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ABSTRACT

This paper reports the results of initial efforts
to apply the System Sensitivity Analysis (SSA)
optimization method to the conceptual design of a
single-stage-to-orbit (SSTO) launch vehicle. SSA is an
efficient, calculus-based MDO technique for
generating sensitivity derivatives in a highly
multidisciplinary design environment. The method has
been successfully applied to conceptual aircraft design
and has been proven to have advantages over
traditional direct optimization methods.

The method is applied to the optimization of
an advanced, piloted SSTO design similar to vehicles
currently being analyzed by NASA as possible
replacements for the Space Shuttle. Powered by a
derivative of the Russian RD-701 rocket engine, the
vehicle employs a combination of hydrocarbon,
hydrogen, and oxygen propellants. Three primary
disciplines are included in the design — propulsion,
performance, and weights & sizing. A complete,
converged vehicle analysis depends on the use of three
standalone conceptual analysis computer codes.

Efforts to minimize vehicle dry (empty)
weight are reported in this paper. The problem consists
of six system-level design variables and one system-
level constraint. Using SSA in a “manual” fashion to
generate gradient information, six system-level
iterations were performed from each of two different
starting points. The results showed a good pattern of
convergence for both starting points. A discussion of
the advantages and disadvantages of the method,
possible areas of improvement, and future work is
included.

NOMENCLATURE

Ae nozzle exit area
AR area ratio of engine nozzle
C vector of weights and sizing outputs
CONSIZ configuration sizing and weights program
E1 vector of engine outputs 1
E2 vector of engine outputs 2
GSE global sensitivity equation
Isp specific impulse
LH2 liquid hydrogen
LH2%1 LH2 propellant % in modes 1A and 1B
LOX liquid oxygen
LSM local sensitivity matrix
LSV local sensitivity vector
Mtr transition Mach number
MDO multidisciplinary design optimization
MR mass ratio (gross weight/burnout weight)
P vector of trajectory outputs
POST program to optimize simulate trajectories
RP1 hydrocarbon rocket propellant (kerosene)
Sref aerodynamic reference area (wing area)
SDV sensitivity derivative vector
SSA system sensitivity analysis
SSTO single-stage-to-orbit
Tvac engine vacuum thrust
(T/W)eng engine thrust-to-weight ratio
TPS thermal protection system
ẇ2 total propellant flow rate in mode 2
W vehicle dry (empty) weight
X vector of design variables
∆V velocity change

INTRODUCTION

Multidisciplinary Design Optimization
(MDO) is a relatively new field consisting of a broad
range of techniques and methods aimed at improving
design efficiency, shortening design times, increasing
insight into design options and optimums, and making
more decision critical information available earlier in
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the design process. MDO methods include calculus-
based optimization techniques, stochastic optimization
methods (e.g. genetic algorithms, simulated
annealing), parameter design methods (e.g. Taguchi
methods, response surface methods), implementation
of parallel computing strategies, concurrent
engineering methods, and many others [1 - 3].
Application of these methods to aircraft and spacecraft
design has produced significant improvements in both
the design process and the design product [4 - 10].

As part of an ongoing effort to improve the
space launch vehicle conceptual design process,
NASA - Langley’s Vehicle Analysis Branch has been
conducting research on a variety of MDO techniques.
The goal of the research has been to evaluate and
understand the candidate methods that have the most
potential to improve current branch design products
and processes. Research efforts consist of a
combination of literature searches, basic background
research, and actual application of a candidate method
to a “real world” branch design problem. Typical
branch problems include systems-level, complete
vehicle conceptual design problems (generally limited
to 3-6 disciplines and fewer than 20 systems-level
design variables), trajectory optimization (1-2
disciplines, 20 - 50 design variables and constraints),
and technology assessment design problems
(combinations of discrete variable options). Preferred
methods are added to the “MDO toolbox” — a suite of
methods that have proven valuable to solving branch
problems and are considered “core” methods.

To date, most research emphasis has been
placed on parameter methods based on design of
experiments theory (Taguchi methods, response
surface methods) [6, 8 - 13]. Parameter methods have
proven to be a valuable tool for improving branch
design products and have a number of advantages for
certain problems [2]. In fact, Lepsch [13] successfully
applied response surface methods to a dual-fuel SSTO
design similar to the one used for the current research.
However, parameter methods are approximate
methods that optimize on a model of the design space
rather than on the true design space itself. Therefore,
the result of a parameter method is often a “near
optimum”, not a true optimum. For most conceptual
design problems, a “near optimum” is often
satisfactory, but in some cases, a true optimum might

be desirable. To evaluate advantages of the latter
approach, recent branch research has addressed
optimization methods that work on the actual design
space.

This paper reports the initial application of
the System Sensitivity Analysis (SSA) method
(outlined below) to a conceptual launch vehicle design
of current interest to the branch — the dual-fuel
SSTO. Specifically, this paper reports the somewhat
“manual” application of this technique to a problem
involving three standalone computer analysis codes.
where “manual” refers to a non-automated process of
generating derivatives by running the analysis codes
separately and assembling finite difference derivatives
manually. Also, as is often the case in actual design
organizations, information in the current research is
exchanged in a non-automated fashion between
computer programs that may run on different
platforms or be run by different analysis experts. For
example, ascent trajectory information produced by
the performance code is passed to the weights & sizing
code (either via hard copy or electronically). The
resulting weights & sizing information is then used by
the performance expert to update the ascent trajectory
input files, and the analysis proceeds in an iterative
fashion until the process converges. SSA is well suited
to such problems.

While the current paper discusses the solution
of the design problem utilizing three standalone
disciplinary analysis codes, a parallel effort was
undertaken by Braun [14], to integrate the three
analysis codes into a single, monolithic design code
that was directly coupled to an optimizer. Code
integration, where possible, has a number of
advantages including reduced “human” time, reduced
overall optimization time, and increased accuracy of
the results [14]. Note that the SSA technique is not
limited to “manual” application. References 4 and 7
discuss the application of the SSA technique to aircraft
design problems with integrated analysis subroutines.
However, since there are a number of problems in
aerospace design that cannot be integrated, the present
research is considered valuable as an initial application
of a “manual” method that may find utility in a variety
of future applications. Where appropriate, the
optimization results of the present study are compared
to the results of the integrated code of reference 14.
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VEHICLE OVERVIEW

NASA is currently considering a number of
options to possibly replace the Space Shuttle and to
provide future low cost access to space and to the
Space Station for both cargo and personnel. One of the
options is a new, advanced single-stage-to-orbit
(SSTO) launch vehicle as shown in figure 1. Such a
vehicle would become operational in the 2005 - 2010
time frame.

91.3 ft 28.0 ft

181.6 ft

LH2 tank

15 × 30-ft bay

LOX tank

RP tanks

Dry wt:  192.5 klb

Gross wt:  2.151 Mlb

Figure 1 - Dual Fuel SSTO Layout

This particular vehicle makes use of a dual-
fuel propulsion system (fueled by both LH2 and RP1)
built around derivatives of a Russian RD-701
(sometimes referred to as the RD-704) engine concept.
Compared to similar all hydrogen fueled vehicles,
dual-fuel vehicles have higher propellant bulk
densities, smaller tank volume requirements, and
lighter dry weights [13].

Operability, maintainability, and reliability
are emphasized throughout the vehicle in keeping with
a “design for operations” rather than a “design for
performance” philosophy. Integral propellant tanks are
constructed of aluminum-lithium, while other major
structural components are constructed of graphite-
polyether-etherketone composite. A 15% margin on
empty weight is included.

Mission

The vehicle is designed to deliver two crew
and a 25 klb payload to a 220 Nmi. x 220 Nmi. x 51.6°
orbit from Kennedy Space Center. The payload bay is
15 ft. in diameter and 30 ft. long. Initial orbit insertion
is to a 50 Nmi. x 100 Nmi. parking orbit. 1100 fps of
∆V is included for orbital transfer to the final mission

orbit, for additional on-orbit maneuvering, and for
deorbit. After a mission duration of up to five days, the
vehicle returns to an unpowered landing at Kennedy
Space Center. The winged configuration provides
adequate cross range capability to provide several
landing opportunities per day.

Propulsion System

The RD-701 derivative, dual-fuel, dual-
nozzle position rocket engine is capable of operating
in a number of distinct modes as shown in table 1.
Nozzle positions are shown in figure 2.

Table 1 - Engine Operating Modes

Mode 1A Mode 1B Mode 2

Fuel LH2-RP1 LH2-RP1 LH2

Oxidizer LOX LOX LOX

Nozzle compact extended extended

Compact Nozzle Position Extended Nozzle Position

Figure 2 - Engine Nozzle Positions

From liftoff, the engine operates in mode 1A,
burning both LH2 and RP1 fuels and with the nozzle
in compact position to minimize nozzle back pressure
losses. At some optimal transition Mach number
(Mtr1), the nozzle is extended giving a higher nozzle
area ratio and higher effective Isp. At a second optimal
transition Mach number (Mtr2), the engine transitions
to burning only hydrogen fuel at a predetermined
propellant mixture ratio (LOX/LH2 by weight). Mode
2 operation has a lower thrust and higher Isp than
either mode 1A or 1B. As explained below, many of
the engine operating characteristics will be treated as
design variables to minimize the overall vehicle dry
(empty) weight.
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CONCEPTUAL DESIGN

Launch vehicle conceptual design is highly
multidisciplinary — involving vehicle geometry,
aerodynamics, aeroheating, structures, propulsion,
performance, and weights & sizing. In a fully coupled
design, many time consuming iterations are required
between all of the disciplines in order to converge on a
vehicle solution for a single set of design variable
values. Optimization (a process requiring many
individual design solutions) of a fully coupled vehicle
design is a very large, if not impossible, problem given
today’s computing capabilities. In order to reduce
design time and make the process more suitable for the
current optimization process, several approximations
can be made.

Vehicle external geometry and internal
packaging layouts are determined for a reference
vehicle and small perturbations from the reference
vehicle do not invalidate the geometry. In most cases,
the vehicle external shape is only allowed to change
based on overall scale — not relative size changes.
That is, the shape of the external mold lines is
conserved and the entire vehicle grows larger or
smaller. The effect of changes in the relative volumes
of the internal propellant tanks on the overall body
volume is modeled as a simple second-order equation.

Since the external vehicle mold lines are not
allowed to change, aerodynamic coefficients for a
given Mach number and vehicle attitude will scale
primarily with aerodynamic reference area. Reynolds
number effects based on a reference trajectory are
considered constant. Therefore, aerodynamic
coefficients versus Mach number and angle-of-attack
generated for a reference vehicle are considered
constant for the optimization process. In some cases,
relative wing size is changed slightly during the
optimization process to maintain a certain wing
loading at landing. The effects of these small changes
on vehicle aerodynamics are typically ignored.

Aeroheating rates and temperatures are
determined for a reference vehicle geometry and entry.
Thermal protection system (TPS) requirements for
various locations on the vehicle are then determined
from these values. For small changes in the reference
vehicle, the TPS requirements on a per area basis are

considered constant. TPS weights, therefore, are scaled
with wing and fuselage wetted areas.

Complete finite element structural analysis is
typically too time consuming to include in a launch
vehicle conceptual design process. Using a reference
vehicle and reference loads, structural unit weights are
calculated for various structural components of the
vehicle (wing, tanks, body, etc.). These unit weights
are then used to calibrate mass estimating relationships
in the weights & sizing code which, in turn, is used to
estimate changes in structural weights with respect to
changes in vehicle size.

For the current vehicle, previous work by
engineers at NASA - Langley had established the
reference geometry layout, aerodynamic coefficient
tables, aeroheating requirements, and structural unit
weights. The remaining three disciplines (propulsion,
performance, and weights & sizing) are highly coupled
and interrelated.

Propulsion

Parametric relationships describing the
propulsion system performance and engine weight
were provided by Pratt & Whitney. These
relationships were originally derived from the
application of second-order response surface methods
to a set of RD-701 engine conceptual designs. For
example, an equation for mode 2 engine vacuum Isp
was determined as a second-order function of mixture
ratio in mode 2 and area ratio in mode 2 (AR2).
Similar equations were available for thrusts, exit areas,
Isp’s, propellant bulk density, engine weight, etc.
These equations were entered into a computer
spreadsheet program so that engine characteristics in
all three operation modes could be rapidly determined
as functions of inputs (design variables). The four
engine design variables are:

1) percentage of total propellant flow in mode 1A
and mode 1B that is LH2 fuel (LH2%1)

2) nozzle area ratio in compact position (AR1),
3) nozzle area ratio in extended position (AR2),
4) LOX/LH2 mixture ratio (by weight) in mode 2.

All other propulsion parameters were
functions of these four variables.
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Performance

The vehicle ascent trajectory was optimized
using POST-3D (Program to Optimize Simulated
Trajectories) [15]. The baseline ascent trajectory
contained 21 independent variables (primarily inertial
pitch angles) and 9 constraints (including a maximum
wing loading condition of 2.5*vehicle dry weight, a
maximum dynamic pressure of less than 1000 psf, and
several orbital insertion target constraints). Three
trajectory constraints were inequality constraints and
six were equality constraints. An initial, overall
vehicle thrust-to-weight ratio of 1.2 was used for all
ascent trajectories.

Note that the performance discipline actually
involves the optimization of the ascent subproblem.
POST uses a nonlinear quadratic programming
optimizer internally. For a given set of propulsion
system characteristics, vehicle gross weight,
aerodynamic reference area, and vehicle dry weight,
POST calculates an optimized trajectory based on
minimum fuel weight consumed. The use of minimum
fuel weight consumed (i.e. minimum mass ratio) in the
ascent subproblem is somewhat inconsistent with the
overall system objective to minimize vehicle dry
weight. However, POST is incapable of minimizing
vehicle dry weight since dry weight is calculated in a
separate analysis code.

As part of the ascent trajectory subproblem,
values for transition Mach numbers from propulsion
mode 1A to 1B (Mtr1) and from mode 1B to 2 (Mtr2)
are required. Because of the large effect these two
variables have on LH2 and RP1 propellant fractions
(and thus tank volumes and overall vehicle dry
weight), they were treated as system-level design
variables. The remaining 21 local trajectory design
variables were assumed to have a less significant effect
on dry weight (primarily influencing trajectory
constraints) and therefore the inconstancy regarding
POST’s use of minimum fuel consumption as an
objective function was assumed to be small.

Weights and Sizing

Vehicle size (i.e. overall scale) and weights
were determined using CONSIZ [16]. CONSIZ is a
standalone program containing a series of mass

estimating relationships derived from historical
regression, perceived technology level, and finite
element structural analysis. For a given propellant
requirement (typically in the form of the useful scaling
parameter mass ratio, MR) and individual propellant
fractions, CONSIZ can quickly iterate toward a
solution for which the actual vehicle mass ratio
matches the required mass ratio. CONSIZ works by
scaling the propellant tanks up (and recalculating
related areas, volumes, and weights) to increase MR
(increase the propellant fraction) or down to decrease
MR. When a final solution is reached, estimates for
structural weights, propellant weights, dry weight,
gross weight, and vehicle scale are all available from
the CONSIZ output file.

DESIGN VARIABLES

The six system-level design variables used for
this optimization problem are shown in table 2. Four
of the variables are directly related to the propulsion
systems. Two (Mtr1 and Mtr2) are primarily trajectory
variables, but have a significant effect on the overall
propellant fractions.

Table 2 - System-level Design Variables

Variable Description

LH2%1
LH2 propellant percentage in modes

1A and 1B

AR1 nozzle area ratio in modes 1A and 1B

AR2 nozzle area ratio in mode 2

Mtr1
transition Mach number from mode

1A to mode 1B

Mtr2
transition Mach number from mode

1B to mode 2

Mixture
Ratio 2 LOX/LH2 ratio in mode 2

The objective of the system-level
optimization process is to minimize vehicle dry
(empty) weight. A single system-level constraint limits
AR2 to less than twice AR1, i.e.

AR2

AR1

− 2 ≤ 0 (1)
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MULTIDISCIPLINARY ANALYSIS PROCESS

For a given set of design variables, a
multidisciplinary, iterative analysis process is required
to determine the vehicle dry weight. Information flows
between the three analysis disciplines/codes as shown
in figure 3.

Propulsion

POST CONSIZ

X
E1 E2

C

P

W

Figure 3 - Analysis Process Information Flow

Note that engine information only flows from
the engine code to POST and CONSIZ. There is no
feedback to the engine code. However, POST and
CONSIZ are tightly coupled, and information flows
both ways between the two. The vector of six design
variables is represented by the X vector in figure 3. Of
the six possible design variables, the engine code
depends on four (LH2%1, AR1, AR2, and Mixture
Ratio 2), POST depends on four (LH2%1, Mtr1, Mtr2,
and Mixture Ratio 2), and CONSIZ depends on one
(LH2%1). The vectors E1, E2, C, P, and W represent
an additional 21 internal design variables (table 3).
The 1 x 1 vector W , the dry weight, is actually the
objective function.

Table 3 - Internal Design Variables

Vector Variables

E1
Tvac1A, Ae1A, Tvac1B, Ae1B, ẇ2 , Tvac2, Ae2,

RP1%1

E2
Tmax/Tsl, Isp vac2, Isp sl 1A, (T/W)eng, RP1%1,

propellant bulk density

C Sref, gross weight, max. wing normal force

P mass ratio, LH2%T, RP1%T

W dry (empty) weight

A typical multidisciplinary analysis cycle
proceeds as shown in figure 4. The POST/CONSIZ
iteration proceeds until the mass ratio from one
iteration to the next results in an absolute change of
less than 10-5 — typically about 4 iterations. The
tolerance on MR yields a dry weight convergence of
less than a pound and a gross weight convergence of
less than a few pounds. Execution of this analysis
cycle is required many times during the design
process.

Establish 
Design Variables

Engine Analysis

POST

CONSIZ

Converged? No

Yes

Stop

Figure 4 - Analysis Cycle

SYSTEM SENSITIVITY ANALYSIS

It is the goal of every design process to
determine the best combination of design variables
that meets all constraints and optimizes the objective
function. There are many optimization techniques
available based on exploitation of the local gradient of
an objective function as a favorable search direction
[17-18]. The specific system-level optimization
method used in this research was the method of
feasible directions [19].

System Sensitivity Analysis (SSA) is a
technique introduced by Sobieski [20-24] for
determining gradient information (also referred to as
sensitivity derivatives). The method is particularly
suited for use in multidisciplinary design environments
due to the unique method of determining the
sensitivity derivatives. A brief description of the
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adaptation of the method for the current problem
method is included here.

Using the information flow as shown in
figure 3 , we can write the following equation for the
variables contained in the E1 vector:

E1 = E1(X) (2)

and differentiating both sides,

dE1 =
∂E1

∂X
dX (3)

and,
dE1

dX
=

∂E1

∂X
(4)

where the term ∂E1/∂X  is an 8 x 6 submatrix since
there are eight internal variables in the E1 vector and
each one must be differentiated by each of the six
design variables in X.

Similarly, the POST analysis module is a
function of three vector inputs:

P = P(E1, C, X) (5)

dP =
∂P

∂E1

dE1 +
∂P

∂C
dC +

∂P

∂X
dX (6)

and,
dP

dX
=

∂P

∂E1

dE1

dX
+

∂P

∂C

dC

dX
+

∂P

∂X
(7)

where the term dP/dX is a 3 x 6 submatrix and each of
the other terms in the equation is an appropriately
sized submatrix. Continuing the process on the other
output vectors yields:

dC

dX
=

∂C

∂E2

dE2

dX
+

∂C

∂P

dP

dX
+

∂C

∂X
(8)

dW

dX
=

∂W

∂E2

dE2

dX
+

∂W

∂P

dP

dX
+

∂W

∂X
(9)

dE2

dX
=

∂E2

∂X
(10)

Equations 4, 7, 8, 9, and 10 can be combined
and written in matrix form.

I 0 0 0 0

0 I 0 0 0

−
∂P

∂E1

0 I −
∂P

∂C
0

0 −
∂C

∂E2

−
∂C

∂P
I 0

0 −
∂W

∂E2

−
∂W

∂P
0 I
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 (11)

Equation 11 is called the global sensitivity
equation (GSE) and has the form [A]X=b. The matrix
in the “A” position is called the local sensitivity matrix
(LSM). The matrix in the “b” position is called the
local sensitivity vector (LSV). The matrix in the “X”
position contains the system-level sensitivity
derivatives (total derivatives) and will be referred to as
the sensitivity derivative vector (SDV). Given the
LSM and LSV matrices, the SDV can be calculated
using matrix inversion methods. One of the elements
of the SDV, the 1 x 6 submatrix dW /dX, contains the
gradient of the objective function with respect to each
of the design variables. Note that each term in the local
sensitivity vector, the local sensitivity matrix, and
sensitivity derivative vector is actually a submatrix.
The LSM is a 21 x 21 matrix. The LSV and SDV are
both 21 x 6 matrices. The LSM is a relatively sparse
matrix for this application while the LSV and SDV are
well populated.

The terms in the LSM all describe partial
derivatives of internal variables with respect to other
internal variables. That is, all of the derivatives
represent the isolated (uncoupled) changes in each
discipline with respect to changes in the other
disciplines. Similarly, the LSV represents the local
changes in each discipline with respect to the design
variables. Herein lies one of the advantages of SSA —
the terms of the LSV and LSM can be calculated in
parallel (each discipline at the same time) and all
sensitivity derivatives are then determined
simultaneously in one matrix operation. That is,
complete, time-consuming, iterative solutions of the
entire system are not required for every gradient
calculation. In fact, depending on the internal linearity
of the problem, it is often possible to reuse the LSM
information for 2-3 iterations and use only updated
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LSV information to calculate a new SDV. Reuse of the
LSM improves the efficiency of the method by
reducing the number of analysis code runs required to
generate partial derivative values for each iteration.
However, violations of the linearity assumption could
lead to errors in the calculation of the SDV.

OPTIMIZATION PROCESS

Before discussing the results of the
optimization, it is necessary to discuss the methods
used to calculate the partial derivatives in the LSM and
LSV and the methods used to exploit a search
direction via a line search.

Partial Derivatives

Accurate calculation of partial derivatives is
absolutely critical to the use of the SSA method. Since
the propulsion variables E1 and E2 were available as
relatively simple (typically second-order) equations,
analytical derivatives were taken for ∂E1/∂X  and
∂E2/∂X . However, all other derivatives were
calculated using finite differences.

Initially, forward differences were attempted
in order to reduce the number of function evaluations.
Forward differences require only one extra function
evaluation per derivative. The partial derivative of
some function, f, with respect to some variable, x, can
be approximated by:

∆f

∆x
=

f (x + ∆x) − f (x)

∆x
(12)

where all other inputs to f are held constant and ∆x is
some small value. The accuracy of the partial
derivative estimate improves as ∆x is reduced.
However, neither POST nor CONSIZ produces
enough accuracy in their output files to allow very
small ∆x values without introducing numerical
roundoff errors. Using a ∆x value of 1%, several
iterations were performed from an initial starting point
before it became apparent that iterations were not
producing sufficient reductions in objective function
(figure 5), and that LH2%1 appeared to be diverging
(figure 6) from the optimum obtained by use of the
integrated design code of reference 14. (Note that the
optimum from reference 14 applied an additional
angle-of-attack limit on the ascent trajectory not

employed in this research. To allow accurate
comparisons, the dry weight at the optimum design
variable settings from ref. 14 was recalculated without
the angle-of-attack constraint).

192000

192500

193000

193500

194000

Iter 0 Iter 1 Iter 2 Iter 3 Iter 4

Dry 
Weight (lbs)

Ref. 14 optimum

Figure 5 - Dry Weight Progress for Forward Diffs

LH2%1

4

5

6

7

Iter 0 Iter 1 Iter 2 Iter 3 Iter 4

Ref. 14 optimum

Figure 6 - LH2%1 Progress for Forward Differences

After iteration 4, complete converged test
solutions were calculated for an increased LH2%1 and
a decreased LH2%1. The results showed a lower dry
weight for the higher LH2%1 and cast doubt on the
accuracy of the derivatives. Further investigation using
more accurate central differences revealed an
interesting problem. The total derivative for change in
weight with respect to LH2%1, is calculated from the
following equation extracted from the GSE,

dW

dLH2%1

=
∂W

∂P

dP

dLH2%1

+
∂W

∂E2

dE2

dLH2%1

+
∂W

∂LH2%1

 (13)
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where a key term in the dP/dLH2%1 submatrix is
dMR/dLH2%1 which, in turn, is highly dependent on
the difference between a large number times
∂MR/∂Tvac2 and a large number times ∂MR/∂ ẇ2  . At
the point tested, errors of about 3% in these two values
caused a combined error of about 25% in
dMR/dLH2%1. The 25% error in dMR/dLH2%1
causes a complete sign reversal (direction change) in
dW/dLH2%1 !

As a result, one must draw the conclusion that
due to the way that SSA calculates total derivatives as
a sum of a series of derivative products, the method is
highly dependent on accurate derivatives and in some
cases, small errors in local derivatives can combine in
adverse ways to produce large errors in the system-
level total derivatives. For that reason, the remainder
of this research relied on more accurate central
differences with a 1% ∆x of the form:

∆f

∆x
=

f (x + ∆x) − f (x − ∆x)

2∆x
(14)

The disadvantage of having to use central
differences lies in the fact that two function
evaluations are required per derivative — effectively
doubling the computer time required to populate the
LSV and LSM.

Although not used for this application, a
potentially useful tool for future SSA applications is
automatic code differentiation. Research in the field
(for example, the ADIFOR code in reference 25) has
demonstrated the ability to take an existing source
code and automatically modify it to create analytical
derivatives of all variables during runtime. These
derivatives would be local derivatives — exactly the
partial derivatives used in the GSE. Automatic
differentiation of individual analysis codes could result
in significantly more accurate and faster calculation of
derivatives versus methods employed in this paper.

A second possibility to improve the efficiency
by which partial derivatives are determined concerns
the use of post-optimality criteria [26]. Every
trajectory evaluated by POST (even those used for
finite difference derivatives) requires the solution of a
suboptimization problem to find the minimum
propellant consumption trajectory that meets all ascent

constraints. POST is the most time consuming
disciplinary analysis. It may be possible to make use
of the Lagrange multipliers at a reference trajectory
solution to help approximate the sensitivities to
changes in trajectory parameters without having to
reoptimize the entire problem. The result could be a
significant reduction in the time required to populate
the GSE.

Line Searches

Once the LSM and LSV was populated with
partial derivatives, Matlab was used to solve the GSE
for the sensitivity derivative vector. The Automated
Design Synthesis (ADS) code was then used to
determine an appropriate search direction using the
method of feasible directions [19]. The optimization
process depends on finding the minimum dry weight
along the direction of search. Several options were
examined for the line search scheme.

1) Perform a full iterative solution of the
entire multidisciplinary analysis problem (figure 4) at
two points along the line search so that the starting
point and the last of the two new points bound a
minimum dry weight along the line search. A second-
order polynomial is then fit through all three points.
The minimum of the polynomial is then used as the
optimum step size along the search direction. This is
the most time consuming option, but also the most
accurate of the four options considered.

2) Use a simple linear extrapolation of the dry
weight (since the gradient is already known) while
imposing move limits on the design variables. This is
the simplest, least time consuming option.

3) Use linear estimates for the changes in P
and E2 (available in the SDV) as inputs into CONSIZ,
and then calculate a new dry weight, W , for two new
points along the line search. Use a polynomial
interpolation similar to that described in option 1. This
option depends on a linear estimate for changing mass
ratio (i.e. a linear P vector). Move limits may also be
necessary for this option.

4) Use linear estimates for changes in E1 and
C to run one full POST analysis and then use the
actual P vector and a linear estimate of E2 in CONSIZ
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to calculate a dry weight, W . Execute this process for
two points along the search direction and perform a
polynomial interpolation similar to that described in
option 1. This option does not depend on a linear
approximation for changing mass ratio. Move limits
may be required for this option.

For a typical line search, figure 7 shows the
effect of each of the four line search options versus the
distance, alpha, along the line search direction.

alpha

Relative
Dry Weight

0.960

0.970

0.980

0.990

1.000

1.010

1.020

1.030

0 0.5 1 1.5 2

option 1

option 4

option 3 option 2

Figure 7 - Line Search Options

The mass ratio is a very non-linear function
of input variables into POST. The linear extrapolation
option 2 and the linear approximations into CONSIZ
(option 3) were deemed incapable of capturing the
effects of curvature along a line search and were not
selected. The full iterative solution at each point
(option 1) is the most accurate and captures the
curvature effect of MR well. However, option 1 is the
most time consuming since it requires 3-4 POST runs
and 3-4 CONSIZ runs for each point solution. For
these reasons, option 4 was selected for line searches
for this work. Option 4 requires a single POST run
(with linear updates in E1 and C) and one CONSIZ
run (with the new P and a linear update of E2) per
solution and represents a compromise between
accuracy and run time. Option 4 does calculate an
actual MR (not a linear approximation), but linear
approximations for other internal variables are used in
POST and CONSIZ.

Using line search option 4, move limits
representing a maximum 10% change in the design

variables were used for the first starting point. 20%
move limits were used for the second starting point.
Option 4 generally performed well, but broke down
very close to the optimum with the smaller move
limits or moderately close to the optimum with the
larger move limits. Therefore, the use of the full
iterative solution (option 1) was required for iterations
5 and 6 for both starting points (results below).

The evaluation of dry weight along a line
search may be a place to improve the efficiency of the
SSA method. Additional work may reveal an
appropriate approximation that will allow a line search
to combine the accuracy of the full iterative solution
(option 1) and the rapid evaluation of options 2 or 3.
That is, a simple second-order approximate model for
changing dry weight as a function of alpha might be
determined with more knowledge of the system —
particularly changing MR. Future work will address
this issue.

OPTIMIZATION RESULTS

Using central finite differences on POST and
CONSIZ variables and the line search option 4
discussed above, six system-level iterations for two
different starting points were performed using the
method of feasible directions. A full iterative solution
was performed at the end of each line search. The
LSM was updated only on the 1st and 4th iterations.
The LSV was updated every iteration. The Matlab
program was used to calculate the SDV for each
iteration. The results of the six iterations are shown in
table 5 and figures 8 - 9. The optimum results of the
integrated code of reference 14 are shown for useful
comparison in table 4 (the dry weight shown is for the
ref. 14 angle-of-attack ascent constraint removed).

Table 4 - Optimum from Reference 14

Dry Weight (lbs) 192443

LH2%1 6.26

AR1 59.67

AR2 119.35

Mtr1 0.899

Mtr2 7.31

Mixture Ratio 2 6.996
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Table 5 - Optimization Results for Two Starting Points

Starting Point A

Start Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6

Dry Weight 193,812 193,323 192,988 192,665 192,649 192,478 192,477

LH2%1 6 6.0870 6.2282 6.6054 6.5295 6.5286 6.4908

AR1 60 60.001 60.002 60.005 60.008 60.007 60.007

AR2 120 120.002 120.004 120.010 120.015 120.013 120.013

Mtr1 1.2 1.0800 0.9720 0.8748 0.9623 0.9346 0.9086

Mtr2 6 6.1230 6.2865 6.6375 7.0050 7.0500 7.0700

Mix Ratio 2 7.5 7.3235 7.2343 7.1455 6.7655 7.0228 7.0493

MR 8.30707 8.27507 8.24927 8.20145 8.19325 8.21671 8.22505

Starting Point B

Dry Weight 212,297 199,189 195,045 194,302 193,347 193,150 193,086

LH2%1 4 4.8000 5.7600 6.5473 6.5648 6.6477 6.7968

AR1 50 50.0175 59.165 66.665 66.648 66.664 66.615

AR2 140 139.995 135.426 131.680 131.682 131.678 131.674

Mtr1 2 1.6860 1.3927 1.2622 1.0098 1.0016 0.9850

Mtr2 5 5.5920 5.8557 5.9676 6.1145 6.2539 6.4880

Mix Ratio 2 9 8.2150 7.9036 7.7520 7.008 7.2430 7.2941

MR 8.91954 8.53579 8.32264 8.20199 8.11520 8.13126 8.12640
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Point A was considered a “good” starting
point — starting on the constraint boundary and within
1% of the optimum dry weight. Initial design variables
differed from the optimum values by a maximum of
33%. Point B was considered a “bad’ starting point —
starting in the infeasible region and 10% away from
optimum dry weight. Initial design variables for point
B differed from the optimum values by a maximum of
122%. Both starting points proceed well toward
convergence. Point A reaches to within 40 lbs. (about
.02%) of the optimum within six iterations and it is
reasonable to assume that the point B would reach a
point that close to the optimum in 3 - 6 more
iterations.

While these results show good progression
toward an optimum in dry weight, by comparison, the
actual design variables are still relatively far away
from the optimum values after six iterations (as much
as a 3% - 4% difference in optimum design variable
values for point A at iteration 6 compared to a .02%
difference in optimum dry weight). The reason is that
the design space for this vehicle is very flat with
respect to these design variables. For example, small
savings in dry weight depend on differences between
the effects of improved (smaller) mass ratio that comes
from increased use of hydrogen fuel and increased
propellant bulk density that results from decreased use
of hydrogen fuel. These two competing effects are
roughly the same magnitude near the optimum so that
excursions of the design variables of a few percent
have relatively little effect on the overall dry weight.
However, with more iterations it is likely that the
design variables would move closer to the optimum
values shown in table 5.

Note that Mtr2 represents a key design
variable in the trade between increased MR and
increased propellant bulk density. As Mtr2 moves
higher, the transition from LH2-RP1 fuel (mode 1B) to
LH2-only fuel (mode 2) is delayed and the overall
propellant bulk density is increased. However as Mtr2
increases, the overall mass ratio worsens (increases).
These two effects are carefully balanced in the
selection of an optimum Mtr2.

CPU Time

For both starting point A and starting point B,

the local sensitivity matrix is only updated prior to
iteration 1 and iteration 4. The local sensitivity vector
is updated prior to every iteration. By using central
differences, 22 POST runs (each a suboptimum
problem of its own) are required to populate the
POST-related derivatives in the LSM and 8 POST runs
are required to populate the LSV. Similarly, 18
CONSIZ runs are required to populate the CONSIZ-
related derivatives in the LSM and 2 CONSIZ runs are
required to populate the LSV. POST runs are by far
the most time consuming analysis — averaging about
585 cpu seconds per run on a SGI Indigo 2 computer.
Assuming 2 additional POST runs for a line search and
4 POST runs for a fully converged solution at the end
of a line search, the 36 POST runs required for a full
iteration with a new LSM take about 21,060 cpu
seconds (about 5.85 cpu hours) (table 6). By
comparison, CONSIZ runs take about 15 cpu seconds
each on an SGI Indigo 2 computer. The 26 CONSIZ
runs required for a full iteration (with LSM) take
approximately 390 cpu seconds — about 2% of the
POST run times. Recall that the engine-related
derivatives (dE1/dX and dE2/dX) are calculated using
analytical formulas on a spreadsheet program (less
than 1/2 second on a Macintosh Quadra for all
derivatives) so that calculation of engine-related
derivatives in the LSM and LSV is considered
insignificant with respect to cpu time. Calculation of
the SDV (for a given LSM and LSV) in Matlab takes
about 2 cpu seconds on a Sun Sparcstation. Table 6
shows cpu times for each analysis code based on
approximate average cpu times for each analysis run.

Table 6 - Approximate CPU Times (secs)

POST CONSI
Z

Engine Total

Full LSM &
LSV iter.

21,060 390 < 1 21,451

LSV-only
iter.

8,190 120 < 1 8,311

total for 6
iterations

74,880 1,260 < 3 76,143

Of course, for this “manual” application of
the method, discussions of cpu time are not as
important as “real” iteration time. “Real” iteration time
is dominated by editing input files, transferring files
from one computer to another, data entry of partial
derivatives, and calculation of search directions.
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Actual time to complete an iteration with recalculation
of the LSM was about 10-12 hours. LSV-only
iterations took about 6-8 hours of real time each.

Note that one of the primary advantages of
the SSA method is its ability to calculate the partial
derivatives of each of the disciplines simultaneously.
For example, since POST and CONSIZ are both
standalone codes, two different experts could be
running those two codes at the same time.
Theoretically, parallel calculation of these derivatives
can reduce the overall design time. This problem,
however, is dominated by the execution of the POST
code. Parallel execution in this case would only save
about 2% of cpu time. Therefore, one of the
advantages of SSA cannot be realized in this problem.

Since the parallel execution advantage of
SSA is not very important to this problem, it is
reasonable to consider the application of a direct
optimization method at the system level. That is,
calculation of gradient information by perturbing each
of the six design variables at the system level by +1%
and -1%, one at a time, followed by a complete
iterative solution of the entire design at the new point.
Assuming that 4 POST runs and 4 CONSIZ runs are
required for each full iterative solution and that two
solutions are required per design variable (using
central differences), then 48 POST runs (28,080 cpu
seconds) are required to generate a single objective
function gradient vector for all six design variables.

Therefore, the GSE approach to calculation of
the objective function gradient is more efficient than a
direct systems-level optimizer for this problem. In fact,
if the direct-optimizer required only forward finite
differences (24 POST runs for one gradient using
14,040 CPU seconds), the fact that the Local
Sensitivity Matrix (LSM) can be reused for several
iterations in the SSA method, would still leave SSA
the more efficient method when taken over several
iterations. That is, six iterations (recalculating the
LSM only twice) of SSA take approximately 74,880
cpu seconds for POST runs and 6 iterations of a direct
system-level optimizer would take 84,240 cpu seconds
for POST runs just to calculate the six gradients. These
conclusions are specific to the current design problem
and are strongly dependent on the number of internal
design variables (related to the number of POST runs

per LSM calculation) and the number of analysis runs
required for a full iterative solution of the
POST/COSIZ loop (related to the number of POST
runs required for a direct optimization gradient
calculation).

FINAL VEHICLE

While not fully converged, the results of the
sixth iteration from starting point A (table 5) are close
to the optimum. A simplified weight statement for this
vehicle is shown in table 7. A three-view drawing of
this vehicle was previously shown in figure 1. The
overall vehicle length is 181.6 ft. and the wingspan is
91.3 ft. The theoretical wing planform area is 4043.9
ft2. The optimized trajectory is shown in figure 10 —
altitude (ft.) and wing normal force(lbs.) vs. time —
and figure 11 —  thrust (lbs.) and Isp (sec.) vs. time.

Table 7 - Simplified Vehicle Weight Statement

    Item   Weight (lbs)

Structures 71,015

TPS 18,845

Main Engines 51,359

Other Propulsion 5,792

Other Weights 20,360

Margin (15%) 25,106

Dry Weight 192,477

Payload 25,000

LH2 Propellant 158,862

RP1 Propellant 145,242

LOX Propellant 1,585,351

Other Weights 44,038

Gross Weight 2,150,970
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CONCLUSIONS

The results reported in this paper represent
the initial application of the system sensitivity analysis
method to the conceptual design of a dual-fuel launch
vehicle design. The application was generally
successful — showing good convergence from two
separate starting points. Several other conclusions can
also be drawn.

1) SSA is well suited for “manual”
application as demonstrated in this research — that is,
application to multidisciplinary design problems
consisting of non-integrated, separate design codes.
The uncoupling of the design problem through the use
of local (partial) derivatives and the global sensitivity
equation (GSE) is ideally suited to separate analysis
codes. Although previous SSA applications have been
to design problems with automated execution of
disciplinary analysis codes or integrated, monolithic
codes, a larger range of problems that cannot be
integrated should also be opened to SSA.

2) The method is highly dependent on
accurate partial derivatives. At one point in this
research, forward finite differences proved to be too
inaccurate at 1% perturbation sizes because an adverse
accumulation of small local derivative errors led to a
major error in a system-level derivative. This effect is
primarily due to the way that SSA assembles the GSE
as the sum of several individual derivatives. More
accurate central differences eliminated the problem,
but took twice as many function evaluations per
derivative.

3) One of the large advantages of SSA —
parallel calculation of partial derivatives — was not
realized for this particular problem because the cpu
time of one of the disciplinary analysis codes, POST,
dominated the total computer time required. Parallel
calculation would save very little time for this
problem.

4) The reuse of the Local Sensitivity Matrix
for several iterations (three in this case) considerably
improves the efficiency of the method and reduces the
average number of disciplinary calculations required
per iteration. For this problem, basic SSA requires less
cpu time per iteration than would a direct optimization
method calculating gradient information at the system-
level. SSA is even more competitive when the
efficiency gained from reusing the LSM is taken into
account. However, reuse of the LSM for several
iterations could introduce errors in the calculation of
sensitivity derivatives for highly non-linear problems.

FUTURE WORK

This research represents only the initial
application of SSA to a conceptual launch vehicle
design problem of the type of interest to the Vehicle
Analysis Branch at NASA-Langley. Additional
research is needed before a decision is made on adding
the method to the “MDO toolbox”. The greatest
advantage of SSA may lie in its ability to be applied as
a “manual” method. As mentioned previously, an
integrated analysis code with a coupled optimizer was
created for the current problem in a parallel research
effort [14]. The integrated code produced very good
results. While the present research also produced good
results, the advantages over an automated method over
a manual method in terms of reduced design time,
reduced “human” work, and accuracy are obvious.
Future research on SSA will focus on problems that
cannot be integrated. For example, problems where
disciplinary analysis is performed by different experts
in different geographically located areas, when the
time required to integrate the individual analyses is not
warranted for a “unique” problem, or when the source
code of a particular analysis code cannot be modified
to accommodate code integration (proprietary or
commercial codes) may all be “niche” areas for SSA.
Future work will also focus on the following areas:
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1) Automatic generation of derivatives either
a) via an automated process of executing individual
analysis codes in a repetitive cycle to generate finite
difference derivatives or b) via the automatic
generation of analytical derivatives from an existing
analysis program source code that has been specially
modified by a second code (e.g. ADIFOR). The former
approach must also stress improved accuracy of the
finite differences due to the importance of accurate
derivatives to SSA. Either method could greatly
reduce the “real” time required to populate the GSE.

2) Use of post-optimality methods in POST to
take advantage of existing Lagrange multipliers at an
optimized solution to help calculate sensitivities of the
optimized solution and objective function to changes
in input parameters. Post-optimality methods can
potentially eliminate the current need to completely
reoptimize the trajectory subproblem twice for every
derivative calculated with central finite differences.

3) Improvements in the line search method
used in this research (a single POST run and a single
CONSIZ run). A future method should be efficient and
require no more cpu time than the current method, but
it should more accurately predict the true effect of
changing dry weight along a line search (i.e. as
accurate as a full iterative solution at each point along
a line search). This task might involve creation of a
more detailed approximate model for certain internal
design variables (particularly mass ratio) as they
change along a line search.
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