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ABSTRACT

A bright flare from a galactic nucleus followed at late times by a t−5/3 decay in

luminosity is often considered to be the signature of a tidal disruption of a star by a massive

black hole. The flare and afterglow are produced when the stream of stellar debris released

by the disruption returns to the vicinity of the black hole, self-intersects, and eventually

forms an accretion disk or torus. In the canonical scenario of a solar-type star disrupted

by a 106 M� black hole, the time between the disruption of the star and the formation of

the accretion torus could be years. Presented here are fully general relativistic simulations

of a new class of tidal disruption events involving ultra-close encounters of solar-type stars

with intermediate mass black holes. In these encounters, a thick disk forms promptly after

disruption, on timescales of hours. After a brief initial flare, the accretion rate remains

steady and highly super-Eddington for a few days at ∼ 102M� yr−1.
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CHAPTER I

INTRODUCTION

While evidence supporting the presence of black holes (BHs) at the center of most

galaxies is mounting, still more methods for the identification of these objects are needed to

cover larger potential mass ranges for the BHs. This is particularly important in quiescent

galaxies wherein accretion powered nuclear activity is absent, and as a result they are not

highly luminous. Lacking this activity, the electromagnetic signatures of tidal disruption

events (TDEs) should be distinguishable.

As more potential observations accumulate, simulations that expand the well understood

parameter space become necessary to interpret these observations. We have identified a

region of TDE parameter space that displays prompt hyperaccretion and torus formation.

The accretion rate data of this study can be used to widen understanding of potential

observational signatures of TDEs, and hopefully guide astronomical searches.

Interest in TDEs was sparked in the 1970s with the suggestion that some active galactic

nuclei (AGN) could contain massive BHs. It was hypothesized by Hills in 1975 that TDEs

could provide both the required matter to fuel the growth of the massive BH, and the mass

accretion that leads to the observed luminosity of AGN [2]. Hills made some preliminary

calculations regarding the growth rate of massive BHs that undergo TDEs, and the resultant

luminosities. While these calculations were Newtonian and very approximate, they provide

a good starting point. He also pointed out that for BHs with a mass M > 3× 108M�, the

radius within which tidal disruption takes place (tidal radius) is less than the Schwarzchild

radius, and therefore stars are either not disrupted (if they pass far enough from the black

hole), or completely absorbed. Following this, he calculated the stellar mass density required

in the area around the BH for it to grow from a mass consistent with stellar evolution into a

massive BH (M ' 108M�). At this point however, TDEs were still not very well understood,

so these results were preliminary, at best.
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In the 1980s, more evidence gathered for a concentrated dark mass at the galactic

center [3], which increased curiosity in TDEs leading to a comprehensive qualitative study

of TDEs by Rees in 1988 [4]. This study was more focused on the resultant debris from a

TDE. Previously it had been assumed that the majority of the matter from the disruption

would be gravitationally bound to the BH and eventually accreted. Rees noted however

that before reaching periastron the star will develop a quadrupole distortion which results

in a gravitational torque. This causes a significant angular velocity in the star that is

aligned with the orbital angular momentum. As such, when the star reaches periastron,

the gas on the part of the star furthest from the black hole will have an increased total

velocity (and consequently orbital energy) relative to the BH, and the closer gas will have a

diminished total velocity. This creates a very large spread in orbital energies, which results in

(under Rees’ simplifying assumption that the orbital energy distribution is roughly uniform

centered on zero) half of the material being bound and half unbound. While this assumption

is not exactly correct in that the orbital energy distribution will likely not be uniform, this

analysis captures the important idea that due to this co-rotational spin up, there will be a

large spread in the orbital energies resulting in both bound and unbound material.

Due to the large spread in orbital energies, some of the unbound material can be ejected

at very high speed. Rees also argues that the bound material will accrete rather quickly due

to viscous effects and shocks resulting from relativistic orbital effects. Possibly one of the

most important results of this study is that accretion rate (and consequently the luminosity)

resulting from this disc of bound material will fall off as t−5/3, which potentially provides

a way to identify tidal disruption events from the decay of an observed electromagnetic

signature.

Rees also notes that for ultraclose passages (such as those that are the subject of our

study) for which the pericentric distance is much smaller than the tidal radius, relativistic

effects are dynamically significant. This put a very clear bound on the applicability of early

numerical simulations. Any study that wished to investigate ultraclose passages could not

make a Newtonian approximation without producing erroneous results.

Shortly following this qualitative description of TDEs was one of the first numerical
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studies presented by Evans and Kochanek [5]. In order to not overstep current computa-

tional bounds, this study investigated the regime in which the pericentric distance is equal

to the tidal radius. Under these conditions the star is still disrupted, however the tidal fields

are sufficiently weak, and thus a Newtonian approximation can be made with reasonable

accuracy. This study also made use of smoothed particle hydrodynamics (SPH), which cal-

culates hydrodynamic evolution using a number of discrete fluid particles [6]. In this very

limited weak field regime, the results of the study matched very well with the analysis given

by Rees.

In order to investigate the highly relativistic regime of close encounters, Laguna et al.

made a study that involved penetration factors (β which is defined as the ratio of the tidal

radius to the pericentric distance) as high as 10 [1]. In this study, they utilized an implemen-

tation of SPH that evaluates the fluid particle Lagrangian on the static curved spacetime of

the BH. While this is only an approximation, as the fluid self gravity is still Newtonian and

the spacetime remains completely static, it is reasonably accurate for situations (such as

this) where the BH is by far the major source of curvature. These simulations demonstrated

key relativistic effects as a result of orbital precession, such as the possibility of a parabolic

orbit crossing itself.

Subsequent studies have incorporated detailed micro-physics [7, 8, 9], considered a wider

variety of stellar objects, such as white-dwarfs and red-giants [10, 11, 12, 9, 13], covered

longer dynamical times [14], and included better descriptions of gravity for ultra-close en-

counters [1, 15, 16].

A challenging aspect of TDE studies is the inherent difficulty in capturing numerically

the formation of the accretion disk from the bound stellar debris [17, 18, 19, 20]. The

complication arises because, in canonical TDEs, the time between the disruption of the star

and the formation of the accretion disk amounts to several orbital periods of the stellar

debris that are in highly eccentric orbits. This translates into years for a solar-type star

disrupted by a 106M� BH. For reference, numerical simulations in these cases cover at most

a few tens of hours.

In a series of very recent papers, circularization of the returning debris is addressed
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with a variety of methods. Shiokawa et al. find that the debris circularizes at a larger

radius than previously thought and that the accumulation of mass in the ensuing ring is

fairly slow (the characteristic time scale is several times the orbital period of the most

tightly bound debris) [21]. Guillochon and Ramirez-Ruiz consider the self-intersection of

thin post-disruption streams for an ensemble of events and conclude that streams typically

self-intersect at large distances from the BH, leading to a long viscous time and an extensive

delay before the onset of rapid accretion [22]. Bonnerot et al. and Hayasaki et al. point

out the importance of cooling on the rate of circularization of the debris; their general

conclusion is that efficient cooling leads to very long circularization time scales, hence a

delay in the onset of accretion [23, 24]. The picture emerging from the studies above is

that, although accretion could be prompt under the right conditions, it is likely that the

onset of accretion is delayed by an appreciable amount of time, perhaps of order a year.

Our study introduces examples of a new class of TDEs, for which a puffed disk or torus

forms promptly after disruption. Furthermore, the BH accretes at a steady and highly

super-Eddington rate of about 102M� yr−1. The TDEs in our study involve ultra-close

encounters between low mass (0.57−1M�) stars and a 105M� BH. TDEs with intermediate

mass BHs, but larger separation encounters, have been also studied by Ramirez-Ruiz and

Rosswog [25]. Our simulations are in a regime where accounting for full general relativistic

effects is needed, including those from the spin of the BH. In these ultra-close encounters,

the star is effectively disrupted as it arrives at periapsis, with the tidal debris plunging into

the BH almost instantaneously (on the timescale of one orbital period). Moreover, as a

result of the extreme proximity of the debris to the BH, general relativistic precession is

very efficient in circularizing stellar material to form an expanding torus that engulfs the

BH. The inner material in the torus spirals into the BH and is accreted at a constant rate

until the supply of bound debris is exhausted.
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CHAPTER II

CANONICAL TIDAL DISRUPTIONS AT A GLANCE

A star of mass M∗ and radius R∗ interacting with a BH of mass Mh, likely in a highly

eccentric or parabolic orbit [26, 27, 28], will be disrupted by tidal forces if the star approaches

near the BH within a distance Rt, called the tidal radius, given approximately by

Rt ≡ R∗
(
Mh

M∗

)1/3

. (2.1)

Denoting the distance of closest approach to the BH as Rp , it is customary to characterize

the strength of a TDE encounter by the penetration factor β, which is defined as

β ≡ Rt

Rp
=
R∗
Rp

(
Mh

M∗

)1/3

. (2.2)

The fourth length scale in the problem, in addition to R∗, Rt and Rp, is the gravitational

radius Rg = GMh/c
2, which is equal to half the horizon radius for a non-spinning BH and

the full horizon radius for a maximally rotating BH.

Given R∗, Rt, Rp and Rg, it is illustrative to pictorally represent the domain of as-

trophysical relevance of TDEs, as first suggested by Luminet and Pichon [29]. One such

representation of this domain is a triangle in the β vs Mh diagram as shown in Figure 2.1.

Interpreting β in Eq. (2.2) as a function of Rp clarifies the demarcations between different

regions of parameter space. The base of the triangle is Rp = Rt, or βt ≡ β(Rt) = 1. Below

this line (Rp > Rt) it is clear that there is no disruption. The left side of the triangle is the

line obtained by setting Rp = R∗; that is,

β∗ ≡ β(R∗) =

(
Mh

M∗

)1/3

. (2.3)

To the left of this line (Rp < R∗) lie very close encounters where the BH enters the star

in the process of disrupting it. The process is very similar to the high-speed collisions of

stellar-mass BHs and red giants as studied by Dale et al. [30]. Finally, the right side of the
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Figure 2.1: Domain of astrophysical relevance of tidal disruptions for a main-sequence star
with mass M∗ = M� and radius R∗ = R�. The thick vertical line denotes cannonical TDEs.
The square point shows the ultra-close TDE from [1] and crosses those in the present study.

triangle is the line when Rp = Rg; that is,

βg ≡ β(Rg) =
R∗

GM∗/c2

(
Mh

M∗

)−2/3
. (2.4)

To the right of this line (Rp < Rg) are events where the star enters the BH before it is

disrupted.

According to Figure 2.1, for a sun-like star (M∗ = M� and R∗ = R�), the maximum

BH mass to disrupt the star is Mh = 3.2 × 108M�. Additionally, the highest penetration

factor for which disruption can take place is β = 78, which involves a Mh = 4.7 × 105M�

BH. The edges of the triangle of astrophysical relevance are, of course, not sharp due to

variations in the definition of of relevant length scales arising from the spin of the BH, the

space-time curvature in the neighborhood of the BH, and the internal structure of the star.

After disruption, the receding debris spreads, with roughly half of the material remaining

7



bound to the BH. The most bound material has specific binding energy given by

emin ' −GMh∆R∗
R2

f

' −Gβ2f−2 ξ M2/3
∗ R−1∗ M

1/3
h , (2.5)

where ∆R∗ = ξ R∗ is the spread of the debris with ξ being a deformation factor, and

Rf = Rt

[
β n+ (1− n)

β

]
=
Rtf(β, n)

β
(2.6)

is the distance to the BH when the spread in specific binding energy of the debris freezes-in.

In the original estimates [5] n = 0 (f = 1), and thus Rf = Rp. More recent studies [31, 8]

suggest that n = 1 (f = β), so Rf = Rt. In our study, we observed that n ∼ 0.5, which for

large β translates into f ∼ 0.5.

With emin at hand, the characteristic fallback time for the most tightly bound material

to return to the BH is

tmin ' 2π
GMh

(2|emin|)3/2

' π√
2G

β−3 f3ξ−3/2R3/2
∗ M−1∗ M

1/2
h . (2.7)

An estimate of the debris return at late times is obtained from the Keplerian relation

de

dt
=

1

3
(2πGMh)2/3 t−5/3 (2.8)

and the mass per specific binding energy

dMh

de
' M∗

2 |emin|
' M∗

t
−2/3
min

1

(2πGMh)2/3
, (2.9)

which is assumed to be roughly constant. Therefore,

Ṁh ≡
dMh

dt
=
dMh

de

de

dt
' Ṁmax

(
t

tmin

)−5/3
. (2.10)

with Ṁmax ≡ M∗/(3 tmin). The power-law decay of t−5/3 in Eq. (2.10) is considered to be

a ubiquitous property of TDEs as long as the mass per unit binding energy of the debris is

approximately constant [26, 5, 1, 9]. Slight departures from this power-law have been found

close to the peak accretion rate as a result of the equation of state of the star [7] or effects
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from the spin of the BH [11]. Recent work by Guillochon and Ramirez-Ruiz has shown that

the canonical t−5/3 is only characteristic of full tidal disruptions [8].

In the case of a TDE with M∗ = M�, R∗ = R� and Mh = 106M�,

tmin ' 0.11β−3 f3ξ−3/2 r3/2∗ m−1∗ M
1/2
6 yr , (2.11)

and

Ṁmax ' 0.3β3 f−3ξ3/2r−3/2∗ m2
∗M

−1/2
6 M� yr−1 , (2.12)

where M6 ≡Mh/106M�, r∗ ≡ R∗/R� and m∗ ≡M∗/M�. For comparison, the Eddington

accretion rate in this situation is ṀEdd = 0.02M6M� yr−1 (assuming 10% efficiency).
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CHAPTER III

NEW TDE REGIME

We are interested in TDEs with β = 10 and 15, involving a BH with mass Mh = 105M�.

They are denoted by crosses in Figure 2.1 and are closer to the BH-enters-star boundary

than the “canonical” scenarios of β = few and Mh = 106M�, which are denoted by a

thick vertical line in Figure 2.1. In the same figure, the square point shows the ultra-close

TDE from [1]. We consider non-spinning BHs and BHs with spin a/Mh = ±0.65. The

sign denotes whether the spin of the BH is aligned (plus) or anti-aligned (minus) with

the orbital angular momentum of the star. The disruptions involve main-sequence type

stars with masses M∗ = 1M� and 0.57M�, modeled as polytropes with index Γ = 4/3

and injected in parabolic orbits. Table 3.1 provides the parameters of the simulations: the

penetration factor β, the BH spin parameter a, and the mass of the starM∗. The simulations

fully account for general relativistic effects. To this end, we use our numerical relativity

infrastructure Maya, used also in our previous general relativistic TDE studies [11].

Table 3.1: Simulation Parameters and Accretion Rates.
Run β a/Mh M∗/M� Ṁmax (M� yr−1) Ṁlate(M� yr−1)
β10S0M1 10 0 1 3.6× 102 1.0× 103

β10S0.65M1 10 0.65 1 1.0× 104 7.5× 102

β10S−0.65M1 10 -0.65 1 1.2× 105 2.0× 102

β10S0M0.57 10 0 0.57 3.5× 102 1.0× 102

β10S0.65M0.57 10 0.65 0.57 7.6× 103 4.0× 102

β10S−0.65M0.57 10 -0.65 0.57 7.9× 104 3.0× 102

β15S0M0.57 15 0 0.57 2.0× 104 4.0× 102

β15S0.65M0.57 15 0.65 0.57 8.8× 104 3.5× 102

β15S−0.65M0.57 15 -0.65 0.57 3.8× 105 2.0× 102

In general terms, the TDEs studied here involve stars comparable in size to the BH,

R∗ ' 4.7M−15 r∗Rg, periapsis distances of about

Rp ' 4.64β−110 M
1/3
5 m

−1/3
∗ R∗, (3.1)
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and tidal radius

Rt ' 218M
−2/3
5 m

−1/3
∗ r∗Rg , (3.2)

where M5 ≡Mh/105M� and β10 ≡ β/10. Although the value of Rp suggests that the star

could potentially swing by the BH without the BH entering the star, the combination of

large β and general relativistic effects produce an outcome dramatically different from the

situations with β ∼ 1 and 106M� mass BHs (next section).

With β ≥ 10 and intermediate mass BHs, the star will be effectively disrupted and

stretched to a few times its original size by the time it reaches periapsis passage. A defor-

mation factor ξ ' 4 was found to be common in our simulations. Therefore, from Eqs. (2.7)

and (2.10)

tmin ' 137β−310 f
3ξ
−3/2
4 r

3/2
∗ m−1∗ M

1/2
5 s , (3.3)

and

Ṁmax ' 9.6× 103 β310 f
−3 ξ3/24 r

−3/2
∗ m2

∗M
−1/2
5 M� yr−1 , (3.4)

where ξ4 = ξ/4. For reference, the Eddington accretion rate in this case is ṀEdd =

0.002M5M� yr−1. Our simulations show that Ṁmax ∼ 104M� yr−1 and tmin ∼ 25 s. This

time-scale is comparable to the circular orbital period of the most bound material:

Pcirc = 2π

√
(Rp −∆R∗)3

GMh

' 316 (1−∆R∗/Rp)
3/2 β

−3/2
10 r

3/2
∗ m

−1/2
∗ s

' 16.5β
−3/2
10 r

3/2
∗ m

−1/2
∗ s , (3.5)

where ∆R∗/Rp ' 0.86 ξ4 β10m
1/3
∗ M

1/3
5 .
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CHAPTER IV

ANATOMY OF A DISRUPTION

We focus this discussion chiefly on the accretion rates onto the BH. Figure 4.1 shows

the accretion rates of tidal debris through the BH horizon. The time axis is such that t = 0

s denotes periapsis passage. Three distinct accretion epochs or stages are identifiable in

most of the cases.

The first phase is a narrow spike or flare in the accretion rate. The spike is due to

the portion of the stellar debris that immediately plunges into the BH. An estimate of this

accretion rate is given by

Ṁh ∼ Ah ρ∞ v∞

∼ 104 β
1/2
10 M

7/3
5 m

7/6
∗ r

−7/2
∗ M� yr−1 , (4.1)

where we have used Ah ∼ 4π R2
g, v∞ ∼ (GMh/Rp)

1/2 and ρ∞ ∼ M∗/(4π R3
∗/3). This

estimate is consistent with the values for Ṁmax reported in Table 3.1.

The next stage following the accretion flare is a decay phase, which for the simulations

involving a non-spinning BH as seen in Figure 4.1 (top panel), loosely resembles a power-law

decay. The duration and the presence of this decay seem to depend on the spin of the BH

and the penetration factor β.

Finally, as new material returns to the BH, it circularizes and forms an accretion torus

on a timescale of ∼ 10 tmin ∼ 1, 400 s [5], with the accretion eventually reaching steady

state at about Ṁlate ∼ 102M� yr−1, as noted in the last column of Table 3.1. The steady

state accretion will cease when the mass supply from the bound debris is depleted. Our

simulations do not last long enough to reach this regime.
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Ṁ
h
(M

�
/y

r)

C

100

101

102

103

104

105

Ṁ
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Ṁ
h
(M

�
/y

r)

t (s)

E

β10S0M0.57
β10S0M1.0

β10S−0.65M0.57
β10S−0.65M1.0

β10S0.65M0.57
β10S0.65M1.0

β10S0M0.57
β10S−0.65M0.57
β10S0.65M0.57

β15S0M0.57
β15S−0.65M0.57
β15S0.65M0.57

Figure 4.1: BH accretion rate as a function of time. Panels A, B and C display cases
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CHAPTER V

RESULTS

Figure 5.1: Snapshots of the density (top), temperature (middle), and specific entropy
(bottom) of the debris at t = −28s, t = 450s, and t = 1250s for the run β10S0M0.57.

We report results from nine simulations, with parameters summarized in Table 3.1. To
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illustrate the effect of the mass of the star, panels A, B and C in Figure 4.1 show the BH

accretion rate for β = 10, grouping the cases with the same BH spin parameter. Notice that

the accretion rate seems to be insensitive to the mass of the star. Perhaps the only case

with noticeable differences is that of vanishing BH spin. We will thus focus the discussion

on the star with mass M∗ = 0.57M� since we have a wider variety of simulations for this

star.

In panels D and E of Figure 4.1, we organize the runs according to the penetration

factor, with β = 10 in panel D and β = 15 in panel E. Notice that the peak accretion rate

of the flare is higher if the BH is spinning. Interestingly, the case with a counter-rotating

orbit (i.e. BH spin anti-aligned with the orbital angular momentum) yields the largest peak

accretion rate. For the β = 10 simulations, the post-flare accretion rate depends on the

BH spin magnitude but not its orientation, which is consistent with similar findings for the

steady-state, subsonic accretion onto a moving BH [32]. The late-time accretion rate seems

to increase with the spin of the BH. Another difference between the a/Mh = 0 and the

a/Mh = ±0.65 cases is that for the latter, the time scale for flare decay is shorter; that is,

the late constant accretion phase, which signals the formation of the torus, is reached after

a couple of hundred seconds.

The corresponding β = 15 cases show that the spin of the BH does not play a role in

determining the late-time, constant accretion rate. Furthermore, as with the β = 10 cases

with spinning BHs, the constant accretion phase is reached within a few hundred seconds.

For both the β = 10 and β = 15 cases, the late-time accretion rate is of the order of

102M� yr−1.

In summary, given the parameters that we varied (M∗, a/Mh, β) and the region of

parameter space that we explored, we found that the accretion rate is not very sensitive to

M∗, and that the rate reached during the flare depends on both a/Mh and β. Furthermore,

the late accretion rate for β = 15 is not sensitive to the spin of the BH, and for both

penetration factors is approximately Ṁh ∼ 102M� yr−1. With the exception of the cases

with β = 10 and a/Mh = 0, 0.65 (panels A and B in Figure 4.1), there are no hints of a

power-law decay rate.
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Figure 5.1 shows snapshots of the density, temperature, and specific entropy of the

material. The top row shows the density, the middle row the temperature, and the bottom

row the specific entropy, all in the orbital plane. All snapshots are from the case β10S0M0.57,

and from left to right in Figure 5.1 are at times t = −28s, t = 450s, and t = 1250s. Both

the self-intersection of stellar debris and the consequent formation of the accretion torus

are evident in these snapshots.

Figure 5.2: Histograms of the mass per unit binding energy at times t = −28s, t = 450s,
and t = 1250s for the case shown in Figure 5.1.
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Additionally, there is no evidence of a t−5/3 decay in the accretion rates. The reasons

for this are two-fold. First, since these interactions are highly relativistic, there is no reason

to believe that the bound material should remain on Keplerian orbits. As such, it is not

a reasonable approximation to state that de
dt ∼ t−5/3. Additionally, as can be seen in

Figure 5.2, the mass per unit binding energy is not even approximately constant for these

encounters.
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CHAPTER VI

CONCLUSIONS

We presented a new class of TDEs showing prompt formation of an accretion torus

after disruption and hyperaccretion. These TDEs involve ultra-close encounters with Mh =

105M� BH. The accretion rates of tidal material are highly super-Eddington. Additionally,

there is little evidence of a t−5/3 decay in the accretion rate. This is likely due the strong in-

fluence of general relativistic effects in these ultra-close encounters. The late-time accretion

rate, once the torus has formed, reaches an approximate steady-state and remains highly

super-Eddington at Ṁlate ∼ 102M� yr−1. With this rate, the BH should be able to accrete

the majority of the bound tidal debris in just a few days. A word of caution is needed

regarding the accretion rate quotes in this study. Our simulations did not include effects

from radiation, which could potentially decrease the rates. However, it is not likely that

radiation effects would diminish the rates enough to make them sub-Eddington, since the

Eddington rate in these situations is ṀEdd = 0.002M5M� yr−1 (assuming 10% efficiency).

In a subsequent study, we will expand the parameter space of our simulations and

investigate the emission properties of the tidal debris. In light of the results of recent

papers cited in the introduction regarding the circularization of post-disruption debris, it

will be important to investigate further the role of shocks in heating and circularizing the

debris as well as the overall role of cooling effects. Moreover, we will consider inclined orbits

relative to the spin axis of the BH in order to compare our results with those of [17]. We

are also interested in the possibility of amplification of magnetic fields and whether the

class of TDEs in the present study could provide an explanation for jetted events, such as

Swift J1644+57 [33, 34].
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