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SUMMARY 

A numerical model for describing the kinetics of intracellular water transport 

during cryopreservation was developed.  As ice is formed outside the cell, depleting the 

extracellular liquid of water, the cell will experience an osmotic pressure difference 

across its membrane, which causes cell dehydration and concomitant shrinkage.  

Although Mazur (1963) has previously modeled this phenomenon as a two-compartment 

system with membrane limited transport, the assumption of well-mixed compartments 

breaks down at large Biot numbers.  Therefore, we have developed a numerical solution 

to this moving-boundary problem, including diffusive transport in the intracellular liquid, 

in addition to the osmotically driven membrane flux.  Our model uses a modified Crank-

Nicolson scheme with a non-uniform Eulerian-Lagrangian grid, and is able to reproduce 

predictions from Mazur’s model at low Biot numbers, while generating novel predictions 

at high Biot numbers.  Given that cell damage may result from excessive water loss, our 

model can be used to predict freezing methods that minimize the probability of cell injury 

during the cryopreservation process. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

 Cryobiology is the study of the biological response of organisms to low 

temperatures.  Depending on the exact experimental conditions, extreme cold can be used 

to either destroy or preserve cells. By exploiting the deleterious effects of subzero 

temperatures to purposely damage cells, cryobiologists have applied cold to ablate 

tumors, treat tachyarrhythmias, act as an immunosuppressant, promote angiogenesis, and 

control myogenesis (Gage, 2004).  On the other hand, the applications of cryogenic 

processing for cell preservation extend to cell transplantation, in vitro fertilization, 

preservation of cell lines for biological research or agricultural applications, and 

preservation of germplasm to maintain biodiversity.  Cryopreservation has also been 

identified as a critical enabling technology for tissue engineering, where the ability to 

store tissue constructs for prolonged periods of time is a prerequisite for the mass-

production, quality-control testing, distribution, and banking of tissue engineered 

products (Karlsson and Toner, 2000).  It is clear that the potentially destructive effects of 

cryogenic processing must be avoided when freezing biological materials for purposes of 

cryopreservation.  Given that the most abundant substance in biological materials is 

water, the biophysical response of cells to cryopreservation is determined primarily by 

phase transformations and transport of biological water.   

During the freezing process, ice initially forms in the extracellular medium.  As 

the extracellular ice grows, the amount of water in the remaining unfrozen solution is 

reduced, thereby increasing the extracellular solute concentration.  This increase in solute 
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concentration imposes a chemical potential difference between the cytosol and unfrozen 

external solution, which acts as a driving force for transport of solutes into the cell and 

for diffusion of water out of the cell.  The magnitude of the corresponding flux is 

determined by properties of the cell’s plasma membrane, which acts as a barrier to 

transport.  The membrane permeability to water and solutes has an Arrhenius-type 

temperature dependence.  As a result of differences in the corresponding activation 

energies, the permeability of the cell membrane is significantly larger for water transport 

than for solute transport at subzero temperatures.  Consequently, the cell membrane acts 

as if it were semipermeable, and the cellular response to an increase in extracellular 

tonicity caused by ice growth is primarily to express water through its plasma membrane 

via osmosis (Mazur, 1963; Levin, 1976).   

The rate of the osmotically induced water efflux is limited by the permeability of 

the plasma membrane to water.  Thus, because the freezing-induced extracellular 

hypertonicity increases with decreasing temperature, there is sufficient time available for 

maintaining equilibrium only if the rate of cooling is slow.  On the other hand, if the time 

scale for the cooling process is short compared to the time scale for membrane transport, 

low temperatures are reached before significant dehydration can occur, and thus the 

cytoplasm attains nonequilibrium states.  In such supercooled states, the actual 

temperature of the cytoplasm is less than its equilibrium freezing point temperature, 

resulting in a driving force for intracellular ice formation (IIF).  Moreover, since ice 

formation is a stochastic process, the greater the amount of water inside the cell the 

greater the likelihood that ice nucleation will occur.  This means that for rapid freezing 
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processes, during which a significant amount of water is retained within the cell, the 

likelihood of IIF will be greater than for a protocol which uses a slow freezing rate. 

In 1972, Mazur et al. measured the survival of cells frozen as a function of 

cooling rate and found the post-thaw viability of cells to be poor for cells frozen with fast 

cooling rates and for cells frozen with very slow cooling rates, with the highest survival 

observed at an intermediate cooling rate (Mazur et al., 1972).  These authors speculated 

that the injury associated with high cooling rates was a consequence of IIF, while the 

injury associated with slow cooling rates was a consequence of excessive dehydration, 

which was thought to overexpose the cell to harmful concentrations of electrolyte and 

other solutes.  The latter mechanism of injury is commonly referred to as “solution 

effects”. 

In 1949, Polge et al. accidentally discovered that introduction of glycerol into the 

freezing media of rooster spermatozoa resulted in significant improvement in the 

recovery of viable cells after cryopreservation.  Since then, many other chemicals have 

been found to exhibit cryoprotective properties, yet glycerol and dimethyl sulfoxide 

remain the most common cryoprotectant additives used to date.  It is believed that these 

cryoprotectants reduce the intracellular concentration of water, thus reducing the rate at 

which the remaining water molecules can form damaging ice crystals, and that they act as 

a solvent to dilute the intracellular electrolytes when water is removed, thus protecting 

the cell from solution effects injuries (Mazur, 1984).  On the other hand, when used in 

high concentrations, cryoprotectants can be cytotoxic. 
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1.2  Mathematical Modeling  

 To optimize a cryopreservation protocol, the values of all parameters required to 

fully describe the procedures for chemical and thermal processing must be established.  

Because these parameters can be numerous and interdependent, empirical optimization 

typically requires a factorial design with a prohibitively large number of candidate 

protocols to evaluate.  Complicating matters is the fact that each cell species possesses 

distinct biophysical properties (membrane permeability, surface-to-volume ratio, 

cytoplasmic viscosity, etc.) characteristic of its biological function and structure; as a 

result, optimal values for the processing parameters (e.g. cooling rate) can vary by several 

orders of magnitude from cell type to cell type (Mazur, 1984).  Thus, there have been 

efforts to develop mathematical models of the cell response to cryopreservation, to allow 

high-throughput evaluation of candidate preservation procedures using computer 

simulations, and to enable the rational design and optimization of protocols for cell and 

tissue cryopreservation (Karlsson et al., 1996). 

 Because changes in the intracellular water content during freezing affect the 

likelihood of both IIF and solution effects damage, mathematical models of 

cryopreservation must include a description of the mass transfer process that governs the 

redistribution of intracellular water.  This water transport process may be rate-limited 

either by the process of water permeation across the cell membrane or by the process of 

intracellular diffusion to the cell membrane.  The mass transfer Biot number (Bi) can be 

used to quantify the relative magnitudes of the rates of membrane transport and diffusive 

transport within the cell.  When Bi » 1, the water transport process is diffusion-limited, 

whereas transport is membrane-limited when Bi « 1.  Most previous models of cell 
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dehydration have been developed under assumptions of membrane-limited transport, and 

are therefore valid only in low Biot number regimes.   

Previous membrane-limited transport models have distinguished themselves by 

the manner in which they represent the cell’s constituents and the mechanisms of 

membrane transport.   In 1933, Jacobs presented a two-parameter approach for membrane 

transport, with one parameter describing the membrane permeability to water and another 

parameter describing the membrane permeability to solute (Jacobs, 1933).  By including 

an osmotically inactive water volume, his work was able to account for the strong 

interactions of water with proteins and other macromolecules within the cell.  Later, 

Kedem and Katchalsky added a third parameter to account for the co-transport of species, 

e.g. the coupled transport of water and solute through the same membrane channel 

(Kedem and Katchalsky, 1958).  In 1963, Mazur proposed a model for membrane-limited 

water transport specifically tailored to the problem of cell freezing (Mazur, 1963).  In this 

seminal work, freezing-induced cell dehydration was modeled subject to the assumptions 

that: (1) the membrane is permeable to water only; (2) the cytoplasmic membrane 

remains intact for the entire period of freezing; (3) the temperature of the cytosol is 

everywhere uniform; (4) the chemical potential difference across the cell membrane is 

proportional to the ratio of partial pressures; and (5) the rate of intracellular diffusion is 

much larger than the rate of transmembrane transport, resulting in a well-mixed 

intracellular compartment.  

 In membrane-limited models, it is assumed that the time scale for diffusion is 

significantly smaller than the time scale for membrane transport.  In other words, the 

system is assumed to be in a regime in which the mass transfer Biot number is negligible. 
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However, this assumption is not always valid during cryopreservation.  For instance, 

Levin et al. (1976) and Pushkar et al. (1976) have illustrated that erythrocytes are 

characterized by a large Biot number, due to their high membrane permeability.  In 

another study, Kasharin and Karlsson (1998) have demonstrated that intracellular 

diffusion becomes the limiting transport mechanism at cryogenic temperatures, and have 

therefore argued that mass transfer during warming from the cryopreserved state will be 

diffusion-limited, even for cell types that are characterized by low Biot numbers during 

the freezing process. 

 As early as 1976, Levin presented the first diffusion-limited model of cell 

dehydration.  He used a backward difference algorithm to predict transport in a one-

dimensional, planar model of the cell.  The cytoplasm was modeled as a pseudobinary 

solution consisting of a fictitious salt-protein solute in water.  The osmotically inactive 

volume fraction of the cell was assumed to comprise only the hydrated salt-protein 

pseudo-species.  Levin’s model included a description of the Arrhenius-type temperature 

dependence of the membrane permeability, and estimated the value of the intracellular 

diffusion constant using the Stokes-Einstein relationship, with a crude model for the 

temperature- and concentration-dependence of the solution viscosity.  In particular, the 

temperature-dependence of the diffusivity was derived from experimental data for the 

viscosity of supercooled water, which at the time was only available for temperatures 

down to -24°C (Hallet, 1963).  The effect of solute concentration on cytoplasmic 

viscosity was estimated by modeling the hydrated salt-protein species as a hard-sphere 

suspension (Vand, 1948).  It is possible that the inability of Levin’s model to accurately 
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predict the cooling rate which will cause IIF in erythrocytes was due in part to the limited 

validity of these constitutive laws, especially at low temperatures. 

 In 1997, Batycky et al. modeled osmotically driven water transport in hepatocytes 

in the context of removal of a permeating solute (e.g., a cryoprotectant additive) at a 

constant, suprazero temperature. The permeating solute was allowed to diffuse within the 

cell cytosol, to penetrate the internal organelles, as well as to partition into the lipid phase 

of the cell and organelle membranes.  Their model accounted for diffusive fluxes within 

the cell, but assumed a pseudo-steady state, thus limiting the validity of their analysis to 

small Biot number regimes.  The osmotically inactive volume fraction of the cell was not 

explicitly considered to be a diffusing species, but was assumed to always be uniformly 

distributed throughout the cytoplasm.  The biophysical properties of the cell, i.e. the 

membrane permeability and cytoplasmic diffusivity, were assumed to have constant 

values independent of temperature or solute concentration.  The pseudo-steady state 

approximation allowed the system to be modeled using a lumped-parameter approach, 

resulting in an ordinary differential equation which was integrated using a Runge-Kutta 

algorithm. 

 Whereas the models of Mazur (1963), Levin (1976), and Batycky et al. (1997) 

have assumed the extracellular solution to have a spatially uniform composition, thus 

subjecting the cell to a homogeneous osmotic driving force, Jaeger and co-workers have 

modeled extracellular diffusion and investigated the response of cells to the resulting 

solute gradients along the cell surface (Jaeger et al., 1999; Jaeger and Carin, 2002).  

Jaeger and colleagues used a finite element technique with interface-tracking schemes to 

handle the moving boundary of the cell, which was modeled with a two-dimensional 
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(cylindrical) geometry.  They ignored the effect of the osmotically inactive volume 

fraction in their numerical simulations, because this effect was assumed to be small based 

on predictions from analytical solutions for the limiting case of vanishing Biot number.   

They did consider the Arrhenius-type temperature-dependence of the membrane 

permeability (Jaeger and Carin, 2002), but assumed the intra- and extracellular 

diffusivities to be constant and uniform (i.e., independent of temperature and 

concentration).  The results presented were limited to low Biot number regimes in which 

no significant solute polarization was observed at the cell membrane. 

 Mao et al. (2003) used a finite-volume method to simulate intra- and extracellular 

diffusion during cell freezing, and, like Jaeger and Carin (2002) before them, tracked the 

evolution of the ice solidification front in order to investigate ice-cell interactions.  Mao 

and co-workers analyzed a two-dimensional cell with cylindrical geometry and constant 

membrane permeability.  They also assumed that the osmotically inactive volume 

fraction was negligible, and that the diffusivity was constant and uniform.  Furthermore, 

their investigations were limited to low Biot numbers, resulting in negligible intracellular 

solute gradients, and predictions that matched those of a simple membrane-limited 

transport model (Mazur, 1963).  However, unlike previous studies, the investigation of 

Mao et al. also relaxed the assumption of uniform temperature distributions, and took 

into account the coupled heat- and mass-transfer processes that govern the kinetics of 

extracellular ice growth (a Stefan problem).  Their preliminary results suggest that 

kinetics of cell dehydration predicted using the nonisothermal model were significantly 

different from predictions obtained under the simplifying assumption of uniform 

temperature. 
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 The most significant limitation of all previous investigations of mass transfer 

during cell freezing is the use of inadequate constitutive equations for the membrane 

permeability and cytoplasmic viscosity.  Even though the Arrhenius equation has almost 

universally been used to model the permeability temperature-dependence in membrane-

limited transport models since its introduction into the cryobiology literature by Levin et 

al. (1976), and the corresponding activation energy and reference permeability data are 

available for many cell types (e.g., McGrath, 1988), several of the published studies of 

diffusion-limited cell dehydration have made the simplifying assumption of constant 

membrane permeability (Batycky et al., 1997; Jaeger et al., 1999; Mao et al., 2003).  

More significantly, all previous investigators, with the exception of Levin (1976), have 

assumed the intracellular diffusivity to be constant and independent of both temperature 

and concentration.  Even though Levin considered both the concentration- and 

temperature-dependence of the cytoplasmic diffusivity, his constitutive model was based 

on data from a limited temperature range, and he was therefore unable to make 

predictions for temperatures below -30°C.  With the publication in 1994 (Karlsson et al., 

1994) of a constitutive equation capable of estimating the diffusivity in the supercooled 

cytoplasm down to -149°C as a function of the intracellular concentration of water, salt, 

and glycerol (a common cryoprotectant), it has become possible to address these 

limitations.  Karlsson and co-workers have demonstrated that during cooling, the 

intracellular diffusivity decreases faster than the membrane permeability, resulting in an 

increase in the Biot number during the course of the freezing process; for example, 

during freezing of oocytes, the Biot number becomes much larger than unity for 

temperatures below -60°C (Karlsson et al., 1994).  Thus, mass transfer becomes rate-
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limited by diffusive transport at low temperatures, necessitating the use of diffusion-

limited models of cell dehydration in this temperature range.  Moreover, Kasharin and 

Karlsson (1998) have demonstrated that membrane-limited water transport models are 

unable to correctly predict the kinetics of cell dehydration during warming of cells from 

the cryopreserved state, because the Biot number is large during the initial phase of this 

process.  Thus, there is a need for a diffusion-limited model of cell dehydration which 

incorporates realistic constitutive equations for all relevant biophysical properties, and 

which is capable of making predictions down to cryogenic temperatures. 

 

1.3 Scope and Outline of Current Study 

In the present work, we will develop a model of water transport in a system 

comprising a biological cell and extracellular ice.  The model will incorporate membrane 

transport as well as intracellular diffusion, thus allowing simulation of cell dehydration at 

both small and large Biot numbers.  In contrast to previous efforts, we will use realistic 

constitutive models for both the membrane permeability (using the Arrhenius temperature 

dependence first proposed by Levin et al., 1976a) and the cytoplasmic diffusivity (using 

the phenomenological model developed by Karlsson et al., 1994).  Moreover, we will 

present results for cells of three-dimensional (spherical) geometry, which should result in 

improved accuracy over previously published planar and cylindrical models.  Given that 

our present model does neglect both the osmotically inactive volume fraction and the 

effect of cryoprotectant additives, future extension of our work to include these factors is 

possible. 
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In Chapter 2, we present the governing equations for both membrane-limited and 

diffusion-limited cell dehydration driven by the presence of extracellular ice.  

Constitutive equations for the biophysical properties of the cell are also presented, 

including the cytoplasmic diffusivity and the membrane permeability.  Nondimensional 

forms of the governing equations are derived, and four novel dimensionless groups are 

introduced to characterize the kinetics of cell dehydration. 

In Chapter 3, a modified Crank-Nicolson differencing scheme is used together 

with a Lagrangian multiplier based central difference method to discretize the governing 

equations on a front-tracking, non-uniform, Lagrangian-Eulerian mesh.  In Chapter 4, the 

numerical model of diffusion-limited transport is validated against predictions from a 

commercially available finite element solver, using simplifying assumptions for the 

system properties and driving force.  Conservation of mass is also confirmed.  Further 

validation studies are undertaken in Chapter 5, by implementing the realistic constitutive 

equations and generating numerical solutions for low Biot number regimes, which are 

then compared with the corresponding predictions obtained using a conventional 

membrane-limited water transport model.   

In Chapter 6, a parametric analysis is undertaken.  Numerical solutions of our 

finite difference model are presented for physiologically relevant ranges of the four 

characteristic nondimensional parameters identified in Chapter 2.  Accordingly, 

qualitative and quantitative differences in the cell dehydration process are observed in 

different mass transfer regimes.  In particular, regimes in which our predictions differ 

significantly from those obtained with a conventional membrane-limited model are 

evident. 
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Chapters 7 and 8 include a discussion of our findings, general conclusions, as well 

as suggestions for future studies. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Membrane-Limited Transport Model 

 In 1963, Mazur proposed a two-compartment, lumped parameter model to 

quantitatively describe the dehydration of cells during freezing.  The intra- and 

extracellular compartments were assumed to be well-mixed, and separated by a 

semipermeable membrane which only admitted transport of water.  In Mazur’s 

membrane-limited transport model, the molar flux of water from the intracellular to the 

extracellular compartment was given by 

µ∆= 2
w

p
w v

L
J         (1) 

where Lp is the membrane water permeability, ∆µ is the chemical potential difference 

across the membrane, and vw is the molar specific volume of water.  The water chemical 

potential difference is a result of depletion of extracellular water by ice formation, and 

thus 

wice µµµ −=∆      (2) 

where µice is the chemical potential of extracellular ice, and µw is the chemical potential 

of water at the intracellular surface of the cell membrane.  The water chemical potential is 

a function of the intracellular water concentration, cw, which in membrane-limited 

transport models is assumed to be spatially uniform throughout the cell.  Because cw is 

uniform and water is the only species that can be transferred across the cell membrane, 

there is a one-to-one correspondence between the intracellular water concentration and 

the cell volume V: 
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( ) ( )
( ) wb

owwobo
w vVV

VVvcVV
c

−
−−−

=     (3) 

where Vo and cwo are the initial values of V and cw, respectively, Vb is the osmotically 

inactive volume. 

As water leaves the cell, the cell will shrink. The rate of change of the cell volume 

can be expressed as, 

dt
dRA

dt
dV

=       (4) 

where t is time; A, the surface area of the cell; and R, the cell radius.  Because the 

intracellular fluid is incompressible, volume changes are caused only by the 

transmembrane water flux.  Thus, continuity requires that 

wwvJ
dt
dR

−=        (5) 

 During the freezing process, the instantaneous rate of cooling is  

dt
dTB −=       (6) 

It is typically assumed that samples are sufficiently small that heat transfer is 

instantaneous, the temperature profile T(t) is usually taken as a given, imposed by the 

chosen freezing protocol.  Thus, the cooling rate B is known at every temperature; 

typically, linear temperature profiles are used, such that B is constant. 

 Combining Equations (1), (4), (5) and (6), one obtains Mazur’s membrane-limited 

model of cell dehydration: 

w

p

Bv
AL

dT
dV µ∆

=      (7)  
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Constitutive equations for the permeability Lp and the driving force ∆µ are given in 

Section 2.3.  Given that ∆µ is a function only of temperature and the intracellular water 

concentration, and that cw can be determined from the cell volume using Equation (3), 

Equation (7) represents a nonlinear ordinary differential equation which can be integrated 

using standard numerical methods to obtain predictions of V(T). 

 

2.2  Diffusion-Limited Transport Model 

 To obtain a model capable of describing diffusion-limited cell dehydration, we 

will no longer assume that the intracellular compartment is well-mixed.  Instead, 

intracellular water transport will be modeled using the radial diffusion equation: 









∂
∂

∂
∂

=
∂
∂ −

− r
c

Dr
rrt

c ww 1
1

1 γ
γ     (8) 

where γ is the dimension of the problem (γ = 1, 2, or 3, corresponding to planar, 

cylindrical, and spherical geometry, respectively), D is the diffusion coefficient, and r is 

the radial location.  The diffusivity of an aqueous solution depends on both temperature 

and concentration (as described in Section 2.3.2); thus, for realistic conditions, D will 

vary with time and location. 

 At the interior surface of the cell membrane, water leaves the cell with a flux Jw, 

and is replenished by a diffusive flux from the cell interior.  These fluxes will differ, as a 

result of the accumulation of water molecules that are continuously being “swept up” by 

the moving membrane.  Continuity requirements thus yield the following boundary 

condition at the cell membrane:  

 
dt
dRcJ

r
c

D ww
w +=

∂
∂

−      at r = R,    (9) 
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where the transmembrane water flux and the membrane velocity are given by Equations 

(1) and (5), respectively.  Because, the cell geometry has been assumed to be symmetric, 

a zero-flux boundary condition is imposed at the cell center: 

0=
∂
∂

r
cw   at r = 0    (10) 

2.3  Constitutive Equations 

 

2.3.1  Membrane Permeability 

 The membrane permeability Lp must be estimated in order to obtain quantitative 

predictions using either membrane-limited or diffusion-limited water transport models.  

Thus, the following section will act as a foundation for understanding the transport 

properties of the cell membrane and the assumptions that will be made to model its 

behavior in the context of cryopreservation. 

 Molecules can cross the cell membrane by passively diffusing through the lipid 

bilayer, or by active or facilitated transport through membrane channels and pores made 

up of transmembrane proteins.  For example, certain types of proteins can actively 

transport molecules against a transmembrane electrochemical potential by consuming 

energy.  Another class of proteins facilitate molecular transport without consuming 

energy, for example by creating pores that allow molecules to cross the membrane.  This 

mechanism is commonly referred to as facilitated transport.  On the other hand, transport 

is classified as passive when a molecule simply diffuses down its concentration gradient 

through the lipid phase of the cell membrane (Alberts et al., 2002). 

 Ellory and Willis (1981) have investigated the impact of low temperatures on the 

activity levels of these transport mechanisms.  Specifically, they discovered that the 
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activity of pumping mechanisms in the human erythrocyte membrane decreased by three 

orders of magnitude over the temperature interval of 40 oC to 0 oC.  Since this is a much 

larger decrease than that observed for passive transport, it is commonly assumed that 

active mechanisms of transport are negligible in temperature ranges relevant for 

cryobiology (Levin et al., 1976a).  Furthermore, it has been demonstrated that ion 

transport across membranes is relatively slow compared to the motion of water.  As an 

example, sodium ions are transported across the cell membrane at a rate that is 108 times 

slower than the rate of water transport in the human erythrocyte (McGrath, 1988).   

Consequently, for the time scales typical of a cryopreservation protocol, the cell is 

presumed to be impermeable to ions unless circumstances lead to disruption of the 

membrane barrier.  Thus, transmembrane transport of water via passive diffusion is the 

most significant mechanism for purposes of describing mass transfer during 

cryopreservation. 

 Zwolinski et al. (1949) discussed the diffusion of water through the hydrophobic 

membrane phospholipids from the point of view of absolute reaction rate theory.  In their 

analysis, the process of water transport across a lipid bilayer membrane comprises three 

mechanisms:  partitioning of water molecules from the aqueous phase into the lipid phase 

of the membrane, diffusion within the membrane, and the return from the lipid to the 

aqueous phase.  Associated with the rate of each of these mechanisms is an activation 

energy.  Levin has presented a model in which all three of the above impedances to water 

transport have been combined, yielding an apparent activation energy 

(Levin et al., 1976a).  Thus, the temperature-dependence of the membrane permeability 

to water can be described by the Arrhenius equation (Levin et al., 1976a): 
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TR
E

p
g

a

eLL
−

∞=      (11) 

where L∞ is the limiting value of the membrane permeability at infinite temperature, Ea is 

the activation energy, and Rg is the universal gas constant. 

 

2.3.2  Cytoplasmic Diffusivity 

 Predictions of the rate of intracellular diffusion requires knowledge of the 

diffusion constant for cytoplasmic water.  The diffusivity can be determined from the 

Stokes-Einstein equation if the viscosity η of the intracellular solution is known: 

ηπ o

B

a
Tk

D
6

=       (12) 

where kB is Boltzmann’s constant; ao = 1.4 x 10-10 m, is the apparent hydrodynamic radius 

of water.  The cytoplasm is a complex suspension of organelles, proteins and other 

macromolecules in an aqueous solution of electrolytes and other solute species.  For 

simplicity, we will approximate the intracellular liquid as a binary solution of water and 

salt (NaCl).  Thus, we need to estimate the viscosity of this binary solution as a function 

of temperature and salt concentration. 

 Previous descriptions of the temperature-dependence of the viscosity of water at 

subzero temperatures have included Levin’s 1976 phenomenological curve fit to viscosity 

measurements by Hallet (1963), and a power-law model proposed by Taborek (1986) 

based on his experimental data.  Taborek’s model is currently the most frequently used in 

the cryobiology literature; however, since it predicts that water vitrifies at –48oC, a 

temperature which is 85oC greater than the actual glass transition point of water, it is a 

poor model of the temperature-dependence of the viscosity of supercooled water.  
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Instead, this work will use a phenomenological viscosity model developed by Karlsson et 

al. (1994), which interpolates experimental data for temperatures ranging from –133oC to 

20oC and solute concentrations from 0% to 100% w/w (Weast, 1976; Kresin and Korber, 

1991; Luyet and Rasmussen, 1968).  Accordingly, the temperature-dependence of water 

will be described using a Vogel-Fulcher form: 

  gTT
E

w eA βη −
∞=      (13) 

where A∞ is a pre-exponential coefficient, E is the activation temperature, Tg is the glass 

transition temperature, and β is the ratio of the Vogel-Fulcher critical temperature to glass 

transition temperature.  For pure water, these parameters are (Karlsson et al., 1994) 

A∞ = 2.711 x 10-5 Pa s ;      

E = 614.823 K ;       

Tg = 139.92 K;        

β = 0.88481;        

 In order to estimate the concentration-dependence of the viscosity of a water-

NaCl solution, the liquid is modeled as a suspension of rigid salt spheres in a continuous 

fluid medium consisting of water.  In 1948, Vand developed a mathematical model to 

predict the viscosity of such a suspension (Vand, 1948). By coupling the hydrodynamic 

equations governing incompressible flow around a rigid sphere with the effect of sphere-

sphere interactions, Vand obtained the following equation describing the increase in 

suspension viscosity due to the presence of the hard spheres: 

sphere

sphereek

we λφ

φ

ηη −= 1      (14) 
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where ke = 2.5 is Einstein’s shape factor for single spheres, λ = 0.609375 is the 

hydrodynamic interaction constant, and φsphere is the volume fraction of the rigid spheres.  

To estimate the value of φsphere, the hard spheres will be assumed to comprise hydrated 

salt ions as illustrated in Figure 1; thus, 

 ( )wsssphere hc ννφ +=      (15)  

Na+

O

H

H

Na+

O

H

H

Figure 1: Illustration of φsphere
containing NaCl and one water 
molecule. 

where cs is the salt concentration; νs, the molar specific 

volume of salt; h, the effective number of water 

molecules in the hydration shell.  An estimate of the 

value of h is obtained by comparing the viscosity 

calculated using Equation (14) to measured viscosities of 

a water-NaCl solution at 20 oC; a good agreement is 

obtained for h = 1, and thus this value was adopted in the 

present study.  

 

2.3.3  Chemical Potential 

 With the assumption that the extracellular environment consists of ice and 

unfrozen aqueous solution in mutual equilibrium, the chemical potential of the 

extracellular water can be determined from the Clausius-Clapeyron relationship, yielding 









−∆+= 1

o
foice T

THµµ     (16) 

where To is the equilibrium freezing temperature of water; µo, the chemical potential of 

water at To; ∆Hf, the molar specific heat of fusion of water. 
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 If one approximates the cytosol as an ideal solution, Raoult’s law can be used to 

approximate the chemical potential of the intracellular water, 

( )wgow TR χµµ ln+=     (17) 

where χw is the mole fraction of intracellular water, which can be computed as follows, 

ssw

w
w cc

c
σ

χ
+

=      (18) 

where σs = 2 and represents the salt dissociation constant. 

2.3.4  Supercooling 

Since the chemical potential of the intracellular water at a particular temperature 

will be greater than the chemical potential of the ice, there will exist a driving force for 

crystallization of the intracellular water.  Thus, the probability of IIF will be strongly 

dependent on the degree of supercooling, defined as 

TTT eq −=∆       (19) 

where Teq is the equilibrium freezing point. The equilibrium freezing point depends on 

the water concentration, and can be estimated by noting that when T = Teq, the chemical 

potential of the liquid water (Equation 17) must equal the chemical potential of ice 

(Equation 16).  Thus, one obtains 

 ( )
f

gw

o

eq

H
R

T

T

∆
−

=
χln1

1      (20) 
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2.4  Dimensional Analysis 

2.4.1 Characteristic Scales and Dimensionless Groups 

If the cryopreservation procedure to be analyzed consists of a linear temperature 

profile with a constant rate B over a characteristic temperature interval Tc, then the 

characteristic time-scale (i.e., duration) of the whole process is 

B
T

t c
B =δ       (21) 

21

During the freezing process, intracellular diffusion will occur with a characteristic time-

scale 

o
D D

Rt
2

=δ       (22) 

where D0 is the diffusivity at the cell center (r = 0).  Likewise, a characteristic time-scale 

for membrane transport can be defined: 

TRL
Rv

t
gp

w
M =δ       (23) 

23

Kasharin and Karlsson (1998) have previously demonstrated that the extent of cell 

dehydration and the dominant mechanism of the water transport process are determined 

by the relative magnitudes of the three characteristic time-scales defined in Eqs. ( )-( ).  

In particular, the extent of membrane transport that occurs during the cooling process can 

be quantified by the ratio δtM/δtB, whereas the extent of diffusive transport during the 

freezing procedure is characterized by the ratio δtD/δtB.   

To analyze these ratios, we define the following nondimensional variables: 

cT
TT ≡~       (24) 
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0

~
R
RR ≡       (25) 

where R0 is the initial cell radius; 

c

g
g T

T
T ≡~       (26) 

wη
ηη ≡~       (27) 

cD
D

D 0
0

~ ≡       (28) 

where Dc is a characteristic constant diffusivity, defined here as 

ηπ Aa
Tk

D cB
c

06
=       (29) 

Given that both the diffusivity and the membrane permeability have a strong 

temperature-dependence, we will explicitly describe the effect of temperature on the 

characteristic time-scales by defining 

cg

a
M TR

E
≡ε       (30) 

which is the nondimensional activation energy (Arrhenius number) for membrane 

transport, and similarly, a nondimensional activation energy for diffusion: 

c
D T

E
≡ε       (31) 

With the above definitions, the characteristic time-scale ratios can be expressed as 

follows: 

T
M

B

M Me
T
R

t
t ~

~
~

εθ
δ
δ

⋅⋅=      (32) 
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)~~(
2

~
~~

gD TT
D

B

D e
T

R
t
t βεηθ
δ
δ −⋅⋅=     (33) 

where we have defined two novel dimensionless groups, 

2
cg

wo
M TRL

BvR

∞

≡θ      (34) 

cc

o
D DT

BR 2

≡θ       (35) 

For a system in which the membrane permeability and diffusivity are independent of 

temperature and concentration, θM and θD characterize the extent of convective transport 

(i.e., membrane transport) and diffusive transport, respectively, on the time-scale of the 

cooling procedure.  Thus, because cell dehydration requires both diffusion of intracellular 

water to the membrane and transport across the membrane, water loss during the freezing 

process will be negligible if either θM » 1 or θD » 1 (Kasharin and Karlsson, 1998).  The 

dimensionless group θD is equivalent to the product of a Predvoditelev number and a 

Lewis number, while the ratio of θD to θM represents a Biot number. 

 

2.4.2 Membrane-Limited Transport Model 

Combining Equation (7) with Equations (2)-(3) and the constitutive relationships 

defined in Equation (11) and Equations (16)-(18), one obtains an ordinary, nonlinear 

differential equation in V:   




















−⋅−⋅−−

−⋅−−
−








−

∆
⋅⋅=

−
∞

)()(
)(

ln11

0

0
2

bwsssob

bssob

og

fTR
E

w

g

VVvvcVV
VVvcVV

TTR
H

e
Bv

TARL
dT
dV g

a

σ
 (36) 
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where cso is the initial concentration of intracellular salt.  In order to write Equation (36) 

in nondimensional form, the following dimensionless quantities will be defined: 

cT
TT ≡~       (37) 

oV
VV ≡~       (38) 

0

~
V
V

V b
b ≡       (39) 

oA
AA ≡

~       (40) 

c

o
o T

T
T ≡~       (41) 

cgTR
µµ ∆

≡∆~       (42) 

cg

f
f TR

H
H

∆
≡∆ ~       (43) 

where Ao is the initial surface area of the cell.  The nondimensional driving force µ~∆  is a 

function of the variables V~  and T~ , and is dependent only on the dimensionless constants 

bV~ , oT~ , fH~∆ , as well as the initial volume fraction of salt, φso = csovs, as shown below: 













−⋅−⋅−−
−⋅−−

⋅−







−⋅∆=∆

)~1()1(~~
)~1(~~

ln~1~
~~)~,~(~

0

0

0 bv
v

ssb

bsb
f VVV

VVV
T

T
THTV

s

wσφ
φ

µ  (44) 

After substituting the above expressions into Equation (36), a nondimensional governing 

equation is obtained: 

)~,~(~~1
~
~ 1

~
TVVe

Td
Vd T

M

M

µγ
θ

γ
γε

∆⋅⋅⋅=
−

−
   (45) 
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where we have made use of the fact that the surface area and volume of a γ-dimensional 

sphere are related by 

oo

o

RV
A γ

=        (46) 

γ
γ 1

~~
−

=VA       (47) 

For purposes of comparison with the diffusion-limited water transport model, it is 

illustrative also to express the above governing equation in terms of the intracellular 

water concentration (where we will use the water volume fraction, φ = cwvw, as a 

dimensionless concentration variable).  Noting that the nondimensional cell volume can 

be determined from the water volume fraction by inverting Equation (3),  

( )
φ

φφφ
−

−−+
=

1
1~

~ sobso V
V     (48) 

one can rewrite the nondimensional chemical potential difference as a function of φ and 

T~ : 













−+
⋅−




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f T
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THT   (49) 

Because the osmotically inactive cell volume is neglected in our diffusion-limited model, 

we will also set 0~ =bV  in the membrane-limited water transport model.  Thus, 

substituting Equations (48)-(49) into Equation (45), one obtains a nondimensional 

differential equation in water volume fraction: 

( ) µφ
φ
γ

θ
φ

γ
γ

γ

ε
~11

~
1

1
0

~
∆⋅−⋅⋅⋅=

+−

s

T
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M

e
Td

d    (50) 
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2.4.3 Diffusion-Limited Transport Model 

To write the diffusion model (Equations 8-10) in nondimensional form, we will 

use the water volume fraction as a dimensionless concentration variable, and define a 

dimensionless position variable, x, and dimensionless time variable, τ, as follows: 

R
rx =        (51) 

Dt
dtd
δ

τ =       (52) 

where Equation (52) is written in differential form because the characteristic time scale 

for diffusion as defined by Eq. (22) is time-varying.  Because the definitions of both x 

and τ are time-dependent, transformation of the spatial and temporal derivatives in 

Equations (8)-(10) into nondimensional form requires the following identities: 

τ
τ
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

rxr
x

r
     (53) 

τ
τ
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

txt
x

t
     (54) 

From Equations ( ), (52) and (52), one obtains 22

Rr
x 1
=

∂
∂       (55) 

0=
∂
∂

r
τ       (56) 

τd
dR

R
xD

t
x o

3−=
∂
∂      (57) 

Thus, the partial derivatives that appear in Equations (8)-(10) can be rewritten as follows:  

x
c

d
dR

R
xDc

R
D

t
c wowow

∂
∂

−
∂
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=
∂
∂

ττ 32    (58) 
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x
D

Rr
D

∂
∂

=
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∂ 1       (61) 

Equations (58)-(61) can be substituted into Equation (8) to yield 
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 (62) 

To complete the transformation to nondimensional form, we will replace the water 

concentration cw by the corresponding volume fraction φ, and define the following 

dimensionless variables: 

oD
DD =~       (63) 

oR
RR =~       (64) 

Thus, Equation (62) can be simplified to yield the nondimensional governing equation for 

intracellular transport: 
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where the rate of change of the cell radius can be determined from Equation (5), which in 

nondimensional form becomes 

)~,(~Bi~~
2 TR

d
Rd

Rφµ
τ

∆⋅⋅=      (66) 

where φR is the value of φ at the cell membrane (x = 1), and Bi is a time-varying Biot 

number, defined as follows: 
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Similarly, Equation (9), the boundary condition at the cell membrane, becomes 
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τ
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1
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−=
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=

    (68) 

where  is the nondimensional diffusivity RD~ D~  evaluated at the cell membrane (x = 1).  

Likewise, the boundary condition at the cell center (Equation (10)) can be rewritten in 

nondimensional form, as follows: 

0
0

=
∂
∂

=xx
φ       (69) 

For purposes of solving the diffusion equation subject to the above boundary conditions, 

it will be advantageous to combine Equation (69) with Equation (65) to yield the 

following form of the governing equation at the cell center: 



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

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∂
∂

∂
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=
∂
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x
D

xx
φφ ~  for x = 0   (70) 

Finally, in order to compare the diffusion-limited transport model with the 

nondimensional membrane-limited transport model as shown in Eq. ( ), we will modify 

Eq. ( ) to use nondimensional temperature instead of nondimensional time as the 

independent variable.  This will require the following transformation 

50
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which is obtained by combining Equations (6), ( ) and (52).  Thus, Equation (65) 

becomes: 
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  (72) 

In Equation (72), the physical significance of the dimensionless groups θM, θD, εM, and εD 

becomes more clear; whereas the pair θM and εM determine the significance of the 

advective term representing membrane transport, the pair θD and εD determine the 

significance of the diffusive term.  The nondimensional activation energies εM and εD 

determine, in large part, the temperature dependence of the behavior, while the 

dimensionless groups θM and θD demarcate different transport regimes under constant 

temperature conditions (i.e., they are indicative of the effect of temperature-independent 

factors on the respective transport mechanisms). 
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CHAPTER 3 

NUMERICAL METHODS 

3.1  Introduction 

 The diffusion-limited transport model that describes our system is a highly 

nonlinear partial differential equation with spatially varying, time dependent coefficients 

and complicated boundary conditions.  As a result, an analytical solution is not tractable, 

and we have instead turned to numerical techniques in order to solve the problem.  Thus 

we have discretized Equations (65), (68), and (69) using a Forward-Time, Centered 

Space (FTCS) scheme.  A non-uniform, Eulerian-Lagrangian grid was used for spatial 

discretization, while a modified Crank-Nicolson method was used for temporal 

discretization. 

 

3.2 Spatial Discretization 

3.2.1  Finite Difference Scheme 

Given that the nondimensional spatial coordinate x is defined such that x = 0 

represents the cell center, and x = 1 the cell membrane, the discretization of the domain  

x = [0,1] defines a spatial grid with nodes that move with the cell membrane such that the 

mesh is deformed during cell dehydration.  Although this coordinate system is 

Lagrangian with respect to the cell membrane, the mesh does move relative to the 

intracellular fluid, given that the intracellular fluid is stationary (Batycky et al., 1997) 

while the spatial grid is designed so that the relative spacing of the nodes will be fixed 

with respect to the nondimensional coordinate system.  It is the Eulerian properties of the 

grid that give rise to the advective term in Equation (65). 
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As shown in Figure 2, a spatially non-uniform grid was defined, with the 

internodal distances give by, 

1−−=∆ iii xxx     for i =1, …, N-1   (73) 

where N is the total number of nodes and the subscript i designates the node index.  

Numbering of the nodes follows the C++ syntax of referencing elements in a vector.  

Using this approach, i = 0 represents the cell center, and i = N-1 designates the node at 

the moving cell boundary.  The spatial nodes can be distributed uniformly throughout the 

cell by requiring 

1
1
−

=∆
N

xi   for i = 1, .., N-1   (74) 

or nonuniformly by scaling the internodal spacing as follows 

1+∆=∆ ii xx α   for i = 1, .., N-2   (75) 

Here, α is a scaling factor and is defined to be greater than one so that the spacing will be 

finer near the cell membrane.  Given that xN-1 = 1 by definition, use of Equation (75) 

requires 

1
1

11 −
−

=∆ +− NNx
α
α      (76) 

 Since the spatial grid is designed with the flexibility to be uniformly or 

i ii  + 1/2i  - 1/2
i - 1  +1

∆xi+1

½∆xi+1 ½∆xi+1

∆xi

½∆xi½∆xi

i ii  + 1/2i  - 1/2
i - 1  +1

∆xi+1

½∆xi+1 ½∆xi+1

∆xi

½∆xi½∆xi

 
               Figure 2.  Illustration of the nodal spacing. 
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nonuniformly spaced, the numerical approximation of the spatial derivatives must be able 

to accommodate both.  For uniform node spacing, a central difference scheme is typically 

used to obtain estimates of spatial derivatives to second-order accuracy.  For our spatially 

non-uniform grid, we will estimate the spatial derivatives using a Lagrangian polynomial 

technique.  In this method, if the value of a spatially varying quantity f(x) (e.g. φw) is 

known at three consecutive nodes xj ≤ xk ≤ xl, such that 

( )jj xxff =≡      (77) 

( )kk xxff =≡      (78) 

( )ll xxff =≡      (79) 

then  a smooth second-order function can be defined to interpolate between the known 

values: 

( ) )()()( xLfxLfxLfxf llkkjj ++=     (80) 

where, Lj, Lk, and Ll are the Lagrangian Multipliers: 

( )( )
( )( )ljkj

lk
j xxxx

xxxx
L

−−
−−

=      (81) 

( )( )
( )( )lkjk

lj
k xxxx

xxxx
L

−−

−−
=      (82) 

( )( )
( )( )kljl

kj
l xxxx

xxxx
L

−−

−−
=      (83) 

The first derivative at xk can then be approximated by differentiating Equation (80): 

dx
dL

f
dx

dL
f

dx
dL

f
dx
df l

l
k

k
j

j
k

++=    (84) 
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3.2.2 Discretization of Diffusion Equation 

The right-hand side of the governing transport equation is a function of space and 

time: 

( ) 





∂
∂

∂
∂

+
∂
∂

= −
− x

xD
xxxd

Rd
R
xxg φφ

τ
τ γ

γ
1

1

~1~
~,    (85) 

Using a finite difference approach, Equation (85) will be discretized in space to yield an 

estimate of g(xi, τ ) for the interior nodes i = 1, …, N-2.  The spatial discretization of the 

boundary conditions is described in Section 3.2.3 and 3.2.4.  The Lagrangian polynomial 

method described above will be used to estimate the first-order and second-order spatial 

derivatives in Equation (85). 

 To estimate the first spatial derivative of the intracellular water volume fraction, 

x∂
∂φ , we first determine the corresponding Lagrangian multipliers.  By letting j = i-1,  

k = i, l = i+1, we obtain 

1−= ij xx       (86) 

11 −+ +∆= iik xxx α      (87) 

( ) 11 1 −+ ++∆= iil xxx α     (88) 

the Lagrangian multipliers become: 

( ) ( )( )
( )1

1
2

1

1111
1 +∆

−+∆−−∆−
=

+

−+−+
− αα

αα

i

iiii
i x

xxxxxx
L     (89) 

( ) ( )( )
2

1

111 1

+

−+−

∆
−+∆−−

=
i

iii
i x

xxxxx
L

α
α

     (90) 

( )( )
( )12

1

111
1 +∆

−∆−−
=

+

−+−
+ α

α

i

iii
i x

xxxxx
L      (91) 
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Substituting these definitions into Equation (80) and subsequently differentiating will 

yield an estimate of the first derivative of the water volume fraction evaluated at x = xi: 

  ( ) ( )( )[ ]1
2

1
1

11
1
1

+−
+

+−++−
∆+

= iii
ii xdx

d φαφααφ
αα

φ   (92) 

 In order to discretize Equation (65), we also need to estimate the second 

derivative term  









∂
∂

∂
∂ −

x
xD

x
φγ 1~     (93) 

This can be accomplished using the Lagrangian polynomial method, by defining 

( )
x

xDxf
∂
∂

≡ − φγ 1~     (94) 

In order to improve the accuracy of the estimate, we define new nodes halfway between 

i-1, i, and i+1, as shown in Figure 2; by convention these intermediate nodes are given 

fractional indices i ± ½.  Now we will discretize Equation (93) using Equation (84) and 

Equation (94), with   j = i-½, k = i, l = i+½.   Thus, 

2/1−= ij xx       (95) 

2/112
1

−+ +∆= iik xxx α       (96) 

( ) 2/11 1
2
1

−+ ++∆= iil xxx α      (97) 

producing: 

( ) ( )( )[ ]2/1
2

2/1
1

11
1
2

+−
+

+−++−
∆+

= iii
ii

fff
xdx

df ααα
αα

  (98) 

 Evaluation of Equation (98) requires estimates of the quantities 
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i
iii x

xDf
∂
∂

≡ − φγ 1~      (99) 

2/1

1
2/12/12/1

~
−

−
−−− ∂

∂
≡

i
iii x

xDf φγ      (100) 

2/1

1
2/12/12/1

~
+

−
+++ ∂

∂
≡

i
iii x

xDf φγ      (101) 

Whereas the derivative 
ix∂

∂φ  in Equation (99) can be evaluated using Equation (92), the 

derivatives 
2/1−∂

∂

ix
φ  and 

2/1+∂
∂

ix
φ appearing in Equations (100) and (101), respectively, 

were estimated from the known values of φi-1, φi, and φi+1 as follows.  The derivative 

2/1+∂
∂

ix
φ was evaluated using Equation (84) with j = i, k = i+½, l = i+1, such that 

ij xx =       (102) 

i
i

k x
x

x +
∆

= +

2
1      (103) 

iil xxx +∆= +1       (104) 

 yielding   









∆
−

=
∂
∂

+

+

+ 1

1

2/1 i

ii

i xx
φφφ     (105) 

 
(note that because the points j, k, and l are evenly spaced by ½ , the Lagrangian 

polynomial approximation reduces to a conventional central difference scheme).  In a 

similar fashion, the derivative 

1+∆ ix

2/1−∂
∂

ix
φ was evaluated using Equation (84) with j = i-1,  

k = i-½, l = i, such that 
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1−= ij xx       (106) 

1
1

2 −
+ +

∆
= i

i
k x

x
x

α
      (107) 

11 −+ +∆= iil xxx α       (108) 

and  









∆
−

=
∂
∂

+

−

− 1

1

2/1 i

ii

i xx α
φφφ      (109) 

 To complete the evaluation of Equations (100) and (101), the value of the 

nondimensional diffusivity must be estimated at the intermediate nodes i-½ and i+½ .  

We followed the conventional approach of approximating these intermediate values by 

linear interpolation: 

( )12/1
~~

2
1~

±± += iii DDD      (110) 

3.2.3 Discretization of Boundary Condition at x = 0 

In order to discretize Equation (70) at node i = 0 using FTCS, we define 

redundant nodes at i = -1 and i = -½, such that the nodes at i = 0 and i = -1 are spaced 

with an internodal distance of ∆x0 = ∆x1.  Because of the even spacing of the nodes, the 

Lagrangian polynomial method will reduce to a conventional central differences 

approximation.  In addition, by symmetry, φ-1 =φ1 and φ-1/2 =φ1/2, so that 11
~~ DD =−  and 

2/12/1
~~ DD =− .  

A central difference approximation of Equation (70) centered between the nodes  

-½ and ½ yields 

1

2/12/1

0 x
ff

dx
df

∆
−

= −      (111) 
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where 

2/1
2/12/1

~
x

Df
∂
∂

=
φ

    (112) 

2/1
2/12/1

~
−

−− ∂
∂

=
x

Df φ
    (113) 

The derivative 
2/1x∂

∂φ
 was evaluated using a central difference scheme centered between the 

nodes i and i+1, yielding 

1

1

2/1 +

+

∆
−

=
∂
∂

i

ii

xx
φφφ      (114) 

In a similar fashion, the derivative 
2/1−∂

∂
x
φ was evaluated using a central difference 

scheme centered between the nodes i-1 and i, yielding 

1

1

2/1 +

−

− ∆
−

=
∂
∂

i

ii

xx
φφφ     (115) 

3.2.4 Discretization of Boundary Condition at x = 1 

The boundary condition at the cell membrane (i = N-1) requires special treatment.  

First, the spatial derivative associated with the advective term in Equation (65) will be 

evaluated with a backward difference scheme in order to simplify the treatment of the 

required fictitious nodes located beyond the cell membrane (i = N, N-½).  The second 

derivative term will be evaluated as previously described, but with an internodal spacing 

between nodes N and N-1 of ∆xN-1. Because of the even spacing of the nodes, the 

Lagrangian polynomial method will reduce to a conventional central differences 

approximation. 
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According to this approach, Equation (68) can be discretized with a central 

difference approximation about node N-1 to obtain the relationship between the fictitious 

node N and the nodes N-1 and N-2. 

( ) 21

~
~~

21 −− +
∆

−= N
R

NN d
Rd

RD
x φ

τ
φφ    (116) 

In addition, Equation (93) can be discretized with a central difference approximation 

centered between nodes N-3/2 and N-1/2, yielding 

 
1

2/32/1

1 −

−−

− ∆
−

=
N

NN

N x
ff

dx
df      (117) 

where, 

2/3

1
1

2/32/32/3 2
~

−

−
−

−−− ∂
∂







 ∆

−=
N

N
NNN x

x
xDf φγ

   (118) 

2/1

1
1

2/12/12/1 2
~

−

−
−

−−− ∂
∂







 ∆

+=
N

N
NNN x

x
xDf φγ

   (119) 

In order to avoid extrapolation of the diffusion coefficient and nodal location of the 

fictitious node, Equation (119) will be redefined as 

2/1

1
112/1

~
−

−
−−− ∂
∂

=
N

NNN x
xDf φγ     (120) 

for simplicity.  The derivative 
2/1−∂

∂

Nx
φ  in Equation (120) was evaluated using a central 

difference scheme centered between the nodes N-1 and N, yielding 

1

1

2/1 −

−

− ∆
−

=
∂
∂

N

NN

N xx
φφφ      (121) 
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In a similar fashion, the derivative 
2/3−∂

∂

Nx
φ required in Equation (118) was evaluated 

using a central difference scheme centered between the nodes N-2 and N-1, yielding 

1

21

2/3 −

−−

− ∆
−

=
∂
∂

N

NN

N xx
φφφ     (122) 

 The other type of boundary condition that could be encountered at the cell 

membrane accounts for the possibility of nonuniform vitrification.  This condition 

assumes that vitrification will occur initially at the intracellular membrane and that the 

resulting glassy state will act as a barrier to mass transport.  This assumption is valid for a 

binary system of water and electrolyte, cooled monotonically, because the lowest 

concentration of water will occur at the intracellular membrane.  As a consequence of the 

cytoplasmic transition into a vitreous state at the cell membrane, no water will be 

permitted to leave the cell, and thus the cell radius will not change with time (i.e., 

0
~
=

τd
Rd ).  Imparting these conditions into a numerical language would involve adjusting 

the boundary node to be adjacent to the glass front, and to redefine the boundary 

condition to be prohibitive of mass transport.  The discretization technique of this new 

boundary condition makes use of Equations (70, 111-115). 

 

3.3 Temporal Discretization 

The nondimensional time step interval was defined as: 

1−−=∆ nnn τττ      (123) 

where the subcript n designates the time step.  This time step can be of a constant size, or 

may vary.  For example, when the time scale for membrane transport became smaller 
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than the time scale for diffusion transport (δtM <δtD); the nominal time step was be 

reduced by a factor (δtM/δtD), as described in Section 5.2.   

 In order to integrate the differential equation: 

),( τ
τ
φ xg

Ixx

=
∂
∂

=

     (124) 

a Crank-Nicoloson scheme will be used.  This scheme estimates the time-derivate in 

Equation (124) using the trapezoidal rule: 

( ) ([ 1

1

,,
2
11

+

+

+=
∆
−+

n

n
ini

n
i

n
i xgxg ττ
τ

φφ )]   (125) 

where  represents the water volume fraction at node i, at time step n.  We now use the 

results of Section 3.2.2 to write the discretized form of Equation (85): 
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Approximation of g(xi,τn+1) can be obtained in a similar manner.  However, here we will 

evaluate all coefficients of  at τ1+n
iφ n instead of τn+1, in order to avoid an iterative solution 

to the nonlinear differential equation.  Thus, 
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(127) 

By bringing the implicit terms to the left hand side, a tridiagonal system of equations can 

be obtained of the form:  

QP n =Φ +1       (128) 

where P is a matrix of coefficients, Φn+1 is a vector of the  terms, and Q is a vector 

which depends only on Φ

1+n
iφ

n and τn.  By inspection of Equations (126-127), P is a 

tridiagonal matrix with 
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for i= 1, .., N-2.  Likewise, inspection of Equations (126-127) yields the elements of the 

vector Q: 

( ni
n

i xgQ τ )τ
,

2
1+∆

=      (132) 

for i= 1, .., N-2, where g(xi,τn) is evaluated using Equation (126). 
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The coefficient matrix and right hand side vector for the boundary condition at 

i=0 are: 
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The temporal treatment of the boundary condition at the cell membrane requires 

special handling in order to avoid iterative solution strategies.  One way that this is 

achieved is to evaluate the advective term explicitly so that the time derivative will 

assume a modified Crank-Nicolson scheme of the form: 
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and where the factor of ½ multiplying the time derivative accounts for the fact that the 

control volume at the cell membrane is smaller than the other control volumes throughout 
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the cell.  Finally, the definitions for the water volume fraction at the fictitious point 

beyond the cell membrane will be defined as 
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in order to avoid iterative solution methods.  Inserting these definitions into Equations 

(138) and (139) will yield 
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These equations for the elements of the coefficient and right hand side matrix at 

the moving boundary will be redefined when vitrification at the cell membrane occurs 

(i.e., if φsphere).  At the onset of glass transition, Equations (142) – (144) will be redefined 

as 
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Once the matrices P an Q are assembled, solutions for the implicit water volume 

fractions will require inverting the coefficient matrix P.  Since this matrix is tridiagonal, 

this process can be achieved efficiently using an LU decomposition algorithm (Faires and 

Burden, 1998). 

 

3.4  Integration of Cell Properties 

In order to estimate the cell radius R~  as a function of τ, Equation (66) was 

integrated between τ0 and τn, yielding the following result: 
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where the Biot number Bi is defined in Equation (67).  As a means to evaluate this 

integral, the trapezoidal rule will be used: 
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where all subscripts designate the time step. 

 As the cell constricts, the change in cell volume must be accounted for by water 

and salt volume fluxes.  However, since the membrane is considered to be impermeable 
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to salt ions, mass conservation requires that the intracellular volume of salt is invariant 

with time.  Violation of this mass conservation requirement will be defined as: 
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where sV~  is the intracellular nondimensional salt volume, and Vso
~  is the initial 

intracellular nondimensional salt volume.  For the binary system of water and NaCl, the 

nondimensional salt volume can be expressed as: 
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and 

3~~ RV =      (153) 

Evaluation of the water volume integral in Equation (152) was accomplished by 

subdividing the cell into subshells with an outer radius and inner radius defined as, 
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where ri is the dimensional location of a node inside the cell (recall Equation 51) and 

dri+1 is the dimensional distance between ri and ri+1.  The amount of water contained 

within such a spherical shell is, 
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which can be nondimensionalized into the form: 
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In order to account for the reduced control volume at the cell membrane, the outer 

and inner radii will be defined as, 

Rrouter =      (158) 
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Inserting these definitions into Equation (156) yields, 
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In a similar manner, the reduced control volume at the cell center can be 

accounted for by defining, 
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With these definitions, Equation (156) reduces to, 
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 Finally, all these terms are summed to evaluate the total nondimensional water 

volume: 
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CHAPTER 4 

SIMULATIONS WITH CONSTANT BIOPHYSICAL PROPERTIES 

 Initial analysis of intracellular water diffusion was performed using constant 

biophysical properties for purposes of model validation.  In particular, both the Biot 

number and the nondimensional chemical potential were assigned constant values in 

Equation (66), and the diffusivity was assumed to be spatially uniform ( D~  = 1).  

Physically, these assumptions would require that the rates of diffusive transport and 

membrane transport differ only by a constant multiplicative factor, that the diffusivity be 

independent of solution composition, and that the extracellular chemical potential 

continuously decrease to accommodate a constant driving force as the cell dehydrates.  

Although these restrictions are not realistic, the simplifications allowed us to investigate 

the accuracy of our numerical model.  By setting all parameters to a constant value, the 

complexity and nonlinearity of the system was reduced, thereby permitting the use of a 

commercially available multi-physics finite element solver (FEMLAB, Comsol AB, 

Stockholm, Sweden) for validation of our numerical model.  We also examined the 

internal consistency of our predictions by evaluating the effect of node spacing and time 

step size on mass conservation. 

We solved for the water volume fraction at each node of a spherical cell (γ = 3) as 

a function of nondimensional time by iteratively solving Equation (128), using 

Equations (129)-(135) with Equations (142)-(144) to evaluate the matrices P and Q, and 

Equations (66) and (149) to calculate variations of the cell radius.  In the present set of 

simulations, we used a uniform grid (α = 1), and initial conditions corresponding to a 

uniform distribution of intracellular water, with  = 0.95 for i = 0,…,N-1.  Because we 0
iφ
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used a constant dimensionless chemical potential µ~∆  = -0.01, it was possible for the 

intracellular water concentration to assume negative values for extended simulations; 

thus, simulations were halted if φn
N-1 ≤ 0.   

Initially, we compared our model predictions with those obtained using a 

commercial finite-element solver (FEMLAB) for the simplified system.  Equations (65), 

(68), and (69) were implemented in FEMLAB after multiplying both sides of 

Equations (65) and (69) by x2 to prevent a singularity at x = 0.  In FEMLAB, a mesh with 

15 elements of equal size was used.  For our finite difference solution, we used a mesh 

with 1000 nodes, and a constant nondimensional time step ∆τ = 10-6.  Our predictions 

agreed reasonably well with predictions obtained using the FEMLAB solver for Bi = 103 

(Figure 3) and Bi = 104 (Figure 4).   

We also determined whether our numerical solution yielded results that were 

consistent with requirements of mass conservation.  Given that the total volume of salt 

within the cell must remain constant during the dehydration process, we evaluated the 

magnitude of any artefactual variations in intracellular salt content using Equation (152), 

as a function of mesh size and time step.  Representative results for Bi = 105 are shown in 

Figure 5.  For N ≥ 100, extensive violations of mass conservation (30%-100% error) were 

observed for time step sizes ∆τ = 10-2 and ∆τ = 10-4.  For smaller time step sizes 

(∆τ ≤ 10-6), the mass conservation error decreased with increasing number of nodes, and 

appeared to be independent of the magnitude of the nondimensional time step.  For 

example, for N = 1000, the mass conservation errors were in the range 0.4%-1.4%, for 

10-10≤ ∆τ ≤ 10-6, which is comparable to the performance reported in other studies of 

diffusion-limited cell dehydration (Levin, 1976; Mao et al., 2003).   

50 



 

 
 
 
 
 

Dimensionless Time

0.00 0.02 0.04 0.06 0.08 0.10 0.12

M
em

br
an

e 
W

at
er

 V
ol

um
e 

Fr
ac

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.  Predicted volume fraction of intracellular water at the cell membrane, as a 
function of nondimensional time, for Bi = 1000 and µ~∆  = -0.01.  Shown are solutions 
obtained using our finite difference model (solid line) and using the finite element solver 
FEMLAB (dotted line). 
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Figure 4.  Predicted volume fraction of intracellular water at the cell membrane, as a 
function of nondimensional time, for Bi = 10,000 and µ~∆  = -0.01.  Shown are 
solutions obtained using our finite difference model (solid line) and using the finite 
element solver FEMLAB (dotted line). 
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Figure 5.  Maximum variation in intracellular salt content during cell dehydration 
with Bi = 105 and µ~∆  = -0.01, simulated using our finite differences model with 
different grid spacings and time step sizes.  The nondimensional time steps were 
∆τ = 10-2 (dash-double-dotted line); ∆τ = 10-4 (dash-dotted line); ∆τ = 10-6 (solid 
line); ∆τ = 10-8 (dashed line); and ∆τ = 10-10 (dotted line). 



CHAPTER 5 

SIMULATIONS WITH TEMPERATURE- AND CONCENTRATION- DEPENDENT 

BIOPHYSICAL PROPERTIES 

5.1  Comparison with Experimental Data 

 In this chapter, the diffusivity, chemical potential, and permeability were 

calculated using the temperature- and concentration-dependent constitutive equations 

given in Section 2.3.  Initially, we further validated our finite difference model by 

comparing its predictions to experimental measurements of cell volume changes during 

the dehydration of yeast (S. cerevisiae) cells published by Ushiyama et al. (1973). 

 We solved for the water volume fraction at each node of a spherical cell (γ = 3) by 

iteratively solving the system of equations defined by Equation (128), using Equations 

(129)-(135) with Equations (66), (142)-(144), and (149) to evaluate the matrices P and Q.  

Variations in the cell biophysical properties were calculated using Equation (11) for the 

membrane permeability; Equations (12)-(15) for the diffusivity; Equations (16)-(18) for 

the chemical potentials.  In order to evaluate these temperature-dependent parameters, we 

integrated Equation (71) using a forward difference scheme, to obtain the temperature at 

each time step.  We checked for violations of mass conservation using Equation (150).  In 

the present set of simulations, we used a linear cooling protocol with an initial 

temperature of 272.623 K, and a uniform initial concentration cso = 142 mol/m3 

(  = 0.9962 for i = 0, …, N-1), corresponding to isotonic conditions.   0
iφ

We used published biophysical properties of yeast cells, shown in Table 1 (Levin, 

1979).  The corresponding nondimensional parameters, evaluated for Tc = 30 K, are also 

shown in Table 1. For our finite difference solution, we used a uniform mesh (α = 1) with 
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Table 1. Biophysical properties for yeast cell (S. cerevisiae) (Levin, 1979)   
Cooling Rate      10 oC/min   100 oC/min       
Cell radius (µm)     2.83   2.83 
Activation energy (J mol-1)    6.79 x 104  4.53 x 104 
Limiting membrane permeability (m Pa-1 s-1) 1.52 x 10-2  2.73 x 10-6 

θD       2 x 10-6  2 x 10-5 
 

θM       8 x 10-14  4 x 10-9 
εD       20   20 
εM       180   270   

500 nodes, and a constant nondimensional time step of ∆τ = 10-1 or ∆τ  = 10-2 to simulate 

freezing at the rates of 10 oC/min and 100 oC/min, respectively.   

Our predictions for the kinetics of dehydration of yeast cells at 10 oC/min and 

100 oC/min are shown in Figures 6(a) and 6(b), respectively.  Evaluation of Equation 

(150) confirmed that mass conservation errors were smaller than 0.1% for these 

simulations.  Although θD » θM for both of these cases, the system is in fact in a 

membrane-limited transport regime, as a result of the temperature dependent factors (εM » 

εD).  The maximum amount of solute polarization (quantified here by the difference 

between the water volume fraction at the membrane and cell center, normalized by the 

water volume fraction at the cell center) was only ~0% for both B = 10 oC/min and 

B =100 oC/min. Because θD, θM and εM are all smaller for the slower cooling rate, the 

total amount of dehydration is greater for this case than for the faster cooling rate.  Also 

shown in Figure 6 are experimental data of volume changes in yeast cells during freezing 

(Ushiyama et al., 1973).  As seen, our predictions agree reasonably well with the 

published experimental data, validating our model in the low Biot number regime.  The 

accuracy of our model predictions are especially remarkable given the fact that the 
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osmotically inactive volume is neglected in the finite difference model (ie. 0~ =bV ), 

whereas yeast cells have an osmotically inactive volume 24.0~ =bV  (Levin, 1979). 
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(b) 
Figure 6.  Comparison of numerical predictions (solid line) and experimental 
measurements (circles) of the normalized cell volume of yeast cells cooled at a rate of 
(a)10oC/min, and (b) 100oC/min. 
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5.2  Simulations in Large Biot Number Regimes 

   In order to examine the behavior of our finite difference model under conditions 

of diffusion-limited transport, we simulated the response of a hypothetical cell type with 

the parameters shown in Table 2, which has been shown to enter large Biot number 

regimes at low temperatures (Kasharin and Karlsson, 1998).  For purposes of 

comparison, we also obtained predictions for this cell type with Mazur’s membrane-

limited model, by numerically integrating Equation (45) using a fourth-order Runga-

Kutta algorithm.   

 Initial predictions for the intracellular water volume (normalized to its initial 

value), obtained using the finite-difference model and the conventional membrane-

limited transport model, are shown in Figure 7(a).  In the finite difference calculation, we 

initially used a uniform gird (α = 1) with 7750 nodes, and a constant step size ∆τ  = 10-4.  

Because this system is known to have a small Biot number for temperatures greater than 

~180 K (Kasharin and Karlsson, 1998), predictions of the finite difference model match 

those of the simple membrane-limited model in the initial stages of the simulation.  

However, the two models begin to diverge below ~170 K.  Given that transition to a 

diffusion-limited regime (Bi » 1) should result in dehydration that is slower than 
Table 2. Biophysical parameters for hypothetical cell type (Kasharin and Karlsson, 1998)  
Parameter Symbol Value Units 
Cell radius Ro 5 x 10-6 m 
Activation energy   Ea 1 x 104 J mol-1 
Cooling Rate B 200 oC/min 
Limiting membrane permeability    L∞ 1.362 x 10-13 m Pa-1 s-1 
Characteristic Temperature Interval Tc 100 K 
 θD 4 x 10-5  
 θM 3 x 10-2  
 εD 6  
 εM 0.03  
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predicted from a membrane-limited transport model (due to the additional resistance 

presented by the solute polarization layer), the finite-difference predictions for T < 170 K 

in Figure 7(a) must be artefactual.  Indeed the mass conservation error for this simulation 

was 14%.   

 To correct the problems evident in Figure 7(a), we recognized that they were 

caused by the fact that the diffusivity becomes vanishingly small as the temperature and 

intracellular water content decrease.  Thus, with the nondimensional time variable 

defined using Equation (52), a constant nondimensional time step ∆τ  will correspond to 

an increasingly large time step ∆t as Do decreases.  If the characteristic time-scale for 

membrane transport (δtM; Equation 23), is smaller than the time step used for integration, 

numerical problems will result.  Therefore, we implemented an alternative 

nondimensionalization of time:  

),min( DM tt
dtd

δδ
τ =      (165) 

In practice, this was achieved by reducing the original nondimensional time step 

∆τ by a factor of (δtM/δtD) whenever δtM<δtD.  Furthermore, for conditions which resulted 

in vitrification (i.e. D~  = 0) of the intracellular solution near the membrane, we changed 

the boundary conditions as described in Equations (146)-(148), in order to prevent 

numerical difficulties associated with the vanishing diffusion constant. 

  With the above modifications, using a nonuniform grid (α = 1.0148) with 1000 

nodes and a nominal time step ∆τ = 10-5, predictions improved, as shown in Figure 7(b).  

For this simulation, errors in conservation of mass were less than 1%, and predicted water 

volumes do not decrease faster than Mazur’s model.  As indicated by arrows in Figure 
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7(b), the time step is rescaled as described above for T < -105 oC, inasmuch as δtM<δtD in 

this temperature range.  Moreover vitrification is predicted to occur in the solution at the 

interior surface of the cell membrane (x=1) at –126 oC, halting any further dehydration.  

Because the conventional membrane-limited transport model does not take into account 

the decrease in intracellular diffusivity with decreasing temperature and water content, it 

incorrectly predicts that cell shrinkage will continue below –126 oC.   

 To further emphasize the differences in predictions from our model and the 

conventional membrane-limited transport model, we modified the parameters of the 

simulation to make θD > 1, representing a highly diffusion-limited regime.  By keeping 

θM and εM at the same values as those given in Table 2, predictions from Mazur’s 

membrane-limited transport model will be identical to those shown in Figure 7.  Thus, by 

increasing L∞ by a factor of 105 while also increasing the cooling rate by a factor of 105, 

the dimensionless group characterizing diffusion-limited transport will change from 

θD = 4 x 10-5 to θD = 4, while leaving θM unchanged.  The corresponding predictions of 

our model, using a nonuniform grid (α = 1.0148) with 1000 nodes and a nominal time 

step size ∆τ = 10-6, are shown in Figure 8.  For these conditions, the mass conservation 

error was less than 0.1%.  As indicated by the arrow in Figure 8, mass transport occurs in 

a high Biot number regime (δtM<δtD) throughout the simulation, resulting in slower 

dehydration compared with predictions obtained using the membrane-limited model.  

Vitrification at the node closest to the cell membrane (i = N - 1) occurs at –85 oC, after 

which transport stops, leading to significant divergence from Mazur’s model. 

 The kinetics of intracellular water transport in the previous simulation is shown in 

Figure 9, which describes the local changes in the water volume fraction at the cell center 
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(x = 0) and near the cell membrane (x = 1).  Despite the fact that ~30% of the total cell 

water was lost, the water volume fraction at the cell center never changed during the 

simulation.  Instead, most of the water was removed from the region near the cell 

membrane.  Here, the water volume fraction was observed to drop sharply, causing a 

dramatic increase in the concentration of salt and leading to local vitrification.  

Subsequent to vitrification at the node i = N –1, the water volume fraction increased at 

node i = N –2 because the diffusive water flux from the cell interior was no longer 

depleted by the transmembrane flux.  Eventually, the entire cell vitrified simultaneously 

at T = 124 K, corresponding to the Vogel-Fulcher critical temperature (βTg).  However, 

diffusion effectively stops well before the temperature reaches βTg, because δtD » δtB in 

this regime.  Interestingly, δtM « δtB in this temperature range, as evidenced by continued 

cell dehydration in the membrane-limited model predictions (Figure 8). 
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(b) 

.  Predictions of intracellular water volume (normalized to its initial 
btained using the finite-difference diffusion model (solid line) and 
membrane-limited transport model (dotted line), for a hypothetical cell 
 θM = 3 x 10-2, θD = 4 x 10-5.  (a) Original finite-difference model;  (b)
 finite-difference model, including adaptive step size in diffusion-limited
regime and new boundary conditions with provisions for non-uniform
on.  Arrows indicate temperature at which δtD > δtM (1) and temperature 
vitrification occurs at node i = N – 1 (2).

(2) (1) 
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Figure 8.  Predictions of intracellular water volume (normalized to its initial value) 
obtained using the finite-difference diffusion model (solid line) and Mazur’s 
membrane-limited transport model (dotted line), for a hypothetical cell type with 
θM = 3 x 10-2, θD = 4.  Arrows indicate temperature at which δtD > δtM (1) and 
temperature at which vitrification occurs at node i = N – 1 (2). 
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Figure 9.  Predicted variations in water volume fraction at nodes i = 0 (solid line), 
i = N –2 (dotted line) and i = N-1 (dashed line), for finite-difference simulation in 
Figure 8 (θM = 3 x 10-2, θD = 4). 
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CHAPTER 6 

PARAMETRIC ANALYSIS OF MASS TRANSPORT REGIMES DURING CELL 

FREEZING 

6.1  Nominal Values 

 In this chapter, the effects of varying the nondimensional parameters θM, θD, εM, 

and εD were investigated in order to further explore mass transport regimes in which 

predictions from our diffusion model differed from those of the conventional membrane-

limited transport model.  When varying the parameters, each was perturbed about a 

nominal value, in a factorial design. 

 Nominal values for the characteristic transport parameters (θM, θD, εM, εD) were 

determined from physiological ranges of the cell biophysical properties and typical 

cryopreservation conditions.  The ranges for the cooling rate, initial cell radius, and 

limiting permeability were obtained from a published compilation of properties for a 

variety of common cell types (McGrath, 1988), and are summarized in Table 3.  Ranges 

for the Vogel-Fulcher viscosity coefficients were taken from estimations by Karlsson et 

al. (1994), and are also shown in Table 3.  The characteristic temperature was defined to 
Table 3.  Physiological range of cell biophysical properties and cryopreservation conditions 
                Estimated        Estimated  
Parameter            Variable          Lower Bound          Upper Bound        Units      
Cooling Rate     B  10-2   101  oC/min 
Cell Radius     Ro  10-6   10-4  m 
Limiting Permeability    L∞      10-11   101  m/Pa s 
Activation Energy          Ea  104   105  J/mol 
Vogel-Fulcher Coeff.     Aη  10-5   10-3  Pa s 
Vogel-Fulcher  
Activation  Temperature E  600   750  K   
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be Tc = 100 K, which is on the order of the interval from the equilibrium freezing point of 

water (0 oC) to its glass transition temperature (-134 oC).   

The physiologically relevant ranges of θM and θD were estimated from Equations 

(34) and (35) using the values in Table 3; within the calculated ranges, we chose nominal 

values θM = 10-11, θD = 10-3.  The nominal value of εD was estimated based on the Vogel-

Fulcher activation temperature of supercooled water, as predicted by (Karlsson et al., 

1994), yielding a nominal value εD = 6.  Finally, the nominal value for εM was chosen to 

be the value that would result in 50% cellular dehydration for a hypothetical cell type 

characterized by the chosen nominal values of θM, θD, and εD; this yielded a nominal 

Arrhenius number of   εM = 63.7.  The full ranges of the nondimensional parameters for 

physiologically relevant conditions are given in Table 4. 

 

6.2  Supercooling Predictions in the Four-Dimensional Parametric Space 

 Intracellular supercooling is an important parameter which affects the probability 

of cell damage by IIF during cryopreservation (Karlsson et al., 1993).  In order to 

examine the benefit of our finite-difference diffusion model in predicting the cytoplasmic 

supercooling, we simulated the cell dehydration process over a range of values of the 

parameters θM, θD, εM, and εD.  For purposes of comparison, we also obtained predictions 

with Mazur’s membrane-limited model, by numerically integrating Equation (45) using a 

Table 4.  Ranges and nominal values of nondimensional parameters used in simulations 
Parameter Nominal Value Lower Bound Upper Bound 
θM 10-11 10-19 10-2 
θD 10-3 10-10 103 
εM 63.7 10 100 
εD 6 6 7.5 
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fourth-order Runga-Kutta algorithm. 

 We solved for the water volume fraction at each node of a spherical cell (γ = 3) by 

iteratively solving the system of equations defined by Equation (129), using Equations 

(130)-(136) with Equations (66), (143)-(148), and (150) to evaluate the matrices P and Q.  

Variations in the cell biophysical properties were calculated using Equation (11) for the 

membrane permeability; Equations (12)-(15) for the diffusivity; Equations (16) and (17) 

for the chemical potentials.  In order to evaluate these temperature-dependent parameters, 

we integrated Equation (71) using a forward difference scheme, to obtain the temperature 

at each time step.  We checked for violations of mass conservation using Equation (151).  

In the present set of simulations, we used a linear cooling protocol with an initial 

temperature of 272.623 K, and a uniform initial concentration cso = 142 mol/m3 

(  = 0.9962 for i = 0, …, N-1), corresponding to isotonic conditions.  The characteristic 

of supercooling at the cell center was calculated using Equations (19) and (20) at each 

time step. 

0
iφ

 We simulated the response of a hypothetical cell type with θD = 10-2 and εD = 9, 

corresponding to a transport regime rate-limited by diffusive transport.  Even though 

these values are large compared to the nominal values, they are still within the 

physiological ranges defined in Table 4. Predictions for the maximum intracellular 

supercooling were obtained using the finite-difference model and using the conventional 

membrane-limited transport model; the absolute value of the difference between the two 

predictions (normalized with respect to Tc), is shown in Figure 10 for a range of values of 

θM and εM.  In the finite difference calculations, we required the simulations to have a 

mass conservation error less than 1%.  In the present set of simulations, this was 
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accomplished by using a uniform grid with 1000 nodes and a nominal time step size 

∆τ = 10-5.    Twenty-five simulations were run for different combinations of values of θM 

and εM; θM was varied over a range one order of magnitude above and below its nominal 

value, while εM was varied by ±5% of its nominal value.  For small values of θM and 

εM, the supercooling predictions between the finite difference model and those of the 

simple membrane-limited model were found to disagree by as much as 37oC.  However, 

the discrepancy between the models is observed to decrease to as little as 0.1oC for large 

θM and εM.  Thus, despite the large values of the characteristic diffusion parameters θD 

and εD, there were regimes in the θM-εM plane in which predictions of the diffusion-

limited and membrane-limited transport models agreed.   

To further investigate the differences between supercooling predictions from the 

two models, we explored addition regimes in the four-dimensional parametric space, by 

repeating the above simulations for other values of θD and εD.  The contour plots 

presented in Figures 11-16 were determined from combinations of values of the four 

nondimensional parameters, each of which was varied about its respective nominal value.  

In this analysis, 450 simulations were run, to obtain all combinations of all values of the 

four parameters listed in Table 5.  We required that no numerical solutions have a 

violation of mass conservation exceeding 1%.  This constraint was satisfied by using a 

uniform grid (α = 1) with 500 nodes, and a nominal step size depending on the value of 

θD, as shown in Table 5.  Avoiding violations in mass conservation with θD = 10-11 

(Figure 16) was not possible.  Initial analyses with this parametric value gave rise to mass 

conservation errors three-orders of magnitude larger than those obtained with all other 

values of θD.  Furthermore, upon refining the spatial and temporal grids for the case of 
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Table 5.  Ranges of dimensionless parameters used in simulations shown in Figures 11-16
∆τ θD θM  εD εM  
10-6 10-1 10-12 9 60.5 
10-3 10-3 5 x 10-12 6 62.1 
10-2 10-5 10-11 3  63.7 
100 10-7 5 x 10-11  65.3 
103 10-9 10-10  66.9 
104 10-11    
θD = 10-11, mass conservation errors became worse.  Combined with the observation that 

the nondimensional water volume was predicted to increase with a fine internodal and 

temporal spacing, we believe that there are numerical problems in our solutions for this 

regime, and thus we do not consider the results presented in Figure 16 to be real.  We did 

not further explore this issue, given that the value θD = 10-11 was outside the realistic 

range for this parameter as estimated by Table 4. 

 Differences in supercooling predictions between our model and the conventional 

membrane-limited model increased with increasing θD, increasing εD, decreasing θM, and 

decreasing εM.  Although significant differences between the two modeling approaches 

were observed in some of the simulated regimes (e.g. Figure 11a), it should be noted that 

the present parametric analysis was restricted to a narrow range centered about a set of 

nominal values.  Thus, behavior that is quantitatively and qualitatively different may be 

observed in regimes outside those simulated in Figures 11-15.  For instance, erythrocytes 

(θM  ≅ 10-7, θD  ≅ 10-5, εM  ≅ 19, εD ≅ 6) have been shown to exhibit extensive solute 

polarization (Levin, 1976) that would lead to large disagreements in supercooling 

predictions between a diffusion-limited and membrane-limited transport model.  

However, the values of θM and εM for erythrocytes both fall outside the window shown in 
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Figure 12(b).  Thus, it may be necessary to complete further simulations in order to 

capture the behavior in all physiologically relevant transport regimes. 
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Figure 10.  Contour plot of the difference in nondimensional intracellular 
supercooling predictions between a membrane-limited model and the model 
under study (predicted supercooling was normalized relative to the characteristic 
temperature Tc = 100 K).  Predictions are based on θD = 10-2 and εD =  9. 
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Figure 12.  Contour plot of the difference in nondimensional intracellular 
supercooling predictions between a membrane-limited model and the model 
under study (normalized relative to the characteristic temperature). 
Predictions are based on θD = 10-3 and εD = (a)  9, (b) 6, (c) 3. 
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Figure 15.  Contour plot of the difference in intracellular supercooling 
predicted by a membrane-limited model and the model under study. 
(normalized to Tc)  Predictions are based on θD = 10-9 and εD = (a)  9, (b) 6, 
(c) 3. 
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CHAPTER 7 

DISCUSSION 
 
 Diffusion-limited models of water transport during cryopreservation are scarce.  

To date, only Levin (1976), Mao et al. (2003), and Jaeger and co-workers (Jaeger et al., 

1999; Jaeger and Carin, 2002) have presented diffusion-limited models predicting the low 

temperature response of a cell to a chemically changing environment.  Moreover, only 

Levin has investigated the effect of large Biot numbers, since both Mao et al. and Jaeger 

and co-workers have assumed constant biophysical properties in order to delineate the 

effects of cellular diffusion and the interactions with an advancing ice front.  Even though 

Batycky et al. (1997) have presented a diffusion based model for osmotically driven 

intracellular transport, their study focused on the cell response during the removal of a 

semi-permeable species (e.g., a cryoprotectant chemical) near room temperature.  Due to 

this limited availability of diffusion-limited models, the present study has been able to 

broaden the current understanding of the cellular response at large Biot numbers. 

In our investigation, solutions to the temperature and spatial dependent cellular 

water volume fraction were obtained using numerical methods.  The stability of a 

numerical technique is often determined with Fourier methods; however, Fourier 

methods assume periodic boundary conditions (Richtmyer and Morton, 1967; Tannehill 

et al. 1997) and since significant polarization occurs near the membrane, the boundary 

conditions must be explicitly considered when deriving the stability criterion.  Thus 

Fourier methods cannot be applied.  In order to include the boundary effects in the 

stability analysis, matrix methods are typically used (Tannehill et al., 1997).  

Unfortunately, these methods can only be applied to linear systems (Quinney, 1987), and 
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thus a more empirical strategy has been used to evaluate the stability of the differencing 

scheme.  This approach was based on the requirement that the total intracellular volume 

of salt be conserved during dehydration, consistent with the assumed semipermeable 

nature of the cell membrane. 

Thus, all temporal and spatial grids used in simulates were defined with the intent 

of minimizing any violation of the required conservation of mass.  For most 

investigations, the mass conservation error was constrained to within 1%; however, due 

to limitations of our solution algorithm as it is currently implemented, stability issues 

were occasionally encountered under extreme conditions (e.g., Figure 16).  Despite the 

unavoidable numeric problems, our mass conservation errors compare well with those 

reported in other studies.  In a previous study, Levin (1976) used a first-order accurate 

implicit backward difference scheme to integrate his partial differential equation, and 

reports mass conservation errors on the order of 0.1%.  Mao et al. (2003) have used a 

second order accurate temporal scheme and report mass conservation errors as large as 

10%.  However, they explain that their results can be improved by mesh refinement.  In 

addition, the computational domain used by Mao et al. comprised both the cell and an 

advancing ice front.  Thus, the number of nodes actually used to discretized the cell 

radius was approximately 30 at the initial stages of the simulation, and decreased with the 

cell dehydration, inasmuch as their mesh was fixed. 

The grid used in the present study and in Levin’s investigation was designed such 

that the resolution of the mesh remains constant during the cell shrinkage (Levin, 1976) 

by using a Lagrangian-Eulerian approach.  In contrast, a fixed Eulerian grid such as the 

one used by Mao et al. (2003) loses spatial resolution as the cell shrinks.  Furthermore, 
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the work done here and by Levin use a nonuniform grid in order to improve spatial 

resolution near the membrane.  Our use of a nonuniform, front-tracking Lagrangian-

Eulerian grid proved to be a flexible solution which allowed simulation of cell 

dehydration over a large range of Biot numbers.  

Estimation of the cell’s biophysical properties is a critical prerequisite to the  

accurate modeling of the cell response to low temperatures.  In 1976, Levin modeled the 

temperature dependence of the cytoplasmic viscosity by fitting a fourth-order polynomial 

to experimental viscosity data for pure water, which at the time had been measured down 

to –24oC (Hallet, 1963).  For this reason, the minimum temperature simulated in Levin’s 

work was only –30oC.  Although, this limited temperature range was adequate for 

simulation of red blood cells, in which most transport occurs above -30oC, the viscosity 

model used by Levin would be unsuitable for use with most other cell types.  In 1986, 

Taborek et al. presented a power law model of the viscosity of pure water.  

Unfortunately, the water viscosity was again only measured for temperatures down to 

-24oC, and extrapolation of the best fit power law model led to inaccuracies below this 

temperature; in particular, vitrification was predicted to occur at –48oC, approximately 

85 K above the true glass transition point.  However, until recently, the model of 

Taborek et al. has been the most frequently used in the cryobiology literature for the 

modeling of IIF (e.g., Toner et al., 1990).  Another approach to modeling the cell 

properties at subzero temperatures is to assume that they are constant (Mao et al., 2003; 

Jaeger et al., 1999).  However, by neglecting the temperature-dependence of the 

membrane permeability and cytoplasmic viscosity, the calculated Biot number will 

decrease with decreasing temperature, in contrast with the results of previous studies, 
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which have found that the Biot number in fact increases with decreasing temperature 

(Karlsson et al., 1994; Kasharin and Karlsson, 1998). 

A major contribution of the present work was to model intracellular diffusion 

using an improved model of cytoplasmic viscosity.  The constitutive equation employed 

here was based on the theoretical work of Karlsson et al. (1994).  In their study, a 

phenomenological model of the viscosity of a ternary water-NaCl-glycerol solution was 

developed based on published experimental measurements.  The empirical data used by 

Karlsson et al. included the concentration-dependence of the viscosity of water-glycerol 

solutions at 20oC (Weast, 1976), the temperature-dependence of the viscosity of an 

aqueous solution of 47% w/w glycerol (Kresin and Korber, 1991), and the measured 

glass transition temperature of water-glycerol solutions as a function of glycerol 

concentration (Luyet and Rasmussen, 1968).  The resulting viscosity model has been 

validated against independent experimental data for temperatures down to –149oC 

(Karlsson et al. 1994; Karlsson, 2001).  Karlsson et al. (1994) also accounted for the 

effect of salt ions using the theory developed by Vand (1948) to describe the perturbation 

of a liquid’s viscosity by spherical particles suspended in the fluid.  The range of 

temperatures and solution compositions for which the viscosity can be estimated using 

the model of Karlsson et al. is unprecedented in the cryobiology literature.   

In the presence of cryoprotectants, the glass transition temperature is typically 

strongly dependent on cryoprotectant concentration; however, since the present study 

focuses on the behavior of a binary solution of water and NaCl, the glass transition 

temperature predicted using our viscosity model is constant.  This simplifies the analysis, 

inasmuch as the whole cell will vitrify simultaneously.  An exception to this is the 
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vitrification that will occur if a sufficien tamount of water is removed at the cell boundary 

that only the hydrated salt “spheres” remain, form a glass shell.  The approach we used to 

model the effects of this type of vitrification at the cell membrane is similar to techniques 

used to model the effect of skin formation that occurs at the surface of drying paint 

(Edwards, 1999), in which the interface velocity is set to zero upon solidification.   

In modeling the external environment of the cell, the temperature and solute fields 

were assumed to be uniform.  Inherent in this assumption is that the extracellular ice has 

enclosed the cell.  Transmembrane temperature differences have been reported to rarely 

exceed 0.01 oC (Hua et al., 1982).  Moreover, it was assumed that the external solution 

was in equilibrium with the extracellular ice, which implies that the extracellular solution 

composition is uniform.  However, according to the investigations of Jaeger and Carin 

(2002) and Mao et al. (2003), these assumptions might break down under certain 

conditions.  For example, if the cell is initially remote to the ice front noticeable 

dehydration will not occur until the ice front meets the cell membrane (Jaeger and Carin, 

2002).  Furthermore, Mao et al.  (2003) present data to show that at fast cooling rates, 

nonhomogenous solute temperature fields can have a significant effect on the amount of 

cell dehydration.  Therefore, the present assumptions about the environmental conditions 

may not always be valid.  Nonetheless, these assumptions are commonly used in 

modeling cell dehydration (Mazur, 1984; Levin, 1979).   

It was assumed in this analysis that the intracellular solution was both ideal and 

dilute.  In principle, this assumption will break down as the concentration of salt 

increases.  However, empirically, the cells have been observed to obey Boyle-Van’t 

Hoff’s law, which is predicated on Raoult’s law (Dick, 1959; Levin 1979); it has been 
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postulated that this apparent conformity with Raoult’s law is possible because the effects 

of solution nonideality are lumped into an effective osmotically inactive volume (Levin et 

al., 1976b; Levin et al., 1977).  Analyses that do incorporate solution nonideality 

explicitly indicate that the effect of this phenomenon is small (Mansoori, 1975; Levin et 

al., 1977); however, recent analyses indicate that the effect of intracellular proteins on 

chemical potential may cause significant deviations from ideality under certain conditions 

(Elmoazzen et al., 2002).  Although deviations of Raoult’s law are expected under some 

conditions, the simplifying assumptions about the temperature-dependence of the 

membrane permeability are likely to be a greater source of error in the membrane 

transport model (Levin, 1979; Levin et al., 1976a).  The validity of these and other 

assumptions has been discussed extensively by Mazur (1963) and Levin (1979). 

In the present study, the kinetics of cell dehydration were characterized using 

dimensional analysis.  The first attempts to identify scaling laws for the water transport 

process were by Mazur (1984).  He found that the predicted temperature-dependence of 

the intracellular water volume during freezing remained the same when scaling the 

cooling rate inversely with the initial cell radius and in direct proportion with the 

membrane permeability.  Thirumala and Devireddy (2003) applied this concept to predict 

the optimum cooling rate as a function of membrane activation energy.  However, their 

analysis was incomplete in that they neglected to account for the effects of the initial 

solute concentration, discrepancies in reference temperatures used for permeability 

measurements, and cytoplasmic diffusion.  In the present study, the identification of 

scaling laws was formalized by defining nondimensional quantities that fully characterize 

the kinetics of mass transport during cell freezing.  In particular, the dimensionless 
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groups θM, θD, εM, and εD defined in Section 2.4.1 were found to play the most critical 

role.  Parameters similar to θM and θD were first identified by Kasharin and Karlsson 

(1998); their definitions have been further refined here.  In addition, Kasharin and 

Karlsson’s preliminary analysis was extended to include an explicit description of the 

temperature-dependence of cellular dehydration during freezing, using Arrhenius 

numbers. 

From the results of our investigation, it was apparent that the combinations of 

these nondimensional parameters that led to the most significant divergence from a 

membrane-limited model were also the values that resulted in the greatest amount of 

solute polarization.  Kasharin and Karlsson (1998) gave evidence to support the fact that 

the membrane-limited model breaks down at temperatures near the glass transition point 

because the time scale for diffusion transport was larger than the time scale for membrane 

transport in this temperature range.  Furthermore, they concluded that the impact of this 

effect would be more noticeable during warming than during cooling, because little 

transport occurs at low temperatures in the latter case..  Mao et al. (2003) didn’t 

encounter solute polarization in their study of erythrocytes and instead attrubited the 

observed discrepancies with predictions from the membrane-limited model to the effects 

of nonisothermal conditions.  However, their investigation was in the regime of low Biot 

numbers and they thus did not expect to see any concentration gradients within the cell.  

On the other hand, in Levin’s study of erythrocytes (1976), solute polarization as large as 

50% was observed, and found to cause significant over prediction of water loss by the 

membrane-limited model.   
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The present study has made the simplifying assumption that the osmotically 

inactive cell volume is negligible.  In contrast, Levin treated the osmotically inactive 

volume as a diffusing protein species associated with a very small diffusion coefficient.  

Thus, these cytoplasmic proteins would accumulate at the cell membrane as the cell 

constricts and greatly reduce the rate of water transport.  This may partly explain why the 

degree of solute polarization observed by Levin was larger than that predicted by other 

investigations.  Another model for the osmotically inactive volume is that presented by 

Batycky et al. (1997).  In their analysis, the osmotically inactive volume was uniformly 

distributed throughout the cell.  In effect, the intracellular protein distribution assumes a 

steady state, and thus these particles diffuse at an infinite speed. This approach is the 

direct opposite of Levin’s.  An alternative model which is physically plausible, involves 

the assumption that the osmotically inactive volume is distributed throughout the cell but 

behaves like a “sponge”, creating intracellular convection (Frankel et al., 1991) as the 

cell shrinks.  Most assumptions of the intracellular structure treat the proteins as free 

molecules not tethered to the membrane.  However, the tensegrity model of Wang et al. 

(1993) contradicts this common.  According to Wang et al., the cell comprises a 

meshwork of proteins, which reduces the effective water diffusivity and results in 

“sponge-like” behavior.  Because it is not trivial to model the osmotically inactive 

volume, the present study has neglected this factor altogether, an approach that was also 

used by Mao et al. (2003) and Jaeger and coworkers (2002; 1999). 
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CHAPTER 8 

CONCLUSIONS / FUTURE STUDIES 

 We have developed a model that predicts the cellular dehydration that results as a 

consequence of the freezing process.  Our analysis represents and improvement over 

previous cell dehydration models by: (1) accounting for intracellular solute polarization, 

which is neglected in conventional, membrane-limited models; (2) incorporating realistic 

constitutive equations for the temperature- and concentration-dependent biophysical 

properties; (3) representing the cell geometry as a three-dimensional sphere instead of 

using simpler one- and two-dimensional geometries, and (4) using a numerical solution 

technique that affords stability and accuracy under a wide range of conditions.   

Our model was validated in membrane-limited transport regimes, and found to 

give novel predictions in diffusion-limited transport regimes.  We defined four 

nondimensional parameters that characterized the extent of cell dehydration and 

quantified the relative importance of diffusive and membrane transport processes.  As a 

consequence of the complex nonlinear temperature-dependence of the cell dehydration 

process, we found that a single dimensionless parameter (e.g. the Biot number) would be 

insufficient to properly categorize the various mass transport regimes.  Instead, the 

diffusion-limited and membrane-limited mass transport regimes are separated by a 

nonlinear relationship between the dimensionless parameters.  From our parametric 

analysis, an effective Biot number could be defined: 
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This expression represents a three-dimensional hypersurface corresponding to conditions 

under which the maximum supercooling predictions for the membrane- and diffusion-
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limited transport models differed by approximately 1 K.  Accordingly, if Bieff » 1, then a 

diffusion-limited model is needed to accurately simulate the cell behavior during 

freezing; conversely, if Bieff « 1, then the diffusion-limited and membrane-limited models 

yield comparable predictions. 

Intracellular solute polarization is a characteristic of diffusion-limited transport.  

We found that slow diffusion leads to concentration gradients inside the cell and 

subsequent accumulation of salt at the cell membrane.  We conclude that when these 

gradients are severe, the concentration of salt at the intracellular surface of the cell 

membrane can become sufficiently large to cause to local vitrification.  Whereas such 

local vitrification creates a glassy “shell” at the cell membrane, preventing further water 

efflux, the intracellular water is allowed to redistribute.  The extent of redistribution 

depends on the temperature- and concentration–dependence of the cytoplasmic viscosity 

and the cooling rate; if the diffusivity decreases rapidly during cooling, intracellular 

concentration gradients will remain despite the lack of membrane transport. 

The present study served to develop computation tools for accurately modeling 

the cell dehydration response during the cryopreservation process.  Future extensions of 

the model will include incorporation of the effects of the osmotically inactive volume, 

and of cryoprotectant chemicals.  In addition, applications to tissue preservation will 

require predictions of the cellular response to the mechanical environment presented by 

the extracellular matrix, as well as the effect of cell-cell interactions. 
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APPENDIX A 

 
 
 

SOURCE CODE 
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/*    Cell Dehydration Code,   created by:  Kevin Carnevale  */ 
/*    written in Microsoft Visual Studio C++      */ 

 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include <definitions.h> 
 
int main(void) 
{ 
/* Define Variables ******************************************************/ 
 

- start, finish and elapsed are variables that will be used to determine the clock cylces 
of the cpu during the run of the simulation.   

- GasConst, vH20, vNaCl, To, Ti, CoolRt, Linf, Ea, Hf, Ro, cso, A, E, betaTg, ao, 
Boltz, are all physical parameters/properties, the definitions of which are described 
in the “Input Values” section. 

- dRdt  is the time rate of change of the nondimensional radius 
- Biot is the time varying Biot number defined using the initial cell radius (Needed 

for calculating dRdt. 
- Bi_cond is the condition for converting time nondimensionalization from a 

diffusion based to a permeability based.  In such a change, the Biot number must be 
defined in terms of the dimensional radius at the present time, or RRo, where R is 
the nondimensional radius.  

- Lp is the membrane permeability 
- dmu is the transmembrane chemical potential difference. 
- T is temperature. 
- D0 is the dimensional diffusivity at the cell center. 
- Teq is the equilibrium temperature of the supercooled cytoplasm. 
- delTs is the amount of supercooling. 
- Vwater is the intracellular water volume. 
- Vsalt is the intracellular salt volume. 
- R is the nondimensional cell radius. 
- r is the nondimensional intracellular radial postion (xR) 
- td and tm are the time constants for diffusion and membrane transport, respectively 
- *ptemp, *plp, *pbi, *pdmu, *pD0, *pdRdt, *pTeq, *pvw, *pvs are the pointers to 

temperature, permeability, Biot number (Biot), chemical potential, diffusivity at cell 
center, time rate of change of cell radius, equilibrium temperature of supercooled 
cytoplasm, water volume and salt volume, respectively. 

- w is the scaling factor for nodal spacing. 
- dtau is the nondimensional time step. 
- dtauo is the starting value of the nondimensional time step.  This value is used when 

reducing the time step according to a permeability nondimensionalization of time. 
- tau is the nondimensional time. 
- real_time is the dimensional time. 
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- N is the number of nodes 
- *pN is the pointer to the location of the number of nodes. 
- No is the total number of nodes.  This value is important when nonuniform 

vitrification occurs and N is reduced to be the node that lies on the boundary of this 
glass front, therefore, No just keeps the original information. 

- Data1, Data2, and resume_data are all data files.  Data1 and Data2 are defined to 
collect information at certain intervals during the simulation.  Typically Data2 
records the water volume fraction of each node, and Data1 records certain other 
properties like, radius, water volume, salt volume, biot number, chemical potential, 
etc.  resume_data is a file that records the information required to resume the 
simulation from Tstop. 

- Tstop is a user defined temperature to stop the simulation prematurely.  This value 
is used to when the user wishes to stop the simulation and resume its work at some 
later time.  In such a case the simulation will run up to Tstop, and resume from 
Tstop at the later point in time. 

- Dat1rec is the first temperature at which data should be recorded to Data1. 
- chngrec1 is the temperature interval from Dat1rec at which data should be recorded 

to Data1. 
- Dat2rec is the first temperature at which data should be recorded to Data2. 
- chngrec2 is the temperature interval from Dat2rec at which data should be recorded 

to Data1. 
- rec2flagchng is a variable that reduces chngrec2 if a certain temperature is reached 

or if nonuniform vitrification is encountered.  Since Data2 usually records nodal 
information, there could be a lot of information to save, therefore chngrec2 is 
typically coarse; however, to obtain a finer saving period this value is used. 

- interval is the interval at which nodal information is saved.  Since there may be a 
large number of nodes, it may be unnecessary to save all nodal information, and 
thus this value is used to define the interval of saving. 

- resume is a value that defines if the simulation should start from the beginning or 
start from Tstop.  

- invR (inverse of the nondimensional radius), term, and hold are all variables used in 
the integration of dRdt. 

- stop is a variable that will end the simulation if T < Tstop, or T < BetaTg. 
- *pstop is a pointer to the address of stop. 
- i is a looping parameter 
- flag is either 0 or 1, and is used to notify the program if non uniform vitrification 

has occurred. 
- *pflag is a pointer to the address of flag. 

 
 
  
 clock_t start, finish; 
 double elapsed; 

double GasConst, vH2O, vNaCl, To, Ti, CoolRt, Linf, Ea, Hf, Ro, cso, A, E, 
betaTg, ao, Boltz; 

double dRdt, Biot, Bi_cond, Lp, dmu, T, D0,  Teq, delTs, Vwater, Vsalt; 
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double R, r, td, tm 
double *ptemp, *plp, *pbi, *pdmu, *pD0, *pdRdt, *pTeq, *pvw, *pvs;  
double w, dtau, dtauo, tau,  real_time, 
int N, *pN, No 
FILE *CellDehydr_v20_data1; 
FILE *CellDehydr_v20_data2; 

 FILE *resume_data_20; 
 double Tstop; 

double Dat1rec, chngrec1  
double Dat2rec; 
int chngrec2, rec2flagchng, interval, resume; 
double invR, term, hold,  
double stop, *pstop;  

 int i; 
 int flag, *pflag;  
 
/* Allocate Memory for Matrices ********************************************/ 
  

- The set of equations being solved is a tridiagonal system that can be written in the 
form AX = B.  The lower diagonal of the tridiagonal matrix is defined as the matrix 
lower, the upper diagonal as upper, and the main diagonal as main.  B is the right 
hand side vector (RHS), and X is the water volume fraction (phi).  *pl, *pu, *pm, 
*pr, *pp, are the pointers to the first element of these vectors. 

- The diffusivity is given a vector, since it is spatially varying, with *pdiff the pointer 
to the first element of D. 

- x is a vector the location of each node, and *px is a pointer to the first element of x. 
- dx is a vector of the distance between nodes, and *pdx is a pointer to the first 

element of dx. 
 
 
 /* Matrices for use in this program AX = B */  
 double *lower, *upper, *main, *RHS, *phi;  
 double *pl, *pu, *pm, *pr, *pp;   
  
 /* Matrix for Diffusivity */ 
 double *D;  
 double *pdiff; 
 

/* Matrix of Nodal Spacing dx */ 
 double *dx, *x; 
 double *pdx,*px; 
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/* Input Values **********************************************************/ 
/* The user enters in the physical parameters defined below.                                          */ 
 
 resume = 0;          /* Enter 0 to start new simulation 1 to resume        */ 
  
 GasConst = 8.314; /* J mol^-1 K^-1 Universal  Gas Const. */ 
 vH2O = 1.8e-5;       /* m^3 mol^-1    Specific Vol of Water           */ 
 vNaCl = 2.699e-5; /* m^3 mol^-1     Specific Vol of Salt            */ 
 cso = 142.;          /* mol m^-3        Isotonic Salt Conc.             */ 
 To = 273.15;         /* K                 Equilibrium Freezing Temp       */ 
 Ti = 272.623; /* K                 Initial Temp                    */ 
 Hf = 6016.52;        /* J mol^-1          Heat of Fusion                  */ 
 ao = 1.4e-10; /* m   Hydrodynamic water radius       */ 
 Boltz = 1.380e-23;   /* J K^-1    Bolzman Constant                */ 
 betaTg = 123.80;     /* K Vogel-Fulcher Parameter         */ 
 
 Ea = 5.2960e4;       /* J mol^-1          Activation Energy               */ 
 A = 2.711e-5; /* Pa s Preexponential Coefficient      */ 
 E = 614.823;            /* K Vogel-Fulcher Activation enrgy*/  
 CoolRt = 6.e2;      /* K min^-1         Cooling Rate                    */ 
 Linf = 1.5656e-2;    /* m Pa^-1 s^-1     Limiting Permeability           */ 
 Ro = 7.2314e-5; /* m                 Initial Cell Radius             */ 
 
 N = 500;            /* Number of Nodes                                  */ 
 w = 1.0;            /* Scaling Factor for nodal spacing */             
 dtau = 1.e-4;        /* Nondimensional Time Step                         */ 
 
 Tstop = 0.;   /* Temperature to Stop Simulation                   */ 
 Dat1rec = 272.6;     /* 1st temp at which data will be sent to data1     */ 
 Dat2rec = 260;       /* 1st temp at which data will be sent to data2     */ 
 interval = 1; /* For saving nodal information                     */ 
 chngrec1 = 0.2;      /* Value at which to reduce Dat1rec */ 
 chngrec2 = 20;       /* Value at which to reduce Dat2rec                 */ 
 rec2flagchng = 5; /* Value to change chngrec2 to once flag = 0     */ 
 chngdtau = 1e-10;    /* Value to change dtau after first node vitrif     */ 
   
/* Declare Variables ******************************************************/ 
 

- Memory is being allocated for the files, and the pointers are assigned to the 
addresses of the variables that they point to. 

- start is assigned the value of the current clock cycle. 
- The if statement for resume, will open resume_data to be read, if the simulation is 

being resumed from Tstop. 
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 start = clock(); 
 Data1 = fopen("Data1.dat","w");  
 Data2 = fopen("Data2.dat","w");  
 if (resume == 1) 
 {   resume_data = fopen("resume_data.dat", "r"); 
 } 
 pN = &N;  
 ptemp = &T; 
 plp = &Lp; 
 pbi = &Biot; 
 pdmu = &dmu; 
 pD0 = &D0; 
 pdRdt = &dRdt; 
 pTeq = &Teq;  
 pvw = &Vwater; 
 pvs = &Vsalt;   
 pstop = &stop; 
 pflag = &flag; 
  
/* Allocate Memory for Matrices ********************************************/ 
 

- Here memory is allocated from the matrices.  The command malloc is used to 
define a vector space of the size in parenthesis. 

- Also the pointers are assigned the address of the first element of these vectors. 
 
 

lower = (double *)malloc(N*sizeof(double));  
 upper = (double *)malloc(N*sizeof(double)); 
 main = (double *)malloc(N*sizeof(double)); 
 RHS = (double *)malloc(N*sizeof(double)); 
 phi = (double *)malloc(N*sizeof(double)); 
 
 /* Define the pointers */ 
 pl = &lower[0]; 
 pu = &upper[0]; 
 pm = &main[0]; 
 pr = &RHS[0]; 
 pp = &phi[0]; 
   
 D = (double *)malloc(N*sizeof(double)); 
 pdiff = &D[0]; 
  
 dx = (double *)malloc((N-1)*sizeof(double)); 
 x = (double *)malloc(N*sizeof(double)); 
 pdx = &dx[0]; 
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 px = &x[0]; 
 
/* Initial Calculation Conditions *********************************************/ 
 
 stop = 1; 
 flag = 1; 
 No = N; 
 dtauo = dtau; 
 CoolRt = -CoolRt/60.; 
  

- Process of determining the nodal spacing 
- First, if w = 1, then the grid spacing is uniform, with a distance of 1/(N-1). 
- Otherwise, the equation for the grid spacing at the cell membrane takes the form of 

dx = (1-w) / (1 – w^(N-1)) which is a geometric series estimation of L = 
dx*(summation from k= 0:N-2 of w^k).  L = 1. 

- The nodal spacing for each node thereafter takes the form dx(i) = w*dx(i+1) 
- Once the spatial grid is determined, the x location of each node is found by 

summing the dx’s 
 
 if (w==1) 
 { 
  dx[N-2] = 1./(N-1); 
 } 
 else 
 { 
  dx[N-2] = (1-w)/(1-pwr(w,N-1)); 
 } 
 
 for (i=N-3; i>=0; i=i-1) 
 { 
  dx[i] = w*dx[i+1];   
 } 
  
 x[0] = 0; 
 x[N-1] = 1; 
 for (i=1; i<N-1; i++) 
 { 
  x[i] = x[i-1] + dx[i-1];   
 } 
 

- Other initial values. 
- Nondimensional radius is initially 1.  
- If the simulation is being resumed, these values will not be defined with initial 

values, but will be read from the resume_data file. 
 if (resume == 0) 
 { 
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 k = 0; 
 tau = 0; 
 real_time = 0; 
 R = 1.; 
 invR = 1.;  
 term = 0.; 
 resflag = 1; 
 } 
 else 
 { 
 fscanf(resume_data_20, "%lf %lf %i", &tau, &real_time, &k); 
 fscanf(resume_data_20, "%lf %lf %lf", &term, &R, &dRdt); 
 resflag = 0; 
 } 
 
  
/* Initial Conditions Inside Cell *********************************************/ 
 

- In this section the initial conditions within the cell are calculated, factors like, initial 
water volume fraction, Biot #, chemical potential, Water Volume, Salt Volume, 
Diffusion Coefficient, Supercooling and time rate of radius change. 

- PostProc is a function that calculates the Water and Salt Volumes. 
- Diffusivity is a function that calculates the viscosity and diffusion coefficients of 

each node within the cell. 
- Cell Props is a function that calculates temperature, permeability, biot number, and 

chemical potential. 
  
 if (resume == 0) 
 { 
  /* Set all nodes to have the initial water volume fraction  */ 
  for (i=0; i<N; i++) 
  {  
   phi[i] = 1. - cso*vNaCl;  
  }  
   
  /* Volume Calculations */ 
  PostProc(pvw, pvs, R, pdx, px, pp, N, w); 
    
  /* Cell Properties    */ 
  Diffusivity(pdiff, pD0, pp, pflag, pstop, pN, Ti, vH2O, vNaCl, pdRdt, A, 

 E, ao, Boltz, betaTg, plev, pdim); 
           
CellProps(ptemp,plp,pbi,pdmu,Ti,CoolRt,real_time,Linf,Ea, 

GasConst,Ro,D0,vNaCl,vH2O,Hf,To,R,phi[N-1], pTeq, phi[0]); 
  
  dRdt = pwr(R,2)*Biot*dmu; 
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  delTs = Teq - Ti; 
  } 
 
/* Resumed Conditions Inside Cell ******************************************/ 

- This reads the values for temperature, permeability, biot number, chemical 
potential, dimensional diffusivity at the cell center, water volume fraction, and 
diffusivity from the previously run simulation.   

- It then uses PostProc to determine the Water and Salt Volumes from this 
information. 

 
 else 
 { 
  fscanf(resume_data_20, "%lf %lf", &T, &Lp); 
  fscanf(resume_data_20, "%lf %lf %lf", &Biot, &dmu, &D0);  
  for (i=0; i<N; i++) 
  { fscanf(resume_data_20, "%lf %lf", &phi[i], &D[i]); 
  } 
  fclose(resume_data_20); 
  PostProc(pvw, pvs, R, pdx, px, pp, N, w); 
 } 
 
/* Print Starting Values to File **********************************************/ 
 
 fprintf(Data1,"Nodes (%i) w (%lf) dtau (%e) \n", N, w, dtau); 
 fprintf(Data1,"Linf %e B %e Ea %e \n", Linf, CoolRt, Ea); 
 fprintf(Data1, "A %e E %e  Ro %e\n", A, E, Ro); 
 fprintf(Data1,"Temp Vsalt Vw Biot dtau delTs\n"); 
 fprintf(Data1,"%lf %.11lf %.11lf %e %e %lf\n",T, Vsalt, Vwater, Biot, dtau,  

delTs);  
    
/* Assemble Matrices A & B of AX = B **************************************/  

- ModTrapMethod is a function that evaluates the descritized equations.  (See 
Chapter 3).   

- The matrix A consists of the coefficients of the phi(n+1) terms, and the right 
handside matrix B consists of the phi(n) and any other constant terms. 

 
 do 
 { 
 
 ModTrapMethod(pm, pl, pu, pr, N, pdx, px, pdiff, pp, dtau, dRdt, R, w, flag); 
  
/* Solve the Tridiagonal Matrix *********************************************/ 
 

- Solution of the resulting tridiagonal matrix involves using an LU decomposition.  
Here, in order to conserve memory, the lower, upper, main, and phi matrices were 
recycled.   
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- The LU decomp method used puts the main diagonal ones in the L matrix.  (See 
Below) 

 
   
 
= 
 

 
 
 
 
 
 
 

mo uo 0 0 
lo m1 u1 0 
0 l1 m2 u2 
0 0 l2 m3 
 
 

- So that, 
u'i  = ui 
l’i  = li / m’i  
m’i = mi - l’iu'i-1  

 
 
 phi[0] = RHS[0]; 
  
 for (i=1; i<N; i++) 
 {   
  lower[i-1] = lower[
  main[i] = main[i] -
 
  phi[i] = RHS[i] - lo
 } 
  
 phi[N-1] = (1./main[N-1])*
 for (i=N-2; i>=0; i=i-1) 
 { 
 
  phi[i] = (1./main[i]
 } 
 
/* Update Values *************

- Integration of dRdt using Tr
- Integration of time using Eu

tau += dtau; 
real_time += dtau*( (pwr(R
 
hold = Biot*dmu; 
 
Diffusivity(pdiff, pD0, pp,

Boltz, betaTg, plev
 CellProps(ptemp,plp,pbi,p

Cl,vH2O,Hf,To,R,p
  
1 0 0 0 
l'o 1 0 0 
0 l'1 1 0 
0 0 l'2 1 
i-1]/main[i-1]; 
 lower[i-1]*upper[i-1]; 

wer[i-1]*phi[i-1]; 

phi[N-1]; 

)*(phi[i] - upper[i]*phi[i+1]

***********************
apezoidal Method  
ler method. 

o,2)*pwr(R,2)) / D0 );  

 pflag, pstop, pN, T, vH2O, 
, pdim); 
dmu,Ti,CoolRt,real_time,Li
hi[N-1], pTeq, phi[0]); 
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m'o u'o 0 0 
0 m'1 u'1 0 
0 0 m'2 u'2 
0 0 0 m'3
); 

*********************/ 

vNaCl, pdRdt, A, E, ao, 

nf,Ea,GasConst,Ro,D0,vNa 



 if (flag == 1) 
 { 
 term += (dtau/2.)*(hold + Biot*dmu);    
 invR = 1. - term;      
 R = 1. / invR ;       
 dRdt = pwr(R,2)*Biot*dmu; 
 } 
 
 delTs = Teq - T; 
 td = (pwr(Ro*R,2))/(D0); 
 tm = (R*Ro*vH2O)/(Linf*exp(-Ea/(GasConst*T))*GasConst*T); 
 Bi_cond = R*Biot; 
 
 if (Bi_cond > 1) 
 { 
  dtau = dtauo/Bi_cond;  
 
 } 
  
/* Post Processing ********************************************************/ 
 
 PostProc(pvw, pvs, R, pdx, px, pp, N, w); 
 
/* Data Storage **********************************************************/ 
 
 /* Record Data to Data1 */ 
 if (T < Dat1rec) 
 {      
    
  fprintf(Data1,"%lf %.11lf %lf %.11lf %i %0.11lf\n",T, Vsalt, delTs, 

 phi[0], Vwater); 
  Dat1rec = Dat1rec - chngrec1; 
 
  /* Print Status to Screen */ 
  printf("tau = %6.4lf   T = %lf   dtau = %e Vw = %0.8lf \n", tau, T, dtau, 

 Vwater); 
 } 
   
 /* Record Data to Data2 */ 
 if (T < Dat2rec)   
 {     
 
  fprintf(Data2, "%lf \n", T); 
  for (i=0; i<No; i=i+interval) 
  { 
   fprintf(Data2,"%e ", phi[i]); 
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  } 
  fprintf(Data2,"\n"); 
  
  for(i=0; i<No; i=i+interval) 
  { 
   r = x[i]*R; 
   fprintf(Data2,"%e ", r); 
  } 
  fprintf(Data2,"\n"); 
  
  if (flag==0 || T < 180) 
  { 
   chngrec2 = rec2flagchng; 
  } 
 
  Dat2rec = Dat2rec - chngrec2;    
 }  
 
 /* Record Data to resume */ 
 if (T<= Tstop) 
 { 
  resume_data = fopen("resume_data.dat", "w"); 
  
  fprintf(resume_data, "%0.8e   %0.8e %i\n", tau, real_time, k); 
  fprintf(resume_data, "%0.8e   %0.8e   %0.8e \n", term, R, dRdt); 
  fprintf(resume_data, "%0.8e   %0.8e \n", T, Lp); 
  fprintf(resume_data, "%0.8e   %0.8e   %0.8e \n", Biot, dmu, D0);  
  for (i=0; i<N; i++) 
  {  

fprintf(resume_data, "%0.8e   %0.8e \n", phi[i], D[i]); 
  }  
 } 
/**********************************************************************/ 
  
 if (T <= Tstop) 
 { 
  stop = 0; 
 } 
   
 } while (stop == 1); 
 
/* End *****************************************************************/ 
 
 fclose(Data1); 
 fclose(Data2); 
 fclose(resume_data); 
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 free(pl); 
 free(pm); 
 free(pu); 
 free(pr); 
 free(pp); 
 free(pdx); 
 free(pdiff); 
 free(px); 
 
 finish = clock(); 
 elapsed = ((double)(finish-start)) / CLOCKS_PER_SEC ; 
 printf("elapsed clock time: %lf \n", elapsed); 
 printf("\nType 1 then ENTER to continue "); 
 scanf("\n"); 
 return 0; 
} 

99 



/*                 Function:  PostProc             */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <definitions.h> 
 
int PostProc(double *vw, double *vs, double Rbar, double *pdx, double *loc, double 
*pp, int n, double w) 
{ 
 
/*  Define Variables ******************************************************/ 

- This function takes in the pointers to the water volume and salt volume, because it 
will change these values by the end of the program.  Since it is changing the values 
it needs to know the location of the variable to change.   

- Other numbers that variables called are the nondimensional radius, the number of 
nodes, and the scaling factor.  These values are constants to the this function and 
won’t be changed, so they don’t need a pointer. 

- On the other hand, the matrices for nodal spacing (dx), nodal location (loc), and 
water volume fraction (pp) must send a pointer to the starting value of these 
matrices in order to read all the matrix values. 

- All these pointer issues are just syntax of C++. 
 

 double x, dx; 
 int k; 
 
/* Nondimensional Volume of Water Inside Cell *******************************/ 
 

- The water volume was calculated by visualizing each nodal point as a subshell of 
the entire spherical cell, and summing up all these small volumes.   

- The calculation is based on Vshell = (4/3)π(ro
3 – ri

3)  where ro = r + dr/2, and ri = r – 
wdr/2, with r = xR and dr = Rdx 

 
 
 /* Water volume shell at membrane */ 
 dx = *(pdx+n-2); 
 *vw = pwr(Rbar,3)* ( *(pp+n-1)*( (3./2.)*dx - (3./4.)*pwr(dx,2) +  

(1./8.)*pwr(dx,3) ) ); 
 
 /* Water volume shell at Cell Center */ 
 dx = *pdx; 
 *vw += pwr(Rbar,3)*( *pp*(1./8.)*pwr(dx,3) ); 
 
 for (k=1; k<n-1; k++) 
 { 
  x = *(loc + k); 
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  dx = *(pdx + k); 
  *vw += *(pp+k)*pwr(Rbar,3)*( (3./2.)*pwr(x,2)*dx*(1+w) + 

 (3./4.)*x*pwr(dx,2)*(1-pwr(w,2)) +  
 (1./8.)*pwr(dx,3)*(1+pwr(w,3)) ); 

 } 
   
/* Nondimensional Volume of Salt Inside Cell *********************************/ 
- For the binary system, R3 = Vw + Vs in nondimensional units.  
  
 *vs = pwr(Rbar,3) - *vw; 
 
 return 0; 
} 
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/*          Function:  Diffusivity            */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <definitions.h> 
 
int Diffusivity(double *diff, double *pDo, double *phiw, int *flag, double *stop, int 
*N, double temp, double vw, double vs, double *rdot, double A, double E, double ao, 
double Boltz, double betaTg) 
{ 
 /* Define Variables */ 

 double phi_sphere, phis, visc, visc_bin, h, pi, visc_lev, visc_w, visc_w_20; 
 int j,n; 
 
  h = 1.0; 
  pi = 3.141593; 
  n = *N;   
  
/* Check for temperature less than vitrification temp */ 

- If the temperature is less than the vitrification temperature we want the simulation 
to stop.  Therefore, this if statement will change stop and make the simulation end.  
It will not end immediately, instead it will continue running through the update 
variables and data storage sections, but once it gets to the while condition at the 
end, it will stop. 

 
 if (temp < betaTg) 
 {  
  *stop = 0; 
  printf("Temperature below vitrification: %lf K \n", temp);  
 } 
  
 /* Viscosity of Binary solution of "free" water and CPA for ya = 0 */ 
 visc_bin = A*exp(E / (temp - betaTg)); 
  
 for (j=0; j<n; j++) 
 { 
  /* Salt Volume Fraction and Phisphere */ 
  phis = 1.0 - *(phiw + j); 
  phi_sphere = phis*( 1.0 + h*( vw/vs ) ); 
    
   /* Check for water depletion */ 

- This condition will check to see if nonuniform vitrification has occurred.   
- For a binary solution, the only condition that would result in nonuniform 

vitrification is when Phisphere becomes greater than one.  (Note:  when CPA’s are 
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used, betaTg will vary with Temp and concentration, and therefore location, and is 
thus another condition to check 

- Nonuniform vitrification has been handled here by setting the nondimensional 
diffusion coefficient at that vitrified node to be zero. 

- Furthermore, if vitrification occurs at the membrane boundary then water transport 
across the membrane will be stopped and thus the cell radius won’t change.  Thus 
dRdt is set to zero. 

- Finally, to make the boundary become this new vitreous location, the last node is 
assigned the value of the node that vitrified.  (Thus N-1, becomes the adjacent node 
that isn’t vitrified and the boundary condition will apply to it.) 

 
  if (phi_sphere > 1) 
  { 
   *(diff+j) = 0; 
   if (j==n-1) 
   { 
    *rdot = 0;   
    *flag = 0;  
   } 
   if(j<*N) 
   { 
    *N = j; 
   } 
   printf("Free water less than hydrated salt at T = %lf %i \n", 

 temp,j);   
  } 
 

- When Phisphere is not greater than one, the function will proceed to calculate the 
dimensional viscosity, dimensional diffusion coefficient at the cell center (j=0), and 
nondimensional diffusion coefficients for all nodes. 

 
  else 
  {     
   visc = visc_bin*exp( (2.5*phi_sphere) / (1.0 –  

0.609375*phi_sphere) );   
 
   if (j==0) 
   { 
    *pDo = (Boltz*temp)/(6.0*pi*ao*visc);   
   } 
 
   *(diff+j) = ((Boltz*temp)/(6.0*pi*ao*visc)) / *pDo;    
  }  
 } 
 return 0; 
} 
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/*                  Function:  CellProps            */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <definitions.h> 
 
int CellProps(double *temp, double *lp, double *bi, double *delu, double ti, double B, 
double realtime, double linf, double ea, double GC, double ro, double DO, double vs, 
double vw, double hf, double to, double rbar, double memphiw, double *Teq, double 
centphiw) 
{ 
 
 double Concw, Concs, sigmaS, molefractw, WatConc, SaltConc, CentMoleFract; 
  sigmaS = 2.; 
  
  WatConc = centphiw/vw; 
  SaltConc = (1-centphiw)/vs; 
  CentMoleFract = WatConc / (WatConc + sigmaS*SaltConc); 
  *Teq = 1 / ( (1/to) - GC*log(CentMoleFract)/hf );  
 
  Concw = memphiw/vw; 
  Concs = (1-memphiw)/vs; 
  molefractw = Concw / (Concw + sigmaS*Concs); 
  
 *temp = ti + B*realtime;  
 *lp = linf*exp(-ea/(GC**temp)); 
 *bi = (ro**lp*GC**temp) / (DO*vw); 
 *delu = (hf/(GC**temp))*( (*temp/to) - 1 ) - log(molefractw); 
 
 return 0; 
} 
 

104 



/*   Function:  ModTrapMethod             */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <definitions.h> 
 
int ModTrapMethod(double *m, double *l, double *u, double *rhs, int N, double 
*pdx, double *px, double *pdiff, double *pphi, double dtau, double dRdt, double R, 
double w, int flag) 
{ 
 
/*  Define Variables ******************************************************/ 
 

- x is the nodal location 
- A, B, and C, are variables to condense the main equations and facilitate debugging. 
- Di = x2 Di

n 
- Dplus = (x + dx/2)2 Di+1/2

n 
- Dmins = (x – wdx/2)2 Di-1/2

n 
 

 double x, A, B, C, Di, Dplus, Dminus, dx; 
 int i; 
  
 /* Internal node discretization */ 

- This uses the equations from Chapter 3, to determine the lower, main, upper (l,m,u) 
diagonals of A, and the right hand side matrix. 

 
 for (i=1; i<N-1; i++) 
 { 
   
  x = *(px + i); 
  dx = *(pdx + i); 
   
  Dplus = 0.5*( *(pdiff+i) + *(pdiff+i+1) )*pwr((x+0.5*dx),2) ; 
  Dminus = 0.5*( *(pdiff+i) + *(pdiff+i-1) )*pwr((x-0.5*w*dx),2); 
  Di =   *(pdiff+i)*pwr(x,2); 
 
  A = (Dminus - Di*(1-w)) / w; 
  B = ( -Dminus + (w+1)*pwr((1-w),2)*Di - pwr(w,3)*Dplus ) / w; 
  C = w*( (1-w)*Di + w*Dplus); 
     
  /* the phi(i-1,n+1) term */ 
  *(l+i-1) = 0.5*dtau*( (x*dRdt)/(dx*R*w*(w+1)) –  

(2*A)/(w*(w+1)*pwr(x,2)*pwr(dx,2)) ); 
     
  /* the phi(i,n+1) term */ 
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  *(m+i) = 1. + 0.5*dtau*( (-x*dRdt*(1-w))/(dx*R*w) –  
(2*B)/(w*(w+1)*pwr(x,2)*pwr(dx,2)) ); 

   
  /* the phi(i+1,n+1) term */ 
  *(u+i) = 0.5*dtau*( (-x*dRdt*w)/(dx*R*(w+1)) –  

(2*C)/(w*(w+1)*pwr(x,2)*pwr(dx,2)) ); 
 
  /* the rhs terms */ 
  *(rhs+i) = *(pphi+i)*( 1. + 0.5*dtau*( (x*dRdt*(1-w))/(dx*R*w) +  

(2*B)/(w*(w+1)*pwr(x,2)*pwr(dx,2)) ) );  
  *(rhs+i) += *(pphi+i+1)*( 0.5*dtau*( (x*dRdt*w)/(dx*R*(w+1)) +  

(2*C)/(w*(w+1)*pwr(x,2)*pwr(dx,2)) ) );     
  *(rhs+i) += *(pphi+i-1)*( 0.5*dtau*( (-x*dRdt)/(dx*R*w*(w+1)) +  

(2*A)/(w*(w+1)*pwr(x,2)*pwr(dx,2)) ) );   
 } 
 
 /* Boundary Conditions */ 
 
 /* Boundary Condition at x = 0 */ 
 x = 0; 
 i = 0; 
 dx = *(pdx+i); 
  
 /* for phi(i,n+1) */  
 *(m+i) = 1. + dtau*(0.5*(*(pdiff+i) + *(pdiff+i+1)))/(pwr(dx,2));  
 

/* for phi(i+1, n+1) */ 
*(u+i) = -dtau*(0.5*(*(pdiff+i) + *(pdiff+i+1)))/(pwr(dx,2));      

 
 /* the rhs terms */ 
 *(rhs+i) = *(pphi+i)*( 1. - dtau*(0.5*(*(pdiff+i) + *(pdiff+i+1)))/(pwr(dx,2)) ); 
 *(rhs+i) += *(pphi+i+1)*(dtau*(0.5*(*(pdiff+i) + *(pdiff+i+1)))/(pwr(dx,2))); 
 
 /* Boundary Condition at x = 1 */ 

- There are two possible boundary conditions accounted for here.  The first is for 
normal fluctuation of the cell membrane, the other is for nonuniform vitrification. 

 
 x = 1.; 
 i = N-1; 
  
 if (flag==1) 
 { 
  dx = *(pdx+i-1); 
 
  Dplus = *(pdiff+i)*pwr(x,2); 
  Dminus = 0.5*( *(pdiff+i) + *(pdiff+i-1) )* pwr((x-0.5*dx),2); 
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  *(l+i-1) = -0.5*dtau*(Dplus + Dminus)/(pwr(x,2)*pwr(dx,2)); 
  *(m+i) = 0.5 + 0.5*dtau*(Dplus + Dminus)/(pwr(x,2)*pwr(dx,2)); 
 
  *(rhs+i) = *(pphi+i)*(0.5 - 0.5*dtau*(Dplus + 

 Dminus)/(pwr(x,2)*pwr(dx,2))); 
  *(rhs+i) += *(pphi+i-1)*(0.5*dtau*(Dminus)/(pwr(x,2)*pwr(dx,2))); 
  *(rhs+i) += *(pphi+i-1)*(dtau* *(pdiff+i))/(2*pwr(dx,2)) + (1. –  

*(pphi+i))* (dtau*dRdt)/(R*dx); 
  *(rhs+i) += (*(pphi+i) - *(pphi+i-1))*(dtau*x*dRdt)/(dx*R); 
  *(rhs+i) += (1. - *(pphi+i))*(dRdt*dtau)/(R*dx); 
 } 
  
 else 
 { 
  dx = *(pdx+i); 
       
  *(m+i) = 1 + ( (dtau/pwr(dx,2))*( *(pdiff+i) + *(pdiff+i-1) ) ) ; 
  *(l+i-1) = -( (dtau/pwr(dx,2))*( *(pdiff+i) + *(pdiff+i-1) ) );  
 
  *(rhs+i) = *(pphi+i)*(1 -( (dtau/pwr(dx,2))*( *(pdiff+i) + *(pdiff+i-1) ) )); 
  *(rhs+i) += *(pphi+i-1)*( (dtau/pwr(dx,2))*( *(pdiff+i) + *(pdiff+i-1) ) ); 
 
 } 
 
 return 0; 
} 
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/*             Function:  pwr             */ 
- This function calculates the power of a to the b.  In the calculation below, b must be 

an integer and positive.   
 

 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
double pwr( double a, double b) 
{ 
 double answer; 
 int j; 
 
 answer = a; 
 for (j=1; j<b; j++) 
 { 
 answer = answer*a; 
 } 
 
 
  

- Even though it is more versatile, the below exponential expression that can 
calculate the power of a to the b requires more clock cycles to evaluate then the 
above. Furthermore, since the binary analysis does not have decimal exponents (ie 
b=0.5), the below exponential power calculation is not used. This exponential 
expression is left in case in the addition of cryoprotectants a more complicated 
power calculation is  needed. 

 
answer = exp(b*log(a)); 

  
 return answer; 
} 
 

108 



 
/*       Header File:  definitions              */ 
 
#ifndef definitions 
#define definitions 
 
int PostProc(double *vw, double *vs, double Rbar, double *pdx, double *loc, double 
*pp, int n, double w); 
 
int Diffusivity(double *diff, double *pDo, double *phiw, int *flag, double *stop, int 
*N, double temp, double vw, double vs, double *rdot, double A, double E, double ao, 
double Boltz, double betaTg); 
 
int CellProps(double *temp, double *lp, double *bi, double *delu, double ti, double B, 
double realtime, double linf, double ea, double GC, double ro, double DO, double vs, 
double vw, double hf, double to, double rbar, double memphiw, double *Teq, double 
centphiw); 
 
int ModTrapMethod(double *m, double *l, double *u, double *rhs, int N, double 
*pdx, double *px, double *pdiff, double *pphi, double dtau, double dRdt, double R, 
double w, int flag); 
 
double pwr( double a, double b); 
 
#endif 
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