Motion Programs for Multi-Agent Control: From Specificatito Execution

Patrick Martin and Magnus Egerstedt

Abstract— This paper explores the process of turning high- case with self assembly systems [11], [14]. Recently, linea
level motion programs into executable control code for muit temporal logic methods (e.g. [15]) have been applied to-spec
agent systems. Specifically, we use a modified Motion Descrip ify and verify control specifications for multi-agent syste
tion Language (MDL) for networked systems that can specify . .
motion programs for a collection of autonomous agents. This [6]. This work abstracts t-he dynamics of the aggnts f’md then
MDL includes the network information dependencies requirgj uses LTL formulas to Ve”fy that the Contr0| SpeCIflcatIOﬂﬂ Wi
for each agent to perform coordinated behaviors. We discuss succeed. However, these LTL methods, in general, work best
the design of this framework and the language theoretic tosl in known environments and have computational limitations
used to analyze the information dependencies specified by associated with them.

these multi-agent motion programs. Additionally, we devedp a . . .

supervisor system that monitors the behavior of the agentsro Alternatively, we focus on systems in which the agents
the network, and prevents the agents from entering into stats are heterogeneous, the environments are dynamic, and the
where information dependencies are violated. We demonstta interaction topologies may be specifiagriori. An example

our framework using a simulated multi-robot system. of such an application is unmanned convoy protection, where
a UAV is specified as théeader of a convoy, and a UGV

I. INTRODUCTION ;
h . ¢ " botics in di convoy is tasked to follow the leader. The UAV must lead
The growing use of multi-agent robotics in diverse aPihe convoy to a goal location and it must detect threats

plications, from emergency response to warehouse SUpgiy,, appear in the environment. In this scenario, it may

management (e.9. [10],[16]), has created a need for efficiep), advantageous for a human operator to specify network
mission specification and control code generation for teams

. , ologies based on the dynamic changes in the environment.
of autonomous agents. Using a top-down perspective, we CarE”)rop—down mission specification is not the only approach
construct global missions for these agents using pre—maﬂ)er

trol | d then distribute th ted tote controlling multi-agent robots, as shown by recent work
fﬁ:;ger?gs’ and then distribute the generated contdlier dynamic task allocation, e.g. [4], [7], [9]- These method

We approach the mission specification problem by mOcﬁ_roduce an emergent global behavior based on the bottom-
ifying the MDL framework in a way that facilitates the p decision processes of the agents. Typically, the agsts u

construction of motion programs for multi-agent Systemsdistributed algorithms to select individual control tasis
.) decide which group of agents are best suited for information
This new MDL, called MDLn (where then stands for group 9

“ i . sharing. Our approach, as well as EGGs and LTL, puts more

network_ed), en_codes the cor_1tro| 'a"“’_’“?' the deS'Fed control in the hands of the system designer, which may be

network |nformat|on dependencies, as or.|g|nally pro'CJ(.]'aeol.required when the mission specification for a multi-agent

[12]. In this paper, we extend our previous results in §h| ystem requires a human in-the-loop.

area and the contributions of this paper are two-fold. First

we d_evelop a “compil_e_r" of multi-agent motion programsa - Motion Description Languages

that inspects the specified network dependencies among the

agents and reports the existence of inconsistent networkBefore describing the MDLn language and framework, we

topology configurations. Furthermore, we create a tool th&€ed to discuss the “standard” MDL formulation. The work

automatically generates an MDLn supervisor, which observé®f [1], [8] describe MDLs as languages for composing large

the execution of each agents’ MDLn programs and preven@Otion programs from collections of pre-defined contraller

the system from entering into inconsistent configurations. We pair these controllers with an interrupt function that
Other prior work in top-down specification for multi-agentcauses transitions between the controllers at execution.

systems has made use of embedded graph grammars (EGG)et the dynamic equations of a robot agent have the form

[11], [14]. EGG_s are easy tp use when thg net_/vork consists #= f(zu), s X CRuell

of large collections of identical (or nearly identical) age (1)

In fact, EGGs have mainly been applied when the desired, y="h(z), ye Y CR?,

combinatorial intera(_:tion topolqgies are highly_ compﬁnh where z is the statey is the sensor output, and is the
but the agent dynamics are straightforward, as is typitaly oniro| input. This control input is defined by a mapping

This work was supported by the U.S. National Science Foiodor ¥ Y —=u. Addltlonally, the interrupt fl.,InC.tlon is defined
its support through grant number 0820004. as the mapping :) — {0,1}, wherel indicates that an

P. Martin and M. Egerstedt are with the School of Electricalinterrupt has occurred. We denote a MDL mode by the tuple
and Computer Engineering, Georgia Institute of Technology hich h 1 h I
Atlanta, GA 30332 USA patrick. marti n@at ech. edu, (k,€), which means that system (1) executes the controller

magnus @ce. gat ech. edu x until the interrupt triggers, denoted lgy— 1.

MDLs allow the natural construction of motion programshat agent- has & buddies, i.e.3* = {a',---,a*}, and
for robotic systems. However, standard MDL does not encapach of these agents transmits their information vectors:
sulate network dependencies, common in multi-agent robots!, - - - , s*. Agenti combines these vectors into lacally
systems. We address this problem by designing a framewatkld vector denoted by’ = [SlT SkT]T €S C RM,
for constructing motion programs for networked system¥hen, agent- uses the shared information of its buddies
based on our networked MDL languagdDLn, originally agents when making control and interrupt decisions.
proposed in [12]. Using all of the above definitions, the control and interrupt
In Section Il, we review the MDLn model and languagefunctions from MDL are modified as follows. The control
construction. In Sections Il and IV we develop the first ofdepends on the state and sensor feedback of agehe
our contributions: compiling MDLn programs using tech-information from all buddies of agerit-and time R¥):
nigues from the discrete event systems (DES) literature. i i P 4 N ’
Furthermore, Section V describes our second contribution: KA X VI XS X RY = U

the design of our supervisor system. Our simulation resuligdditionally, the interrupt function uses the same locatl an
are demonstrated in Section VI shared information as

II. MDL FORMULTI-AGENT SYSTEMS X xY x8 xR —{0,1}.

What makes multi-agent robot mission specification con- ' i i gl @i
ceptually different from the single robot case is that coord We define anMDLn mode as the tuple(a’, x*, &7, 57),

.) . .) %omposed of an agent identifie#!, a control law,x?, a

nation and information sharing play a key role. As discuss - ! 5 L2
in [12], we capture these features by modifying the d namicganSItlon function ', and a set of agent buddies;, ac-
: P y 9 y cording to the preceding definitions. Furthermore, we define

of (1) to allow for the transmission of information among Ahe symbol representing thHé" MDLn mode of agent: as
collection of N agents, with index se?/ = {i € N|i < N}: oi i (ai,xi, £ 31). The MDLn language is the set of all

it = fiatut), ' e XICR U e U’ possible concatenations of these MDLn modes.
y'=h'"), y €Y CR” (2) A, Agent Interaction Rules
s'=g'(a",y"),s" € S" CRY, Many multi-agent systems require that the agents be

where ¢ < dim(x%) + dim()?). The way these entities as;igned differentoles, which in turn _affect the type of

should be understood is as follows: agéatdynamics are actions the agents can perform or information they can
driven by its stategz?, under the controllery’. The state, obtain. In addition to the convoy protection task discussed
a*, determines the local information produced by the agenti§ Section I, one can imagine other leader-follower or team-
sensorsy’, and, consequently, agentransmits itshareable ~ based applications where agents partition the network into
information, s¢, by mapping its state and sensor output ontélifferent command hierarchies. We use roles to specify the
Si via the functiong® : X x Y — &', 1 This information hetwork hierarchy of the agents involved. Specifically, we

may then be transmitted through the network to a desiredefine a role as a static value resulting from the mapping
neighbor. r: N = R, whereR is a set with total order. Agents use

Using the model (2) we construct a multi-agent MDL, orthese roles to determine the members of the network with
MDLn, by coupling controller and interrupt functions andwhich they can exchange information via the following rules
adding a new element for specifying the desired networkR1l: if r(i) > r(j) then a’ is able to receive shared
information dependencies that the motion requires. Thiis co information froma’
lection of dependencies, called theddy list, is a collection ~ R2: if r(i) = r(j) thena’ anda’ may share information
of the neighbors with which a particular agent wants to with each other.
perform actions or share information. R3: if r(i) > r(j) anda’ € B¢ thena® anda’ may share

Explicitly, we assume that each agent has an “egocentric’ information with each other.
network (denoted/V’) of agents within its communication \We interpret these rules as follows: R1 states that if theeval
range. We define thelesired buddies of agenti as the set of 4''s role is higher than the role value of thena’ may
By C 2V, which is interpreted as a fixed set of agents withpull any shareable information from? without restriction.
which agent: prefers to communicate. R2 describes the case whehanda’/ share the same role

The total set of agents available buddies is dependentyalue, and hence can exchange their shareable information
on the current available list of agents on the network at @ithout restriction. Finally, R3 provides an exceptionase
particular time,t, i.e. wherea’ has a lower role than’; howevera’ already plans

Bi(t) = BN Wi(t) 3) to workwith a’ sincea’ is listed in its own buddy list3’.

From the model in equation (2) we know that each agerft MDLN Example
chooses to share their information with the vegtorAssume To make the MDLn language definition more concrete, we
INote that this product of state and output spaces may not beede consider an example MDLn string mVO|Vmg three agents,

3 1,2 3 Wi i 1y — 2\ _
however, the inclusion @P* makes the environmental dependence of share§ » 4™ anda W'th roI(_e aSS|gnments(a) - 1 andr(a) =
information more explicit. r(a®) = 0. In this configurationg® has a higher role and can

be considered the “leader” of anda®. We let the agents use Here, the nonterminals aré = {O,R,I,M} and the

the controllers defined in Section I-A and add an additionaérminals arel’ = {r, k, z,b,(,),=}. The first line of (5)

controller: k; = Fol | ow. Also, the agents are equippedshows the start symbak = O, which is the basic program

with the obstacle interrupt function from Section I-4;,;. production rule. It requires the concatenation of the sylsibo

One example of an MDLn string using these controllers an®® and M, which represent the role assignments and modes,

interrupts is: respectively. Note that? has a Kleene-closure operator,

denoted x,” which means that our programs expect zero or

(GQ, Kgtg> Eobs s {})(al, Kf, Eobs s {GQ})(G?’, Kfs Sobss {Gl})(4) more role assignments; additionaIIyF,)thg“ P

'operator requires
This string tellsa? to head toward a fixed goal location

that the program have at least one mode.
. . The R production, which creates role assignments, takes
until it detects an obstacle, and consequently termlnat?ﬁ P 9
operation. The second mode in the program instruétso

e “identifier” non-terminal, which is similar to a variable
follow a2, since its buddy list is?! — {a2}. Additionally, the name in standard programming languages, followed by the
third mode directs:? to follow o' due to its list,3% = {a'}.

helper terminal=, and role map terminal;. For example,
Agent-1 is able to execute its; controller since its role

the R productions described for the MDLn string in (4) are
is valued higher than agent-2 and is granted access to the

ritten as:
information according to interaction rule R1. Unforturgte al =1
agent-3 will not be able to follow agent-1 since its network a2 = 0
dependency violates R1. This simple string reveals we need a3 = 0
an MDLn “compiler” that can not only parse the high-

level MDLn language, but also determine whether an MDLn The ”?°de productu-)nM,.{s maQe by cloncatenatlng the
nonterminall (also an identifier) with terminals andz and
program can be executed correctly.

a string of identifier symbols[*. Using this production we
[1l. M ULTI-AGENT MOTION PROGRAMS can write the mode string corresponding to (4) as:

The MDLn language presented in Section Il provides a (a2, GoToGoal, Obstacle, {})
method for us to specify a string of motions for a set of (a1, Follow, Obstacle, {a2})
agents. However, the strings alone do not provide enough (a3, Fol | ow, Cbstacle, {al})

information for determining whether the agents can execute .]
their given programs. To do so, we need to construct a In this code snippet, the controllers from the gramnaar,

grammar that combines the role specifications defined #€ represented by the symb&@ToGoal andFol | ow.
Section 1I-A with the MDLn language. A parser based orf\dditionally, the > element from the mode production is
this grammar outputs MDLn strings, which each implemerfePresented by the thre@st acl e symbols. The buddy
the controllers described by the motion program, and tHiSts for each agent are the identifiers listed betweer{ the
associated role information of the agents. This section iff/éments. This grammar allows us to create MDLn programs

troduces the parser and gives an example of an acceptam@t aresyntactically correct; however, we still need to design
MDLn program. a process that ensures that MDLn programs can execute

correctly when deployed onto the networked agents.
A. Parser

We design outMDLn grammar such that it can process i
agent role specifications in addition to the MDLn mode Before deploying an MDLn program onto a team of
strings. According to the standard definition from [5], amobile robots, we must check whether the program cor-

IV. MDL N PROGRAM CONSISTENCY

grammar is defined by the tuple rectly specifies the network information dependencies of
the agents, which are represented by the buddy lists within
G= (LTI w). each MDLn mode. We construct this consistency checker

L represents theon-terminals, which are symbols that can based on techniques from discrete ever_lt systems (DE.S) and

be broken down into smaller components that are comp2nguage theory (e.g. [2], [5], [13]). Since MDLn strings

nations of non-terminals anrminals, 7. These terminal SPECify a sequence of controllers, we construct an automato

symbols are the smallest elements of the grammar afgPresenting the sequential execution of the system.

cannot be reduced into any other elemditis a set of |NiS automaton is defined as the tuple

production rules tha_t describe how the eIemgntsLoand _ A" = (Q',E",5,¢},0"),

T are composed. Finally, the grammar requires a starting ‘

symbol, which we denote as. where Q" is the set of states representing agesmtmodes
Our grammar is structured using the following productiovithin its MDLn string of lengthm. Also, E* is the set of

rules, IT: events corresponding to each of the interrupt functionbén t

0= B* M+ MDLn string. The transition function§ : Q x E* — Q°,
defines the transition to different states4ffrom the initial
R—1=r (5) state,qo. Each stategi € Q', represents the the execution
M — (I k z {I*}). of the controllerx: by agenta’. The setE® is made up

of the transitions from one MDLn mode to another causeibr of each agent; however, the MDLn language is designed
by the interrupt¢!, — 1. Additionally, the automata have to specify tasks for a collection of agents. Therefore, we us
an output functionp’ : Q" — 2V, that maps each state tothese automata to analyze how the networked information

the buddy list of that current MDLn mode, i.e. for somje

dependencies of each agent affect the consistency of the

o(qt) = Bi € 2V, where\ is the agent index set definedMDLn program. A natural operation for analyzing these

in Section Il.

el

Gl @
(a) A
2
€1

it

(b) A2

Fig. 1. Two automata representing the MDLn strings for adent(a),
and agen®, 1(b).

For example, consider the MDLn string{ oi0?03. Fig-

ure 1 shows the constructed automata that represents agent-

1 and agen® executing their given MDLn modestio}

and 0?03, respectively. Additionally, Figure 2 illustrates

automata is theparallel composition. By composing these
automata, we see how the execution of each agent’s string
affects all of the agents’ behavior during execution of tthei
individual MDLn strings.

Consider, again, the automata in Figure 1. Using parallel
composition, we generate a so calleetwork automaton,
shown in Figure 3, and denote it a4'2 = A'||A2. This
automaton has four states and two possible events, which
are taken from the event sets of the individual automata, i.e
E = E'UE? = {ei, e3}. This network automaton represents
the global behavior of the agents as each executes its own
MDLn string.

(q1,q}) (g3,4%)
INGENG
et el e
(a1,43) (g3,93)

the hybrid dynamics of the systems using the same MDLn

modes.

Fig. 3. The network automatot4'?, generated by the composition of the

Automaton,A!, in Figure 1(a) starts out running in stateautomata in Figure 1. The states from automataand A% are written next

qi, which has the output map(q}) = Bi. While in the

state ¢{, the dynamics of the system are taken from the

first state in Figure 2(a)i' = f!(z',xi(y')). Once this

to the states ofd'2 to explicitly show the states included in the network
automaton.

mode is interrupted by| — 1, the dynamics are changedA. Network Automata

to it = fl(2!, ki(y')) and the event} causes a transition
in A! to its next stategi. The automatonA?, executes in

We use network automata, which were mentioned in the
prior section, to determine when an MDLn program is

a similar manner; however, its controllers and interrupés ainconsistent. To do so, any state in the network automaton

independent ofd'’s.

1 f%ﬁl

mo\

(a) Dynamics of agent-

2 § -1

.730\\

(b) Dynamics of agen-

Fig. 2. The hybrid automata representing the dynamics ofwleerobots
as they execute their given MDLn strings.

These automata adequately representritividual behav-

with incorrect information dependencies should rharked.
Then, the goal of the consistency checker is to determine
whether there are languages over the automaton that lead to
marked states.

More precisely, assume we haweagents, and each agent
has a finite number of modes ahddenotes thé&!*" mode of
a'. Each automata is constructed from the agents’ associated
MDLn program. These automata are then composed into
the network automatond = A!|---||A™. This network
automaton is defined by the tuple:

A=(Q,€,8,q0,Qm).

Each statej € Q = Q' x --- x Q", combines the current
state from each agent in the current MDLn program. &or
agents, a state is defined By = (q,ﬁl, -+, qz.), wherel
indexes the states @. Returning to the two-agent example
in Figure 3, the state statg represents the pair of states in
Figures 1(a) and 1(b)qi, ¢?).

The event set, is the union of the individual events from
all event sets from each agent’s automaton generated hy thei

MDLn string, i.e.£ = E'U---U E"™. Additionally, a new 1
mapping,d : Q x £ — Q, transitions among the states in

€
Q. Finally, a subset of the automaton’s stat€s, C Q, are . ’3
marked asnconsistent. tnit H’ (
. e €1 e
B. Inconsistent States

The consistency of a state in the network automaton is @ @
determined by the agents’ networked information dependen-

cies during the execution of their current modes. The MDLn o)

program that generated the individual automata in Figure i';ﬂgérfs'istggf two-agent network automatod, ”, with stateg, marked as
may have roles assigned to each agent. Using these roles, we '

mark states of Figure 3 if the rules discussed Section II-A

are violated. For example, we can construgaawise logic V. SUPERVISORS FORMULTI-AGENT MOTION
predicate that indicates if a state from the two-agent netwo PROGRAMS

automaton in Figure 3 should be marked:

2
1

Section IV developed a way to model MDLn program
specification and indicate when an MDLn program will not

1 2 1 2
(@, 0i2) € Qm & Plaiy di,)) execute correctly because of inconsistent states. In order
Where to prevent the transition to bad statesd) we propose a
' supervisor that blocks events leading to inconsistent states.
Pla o2)= More formally, the supervisor is an automaton represented
Gy Ths) = b
1 p 5 1 1 5 y the tuple
(a” ¢ olgi,) Na” € o(qx,) Ar(a’) <r(a”)) (7) S = (W,&,\ wo,)
Vo (a® ¢ o(qE,) Aat € o(g},) Ar(a®) < r(a?)),

where W is the set of states, witly, as the initial state,

whereV and A denote logical disjunction and conjunction,and € is the same set of events from. The mappingh :

respectively. The logical statement expressed by equéjpn W x € — W provides the transition dynamics among the

means that a state from!? is inconsistent if and only if,! ~ States inlV. This supervisor accepts event strings frotn

is not in a2’s buddy listand a! depends om? and a''s role @nd outputs some control signa,

value is less tham?’s value; or,vice versa. These controls are symbols from a subset of the possible
To generalize equation (6) to the casergfigents, we take €VeNts in the network automaton:c I' € £. Consequently,

the disjunction over all possible pairs that are part ofestatWe define the mapping : W — T' that maps the currently

G € Q. (If the pair(qi. , qi-) is part of the state;, we denote active supervisor state to a control inpytc I'. The network
the relationship by the éymbol:".) In other words, using automaton is given the controlled subset of events, which in

equation (7), a state irQ is inconsistent if the following turn disables the events leading to inconsistent states.

holds: Note that the automatos'? in Figure 4 will enter into
. o the marked staté, if the evente} is taken from statej;.
@ € Qm = \/ P(q;ﬂ"qkj)' ® 1o prevent this behavior from occurring, we constrgcby

<q};,qij>cfiz exploring the network automaton with a depth-first-search

(DFS) algorithm [3], adding states to the supervisor and

Returning to the two-agent example network automaton iaugmenting the functiop at each state.
Figure 3, assume that the particular MDLn program sets the The supervisor ford!'? in Figure 4 is generated in the
role values as (a') < r(a?). Additionally, leta' depend following way. We start ag; in .A'2 and create an initial
on a? while executing its second mode, i€.(¢3) = {a®}; state inS, wo := w;, as shown in Figure 5. At this state,
however,a* operates independently while executing its firsthe current event string is simply the empty string,and
mode: 0*(¢i) = 0. Applying equation (8) to each state inthe control function is initialized ag(w;) = {el,e?}. We
Q results in the marking ofj;, shown in Figure 4, since then examine the available transitions out of state By
a' ¢ 0*(¢}) =0, a® € 0'(¢3), anda'’s role value is lower taking ¢!, we encounter the inconsistent state and the
thana?'s value. current stringe} is an element of,,, (A'2). Therefore, this

An automaton with marked states generatesnarked event must be disabled at state by excluding it from the
language, or set of strings, that enumerates the behavi@antrol function:¢(w;) = {e?}. Next, we return to staté;
of the system leading to inconsistent states. The marked lafvia DFS) and take the last remaining eventgg which
guage of the network automaton in Figure 44s,(A'2) = is a consistent state. We create the next statg,in the
{et}, sinceeq is the only event that leads t@. In the supervisor and connect it to; with evente?; additionally,
following section we will see how this marked language cathe control function atus is initialized asp(w,) = el. After
be used to develop a supervisor that disables events leadimgking the final jump to statg, with e}, we see that there
to inconsistent states, such @s are no more states i@ and g, is not an inconsistent state;

therefore, the process completes by adding with a final statie following a2 until it detects an obstacle. Note that

ws to the supervisor and setting(ws) = 0. uses theBuddyAt Goal interrupt for determining when it
should switch to followinga?. SinceBuddyAt Goal uses
the shared (and possibly noisy) information @f, it is

2 1
initﬂ@i»@i,@ possible for the interrupt to fire before actually reaches

the goal.

Fig. 5. The constructed supervisor for the network automatd? in
Figure 4.

A. MDLn Supervisor Deployment

In summary, the MDLn compilation process involves the
inconsistency analysis of Section IV and tletomatic
generation of a supervisor automaton. If a MDLn program
is created such that its initial state is inconsistent, then
supervisor automaton will not be generated. Otherwise, the
supervisor automaton is created and is deployed within a
supervisor agent that can monitor the other MDLn agents
on the network. (a) The network automaton generated by the exam-

This supervisor agent inspects the current state of its ple MDLn program.
automaton and applies th€-) function. If any events should el

be disabled on the network, the supervisor isshes d
messages to those agents with the disabled events. Addi- init —
tionally, as the MDLn agents execute their programs, they

. o : 2
transmitt r ansi t i on messages that cause the supervisor €1 el
1

to advance its automaton and setup the next set of enabled
events. Examples of this implementation are describeden th
next section. 3 3
ey el e]
VI. SIMULATION RESULTS ./\ srogram
In this section, we demonstrate the simulation of the @ complete

MDLn framework discussed through Sections II-V using
the robotics simulation environmeriayer/Stage? as our
back-end. We use our multi-agent software infrastructure,

Pancakes, to create and manage the agents on the networkig. 6. The network and supervisor automata generated byutimpilation
of the MDLn example program.

2
€1

(b) The supervisor generated from the follow-
the-leader MDLn program.

A. Example: Basic Supervisor Operation

Assume we are given two agents that share a leader roleThe network automaton generated by the compilation of
and a single follower, i.er(a') = r(a®) > r(a®). The this program is shown in Figure 6(a). Note thatifswitches

MDLn program is: to its second mpde it cr.eates an inconsistent state since it
depends on the information fron? to execute théol | ow

al =1, a2 =0, a3 =0 controller. Additionally, the network dependencies arié st
(al, GoToGoal, AtCGoal, {a3}) inconsistent ifa! switches to its second mode and still
(al, wait, Always, {a3}) attempts to followa2. Therefore, by applying the logic
(a2, GoToGoal, AtGoal, {}) predicate from equation (8), statds and §; are marked
(a2, wait, Always, {a3}) as inconsistent.
(a3, Follow, BuddyAtCGoal, {al}) The compilation automatically generates the supervisor
(a3, Follow, Obstacle, {a2}) shown in Figure 6(b). This supervisor automaton is deployed

This MDLn program instructs:' to approach the goal inside the supervisor agent, denotg@A, Wr;ich rece.ives
and then, once the goal is reached, wait indefinitely; addif€ssages from the MDLn agenis, a*, anda®, every time
tionally, a! is instructed to share its information wit. a transition in the MDLn program occurs. When the program
A similar string is given toa?, but it excludesa® from Starts, the supervisor starts in statewith only two enabled

LT ; L . 1,2 i 3 i
knowing its information until it switches to its second mode @Ventser, e1. The SA issues ahol d message ta*, which

(a2, Wait, Al ways, {a3}).Finally,d? is instructed prevents the:® from executing its second mode (Figure 7).
to follow o' until a! reaches the goal, and then switchOncea' reaches the goal, the everitis transmitted to the

SA and the supervisor advances to state In this stateg®
2http:/iplayerstage.sourceforge.net/ is still held from advancing its program. Aftef reaches the

goal, the event? advances the supervisor to statg and

(a2, Explore, Obstacle or 10, {})

arel ease message is sent t@®. Finally, a® executes its (a2, Follow, Obstacle, {al})
Fol | owbehavior and completes the program once it reaché®2, Avoid, Cear, {})

a?, as shown in Figure 8.

® 0Goal

a

3
@®

Fig. 7. This image showa? being held after initially followinga?.

0Goal
Fig. 8. Oncea? reaches the goal th8A releasesz® anda? follows a?
to the goal.
. mThreat
B. Example: Threat Detection
. . 2
In this example, we construct a more complicated MDLt &a

motion program that uses four heterogeneous agents. We g
tition the network using the following role values{a') =
2,7(a?) = r(a®) = 1,r(a*) = 0. The o' agent has a
sensor that can identify possible threats to the other agen 8a' ®q3
Two other agentsp? and a3, are tasked with exploring
the environment and* is set to followa? for exploration

redundancy.
The MDLn program scripted for this example is:

(al, GoToGoal, ThreatDetected, {a2 a3})
(al, ApproachThreat, AtThreat, {})

(al, ScanThreat, 10, {})

(al, GoToGoal, AtGoal, {a2 a3})

(a3, Explore, Obstacle or 10, {a4})
(a3, Follow, Obstacle, {al})

(a3, Avoid, dear, {})

(a4, Follow, Obstacle, {a3})

(a4, Avoid, dear, {})

(a4, GoToGoal, AtGoal, {})

This more complicated program has go to the goal until it
detects a threat, all the while sharing information withand
a3. When it detects the threat, it must approach and perform
a ScanThr eat behavior for 10 time units. After threat
scanning is complete,' is instructed to continue towards the
goal. The strings foa? anda?® are similar: they both explore
until they see an obstacte 10 time units have passed. Once
that is complete they both follow! until an obstacle is
detected. Finallyg* follows a2, which hasa* € 53, until a*
detects an obstacle. If that event occurScontinues to the
goal position.

The network automata generated by this program has 108
possible states, 46 of which are inconsistent, and thethegul
supervisor contains 62 states. We deploy this program onto
the four agents shown in Figure 9 and a similar supervisor
agent,SA. This example program shows how much more
complicated the network automata and supervisors become
by adding a few modes and agents. However, it also shows
that our automatic tool is useful for the analysis of the
potentially complicated network interactions specifiedany
MDLn program.

Fig. 9. The initial configuration of the four agents for theeidit detection
example.

Initially, o' detects and approaches the target in Figure

10(a). At this point in the prograna? andae® cannot receive
a'’s position information for following, since! is scanning
the threat by itself. TheSA holds a®> and a® to prevent
the entry into an inconsistent state; howewet, can still
follow a3. Oncea! finishes scanning the threat, it proceeds
towards the goal and agai? and «® are allowed to get
a''s shared information. The evenf of a'’s MDLn string
fires and advances the supervisor automato®An which
re-enables:®> anda>. Figure 10(b) shows the completion of
the program, aa! reaches the goal with? anda? following
anda* executing itsGoToGoal behavior.

VII. CONCLUSION

In this paper, we presented a framework based on a
extended MDL for specifying high-level tasks for a collecti
of agents. We also discussed the ability of this framework tc
compile MDLn programs, which indicate to users whether
the composed motion program is valid for the specified
network topologies. Finally, we demonstrated this framdwo
by composing, compiling, and executing MDLn programs on
a set of simulated robots.

ACKNOWLEDGEMENT

The authors thank Jean-Pierre de la Croix for helpful
interactions.

REFERENCES

[1] R.W. Brockett. On the computer control of movementPiroceedings
of the 1988 Conference of Robotics and Automation, pages 534-540,
April 1988.

[2] C.G. Cassandras and S. Laforturetroduction to Discrete Event
Systems. Springer, New York, NY, 2008.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stdintroduction to
Algorithms. The MIT Press, Cambridge, MA, 2005.

[4] B. Gerkey and M. Mataric. A formal analysis and taxononfytask
allocation in multi-robot systemdnternational Journal of Robotics
Research, 23(9):939-954, September 2004.

[5] J. Hopcroft, R. Motwani, and J. Ullmarintroduction to Automata
Theory, Languages, and Computation. Addison Wesley, 2006.

[6] M. Kloetzer and C. Belta. Temporal logic planning and toh of
robotic swarms by hierarchical abstractionEEE Transactions on
Robotics. Vol. 23, pp. 320-330, April 2007.

[7] T. Leuth and T. Laengle. Task description, decompasjtiand al-
location in a distributed autonomous multi-agent robottesys In
Proceedings of International Conference on Intelligent Robots and
Systems, pages 1516-1523, September 1994.

[8] V. Manikonda, P.S. Krishnaprasad, J. Hendler. Langsagehaviors,
hybrid architectures and motion control. In J.C. WillemdBaillieul,

editor, Mathematical Control Theory, pages 199-226. Springer 1998. Fig. 10.

[9] J. McLurkin and D. Yamins. Dynamic task assignment in aob
swarms.Robotics: Science and Systems |. Cambridge, Massachusetts
2005.

[10] E.H. Ostergaard, M. Matatj and G. Sukhatme. Distributed multi-
robot task allocation for emergency handling. Pnoceedings of the
IEEE/RS] International Conference on Intelligent Robots and Systems,
Wailea, Hawaii, October 2001.

[11] J.M. McNew and E. Klavins. Locally interacting hybrigstems with
embedded graph grammars. 48" |EEE Conference on Decision

and Control. 2006, pages 6080-6087. [15]

[12] P. Martin, J.P. de la Croix, and M. Egerstedt. MDLn: A ioat
description language for networked systemsPhaceedings of 47t

IEEE Conference on Decision and Control, pages 558-563, December [16]

2008.

[13] P.J.G. Ramadge and W.M. Wonham. The Control of DiscEatent
Systems.Proceedings of the IEEE, Vol. 77, No. 1, pages 81-98,
January 1989.

o
e d’
1 Y
a'e -
= Held! 7
'
1
|
[}
'
1
\j
® a*
®a4
(@
a
a'® 4
@a »
a®®
@®a’
=
(b)

Images of the simulation running the example MDLagoam.

The image in Figure 10(a) shows anda® being held by theSA while a!
' scans the target. Figure 10(b) shows the final completiomefstmulation
with all agents approaching the final destination.

[14] B. Smith, A. Howard, J.M. McNew, J. Wang, M. Egerstedtulti4

robot deployment and coordination with embedded graph grars.
Journal of Autonomous Robots, 26:79-98, Springer 2009.

P. Tabuada and G.J. Pappas. Model checking LTL overraitatile
linear systems is decidabléecture Notes in Computer Science, O.
Maler and A. Pnueli, Eds. Springer-Verlag, 2003, vol. 2623.

P. Wurman, R. D’Andrea, and M. Mountz. Coordinating Hreds
of cooperative, autonomous vehicles in warehougdsMagazine,
29(1):1-19, 2008.

