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SUMMARY

This thesis consists of four works in dynamical systems with a focus on billiards. In

the first part, we consider open dynamical systems, where there exists at least a “hole” of

positive measure in the phase space which some portion of points in phase space escapes

through that hole at each iterate of the dynamical system map. Here, we study the escape

rate (a quantity that presents at what rate points in phase space escape through the hole) and

various estimations of the escape rate of an open dynamical system. We uncover a reason

why the escape rate is faster than expected, which is the convexity of the function defining

escape rate. Moreover, exact computations of escape rate and its estimations are present

for the skewed tent map and Arnold’s cat map.

In the second part of the thesis, we study physical billiards where the moving particle

has a finite nonzero size. In contrast to mathematical billiards where a trajectory is excluded

when it hits a corner point of the boundary, in physical billiards reflection of the physical

particle (a ball) off a visible corner point is well-defined. Initially, we study properties of

such reflections in a physical billiards. Our results confirm that the reflection considered in

the literature about physical billiards are indeed no-slip friction-free (elastic) collisions.

In the third part of the thesis, we study physical Ehrenfests’ wind-tree models, where we

show that physical wind-tree models are dynamically richer than the well-known Lorentz

gas model. More precisely, when we replace the point particle by a physical one (a ball),

the wind-tree models show a new superdiffusive regimes that never been observed in any

other model such as Lorentz gas.

Finally, we prove that typical physical polygonal billiard is hyperbolic at least on a

subset of positive measure and therefore has a positive Kolmogorov-Sinai entropy for any

positive radius of the moving particle.

x



CHAPTER 1

INTRODUCTION

A billiard in a region Q of Rn is the dynamical system generated by the uniform linear mo-

tion of a point particle insideQ with unit speed and with elastic reflections at ∂Q according

to the rule that the angle of reflection equals the angle of incidence. The mathematical the-

ory of these systems was pioneered by Birkhoff and later Sinai and many others [1, 2,

3].

The focus of this thesis is on planar billiards, where Q is a domain in R2, and it has

piecewise C2 boundary components. We consider inwards unit normal vectors to the

boundary components of Q. With respect to these normal vectors, we can define signed

curvature of the boundary. Then, there are three types of the boundary points: focusing,

dispersing, and neutral (flat) where the curvature is negative, positive, and zero, respec-

tively. The boundary of a billiard table may have some singularities where the boundary

has no normal vector at those points (boundary is C0 at singularities). It is easy to see that

the set of orbits which hit singular points of the boundary of a billiard table has measure

zero with respect to the natural invariant measure on the phase space.

Note that, the boundary of a billiard table at the intersection point of two boundary

components can be C1 where the inwards normal vector exists; however, the curvature is

not continuous at this point. Therefore, the trajectories that hit such points are well-defined,

and one can study its evolution in the system.

Mathematical billiards serve as relevant models of various phenomena in mechanics,

geometric optics and acoustics, statistical physics, and quantum physics [4, 5, 6, 7, 8].

Such billiards also constitute one of the most popular and arguably the most visual class of

dynamical systems in the mathematical studies. Billiards exhibit a wide spectrum of differ-

ent dynamical behaviors from integrable to completely chaotic systems which well repre-
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sents the variety of the behaviors of conservative systems. More precisely, the dynamics of

billiards is completely defined by the shape of its boundary. For example, billiards in ellip-

tical tables are integrable, and their phase space is foliated by invariant curves where orbits

corresponding to the leaves of the foliation are periodic or quasi-periodic. On the contrary,

Sinai’s billiards, which are billiards with boundary components of positive curvature, are

hyperbolic. There are many examples of billiard tables without any boundary components

of positive curvature that they can produce hyperbolic billiards as well, the most famous

example of such tables is the stadium. A generic billiard table is neither fully integrable

nor fully hyperbolic. Their phase space decomposes in two invariant subsets of positive

measure: stable islands and chaotic seas.

For a long time, only mathematical billiards were considered, where a point (mathe-

matical) particle moves. There are no and there will be no such particles in reality. Never-

theless, studies of just mathematical billiards were considered to be sufficient. The reasons

for that were twofold. First, a system with real (finite size) particles could be sometimes

reduced to a mathematical (point particle) billiard in some peculiar billiard table. Such sit-

uation takes place for instance for celebrated Boltzmann gas of hard spheres [9]. Moreover,

all basic examples of billiards with regular dynamics (e.g. billiards in circles and rectan-

gles) have absolutely the same dynamics if one considers a hard disc moving within the

same billiard table. The same happens to the most popular chaotic (hyperbolic) billiards

like Sinai billiards and squashes (stadium is a special case of a squash) [3, 10].

In this thesis, we mainly consider physical billiards where the moving particle is a hard

ball. In [10], it was shown that in the transition from a mathematical to a physical billiard

in the same billiard table any type of transition from chaotic to regular dynamics and vice

versa may occur. Moreover, such transition from the point to a finite size particle can

completely change the dynamics of some classical and well-studied models like e.g. the

Ehrenfests’ Wind-Tree model [11]. In quantum systems, a “particle” naturally has a finite

size due to the uncertainty principle which leads to some new findings in the quantum chaos
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theory [12, 13].

Another focus of this thesis is on open dynamical systems. Mathematical studies of

open dynamical systems started in 1979 [14], where a natural question was raised about

what is going to happen if in a billiard table will appear a hole through which a billiard ball

can fall.

Two exact mathematical questions were formulated in [14]. First of all, one should

consider a mathematical billiard where a point (mathematical) particle moves. Billiards are

Hamiltonian systems and therefore a natural (physical) measure (phase space volume) is

preserved under dynamics. But, what if there is a “hole” of positive measure, otherwise

probability to reach a hole is zero? Would be there then a natural invariant measure for this

open system? Such measures are called conditionally invariant measures. They are char-

acterized by the property that at each iterate of the map the same portion of the remaining

in the phase space points escapes through the hole. The real interest, though, is only abso-

lutely continuous conditionally invariant measures (a.c.c.i.m.) [15]. Another question was

about the existence of a natural quantity that characterizes the dynamics of open systems.

Such characteristic is the escape rate of orbits through a hole [15].

Of course, physicists studied open systems long before mathematicians [16]. It was no-

ticed in real and numerical experiments that escape from chaotic systems is an exponential

function of time. Therefore, the factor in front of time in this exponent was naturally called

the escape rate. And mathematically the escape rate is defined in the same way.

The organisation of the thesis is as follows. In Chapter 2, we consider chaotic (hy-

perbolic) dynamical systems which have a generating Markov partition. Then, open dy-

namical systems are built by making one element of a Markov partition a “hole” through

which orbits escape. We compare various estimates of the escape rate which correspond

to a physical picture of leaking in the entire phase space. Moreover, we uncover a reason

why the escape rate is faster than expected, which is the convexity of the function defining

escape rate. Exact computations are present for the skewed tent map and Arnold’s cat map.
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In Chapter 3, we consider the collision of a hard ball with a visible singular point and

demonstrate that the motion of the smooth ball after collision with a visible singular point is

indeed the one that was used in the studies of physical billiards. So such collision is equiv-

alent to the elastic reflection of hard ball’s center off a sphere with the center at the singular

point and the same radius as the radius of the moving particle. However, a ball could be

rough, not smooth. In difference with a smooth ball, a rough ball also acquires rotation

after reflection off a point of the boundary which leads to more complicated dynamics.

In Chapter 4, we consider a physical Ehrenfests’ Wind-Tree model where a moving par-

ticle is a hard ball rather than (mathematical) point particle. We demonstrate that a physical

periodic Wind-Tree model is dynamically richer than a physical or mathematical periodic

Lorentz gas. Namely, the physical Wind-Tree model may have diffusive behavior as the

Lorentz gas does, but it has more superdiffusive regimes than the Lorentz gas. The new

superdiffusive regime where the diffusion coefficient D(t) ∼ (ln t)2 of dynamics seems to

be never observed before in any model.

In Chapter 5, we will study physical billiards in generic polygonal billiards. It is well-

known that billiards in polygons cannot be chaotic (hyperbolic). Particularly Kolmogorov-

Sinai entropy of any polygonal billiard is zero. We consider physical polygonal billiards

where a moving particle is a hard disc rather than a point (mathematical) particle and show

that typical physical polygonal billiard is hyperbolic at least on a subset of positive measure

and therefore has a positive Kolmogorov-Sinai entropy for any positive radius of the mov-

ing particle (provided that the particle is not so big that it cannot move within a polygon).

This happens because a typical physical polygonal billiard is equivalent to a mathematical

(point particle) semi-dispersing billiard.

The results of the thesis were published in the papers [17, 18, 11, 19], respectively, as

they appear in the content of this thesis.
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CHAPTER 2

WHY ESCAPE IS FASTER THAN EXPECTED

For a long time, the mathematical theory of open systems was dealing essentially with two

tasks, which are proving the existence of conditionally invariant measures and the existence

of escape rates. A comprehensive description of these efforts is presented in [15]. The

situation changed when a new natural question was put forth in [20], which asks how the

process of escape depends on the position of a hole in the phase space? Thanks to emerging

research from this question, several fundamental and seemingly obvious previously existing

beliefs were rigorously proved to be wrong.

First of all, even in the most uniformly hyperbolic (homogeneously expanding distances

in the phase space) dynamical systems, the escape rate demonstrates strong oscillations

when holes are placed at the different parts of the phase space. A natural example is the

doubling map of the unit interval f(x) = 2x (mod 1) where at each point, besides x = 1/2,

dynamics expands distances twice. The most striking result in this direction though is that

in a typical ergodic system, observe that just ergodic rather than strongly chaotic systems

are considered here, there is a continuum of huge “holes” through which the escape rate is

arbitrarily small. The sizes (probabilities, measures) of these holes are arbitrarily close to

the size of the entire phase space [20, 21]. Therefore, the notion of the escape rate, although

seemingly being so simple and clear, should be taken with great care in theoretical and

experimental studies.

Another indication of this was an unexpected observation made in [22] for a doubling

map. In [22], it was demonstrated that the average over elements of a Markov partition

of escape rates is larger than expected. It is a surprising result in view of [20] where

it was shown that for the doubling map the escape rate becomes smaller near periodic

points. Namely, the escape rate behaves like a constant C times the size of “hole” when
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a hole shrinks to a non-periodic (periodic) point, where C = 1 (C < 1). This result was

generalized to large classes of maps in [23, 24].

Having in mind these results, it was natural to assume that a commonly used in physics

studies (so-called “naive”) estimate of the escape rate [16] should be greater than the av-

erage of escape rates taken over elements of a partition of the phase space when they are

separately used as “holes”. Indeed, a “naive” estimate is based on the physical picture that

the entire phase space is leaking and thus should average out a slow down of escapes at the

periodic points which form a negligible (measure zero) subset of the phase space. However,

it was shown numerically in [22] that for the doubling map the opposite inequality holds.

Thus, contrary to the seemingly natural expectation based on the rigorous results of [20], it

turned out that the naive estimate approaches the average of escape rates from below rather

than from above in the limit when the size of the hole tends to zero. It is worthwhile to

mention that in this limit both these estimates approach each other.

All elements of a natural Markov partition for the doubling map have the same mea-

sures. However, if it is not the case, then other candidates for a naive estimation of the

escape rate appear [22]. There was performed a numerical comparison of different naive

estimates for the skewed doubling map.

In this chapter, we introduce an estimate for the escape rate, which is applicable for any

chaotic dynamical system with generating Markov partition. We prove that the average of

escape rates over elements of the partition indeed always exceed a naive estimation of the

escape rate. Most importantly, we uncover a reason for the validity of this inequality, i.e.

why “escape rate is faster than expected”. This reason is the convexity of the logarithm

function involved in the definition of the escape rate.

Besides, exact numerical examples are presented for the skewed tent map and Arnold’s

cat map. We also prove for general maps an inequality between two naive estimates of the

escape rate considered in [22] for the skewed doubling map.
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2.1 Open dynamical systems and escape rate

Assume a map T̂ : M̂ −→ M̂ generates a dynamical system on the phase space M̂ and H

be a subset of M̂ . Then, the open dynamical system corresponding to the map T̂ with the

hole H is defined by T : M −→ M̂ where M = M̂\H and T = T̂ |M . The iterates of T

for k = 1, 2, . . . are defined by T k := (T̂ |M)k and we keep track of the iterates of points

x ∈M as long as they do not enter the “hole” H .

For any point x ∈M , the escape time is defined by the smallest natural number n such

that T̂ n(x) ∈ H and it is denoted by τ(x). We denote the set of all points that have not

escaped after n iterations by

Mn = {x ∈M | τ(x) > n}.

It is easy to see that

M ⊇M1 ⊇M2 ⊇ · · · .

Let µ be a Borel probability measure on M . Then upper and lower bounds of the escape

rate of the measure µ, respectively, − lnλ and − lnλ are defined by

lnλ := lim sup
n→∞

1

n
lnµ(Mn) and lnλ := lim inf

n→∞

1

n
lnµ(Mn).

If lnλ := lnλ = lnλ, then the escape rate of µ equals − lnλ.

Note that we assume ln 0 = −∞. If µ(Mn) is well defined, then it is called the survival

probability after n iterations. Clearly, the escape rate and survival probability depend on

the measure µ. For example, one can choose a Borel measure µ such that µ(Mn) = 0 for

some n or µ(Mn) = 1 for all n. If T̂ is a measurable map and H is a measurable set with

respect to the Borel measure µ, then the escape rate ρ of µ is defined by,

ρ := − lim
n→∞

1

n
lnµ(Mn), (2.1)
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or equivalently,

ρ = − ln( lim
n→∞

µ(Mn)
1
n ). (2.2)

when limn→∞ µ(Mn)
1
n 6= 0, otherwise ρ =∞.

A Borel measure µ is called conditionally invariant with respect to T if

µ(A) =
µ(T−1(A))

µ(T−1(M))
,

for all Borel sets A ⊆ M . If µ is a conditionally invariant measure and λ = µ(M1),

then − lnλ is the escape rate of the open system with respect to the conditionally invariant

measure µ.

The following constructive procedure ensures existence of an absolutely continuous

conditionally invariant measure (a.c.c.i.m.) for an open dynamical system [15] (an a.c.c.i.m.

is a conditionally invariant measure that has density with respect to Lebesgue measure m).

Assume that T̂ : M̂ −→ M̂ admits a finite Markov partition P = {E1, . . . , Ek} on M̂ .

The existence of Markov partition assumes that T̂ is a hyperbolic (i.e. a chaotic) dynamical

system because Markov partitions are introduced and exist only for hyperbolic systems.

Recall that the dynamical system is called hyperbolic if through almost every points of the

phase space are passing stable and unstable manifolds.

Let the hole H be an element of Markov partition P , and T = T̂ |M be the open dynam-

ical system with hole H (i.e. M = M̂\H). The (substochastic) transition matrix P = [pij]

of the partition P under the action of T is defined by

pij =
m(Ei ∩ T−1(Ej))

m(Ei)
,

where 1 ≤ i, j ≤ k and m is Lebesgue measure. Using refinements of the partition P

given by Pn =
∨n
i=−n T̂

i(P), we obtain a sequence of substochastic matrices Pn. By

Perron-Frobenius theorem, all Pn have a positive leading (i.e. a maximal) eigenvalue λn.
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Under the usual conditions of aperiodicity and irreducibility on the matrices Pn, there exists

an unique probability eigenvector vn corresponding to λn. If the Markov partition P is a

generating partition, then the sequence of probability eigenvectors vn will converge to an

a.c.c.i.m. µ, where µ(M1) = limn→∞ λn. Hence, if we let λ := µ(M1) = limn→∞ λn,

then the escape rate of the open system T : M −→ M̂ with respect to the a.c.c.i.m. µ is

− lnλ.

2.2 Average of escape rates through elements of a partition is larger than expected

Let T̂ : M̂ −→ M̂ be a discrete-time dynamical system and µ be a “natural” invariant

probability measure on M̂ with respect to T̂ (i.e. µ(A) = µ(T̂−1(A)) for all Borel sets

A ⊆ M̂ ). We also assume that the “closed” dynamics is ergodic with respect to µ. The

assumption of ergodicity ensures that almost all (i.e. measure one subset) orbits will even-

tually enter a “hole” when the hole is a subset of positive measure of the phase space. We

assume for simplicity that µ is absolutely continuous (i.e. has a density) with respect to

Lebesgue measure.

Consider a Markov partition {E1, . . . , Ek} of the phase space M̂ with elements Ei of

positive measures (i.e. µ(Ei) > 0 for all i). Let Ti = T̂ |M̂\Ei
be the open dynamical

system with hole Ei. We assume Ti admits an a.c.c.i.m. µi such that its escape rate ρi is

well-defined. We also denote the set of all points that have not escaped after n iterations of

Ti by Mn
i . That means,

Mn
i := {x ∈ M̂\Ei | τi(x) > n},

where τi(x) is the escape time of the open dynamical system Ti. Moreover, we assume that

Ti is a measurable map and Ei is a measurable set with respect to the a.c.c.i.m. µi. Under

these assumptions for all i = 1, . . . , k, we can set

pi := µi(M
1
i ) = lim

n→∞
(µi(M

n
i ))1/n. (2.3)
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Proposition 2.2.1. Let T̂ : (M̂, µ) −→ (M̂, µ) be a probability measure preserving

discrete-time dynamical system such that there is a finite Markov partitionP = {E1, . . . , Ek}

with elements Ei of positive measures. If all open dynamical systems Ti = T̂ |M̂\Ei
admit

an a.c.c.i.m., then

〈ρ〉 :=
k∑
i=1

µ(Ei)ρi ≥ − ln(
k∑
i=1

µ(Ei)pi). (2.4)

Proof. If pi 6= 0 for all i = 1, . . . , k, then by making use of (2.2), we obtain

〈ρ〉 =
k∑
i=1

µ(Ei)ρi = −
k∑
i=1

µ(Ei) ln(pi).

Because − ln(x) is a convex function, the relation (2.4) follows from Jensen’s inequality.

Moreover, if pi = 0 for some 1 ≤ i ≤ k, then ρi = ∞, and it is easy to see that (2.4) is

satisfied in this case as well.

The left side of (2.4) is the average (with respect to the invariant probability measure µ)

of escape rates over all positions of the hole, i.e. over all elements of the Markov partition.

The right-hand side of (2.4) is equivalent to the escape rate of the system when we consider

uniform density with a uniform leak from it where the hole’s size is equal to the average of

1−µi(M1
i ), 1 ≤ i ≤ k, with respect to the probability measure µ. Under these assumptions,

the estimate of escape rate is

− ln(1−
k∑
i=1

µ(Ei)(1− µi(M1
i ))). (2.5)

Then, (2.3) and (2.5) imply

− ln(1−
k∑
i=1

µ(Ei)(1−µi(M1
i ))) = − ln(

k∑
i=1

µ(Ei)µi(M
1
i )) = − ln(

k∑
i=1

µ(Ei)pi). (2.6)

Hence, (2.4) and (2.6) show that the (average) escape rate is faster than the estimate of

escape rates when we assume that the density remains uniform in the system and the hole’s

10



size is the average of 1 − µi(M1
i ) with respect to the probability measure µ. Remind that

at each iteration of the map Ti the same portion 1 − µi(M1
i ) of the remaining in the phase

space points escapes through the hole Ei with respect to the a.c.c.i.m. µi. Therefore, the

average of 1−µi(M1
i ) is the average on proportional leaks of open systems Ti with respect

to their a.c.c.i.m. µi.

There are some other candidates for (naive) estimation of the escape rate based on the

physical picture of uniform leaking in the whole phase space (see e.g. [22]). The first one

is− ln(1−h) where h = 1/k is the average of holes’ sizes (i.e. h =
∑k

i=1 µ(Ei)

k
) and k is the

number of elements in a Markov partition. We will denote this naive estimation with N1.

This naive estimate comes from the assumption that the density of the a.c.c.i.m. remains

uniform in the system and the hole’s size is equal to h = 1/k.

The second candidate N2 for a naive estimate of the escape rate was introduced in

[22]. It is defined as N2 := −
∑k

i=1 hi ln(1 − hi) where hi = µ(Ei) (Recall that µ is the

invariant probability measure of the corresponding closed system). The naive estimate N2

uses the assumption that the density of conditionally invariant measure is a constant in a

complement of a corresponding hole. The estimate of escape rate of open system with hole

Ei is − ln(1 − hi) where hi = µ(Ei). Then, N2 is the average of these estimates over

different positions of the hole in the phase space (over the elements of Markov partition)

with respect to probability measure µ.

By making use of the Jensen’s inequality, we obtain

N2 = −
k∑
i=1

hi ln(1− hi) ≥ − ln(
k∑
i=1

hi(1− hi)) = − ln(1−
k∑
i=1

h2
i ). (2.7)

It is easy to see that
k∑
i=1

h2
i ≥ h =

1

k
, (2.8)
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since 1 =
∑k

i=1 µ(Ei) =
∑k

i=1 hi. Then, (2.7) and (2.8) imply

N2 ≥ − ln(1−
k∑
i=1

h2
i ) ≥ − ln(1− h) = N1.

Therefore, the naive estimationN2 is greater than or equal toN1. These two naive estimates

become equal only if elements of the partition have equal sizes (i.e. µ(Ei) = 1/k for all i).

2.3 Examples

2.3.1 Skewed tent map

Consider a skewed tent map T : [0, 1] −→ [0, 1] given by:

T (x) =


x

x0

x ∈ [0, x0),

1− x
1− x0

x ∈ [x0, 1],

(2.9)

where x0 ∈ (0, 1). Consider a Markov partition E = {E1, E2} of the phase space [0, 1],

where E1 = [0, x0] and E2 = [x0, 1]. Let ρi denote the escape rate of the open system with

hole Ei. By making use of (2.1) or (2.2), we obtain

ρ1 = − ln(1− x0), ρ2 = − ln(x0).

Thus,

〈ρ〉 := m(E1)ρ1 +m(E2)ρ2 = −x0 ln(1− x0)− (1− x0) ln(x0), (2.10)

where m is Lebesgue measure (the natural invariant probability measure of (2.9)). From

(2.3), we get p1 = 1− x0 and p2 = x0. Then,

− ln(
2∑
i=1

m(Ei)pi) = − ln(2x0(1− x0)). (2.11)
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From (2.10) and (2.11) by using Jensen’s inequality, we obtain

〈ρ〉 ≥ − ln(
2∑
i=1

m(Ei)pi). (2.12)

If x0 = 1
2
, then the equality will be satisfied in (2.12).

We compare now our estimate of the escape rate which is the lower bound (right-hand

side) of the inequality (2.4) with the naive estimate N1 = − ln(1 − h) of the escape rate,

where h is the average of holes’ (elements of partition) sizes [16, 22]. To do this we

consider refinements of the partition E = {[0, x0], [x0, 1]} under the skewed tent map T to

construct Markov partitions with 4, 8, . . . , 128, or 256 elements.

The Table 2.1 presents values of our estimation of escape rates of the skewed tent map

(2.9), where x0 = 0.1, 0.2, 0.3, 0.4, or 0.5 and the partition has 4, 8, . . . , 128, or 256

elements. In Table 2.2, naive estimations N1 of the skewed tent map are presented, where

the partition has 4, 8, . . . , 128, or 256 elements. We know N1 only depends on the number

of elements in a partition, and it does not depend on the size of holes.

Table 2.1: The values of the right-hand side of (2.4) for the skewed tent map, where x0 =
0.1, 0.2, 0.3, 0.4, or 0.5 and the partition has 4, 8, . . . , 128, or 256 elements.

4 8 16 32 64 128 256
0.1 0.77922 0.44239 0.28375 0.19638 0.14384 0.10949 0.08598
0.2 0.47400 0.25981 0.16685 0.11452 0.07286 0.04757 0.03175
0.3 0.37517 0.21720 0.11717 0.06234 0.03491 0.01987 0.01149
0.4 0.37047 0.17868 0.08023 0.03931 0.01990 0.01022 0.00529
0.5 0.42387 0.15808 0.06928 0.03297 0.01604 0.00792 0.00393

Table 2.2: The naive estimation N1 of the escape rate of the skewed tent map, where the
partition has 4, 8, . . . , 128, or 256 elements.

4 8 16 32 64 128 256
N1 0.28768 0.13353 0.06453 0.03174 0.01574 0.00784 0.00391

Comparing the data of Table 2.1 with Table 2.2, one can see our estimation of the escape
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rate is greater than the naive estimation N1 for the skewed tent map.

2.3.2 Arnold’s cat map

Let T2 be a torus, i.e the unit square S = [0, 1] × [0, 1] with standard identification of its

opposite sides. The Arnold’s cat map T : T2 −→ T2 is defined by

T (

x
y

) =

2 1

1 1


x
y

 mod 1.

The eigenvalues of

2 1

1 1

 are λ1 = 3+
√

5
2

and λ2 = 3−
√

5
2

, where

v1 =

 1
√

5−1
2

 , v2 =

 1

−
√

5+1
2

 ,
are their corresponding eigenvectors, respectively.

It is easy to see that this map preserves the Lebesgue measure (area) on the torus (it is

the natural invariant probability measure of Arnold’s cat map). Consider rectanglesABCD

andDEFGwhere their sides are parallel to the directions of eigenvectors v1 and v2 (as it is

shown in Fig. 2.1). Take now the partition {R1, R2} of T2, where R1 (R2) is the projection

of rectangle ABCD (DEFG) on the torus T2. Recall that the plane is a natural unfolding

of the torus under identification of its parallel sides.

The partition {R1, R2} is not a generating one, but one can build the generating partition
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L = {L1, L2, L3, L4, L5} from {R1, R2} as follows [25]:

L1 ∪ L3 = R1 ∩ T (R1),

L2 = R1 ∩ T (R2),

L4 = R2 ∩ T (R1),

L5 = R2 ∩ T (R2).

See Fig. 2.1 for more details.

A

B

C

D

E

F

G

T

L1

L2

L3

L4

L5

R1

R2

Figure 2.1: B = (
√

5−1
2
√

5
, −1√

5
), C = (

√
5+1√

5
,
√

5−1
2
√

5
), D = (

√
5+3

2
√

5
,
√

5+1
2
√

5
), E =

( 1√
5
,
√

5−1
2
√

5
), F = (

√
5−1

2
√

5
,
√

5−1√
5

).

Let T0 be the transition probability matrix of the partition L under the map T , then

T0 =



3−
√

5
2

0 3−
√

5
2

√
5− 2 0

3−
√

5
2

0 3−
√

5
2

√
5− 2 0

3−
√

5
2

0 3−
√

5
2

√
5− 2 0

0
√

5−1
2

0 0 3−
√

5
2

0
√

5−1
2

0 0 3−
√

5
2


.

Consider the open dynamical system built from Arnold’s cat map with the hole Li. If we

denote the substochastic matrix of transition probabilities of this open system by Ti, then

Ti is equal to T0 where the ith row of T0 is replaced by zeros.
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Let Ln =
∨n
i=−n T

i(L) denote the refinements of partition L under the action of the

map T and Ti,n be the substochastic transition matrix corresponding to the refined partition

Ln of the open dynamical system with hole Li. It is easy to check that Ti,n and Ti for

all n = 1, 2, . . . have the same leading eigenvalues λi. Also, we know L is a generating

Markov partition and all Ti,n satisfy aperiodicity and irreducibility conditions. Therefore,

there is an a.c.c.i.m. µi where the escape rate of the open system with hole Li with respect

to µi is − lnλi. Here, we have

λ1 = λ2 = λ3 = λ4 = 3−
√

5, λ5 =
1 +
√

2

2
(3−

√
5).

Hence, the escape rates corresponding to the a.c.c.i. measures µi are

ρ1 = ρ2 = ρ3 = ρ4 = − ln(3−
√

5), ρ5 = − ln(
1 +
√

2

2
(3−

√
5)).

Thus, the average of escape rates with respect to Lebesgue measure is

〈ρ〉 =
5∑
i=1

m(Li)ρi ' 0.2494, (2.13)

where

m(L1) = m(L3) =
3−
√

5

2

√√
5 + 3

10
,

m(L2) = (
√

5− 2)

√√
5 + 3

10
,

m(L4) =

√
5− 1

2

1−

√√
5 + 3

10

 ,

m(L5) =
3−
√

5

2

1−

√√
5 + 3

10

 .

From (2.3), we obtain p1 = p2 = p3 = p4 = λ1 = 3−
√

5 and p5 = λ5 = 1+
√

2
2

(3−
√

5).
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Therefore,

− ln(
5∑
i=1

m(Li)pi) ' 0.2476. (2.14)

By comparing (2.13) and (2.14), we see that the average of escape rates over the elements

of Markov partition L is greater than the estimation of escape rate for the Arnold’s cat map.

2.3.3 The Ulam-von Neumann logistic map

There are only a few examples of nonlinear systems where the escape rate is studied. Con-

sider the nonlinear Ulam−von Neumann map of the unit interval [26],

T (x) = 4x(1− x), x ∈ [0, 1]. (2.15)

It is well-known that this map is metrically conjugate to the tent map (defined by (2.9)

when x0 = 1
2
), where the conjugate map U is given by,

U(x) = sin2(
πx

2
).

The invariant probability measure µ of Ulam−von Neumann logistic map (2.15) has non-

uniform density f(x) with respect to Lebesgue measure m, where

f(x) =
1

π
√
x(1− x)

.

We consider the following Markov partition on the unit interval of the logistic map,

P =

{
Pi | Pi =

[
sin2

(
iπ

2n+1

)
, sin2

(
(i+ 1)π

2n+1

)]
, i = 0, 1, 2, . . . , 2n − 1

}
,

where the partition P is the image of the natural Markov partition

E =

{
Ei | Ei =

[
i

2n
,
i+ 1

2n

]
, i = 0, 1, 2, . . . , 2n − 1

}
,
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of tent map under the conjugate map U(x). It is easy to see that µ(Pi) = m(Ei) = 1
2n

for all i = 0, 1, . . . , 2n − 1. Moreover, the transition probability matrix of the partition

P under Ulam−von Neumann logistic map is the same as the transition matrix of the tent

map for the partition E . These two maps also have the same transition matrices on the

corresponding refinements of their partitions.

Let Ti denote the open dynamical system of the logistic map with hole Pi. Clearly, Ti

will have the same substochastic transition matrices as the open tent map with hole Ei on

refinements of their corresponding Markov partitions. Hence, the escape rate ρTi of Ti is

equal to the escape rate ρi of open tent map with hole Ei. It implies

2n−1∑
i=0

µ(Pi)ρTi =
2n−1∑
i=0

m(Ei)ρi.

For the same reason as before, the lower bound (the right-hand side) of the inequality (2.4)

(i.e. our naive estimate of the escape rate) will be the same for both these systems. Thus,

the relation between our estimate of the escape rate (lower bound of (2.4)) and the naive

estimate N1 will be valid in this case as well (see Tables 2.1 and 2.2).

2.4 Concluding remarks

We have shown that for chaotic maps which admit a finite generating Markov partition, the

averaged over the elements of the Markov partition escape rate exceed a naive estimate of

the escape rate.

A natural question would be to analyze relations between these and other possible es-

timates of a global (average) escape rate in nonlinear dynamical systems. We believe that

our argument based on convexity will be still an important basic tool in this case as well.

A standard approach going back to Sinai is to consider a sequence of Markov partitions

with smaller and smaller elements [27]. Then the map becomes closer and closer to a linear

on the elements of Markov partitions, and thus the entire dynamical system is approximated
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by a sequence of Markov chains. To perform such proofs, it seems that the higher (second)

order approximation for escape rate in terms of the size of a “hole” obtained in [22] could

be quite useful. It is also worthwhile to mention in this respect that it was observed nu-

merically [28] that in (nonlinear) logistic maps the process of escape also slows down near

periodic orbits.

There is also a direct connection between Markov chains, dynamical systems with

Markov partitions, and transport (dynamics) on networks [29, 30]. Namely, the adjacency

matrix of a network (which has the entry 1 if the element i is connected by an edge to

the element j, or otherwise 0 entries), can always be considered as a structural matrix of

a Markov chain or as a transition matrix of a topological Markov chain (directed graph).

Therefore, the results about open Markov systems are applicable to networks with leaking

elements and allow for estimates of average leaking, most leaking sites, etc [30, 31].

19



CHAPTER 3

COLLISION OF A HARD BALL WITH SINGULAR POINTS OF THE

BOUNDARY

As it was mentioned, when we replace the point particle with a physical particle (disc), then

dynamics may drastically change. Namely, any type of transition from regular to chaotic

dynamics may occur, and vice versa. Moreover, these transitions may occur as soft (i.e. for

any positive radius of the moving ball) as well as hard ones (i.e. for sufficiently large balls).

All these transitions can occur in the presence of singularities in the boundary of a billiard

table. Here, we describe which types of singularities may result in a change of dynamics in

transition from a point particle to a hard ball. We also discuss possible types of collisions

of a hard ball with a point, which are consistent with the laws of mechanics. It is shown

that the collision law for a smooth hard ball, used so far in the studies of physical billiards,

is indeed consistent (satisfies) to mechanical conservation laws respected by collisions. It

is also shown that a rough ball collision law, when a ball acquires rotation after a collision,

is also consistent with the laws of mechanics.

It is worthwhile to mention that the most celebrated billiard system is a gas of hard balls

(Boltzmann gas) where moving particles are indeed hard balls. However, this system can

be reduced to a mathematical billiard within a billiard table with a specific boundary. In

fact, studies of dynamics of the Boltzmann gas inspired Ya. G. Sinai to introduced famous

Sinai billiards, which made the foundation for the theory of chaotic billiards. However, the

dynamics of Sinai billiards and other most famous mathematical billiards does not change

after the transition to physical billiards in the same billiards tables. In fact, changes in

dynamics occur only when the boundary of a billiard table has a visible singularity, i.e. a

point in the intersection of two or more smooth components of the boundary such that a

small enough physical particle can hit that point of the boundary. If a billiard table is two-
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dimensional, then such singularities are internal corners where two smooth components of

the boundary intersect and make an angle greater than π inside the billiard table. In all

papers cited above, it was assumed that reflection of the ball off such visible singularity

occurs in a natural manner corresponding to the simplest elastic collision. In the present

note, we justify this assumption for a smooth hard ball. It is worthwhile to mention that

there are other types of reflection of a ball off a visible singular point that correspond to a

rough ball which may acquire rotation after such collision [32] even under the assumption

that it is a no-slip collision [33, 34]. We demonstrate that both types of reflection, for

a smooth ball and a hard ball, satisfy the (conservation) laws of mechanics. Therefore

physical billiards generated by the motion of a smooth or a rough ball can be considered as

natural realistic dynamical systems.

3.1 Different types of boundary singularities in billiard tables

Let Q be a domain in d-dimensional Euclidean space Rd such that its boundary ∂Q is the

union of a finite number of C1-smooth (d − 1)-dimensional manifolds. A point q of the

boundary ∂Q is called singular if the boundary is not differentiable at that point. That

means a singular point belongs to the intersection of some (at least two) differentiable (aka

regular) components of the boundary. Note that we also call a singular point in dimension

two (i.e. dimQ = 2) a corner. All non-singular points of the boundary ∂Q are called

regular points.

Consider a free motion of a hard ball (a disk in dim 2) of radius r > 0 in the domain

Q with elastic reflections off the boundary ∂Q. The resulting dynamical system is called

a physical billiard [10], and the domain Q, a billiard table. To describe the dynamics of

such ball, it is enough to follow the motion of its center. It is easy to see that the center of

the ball moves in the smaller billiard table, which one gets by moving any point q of the

boundary by r to the interior of the billiard table along the internal unit normal vector n(q)

[10].
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We will call a singular point q of the boundary ∂Q an invisible singular point if for any

r > 0 the hard ball of radius r cannot hit that point. Otherwise, a singular point is called a

visible singular point. Therefore, q is a visible singular point of a billiard table if a ball with

a sufficiently small radius can hit q. A formal mathematical definition of a visible singular

point (in any dimension) is the following one. A singular point A is a visible singular point

if for any neighborhood N of A the convex hull of Q ∩N contains a neighborhood of A.

We also call a visible singular point in dimension two an internal corner. For example,

Fig. 3.1 shows visible and invisible singular points in dimension two.

A

B

C

DE

Figure 3.1: Corners (singular points) B, C, and E are invisible to any disk. The point D
is not singular, since boundary is differentiable at D. The corner A is an internal corner (a
visible singular point).

Note that being a visible singular point (an internal corner) does not mean that a hard

ball of any radius r > 0 can reach (hit) that point. Namely, if the radius of the particle

is larger than some constant (which depends on the shape of a billiard table), then some

visible singular points become invisible (see Fig. 3.2).

Figure 3.2: An internal corner becomes invisible when radius of disk is larger than some
constant.

Observe that at the moment of collision with a visible singular point, the center of hard

ball can be at different positions, and these possible positions depend on the shape of the
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boundary ∂Q (see Fig. 3.3). This should be contrasted with the collision of the ball off the

boundary at a regular point, when the center of the ball always has one position, namely at

the distance r on the internal normal line to the boundary of a billiard table. In Fig. 3.3,

two situations are depicted, which may happen in three dimensional billiard tables.

(a) (b)

Figure 3.3: (a) There are two lines of visible singular points. When a hard ball hits a point
on those lines, its center is on an arc of a circle centered at that point and orthogonal to
the corresponding line. However, at the moment of collision with the intersection point of
those two lines the center of hard ball can be only in one position. (b) Here is one isolated
visible singular point. At the moment of collision with such singularity the center of a hard
ball is on a piece of 2-sphere centered at that singular point.

Since the particle is a hard ball, it will keep its shape at the moment of collision. Hence

the center of the hard ball is at the distance r from a collision point (regardless of whether

this point is a regular or singular point of the boundary). Therefore, the boundary of the

reduced billiard table of the mathematical billiard, which has the same dynamics as the

considered physical billiard [10], acquires a piece of a sphere (or an arc of a circle if the

dimension of the billiard table is two) of radius r with the center at the visible singular point.

Hence the reduced billiard table of the equivalent mathematical billiard has a dispersing

component in the boundary which generates a chaotic (hyperbolic) dynamics in case if a

moving particle is a hard ball.

In 3.4, it is easy to see the boundary of the reduced billiard table of the mathematical

billiard acquires a dispersing component, because of the case of dimension two depicted.

Here, the center of a disk can be located at any point of an arc of the circle with the center

at the singular point and with the radius equals to the radius of the disk.
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.
.

Figure 3.4: A collision between a disk and a visible singular point (here, an internal corner)
is shown in the left picture. On the right, one can see its equivalent for a (virtual) collision
between disk’s center and an arc of a circle centered at the internal corner with the same
radius as the disk’s radius.

The fact that a reduced billiard table of the equivalent mathematical billiard acquires

a dispersing (or semi-dispersing) component holds true for any type of collision of the

physical (r > 0) particle with the boundary at a visible singular point. However, such

collisions can generally be elastic or inelastic (i.e. angle of incident is equal to the angle of

reflection or not) and with or without slip (i.e. collision occurs at a point of the boundary or

the particle slip on the boundary) [32, 34]. Dynamics of rough ball even in case of no-slip

collisions is much more complicated than the dynamics of a smooth ball.

It is also worthwhile to mention that if a billiard table has an internal visible corner, in

the transition from mathematical to a physical billiard, the boundary of a reduced billiard

table becomes smoother than the boundary of the initial billiard table. Indeed, instead of a

corner appears an arc of a circle that has common tangents with neighboring components

of the boundary. However, this smoothening does not influence the dynamics. Dynamics

gets changed because of the appearance of a (new) dispersing component of the boundary,

which makes it more chaotic.

3.2 No-slip collisions of a hard ball with a visible singular point

In the case of no-slip collisions, each reflection of the moving particle (hard ball) off the

boundary occurs at a single point. Hence a collision at any point of the boundary does not

depend on the shape of the boundary elsewhere. Therefore, the collision problem can be

actually considered as a reflection of a hard ball off a point.
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At the moment of the collision, the impulse ∆P decomposes into two components,

which are the normal impulse ∆PN acting towards the center of hard ball and the tangent

impulse ∆PT based on friction which is tangent to the hard ball at the collision point.

The tangent impulse can result in either loss of kinetic energy or exchange between linear

and angular momentum while the total kinetic energy is preserved. We will consider the

friction-free (elastic) collision and the case when the impulse ∆PT results in an exchange

between linear and angular momentum without loss of energy. In other words, we consider

only conservative (Hamiltonian) dynamics.

Let a hard ball of radius r > 0 with the center at a point O hits a visible singular

point A of the boundary of a billiard table Q. Without any loss of generality we assume

that the mass of the hard ball is m = 1. Denote the linear velocity of hard ball’s center

just before (after) the collision by V b (V a). Consider now a decomposition of V b to two

components V b
N and V b

T , where V b
N = Proj−→

OA
V b and V b

T = V b − V b
N . Note that we will

use the superscript a instead of b to denote velocity components at a moment of time right

after the reflection. Denote also the vector form of angular velocity just before (after) the

collision about the point O by ωb (ωa).

The collision map S at point A will map linear components and the angular component

of the velocity just before collision (V b
N , V

b
T , ω

b) to those right after collision (V a
N , V

a
T , ω

a).

The map S has the following properties:

1. The map S is an orthogonal map because of the assumption that the system in ques-

tion is Hamiltonian.

2. Because of time reversibility of dynamics, S2 is the identity map.

3. The normal component of the linear velocity with respect to the boundary of hard

ball at the contact point A (i.e. V b
N ) always reverses under the map S.

The conditions 1 and 2 imply that the eigenvalues of the map S are 1 or −1. In view of 3,

one gets S(V b
N , V

b
T , ω

b) = (−V b
N , V

a
T , ω

a), or equivalently, V = (V b
N ,~0,~0) is an eigenvector
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of S corresponding to the eigenvalue −1. It also implies that ∆PN = −2V b
N .

The Hamiltonian system under consideration satisfies three conservation laws of the

kinetic energy K, the linear momentum P , and the angular momentum L about the point

O. These conservation laws in dimension 3 are given by the relations



Kb = 1
2

(
|V b
N |2 + |V b

T |2 + I|ωb|2
)

= 1
2

(|V a
N |2 + |V a

T |2 + I|ωa|2) = Ka,

P b + ∆P = V b
N + V b

T + ∆PN + ∆PT = V a
N + V a

T = P a

Lb + ∆PT ×
−→
AO = Iωb + ∆PT ×

−→
AO = Iωa = La,

(3.1)

where I is the moment of inertia of the hard ball.

Using that V a
N = −V b

N and ∆PN = −2V b
N , one can simplify (3.1) as


|V b
T |2 + I|ωb|2 = |V a

T |2 + I|ωa|2,

V b
T + ∆PT = V a

T

Iωb + ∆PT ×
−→
AO = Iωa.

(3.2)

In the following, we consider two cases about the impulse ∆PT : friction-free collision (i.e.

∆PT = ~0), and collisions with friction (i.e. ∆PT 6= ~0). By solving (3.2) for ∆PT , we get

〈∆PT ,
r2 + I

I
∆PT + 2V b

T + 2
−→
AO × ωb〉 = 0, (3.3)

where 〈., .〉 is the inner product in R3 and r is radius of hard ball.

Observe that the conservation laws in dimension 2 are the same as in (3.1) under the

assumption that the billiard table Q is a subset of xy-plane in R3.
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3.2.1 Friction-free collision (a smooth ball)

In this section, we study a friction-free (i.e. ∆PT = ~0) Hamiltonian system. In this case,

(3.2) implies

V a
T = V b

T , ωa = ωb.

Here, the solution (V a
N , V

a
T , ω

a) = (−V b
N , V

b
T , ω

b) of (3.1) corresponds to the case of smooth

hard ball [32] when the ball does not acquire rotation upon collision. Thus, in this case, we

have an elastic reflection where the angle of incidence is equal to the angle of reflection.

Also, this friction-free collision is equivalent to the elastic reflection of the hard ball’s

centerO off a piece of a 2-sphere (it can be an arc of a circle) centered at the visible singular

point A with the same radius as the radius of the hard ball [10, 11].

In case of dimension 3, the collision map S is a linear map from a 6-dimensional sub-

space of R9 to itself with eigenvalues 1 and −1. When ∆PT = ~0, the eigenvectors which

correspond to these eigenvalues have the forms (~0, V b
T , ω

b) and (c
−→
AO,~0,~0), respectively,

where c is a constant. Also, the eigenspaces corresponding to the eigenvalues 1 and −1

have dimensions five and one, respectively.

3.2.2 Collisions with friction (a rough ball)

For the Hamiltonian system under consideration, the presence of the frictional force means

that |∆PT | 6= 0. The corresponding solution of (3.1) when |∆PT | 6= 0 describes the

dynamics of a rough ball [32], which has no-slip ultra-elastic reflections off the boundary

(After an ultra-elastic reflection, the ball will acquire rotation, therefore, the incident angle

is not equal to the reflection angle [32]). In this case, the tangential component of the linear

velocity partially transfers to the angular velocity and vice versa.

A nontrivial solution for ∆PT in (3.3), is given by

∆PT = − 2I

r2 + I
(V b

T +
−→
AO × ωb). (3.4)
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Let S be the collision map in dimension 3 when the tangent impulse ∆PT is given by (3.4).

Then (~0, V b
T , ω

b) is an eigenvector of the collision map S corresponding to the eigenvalue

1 if V b
T +
−→
AO × ωb = ~0. The solution set of the vector equation V b

T +
−→
AO × ωb = ~0 is a

three dimensional space. Hence, the eigenspace corresponding to the eigenvalue 1 of the

collision map S is a 3-dimensional space.

Moreover, (~0, V b
T , ω

b) is an eigenvector of the collision map S which corresponds to

the eigenvalue −1 if V b
T ×
−→
AO − Iωb = ~0. In this case, the solution set of the vector

equation V b
T ×
−→
AO− Iωb = ~0 is a two dimensional space. This implies that the eigenspace

corresponding to the eigenvalue −1 of the collision map S is a 3-dimensional space (we

know (
−→
AO,~0,~0) is another eigenvector for eigenvalue −1).
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CHAPTER 4

EHRENFESTS’ WIND-TREE MODEL IS DYNAMICALLY RICHER THAN THE

LORENTZ GAS

The Ehrenfests’ Wind-Tree model was introduced in the celebrated paper by Paul and

Tatyana Ehrenfest [35] as a simple mechanical (dynamical) model for diffusion. In their

model scatterers were rhombuses and this system itself was called a Wind-Tree model,

where “wind” stays for the particle and “tree” for a scatterer [35]. The Wind-Tree model

was extensively studied by physicists [4, 5, 6, 36, 37, 38].

It turned out that this system is not a good model for diffusion. Indeed the Wind-Tree

model is a billiard dynamical system and, because the boundary of the corresponding bil-

liard table consists of straight segments, its dynamics is similar to billiards in polygons. It

is well known that billiards in polygons have zero Kolmogorov-Sinai entropy and cannot

generate dynamical chaos which is a necessary condition for demonstrating stochastic be-

havior and, in particular, diffusion. The Wind-Tree model was actively studied in statistical

mechanics after appearance of powerful computers and found lacking of diffusion [5, 6,

38, 39, 40]. Instead, the role of the basic simplest mechanical model of diffusion was very

successfully played by the celebrated Lorentz gas where the scatterers are circles rather

than rhombuses [41, 42, 43]. Therefore these billiard systems belong to the class of the

most chaotic billiards. In fact, Lorentz gas is unfolding of a Sinai billiard [3]. Notably,

the Lorentz gas was introduced as a model of electronic gas in metals which occurred to be

completely irrelevant. Likewise, the Ehrenfests’ Wind-Tree model is considered to be irrel-

evant as a model for diffusion and moved from statistical mechanics to pure mathematics

where it is very popular now [39, 40, 44, 45, 46, 47, 48, 49, 50].

Our goal in this chapter is to demonstrate that in fact, the Wind-Tree model is a good

model to study diffusion and its dynamics is even richer than every bodies favorite Lorentz
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gas. Although we study only the physical periodic Wind-Tree model, it is quite clear that

the non-periodic Wind-Tree model is probably dynamically richer than the (physical and

mathematical) Lorentz gas with the same configuration in the plane of the centers of scat-

terers, but at least it has all the regimes of diffusion which the non-periodic Lorentz gas

does.

A key observation is that a physical Wind-Tree model becomes a semi-dispersing bil-

liard for any positive radius r of a hard ball (disk in R2), whereas a physical Sinai billiard

always remains Sinai billiard for any r > 0. Therefore, in case of a bounded free path

(finite horizon) both periodic Lorentz gas and periodic Wind-Tree model demonstrate dif-

fusive behavior. However, if a free path is unbounded then dynamics of both periodic

systems becomes superdiffusive and it is where Wind-Tree model overpasses Lorentz gas.

If the configuration of scatterers is periodic then the particle may have unbounded free path

only in strips on plane bounded by two parallel lines. Such strips traditionally are called

corridors. In periodic Lorentz gas with unbounded free path, there is only one type of cor-

ridors, while in the periodic Wind-Tree model there are two types of corridors. Presence

of a corridor of the first type results in the (ln t) growth of the diffusion coefficient while

corridors of the second type make it grow as (ln t)2.

The structure of this chapter is the following. In Section 2 we introduce the necessary

notations and study some properties of the Ehrenfests’ Wind-Tree model with infinite hori-

zon. Section 3 and 4 deal with the calculation of the tail of the distribution of the free

motion vectors (displacement) in two different types of corridors. In Section 5 an estima-

tion of their correlations is given and the limit distributions of properly normalized free

motion vectors in both discrete and continuous-time dynamics are discussed.
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4.1 Ehrenfests’ Wind-Tree Model

4.1.1 Configuration Space

The basic scatterers S in Ehrenfests’ Wind-Tree model are rhombuses. Each scatterer is

determined by two parameters θ and a, where 2θ is the acute angle of this scatterer and a is

its side length. Moreover, we assume that the diagonals of scatterers are parallel to x and

y-axes in R2 and acute angles are top and bottom angles of them. Then, in the periodic

Ehrenfests’ Wind-Tree model there is a periodic configuration of these basic scatterers with

centers at the points with integer coordinates in R2 (Fig. 4.1a). Thus, a periodic Wind-Tree

model is an unfolding of a billiard in a torus T2 with the scatterer S where both are centered

at the origin (Fig. 4.1b).

(b)(a)

Figure 4.1: (a) Periodic Ehrenfests’ Wind-Tree model. (b) Ehrenfests’ Wind-Tree model
in torus.

A configuration of scatterers is said to have a finite horizon if there exists L > 0 such

that any straight segment of the length bigger than L in R2 intersects at least one scatterer

(see Fig. 4.2b where we have two types of rhombuses). This means that the length of the

free motion of the particle is bounded. Otherwise, the configuration of scatterers has an in-

finite horizon. When we have a configuration of scatterers with an infinite horizon, an open

strip of parallel straight lines which intersects no scatterers is called a corridor. Moreover,

a corridor has two opposite directions defined by the directions of parallel lines that bound
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the corridor. We will call two corridors equivalent if they have the same directions.

4.1.2 Corridors in Ehrenfests’ Wind-Tree Model

The width of a corridor is defined by the distance between its boundary lines. The periodic

Ehrenfests’ Wind-Tree model, described in section 4.1.1, can have two types of corridors:

• Type I: Corridors with boundaries touching some vertices of scatterers.

• Type II: Corridors with boundaries containing some edges of scatterers.

When 2a cos θ < 1, there exist horizontal and vertical corridors denoted by Ch and Cv,

respectively, and we call them corridors of type I (Fig. 4.2a). Their widths dh and dv are

equal to:

dh = 1− 2a cos θ, dv = 1− 2a sin θ,

respectively. In addition, for some choices of parameters a and θ there exist oblique corri-

dors which could be either of type I or II. We will denote the oblique corridors by Co and

their width by do. (Fig. 4.2a)

Cv

Ch

Co

Co

(a)                                                                        (b)

Figure 4.2: (a) Periodic Ehrenfests’ Wind-Tree model with corridors: Ch, Cv, and Co. (b)
A periodic Ehrenfests’ Wind-Tree model with a finite horizon and two types of rhombuses.
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Lemma 4.1.1. There is an oblique corridor of type II if and only if tan θ = m
n

and

a <
cos θ + sin θ − d n

m
e sin θ

sin(2θ)
=

(m+ n− d n
m
em)
√
m2 + n2

2mn
, (4.1)

where 0 < m ≤ n are integers. Moreover,

do = sin θ + cos θ − d n
m
e sin θ − a sin(2θ) =

m+ n− d n
m
em

√
m2 + n2

− 2mna

m2 + n2
.

Proof. From the definition of corridors of type II and θ, it is obvious that tan θ ≤ 1 is a

rational number. To calculate the width of these corridors, we need to consider a passage

by the particle through a corridor between two adjunct columns of rhombuses. According

to Figure 4.3,

|CF | = 1, |EF | = a sin θ, tan θ =
|CD|

|AB|+ |BC|
=

|CD|
a cos θ + (d n

m
e − 1)

.

A

B

C D    E
F

Figure 4.3: A passage through a corridor of type II between two adjunct columns of rhom-
buses.
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Therefore,

|DE| = 1− |EF | − |CD| = 1− a sin θ −
(
d n
m
e − 1 + a cos θ

)
tan θ.

Finally,

do = |DE| cos θ = sin θ + cos θ − d n
m
e sin θ − a sin(2θ)

=
m+ n− d n

m
em

√
m2 + n2

− 2mna

m2 + n2
.

Solving the inequality do > 0 for parameter a, we obtain:

a <
cos θ + sin θ − d n

m
e sin θ

sin(2θ)
=

(m+ n− d n
m
em)
√
m2 + n2

2mn
.

These calculations also show that if tan θ = m
n

and the inequality (4.1) are satisfied then

do > 0, where do is the width of the oblique corridor of type II.

Let α be the angle between the axis of an oblique corridor of type I and the positive

y-axis such that −π
2
< α < π

2
. It is easy to see that α /∈ {0,±θ}.

Lemma 4.1.2. The following relations hold for an oblique corridor of type I.

1. | tan(α)| = m
n

for some integers n > 0 and m > 0.

2. If | tan(α)| < tan θ, then

do = cosα + sinα− d n
m
e sinα− 2a sin θ cosα =

(
n+m−md n

m
e − 2an sin θ

)
√
n2 +m2

,

where a < n+m−md n
m
e

2n sin θ
.

3. If tan θ < | tan(α)| ≤ 1, then

do = cosα+ sinα− d n
m
e sinα− 2a sinα cos θ =

(
n+m−md n

m
e − 2am cos θ

)
√
n2 +m2

,
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where a < n+m−md n
m
e

2m cos θ
.

4. If 1 < | tan(α)|, then

do = cosα + sinα− dm
n
e cosα− 2a cos θ sinα =

(
n+m− ndm

n
e − 2am cos θ

)
√
n2 +m2

,

where a < n+m−ndm
n
e

2m cos θ
.

Proof. The proof is omitted since it is very similar to the proof of Lemma 4.1.1.

4.1.3 Physical Ehrenfests’ Wind-Tree Model

Physical billiards (i.e. billiards with a moving hard ball like a ball in real billiard as well as

in all real systems modeled by billiards) were introduced and studied in [10]. A ball there

and in this chapter is assumed to be a smooth hard ball. In case of a rough ball, it acquires

rotation after collision at any point of the boundary [51].

It is easy to see that dynamics of a physical Lorentz gas is the same for any radius r

of the moving physical particle (of course unless r becomes so big that the particle gets

stuck in some subset of the plane). Indeed the scatterers remain to be circles but their

radius increases by r. A totally different situation occurs in the Wind-Tree model where

boundaries of scatterers acquire dispersing components (arcs of a circle of radius r).

In what follows, we will consider the mathematical billiard equivalent to the motion of

a physical particle (disk) of radius r > 0 in the periodic Ehrenfests’ Wind-Tree model. We

will use notations S ′ and ∂S ′ for the scatterer and its boundary in the equivalent mathemat-

ical billiard, respectively. (See Fig. 4.4)

There are still two types of corridors in the equivalent mathematical billiard of the

physical periodic Wind-Tree model:

• Type I: Corridors with boundaries tangent to the dispersing components of scatterers.
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jS

jS'

Figure 4.4: Physical Ehrenfests’ Wind-Tree model and its equivalent mathematical billiard.

• Type II: Corridors with boundaries containing the flat (neutral) components of scat-

terers.

Corridors remain if r is small enough. More precisely, if C is a corridor of type I (or II) in

a physical periodic Ehrenfests’ Wind-Tree model with the width d and the physical particle

has radius r > 0 such that d > 2r, then the equivalent mathematical billiard will have a

corridor of type I (or II) in the same directions of C with the width d− 2r.

In the sequel, we will use the same notations dh, dv, and do to denote the width of hori-

zontal, vertical, and oblique corridors, respectively, in the equivalent mathematical billiard.

4.1.4 Dynamics of the Physical Ehrenfests’ Wind-Tree model

In this section, we introduce phase space of the system in the folded configuration space in

torus.

Denote by x(t) the position of the center of the physical particle at time t. We will

characterize reflections by two quantities: s the coordinate of the reflection point on ∂S ′

with respect to the natural arc length |.| in R2, and ϕ the angle of reflection (the angle with

the sign between the velocity vector after the reflection and the outer normal vector at the

reflection point). Therefore, the phase space is:

Λ = {X = (s, ϕ) | 0 ≤ s < |∂S ′|, −π
2
≤ ϕ ≤ π

2
}.
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Now, let T : Λ→ Λ be the Poincare section billiard map of the system such that T (Xn) =

T (sn, ϕn) = (sn+1, ϕn+1) = Xn+1. This map preserves the Liouville measure:

µ(dϕds) = Z−1 cos(ϕ)dϕds, (4.2)

where,

Z =

∫
∂S′

∫ π/2

−π/2
cos(ϕ)dϕds = 2|∂S ′|,

on Λ. Moreover, the expected value of the function F (X) is defined by:

〈F (X)〉 :=

∫
Λ

F (X)µ(dϕds) = Z−1

∫
∂S′

∫ π/2

−π/2
F (X) cos(ϕ)dϕds,

where X = (s, ϕ).

Let xn = x(Xn) ∈ R2 be the position of the center of the physical particle in the

discrete system at nth reflection. We will denote the segment (link) of the trajectory after

nth reflection by [xn, xn+1] and the corresponding vector of this free motion (displacement)

by:

r(Xn) := x(TXn)− x(Xn) = x(Xn+1)− x(Xn) = xn+1 − xn.

This implies,

xn − x0 = x(T nX0)− x(X0) =
n−1∑
i=0

r(T iX0). (4.3)

According to (4.3), the problem of studying the statistical properties of the vector xn−x0 =

x(T nX0)− x(X0), when n→∞, is reduced to the problem about statistical properties of

the free motion vector r(X) with respect to the billiard map T . Let ν be the probability

distribution of the free motion vector r(X) with respect to Liouville measure µ.

Corollary 4.1.3. The distribution ν is symmetric.

Proof. It is analogous to the proof of Proposition 4.1 of [41].

In the following sections, we will study some properties of the distribution ν and of the
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second moment 〈(r(X), r(T nX))〉, where (., .) denotes the standard inner product in R2 .

4.2 Asymptotics of ν in Corridors of Type I

From Section 4.1.3, we know that the boundary of a corridor of type I is tangent to the

dispersing components of ∂S ′. In the following lemma we will show that for a long enough

segment [x0, x1] in a corridor of type I, the endpoints x0 and x1 are on those dispersing parts

of ∂S ′ which are tangent to the boundary of the corridor.

Lemma 4.2.1. Consider a finite segment [x0, x1] of length |r(X0)| = |x1 − x0| = L in a

corridor of type I with the width d. There exists a constant L0 > 0 such that if L > L0,

then the points x0 and x1 are on dispersing parts of ∂S ′ which are tangent to the boundary

of that corridor on its opposite sides.

Proof. Let α be the angle between the direction of the corridor of type I and the positive

y-axis as it is shown in Fig. 4.5. First, we prove this lemma when α > θ. According to the

Fig. 4.5,

|DC| = |DB| = r, β := ∠CDB = α− θ, |AB| = 1

sinα
.

Moreover, the distance between the point C and the boundary of the corridor is equal

to r − r cos β. This implies that,

sin(∠CAB) > (r − r cos β) sinα = (r − r cos(α− θ)) sinα.

If we denote by L the length of the longest segment in this corridor with one endpoints at

C, then:

L <
d

sin(∠CAB)
+ 2|AB| < d

(r − r cos(α− θ)) sinα
+

2

sinα
.
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A

B

C D

a

θ

Figure 4.5: A Segment with an endpoint on a dispersing part tangent to a corridor of type
I.

To complete the proof for this case, let L0 = d
(r−r cos(α−θ)) sinα

+ 2
sinα

.

In case α < θ, the corridor is tangent to the dispersing components on left and right

sides of ∂S ′. The proof in this case is very similar to the previous one, and it results at:

L0 =
d

(r − r cos(θ − α)) cosα
+

2

cosα
,

when α < θ.

Let Lh and Lv denote the parameter L0 from Lemma 4.2.1, respectively, for the hori-

zontal and vertical corridors Ch and Cv. Then,

Lh =
dh

r − r sin θ
+ 2, Lv =

dv
r − r cos θ

+ 2.

Consider the segment [x0, x1] is in Ch or Cv such that |x0 − x1| > max{Lh, Lv}. If y0 and

y1 are the intersection points of this segment with the boundary of the corridor (Fig. 4.4),

then

|x0 − y0| < 1, |x1 − y1| < 1. (4.4)

From Lemma 4.2.1, we know that x0 and x1 are on dispersing components of ∂S ′. Let
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A and B denote the tangent points to the boundaries of the corridor of those dispersing

components which contain the points x0 and x1, respectively. (Fig. 4.6)

x0

x1

y1

y0A

B

Figure 4.6: Intersection of a finite segment [x0, x1] with the boundary of Ch.

Lemma 4.2.2. If [x0, x1] is a segment in Ch or Cv such that |x0 − x1| > max{Lh, Lv},

then there exists an ε > 0 such that:

|x0 − A| < ε, |x1 −B| < ε.

Moreover, |x0 − A| and |x1 −B| tend to zero when |x0 − x1| → ∞.

Proof. It is easy to see that ε = r(π
2
− θ). Moreover, the calculation in the proof of Lemma

4.2.1 suggests that |x0 − A| and |x1 −B| tend to zero when |x0 − x1| → ∞.

The inequalities in (4.4) and lemmas 4.2.1 and 4.2.2 guarantee that asymptotics of the

probability of free motion vectors in horizontal and vertical corridors of the periodic Ehren-

fests’ Wind-Tree model is the same as asymptotics of the probability of free motion vectors

in corridors of the periodic Lorentz gas [41]. According to the result of proposition 4.2 in

[41], the expressions for the corresponding probabilities in the limit L→∞ are:

Prh(L) :=Probability of {r(X) in Ch such that |r(X)| > L}

=
Z−1d2

h

L2
+O(L−5/2),

(4.5)
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and

Prv(L) :=Probability of {r(X) in Cv such that |r(X)| > L}

=
Z−1d2

v

L2
+O(L−5/2).

(4.6)

4.3 Asymptotics of ν in Corridors of Type II

Our main result is concerned with oblique corridors of type II, where the boundary of the

corridor contains flat components of scatterers. We will show that the existence of such

corridors results in stronger superdiffusive regimes than the one in the Lorentz gas.

From Lemma 4.2.1, we can expect oblique corridors of type I to have the same diffusive

properties as the horizontal and vertical corridors. To reduce the volume of calculations, we

will consider a physical periodic Ehrenfests’ Wind-Tree model without oblique corridors

of type I. Moreover, if there exists an oblique corridor of type II where θ 6= π
4
, then the

scatterers are distributed over the boundary of this corridor in a way that any trajectory

in this corridor is likely to leave the corridor after a few reflections on neutral parts of

scatterers (See Fig. 4.7).

Figure 4.7: Trajectories with reflections on neutral parts in a corridor of type II when
θ = π/4 (left) and θ 6= π/4 (right).

By Lemma 4.1.2, one can calculate the minimum value of a such that there is no oblique

corridor of type I when θ = π
4
. Since tan(θ) = 1, we only need to consider cases 2 and 4 in
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Lemma 4.1.2. Moreover, under this assumption, the upper bounds of a in these two cases

will be the same and equal to:
n+m−md n

m
e

√
2n

,

where 0 < m < n are integers. Therefore, if θ = π
4

and

a ≥Max{(n,m)| n>m, n,m∈N}

{
n+m−md n

m
e

√
2n

}
=

√
2

4
,

then there are no oblique corridors of type I.

In the rest of this chapter, we consider physical periodic Ehrenfests’ Wind-Tree model

with a moving disk of radius 0 < r <
√

2
8

where θ = π
4

and
√

2
4
≤ a <

√
2

2
− 2r.

Thus, our model has two corridors of type I (Ch and Cv) and two corridors of type II

with directions parallel to y = x and y = −x. Denote these oblique corridors of type II by

C+
o and C−o , respectively.

To estimate the tail of the distribution ν in this model along corridors C+
o and C−o , we

need to calculate the asymptotics of

Pro(L) :=Probability of {r(X) in C+
o such that |r(X)| > L}

=Probability of {r(X) in C−o such that |r(X)| > L}

when L→∞.

Proposition 4.3.1. When L→∞,

Pro(L) = aZ−1

(
do
L

)2

+O(L−3), (4.7)

where do is the width of oblique corridors C+
o or C−o .

Proof. According to the Fig. 4.8, in the oblique corridors of type II of the physical periodic
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Wind-tree model:

w := tan(ϕ) =
z − t
do

=⇒ cos(ϕ)dϕ =
dz

do(1 + w2)3/2
.

Therefore, the probability density function f(.) of the distribution of z with respect to the

(0,0)

do

(t,0)
(a,0)

(z,-do)
f

Figure 4.8: A long collision free segment in an oblique corridor of type II.

Liouville measure Z−1 cos(ϕ)dϕds along these corridors is equal to:

f(z) =

∫ a

0

Z−1

do(1 + w2)3/2
dt = Z−1d2

o

∫ a

0

dt

(d2
o + (z − t)2)3/2

' Z−1d2
o

∫ a

0

dt

(z − t)3
=
Z−1d2

o

2

(
1

(z − a)2
− 1

z2

)
=
aZ−1d2

o

z3
(1 +O(z−1)).

Hence, the probability of |r(X0)| > L is given by:

Pro(L) =2

∫ ∞
L

f(z)dz = 2

∫ ∞
L

aZ−1d2
o

z3
(1 +O(z−1))dz

=aZ−1

(
do
L

)2

+O(L−3).

(4.8)

The factor 2 in the expression for Pro(L) in the equation (4.8) appears because there

are two opposite directions in each corridor.
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Proposition 4.3.2. 〈r(X)〉 = 0, 〈|r(X)|〉 <∞, and 〈|r(X)|2〉 =∞. Moreover, if φR(x) =

|x|2 when |x| < R and it is zero otherwise, then

〈φR(r(X))〉 = Const. ln(R) +O(1),

when R→∞.

Proof. We have:

〈r(X)〉 =

∫
r(X)µ(dϕds) = 0,

because ν is symmetric (Proposition 4.1.3). If L is sufficiently large, then it follows from

(4.5-4.7) that:

〈|r(X)|〉 =

∫
|r(X)|µ(dϕds) =

∫
|r|≤L
|r(X)|µ(dϕds) +

∫
|r|>L
|r(X)|µ(dϕds)

=

∫
|r|≤L
|r(X)|µ(dϕds) +

∫
|r|>L
in C+

o

|r(X)|µ(dϕds) +

∫
|r|>L
in C−o

|r(X)|µ(dϕds)

+

∫
|r|>L
in Ch

|r(X)|µ(dϕds) +

∫
|r|>L
in Cv

|r(X)|µ(dϕds)

< L+ 2

∫ ∞
L

2aZ−1d2
o

x2
dx+

∫ ∞
L

2Z−1d2
h

x2
dx+

∫ ∞
L

2Z−1d2
v

x2
dx <∞.

Finally, for R→∞:

〈φR(r(X))〉 =

∫
|r|≤L<R

|r(X)|2µ(dϕds) +

∫
L<|r|<R

|r(X)|2µ(dϕds)

=M0 +

∫
L<|r|<R
in C+

o

|r(X)|2µ(dϕds) +

∫
L<|r|<R
in C−o

|r(X)|2µ(dϕds)

+

∫
L<|r|<R
in Ch

|r(X)|2µ(dϕds) +

∫
L<|r|<R
in Cv

|r(X)|2µ(dϕds)

=M0 + 2

∫ R

L

2aZ−1d2
o

x
dx+

∫ R

L

2Z−1d2
h

x
dx+

∫ R

L

2Z−1d2
v

x
dx

=Const. ln(R) +O(1).
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Therefore, 〈|r(X)|2〉 =∞.

4.4 Statistical Properties of Ehrenfests’ Wind-Tree Models

In the previous section, we studied the asymptotic behavior of the distribution ν of the free

motion vector r(X) = x(TX) − x(X). Now, we will consider the joint distribution νn of

vectors r(X) and r(T nX) with respect to the Liouville measure µ in order to estimate,

〈|r(X)||r(T nX)|〉,

for any n 6= 0.

Proposition 4.4.1. The distribution νn is invariant with respect to the transformation (r1, r2) 7→

−(r2, r1).

The proof is identical to the proof of Proposition 5.1 in [41]. Moreover, the Proposition

4.4.1 implies,

(|r(X0)|, |r(T nX0)|) d
= (|r(T nX0)|, |r(X0)|).

4.4.1 Estimation of Correlations of Free Motion Vectors

Let r(X0) = [x0, x1] be in C+
o or C−o and x1 be on a neutral component of ∂S ′ belongs to

the boundary of that corridor. Then quantities |r(X0)| and |r(TX0)| satisfy the relation:

|r(TX0)| = |r(X0)|+O(1). (4.9)

More generally, when endpoints of segments r(T i−1X0) = r(Xi−1) = [xi−1, xi] for i =

1, . . . , n belong to neutral components of ∂S ′ which are in the boundary of a corridor of

type II, then:

|r(Xi)| = |r(T iX0)| = |r(X0)|, (4.10)
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for i = 1, 2, . . . , n− 1, and

|r(X0)| ≤ |r(Xn)| = |r(T nX0)| < |r(X0)|+ 1. (4.11)

Denote the expected value of a function along the corridors C+
o or C−o by 〈.〉o.

Proposition 4.4.2. Let all xi of segments r(T iX) = [xi, xi+1] for i = 0, 1, . . . , n belong to

neutral components of ∂S ′ in the boundary of C+
o or C−o , then

〈|r(X)||r(T n−1X)|〉o =
〈|r(X)|2〉o

n
.

Proof. First, we find the probability of trajectories with n consecutive reflections on neutral

parts of ∂S ′ in the boundary of a corridor of type II.

(t,0)

do

ndo

(z+(n-1)t/n,-do)

(nz,-ndo)

(2z+(n-2)t/n,-2do)

Figure 4.9: Segments with reflections on neutral components of ∂S ′ in boundaries of a
corridor of type II.

It follows from Fig. 4.9 that,

w = tan(ϕ) =
nz − t
ndo

=⇒ cos(ϕ)dϕ =
dz

ndo(1 + w2)3/2
.
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Then,

fn(z) :=

∫ a

0

Z−1

ndo(1 + w2)3/2
dt = Z−1n2d2

o

∫ a

0

dt

(n2d2
o + (nz − t)2)3/2

'Z−1n2d2
o

∫ a

0

dt

(nz − t)3
=
Z−1n2d2

o

2

(
1

(nz − a)2
− 1

n2z2

)
=
aZ−1d2

o

nz3
(1 +O(z−1)).

(4.12)

The equation (4.12) and Proposition 4.3.1 show that,

fn(z) =
1

n
f(z). (4.13)

Let Pn(L) denote the probability of orbits with segments [xi, xi+1] for i = 0, 1, . . . , n such

that all xi are on the neutral parts in the boundary of a corridor of type II and |xi+1−xi| > L.

Then, it follows from (4.13) and the proof of Proposition 4.3.1 that,

Pn(L) =
1

n
Pro(L).

Moreover, the equation (4.10) implies,

|r(X)||r(T n−1X)| = |r(X)|2.

Therefore,

〈|r(X)||r(T n−1X)|〉o =
〈|r(X)|2〉o

n
.

We will now estimate 〈|r(X)||r(T n−1X)|〉o where some xi for i = 0, 1, 2, . . . , n be-

longs to the dispersing parts of ∂S ′. Let consider the case that there is a reflection off a

dispersing component and it is followed by n consecutive reflections on neutral parts in the

boundary of a corridor of type II. The proof of Proposition 4.4.2, particularly the equation
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(4.12), shows that:

〈|r(X)||r(T nX)|〉o =
〈|r(X)||r(TX)|〉o

n
,

where x1 in r(X) = [x0, x1] is on a dispersing component. Then, proposition 5.3 in [41]

implies that 〈|r(X)||r(TX)|〉o = Const. Therefore, in this case

〈|r(X)||r(T nX)|〉o =
〈|r(X)||r(TX)|〉o

n
=
O(1)

n
. (4.14)

More generally, when an orbit has only reflections on neutral parts in the boundary of a

corridor of type II, the angle between its segments and the length of its segments remain

the same, while reflections on dispersing components change these angles and they also

change lengths of free paths. The average of these changes (correlations) is estimated in

theorem 5.6 in [41] when an orbit has only reflections on dispersing components. The

results of [41] and Proposition 4.4.2 show that when an orbit has more than one reflection

on dispersing components, the correlations is smaller than the correlations in the case where

there is only one reflection on a dispersing part when the particle goes along a corridor of

type II. Hence, from the equation (4.14) and Proposition 4.4.2, the correlation function in

a corridor of type II satisfies the following relation:

〈(r(X), r(T nX))〉o ' 〈|r(X)||r(T nX)|〉o =
〈|r(X)|2〉o +O(1)

n+ 1
, (4.15)

since r(X) and r(T nX) have almost the same directions in that corridor of type II (i.e.

(r(X), r(T nX)) ' |r(X)||r(T nX)|).

To better understand this result observe that two neighboring boundary components of

a straight segment in the boundary of any scatterer are arcs of a circle with the same radius.

Therefore their combined influence on correlations is the same as in the Lorentz gas [41].

Indeed, by putting them together we get circular part of scatterer which influences the

passage of a particle through the corridor. The fact that dispersing components are apart

48



on the length of a neutral component clearly contributes only to a constant factor in the

estimate of correlations.

4.4.2 Statistical Behavior of Trajectories in Discrete Dynamics

From the result of previous sections, one can expect that the physical periodic Ehrenfests’

Wind-Tree models will have more regimes of diffusion than the Lorentz gas. To show that

we need to estimate 〈|x(T nX)− x(X)|2〉 when n→∞. This value can be written as:

〈|x(T nX)− x(X)|2〉 =
n−1∑
i=0

n−1∑
j=0

〈(r(T iX), r(T jX))〉

= n〈|r(X)|2〉+ 2
n−1∑
j=1

(n− j)〈(r(X), r(T jX))〉.
(4.16)

It follows from (4.15) that,

lim
n→∞

n∑
k=1

〈(r(X), r(T kX))〉o ' lim
n→∞

n∑
k=1

〈|r(X)|2〉o +O(1)

k + 1

= lim
n→∞

[(ln(n)− 1)〈|r(X)|2〉o +O(lnn)].

(4.17)

Moreover, Proposition 4.3.2 implies:

〈φR(r(X))〉o =

∫
|r|≤L<R
in C+

o

|r(X)|2µ(dϕds) +

∫
L<|r|<R
in C+

o

|r(X)|2µ(dϕds)

= m0 + 2

∫ R

L

aZ−1d2
o

x
dx =

2ad2
o

Z
lnR +O(1),

(4.18)

when R→∞. It follows from equations (4.17) and (4.18) that,

N∑
k=1

〈(r(X), r(T kX))〉o =
2ad2

o

Z
(lnN)2 +O(lnN). (4.19)

Therefore the main contribution to correlations is made by orbits propagating in corridors

of type II and reflecting only off neutral components of the boundary.
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Consider a physical periodic Wind-Tree model. Then for any positive radius r > 0 of

the moving particle we conjecture that the following statement is correct. Already existing

methods [41, 42, 43] are more than enough for its proof, which does not require any new

ideas besides those presented in this chapter.

Conjecture 4.4.3. Let the distribution of X ∈ Λ be the Liouville measure µ(dϕds) =

Z−1 cos(ϕ)dϕds. If

ξ = lim
n→∞

x(T nX)− x(X)

g(n)
, (4.20)

then ξ = (ξ1, ξ2) is a Gaussian random variable with zero mean where,

1. g(n) =
√
n in case of finite horizon.

2. g(n) =
√
n lnn in case of infinite horizon but without corridors of type II.

3. g(n) =
√
n lnn in case of infinite horizon with presence of type II corridors.

Moreover, in item 3, when we consider the physical periodic Wind-Tree model presented in

Section 4.3, the covariance matrix is given by

 D11 D12

D21 D22

 =

 2ad2o
|∂S′| 0

0 2ad2o
|∂S′|

 .
An outline of the proof in case of infinite horizon with presence of corridors of type II is

as follows. According to Proposition 4.1.3, the probability distribution ν is symmetric, i.e.

〈ξ〉 = 0. To find the covariance matrix, we need to calculate its components in corridors.

There are four corridors in the physical periodic Ehrenfests’ Wind-Tree model: Ch, Cv,

C+
o , and C−o . It follows from Section 4.2 that asymptotics of the probability distribution in

Ch and Cv are the same as those in corridors of the Lorentz gas. Thus, with normalization
√
n ln(n) used in (4.20) and the result from [41], we will have 〈ξiξj〉 = 0 for i, j = 1, 2

when ξ is in Ch or Cv. This means, Dij = 〈ξiξj〉 only depends on the value 〈ξiξj〉o where
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ξ is in C+
o or C−o . Let ξ be in C+

o , then:

ξ1 ' ξ2, (4.21)

and,

〈ξ1ξ2〉o = 〈ξ2
1〉o. (4.22)

Similarly, when ξ is in C−o :

ξ1 ' −ξ2, (4.23)

and,

〈ξ1ξ2〉o = −〈ξ2
1〉o. (4.24)

From (4.22) and (4.24), it follows that:

D12 = D21 = sum of values of 〈ξ1ξ2〉o along C+
o and C−o = 0

On the other hand, (4.21) and (4.23) imply that,

ξ2
i '
|ξ|2

2
, (4.25)

for i = 1, 2.

By making use of (4.16), (4.19), and (4.25) and Proposition 4.3.2, one gets:

D11 = D22 =sum of values of 〈ξ2
1〉o along C+

o and C−o = 2〈ξ2
1〉o = 〈|ξ|2〉o

=〈 lim
n→∞

|x(T nX)− x(X)|2

n(ln(n))2
〉o = lim

n→∞

〈|x(T nX)− x(X)|2〉o
n(ln(n))2

= lim
n→∞

n〈|r(X)|2〉o + 2
∑n−1

j=1 (n− j)〈(r(X), r(T jX))〉o
n(ln(n))2

= lim
n→∞

2
∑n−1

j=1 〈(r(X), r(T jX))〉o
(ln(n))2

=
4ad2

o

Z
=

2ad2
o

|∂S ′|
.
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4.4.3 Statistical Behavior of Trajectories in Continuous-Time Dynamics

In this section, we will present an analogous formula to (4.20) for continuous-time dynam-

ics. Let tn be the time of the nth reflection of the trajectory x(t). Then, x(tn) = xn =

x(Xn). Since the path of the particle between reflections is a line segment and the particle

moves with velocity 1 along it,

tn+1 − tn = |xn+1 − xn| = |r(Xn)|,

and,

tn =
n−1∑
i=0

|r(T iX0)| =
n−1∑
i=0

|r(Xi)|.

For an arbitrary initial condition X0, the ergodic theorem guarantees that,

lim
n→∞

tn
n

= lim
n→∞

∑n−1
i=0 |r(Xi)|

n
= 〈|r(X0)|〉.

From Proposition 4.3.2, η := 〈|r(X0)|〉 <∞. Therefore,

lim
n→∞

tn(ln tn)2

n(lnn)2
= η,

and

lim
n→∞

tn+1(ln tn+1)2

tn(ln tn)2
= 1.

Let tn ≤ t < tn+1. It follows from lemma 7.1 in [41] and last two equations that,

lim
n→∞

xt − x0√
t ln t

= lim
n→∞

xt − x0√
tn ln tn

= η−1/2 lim
n→∞

xt − x0√
n lnn

. (4.26)
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The assumption tn ≤ t < tn+1 implies that xt belongs to the segment [xn, xn+1]. Hence,

|xt − xn| ≤ |r(Xn)|. Thus almost surely,

lim
n→∞

xt − xn√
n lnn

= 0.

Therefore,

lim
n→∞

xt − x0√
n lnn

= lim
n→∞

xn − x0√
n lnn

= ξ.

where ξ is the same as in Conjecture. Then, it follows from (4.26) that,

lim
t→∞

xt − x0√
t ln t

=
ξ
√
η
.

This expression is analogous to (4.20) when we consider the continuous-time dynamics,

and it shows that there is a new superdiffusive regime in the physical periodic Ehrenfests’

Wind-Tree model where the diffusion coefficient D(t) ∼ (ln t)2.
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CHAPTER 5

BRIDGE TO HYPERBOLIC POLYGONAL BILLIARDS

In the last years, there has been significant research on billiards in polygons [52, 53, 54, 55,

56, 57, 58]. Dynamics of these models is extremely difficult to rigorously analyze which

often happens with systems with intermediate, neither regular (integrable) nor chaotic, be-

havior.

In [10], it has been shown that the transition to physical billiards can completely change

the dynamics. Moreover, any type of chaos-order or order-chaos transition may occur. In

particular, it has been shown that classical Ehrenfests’ Wind-Tree gas has richer dynamics

than the Lorentz gas if a moving particle is real (physical) [11]. In this chapter, we show

that typical physical billiard in polygons is chaotic for an arbitrarily small size (radius) of a

moving particle. The last means that physical billiards in generic polygons are hyperbolic

on a subset of positive measure and, particularly, have a positive Kolmogorov-Sinai entropy

to the contrary to mathematical billiards in polygons, which have zero KS-entropy.

5.1 Billiards in Polygons

Let P be the space of all closed polygons in R2 and Pn ⊂ P denote the space of all

polygons with n vertices. Let {v0, v1, . . . , vn−1} be the set of vertices of a polygon in

Pn. If we fix one side of this polygon on the x-axis and one of the vertices of that side at

the origin (e.g. v0 = (0, 0) and vn−1 = (x, 0)) then the embedding Pn → R2n−3 induces

a topology in Pn such that its corresponding metric makes the space Pn complete [59]. If

all angles of a polygon are commensurate with π, then it is called a rational polygon. It is

well-known that rational polygons are dense in P.
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The phase space of this dynamical system is

ΛP = {(x, ϕ) ∈ ∂P × (
−π
2
,
π

2
) : x is not a vertex of P},

where ϕ is the reflection angle with respect to the inward normal vector n(x) to the bound-

ary at reflection point x ∈ ∂P .

Let γ be a billiard orbit in the polygon P . If the orbit γ hits a side of the boundary

∂P then instead of reflecting the orbit γ off that side of P , one may reflect P about that

side. Denote the reflected polygon by P1. The unfolded orbit γ is a straight line as the

continuation of γ in P1. In the geometric optics this procedure is called the method of

images or unfolding [60]. Continuing this procedure for n consecutive reflections of the

orbit γ, we obtain a sequence of polygons P, P1, P2, . . . , Pn where the unfolded orbit γ

is a straight segment through P1 to Pn (Fig. 5.1).

P P1 P2
P3

P4

P5

g >

Figure 5.1: The unfolding process.

The unfolding process can also be done backward in time. A trajectory stops when it

hits a vertex. The unfolded orbit γ is a finite segment if it hits vertices of P both in the

future and in the past. Such trajectories are called generalized diagonals. In [59, 60], it is

shown that the set of generalized diagonals of the polygon P ∈ P is countable.

Consider (x, ϕ) ∈ ΛP . A direction ϕ at point x is called an exceptional direction if its

trajectory hits a vertex of P . It is not difficult to see that the number of these exceptional

directions is countable at each point x.
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5.2 Physical Billiards in non-Convex Polygons

It is easy to see that dynamics of a physical billiard in a convex simply connected polygon

is completely equivalent to dynamics of a mathematical billiard in this polygon [10]. How-

ever, the situation is totally different for non-convex polygons (more precisely, polygons

with at least one reflex angle, see Fig. 5.2). In this case, the boundary of the equivalent

mathematical billiard acquires some dispersing parts, which are arcs of a circle of radius r

(see e.g. [51, 61]).

Figure 5.2: To have dispersing parts in the boundary of mathematical billiards equivalent
to physical billiards in non-convex polygons, the particle has to be small enough and the
polygon has to have at least one reflex angle.

Let Pref be the set of all polygons that they have at least one reflex angle. To show that

Pref is dense in P, we use the metric d(., .) on P which is defined as:

d(P,Q) =

∫
R2

|χP (x)− χQ(x)|dx, (5.1)

where P,Q ∈ P and,

χP (x) =

 1 x ∈ P,

0 otherwise.

The topology induced by the metric d(., .) in Pn is equivalent to the induced topology in

Pn by the embedding Pn → R2n−3. Thus, rational polygons are dense in P with respect

to the metric d(., .).

Lemma 5.2.1. Pref is dense in P.

Proof. Let P ∈ P be a polygon with n vertices {v0, v1, . . . , vn−1}. Without loss of

generality, we assume that the randomly chosen edge of P is v0vn−1. On the perpendicular
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bisector of v0vn−1 in the interior of P , we choose a sequence of points {vnk
}∞k=k0

such that

the reflex angle ∠v0vnk
vn−1 = π+ π

k
(k0 is big enough to have vnk

for k ≥ k0 in the interior

of P , see Fig. 5.3).

v0

v

vn-1

nk

Figure 5.3: Replacing one edge of a polygon by a reflex angle.

If we denote the non-convex polygons with vertices {v0, v1, . . . , vn−1, vnk
} by Pk

then it follows that Pk ∈ Pref and

d(P, Pk)→ 0,

as k →∞.

Lemma 5.2.2. Pref is open in P.

Proof. It is easy to see that any perturbation of P ∈ Pref will have at least one reflex angle.

This means Pref is open in P.

Continued fractions for billiards were introduced in Sinai’s fundamental paper [3].

They serve as a basic tool for analysis of billiards dynamics. Let 0 = t0 < t1 < t2 < . . . be

the reflection times of the trajectory γ off the boundary ∂Q where Q is an arbitrary billiard

table. Denote by κi the curvature of the boundary at the ith reflection point with respect to

the inward unit normal vectors n(x) to the boundary at x ∈ ∂Q, and by ϕi the ith reflection

angle such that −π
2
< ϕi <

π
2
. The corresponding continued fraction of this trajectory is
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given by

κ =
1

τ1 +
1

2κ1

cosϕ1

+
1

τ2 +
1

2κ2

cosϕ2

+
1

τ3 +
1

. . .

,

where τi = ti − ti−1 for i = 1, 2, . . . .

Let P ∈ Pref , then the curvature of boundary components of the mathematical billiard

equivalent to the physical billiard in P is either 0 or 1
r
. If an orbit hits the dispersing

components infinitely many times where reflection numbers on dispersing parts are given

by the sequence {ik}∞k=1, then the continued fraction of this orbit will have the following

form between ijth and ij+1th reflections,

. . . +
1

2

r cosϕij
+

1

(τij+1 + · · ·+ τij+1
) +

1

2

r cosϕij+1

+
1

. . .

.

All elements of continued fractions in this case are positive. Also, almost any orbit has

finitely many reflections within any finite time interval, since the boundary components are

C∞ (they are line segments or arcs of a circle of radius r). Therefore,

∞∑
k=0

(
(τik+1 + · · ·+ τik+1

) +
2

r cosϕik+1

)
=∞, (5.2)

where i0 = 0.

58



Let P̂ denote the space of all non-convex simply connected rational polygons. Then,

P̂ ⊂ Pref .

Theorem 5.2.3. For any P ∈ P̂, there exists rP > 0 such that the physical billiard in P is

hyperbolic for all r < rP .

Proof. Let P ∈ P̂ have n vertices. Assume {v0, v1, . . . , vn−1} and {e1 = v0v1, e2 =

v1v2, . . . , en = vn−1v0} are sets of its vertices and edges, respectively. Let

rk = min{|vk − x| : x ∈ ei for i 6= k and i 6= k + 1},

where |.| is the euclidean distance in R2 and k = 0, 1, . . . , n − 1 (if k = 0 then i =

2, 3, . . . , n − 1). It is easy to see that rk is well-defined since it is the minimum value of a

continuous function on a compact set. Moreover, rk > 0. If we let

rP = min{r0

2
,
r1

2
, . . . ,

rn−1

2
}, (5.3)

then the hard ball of radius r < rP will be able to hit all edges of P . Therefore, when r <

rP the boundary of the equivalent mathematical billiard has some dispersing components.

In fact, if a radius of the particle is sufficiently large then some parts of the boundary

of a billiard table become “non-visible” to the particle. Therefore it does not matter for

dynamics what is the exact structure of this “non-visible” boundary. Such situation may

occur e.g. for polygons [62].

As long as a trajectory does not hit dispersing parts, it can be considered as a trajec-

tory in the rational polygon P ′ that shapes by replacing the dispersing components of the

boundary by flat segments (Fig. 5.4). More precisely, angles θ and α satisfy the equation

α = π+θ
2

and θ is commensurate with π, therefore, α is commensurate with π.

It is well-known that almost all orbits of billiards in rational polygons are spatially dense

inside the billiard table [59, 63, 64]. Thus, all non-exceptional trajectories in P ′ will hit all
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Figure 5.4: Replacing a dispersing part with a line segment.

edges of P ′, including those replaced the dispersing parts of the boundary. This implies that

almost all trajectories (full measure in phase space) in the mathematical billiard equivalent

to the physical billiard in P will hit at least one dispersing component. Note that after the

first reflection off a dispersing component, the forward trajectory is not the same as the one

in P ′. Thus, we cannot use density of almost all orbits in P ′ to show that the trajectory will

hit dispersing parts of the boundary infinitely many times.

So, there is a full measure subset of points in the phase space such that their trajectories

hit at least one dispersing component. Let (x, θ) be a point in that subset. By the continuity

of the system on initial conditions, there is a neighborhood of positive measure of the point

(x, θ) such that trajectories of all points in that neighborhood hit the same dispersing part as

the trajectory of (x, θ) hits for the first time. Then the Poincare recurrence theorem implies

that almost all trajectories in this neighborhood will return and hit that dispersing part

infinitely many times. The convergence of continued fractions of such trajectories that hit

dispersing components follows from the Seidel-Stern theorem and (5.2). Hence, for a full

measure subset of the phase space of the physical billiard in non-convex simply connected

rational polygons, we have hyperbolicity. Moreover, it implies there are at most countable

number of ergodic components such that the Kolmogorov-Sinai entropy is positive on each

of them [3, 65, 66].

It follows from Lemma 5.2.1 and 5.2.2 that Pref is an open dense set in P. Therefore,

being a polygon with at least one reflex angle in P is topologically generic.
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Theorem 5.2.4. There is an open dense subset of P such that the physical billiard in the

polygons of this subset (when the radius of the hard ball is small enough) is hyperbolic on

a subset of positive measure of their phase spaces.

Proof. Let P ∈ Pref and rP > 0 be the maximum radius of the hard ball defined in (5.3)

such that the particle can hit all edges of P . Then the boundary of the mathematical billiard

equivalent to the physical billiard in P has some dispersing components which are arcs of

a circle of radius r < rP . Let,

A = {(x, ϕ) : For all x in a dispersing component and ϕ ∈ (
−π
2
,
π

2
)}.

It follows from the definition of A that it is a subset of positive measure in the phase

space (one can exclude the exceptional directions which form a measure zero set in the

phase space). The Poincare recurrence theorem implies that almost all points of A will

return to A infinitely many times under the action of the billiard map. That means almost

all trajectories of points in A will hit a dispersing part infinitely many times. Then the

convergence of continued fractions of trajectories of almost all points of A follows from

the Seidel-Stern theorem and (5.2). Hence a physical billiard in a polygon with a reflex

angle is hyperbolic at least on a subset of positive measure of its phase space.

We conjecture that in fact generically a physical billiard in polygon is ergodic for any

radius of a moving particle (which is of course not that large that the particle cannot move

within a polygon). To prove our conjecture one instead needs to show that almost all orbits

in a physical billiard in a polygon will eventually hit any segment which is a part of any

side of a polygon. Hence a “large” physical particle must hit all (rather than one) vertices

of a polygon. For instance, if each vertex of a convex polygon gets replaced by a focusing

arc it is possible to prove ergodicity [67]. In this case the mechanism of defocusing [68]

ensures hyperbolicity of such semi-focusing billiards on entire phase space. The current

theory of billiards in polygons establishes only that any billiard orbit in a polygon is either
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periodic or its closer contains just one vertex of this polygon, which is by far not enough.

We are confident though that our conjecture holds.
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