.28 540.14 547.41 550.26 744.43 547.11
6000 8 351.57 347.77 350.30 1119.39 347.35 307.81 297.12 304.27 972.41 299.42 247.27 237.37 246.94 768.53 244.20
6000 12 48.80 34.03 48.96 1149.44 44.67 43.88 31.56 44.00 1003.37 39.38 36.59 26.69 36.50 800.76 31.06
6000 16 41.82 41.82 41.82 1185.59 6.01 40.85 40.85 40.85 1039.65 5.82 39.68 39.68 39.68 837.22 5.57

Setup cost ($/setup)
U(5k,10k) U(10k,20k) U(20k,40k)
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Figure 8.1: Relative Gap for Hybrid Heuristic for Case 8A 
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Figure 8.2: Relative Gap for Hybrid Heuristic for Case 8B 
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Figure 8.3: Relative Gap for Hybrid Heuristic for Case 8C 
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Figure 8.4: Relative Gap for Hybrid Heuristic for Case 8D 

 
Table 8.3: Percentage of Average Utilization for Each Heuristic for the Large Problem of 
Vaccine Production 

Penalty cost of # MC
unmet demand

($/liter) MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1000 4 91.63 91.63 91.63 93.46 91.83 90.96 91.54 91.44 93.46 91.25 89.62 90.38 89.71 93.46 89.81
1000 8 87.79 88.94 88.37 93.46 87.50 86.78 88.70 87.64 93.46 87.50 85.77 86.54 85.96 93.46 85.58
1000 12 81.22 81.70 81.47 93.46 77.76 80.51 81.47 80.77 93.46 77.24 78.14 78.91 78.17 93.46 76.06
1000 16 74.16 74.16 74.16 93.46 60.29 70.46 70.46 70.46 93.46 60.12 62.38 62.38 62.38 93.46 59.13
3000 4 93.27 92.88 92.31 93.46 92.50 92.88 92.69 92.60 93.46 92.40 92.98 92.50 92.88 93.46 92.31
3000 8 90.72 91.15 90.77 93.46 89.66 90.48 91.30 90.96 93.46 89.81 90.38 90.67 90.19 93.46 89.04
3000 12 85.10 85.58 85.00 93.46 80.74 85.03 85.19 84.94 93.46 80.35 84.68 85.45 84.58 93.46 80.03
3000 16 80.00 80.00 80.00 93.46 62.16 80.05 80.05 80.05 93.46 61.90 80.00 80.00 80.00 93.46 61.66
6000 4 93.27 93.46 92.31 93.46 92.50 93.27 93.08 92.79 93.46 92.60 93.17 92.88 93.27 93.46 92.69
6000 8 91.06 91.30 91.39 93.46 89.66 91.06 91.68 91.44 93.46 89.90 90.91 91.01 91.11 93.46 88.99
6000 12 85.38 85.96 85.29 93.46 81.19 85.38 85.83 85.29 93.46 81.19 85.03 85.77 85.03 93.46 81.06
6000 16 79.95 79.95 79.95 93.46 62.57 80.02 80.02 80.02 93.46 62.57 80.19 80.19 80.19 93.46 62.50

Setup cost ($/setup)
U(5k,10k) U(10k,20k) U(20k,40k)
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Table 8.4: Percentage of Average Fill Rate for Each Heuristic for the Large Problem of 
Vaccine Production 

Penalty cost of # MC
unmet demand

($/liter) MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid MLFL-A MLFL-B MLFL-C FOQ Hybrid
1000 4 40.25 39.70 39.34 19.71 40.33 40.20 39.50 39.26 19.71 40.42 39.66 39.01 38.73 19.71 39.20
1000 8 73.96 74.24 73.97 21.85 74.11 73.25 74.42 73.54 21.85 73.99 72.05 72.93 71.98 21.85 72.20
1000 12 95.96 96.85 96.15 22.28 95.90 95.79 96.91 95.97 22.28 95.59 94.83 95.83 94.84 22.28 94.55
1000 16 98.48 98.48 98.48 22.33 98.79 98.19 98.19 98.19 22.33 98.63 96.88 96.88 96.88 22.33 97.53
3000 4 40.69 40.09 39.52 19.71 40.53 40.77 39.88 39.54 19.71 40.63 40.48 39.56 39.52 19.71 39.74
3000 8 74.74 74.98 74.71 21.85 74.96 74.36 75.23 74.59 21.85 74.96 73.69 74.60 73.59 21.85 73.89
3000 12 97.27 98.27 97.26 22.28 97.09 97.24 98.18 97.23 22.28 97.06 97.19 98.27 97.18 22.28 97.06
3000 16 99.97 99.97 99.97 22.33 99.84 99.97 99.97 99.97 22.33 99.77 99.94 99.94 99.94 22.33 99.70
6000 4 40.70 40.14 39.60 19.71 40.53 40.81 39.92 39.64 19.71 40.65 40.49 39.66 39.56 19.71 39.77
6000 8 74.79 75.08 74.80 21.85 74.96 74.43 75.36 74.67 21.85 74.98 73.76 74.78 73.73 21.85 73.84
6000 12 97.38 98.39 97.37 22.28 97.17 97.35 98.32 97.34 22.28 97.16 97.30 98.32 97.32 22.28 97.20
6000 16 99.98 99.98 99.98 22.33 99.93 99.97 99.97 99.97 22.33 99.93 99.98 99.98 99.98 22.33 99.92

Setup cost ($/setup)
U(5k,10k) U(10k,20k) U(20k,40k)

 

 
Table 8.5: Average Percentage of the Number of Binary Variables w and r, whose values 
fall between 0.3 and 0.7 from the solution of RMIP 

Penalty cost of unmet demand # MC
($/gal) U(5k,10k) U(10k,20k) U(20k,40k) U(5k,10k) U(10k,20k) U(20k,40k)
1000 4 35.37 37.65 35.13 19.46 19.75 15.72
1000 8 24.01 23.25 23.40 29.79 30.33 22.36
1000 12 18.20 18.03 17.14 31.82 32.14 25.02
1000 16 14.85 12.60 12.92 35.03 36.57 27.51
3000 4 13.49 13.67 12.80 36.13 37.69 36.50
3000 8 17.60 16.65 18.24 31.95 33.13 31.28
3000 12 24.10 23.32 21.91 29.09 29.32 29.72
3000 16 36.79 35.59 34.80 19.15 18.91 19.66
6000 4 13.16 13.66 14.01 36.22 36.22 37.20
6000 8 17.14 18.23 18.00 32.18 32.38 30.79
6000 12 23.22 23.79 23.35 28.62 30.12 29.35
6000 16 35.75 35.74 34.04 19.82 19.55 19.74

Setup cost ($/setup) Setup cost ($/setup)
 w  r

 

According to the numerical results in Tables 8.3-8.5 and Figure 8.1-8.4, we make the 

following observations:  

• Overall, the performance of all of heuristics in terms of the relative gap is greatly 

affected by the change in the penalty cost of unmet demand, the number of 

machines, and the setup cost. 

•  As the penalty cost of unmet demand increases and other factors remain 

unchanged, the relative gap for each heuristic tends to increase. The main reason 

for this is that when the number of machine is scare and the penalty cost of unmet 

demand is very high, selecting the wrong product to release on machine in 

improper time could cause substantial penalty cost of unmet demand. Therefore, 

the total cost obtained by heuristics could become bigger, so does the relative gap. 
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• As the number of machines increases and other factors remain unchanged, the 

relative gap for all of heuristics except the FOQ heuristic tends to be smaller until 

the average percentage of fill rate reaches around 97% by using 12 machines. 

Suppose that we are solving the problem to its optimal solution. Due to the fact 

that increase in the number of machines always raises the overall capacity of the 

plant, thereby improving the fill rate and lowering the amount of unmet demand. 

As a result the total cost becomes lower. As expected, increasing the number of 

machines from 12 to 16 improves the average fill rate to be almost 100%, but this 

makes the relative gap for the three MLFL heuristics become larger. The main 

reason for this is that the MLFL heuristics do not guarantee the fact that as the 

number of machines increases, the total cost of the MPS will improve, which is 

discussed in detail in section 6.2.1. Increasing the number of machines more than 

needed for the MLFL heuristics could result in the production earlier than needed. 

Thereby increasing the extra inventory cost and total cost. As a result, the relative 

gap for these three MLFL heuristics could become larger.  On the other hand, 

when the number of machines is largely sufficient to satisfy almost all of demand, 

the Hybrid heuristic by far outperforms other heuristics. For example, let’s 

consider the case in which the number of machines is 16, which results in the 

average fill rate of over 99%. The relative gap of the Hybrid heuristic is very 

small around 2.8-6%, while the minimum relative gap of other heuristics is 6%.  

Recall that the FOQ heuristic does not take account to the benefit of releasing the 

batch of product in selecting the product to produce first. As a result, unworthy 

production possibly occurs.  It is possible that the relative gap of the FOQ 

heuristic becomes larger as the number of machines increases.  
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• As the setup cost increases and other factors remain unchanged, the relative gap 

for each heuristic tends to decrease.  When setup cost is relatively higher than 

other costs, it is trivial to obtain good solutions by using heuristics. These 

solutions become closer to the lower bound from RMIP, so the relative gap 

becomes smaller. 

• Overall, solving the RMIP of BPP-SI problems produces around 25% of total 

number of binary variables w and r falling between 0.3 and 0.7. Such proportion 

is quite huge, so rounding these values to the nearest integer does not necessarily 

guarantee the feasibility and the better solution. Also we find out that the 

proportion of binary variables falling between 0.3 and 0.7 is insensitive to the 

value of setup cost, while other parameters remain unchanged.  

 

Next, we present the statistical analyses of the pairwise comparisons of the 

average total cost between heuristics.  

 
Table 8.6: Pairwise Confidence Intervals for Differences of the Average Total Cost        
between Heuristics with the Confidence Level of 95%. 

Penalty cost Setup cost # MCs
of unmet demand ($/setup) LB UB LB UB LB UB LB UB LB UB LB UB

($/liter)
1000 U(5k,10k) 4 -757,861 459,965 -446,847 770,979 -595,795 622,031 -786,182 431,644 -2,635,135 -1,417,308 -2,812,403 -1,594,577
1000 U(5k,10k) 8 -713,085 504,741 -513,500 704,326 -617,672 600,154 -637,863 579,963 -6,030,519 -4,812,693 -6,059,469 -4,841,643
1000 U(5k,10k) 12 -740,537 477,289 -675,454 542,372 -807,078 410,748 -602,482 615,345 -8,523,497 -7,305,671 -8,517,065 -7,299,239
1000 U(5k,10k) 16 -1,671,124 -453,298 -608,913 608,913 -1,671,124 -453,298 -608,913 608,913 -9,350,805 -8,132,979 -9,350,805 -8,132,979
1000 U(10k,20k) 4 -769,587 448,239 -426,149 791,677 -586,823 631,003 -797,374 420,452 -2,626,942 -1,409,116 -2,815,403 -1,597,577
1000 U(10k,20k) 8 -696,173 521,653 -542,673 675,153 -629,933 587,893 -630,861 586,966 -6,027,298 -4,809,471 -6,049,245 -4,831,419
1000 U(10k,20k) 12 -755,846 461,980 -666,471 551,355 -813,405 404,422 -603,608 614,218 -8,605,009 -7,387,183 -8,599,704 -7,381,878
1000 U(10k,20k) 16 -1,491,158 -273,331 -608,913 608,913 -1,491,158 -273,331 -608,913 608,913 -9,827,836 -8,610,009 -9,827,836 -8,610,009
1000 U(20k,40k) 4 -740,100 477,726 -413,822 804,005 -545,009 672,817 -792,936 424,890 -2,626,737 -1,408,911 -2,810,760 -1,592,934
1000 U(20k,40k) 8 -688,597 529,230 -530,918 686,908 -610,602 607,225 -641,058 576,768 -6,029,415 -4,811,588 -6,061,560 -4,843,733
1000 U(20k,40k) 12 -717,668 500,159 -632,144 585,683 -740,898 476,928 -610,026 607,800 -8,853,434 -7,635,608 -8,854,547 -7,636,721
1000 U(20k,40k) 16 -1,013,324 204,503 -608,913 608,913 -1,013,324 204,503 -608,913 608,913 -10,904,358 -9,686,532 -10,904,358 -9,686,532
3000 U(5k,10k) 4 -2,025,916 1,686,321 -1,663,441 2,048,796 -1,833,238 1,878,999 -2,251,812 1,460,425 -7,764,891 -4,052,655 -8,160,585 -4,448,348
3000 U(5k,10k) 8 -1,953,914 1,758,323 -1,863,460 1,848,776 -1,961,256 1,750,981 -1,852,979 1,859,257 -17,945,285 -14,233,048 -17,942,145 -14,229,909
3000 U(5k,10k) 12 -1,821,802 1,890,435 -2,135,693 1,576,544 -2,101,376 1,610,861 -1,856,560 1,855,677 -24,928,857 -21,216,620 -24,929,298 -21,217,062
3000 U(5k,10k) 16 -3,355,185 357,051 -1,856,118 1,856,118 -3,355,185 357,051 -1,856,118 1,856,118 -25,952,897 -22,240,660 -25,952,897 -22,240,660
3000 U(10k,20k) 4 -2,101,487 1,610,749 -1,577,849 2,134,388 -1,823,218 1,889,019 -2,275,012 1,437,224 -7,760,057 -4,047,821 -8,178,951 -4,466,715
3000 U(10k,20k) 8 -1,893,102 1,819,134 -2,016,088 1,696,149 -2,053,072 1,659,165 -1,809,945 1,902,292 -17,891,447 -14,179,210 -17,845,273 -14,133,037
3000 U(10k,20k) 12 -1,876,497 1,835,739 -2,140,952 1,571,285 -2,161,331 1,550,906 -1,855,847 1,856,389 -24,948,403 -21,236,166 -24,948,132 -21,235,895
3000 U(10k,20k) 16 -3,543,555 168,682 -1,856,118 1,856,118 -3,543,555 168,682 -1,856,118 1,856,118 -26,039,645 -22,327,408 -26,039,645 -22,327,408
3000 U(20k,40k) 4 -1,949,548 1,762,689 -1,559,731 2,152,506 -1,653,161 2,059,076 -2,209,910 1,502,327 -7,752,526 -4,040,290 -8,106,318 -4,394,081
3000 U(20k,40k) 8 -1,812,361 1,899,876 -2,031,316 1,680,920 -1,987,558 1,724,678 -1,873,219 1,839,018 -17,624,895 -13,912,658 -17,641,995 -13,929,759
3000 U(20k,40k) 12 -1,968,193 1,744,043 -2,135,713 1,576,523 -2,247,788 1,464,448 -1,854,883 1,857,354 -25,018,007 -21,305,771 -25,016,772 -21,304,535
3000 U(20k,40k) 16 -3,914,451 -202,214 -1,856,118 1,856,118 -3,914,451 -202,214 -1,856,118 1,856,118 -26,227,997 -22,515,760 -26,227,997 -22,515,760
6000 U(5k,10k) 4 -3,928,689 3,553,204 -3,521,186 3,960,707 -3,708,929 3,772,964 -4,428,658 3,053,235 -15,504,239 -8,022,346 -16,191,950 -8,710,057
6000 U(5k,10k) 8 -3,758,477 3,723,416 -3,900,240 3,581,653 -3,917,771 3,564,122 -3,687,777 3,794,116 -35,928,356 -28,446,463 -35,875,187 -28,393,294
6000 U(5k,10k) 12 -3,295,588 4,186,305 -4,359,166 3,122,727 -3,913,807 3,568,086 -3,747,388 3,734,505 -49,797,554 -42,315,661 -49,803,995 -42,322,102
6000 U(5k,10k) 16 -5,239,555 2,242,338 -3,740,946 3,740,946 -5,239,555 2,242,338 -3,740,946 3,740,946 -51,609,348 -44,127,455 -51,609,348 -44,127,455
6000 U(10k,20k) 4 -4,112,165 3,369,728 -3,323,228 4,158,665 -3,694,446 3,787,447 -4,478,122 3,003,771 -15,512,162 -8,030,269 -16,249,337 -8,767,444
6000 U(10k,20k) 8 -3,630,651 3,851,242 -4,253,924 3,227,969 -4,143,628 3,338,265 -3,570,865 3,911,028 -35,821,729 -28,339,836 -35,651,647 -28,169,754
6000 U(10k,20k) 12 -3,365,433 4,116,460 -4,332,577 3,149,316 -3,957,063 3,524,830 -3,746,675 3,735,217 -49,805,188 -42,323,295 -49,810,917 -42,329,024
6000 U(10k,20k) 16 -5,422,464 2,059,429 -3,740,946 3,740,946 -5,422,464 2,059,429 -3,740,946 3,740,946 -51,698,458 -44,216,565 -51,698,458 -44,216,565
6000 U(20k,40k) 4 -3,758,701 3,723,192 -3,300,535 4,181,358 -3,318,290 4,163,603 -4,354,036 3,127,857 -15,500,692 -8,018,799 -16,113,781 -8,631,888
6000 U(20k,40k) 8 -3,328,927 4,152,966 -4,338,462 3,143,431 -3,926,443 3,555,450 -3,720,679 3,761,214 -35,214,316 -27,732,423 -35,194,048 -27,712,155
6000 U(20k,40k) 12 -3,476,920 4,004,973 -4,338,623 3,143,270 -4,074,597 3,407,296 -3,735,336 3,746,557 -49,857,575 -42,375,682 -49,851,965 -42,370,072
6000 U(20k,40k) 16 -5,799,040 1,682,853 -3,740,946 3,740,946 -5,799,040 1,682,853 -3,740,946 3,740,946 -51,865,816 -44,383,923 -51,865,816 -44,383,923

CMLFL-C - CFOQ CMLFL-A - CFOQCHybrid - CMLFL-B CMLFL-B - CMLFL-A CHybrid - CMLFL-A CMLFL-A - CMLFL-C
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 According to Table 8.6, we can conclude that in general there is no evidence that 

average total cost obtained by the Hybrid and the three MLFL heuristics are different 

since its interval includes zero, except the following three scenarios:   

1) Penalty cost = $1000/liter,  the number of machines = 16, and setup cost = 

uniformly distributed on (5000, 10000)  

2) Penalty cost = $1000/liter,  the number of machines = 16, and setup cost = 

uniformly distributed on (10000, 20000)  

3)  Penalty cost = $3000/liter,  the number of machines = 16, and setup cost = 

uniformly distributed on (20000, 40000)  

There is evidence that average total cost obtained by Hybrid heuristic is lower than that 

obtained by the three MLFL heuristics. However, the experiment indicates that the three 

MLFL heuristics provide insignificant difference on average total cost. For every 

scenario, the FOQ heuristic performs worst as it produces the highest average total cost.   

 

8.2 Computational Result of Performance of Heuristics for Large BPP-

SI Problems in Vaccine Production  

In this section, we solve one large BPP-SI problem for each of 12 scenarios, each 

having different values of setup cost and number of machines by using optimization and 

heuristic approaches.  As the problem is extremely large and complicated, the branch and 

bound method cannot optimally solve for this large problem instance within required time 

limit of one day, but we can readily obtain the first integer solution, lower bound from 

RMIP, the best integer solution and best cut, which is the best lower bound in fractional 

value obtained from the branch and bound method.  To assess the performance of the 

heuristics, we calculate the relative gap of solution from heuristic with respect to the best 
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cut.  On the other hand, each heuristic requires less than one second for solving the large 

BPP-SI problems.   

 

8.2.1 Parameters and Level of Factors                

In this study, we consider the same BPP-SI problem for a vaccine manufacturer in 

section 7.3, focus on the case where all of the low levels for each of four factors in Table 

7.9 are selected, and use the same values of parameters listed in Table 7.8 except control 

parameters, which are defined as in the Table 8.1, but the penalty cost of unmet demand 

is assumed to be $3000/liter.  

 

8.2.2 Numerical Result   

We present the numerical result of solving the large BPP-SI problem for vaccine 

production for 12 scenarios using the branch and bound method and five heuristics.  The 

total cost and the relative gap for each heuristic with respect to the best lower bound (best 

cut) are shown in Table 8.7. 

Table 8.7:  Total Cost and Percentage of Average Relative Gap for Each Heuristic  
when setup cost and number of machines vary 

No Setup cost # MCs Lower Bound First Best cut Best MLFL-A MLFL-B MLFL-C FOQ Hybrid
($/setup) from relaxation Integer (fraction)  Integer MLFL-A MLFL-B MLFL-C FOQ Hybrid

1 U(5k,10k) 4 2,487,165 16,981,000 6,678,606 6,894,152 7,870,840 7,890,924 8,072,512 16,322,707 8,095,837 17.85 18.15 20.87 144.40 21.22
2 U(5k,10k) 8 2,487,165 18,819,000 2,488,491 3,781,338 4,093,035 4,152,104 4,114,910 16,350,781 3,477,878 64.48 66.85 65.36 557.06 39.76
3 U(5k,10k) 12 2,487,165 18,819,000 2,497,732 2,887,723 4,443,650 4,443,650 4,443,650 18,013,759 2,905,285 77.91 77.91 77.91 621.20 16.32
4 U(5k,10k) 16 2,487,165 18,819,000 2,488,962 2,887,663 4,906,834 4,906,834 4,906,834 19,676,737 2,905,285 97.14 97.14 97.14 690.56 16.73
5 U(10k,20k) 4 2,843,010 17,281,000 6,981,105 7,315,867 8,117,067 8,135,781 8,314,405 16,510,720 8,351,480 16.27 16.54 19.10 136.51 19.63
6 U(10k,20k) 8 2,843,010 17,750,000 2,844,512 4,134,230 4,457,940 4,525,644 4,566,625 16,726,808 3,851,578 56.72 59.10 60.54 488.04 35.40
7 U(10k,20k) 12 2,843,010 17,566,000 2,845,624 3,329,745 5,022,414 5,022,414 5,022,414 18,577,799 3,305,997 76.50 76.50 76.50 552.86 16.18
8 U(10k,20k) 16 2,843,010 17,428,000 2,844,795 3,276,186 5,546,291 5,546,291 5,546,291 20,428,791 3,305,997 94.96 94.96 94.96 618.11 16.21
9 U(20k,40k) 4 3,554,700 34,362,000 7,498,820 7,740,459 8,873,329 8,792,654 8,767,181 16,886,748 9,381,157 18.33 17.25 16.91 125.19 25.10

10 U(20k,40k) 8 3,554,700 35,351,000 3,556,322 4,625,059 5,336,004 5,420,978 5,342,781 17,478,863 4,598,978 50.04 52.43 50.23 391.49 29.32
11 U(20k,40k) 12 3,554,700 34,995,000 3,556,861 4,053,155 6,235,962 6,235,962 6,235,962 19,705,882 4,107,421 75.32 75.32 75.32 454.02 15.48
12 U(20k,40k) 16 3,554,700 34,678,000 3,556,525 4,054,387 6,825,206 6,825,206 6,825,206 21,932,901 4,107,421 91.91 91.91 91.91 516.69 15.49

Total costs ($) Percentage of relative gap wrt. Best cut
Heuristic
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According to Table 8.7, we found that no unique heuristic dominates others for all 

of twelve scenarios. The relative gaps for the three MLFL heuristics are not significantly 

different. In scenarios where the number of machines is very low like 4, the MLFL 

heuristics outperform the Hybrid heuristic, while in other scenarios, the Hybrid heuristic 

outperform others. The FOQ heuristic performs worst for all scenarios. As heuristics 

require a very short amount of computational time, the planner should use all five 

heuristics in order to select the best solution out of the five production plans. Overall, the 

best heuristic selected for each scenario produces the relative gap of 35.4% or less. More 

importantly, the Hybrid heuristic is very efficient in the sense that it could result in better 

solutions than a truncated branch and bound method in certain scenarios. For example, 

when the number of machines is 8, total cost from the Hybrid heuristic is much less than 

the best integer solution from the branch and bound method, when it terminates at a target 

computational time of one day. 

We also make the following observations. First, the number of machines is one of 

influential factors affecting the quality of solution from heuristics.  As the number of 

machines increases while the setup cost remains constant, the relative gap with respect to 

the best cut tends to greatly increase. Second, the setup cost has slightly affected the 

relative gap. The setup cost increases while the number of machines remains constant, the 

relative gap with respect to the best cut tends to slightly decrease.   
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          CHAPTER IX 

CONCLUSIONS AND EXTENTSIONS 
 
 

9.1   Summary and Conclusions 

This dissertation addresses the complex set of production scheduling decisions for 

a manufacturer of fixed shelf-life products in a single stage of batch production process.  

Some examples of the batch process used in production of perishable products include 

fermentation process for beers, and incubation process for vaccines.  Batch production 

planning is very difficult due to the varieties of constraints, such as non-preemptive 

processes, lot sizing, processing sequences, setup times (sequence independent or 

sequence dependent), and shelf-life of products.  The batch production planning problem 

involves finding the master production schedule (MPS) for a single stage of batch process 

for perishable products in order to minimize total cost, which consist of costs of 

inventory, spoilage, production, setup and penalty for unmet demand.   

In this dissertation, we formulate the new mathematical models for representing 

the batch production planning problem for perishable products with an emphasis on the 

operational decisions, develop the tractable, efficient five heuristics for solving the large 

BPP-SI problems, apply these heuristic to solve large problems in industry, examine 

factors of interest on the system performance and analyze the performance of heuristics.  

In Chapter III, we define the batch production scheduling problems for fixed 

shelf-life products with sequence-independent setup time (BPP-SI), develop a Mixed 

Integer Program (MIP) for representing the BPP-SI problem, and present a numerical 

result for a small example for the fermentation process of beer. 

In Chapter IV, we describe the batch production scheduling problems for fixed 

shelf-life products with sequence-dependent setup time (BPP-SD), develop a MIP for 
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representing the BPP-SD problem, and present a numerical result for a small example for 

the incubation process of vaccine. 

In Chapter V, we examine the effect of factors of interest, such as type of lot size, 

shelf-life, demand variation and demand probability on the system performance for BPP-

SI and BPP-SD for three different configuration settings depending on the size of 

problem defined by number of products, number of machines, and length of planning 

horizon. In practice, the size of industrial problem is very large, so the branch and bound 

method cannot be executed to the optimality within the reasonable computational time. 

This motivates us to develop the efficient heuristics for solving the large problems.  

In Chapter VI, we develop five efficient heuristics for solving the batch 

production scheduling problems with sequence-independent setup times (BPP-SI). Five 

heuristics include Modified Lot For Lot-A (MLFL-A), MLFL-B, MLFL-C, Fixed Order 

Quantity (FOQ) and Hybrid. Each heuristic uses different rule in selecting the product to 

produce first. For example, the MLFL-A heuristic employs the benefit of production one 

batch of product as the decision rule. The Hybrid heuristic considers the zero earliness of 

production, the cumulative demand during the shelf-life of product, and benefit of 

production of each batch as the decision rule. Through numerical analyses from small 

problems, the MPS could be obtained by heuristics within a very short amount of solution 

time around one second with the small relative gap, which is compared to the lower 

bound of the MIP relaxation. However, the relative gap obtained from heuristics can be 

varying depending on the value of parameters selected.  

In Chapter VII, we investigate the effect of several factors including demand 

probability, demand variation, length of shelf-life and type of lot size on the total cost of 

the batch production process, and compare the performance of each heuristic by 

performing the statistical analysis. Through numerical analyses from large problems, the 
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Hybrid heuristic generally provides very good solution with its relative gap of 2% or less.   

Each of the three MLFL heuristics usually result in fairly good solution with its relative 

gap of 10% or less, while the FOQ heuristic produces very poor solutions with its relative 

gap of 100% or more. The results show the significant improvement in computational 

time for the large BPP-SI problems by using our heuristics developed. Overall the 

computational time for each heuristic is very small around 0.3 seconds even for the large 

problems with 10 products, 20 machines and 26 periods. Therefore, our heuristics are 

very efficient for solving large problems.  

Chapter VIII investigates the performance of heuristics for BPP-SI problems by a 

computational study. To achieve this goal, we consider the effect of change in value of 

parameters, such as the penalty of unmet demand, setup cost and the number of machines 

on the total cost and compute the relative gap for each of heuristics with respect to this 

lower bound on total cost when solving the very large BPP-SI problems. Through 

numerical analyses, there is evidence that the average total cost obtained by the Hybrid 

heuristic is lower than that obtained by the three MLFL heuristics. However, the 

experiment indicates that the three MLFL heuristics provide insignificant difference on 

average total cost. For every scenario, the FOQ heuristic performs worst since it produces 

the highest average total cost.   

Overall, this dissertation presents a new integrative approach for dealing with batch 

production scheduling problems for fixed shelf-life products with setup times on a single 

processing unit of parallel machines. This dissertation differs from previous work done 

under lot-sizing and scheduling problems and inventory management for perishable 

products in that our models incorporate several practical issues, such as limited shelf-life 

of products, a change in the number of available machines and a penalty for unmet 

demand into the models, which also include the issues of lot-sizing and setup-times. We 
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formulate the discrete-time MIP models for the batch production scheduling problems for 

fixed shelf-life products for the case of sequence-independent setup times (BPP-SI), and 

the case of sequence-dependent setup times (BPP-SD).  Furthermore, we develop the five 

efficient heuristics for solving the batch production scheduling problems with sequence-

independent setup times (BPP-SI). The extensive computational results show that the 

developed heuristics can obtain good solutions for very large problem sizes and require a 

very short amount of computational time, which is the major contribution of our research 

on significant improvement in computational time for solving the large BPP-SI problems. 

In particular, the Hybrid heuristic produces very good results whose relative gap is 

usually less than 10% when the number of machines is enough to satisfy almost all of 

demand for products during the planning horizon. 

9.2  Future Extensions 

Results from this dissertation raise several potential directions for future research. 

This dissertation developed the mathematical model for BPP-SI and BPP-SD under the 

assumption that demand for products is deterministic and only one stage of batch 

production is considered.  However, in certain situations, demand for products is 

stochastic and the plant might consist of multi-stages of batch production. Future work 

can extend the models to include both issues.  The additional complexity will impact the 

capability of the current approach to solve large BPP problems.  Future work should 

focus on developing efficient heuristics for solving the large BPP-SD problems as the 

optimization approach requires a significant amount of computational time. Developing 

new optimization approaches for the BPP problems is another way of expanding this 

research problem. Future work should focus on the fact that the BPP must be solved in a 
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rolling horizon environment. In other words, it is a priori known that only the first part of 

a solution will be implemented. 
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  APPENDIX A 

SUPPLEMENTARY FOR HEURISTICS  

FOR SOLVING BPP-SI PROBLEMS  

 

A.1 Flowchart of the MLFL Heuristics 
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A.2 Flowchart of the FOQ Heuristic 
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A.3 Flowchart of the Hybrid Heuristic 
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A.4 Implementation of the MLFL-A Heuristic for Solving BPP-SI 

Problem with Discrete Batch Size 

In this section, we illustrate how to use MLFL-A Heuristic to solve the small 

BPP-SI example with discrete batch size in Chapter VI. 

Step 0: Initialization:    

Set i,t i,t D' D    i,t= ∀     

Set j,tB 0      j,t= ∀  

 Compute  T_last:      T_last  = 7 – min (1, 2)  = 6     

Iteration 1  

Step 1: Start with t = 1 

 Step 1.1:  Compute Nmca1.    Nmca1 = 
1

j1
j=1

1 - B∑ =1 - 0 = 1.   

                     This is because the machine has not been assigned to any product yet.  

 Step 1.2:  Set Flag1 = 0. 

Step 1.3:  Check whether the condition of (Nmca1 > 0) and (Flag1 = 0) for while loop 

is satisfied or not.  We go inside to the loop, since the values of parameter 

satisfy such condition.  

a) Compute CDemit from period t+ATi to period t+ATi+LTi-1 for each 

product:  

    CDemA1 = 50+52+51+50+45 =248 

                                CDemB1 =  20+40+41 = 101 

b) Both products have CDemit more than the capacity (C) of 50, so the total   

      number of products with itCDem  C≥  (Nover) is 2. Compute the benefit   

      for each product.       

                 BenA1 = 50(4.5) - 40 - 50(3) - 10 = $25 
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                  BenB1 = 50(6) - 50 - 50(4)-39   =  $11 

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using High Benefit First 

(HBF). Choose product A since it has the higher benefit (25>11).   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A. Since it takes 1 period 

to produce a batch of product A, such machine will be busy in 

period 1 for this batch, i.e. rA11 = 1, and setting B11 to be 1.  

c3) Compute Nmca1. Nmca1 = 
1

j1
j=1

1 - B∑ =1 - 1 = 0. Since cumulative 

remaining demand is no less than capacity, setting the batch size to 

be 50. Determine the amount of spoilage, which would incur from 

this batch. Since this batch will be obtained at the beginning of 

period 2 and be used up to fulfill the demand for product A,  no 

spoilage from this batch incurs.  Hence SA2  is zero. 

c4) Update the remaining demand for products ( i,tD' ) using algorithm  

6.2. The following table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca1 > 0) and (Flag1 = 0) is still held. 

No,  since Nmca1 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 2  
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Step 1:  Time period t = 2 

 Step 1.1:  Compute Nmca2.    Nmca2 = 
1

j1
j=1

1 - B∑ =1 - 0 = 1.   

 Step 1.2:  Set Flag2 = 0. 

Step 1.3:  Satisfy the condition of (Nmca2 > 0) and (Flag2 = 0) for while loop 

Go inside the while loop.  

c) Compute CDemit from period t+ATi to period t+ATi+LTi-1 for each 

product:  

   CDemA2 = 52+51+50+45 =198 

                               CDemB2 = 20+40+41 = 101 

d) Both products have CDemit more than the capacity (C) of 50, so the total   

      number of products with itCDem  C≥  (Nover) is 2. Compute the benefit   

      for each product.       

                 BenA2 = 50(4.5) - 40 - 50(3) - 10 = $25 

                  BenB2 = 50(6) - 50 - 50(4) - 24   =  $26 

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using High Benefit First 

(HBF). Choose product B since it has the higher benefit (26>25).   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product B. Since it takes 2 

periods to produce a batch of product B, such machine will be busy 

in period 2 and 3 for this batch, i.e. rB12 = 1, and setting B12 and B13 

to be 1.  

c3) Compute Nmca2. Nmca2 = 1 - 1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 
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Determine the amount of spoilage, which would incur from this 

batch. Since this batch will be obtained at the beginning of period 

4 and be used up to fulfill the demand for product B, no spoilage 

from this batch incurs.  Hence SB4 is zero. 

c4) Update the remaining demand for products ( i,tD' ) using algorithm  

6.2. The following table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca2 > 0) and (Flag2 = 0) is still held. 

No,  since Nmca2 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 3  

Step 1:  Time period t = 3 

     Step 1.1:  Compute Nmca3.  Nmca3  = 1-1 = 0 

     Step 1.2:  Set Flag3 = 0. 

Step 1.3:  Fail to satisfy the condition of (Nmca3 > 0) and (Flag3 = 0) for while loop 

    since Nmca3 = 0.   Move out of while loop and increase time period t by 1. 

 

Iteration 4  

Step 1:  Time period t = 4 

     Step 1.1:  Compute Nmca4.  Nmca4 = 1-0 = 1 

     Step 1.2:  Set Flag4 = 1. 

Step 1.3:  Satisfy the condition of (Nmca4 > 0) and (Flag4 = 0) for while loop 
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Go inside the while loop.  

a) Compute CDemit  

      CDemA4 = 52+51+50+45 =198 

 CDemB4 = 10+41   = 51 

b)  Both products have CDemit more than the capacity (C) of 50, so the total     

number of products with itCDem  C≥  (Nover) is 2. Compute the benefit      

for each product (Benit).       

                 BenA4 = 50(4.5) - 40 - 50(3)-0 = $35 

                  BenB4 = 50(6) - 50 - 50(4) -12 =$38 

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce, using High Benefit First 

(HBF). Choose product B since it has the higher benefit (38>35).   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product B. That is rB14 = 1, and 

setting B14 and B15 to be 1.  

c3) Compute Nmca4. Nmca4 = 1-1 = 0.  Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch.  SB6 is zero. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 0 0 1

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  
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condition of (Nmca4 > 0) and (Flag4 = 0) is still held. 

No.  since Nmca4 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 5  

Step 1:  Time period t = 5 

     Step 1.1:  Compute Nmca5.  Nmca5  = 1-1 = 0 

     Step 1.2:  Set Flag5 = 0. 

Step 1.3:  Fail to satisfy the condition of (Nmca5 > 0) and (Flag5 = 0) for while loop 

    since Nmca5 = 0.   Move out of while loop and increase time period t by 1. 

Iteration 6  

Step 1:  t = 6 

Step 1.1:  Compute Nmca6. At the beginning of period 5, the machine is free.    

                Therefore, Nmca6 = 1.                       

     Step 1.2:  Set Flag6 = 0. 

Step 1.3:  Satisfy the condition of (Nmca6 > 0) and (Flag6 = 0) for while loop 

Go inside the while loop.  

a) Compute CDemit :  CDemA6 = 45 ,  CDemB6 = 0  

b) Neither product A nor B has CDemit more than the capacity (C) of 50, so    

the total number of products with itCDem  C≥  (Nover) is 0.  

         c)  Check whether the Nover > 0.  False   

                           d1)  Compute the benefit for each product (Benit).       

                       BenA6 = 45(4.5) - 40 - 50(3)-5(0.4)-1  = 12.5  

                        BenB6 = 0 

d2) Compute the total number of product with positive benefit (Nben) 

Nben =1. 
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d3) Check whether the Nben > 0.  True (1>0).   

- Determine which product to produce first using High Benefit 

First (HBF). Choose product A, since there is only one 

candidate.   

- Determine which machine to use. Only one machine is 

available, so the machine is assigned to the product A, i.e. rA16 

= 1, and setting B16 to be 1.  

- Compute Nmca6. Nmca6 = 1 - 1 = 0. The cumulative remaining 

demand is less than capacity, and the batch size is discrete, but 

it is worth releasing this batch. Therefore, the batch size equals 

50. Determine the amount of spoilage, which would incur from 

this batch. This batch will be obtained at the end of horizon 

(period 7).  As we assume that the excess production in the last 

period is deemed as the ending inventory, no spoilage from this 

batch incurs.  Hence SA7  is zero. 

- Update the remaining demand for products ( i,tD' ). The 

following table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 0
demands (units) 0 0 0 0 0 0 1

Time Period (t)

A,tD'
B,tD'

 

  -     Go back to the beginning of while loop to check whether the  

condition of (Nmca6 > 0) and (Flag6 = 0) is still held. 

No, since Nmca6 = 0.   Move out of while loop and increase time 

period t by 1.  The resulting t will be 7, which is greater than T_last 

(6). Exit the for loop. 
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At the end of step 1, we obtain the batch release plan of each product over the 

horizon.  In this example, the production plan is to release a batch of 50 units of product 

A in periods 1 and 6, and to release a batch of 50 units of product B in periods 2 and 4 as 

shown in the MPS in Table 6.4.  Because steps 2-5 are straightforward, the details of 

calculation are omitted.  
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A.5 Implementation of the MLFL-B Heuristic for Solving BPP-SI 

Problem with Discrete Batch Size 

In this section, we illustrate how to use MLFL-B Heuristic to solve the small 

BPP-SI example with discrete batch size in Chapter VI. 

Step 0: Initialization:    

Set i,t i,t D' D    i,t= ∀     

Set j,tB 0      j,t= ∀  

 Compute  T_last:      T_last  = 7 – min (1, 2)  = 6     

Iteration 1  

Step 1: Start with t = 1 

      Step 1.1:  Compute Nmca1.    Nmca1 = 
1

j1
j=1

1 - B∑ =1 - 0 = 1.   

      Step 1.2:  Set Flag1 = 0. 

Step 1.3:  Check whether the condition of (Nmca1 > 0) and (Flag1 = 0) for while loop 

is satisfied or not.  We go inside to the loop, since the values of parameter 

satisfy such condition.  

a) Compute CDemit  

   CDemA1 = 50+52+51+50+45 =248 

    CDemB1 =  20+40+41 = 101 

b) Both products have CDemit more than the capacity (C) of 50, so the 

total number of products with itCDem  C≥  (Nover) is 2.      

Compute the benefit for each product (Benit)       

                 BenA1 = 50(4.5) - 40 - 50(3)-10= $25 

                  BenB1 = 50(6) - 50 - 50(4) -39  =  $11 

Compute TFit ,  itΔT  and Ft    
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TFA1 = 3,        A1ΔT 3 (1 1) 1 2= − + + =  

TFB1 = 6,        B1ΔT 6 (1 2) 1 4= − + + =  

F1   = { A },  since 1ΔTmin = min {2, 4} = 2.   

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and High Benefit First” (SDT-HB). Choose product A since there 

is only one candidate.   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA11 = 1, and 

setting B11 to be 1.  

c3) Compute Nmca1. Nmca1 = 1 - 1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch. Since this batch will be obtained at the beginning of period 

2 and be used up to fulfill the demand for product A, no spoilage 

from this batch incurs.  Hence SA2  is zero. 

c4) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca1 > 0) and (Flag1 = 0) is still held. 

No, since Nmca1 = 0.   Move out of while loop and increase time 

period t by 1.  
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Iteration 2  

Step 1:  Time period t = 2 

      Step 1.1:  Compute Nmca2.    Nmca2 = 1 - 1 = 0.   

      Step 1.2:  Set Flag2 = 0. 

Step 1.3:  Satisfy the condition of (Nmca2 > 0) and (Flag2 = 0) for while loop 

Go inside the while loop.  

a) Compute CDemit  

   CDemA2 = 52+51+50+45 = 198 

                               CDemB2 = 20+40+41 = 101 

b) Both products have CDemit more than the capacity (C) of 50, so the 

total number of products with itCDem  C≥  (Nover) is 2.      

Compute the benefit for each product (Benit)       

                 BenA2 = 50(4.5) - 40 - 50(3)-10 = $25 

                  BenB2 = 50(6) - 50 - 50(4)-24 =$26 

Compute TFit ,  itΔT  and Ft    

TFA2 = 4,        A2ΔT 4 (2 1) 1 2= − + + =  

TFB2 = 6,        B2ΔT 6 (2 2) 1 3= − + + =  

F2   = {A},  since 2ΔTmin = min {2, 3} = 2.   

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and High Benefit First” (SDT-HB). Choose the product A. 

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA12 = 1, and 

setting B12 to be 1.  
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c3) Compute Nmca2. Nmca2 = 1 - 1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch.  As a result, SA3  = 0. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 2 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

- Go back to the beginning of while loop to check whether the  

condition of (Nmca2 > 0) and (Flag2 = 0) is still held. 

No, since Nmca2 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 3  

Step 1:  t = 3 

Step 1.1:  Compute Nmca3.    Nmca3 = 1 - 0 = 1.   

      Step 1.2:  Set Flag3 = 0. 

Step 1.3:  Satisfy the condition of (Nmca3 > 0) and (Flag3 = 0) for while loop 

Go inside the while loop.  

a) Compute CDemit  

   CDemA3 = 2+51+50+45 = 148 

                               CDemB3 = 20+40+41   = 101 

b)  Both products have CDemit more than the capacity (C) of 50, so the total     

 number of products with itCDem  C≥  (Nover) is 2.  

Compute the benefit  
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                 BenA3 = 50(4.5) - 40 - 50(3) – 9.6 = $25.4 

                  BenB3 = 50(6) - 50 - 50(4) – 9 =$41 

Compute TFit ,  itΔT  and Ft    

TFA3 = 5,        A3ΔT 5 (3 1) 1 2= − + + =  

TFB3 = 6,        B3ΔT 6 (3 2) 1 2= − + + =  

F3   = { A, B },  since 3ΔTmin = min {2, 2} = 2.   

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and High Benefit First” (SDT-HB). Choose product B, since it has 

the higher profit. 

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product B, i.e. rB13 = 1, and 

setting B13 and B14 to be 1.  

c3) Compute Nmca3. Nmca3 = 1-1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch.  As a result, SB5  = 0. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 2 51 50 45
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca3 > 0) and (Flag3 = 0) is still held. 
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No, since Nmca3 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 4  

Step 1:  Time period t = 4 

      Step 1.1:  Compute Nmca4.  Nmca4 = 1-1 = 0 

      Step 1.2:  Set Flag4 = 0. 

Step 1.3:  Fail to satisfy the condition of (Nmca4 > 0) and (Flag4 = 0) for while loop 

    since Nmca4 = 0.   Move out of while loop and increase time period t by 1. 

Iteration 5  

Step 1:  t = 5 

Step 1.1:  Compute Nmca5. Nmca5 = 1-0=1.                       

      Step 1.2:  Set Flag5 = 0. 

Step 1.3:  Satisfy the condition of (Nmca5 > 0) and (Flag5 = 0) for while loop 

Go inside the while loop.  

a) Compute CDemit :  CDemA5 = 50+45=95 ,  CDemB5 = 41  

b) Only product A has CDemit more than the capacity (C) of 50, so    

the total number of products with itCDem  C≥  (Nover) is 1.  Compute    

benefit for each product (Benit).   BenA5 = 50(4.5) - 40 - 50(3) - 0 = $35 

Compute TFit ,  itΔT  and Ft    

TFA5 = 6,        A5ΔT 6 (5 1) 1 1= − + + =  

Ft   = { A }     tΔTmin = 1.   

   c)  Check whether the Nover > 0.  True (1>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and High Benefit First” (SDT-HB). Choose product A. 
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c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA15 = 1, and 

setting B15 to be 1.  

c3)  Compute Nmca3. Nmca5 = 1-1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch.  As a result, SA6  = 0. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 2 51 0 45
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca5 > 0) and (Flag5 = 0) is still held. 

No, since Nmca5 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 6  

Step 1:  t = 6 

Step 1.1:  Compute Nmca6.  Nmca6 = 1.                       

      Step 1.2:  Set Flag6 = 0 

Step 1.3:  Satisfy the condition of (Nmca6 > 0) and (Flag6= 0) for while loop 

Go inside the while loop.  

a) Compute CDemit :  CDemA6 = 45 ,  CDemB6 = 0  

b) CDemit of both products is less than the capacity (C) of 50, so    

the total number of products with itCDem  C≥  (Nover) is 0.  
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   c)  Check whether the Nover > 0.  False   

                           d1)  Compute the benefit for each product (Benit).       

                       BenA6 = 45(4.5) - 40 - 50(3)-2-1  = 9.5  

                        BenB6 = 0 

  d2) Compute the total number of product with positive benefit (Nben) 

Nben =1. 

d3) Check whether the Nben > 0.  True (1>0).   

- Determine which product to produce first using “Small Delta 

Time and High Benefit First” (SDT-HB). Choose product A, 

since it is only the candidate. 

- Determine which machine to use. Only one machine is 

available, so the machine is assigned to the product A, i.e. RA16 

= 1, and setting B16 to be 1.  

- Compute Nmca6. Nmca6 = 1 - 1 = 0. The cumulative remaining 

demand is less than capacity, and the batch size is discrete, but 

it is worth releasing this batch. Therefore, the batch size equals 

50. Determine the amount of spoilage, which would incur from 

this batch. This batch will be obtained at the end of horizon 

(period 7).  As we assume that the excess production in the last 

period is deemed as the ending inventory, no spoilage from this 

batch incurs.  Hence SA7  is zero. 

- Update the remaining demand for products ( i,tD' ). The 

following table shows the remaining demand.  
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1 2 3 4 5 6 7
Remaining 0 0 0 2 51 0 0
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'

 

  -     Go back to the beginning of while loop to check whether the  

condition of (Nmca6 > 0) and (Flag6 = 0) is still held. 

No, since Nmca6 = 0.   Move out of while loop and increase time 

period t by 1.  The resulting t will be 7, which is greater than T_last 

(6). Exit the for loop. 

At the end of step 1, we obtain the batch release plan of each product over the 

horizon.  In this example, the production plan is to release a batch of 50 units of product 

A in periods 1, 2, 5 and 6, and to release a batch of 50 units of product B in period 3 as 

shown in the MPS in Table 6.5.  Because steps 2-5 are straightforward, the details of 

calculation are omitted.  
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A.6 Implementation of the MLFL-C Heuristic for Solving BPP-SI 

Problem with Discrete Batch Size 

In this section, we illustrate how to use MLFL-C Heuristic to solve the small 

BPP-SI example with discrete batch size in Chapter VI. 

Step 0: Initialization:    

Set i,t i,t D' D    i,t= ∀     

Set j,tB 0      j,t= ∀  

 Compute  T_last:      T_last  = 7 – min (1, 2)  = 6     

Iteration 1  

Step 1: Start with t = 1 

      Step 1.1:  Compute Nmca1.    Nmca1 = 
1

j1
j=1

1 - B∑ =1 - 0 = 1.   

      Step 1.2:  Set Flag1 = 0. 

Step 1.3:  Satisfy the condition of (Nmca1 > 0) and (Flag1 = 0) for while loop.  

a) Compute CDemit  

   CDemA1 = 50+52+51+50+45 =248 

    CDemB1 = 20+40+41 = 101 

b) Both products have CDemit more than the capacity (C) of 50, so the 

total number of products with itCDem  C≥  (Nover) is 2.      

Compute the benefit for each product (Benit)       

                 BenA1 = 50(4.5) - 40 - 50(3) - 10 = $25 

                  BenB1 = 50(6) - 50 - 50(4) = $11 

Compute TFit ,  itΔT  and Ft    

TFA1 = 3,        A1ΔT 3 (1 1) 1 2= − + + =  
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TFB1 = 6,        B1ΔT 6 (1 2) 1 4= − + + =  

F1   = { A },  since 1ΔTmin = min {2, 4} = 2.   

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and Short Production Time Second” (SDT-SPT). Choose product 

A since there is only one candidate.   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA11 = 1, and 

setting B11 to be 1.  

c3) Compute Nmca1. Nmca1 = 
1

j1
j=1

1 - B∑ =1 - 1  = 0. Since cumulative 

remaining demand is no less than capacity, setting the batch size to 

be 50. Determine the amount of spoilage, which would incur from 

this batch. No spoilage from this batch incurs.  Hence SA2  is zero. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca1 > 0) and (Flag1 = 0) is still held. 

No, since Nmca1 = 0.   Move out of while loop and increase time 

period t by 1.  
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Iteration 2  

Step 1:  Time period t = 2 

      Step 1.1:  Compute Nmca2.    Nmca2 = 
1

j2
j=1

1 - B∑ = 1 - 1 = 0.   

      Step 1.2:  Set Flag2 = 0. 

Step 1.3:  Satisfy the condition of (Nmca2 > 0) and (Flag2 = 0) for while loop 

Go inside the while loop.  

a) Compute CDemit from period t+ATi to period t+ATi+LTi-1 for each 

product:  

   CDemA2 = 52+51+50+45 = 198 

 CDemB2 = 20+40+41 = 101 

b) Both products have CDemit more than the capacity (C) of 50, so the 

total number of products with itCDem  C≥  (Nover) is 2.      

Compute the benefit for each product (Benit)       

                 BenA2 = 50(4.5) - 40 - 50(3)-10 = $25 

                  BenB2 = 50(6) - 50 - 50(4)-24=$56 

Compute TFit ,  itΔT  and Ft    

TFA2 = 4,        A2ΔT 4 (2 1) 1 2= − + + =  

TFB2 = 6,        B2ΔT 6 (2 2) 1 3= − + + =  

F2   = { A },  since 2ΔTmin = min {2, 3} = 2.   

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and Short Production Time Second” (SDT-SPT). Choose product 

A since there is only one candidate.   
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c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA12 = 1, and 

setting B12 to be 1.  

c3) Compute Nmca2. Nmca2 = 
1

j2
j=1

1 - B∑ =1 - 1 = 0. Since cumulative 

remaining demand is no less than capacity, setting the batch size to 

be 50. Determine the amount of spoilage, which would incur from 

this batch.  As a result, SA3  = 0. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 2 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'
A,tD'
B,tD'

 

- Go back to the beginning of while loop to check whether the  

condition of (Nmca2 > 0) and (Flag2 = 0) is still held. 

No, since Nmca2 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 3  

Step 1:  t = 3 

Step 1.1:  Compute Nmca3.    Nmca3 = 
1

j3
j=1

1 - B∑ = 1 - 0 = 1.   

      Step 1.2:  Set Flag3 = 0. 

Step 1.3:  Satisfy the condition of (Nmca3 > 0) and (Flag3 = 0) for while loop 

Go inside the while loop.  

a) Compute CDemit  

   CDemA3 = 2+51+50+45 = 148 
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 CDemB3 = 20+40+41   = 101 

b)  Both products have CDemit more than the capacity (C) of 50, so the total     

 number of products with itCDem  C≥  (Nover) is 2.  

Compute the benefit  

                 BenA3 = 50(4.5) - 40 - 50(3) - 9.6 = $25.4 

                  BenB3 = 50(6) - 50 - 50(4) - 9 =$41 

Compute TFit ,  itΔT  and Ft    

TFA3 = 5,        A3ΔT 5 (3 1) 1 2= − + + =  

TFB3 = 6,        B3ΔT 6 (3 2) 1 2= − + + =  

F3   = { A, B },  since 3ΔTmin = min {2, 2} = 2.   

     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and Short Production Time Second” (SDT-SPT). Choose product 

A since it has shorter production time.   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA13 = 1, and 

setting B13 to be 1.  

c3)  Compute Nmca3. Nmca3 = 1-1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch.  As a result, SA4  = 0. 

   c4)   Update the remaining demand for products ( i,tD' ). The following     

   table shows the remaining demand.  
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1 2 3 4 5 6 7
Remaining 0 0 0 0 3 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca3 > 0) and (Flag3 = 0) is still held. 

No, since Nmca3 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 4  

Step 1:  Time period t = 4 

    Step 1.1:  Compute Nmca4.  Nmca4  = 1-0 = 1 

     Step 1.2:  Set Flag4 = 0. 

Step 1.3:  Satisfy the condition of (Nmca4 > 0) and (Flag4 = 0) for while loop. 

 Go inside the while loop.  

a) Compute CDemit  

   CDemA4 = 3+50+45 = 98 

 CDemB4 = 40+41   = 81 

b)  Both products have CDemit more than the capacity (C) of 50, so the total     

 number of products with itCDem  C≥  (Nover) is 2.  

Compute the benefit  

                 BenA4 = 50(4.5) - 40 - 50(3)-9.4 = $25.6 

                  BenB4 = 50(6) - 50 - 50(4)-3=$47 

Compute TFit ,  itΔT  and Ft    

TFA4 = 6,        A4ΔT 6 (4 1) 1 2= − + + =  

TFB4 = 7,        B4ΔT 7 (4 2) 1 2= − + + =  

F4   = { A, B },  since 4ΔTmin = min {2, 2} = 2.   
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     c)  Check whether the Nover > 0.  True (2>0).    

c1)  Determine which product to produce first using “Small Delta Time 

and Short Production Time Second” (SDT-SPT). Choose product 

A since it has shorter production time.   

c2)  Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA14 = 1, and 

setting B14 to be 1.  

c3) Compute Nmca3. Nmca3 = 1-1 = 0. Since cumulative remaining 

demand is no less than capacity, setting the batch size to be 50. 

Determine the amount of spoilage, which would incur from this 

batch.  As a result, SA5  = 0. 

c4) Update the remaining demand for products ( i,tD' ). The following 

table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 0 0 3 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca4 > 0) and (Flag4 = 0) is still held. 

No, since Nmca4 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 5  

Step 1:  t = 5 

Step 1.1:  Compute Nmca5. Nmca5 = 1-0=1.                       

      Step 1.2:  Set Flag5 = 0. 

Step 1.3:  Satisfy the condition of (Nmca5 > 0) and (Flag5 = 0) for while loop 
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Go inside the while loop.  

a) Compute CDemit :  CDemA5 = 3+45=48 ,  CDemB5 = 41  

b)  Neither product A nor B has CDemit more than the capacity (C) of 50, so    

the total number of products with itCDem  C≥  (Nover) is 0.  Compute    

benefit for each product (Benit).   BenA5 = 50(4.5) – 40 – 50(3) = $35 

   c)  Check whether the Nover > 0.  False   

                           d1)  Compute the benefit for each product (Benit).       

                       BenA5 = 48(4.5) - 40 - 50(3) - 0.8 - 9.8 = 15.4 

                        BenB5 = 41(6) - 50 - 50(4) - 4.5 - 2.7 < 0 

  d2) Compute the total number of product with positive benefit (Nben) 

Nben =1. 

d3) Check whether the Nben > 0.  True (1>0).   

- Determine which product to produce first using “Small Delta 

Time and Short Production Time Second” (SDT-SPT). Choose 

product A, since it is only the candidate. 

- Determine which machine to use. Only one machine is 

available, so the machine is assigned to the product A, i.e. rA15 

= 1, and setting B15 to be 1.  

- Compute Nmca5. Nmca5 = 1 - 1 = 0. The cumulative remaining 

demand is less than capacity, and the batch size is discrete, but 

it is worth releasing this batch. Therefore, the batch size equals 

50. Determine the amount of spoilage, which would incur from 

this batch. SA6  = 50 – 48 = 2. 

- Update the remaining demand for products ( i,tD' ). The 

following table shows the remaining demand.  
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1 2 3 4 5 6 7
Remaining 0 0 0 0 0 0 0
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'
A,tD'
B,tD'

 

  -     Go back to the beginning of while loop to check whether the  

condition of (Nmca5 > 0) and (Flag5 = 0) is still held. 

No, since Nmca5 = 0.   Move out of while loop and increase time 

period t by 1.   

Iteration 6  

Step 1:  t = 6 

Step 1.1:  Compute Nmca6.  Nmca6 = 1.                       

      Step 1.2:  Set Flag6 = 0 

Step 1.3:  Satisfy the condition of (Nmca6 > 0) and (Flag6= 0) for while loop 

Go inside the while loop.  

a) Compute CDemit :  CDemA6 = 0 ,  CDemB6 = 0  

b) Both products have CDemit of 0, so Nover is 0.  

    c)  Check whether the Nover > 0.  False   

                           d1)  Compute the benefit for each product (Benit).       

                       BenA6 = 0 ,    BenB6 = 0 

  d2) Compute the total number of product with positive benefit (Nben) 

Nben =0. 

d3) Check whether the Nben > 0.  False. 

 - Set Flag = 1, i.e. the production is unworth. 

 - Go to the beginning of while loop to check whether the  

condition of (Nmca6 > 0) and (Flag6 = 0) is still held. 
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No, since Flag6 = 1.   Move out of while loop and increase time 

period t by 1.  The resulting t will be 7, which is greater than T_last 

(6). Exit the for loop. 

At the end of step 1, we obtain the batch release plan of each product over the 

horizon.  In this example, the production plan is to release a batch of 50 units of product 

A in periods 1, 2, 3, 4 and 5 as shown in the MPS in Table 6.6.  The details of calculation 

from step 2 to step 5 are omitted. 
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A.7 Implementation of the FOQ Heuristic for Solving BPP-SI Problem 

with Discrete Batch Size 

In this section, we illustrate how to use FOQ Heuristic to solve the small BPP-SI 

example with discrete batch size in Chapter VI. 

Step 0: Initialization:    

Set i,t i,t D' D    i,t= ∀     

Set j,tB 0      j,t= ∀   

       Compute  T_last:      T_last  = 7 – min (1, 2)  = 6     

Iteration 1  

Step 1: Start with t = 1 

      Step 1.1:  Compute Nmca1.    Nmca1 = 
1

j1
j=1

1 - B∑ =1 - 0  = 1.   

      Step 1.2:  Set NumZE1 = 0   

      Step 1.3   Both products have nonzero earliness, so NumZE1 = 0 

      Step 1.4:  Fail to satisfy the condition of (Nmca1 > 0) and (NumZE1 > 0). 

Go out of while loop and increase time period t by 1.   

Iteration 2  

Step 1:  t = 2 

Step 1.1:  Compute Nmca2.  Nmca2 = 1.                       

      Step 1.2:  Set NumZE2 = 0   

      Step 1.3   Compute IZEA2 = 1 and IZEB2 = 0, so NumZE2 = 1 

      Step 1.4:  Satisfy the condition of (Nmca2 > 0) and (NumZE2 > 0). 

a)   Set   Select = 0,  Ipdt  = 1,  PID  = 0 

Satisfy the condition of (Select = 0) and (Ipdt ≤  2)  

- Find the first product with zero earliness and select it 
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       Since only product A is a candidate,  Ipdt = 1 and Select = 1  

 b)  If   Select = 1    

b1) Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA12 = 1, and 

setting B12 to be 1.  

b2) Compute Nmca2. Nmca2 = 0.  Batch size = 50. Determine the 

amount of spoilage, which would incur from this batch. No 

spoilage from this batch incurs.  Hence SA2  is 0. 

b3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca2 > 0) and (NumZE2 > 0) is still held. 

No, since Nmca2 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 3  

   Step 1:  t = 3 

Step 1.1:  Compute Nmca3.  Nmca3 = 1.                       

      Step 1.2:  Set NumZE3 =  0   

      Step 1.3   Compute IZEA3 = 1 and IZEB3 = 1, so NumZE3 =  2 

      Step 1.4:  Satisfy the condition of (Nmca3 > 0) and (NumZE3 > 0). 

a)   Set   Select = 0,  Ipdt  = 1,  PID  = 0 

Satisfy the condition of (Select = 0) and (Ipdt ≤  2)  
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- Find the first product with zero earliness and select it 

       Select product A, so Ipdt = 1 and Select = 1  

 b)  If   Select = 1    

b1) Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA13 = 1, and 

setting B13 to be 1.  

b2) Compute Nmca3. Nmca3 = 0.  Batch size = 50. Determine the 

amount of spoilage, which would incur from this batch. No 

spoilage from this batch incurs.  Hence SA3  is 0. 

b3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.1. The following table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 0 2 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'
A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmca3 > 0) and (NumZE3 > 0) is still held. 

No, since Nmca3 = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 4  

   Step 1:  t = 4 

Step 1.1:  Compute Nmcat.  Nmcat = 1.                       

      Step 1.2:  Set NumZEt =  0   

      Step 1.3   Compute IZEAt = 1 and IZEBt = 1, so NumZEt =  2 

      Step 1.4:  Satisfy the condition of (Nmcat > 0) and (NumZEt > 0). 

a)   Set   Select = 0, Ipdt  = 1,  PID  = 0 
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Satisfy the condition of (Select = 0) and (Ipdt ≤  2)  

- Find the first product with zero earliness and select it 

       Select product A, so Ipdt = 1 and Select = 1  

 b)  If   Select = 1    

b1) Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA1t = 1, and 

setting B1t to be 1.  

b2) Compute Nmcat. Nmcat = 0.  Batch size = 50.   SAt  is 0. 

b3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 0 3 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmcat > 0) and (NumZEt > 0) is still held. 

No, since Nmcat = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 5  

   Step 1:  t = 5 

Step 1.1:  Compute Nmcat.  Nmcat = 1.                       

      Step 1.2:  Set NumZEt =  0   

      Step 1.3   Compute IZEAt = 1 and IZEBt = 1, so NumZEt =  2 

      Step 1.4:  Satisfy the condition of (Nmcat > 0) and (NumZEt > 0). 

a)   Set   Select = 0,  Ipdt  = 1,  PID  = 0 

Satisfy the condition of (Select = 0) and (Ipdt ≤  2)  
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- Find the first product with zero earliness and select it 

       Select product A, so Ipdt = 1 and Select = 1  

 b)  If   Select = 1    

b1) Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA1t = 1, and 

setting B1t to be 1.  

b2) Compute Nmcat. Nmcat = 0.  Batch size = 50.   SAt  is 0. 

b3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 0 0 3 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'

 

  - Go back to the beginning of while loop to check whether the  

condition of (Nmcat > 0) and (NumZEt > 0) is still held. 

No, since Nmcat = 0.   Move out of while loop and increase time 

period t by 1.  

Iteration 6  

Step 1:  t = 6 

Step 1.1:  Compute Nmcat.  Nmcat = 1.                       

      Step 1.2:  Set NumZEt =  0   

      Step 1.3   Compute IZEAt = 1 and IZEBt = 0, so NumZEt =  1 

      Step 1.4:  Satisfy the condition of (Nmcat > 0) and (NumZEt > 0). 

a)   Set   Select = 0,  Ipdt  = 1,  PID  = 0 

Satisfy the condition of (Select = 0) and (Ipdt ≤  2)  

- Find the first product with zero earliness and select it 
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       Select product A, so Ipdt = 1 and Select = 1  

 b)  If   Select = 1    

b1) Determine which machine to use. Only one machine is available, 

so the machine is assigned to the product A, i.e. rA1t = 1, and 

setting B1t to be 1.  

b2) Compute Nmcat. Nmcat = 0.  Batch size = 50.   SAt  is 0. 

b3) Update the remaining demand for products ( i,tD' ) using  

algorithm 6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 0 0 0 0
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'
A,tD'
B,tD'

 

- Go back to the beginning of while loop to check whether the  

condition of (Nmcat > 0) and (NumZEt > 0) is still held. 

No, since Nmcat = 0.   Move out of while loop and increase time 

period t by 1.  The resulting t will be 7, which is greater than T_last 

(6). Exit the for loop. 

At the end of step 1, we obtain the batch release plan of each product over the 

horizon.  In this example, the production plan is to release a batch of 50 units of product 

A in periods 2,3,4,5 and 6 in Table 6.7.   
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A.8 Implementation of the Hybrid Heuristic for Solving BPP-SI 

Problem with Discrete Batch Size 

In this section, we illustrate how to use Hybrid Heuristic to solve the small BPP-

SI example with discrete batch size in Chapter VI. 

Step 0: Initialization:    

Set i,t i,t D' D    i,t= ∀     

Set j,tB 0      j,t= ∀   

       Compute T_last:      T_last  = 7 – min (1, 2)  = 6     

Iteration 1  

Step 1: Start with t = 1 

      Step 1.1:  Compute Nmcat.    Nmcat= 1 - 0 = 1.   

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt =  0   

      Step 1.4:   Both products have nonzero earliness, so NumZEt = 0 

      Step 1.5:   Fail the condition of (Nmcat > 0) and (Flagt = 0) and  (NumZEt > 0). 

Go out of while loop and increase time period t by 1.   

Iteration 2  

Step 1:  t = 2 

      Step 1.1:  Compute Nmcat.    Nmcat= 1 - 0 = 1.   

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt = 0   

      Step 1.4:   Compute IZEAt = 1 and IZEBt = 0, so NumZE2 = 1 

      Step 1.5:  Satisfy the condition of (Nmcat > 0) and (Flagt = 0) and   

(NumZEt > 0). 

a)   Find the class for each product 
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 - IZEAt = 1, ICAt = 1,  so ClassAt  = 1   

- IZEBt = 0, ICBt = 1,  so ClassBt  = 3   

- NC1= 1, NC2=0, NC3=1 

b) Select the class of product to produce according to the priority rule> 

-  cid* = 1  since NC1= 1  

c) Compute batch size, amount of unmet demand for each product, and the 

associated costs and benefit. 

Product Unmet demand (units) Batch size (units)
A 50 50
B 50 50  

Product Unmet cost ($) Prod. cost ($) Setup cost($) Spoil cost($) Inv. cost ($) Benefit ($)
A 225 150 40 0 0 35
B 300 200 50 0 24 26  

d) Select the product and assign to a machine  

Since cid* = 1 and Bencid*,t > 0, we release the batch of product A. 

d1) Determine which machine to use. Only one machine is available, so 

the machine is assigned to the product A, i.e. rA1t = 1, and setting 

B1t to be 1.  

d2) Compute Nmcat. Nmcat = 0.  Set batch size = batchA. Determine 

the amount of spoilage, which would incur from this batch. No 

spoilage from this batch incurs.  Hence SA2  is 0. 

d3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 20 40 41

Time Period (t)

A,tD'
B,tD'
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- Go back to the beginning of while loop to check whether the condition 

of (Nmcat > 0) and (Flagt = 0) and (NumZEt > 0) is still held. No, since 

Nmcat = 0.   Move out of while loop and increase time period t by 1.  

Iteration 3  

Step 1:  t = 3 

      Step 1.1:  Compute Nmcat.    Nmcat= 1 - 0 = 1.   

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt = 0   

      Step 1.4:   Compute IZEAt = 1 and IZEBt = 1, so NumZE2 = 2 

      Step 1.5:  Satisfy the condition of (Nmcat > 0) and (Flagt = 0) and   

(NumZEt > 0). 

a)   Find the class for each product 

 - IZEAt = 1, ICAt = 1, so ClassAt  = 1   

- IZEBt = 1, ICBt = 1, so ClassBt  = 1   

- NC1= 2, NC2=0, NC3=0 

b) Select the class of product to produce according to the priority rule> 

-  cid* = 1  since NC1= 1  

c) Compute batch size, amount of unmet demand for each product, and the 

associated costs and benefit. 

Product Unmet demand (units) Batch size (units)
A 50 50
B 50 50  

Product Unmet cost ($) Prod. cost ($) Setup cost($) Spoil cost($) Inv. cost ($) Benefit ($)
A 225 150 40 0 0 35
B 300 200 50 0 9 41  

d) Select the product and assign to a machine  

From b) and c) cid* = 1 and Bencid*,t > 0, we select to release the batch of 

product B, since it has the higher benefit than product A.  
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d1) Determine which machine to use. Only one machine is available, so 

the machine is assigned to the product B, i.e. rB1t = 1, and setting 

B1t and B1,t+1 to be 1, since it takes 2 periods for producing product 

B.  

d2) Compute Nmcat. Nmcat = 0.  Set batch size = batchB. Determine the 

amount of spoilage, which would incur from this batch. No 

spoilage from this batch incurs.  Hence SB3  is 0. 

d3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 50 45
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'
A,tD'
B,tD'

 

- Go back to the beginning of while loop to check whether the condition 

of (Nmcat > 0) and (Flagt = 0) and (NumZEt > 0) is still held. No, since 

Nmcat = 0.   Move out of while loop and increase time period t by 1.  

Iteration 4 

Step 1: Start with t = 4 

      Step 1.1:  Compute Nmcat.    Nmcat= 1 - 1 = 0.   

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt = 0   

      Step 1.4:   Both products have nonzero earliness, so NumZEt = 0 

      Step 1.5:   Fail the condition of (Nmcat > 0) and (Flagt = 0) and  (NumZEt > 0). 

Go out of while loop and increase time period t by 1.   
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Iteration 5  

   Step 1:  t = 5 

      Step 1.1:  Compute Nmcat.    Nmcat= 1 - 0 = 1.   

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt = 0   

      Step 1.4:   Compute IZEAt = 1 and IZEBt = 1, so NumZE2 = 2 

      Step 1.5:  Satisfy the condition of (Nmcat > 0) and (Flagt = 0) and   

(NumZEt > 0). 

a)   Find the class for each product 

 - IZEAt = 1, ICAt = 1, so ClassAt  = 1   

- IZEBt = 1, ICBt = 0, so ClassBt  = 2   

- NC1= 1, NC2=1, NC3=0 

b) Select the class of product to produce according to the priority rule> 

-  cid* = 1  since NC1= 1  

c) Compute batch size, amount of unmet demand for each product, and the 

associated costs and benefit. 

Product Unmet demand (units) Batch size (units)
A 41 50
B 50 50  

Product Unmet cost ($) Prod. cost ($) Setup cost($) Spoil cost($) Inv. cost ($) Benefit ($)
A 225 150 40 0 0 35
B 246 200 50 4.5 0 -8.5  

d) Select the product and assign to a machine  

From b) and c) cid* = 1 and Bencid*,t > 0, we select to release the batch of 

product A, since the class 1 contains only product A, with positive benefit.  

d1) Determine which machine to use. Only one machine is available, so 

the machine is assigned to the product A, i.e. rA1t = 1, and setting 

BAt to be 1, since it takes one period for producing product A.  
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d2) Compute Nmcat. Nmcat = 0.  Set batch size = batchA. Determine 

the amount of spoilage, which would incur from this batch. No 

spoilage from this batch incurs.  Hence SAt  is 0. 

d3) Update the remaining demand for products ( i,tD' ) using algorithm 

6.2. The following table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 0 45
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'

 

- Go back to the beginning of while loop to check whether the condition 

of (Nmcat > 0) and (Flagt = 0) and (NumZEt > 0) is still held. No, since 

Nmcat = 0.   Move out of while loop and increase time period t by 1.  

Iteration 6  

   Step 1:  t = 6 

      Step 1.1:  Compute Nmcat.    Nmcat= 1 - 0 = 1.   

Step 1.2:  Set Flagt = 0    

Step 1.3:  Set NumZEt = 0   

      Step 1.4:   Compute IZEAt = 1 and IZEBt = 0, so NumZE2 = 1 

      Step 1.5:  Satisfy the condition of (Nmcat > 0) and (Flagt = 0) and   

(NumZEt > 0). 

a)   Find the class for each product 

 - IZEAt = 1, ICAt = 0, so ClassAt  = 2   

- IZEBt = 0, ICBt = 0, so ClassBt  = 3  

- NC1= 0, NC2=1, NC3=1 

b) Select the class of product to produce according to the priority rule> 

-  cid* = 2  since NC1= 0 and NC2= 0 
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c) Compute batch size, amount of unmet demand for each product, and the 

associated costs and benefit. 

Product Unmet demand (units) Batch size (units)
A 45 50
B 0 50  

Product Unmet cost ($) Prod. cost ($) Setup cost($) Spoil cost($) Inv. cost ($) Benefit ($)
A 202.5 150 40 2 0 10.5
B 0 200 50 25 0 -275  

d) Select the product and assign to a machine  

From b) and c) cid* = 2 and Bencid*,t > 0, we select to release the batch of 

product A, since the class 1 contains only product A, with positive benefit.  

d1) Determine which machine to use. Only one machine is available, so 

the machine is assigned to the product A, i.e. rA1t = 1, and setting 

BAt to be 1. 

d2) Compute Nmcat. Nmcat = 0.  Set batch size = batchA. Determine 

the amount of spoilage, which would incur from this batch. No 

spoilage from this batch incurs.  Hence SAt  is 0. 

d3) Update the remaining demand for products ( i,tD' )The following 

table shows the remaining demand. 

1 2 3 4 5 6 7
Remaining 0 0 0 52 51 0 0
demands (units) 0 0 0 0 0 10 41

Time Period (t)

A,tD'
B,tD'

 

- Go back to the beginning of while loop to check whether the 

condition of (Nmcat > 0) and (Flagt = 0) and (NumZEt > 0) is still 

held. No, since Nmcat = 0. Move out of while loop and increase 

time period t by 1.  The resulting t will be 7, which is greater than 

T_last (6). Exit the for loop. 
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At the end of step 1, we obtain the batch release plan of each product over the 

horizon.  In this example, the production plan is to release a batch of 50 units of product 

A in periods 2, 5 and 6, and to release a batch of 50 units of product B in period 3 as 

shown in the MPS in Table 6.8. 
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A.9 Implementation of the MLFL-A Heuristic for Solving BPP-SI 

Problem with Continuous Batch Size 

In this section, we illustrate how to use MLFL-A Heuristic to solve the small 

BPP-SI example with discrete batch size in Chapter VI. 

If we apply this heuristic to the problem, the computational result from period 1 to 

period 5 will be the same as that from the discrete batch size. The batch size during these 

periods is full capacity since there is at least one product which CDemit is no less than C 

in such periods. According to the result from discrete batch size, the remaining demand 

for products ( i,tD' ) at the end of iteration 5 is shown in Table below. Recall that the 

machine will be free at the beginning of period 6. Notice that in period 6, CDemit for both 

products is less than C.  We next have to identify their benefits are positive. 

1 2 3 4 5 6 7
Remaining 0 0 50 52 51 0 45
demands (units) 0 0 0 0 0 0 1

Time Period (t)

A,tD'
B,tD'

 

After performing the calculation in the 6th iteration, we obtain the following result.  

Iteration 6  

Step 1:  t = 6 

Step 1.1:  Compute Nmca6.  Nmca6 = 1-0 = 1.                       

 Step 1.2:  Set Flag6 = 0 

Step 1.3:  Satisfy the condition of (Nmca6 > 0) and (Flag6= 0) for while loop 

Go inside the while loop.  

a) Compute CDemit :  CDemA6 = 45 ,  CDemB6 = 0  

b)  CDemit of both products is less than the capacity (C) of 50, so    

the total number of products with itCDem  C≥  (Nover) is 0.  

   c)  Check whether the Nover > 0.  False   
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                           d1)  Compute the benefit for each product (Benit).       

                       BenA6 = 45(4.5) – 40 – 50(3)  = 12.5  

                        BenB6 = 0(6) – 50 – 50(4)  < 0 

d2) Compute the total number of product with positive benefit (Nben) 

Nben =1. 

d3) Check whether the Nben > 0.  True (1>0).   

- Determine which product to produce first using High Benefit 

First (HBF). Choose product A. 

- Determine which machine to use. Only one machine is 

available, so the machine is assigned to the product A, i.e. rA16 

= 1, and setting B16 to be 1.  

- Compute Nmca6. Nmca6 = 1 - 1 = 0. The cumulative remaining 

demand is less than capacity, and the batch size is continuous, 

but it is worth releasing this batch. Therefore, the batch size 

equals CDemA6 of 45. Determine the amount of spoilage, 

which would incur from this batch. Due to the no spoilage from 

in case of continuous batch size,  SA7  is zero. 

- Update the remaining demand for products ( i,tD' ). The 

following table shows the remaining demand.  

1 2 3 4 5 6 7
Remaining 0 0 50 52 51 0 0
demands (units) 0 0 0 0 0 0 1

Time Period (t)

A,tD'
B,tD'

 

-     Go back to the beginning of while loop to check whether the 

condition of (Nmca6 > 0) and (Flag6 = 0) is still held. 
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No, since Nmca6 = 0.   Move out of while loop and increase time 

period t by 1.  The resulting t will be 7, which is greater than T_last 

(6). Exit the for loop. 

At the end of step 1, we obtain the batch release plan of each product over the 

horizon.  In this example, the production plan is to release a batch of 50 units of product 

B in periods 2 and 4, and to release a batch of 50 units of product A in period 1 and a 

batch of 45 units of product A in period 6 as shown in the MPS in Table 6.10.  
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