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Abstract— This paper explores the process of turning high-
level motion programs into executable control code for multi-
agent systems. Specifically, we use a modified Motion Descrip-
tion Language (MDL) for networked systems that can specify
motion programs for a collection of autonomous agents. This
MDL includes the network information dependencies required
for each agent to perform coordinated behaviors. We discuss
the design of this framework and the language theoretic tools
used to analyze the information dependencies specified by
these multi-agent motion programs. Additionally, we develop a
supervisor system that monitors the behavior of the agents on
the network, and prevents the agents from entering into states
where information dependencies are violated. We demonstrate
our framework using a simulated multi-robot system.

I. I NTRODUCTION

The growing use of multi-agent robotics in diverse ap-
plications, from emergency response to warehouse supply
management (e.g. [10],[16]), has created a need for efficient
mission specification and control code generation for teams
of autonomous agents. Using a top-down perspective, we can
construct global missions for these agents using pre-made
control laws, and then distribute the generated controllers to
the agents.

We approach the mission specification problem by mod-
ifying the MDL framework in a way that facilitates the
construction of motion programs for multi-agent systems.
This new MDL, called MDLn (where the n stands for
“networked”), encodes the control lawsand the desired
network information dependencies, as originally proposedin
[12]. In this paper, we extend our previous results in this
area and the contributions of this paper are two-fold. First,
we develop a “compiler” of multi-agent motion programs
that inspects the specified network dependencies among the
agents and reports the existence of inconsistent network
topology configurations. Furthermore, we create a tool that
automatically generates an MDLn supervisor, which observes
the execution of each agents’ MDLn programs and prevents
the system from entering into inconsistent configurations.

Other prior work in top-down specification for multi-agent
systems has made use of embedded graph grammars (EGG)
[11], [14]. EGGs are easy to use when the network consists
of large collections of identical (or nearly identical) agents.
In fact, EGGs have mainly been applied when the desired,
combinatorial interaction topologies are highly complicated
but the agent dynamics are straightforward, as is typicallythe
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case with self assembly systems [11], [14]. Recently, linear
temporal logic methods (e.g. [15]) have been applied to spec-
ify and verify control specifications for multi-agent systems
[6]. This work abstracts the dynamics of the agents and then
uses LTL formulas to verify that the control specification will
succeed. However, these LTL methods, in general, work best
in known environments and have computational limitations
associated with them.

Alternatively, we focus on systems in which the agents
are heterogeneous, the environments are dynamic, and the
interaction topologies may be specifieda priori. An example
of such an application is unmanned convoy protection, where
a UAV is specified as theleader of a convoy, and a UGV
convoy is tasked to follow the leader. The UAV must lead
the convoy to a goal location and it must detect threats
that appear in the environment. In this scenario, it may
be advantageous for a human operator to specify network
topologies based on the dynamic changes in the environment.

Top-down mission specification is not the only approach
for controlling multi-agent robots, as shown by recent work
in dynamic task allocation, e.g. [4], [7], [9]. These methods
produce an emergent global behavior based on the bottom-
up decision processes of the agents. Typically, the agents use
distributed algorithms to select individual control tasksor
decide which group of agents are best suited for information
sharing. Our approach, as well as EGGs and LTL, puts more
control in the hands of the system designer, which may be
required when the mission specification for a multi-agent
system requires a human in-the-loop.

A. Motion Description Languages

Before describing the MDLn language and framework, we
need to discuss the “standard” MDL formulation. The work
of [1], [8] describe MDLs as languages for composing large
motion programs from collections of pre-defined controllers.
We pair these controllers with an interrupt function that
causes transitions between the controllers at execution.

Let the dynamic equations of a robot agent have the form

ẋ = f(x, u), x ∈ X ⊆ R
n, u ∈ U

y = h(x), y ∈ Y ⊆ R
p,

(1)

wherex is the state,y is the sensor output, andu is the
control input. This control input is defined by a mapping
κ : Y → U . Additionally, the interrupt function is defined
as the mappingξ : Y → {0, 1}, where1 indicates that an
interrupt has occurred. We denote a MDL mode by the tuple
(κ, ξ), which means that system (1) executes the controller
κ until the interrupt triggers, denoted byξ → 1.



MDLs allow the natural construction of motion programs
for robotic systems. However, standard MDL does not encap-
sulate network dependencies, common in multi-agent robotic
systems. We address this problem by designing a framework
for constructing motion programs for networked systems
based on our networked MDL language,MDLn, originally
proposed in [12].

In Section II, we review the MDLn model and language
construction. In Sections III and IV we develop the first of
our contributions: compiling MDLn programs using tech-
niques from the discrete event systems (DES) literature.
Furthermore, Section V describes our second contribution:
the design of our supervisor system. Our simulation results
are demonstrated in Section VI

II. MDL FOR MULTI -AGENT SYSTEMS

What makes multi-agent robot mission specification con-
ceptually different from the single robot case is that coordi-
nation and information sharing play a key role. As discussed
in [12], we capture these features by modifying the dynamics
of (1) to allow for the transmission of information among a
collection ofN agents, with index setN = {i ∈ N|i ≤ N}:

ẋi = f i(xi, ui), xi ∈ X i ⊆ R
n, ui ∈ U i

yi = hi(xi), yi ∈ Yi ⊆ R
p

si = gi(xi, yi), si ∈ Si ⊆ R
q,

(2)

where q 6 dim(X i) + dim(Yi). The way these entities
should be understood is as follows: agent-i’s dynamics are
driven by its state,xi, under the controller,ui. The state,
xi, determines the local information produced by the agent’s
sensors,yi, and, consequently, agent-i transmits itsshareable
information, si, by mapping its state and sensor output onto
Si via the functiongi : X i × Yi → Si. 1 This information
may then be transmitted through the network to a desired
neighbor.

Using the model (2) we construct a multi-agent MDL, or
MDLn, by coupling controller and interrupt functions and
adding a new element for specifying the desired network
information dependencies that the motion requires. This col-
lection of dependencies, called thebuddy list, is a collection
of the neighbors with which a particular agent wants to
perform actions or share information.

Explicitly, we assume that each agent has an “egocentric”
network (denotedW i) of agents within its communication
range. We define thedesired buddies of agent-i as the set
βi
d ⊆ 2N , which is interpreted as a fixed set of agents with

which agent-i prefers to communicate.
The total set of agent-i’s available buddies is dependent

on the current available list of agents on the network at a
particular time,t, i.e.

βi(t) = βi
d ∩W i(t) (3)

From the model in equation (2) we know that each agent
chooses to share their information with the vectorsi. Assume

1Note that this product of state and output spaces may not be needed;
however, the inclusion ofYi makes the environmental dependence of shared
information more explicit.

that agent-i has k buddies, i.e.βi = {a1, · · · , ak}, and
each of these agents transmits their information vectors:
s1, · · · , sk. Agent-i combines these vectors into alocally
held vector denoted bŷsi = [s1

T
· · · sk

T
]T ∈ Ŝi ⊆ R

kq.
Then, agent-i uses the shared information of its buddies
agents when making control and interrupt decisions.

Using all of the above definitions, the control and interrupt
functions from MDL are modified as follows. The control
depends on the state and sensor feedback of agent-i, the
information from all buddies of agent-i, and time (R+):

κi : X i × Yi × Ŝi × R
+ → U i.

Additionally, the interrupt function uses the same local and
shared information as

ξi : X i × Yi × Ŝi × R
+ → {0, 1}.

We define anMDLn mode as the tuple(ai, κi, ξi, βi),
composed of an agent identifier,ai, a control law,κi, a
transition function,ξi, and a set of agent buddies,βi, ac-
cording to the preceding definitions. Furthermore, we define
the symbol representing thekth MDLn mode of agentai as
σi
k := (ai, κi

k, ξ
i
k, β

i
k). The MDLn language is the set of all

possible concatenations of these MDLn modes.

A. Agent Interaction Rules

Many multi-agent systems require that the agents be
assigned differentroles, which in turn affect the type of
actions the agents can perform or information they can
obtain. In addition to the convoy protection task discussed
in Section I, one can imagine other leader-follower or team-
based applications where agents partition the network into
different command hierarchies. We use roles to specify the
network hierarchy of the agents involved. Specifically, we
define a role as a static value resulting from the mapping
r : N → R, whereR is a set with total order. Agents use
these roles to determine the members of the network with
which they can exchange information via the following rules:
R1: if r(i) > r(j) then ai is able to receive shared

information fromaj

R2: if r(i) = r(j) then ai andaj may share information
with each other.

R3: if r(i) > r(j) andaj ∈ βi thenai andaj may share
information with each other.

We interpret these rules as follows: R1 states that if the value
of ai’s role is higher than the role value ofaj thenai may
pull any shareable information fromaj without restriction.
R2 describes the case whenai and aj share the same role
value, and hence can exchange their shareable information
without restriction. Finally, R3 provides an exceptional case
whereaj has a lower role thanai; however,ai already plans
to work with aj sinceaj is listed in its own buddy list,βi.

B. MDLn Example

To make the MDLn language definition more concrete, we
consider an example MDLn string involving three agents,
a1, a2, anda3 with role assignmentsr(a1) = 1 andr(a2) =
r(a3) = 0. In this configuration,a1 has a higher role and can



be considered the “leader” ofa2 anda3. We let the agents use
the controllers defined in Section I-A and add an additional
controller: κf = Follow. Also, the agents are equipped
with the obstacle interrupt function from Section I-A:ξobs.
One example of an MDLn string using these controllers and
interrupts is:

(a2, κgtg, ξobs, {})(a
1, κf , ξobs, {a

2})(a3, κf , ξobs, {a
1}).

(4)
This string tellsa2 to head toward a fixed goal location

until it detects an obstacle, and consequently terminates
operation. The second mode in the program instructsa1 to
follow a2, since its buddy list isβ1 = {a2}. Additionally, the
third mode directsa3 to follow a1 due to its list,β3 = {a1}.

Agent-1 is able to execute itsκf controller since its role
is valued higher than agent-2 and is granted access to the
information according to interaction rule R1. Unfortunately,
agent-3 will not be able to follow agent-1 since its network
dependency violates R1. This simple string reveals we need
an MDLn “compiler” that can not only parse the high-
level MDLn language, but also determine whether an MDLn
program can be executed correctly.

III. M ULTI -AGENT MOTION PROGRAMS

The MDLn language presented in Section II provides a
method for us to specify a string of motions for a set of
agents. However, the strings alone do not provide enough
information for determining whether the agents can execute
their given programs. To do so, we need to construct a
grammar that combines the role specifications defined in
Section II-A with the MDLn language. A parser based on
this grammar outputs MDLn strings, which each implement
the controllers described by the motion program, and the
associated role information of the agents. This section in-
troduces the parser and gives an example of an acceptable
MDLn program.

A. Parser

We design ourMDLn grammar such that it can process
agent role specifications in addition to the MDLn mode
strings. According to the standard definition from [5], a
grammar is defined by the tuple

G = (L, T,Π, ω).

L represents thenon-terminals, which are symbols that can
be broken down into smaller components that are combi-
nations of non-terminals andterminals, T . These terminal
symbols are the smallest elements of the grammar and
cannot be reduced into any other element.Π is a set of
production rules that describe how the elements ofL and
T are composed. Finally, the grammar requires a starting
symbol, which we denote asω.

Our grammar is structured using the following production
rules,Π:

O → R⋆ M+

R → I = r

M → (I k z {I⋆}).

(5)

Here, the nonterminals areL = {O,R, I,M} and the
terminals areT = {r, k, z, b, (, ),=}. The first line of (5)
shows the start symbol,ω = O, which is the basic program
production rule. It requires the concatenation of the symbols
R andM , which represent the role assignments and modes,
respectively. Note thatR has a Kleene-closure operator,
denoted ‘⋆,’ which means that our programs expect zero or
more role assignments; additionally, the ‘+’ operator requires
that the program have at least one mode.

The R production, which creates role assignments, takes
the “identifier” non-terminalI, which is similar to a variable
name in standard programming languages, followed by the
helper terminal,=, and role map terminal,r. For example,
theR productions described for the MDLn string in (4) are
written as:

a1 = 1
a2 = 0
a3 = 0

The mode production,M , is made by concatenating the
nonterminalI (also an identifier) with terminalsk andx and
a string of identifier symbols,I⋆. Using this production we
can write the mode string corresponding to (4) as:

(a2, GoToGoal, Obstacle, {})
(a1, Follow, Obstacle, {a2})
(a3, Follow, Obstacle, {a1})

In this code snippet, the controllers from the grammar,k,
are represented by the symbolsGoToGoal and Follow.
Additionally, the z element from the mode production is
represented by the threeObstacle symbols. The buddy
lists for each agent are the identifiers listed between the{}
elements. This grammar allows us to create MDLn programs
that aresyntactically correct; however, we still need to design
a process that ensures that MDLn programs can execute
correctly when deployed onto the networked agents.

IV. MDL N PROGRAM CONSISTENCY

Before deploying an MDLn program onto a team of
mobile robots, we must check whether the program cor-
rectly specifies the network information dependencies of
the agents, which are represented by the buddy lists within
each MDLn mode. We construct this consistency checker
based on techniques from discrete event systems (DES) and
language theory (e.g. [2], [5], [13]). Since MDLn strings
specify a sequence of controllers, we construct an automaton
representing the sequential execution of the system.

This automaton is defined as the tuple

Ai = (Qi, Ei, δ, qi0, o
i),

whereQi is the set of states representing agent-i’s modes
within its MDLn string of lengthm. Also, Ei is the set of
events corresponding to each of the interrupt functions in the
MDLn string. The transition function,δ : Qi × Ei → Qi,
defines the transition to different states ofA from the initial
state,q0. Each state,qik ∈ Qi, represents the the execution
of the controllerκi

k by agentai. The setEi is made up



of the transitions from one MDLn mode to another caused
by the interruptξik → 1. Additionally, the automata have
an output function,oi : Qi → 2N , that maps each state to
the buddy list of that current MDLn mode, i.e. for someqik,
o(qik) = βi

k ∈ 2N , whereN is the agent index set defined
in Section II.

init q
1

1
q
1

2

e
1

1

(a) A1
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(b) A2

Fig. 1. Two automata representing the MDLn strings for agent-1, 1(a),
and agent-2, 1(b).

For example, consider the MDLn string:σ1
1σ

1
2σ

2
1σ

2
2 . Fig-

ure 1 shows the constructed automata that represents agent-
1 and agent-2 executing their given MDLn modes:σ1

1σ
1
2

and σ2
1σ

2
2 , respectively. Additionally, Figure 2 illustrates

the hybrid dynamics of the systems using the same MDLn
modes.

Automaton,A1, in Figure 1(a) starts out running in state
q11 , which has the output mapo(q11) = β1

1 . While in the
state q11 , the dynamics of the system are taken from the
first state in Figure 2(a):̇x1 = f1(x1, κ1

1(y
1)). Once this

mode is interrupted byξ11 → 1, the dynamics are changed
to ẋ1 = f1(x1, κ1

2(y
1)) and the evente11 causes a transition

in A1 to its next state,q12 . The automaton,A2, executes in
a similar manner; however, its controllers and interrupts are
independent ofA1’s.

ẋ1 = f1(x1, κ1

1
(y1)) ẋ1 = f1(x1, κ1

2
(y1))

ξ1

1
→ 1

x1

0

(a) Dynamics of agent-1.

ẋ2 = f2(x2, κ2

1
(y2)) ẋ2 = f2(x2, κ2

2
(y2))

ξ2

1
→ 1

x2

0

(b) Dynamics of agent-2.

Fig. 2. The hybrid automata representing the dynamics of thetwo robots
as they execute their given MDLn strings.

These automata adequately represent theindividual behav-

ior of each agent; however, the MDLn language is designed
to specify tasks for a collection of agents. Therefore, we use
these automata to analyze how the networked information
dependencies of each agent affect the consistency of the
MDLn program. A natural operation for analyzing these
automata is theparallel composition. By composing these
automata, we see how the execution of each agent’s string
affects all of the agents’ behavior during execution of their
individual MDLn strings.

Consider, again, the automata in Figure 1. Using parallel
composition, we generate a so callednetwork automaton,
shown in Figure 3, and denote it asA12 = A1‖A2. This
automaton has four states and two possible events, which
are taken from the event sets of the individual automata, i.e.
E = E1∪E2 = {e11, e

2
1}. This network automaton represents

the global behavior of the agents as each executes its own
MDLn string.
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Fig. 3. The network automaton,A12, generated by the composition of the
automata in Figure 1. The states from automataA1 andA2 are written next
to the states ofA12 to explicitly show the states included in the network
automaton.

A. Network Automata

We use network automata, which were mentioned in the
prior section, to determine when an MDLn program is
inconsistent. To do so, any state in the network automaton
with incorrect information dependencies should bemarked.
Then, the goal of the consistency checker is to determine
whether there are languages over the automaton that lead to
marked states.

More precisely, assume we haven agents, and each agent
has a finite number of modes andki denotes thekth mode of
ai. Each automata is constructed from the agents’ associated
MDLn program. These automata are then composed into
the network automaton,A = A1‖ · · · ‖An. This network
automaton is defined by the tuple:

A = (Q, E , δ̃, q0,Qm).

Each state,̃q ∈ Q = Q1 × · · · × Qn, combines the current
state from each agent in the current MDLn program. Forn
agents, a state is defined bỹql = (q1k1

, · · · , qnkn
), where l

indexes the states ofQ. Returning to the two-agent example
in Figure 3, the state statẽq1 represents the pair of states in
Figures 1(a) and 1(b):(q11 , q

2
1).

The event set,E , is the union of the individual events from
all event sets from each agent’s automaton generated by their



MDLn string, i.e.E = E1 ∪ · · · ∪ En. Additionally, a new
mapping,δ̃ : Q × E → Q, transitions among the states in
Q. Finally, a subset of the automaton’s states,Qm ⊆ Q, are
marked asinconsistent.

B. Inconsistent States

The consistency of a state in the network automaton is
determined by the agents’ networked information dependen-
cies during the execution of their current modes. The MDLn
program that generated the individual automata in Figure 1
may have roles assigned to each agent. Using these roles, we
mark states of Figure 3 if the rules discussed Section II-A
are violated. For example, we can construct apairwise logic
predicate that indicates if a state from the two-agent network
automaton in Figure 3 should be marked:

(q1k1
, q2k2

) ∈ Qm ⇔ P (q1k1
, q2k2

) (6)

where,

P (q1k1
, q2k2

) :=

(a1 /∈ o(q2k2
) ∧ a2 ∈ o(q1k1

) ∧ r(a1) < r(a2)) (7)

∨ (a2 /∈ o(q2k2
) ∧ a1 ∈ o(q2k2

) ∧ r(a2) < r(a2)),

where∨ and∧ denote logical disjunction and conjunction,
respectively. The logical statement expressed by equation(6)
means that a state fromA12 is inconsistent if and only ifa1

is not in a2’s buddy listand a1 depends ona2 and a1’s role
value is less thana2’s value; or,vice versa.

To generalize equation (6) to the case ofn-agents, we take
the disjunction over all possible pairs that are part of state,
q̃l ∈ Q. (If the pair(qiki

, qjkj
) is part of the statẽql, we denote

the relationship by the symbol ‘⊂’.) In other words, using
equation (7), a state inQ is inconsistent if the following
holds:

q̃l ∈ Qm ⇔
∨

(qi
ki

,q
j

kj
)⊂q̃l

P (qiki
, qjkj

). (8)

Returning to the two-agent example network automaton in
Figure 3, assume that the particular MDLn program sets the
role values asr(a1) < r(a2). Additionally, let a1 depend
on a2 while executing its second mode, i.e.o1(q12) = {a2};
however,a2 operates independently while executing its first
mode:o2(q21) = ∅. Applying equation (8) to each state in
Q results in the marking of̃q2, shown in Figure 4, since
a1 /∈ o2(q21) = ∅, a2 ∈ o1(q12), anda1’s role value is lower
thana2’s value.

An automaton with marked states generates amarked
language, or set of strings, that enumerates the behaviors
of the system leading to inconsistent states. The marked lan-
guage of the network automaton in Figure 4 isLm(A12) =
{e11}, since e11 is the only event that leads tõq2. In the
following section we will see how this marked language can
be used to develop a supervisor that disables events leading
to inconsistent states, such asq̃2.

q̃1 q̃2

q̃3 q̃4

e
1

1

e
2

1e
2

1
e
1

1

init

Fig. 4. The two-agent network automaton,A12, with stateq̃2 marked as
inconsistent.

V. SUPERVISORS FORMULTI -AGENT MOTION

PROGRAMS

Section IV developed a way to model MDLn program
specification and indicate when an MDLn program will not
execute correctly because of inconsistent states. In order
to prevent the transition to bad states inQ, we propose a
supervisor that blocks events leading to inconsistent states.

More formally, the supervisor is an automaton represented
by the tuple

S = (W, E , λ, w0, φ)

whereW is the set of states, withw0 as the initial state,
and E is the same set of events fromA. The mappingλ :
W × E → W provides the transition dynamics among the
states inW . This supervisor accepts event strings fromA
and outputs some control signal,γ.

These controls are symbols from a subset of the possible
events in the network automaton:γ ∈ Γ ⊆ E . Consequently,
we define the mappingφ : W → Γ that maps the currently
active supervisor state to a control input,γ ∈ Γ. The network
automaton is given the controlled subset of events, which in
turn disables the events leading to inconsistent states.

Note that the automatonA12 in Figure 4 will enter into
the marked statẽq2 if the evente11 is taken from statẽq1.
To prevent this behavior from occurring, we constructS by
exploring the network automaton with a depth-first-search
(DFS) algorithm [3], adding states to the supervisor and
augmenting the functionφ at each state.

The supervisor forA12 in Figure 4 is generated in the
following way. We start at̃q1 in A12 and create an initial
state inS, w0 := w1, as shown in Figure 5. At this state,
the current event string is simply the empty string,ǫ, and
the control function is initialized asφ(w1) = {e11, e

2
1}. We

then examine the available transitions out of stateq̃1. By
taking e11, we encounter the inconsistent stateq̃2 and the
current stringe11 is an element ofLm(A12). Therefore, this
event must be disabled at statew1 by excluding it from the
control function:φ(w1) = {e21}. Next, we return to statẽq1
(via DFS) and take the last remaining event toq̃3, which
is a consistent state. We create the next state,w2, in the
supervisor and connect it tow1 with evente21; additionally,
the control function atw2 is initialized asφ(w2) = e11. After
making the final jump to statẽq4 with e11, we see that there
are no more states inQ and q̃4 is not an inconsistent state;



therefore, the process completes by adding with a final state
w3 to the supervisor and settingφ(w3) = ∅.

init

e
2

1
e
1

1
w3w2w1

Fig. 5. The constructed supervisor for the network automaton A12 in
Figure 4.

A. MDLn Supervisor Deployment

In summary, the MDLn compilation process involves the
inconsistency analysis of Section IV and theautomatic
generation of a supervisor automaton. If a MDLn program
is created such that its initial state is inconsistent, thena
supervisor automaton will not be generated. Otherwise, the
supervisor automaton is created and is deployed within a
supervisor agent that can monitor the other MDLn agents
on the network.

This supervisor agent inspects the current state of its
automaton and applies theφ(·) function. If any events should
be disabled on the network, the supervisor issueshold
messages to those agents with the disabled events. Addi-
tionally, as the MDLn agents execute their programs, they
transmittransition messages that cause the supervisor
to advance its automaton and setup the next set of enabled
events. Examples of this implementation are described in the
next section.

VI. SIMULATION RESULTS

In this section, we demonstrate the simulation of the
MDLn framework discussed through Sections II–V using
the robotics simulation environmentPlayer/Stage2 as our
back-end. We use our multi-agent software infrastructure,
Pancakes, to create and manage the agents on the network.

A. Example: Basic Supervisor Operation

Assume we are given two agents that share a leader role
and a single follower, i.e.r(a1) = r(a2) > r(a3). The
MDLn program is:

a1 = 1, a2 = 0, a3 = 0
(a1, GoToGoal, AtGoal, {a3})
(a1, Wait, Always, {a3})
(a2, GoToGoal, AtGoal, {})
(a2, Wait, Always, {a3})
(a3, Follow, BuddyAtGoal, {a1})
(a3, Follow, Obstacle, {a2})

This MDLn program instructsa1 to approach the goal
and then, once the goal is reached, wait indefinitely; addi-
tionally, a1 is instructed to share its information witha3.
A similar string is given toa2, but it excludesa3 from
knowing its information until it switches to its second mode:
(a2, Wait, Always, {a3}). Finally, a3 is instructed
to follow a1 until a1 reaches the goal, and then switch

2http://playerstage.sourceforge.net/

to following a2 until it detects an obstacle. Note thata3

uses theBuddyAtGoal interrupt for determining when it
should switch to followinga2. SinceBuddyAtGoal uses
the shared (and possibly noisy) information ofa1, it is
possible for the interrupt to fire beforea1 actually reaches
the goal.
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(a) The network automaton generated by the exam-
ple MDLn program.
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(b) The supervisor generated from the follow-
the-leader MDLn program.

Fig. 6. The network and supervisor automata generated by thecompilation
of the MDLn example program.

The network automaton generated by the compilation of
this program is shown in Figure 6(a). Note that ifa3 switches
to its second mode it creates an inconsistent state since it
depends on the information froma2 to execute theFollow
controller. Additionally, the network dependencies are still
inconsistent ifa1 switches to its second mode anda3 still
attempts to followa2. Therefore, by applying the logic
predicate from equation (8), states̃q5 and q̃7 are marked
as inconsistent.

The compilation automatically generates the supervisor
shown in Figure 6(b). This supervisor automaton is deployed
inside the supervisor agent, denotedSA, which receives
messages from the MDLn agents,a1, a2, anda3, every time
a transition in the MDLn program occurs. When the program
starts, the supervisor starts in statew1 with only two enabled
eventse11, e

2
1. TheSA issues ahold message toa3, which

prevents thea3 from executing its second mode (Figure 7).
Oncea1 reaches the goal, the evente11 is transmitted to the
SA and the supervisor advances to statew2. In this state,a3

is still held from advancing its program. Aftera2 reaches the



goal, the evente21 advances the supervisor to statew3 and
a release message is sent toa3. Finally, a3 executes its
Follow behavior and completes the program once it reaches
a2, as shown in Figure 8.

Goal

Fig. 7. This image showsa3 being held after initially followinga1.

Fig. 8. Oncea2 reaches the goal theSA releasesa3 anda3 follows a2

to the goal.

B. Example: Threat Detection

In this example, we construct a more complicated MDLn
motion program that uses four heterogeneous agents. We par-
tition the network using the following role values:r(a1) =
2, r(a2) = r(a3) = 1, r(a4) = 0. The a1 agent has a
sensor that can identify possible threats to the other agents.
Two other agents,a2 and a3, are tasked with exploring
the environment anda4 is set to followa3 for exploration
redundancy.

The MDLn program scripted for this example is:

(a1, GoToGoal, ThreatDetected, {a2 a3})
(a1, ApproachThreat, AtThreat, {})
(a1, ScanThreat, 10, {})
(a1, GoToGoal, AtGoal, {a2 a3})

(a2, Explore, Obstacle or 10, {})
(a2, Follow, Obstacle, {a1})
(a2, Avoid, Clear, {})
(a3, Explore, Obstacle or 10, {a4})
(a3, Follow, Obstacle, {a1})
(a3, Avoid, Clear, {})
(a4, Follow, Obstacle, {a3})
(a4, Avoid, Clear, {})
(a4, GoToGoal, AtGoal, {})

This more complicated program hasa1 go to the goal until it
detects a threat, all the while sharing information witha2 and
a3. When it detects the threat, it must approach and perform
a ScanThreat behavior for 10 time units. After threat
scanning is complete,a1 is instructed to continue towards the
goal. The strings fora2 anda3 are similar: they both explore
until they see an obstacleor 10 time units have passed. Once
that is complete they both followa1 until an obstacle is
detected. Finally,a4 follows a3, which hasa4 ∈ β3, until a4

detects an obstacle. If that event occurs,a4 continues to the
goal position.

The network automata generated by this program has 108
possible states, 46 of which are inconsistent, and the resulting
supervisor contains 62 states. We deploy this program onto
the four agents shown in Figure 9 and a similar supervisor
agent,SA. This example program shows how much more
complicated the network automata and supervisors become
by adding a few modes and agents. However, it also shows
that our automatic tool is useful for the analysis of the
potentially complicated network interactions specified byan
MDLn program.

Fig. 9. The initial configuration of the four agents for the threat detection
example.

Initially, a1 detects and approaches the target in Figure



10(a). At this point in the program,a2 anda3 cannot receive
a1’s position information for following, sincea1 is scanning
the threat by itself. TheSA holds a2 and a3 to prevent
the entry into an inconsistent state; however,a4 can still
follow a3. Oncea1 finishes scanning the threat, it proceeds
towards the goal and againa2 and a3 are allowed to get
a1’s shared information. The evente13 of a1’s MDLn string
fires and advances the supervisor automaton inSA, which
re-enablesa2 anda3. Figure 10(b) shows the completion of
the program, asa1 reaches the goal witha2 anda3 following
anda4 executing itsGoToGoal behavior.

VII. C ONCLUSION

In this paper, we presented a framework based on an
extended MDL for specifying high-level tasks for a collection
of agents. We also discussed the ability of this framework to
compile MDLn programs, which indicate to users whether
the composed motion program is valid for the specified
network topologies. Finally, we demonstrated this framework
by composing, compiling, and executing MDLn programs on
a set of simulated robots.
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