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SUMMARY

Quantum communication networks enable secure transmission of information be-

tween remote sites. However, at present, photon losses in the optical fiber limit communi-

cation distances to less than 150 kilometers. The quantum repeater idea allows extension

of these distances. In practice, it involves the ability to store quantum information for a

long time in atomic systems and coherently transfer quantum states between matter and

light. Previously known schemes involved atomic Raman transitions in the UV or near-

infrared and suffered from severe loss in optical fiber that precluded long-distance quantum

communication.

In this thesis a practical quantum telecommunication scheme based on cascade atomic

transitions is proposed, with particular reference to cold alkali metal ensembles. Within this

proposal, essential building blocks for a quantum network architecture are demonstrated

experimentally, including storage and retrieval of single photons transmitted between remote

quantum memories, collapses and revivals of quantum memories, deterministic generation

of single photons via conditional quantum evolution, quantum state transfer between atomic

and photonic qubits, entanglement of atomic and photonic qubits, entanglement of remote

atomic qubits, and entanglement of a pair of 1530 nm and 780 nm photons. These results

pave the way for construction of a realistic quantum repeater for long distance quantum

communication.
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CHAPTER I

INTRODUCTION

1.1 Quantum communication

Quantum cryptography offers a secure way to transmit information between remote sites. It

involves ability to entangle two distant qubits (two level quantum systems) [1, 2]. These two

qubits are used for quantum communication, either with the Ekert protocol that directly

uses the entangled pair of qubits or the BB84 protocol that performs either remote state

preparation or teleportation of a qubit [3, 4, 5, 6, 7, 8].

Parametric down conversion is an established technology to produce entangled photon

pairs. For example it allows one to teleport the quantum state of a photon and to achieve

secure quantum key distribution over distances of more than hundred kilometers [6, 9].

In order to further extend communication length, Zeilinger and coworkers proposed using

a satellite for distribution of entangled photon pairs [10]. Unfortunately it is difficult to

extend the approach of parametric down conversion over distances much longer than the

photon absorption length. Because of the inevitable signal losses in the optical fibers and

the probabilistic nature of the photon pair generation, the communication rate decreases

exponentially with distance.

The concept of a quantum repeater was proposed [2] to overcome this limitation and

enable quantum communications over longer distance. The idea is to insert quantum mem-

ory elements into the quantum channel every attenuation length or so. Then entanglement

between neighbouring pairs of qubits is generated efficiently, since light is not appreciably

absorbed within the segment length. After entanglement between pairs of atomic qubits

is established, a joint measurement on neighboring pair of qubits is performed. Quantum

states of the intermediate qubits are destroyed by the measurement, thus achieving entan-

glement swapping so that entanglement is extended to twice the initial distance. Subsequent

1



purification and swapping steps using a nested purification protocol eventually result in en-

tanglement of two particles at distant locations. The communication rate in this case scales

polynomially with the distance [2, 11].

The quantum repeater is one of the possible examples of a quantum network. In general,

a quantum network consists of spatially separated nodes to store and process quantum

information and quantum channels that connect the nodes. Atoms are excellent candidates

for storage and manipulation of quantum states, because it is possible to isolate atoms from

the environment and manipulate their internal states with laser light or external DC fields.

Photons are ideal carriers of quantum information, because they can propagate over long

distances in free space or in optical fibers.

There are several proposals for quantum network architectures, employing quantum

repeaters, based on ensembles of atoms [11], single trapped ions [12], single atoms/ions

strongly coupled to high-finesse optical cavities [13], and single solid state-based atomic

emitters [14]. All of these proposals rely on atomic Raman transitions or assorted variations.

Important progress toward quantum networks was achieved recently in single atom

and single ion experiments. In the microwave domain, single Rydberg atoms and single

photons have been entangled [15]. An entangled state of an ion and a photon [16, 17] and

neutral atom and photon [18, 19] recently has been reported. Cavity QED holds promise for

generation of neutral atom-photon entanglement with a deterministic single photon source

being an important step in that direction [20, 21].

1.2 Atomic ensembles

Collective enhancement of atom-photon interactions in optically thick atomic ensembles of-

fers a somewhat simpler route towards quantum networks [22, 23, 24, 25, 26, 27, 28]. There is

a long history in quantum optics of using atomic ensembles for studies of cooperative effects

such as superradiance [29] and optical bistability (see, e.g., Ref. [30] and references therein).

Recently the utility of optically thick atomic ensembles has been explored for multiparticle

entanglement, generation of non-classical states of matter (e.g., squeezed states) [31, 32, 33],

and continuous variable quantum information processing [31, 34, 35, 36, 37, 38, 23, 39].
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An important breakthrough in the field of atomic ensembles is the discovery of electro-

magnetically induced transparency (EIT). An opaque atomic medium becomes transparent

to the probe light if another (control) beam is applied [40, 22]. EIT has also been used to

demonstrate an ultraslow group velocity of light and to store and retrieve coherent light

pulses in the atomic ensemble [41, 42, 26, 27].

Duan, Lukin, Cirac, and Zoller (DLCZ) invented a protocol that realizes the quantum

repeater architecture using atomic ensembles [11]. The protocol is a probabilistic scheme

based upon entanglement of atomic ensembles via detection of single photon events in which

the sources are intrinsically indistinguishable. The protocol generates entanglement over

long distances via the quantum repeater architecture [2]. Inspired by DLCZ [11], emission

of non-classical radiation has been observed in first-generation atomic ensemble experiments

[43, 44, 45].

Quantum state transfer between photonic- and matter-based quantum systems is a key

element of quantum communication networks. The importance of quantum state transfer

is rooted in the ability of atomic systems to provide excellent long-term quantum informa-

tion storage, whereas the long-distance transmission of quantum information is currently

accomplished using light.

In 2004 the first realization of coherent quantum state transfer from a matter qubit

onto a photonic qubit was achieved [46]. This breakthrough laid the groundwork for several

further advances toward the realization of a long-distance, distributed network of atomic

qubits, linear optical elements, and single-photon detectors [47, 48, 49, 50]. Important work

toward the experimental realization of DLCZ scheme also is done by several other research

groups. Non-classical correlations between fields from a single atomic ensemble have been

observed in the single-photon regime in a hot vapor cell by Lukin’s group at Harvard [51, 52].

Harris and coworkers pioneered off-axis four-wave mixing [53] and efficient photon-pair

production [54] in a cold atomic ensemble using counter-propagating write and read fields

deep in the regime of electromagnetically-induced transparency. The Vuletic group at MIT

reported promising results for the photon pairs generation in an atomic ensemble placed

in an optical cavity [55]. Kozuma and coworkers have recently demonstrated entanglement
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between Laguerre-Gaussian modes of a photon and the corresponding spatial modes of a

single atomic ensemble [56].

1.3 Outline

All of the quantum repeater approaches described above rely on atomic Raman transitions

or their variations. Such transitions in the ultraviolet to the near-infrared range have

been successfully employed for entanglement generation [16, 46, 47, 48, 49, 18] making

compact (a few kilometers) entanglement distribution conceivable. However in order to

dramatically extend the reach of all these schemes, it is essential to be able to implement

them at telecommunication wavelengths (1.3 µm - 1.5 µm). Unfortunately, identifying

suitable atomic Raman transitions at these wavelengths remains a challenge.

One possible approach to the long-distance quantum repeater could begin with gen-

eration of narrow-band, entangled photon pairs at telecommunication wavelength using

intra-cavity parametric down conversion [13]. Clearly, these photon pairs satisfy the need

to distribute the entanglement over long distances, but it is essential to convert at least one

of the entangled photons into an atomic qubit. Coherent quantum state transfer between

the telecommunication wavelength photon and atomic memory would require frequency-

upconversion and subsequent mapping of the photon state onto an atomic qubit [13].

Frequency-upconversion of single telecommunication wavelength photons has been reported

(e.g., [57, 58] and references therein) but not under conditions of wavelength and bandwidth

suitable for storage in an atomic memory.

In this thesis we describe an alternative approach to the long distance quantum commu-

nication based on cascade transitions in atomic ensembles. In the alkali atoms the cascade

atomic transition can be chosen so that the photon on the upper arm has the telecommu-

nication wavelength while the photon on the lower arm is on resonance with the atomic

transition to the ground state and is naturally suited for mapping to an atomic memory.

Chapter 7 of this thesis reports experimental observation of entangled pairs of 1.5 µm and

780 nm photons using the cascade scheme and describes our proposal for the long distance

quantum repeater.
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The proposed quantum network architecture requires an ability to map the state of a

photon to the state of an atomic ensemble. In Chapters 5 and 6 we discuss two different

ways to store a qubit in an atomic ensemble and to entangle a photon and a collective atomic

excitation. Chapter 5 describes observation of entanglement of an atomic qubit based on

two independent atomic ensembles and a single photon and coherent quantum state transfer

from atomic qubit to a single photon. In the experiment described in Chapter 6 an atomic

qubit is encoded into two orthogonal spin excitations in the same atomic ensemble.

For the proposed architecture it is important to have a reversible coherent quantum state

transfer between a photon and an atomic ensemble. Chapter 2 of this thesis is devoted to

the generation of a single photon state in one laboratory and the subsequent storage and

retrieval of this single photon state using an atomic ensemble in another laboratory utilizing

the EIT effect. We show that the single photon character of the field is preserved in the

storage and retrieval process. Chapter 7 describes the preparation of entangled states of two

atomic ensembles. An entangled state of an atomic ensemble and a photon is generated in

one laboratory. The photon is transmitted to another laboratory over an optical fiber, and is

converted into an atomic qubit in another ensemble using the EIT approach. Entanglement

of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of

each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization

correlations in violation of Bell inequality.

Another important ingredient for quantum networks is quantum feedback, i.e the ability

to perform certain actions based on the outcome of the measurement. In Chapter 4 we

propose a deterministic single photon source based on an ensemble of atomic emitters,

measurement, and quantum feedback. We report the implementation of this scheme using

a cold rubidium vapor. This source is stationary and produces a photoelectric detection

record with truly sub-Poissonian statistics.

Manipulation of the quantum states of atomic quantum memory is another important

goal for the quantum network. In Chapter 3 we describe collapses and revivals of quantum

memory in a uniform magnetic field and study decoherence mechanisms in atomic ensembles.
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We have therefore demonstrated the essential building blocks of a long distance quan-

tum repeater. In the next two sections some background material related to the quantum

networks with atomic ensembles is discussed.

1.4 Electromagnetically induced transparency and dark state

polariton

The absorption of light in an atomic medium is a function of the light frequency. As the

frequency approaches an atomic resonance, the atom-field interaction strength increases

making the medium opaque to the incident light. EIT renders the medium transparent by

using the quantum interference effect due to a strong control laser field.

Let us assume that a weak signal field is propagating inside a medium consisting of

three level atoms. The strong control field is on resonance with the e → g′ transition, and

a weak signal field is resonant with the e→ g transition (see Fig. 1). In the absence of the

control field, signal propagation is accompanied by strong absorption and dispersion. The

situation changes when the control field is applied. The control field modifies properties of

the medium. Absorption of signal light on resonance with the atomic transition is greatly

reduced as a result of quantum interference. One can show that for a constant control field,

the susceptibility of the medium for the weak probe field is equal to [40, 22]

χ(∆) = g2N
γgg′ + i∆

(γgg′ + i∆)(γge + i∆) + |Ω|2 , (1)

where ∆ is a detuning of the probe field from resonance, g = d
√

ω0

2h̄ε0V is the atom-field

coupling constant, N is the total number of atoms in the sample, Ω is the Rabi frequency

of the coupling field, ω0 is the frequency of the g → e transition, γij is the relaxation rate

of the ij-coherence, and V is the quantization volume.

Fig. 2 shows the real and imaginary part of refraction index as a function of detuning.

Imaginary part determines transmission properties of the medium, whereas the real part is

responsible for the refraction of light. When the control field is present the medium becomes

transparent to the probe light on resonance with the g → e transition. The control field also

changes the refraction index of the medium. As a result, the group velocity of the probe
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Figure 1: Scheme of atomic levels illustrating EIT process. Strong coupling field is on
resonance with e → g′ transition, and a weak signal field is resonant with the e → g′

transition.

field vg can differ substantially from its vacuum value of c:

vg =
c

1 + g2N/Ω2
, (2)

and can be several orders of magnitude smaller than the speed of light in the vacuum.

The quantum mechanical description of the light propagation involves the solution of

the Langevin equations for the signal field Φ̂(z, t) = i
∑

k âk exp(i(qz − wet)) and collective

atomic coherence operator Ŝss′ = (1/Nz)
∑Nz

µ=1 σ
µ
ss′ . Here σµ

ss′ = |sµ〉〈s′µ| is the µth atom

hyperfine coherence operator, and ak is the annihilation operator for the k-th mode of

the signal field. Assuming the adiabatic change of control field, solution of the Langevin

equation is written in terms of the dark-state polariton operator [22]

Ψ̂(z, t) = cos θΦ̂(z, t) + sin θŜgg′, (3)

where

cos2 θ =
Ω

Ω2 + g2N
, (4)

sin2 θ =
g2N

Ω2 + g2N
, (5)
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Figure 2: Real (top) and imaginary (bottom) parts of refraction index (a. u.) as a function
of light detuning. We assume that γgg′ = 0 and Ω/γge = 1.
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and the dark state polariton operator obeys equation of motion

(
∂

∂t
+ c cos2 θ

∂

∂z
)Ψ̂(z, t) = 0. (6)

This equation describes propagation of a pulse with the group velocity vg = c cos2 θ. As

the coupling field amplitude decreases, the atomic component of the dark state polariton

increases and light component decreases. If the control beam is turned off, the group velocity

of the pulse is reduced to zero and the quantum state of light is mapped onto the collective

spin coherence. In the absence of external fields this coherence can be stored in the atomic

ensemble for a long time. In order to read the quantum memory out, the control field is

adiabatically switched back on. The state of atoms is then coherently mapped back to the

state of light. Note that the concept of dark state polaritons can be generalized to the

atoms with degenerate Zeeman sublevels [59, 60].

1.5 DLCZ protocol for the generation of photon pairs

The basic mechanism proposed in Ref. [11] involves entangling a single photon (signal)

with a single collective excitation of an atomic ensemble via the Raman scattering of a

weak write pulse. Figure 3A illustrates the DLCZ protocol of photon pair generation for a

simple three level system. The Raman scattered photon in this case is uniquely correlated

with a collective atomic state S†
gg′ |0a〉. Here

Sgg′ =
N
∑

i=1

|gi〉〈ei|ei∆
~k~ri , (7)

∆~k = ~kw − ~ks is the difference between write and signal photon wavevectors, and ~ri is the

position of i-th atom.

The quantum state of the collective atomic mode can be written as

|φ〉 = |0a〉|0p〉 +
√
pcS

†
gg′a

†|0a〉|0p〉 +O(pc). (8)

Detection of the signal photon results in preparing a single spin excitation of the ensemble

S†|0a〉. Note that the state is exactly the same as the dark state polariton with the control

field off. Therefore by applying second (read) pulse resonant to e → g′ transition, the
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Figure 3: DLCZ protocol for the photon pair generation. Part A illustrates write process,
Part B illustrates read process.

spin excitation can be converted into another (idler) photon (Fig. 3B). Due to collective

enhancement, the second photon will be emitted in the direction determined by the phase

matching condition: ~ks + ~ki = ~kr + ~kw.
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CHAPTER II

STORAGE AND RETRIEVAL OF SINGLE PHOTONS

TRANSMITTED BETWEEN REMOTE QUANTUM

MEMORIES

First part of this chapter is based on Ref. [48]. Second part describes additional details of

the experiment including part of the Supporting Online Materials of Ref. [48].

2.1 Motivation

An elementary quantum network operation involves storing a qubit state in an atomic quan-

tum memory node, and then retrieving and transporting the information through a single

photon excitation to a remote quantum memory node for further storage or analysis. Im-

plementations of quantum network operations are thus conditioned on the ability to realize

such matter-to-light and/or light-to-matter quantum state mappings. In this Chapter, we

report generation, transmission, storage and retrieval of single quanta using two remote

atomic ensembles. A single photon is generated from a cold atomic ensemble at Site A via

the protocol of Duan, Lukin, Cirac, and Zoller (DLCZ) [11] and is directed to Site B through

a 100 meter long optical fiber. The photon is converted into a single collective excitation

via the dark-state polariton approach of Fleischhauer and Lukin [42]. After a program-

mable storage time the atomic excitation is converted back into a single photon. This is

demonstrated experimentally, for a storage time of 500 nanoseconds, by measurement of

an anticorrelation parameter α. Storage times exceeding ten microseconds are observed by

intensity cross-correlation measurements. The length of the storage period is two orders of

magnitude longer than the time to achieve conversion between photonic and atomic quanta.

A quantum network, consisting of quantum nodes and interconnecting channels, is an
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outstanding goal of quantum information science. Such a network could be used for distrib-

uted computing or for the secure sharing of information between spatially remote parties

[3, 6, 7, 2, 61, 11]. While it is natural that the network’s fixed nodes (quantum memory

elements) could be implemented by using matter in the form of individual atoms or atomic

ensembles, it is equally natural that light fields be used as carriers of quantum information

(flying qubits) using optical fiber interconnects. The matter-light interface seems inevitable

since the local storage capability of ground state atomic matter cannot be easily recre-

ated with light fields. Interfacing material quanta and single photons is therefore a basic

primitive of a quantum network.

The potential of atomic ensembles to serve as quantum memories has recently attracted

considerable attention [62, 22, 42, 11, 63, 39]. Using the physics of “slow light” propagation

in an optically thick atomic ensemble, weak coherent laser pulses have been stopped and

retrieved in a controlled fashion [42, 41, 26, 27].

2.2 Experiment

Here we report the demonstration of the generation, transmission, storage and retrieval

of single photons using remote atomic ensembles as quantum memories. The essential

ingredient which we report here, is the ability to convert single photons into single collective

atomic excitations. In our experiment the remote quantum memories are based on cold

atomic clouds of 85Rb confined in magneto-optical traps (MOTs) at Sites A and B, as

shown in Fig. 4. Sites A and B are physically located in adjacent laboratories, with a 100

meter long single-mode optical fiber serving as the quantum information channel.

Our protocol begins with the generation of single photons at Site A, using the DLCZ

approach in the off-axis, counter-propagating geometry [54, 47]. The fiber channel directs

the signal field to Site B where an optically thick atomic ensemble is prepared in level |b〉

(right inset in Fig. 4). The signal field propagation in the atomic medium is controlled

by an additional laser field (control) through the process of electromagnetically-induced

transparency (EIT) [40, 64]. As we deal with an unpolarized atomic ensemble, we must

take into account the Zeeman degeneracy of the atomic levels. Choosing the same circular
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Figure 4: A schematic diagram of our experimental setup demonstrating generation, trans-
mission, storage and retrieval of single photon excitations of the electromagnetic field. Two
atomic ensembles at Sites A and B are connected by a single-mode fiber. The insets show
the structure and the initial populations of atomic levels for the two ensembles. All the
light fields responsible for trapping and cooling, as well as the quadrupole magnetic fields in
both MOTs, are shut off during the period of the protocol. The ambient magnetic field at
each Site is compensated by three pairs of Helmholtz coils (not shown). Correlated signal
and idler fields are generated at Site A. The signal field is transmitted via optical fiber from
Site A to Site B, where it is converted to atomic excitation, stored for a duration Ts, and
subsequently retrieved. A Hanbury Brown-Twiss setup consisting of a beamsplitter BS and
two detectors D2 and D3, together with detector D1 for the idler field, are used to verify
the single photon character of the retrieved field.
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Figure 5: Measured transmission spectra of a coherent probe field as the function of probe
detuning in the presence of, and absence of, EIT. Data are taken using 700 ns long coherent
laser pulses. T is the intensity transmittance, ∆ is the probe detuning and Γ is the decay
rate of level |c〉. In the absence of control field (circles) the probe is strongly absorbed near
resonance, whereas with the control field on (diamonds) the medium becomes transparent.
Each probe pulse contains on average 0.3 photons. Each data point is an average of 2× 105

experimental trials. The optical thickness d = 8 and the control field Rabi frequency Ω = 3Γ
are used to obtain the solid curves, based on the theoretical model discussed in this chapter.

polarizations for both the probe and the control fields allows us to retain transparency. In

Fig. 5 we show the EIT transmission spectrum recorded for a coherent laser probe field

instead of the signal field. Evidently, in the absence of the control light the probe field

is absorbed by the optically thick sample. With the addition of the cw control field, the

medium is rendered transparent around the |b〉 ↔ |c〉 transition resonance ∆ = 0.

The control field strongly modifies the group velocity of the signal field. For a time-

dependent control field, a strong reduction of the group velocity of the propagating signal

field can be understood in terms of a coupled matter-light field excitation known as a “dark-

state polariton.” By adiabatically switching off the control field, the coupled excitation can

be converted into a pure atomic excitation, i.e., the signal field is “stopped” [42, 26, 27]. An

important condition to achieve storage is a sufficiently large optical thickness of the atomic
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sample, which enables strong spatial compression of the incident signal field [22]. In our

experiment the measured optical thickness d ' 8. Fig. 6 compares our observations with the

predictions of a theoretical model described below. Fig. 6a compares the propagation of the

signal pulse in vacuum and in the atomic medium under conditions of EIT with a cw control

field. The observed pulse delay under conditions of EIT is about 20 ns, corresponding to

more than three orders of magnitude reduction in group velocity. Fig. 6b shows the effect of

turning off the control-storage field when the signal pulse is approximately centered in the

medium, and the subsequent retrieval of the signal field when the control-retrieval field is

switched back on after a 500 ns storage time. Fig. 6c shows retrieval after a storage time of 15

µs. Qualitative agreement of the pulse shapes has been obtained in our theoretical analysis

of the protocol using the full Zeeman structure of the atoms and a classical description of

the signal field (Fig. 6d-f).

In order to verify the single-photon character of the signal field (a) without storage, and

(b) with storage and retrieval, we use a Hanbury Brown-Twiss detection scheme, employing

a beamsplitter followed by two single photon counters, as shown in Fig. 4 [65]. To provide

such characterization, we note that classical fields must satisfy a criterion α ≥ 1 based on

the Cauchy-Schwarz inequality [65, 66]. For an ideally prepared single photon state α→ 0.

Here the anticorrelation parameter α is a function of the storage time Ts, and is given by

the ratio of various photoelectric detection probabilities which are measured by the set of

detectors D1,D2 and D3 (described in the next section):

α(Ts) =
p1p123

p12p13
. (9)

As an auxiliary measure of signal-idler field correlations, and as a way to quantify the

quantum memory storage time, we also evaluate the normalized intensity cross-correlation

function gsi ≡ (p12 + p13)/[p1(p2 + p3)] [67, 30]. In particular, it serves to estimate the total

efficiency and background levels in the experiment, since gsi is, by definition, independent

of efficiencies whereas p1 is proportional to the overall idler channel efficiency.

First we measure gsi and α without storage at Site B (i.e., with no atomic sample in

place), and the results are displayed in Fig. 7, a and b, respectively. Next we add an
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Figure 6: Experimental and theoretical pulse shapes as a function of time, showing EIT,
storage and retrieval. The color code is: control field - black, pulse in vacuum - blue,
delayed, stored and retrieved field - red. Panel (a) with a cw control field shows EIT pulse
delay. In panel (b) the control field is switched off and then on again after 500 ns, shows
light storage and retrieval. Panel (c) is similar to (b) but with a 15 µs storage. Panels (d),
(e), and (f) are corresponding theoretical plots.
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Figure 7: Measured intensity cross-correlation function gsi and anticorrelation function α
as a function of the idler photoelectric detection probability p1. Panels (a) and (b) are for
the source (propagation in vacuum). Panels (c) and (d) are for stopped, stored for 500 ns,
and retrieved signal field. The solid lines are based on a theoretical model that includes
losses and background. Error bars represent ± one standard deviation and are based on
the statistics of the photoelectric counting events.
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optically thick atomic sample at Site B, and perform storage of duration Ts = 500 ns and

subsequent retrieval of the signal field, with results shown in Fig. 7, c and d, respectively.

No correction for background or dark counts were made to any of the experimental counting

rates. The curve fits of gsi are based on a simple theoretical model, and allow us to obtain

the efficiency in the idler channel and the background contributions to p2 and p3 for the

stored signal field. These same values are used to produce the corresponding theoretical

curves in Fig. 7, b and d. The measured values of α < 1, displayed in Fig. 7, b and d,

confirm the single-photon character of both the source and retrieved signal fields (with

the minimum values of α = 0.14 ± 0.11 and α = 0.36 ± 0.11, respectively). Overall, we

estimate that the probability ps for successful generation, transmission, storage, retrieval,

and detection of a signal photon is approximately ps ' 10−5 for each trial. The efficiency

of photon storage and retrieval E can be estimated as the ratio of the values of p2 +p3 with

and without storage. We find E ' 0.06, in agreement with the theoretical result shown in

Fig.6e.

To investigate the storage capability of our quantum memory at Site B, we measure gsi

as a function of the storage time of the signal field Ts (Fig. 8). A Gaussian fit provides a

time constant τ = 11 µs, which is an estimate of our quantum memory time. The collapse

is consistent with the Larmor precession of a dark-state polariton in an unpolarized atomic

ensemble in a residual magnetic field [43, 46]. Experimentally we attempt to null the

uniform, dc component of the magnetic field. A definitive way to distinguish whether the

collapse is due to uniform or non-uniform and ac fields is to measure the damping time of the

periodic revivals of the retrieved signal field at longer storage times. In a uniform magnetic

field, undamped revivals of the dark-state polariton should occur at times equal to nTL,

where TL is the Larmor period for level |a〉 or |b〉 and n can be either integer or half-integer,

depending on the direction of the magnetic field relative to the light beam geometry (the

full theory is presented in Ref.[59, 60]). We have conducted separate experiments with an

externally applied magnetic field [49] (see also Chapter 3), which suggest that the collapse in

the present experiment is likely due to magnetic field gradients and/or ac fields at the level

of a few tens of mG. However, more extensive investigations to quantitatively determine the
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temporal and spatial structure of the residual magnetic field, and the various contributions

to it, are required.

We have demonstrated generation, storage and retrieval of single quanta transmitted

between two remote atomic ensembles serving as quantum memory elements. The control

of the matter-field interface at the level of single quanta, and at remote sites, is encouraging

for further developments and applications in quantum information science. In particular,

the storage of a photonic qubit, with two logical states, would represent a crucial advance.

In order to achieve this, the quantum memory at Site B would likewise need a second logical

state, so as to realize a collective atomic qubit. Two different approaches for such qubits

are described in this thesis (See Chapters 5 and 6, and [46, 47]). Addition of the second

logical state to both quantum memories at Sites A and B makes is possible to generate

remote entanglement of two atomic qubits. The corresponding experiment is described in

Chapter 7.

2.3 Measurement procedure

To generate single photons at Site A, we use the DLCZ approach in the off-axis, counter-

propagating geometry introduced by Harris and coworkers [54]. The insets in Fig. 4

indicate schematically the structure of the three atomic levels involved, |a〉, |b〉 and |c〉,

where {|a〉; |b〉} correspond to the 5S1/2, F = {3, 2} levels of 85Rb, and |c〉 represents the

{5P1/2, F = 3} level associated with the D1 line at 795 nm. The experimental sequence

begins with an unpolarized sample of atoms prepared in level |a〉 (left inset of Fig. 4). A

160 ns long write laser pulse tuned to the |a〉 → |c〉 transition is focused into the MOT with

a Gaussian waist of about 400 µm. The write pulse generates a cone of forward Raman-

scattered signal field via the |c〉 → |b〉 transition. We collect a Gaussian mode centered

around the momentum ~ks that forms an angle of about 2◦ with the write beam. The write

pulse is so weak that on average less than one photon is scattered into the collected mode

for each pulse. The signal field is coupled into the 100 meter long fiber connecting Sites A

and B.

For each signal photon emission event, a correlated collective atomic excitation is created
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in the atomic ensemble. After a delay ∆t = 200 ns, a 140 ns long counter-propagating

read laser pulse resonant with the |b〉 → |c〉 transition illuminates the atomic ensemble

and converts the atomic excitation into the idler field. Under the conditions of collective

enhancement, the idler field is emitted with high probability into the mode determined by

the phase-matching condition ~ki = ~kw + ~kr − ~ks, where ~ki, ~kw and ~kr are the wave vectors

of the idler, write and read fields, respectively. The waist of the signal-idler mode in the

MOT is about 150 µm. The idler field is directed onto a single photon counter D1. Ideally,

photoelectric detection of the idler field projects the quantum state of the signal field into

a single photon state. The repetition rate of the experiment is 2 · 105 s−1. Each data point

in Fig.7 involves an average over a time period that varied from several minutes up to 1.5

hours for the data point with the lowest value of p1 in d.

To measure the photoelectric detection probabilities p1, p2, p3, p13, p12, p23, and p123,

the outputs of the detectors are fed to three “Stop” inputs of the time-interval analyzer

which records the arrival times with a 2 ns time resolution. The electronic pulses from the

detectors D1,D2,D3 are gated for periods [ti0, t
i
0 + T i

g], with T 1
g = 140 ns, T 2

g = T 3
g = 240

ns, respectively, centered on the times determined by the write and read (for no storage) or

control-retrieval (for storage) laser pulses. Counts recorded outside the gating periods are

therefore removed from the analysis. The list of recorded events allows us to determine the

single-channel photoelectric event probabilities pi = Ni/M , where Ni is the total number of

counts in the i-th channel and M is the number of experimental trials, (for Di, i = 1, 2, 3). If

photoelectric detections in different channels i, k,m happen within the same gating period,

they contribute to the corresponding joint probabilities pij = Nij/M , where Nij is the total

number of coincidences between Di and Dj, i, j = 1, 2, 3. The joint probability of all three

detectors registering a count is given by p123 = N123/M .

2.4 Photoelectric counting statistics

Here we provide details of the analysis of the photoelectron counting statistics of the light

fields detected in our experiment, in support of generation, storage, and retrieval of single

photon states of the electromagnetic field.
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In order to take into account the possibility of sequences of photon pairs, we use a

theoretical model based on parametric down-conversion, in which the annihilation operators

for the idler and signal field are transformed as [30]:

â
(out)
i = cosh(η)â

(in)
i + sinh(η)â†(in)

s ,

â(out)
s = cosh(η)â(in)

s + sinh(η)â
†(in)
i . (10)

Here η is the Raman gain at Site A. We also wish to assess the overall efficiencies and the

background levels in our experiment. Modelling the background to the signal in terms of a

coherent field with average photon number Bs, we find that

gsi =
(1 + 2 sinh2(η)) +Bs

sinh2(η) +Bs
. (11)

We also determine the anticorrelation parameter α of Grangier et al. [65]:

α =
sinh2(η)(4 + 6 sinh2(η)) + 4Bs(1 + 2 sinh2(η))

(1 + 2 sinh2(η) +Bs)2
. (12)

The singles count rates at detectors D1, D2, and D3 are given by R1 = ε1 sinh2(η), R2 =

|T |2ε2 sinh2(η) and R3 = |R|2ε3 sinh2(η) (assuming that Ri � W , where W is the repetition

rate of the experiment); T and R are the transmission and reflection coefficients of the

beamsplitter BS, shown in Fig. 9.

In the absence of the medium we empirically find negligible background Bs. The solid

curve in Fig. 7A is based on this model, setting Bs = 0. We find that the best fit to the

data in Fig. 7A is given by ε1 ≈ 0.039. The solid line in Fig. 7B is based on Eq. 12 with

this value of ε1.

For the stored light, we have to account for the fact that a significant fraction of detected

signal photons are due to background associated with the control-retrieval pulse. By fitting

the data of Fig. 7C to Eq.11, we find Bs ≈ 0.08. Substituting this value into Eq.12, we

obtain the solid curve in Fig. 7D. In order to reduce this background, we have performed

initial investigations using an optically pumped Rb cell to filter out light at the frequency

of the control field. In this case we found increased non-classical correlations between the

idler and the stored and retrieved signal photon, e.g., for Ts = 500 ns gsi increased from

8 ± 0.2 to 15.6 ± 1.4.
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Figure 9: Normalized intensity autocorrelation functions gii (triangles) and gss (circles
for the source, squares for the stored and retrieved field). Uncertainties are based on the
statistics of the photon counting events.

In addition, we measure the intensity autocorrelation functions gss = p23/[p2p3] and

gii. These are shown in Fig. 9. In order to evaluate the latter, we insert a beamsplitter

and additional detector Da into the path of the idler photon, so that gii = p1a/[p1pa].

Using these together with the measured values of gsi shown in Fig. 4 of Ref.[48], one can

evaluate Clauser’s parameter R = g2
si/[gssgii]. For classical fields R ≤ 1, whereas we observe

strong violation of this inequality. The Clauser parameter R = g2
si/[gssgii] as a function

of photodetection probability p1 is shown in Fig. 10 for our single photon source, and in

Fig. 11 after storage.

The total measured transmission and detection efficiencies for the idler and signal fields

respectively are wi = 0.25±0.03 and ws = 0.15±0.02, consisting of the quantum efficiencies

of the detectors 0.55±0.05 and the passive transmission losses accounting for the rest. The

ratio of h ≡ εi/wi = 0.16 indicates the strength of the spatial signal-idler correlations in

our source of conditional single photons at Site A, with h→ 1 for the ideal case.
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Figure 10: Clauser parameter R = g2
si/[gssgii] as a function of photodetection probability

p1 for the single photon source.

Figure 11: Clauser parameter R = g2
si/[gssgii] as a function of photodetection probability

p1 after 500 ns storage time.
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CHAPTER III

OBSERVATION OF DARK STATE POLARITON

COLLAPSES AND REVIVALS

This chapter is based on Ref. [49].

3.1 Motivation

Atomic ensembles show significant promise as quantum memory elements in a quantum

network [2, 61, 11, 23, 22]. A “dark-state polariton” is a bosonic-like collective excitation

of a signal light field and an atomic spin wave [42], whose relative amplitude is governed by

a control laser field. In the context of quantum memories, the dark state polariton should

enable adiabatic transfer of single quanta between an atomic ensemble and the light field.

Seminal “stopped-light” experiments that used laser light excitation [26, 27, 68] can be

understood in terms of the dark-state polariton concept. In a recent work the storage and

retrieval of single photons using an atomic ensemble based quantum memory was reported,

and the storage time was conjectured to be limited by inhomogeneous broadening in a

residual magnetic field [48].

During storage, the dark-state polariton consists entirely of the collective spin wave

excitation. According to the dark-state polariton concept, the retrieved signal field should

exhibit the collapse and revivals experienced by the spin wave.[60] The revivals occur at

integer multiples of one half the Larmor period, with dynamics that are sensitive to the

relative orientation of the magnetic field and the light wavevector. The spin wave part of

the dark-state polariton involves a particular superposition of atomic hyperfine coherences

(see Eq.(1) below), intimately related to the phenomenon of electromagnetically-induced

transparency (EIT) [40, 64]. Revivals of single atom coherences were observed in atom

interferometery [69, 70]. Coupled exciton-polariton oscillations in semiconductor microcav-

ities have also been reported [71, 72]. Evolution of the dark-state polariton for the simple
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three level atomic system in a magnetic field was reported in [68].

The remarkable protocol of Duan, Lukin, Cirac, and Zoller (DLCZ) provides a measurement-

based scheme for the creation of atomic spin excitations [11]. In systems where EIT is

operative, these excitations will in general contain a dark-state polariton component. The

orthogonal contribution may be regarded as a bright-state polariton in that it couples

dissipatively to the excited atomic level in the presence of the control field [73]. Observa-

tion of the retrieved signal field, however, picks out the dark state polariton part, while

the orthogonal component is converted into spontaneous emission [60]. A number of pre-

vious works reported generation and subsequent retrieval of DLCZ collective excitations

[43, 44, 52, 45, 46, 54, 47, 74]. Several of these studies investigated the decoherence of these

excitations in cold atomic samples [43, 45, 46, 47, 74]. It has been similarly conjectured

in these works that the decay of the coherence was due to spin precession in the ambient

magnetic field. While the observed decoherence times are consistent with the residual mag-

netic fields believed to be present, the observation of revivals predicted in Ref.[60] would be

solid proof that Larmor precession is indeed the current limitation on the quantum memory

lifetime. Moreover, controlled revivals could provide a valuable tool for quantum network

architectures that involve collective atomic memories [11, 23, 22].

3.2 Experiment

We describe in this Chapter observations of collapses and revivals of dark-state polaritons

in agreement with the theoretical predictions [60]. In our experiment, we employ two

different sources for the signal field, a coherent laser output and a conditional source of

single photons [11]. The latter is achieved by using a cold atomic cloud of 85Rb at Site

A in the off-axis geometry pioneered by Harris and coworkers [54]. Another cold atomic

cloud of 85Rb at Site B serves as the atomic quantum memory element, as shown in Fig. 12.

Sites A and B are physically located in adjacent laboratories connected by a 100 meter

long single-mode optical fiber. The fiber channel directs the signal field to the optically

thick atomic ensemble prepared in level |b〉. The inset in Fig. 12 indicates schematically the

structure of the three atomic levels involved, |a〉, |b〉 and |c〉, where {|a〉; |b〉} correspond to
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Figure 12: A schematic diagram illustrates our experimental setup. A signal field from
either a laser, or a DLCZ source of conditional single photons at Site A is carried by a
single-mode fiber to an atomic ensemble at Site B, where it is resonant on the |b〉 ↔ |c〉
transition. The signal field is stored, for a duration Ts, and subsequently retrieved by time-
dependent variation of a control field resonant between levels |a〉 and |c〉. All the light fields
responsible for trapping and cooling, as well as the quadrupole magnetic field in the MOT,
are shut off during the period of the storage and retrieval process. An externally applied
magnetic field created by three pairs of Helmholtz coils (not shown) makes an angle θ with
the signal field wavevector. The inset shows the structure and the initial populations of
atomic levels involved. The signal field is measured by detectors D2 and D3, while detector
D1 is used in the conditional preparation of single photon states of the signal field at Site
A.
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the 5S1/2, Fa = 3, Fb = 2 levels of 85Rb, and |c〉 represents the 5P1/2, Fc = 3 level associated

with the D1 line at 795 nm. The signal field is resonant with the |b〉 ↔ |c〉 transition and

the control field with the |a〉 ↔ |c〉 transition.

When the signal field enters the atomic ensemble at Site B, its group velocity is strongly

modified by the control field. By switching off the control field within about 100 ns, the

coupled excitation is converted into a spin wave excitation with a dominant dark state

polariton component, i.e., the signal field is “stored” [42, 26, 27, 68]. An important condition

to achieve this storage is a sufficiently large optical thickness of the atomic sample, which

enables strong spatial compression of the incident signal field [22]. In our experiment the

measured optical thickness d ' 8. The subsequent evolution of a dark state polariton in

an external magnetic field is predicted to reveal a series of collapses and revivals whose

structure is sensitive to the magnitude and orientation θ of the field relative to the signal

wavevector [60].

3.3 Theory

As we deal with an unpolarized atomic ensemble, we must take into account the Zeeman

degeneracy of the atomic levels. Choosing the same circular polarizations for both the probe

and the control fields allows us to retain transparency [48]. For a σ+ polarized signal field,

the dark state polariton annihilation operator for wavenumber q is given by [59, 60]

Ψ̂ (q, t) =
Ω(t)âk,+ −√

Npg∗
∑

mRmŜ
b m
a m (q, t)

√

|Ω(t)|2 +Np |g|2∑m |Rm|2
(13)

where Ω(t) is the control field Rabi frequency, g the coupling coefficient for the signal

transition, m is the magnetic quantum number, Rm = CFb 1 Fc

m 1 m+1/C
Fa 1 Fc
m 1 m+1 is a ratio of

Clebsch-Gordan coefficients, N is the number of atoms, p = 1/(2Fb + 1), âk,+ is the field

annihilation operator for the mode of wavevector k = q+ω0/c and positive helicity, ω0 is the

Bohr frequency of the |b〉 ↔ |c〉 transition, Sb m
a m(q, t) ≡ 1/

√
Np

∑

µ σ̂
(µ)
b m, a m(t) exp(−i(qzµ−

∆(t − zµ/c))) is a collective spin wave operator, where σ̂
(µ)
b m, a m(0) = |b,m〉µ〈a,m| is a

hyperfine coherence operator for atom µ = 1, ..N , zµ is the position of atom µ, and ∆

is the hyperfine splitting of the ground state. When Rm is finite for all m, the atomic
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configuration supports EIT, but when one or more Rm is infinite, there is an unconnected

lambda configuration, EIT is not possible and dark state polaritons do not exist. Specifically,

the excited state |c,m+ 1〉 is not coupled by the control field to a state in the ground level

|a〉. An atom in the state |b,m〉 would absorb the signal field as if no control field were

present.

The signal is stored in the form of spin wave excitations associated with the dark state

polaritons ∼ ∑

mRmŜ
b m
a m(q) for some range of q’s. During the storage phase, and in the

presence of the magnetic field B, the atomic hyperfine coherences rotate according to the

transformation

Ŝbm
am(q, t) =

Fb
∑

m1=−Fb

Fa
∑

m2=−Fa

D(b)†
m1m(t)D(a)

m,m2
(t)Ŝbm1

am2
(q, 0), (14)

where D(s)
m,m′(t) ≡ 〈s,m| exp(−igsΩ · F̂t)|s,m′〉 is the rotation matrix element for hyperfine

level s, F̂ is the total angular momentum operator, Ω ≡ µBB/h̄, µB is the Bohr magneton,

ga and gb are the Landé g factors for levels |a〉 and |b〉 of 85Rb and, ignoring the nuclear

magnetic moment, ga = −gb. This rotation dynamically changes the dark state polariton

population during storage.

The measured signal retrieved after a given storage time Ts is determined by the re-

maining dark state polariton population. Stated differently, only the linear combination of

hyperfine coherences ∼∑

mRmŜ
b m
a m(q, Ts) contributes to the retrieved signal. We calculate

the number of dark state polariton excitations as a function of Ts using Eqs.(13) and (14),

〈N̂(Ts)〉 =
∑

q〈Ψ̂†(q, Ts)Ψ̂(q, Ts)〉, and find

〈N̂(Ts)〉
〈N̂(0)〉

=

∣

∣

∣

∣

∣

∑

m1m2

Rm1
Rm2

∑

m |Rm|2
D(b)†

m2m1
(Ts)D(a)

m1m2
(Ts)

∣

∣

∣

∣

∣

2

. (15)

In Fig. 13, panels (f) through (j), we show the retrieval efficiency for various orientations

of a magnetic field of magnitude 0.47 G, corresponding to the Larmor period of 4.6 µs. With

the approximation ga = −gb it is clear that the system undergoes a revival to the initial

state after one Larmor period (2π/|gbΩ|), and thus the signal retrieval efficiency equals

the zero storage time value. Depending on the orientation of the magnetic field, a partial

revival at half the Larmor period is also observed. For a magnetic field oriented along the

29



z axis (Fig. 13(f)), the polariton dynamics is relatively simple. Each hyperfine coherence

Ŝb m
a m merely picks up a phase factor that oscillates at frequency 2m|gbΩ|, thus returning

the system to its initial state at half the Larmor period. In this case, the partial revival is

actually a full revival. On the other hand, for θ = π/2 (Fig. 13(j)), a rotation through half

the Larmor period causes the coherence transformation Ŝb m
a m → −Ŝb −m

a −m, and as a result, the

retrieval efficiency is reduced to (
∑

mRmR−m/
∑

mR2
m)2. The substructure within a half

Larmor period is associated with interference of different hyperfine coherences contributing

to the dark-state polariton [60].

To test these predictions, we apply a uniform dc magnetic field of magnitude 0.5±0.05 G

to the atomic ensemble using three pairs of Helmholtz coils. In our first set of measurements,

150 ns long coherent laser pulses containing on average ' 5 photons serve as the signal field.

The outputs of the single-photon detectors D2 and D3 are fed into two “Stop” inputs of

a time-interval analyzer which records the arrival times with a 2 ns time resolution. The

electronic pulses from the detectors are gated for the period [t0, t0 + Tg], with Tg = 240

ns, centered on the time determined by the control laser pulse during the retrieval stage.

Counts recorded outside the gating period are therefore removed from the analysis. The

recorded data allows us to determine the number of photoelectric events N2 + N3, where

Ni is the total number of counts in the i-th channel(i = 1, 2, 3).

By measuring the retrieved field for different storage times and orientations of the mag-

netic field, we obtain the collapse and revival signals shown in Fig. 13, (a) through (e). As

expected, we observe revivals at integer multiples of the Larmor period. In addition, we

see partial revivals at odd multiples of half the Larmor period, except in the vicinity of

θ = π/4. The measured substructures within a single revival period are in good agreement

with the theory (cf., insets of Fig. 13, (e) and (j)). We attribute the overall damping of

the revival signal in the experimental data to the magnetic field gradients. The evident

decrease of this damping while θ is varied from 0 to π/2 suggests that such gradients are

predominantly along the direction of the signal field wavevector. Similarly, we attribute

the additional broadening of the revival peaks at longer times to inhomogeneous magnetic
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Figure 13: Panels (a)-(e) show the ratio of the number of photoelectric detection events for
the retrieved and incident signal fields for various orientations, θ = 0, π/8, π/4, 3π/8, π/2,
of the applied magnetic field, and as a function of storage time. The incident signal field
is a weak coherent laser pulse. In all cases the control pulse is switched off at Ts = 0. We
observe a series of collapses and revivals at multiples of the half Larmor period of 2.3 µs. The
observed damping over several Larmor periods is likely caused by residual magnetic field
gradients. The inset in Panel (e) demonstrates the observed substructure within the first
Larmor period. Panels (f) through (j) are corresponding theoretical plots of the dark-state
polariton number calculated using Eq.(14).
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Figure 14: Diamonds show the measured collapse time TC of the first revival at half the
Larmor period as a function of the measured revival time TR, for magnetic field values of
0.8, 0.6, 0.4, and 0.2 G, respectively, and for fixed orientation θ = π/2. The line shows the
corresponding theoretical prediction TC ≈ 0.082TR from Eq.(14).

fields, possibly ac fields, not included in the theoretical description. An additional investi-

gations to determine the temporal and spatial characteristics of the residual magnetic fields

are required. As an initial step Chapter 3 reports factor of three improvement in coherence

time achieved due to better shielding of the ambient magnetic field.

Theory predicts that both the collapse and the revival times (TC and TR, respectively)

scale inversely with the magnetic field [60]. In Fig. 14 the theoretical prediction TC ≈

0.082TR (solid line) is compared with the experimentally measured values. We find very

good agreement except for the lowest value of magnetic field B = 0.2 G which may be

explained by the presence of residual magnetic field gradients.

In the measurements presented above, classical, coherent laser light was used as the

signal field [30]. We have also investigated the revival dynamics of our atomic memory with

the signal field in a single photon state, as shown in Fig. 12. The procedure for production

of a single photon state of the signal field at Site A is conditioned on the detection of an

idler photon by D1 (see Refs.[47, 48] and Chapter 2 for further details). If photoelectric

detections in different channels 1, 2 or 1, 3 happen within the same gating period, they

contribute to the corresponding coincidence counts between D1 and Dj, N1j , j = 2, 3. We

evaluate the α parameter of Grangier et al. [65], given by the ratio of various photoelectric
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Figure 15: Squares show the measured rate of coincidence detections between D1 and D2,3,
Nsi = N12 +N13 as a function of the storage time. Diamonds show the measured level of
random coincidences NR. The ratio of squares to diamonds gives gsi. Uncertainties are
based on the statistics of the photoelectric counting events.

detection probabilities which are measured by the set of detectors D1,D2 and D3. For an

ideal single-photon state α = 0, whereas for coherent fields α = 1. We have experimentally

determined α = 0.51 ± 0.06, without any correction for background or dark counts.

The normalized intensity cross-correlation function gsi ≡ (N12 +N13)/NR may be em-

ployed as a measure of non-classical signal-idler field correlations [30, 75], as discussed in

detail in Ref.[43]. Here NR ≡ N1 ·(N2 +N3) ·Rrep is the level of random coincidences, where

Rrep is the repetition rate of the experimental protocol. The values of gsi are obtained by

the ratio of the upper and lower traces in Fig. 15. The measurements presented there give

values of gsi well in excess of two at the revival times, suggesting the dark-state polaritons

have a non-classical nature. One could further evaluate self-correlations for the idler field

gii, and for the signal field gss, and confirm that the Cauchy-Schwarz inequality g2
si ≤ gssgii

is indeed violated [43, 30, 75]. We have measured, by adding a beamsplitter and an addi-

tional detector, the value gii = 1.42±0.03. When the signal field is stored and retrieved 500

ns later, we find that gss ≤ 2 [48] (see also Chapter 2). While the total number of recorded

coincidences between detectors D2 and D3 is not high enough to evaluate gss for the revived
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polariton, it is also expected to be less than two, leading to a substantial violation of the

Cauchy-Schwarz inequality.
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CHAPTER IV

DETERMINISTIC SINGLE PHOTONS VIA

CONDITIONAL QUANTUM EVOLUTION

This chapter is based on Ref. [76].

4.1 Motivation

A seminal proposal to realize universal quantum computation using a single photon states

of light and linear optics has been made by Knill, Laflamme and Milburn [61]. A significant

step in the direction of quantum networks is the capability to generate deterministic single

photons. Previous implementations of deterministic single photon sources used single emit-

ters, such as quantum dots [77, 78, 79], color centers [80, 81], neutral atoms [20, 82], ions

[83], and molecules [84].

By contrast, in this Chapter we describe combination of an intrinsically probabilistic

heralded single photon source, based on an ensemble of about one million atoms, with

measurement and conditional quantum evolution, to generate single photons on demand.

A heralded source of single photons involves the generation of photon pairs, in which the

photoelectric detection of one of the pair signals the presence of the other, idler photon. The

heralding event is inherently random, and the unconditioned field state consists mostly of

vacuum [85, 65]. Hence, heralded single photon sources are characterized by mean photon

number 〈n̂〉 � 1. Without exception all prior experiments with atomic ensembles could

only function as heralded single photon sources [46, 47, 49, 48, 60, 23, 86, 52, 54, 55].

4.2 Protocol for deterministic single photon generation

Our deterministic source amplifies the single photon component of a heralded source at

the expense of the vacuum through the use of atomic memory and quantum measurement-

based feedback. In earlier work quantum feedback protocols have demonstrated control of
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Figure 16: Schematic of experimental setup for deterministic single photon generation,
with the inset showing the three-level atomic configuration involved (see text for details).

non-classical states of light [87] and motion of a single atom [88] in cavity QED. We first

outline the procedure for heralded single photon generation. A schematic of our experiment

is shown in Fig. 16. An optically thick atomic cloud is provided by a magneto-optical

trap (MOT) of 85Rb. The ground levels {|a〉; |b〉} correspond to the 5S1/2, Fa,b = {3, 2}

hyperfine levels, while the excited level |c〉 represents the {5P1/2, Fc = 3} level of the D1

line at 795 nm. The experimental sequence starts with all of the atoms prepared in level

|a〉. An amplitude modulator generates a linearly polarized 70 ns long write pulse tuned to

the |a〉 → |c〉 transition, and focused into the MOT with a Gaussian waist of about 430 µm.

We describe the write process using a simple model based on nondegenerate parametric

amplification. The light induces spontaneous Raman scattering via the |c〉 → |b〉 transition.

The annihilation of a write photon creates a pair of excitations: namely a signal photon

and a quasi-bosonic collective atomic excitation [11]. The scattered light with polarization

orthogonal to the write pulse is collected by a single mode fiber and directed onto a single

photon detector D1, with overall propagation and detection efficiency ηs. The state of

the atomic excitation conditioned on this photoelectric event depends, in general, on the
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detection time. However, in the limit of long detector dead time and when the time of

detection is not recorded, the conditioned density operator for the atomic excitation A is

given by

ρA|1 =
1

p1

∞
∑

n=1

tanh2n χ

cosh2 χ
(1 − (1 − ηs)

n) |n〉〈n|, (16)

where p1 � 1 is the probability of a signal photoelectric detection event per write pulse and

the interaction parameter χ is given in terms of p1 and ηs by

sinh2 χ = p1/[ηs (1 − p1)], (17)

where |n〉 ≡ Â†n|0〉/
√
n!, and |0〉 is the atomic vacuum. We note that in Eq. (16) there is

zero probability to find |0〉.

After a storage time τ , a read pulse of length 80 ns containing around 3·107 photons, and

with polarization orthogonal to that of the write pulse, tuned to the |b〉 → |c〉 transition,

illuminates the atomic ensemble (Fig. 16). Ideally, the read pulse converts atomic spin

excitations into the idler field emitted on the |c〉 → |a〉 transition. The elastically scattered

light from the write beam is filtered out, while the idler field polarization orthogonal to that

of the read beam is directed into a 50:50 single-mode fiber beamsplitter. Both write/read

and signal/idler pairs of fields are counter-propagating [54]. The waist of the signal-idler

mode in the MOT is about 180 µm. The two outputs of the fiber beamsplitter are connected

to detectors D2 and D3. Electronic pulses from the detectors are gated with 120 ns (D1)

and 100 ns (D2 and D3) windows centered on times determined by the write and read

light pulses, respectively. Subsequently, the electronic pulses from D1, D2, and D3 are fed

into a time-interval analyzer which records photoelectric detection events with a 2 ns time

resolution.

The transfer of atomic excitation to the idler field and subsequent detection can be

modeled by a linear optics relation âi(τ) =
√

εi (τ)Â +
√

1 − εi (τ)ξ̂ (τ), where âi is the

idler annihilation operator for the detected field mode, and ξ̂ (τ) is a bosonic operator

which accounts for coupling to degrees of freedom other than the detected idler mode.

The efficiency ηi (τ) is the probability that a single atomic excitation stored for τ results

in a photoelectric event at either D2 or D3, and includes the effects of idler retrieval
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and propagation losses and non-unit detector efficiency. Using multimode detection theory

we calculate the probabilities pk|1 (τ) that detector Dk (k = 2, 3) registers a photoelectric

detection event, within the entire idler field envelope, conditioned on the signal detection

event at D1. We also calculate the conditional probability p23|1 (τ) of a photoelectric event

occurring at both detectors. These probabilities are given by

p2|1 (τ) = p3|1 (τ) = Π (ηi (τ) /2; p1, ηs) , (18)

p23|1 (τ) = p2|1 (τ) + p3|1 (τ) − Π(ηi (τ) ; p1, ηs) , (19)

where

Π (η; p1, ηs) = 1 −
1

p1

(

1

1 + η sinh2 χ
− 1

1 + (ηs + η (1 − ηs)) sinh2 χ

)

(20)

is the probability that a detector registers a photoelectric event conditioned on a signal

detection.

The protocol for our deterministic single photon source has two crucial requirements:

high-efficiency heralded single photon generation and long atomic memory times. Earlier

experiments demonstrated proof-of-principle heralded single photon generation [43, 45, 44,

46]. However, the measured efficiencies and memory times were much too low to provide

the basis for a deterministic source based on our protocol. Improved efficiencies and longer

atomic memory times were subsequently reported in Refs. [47, 48, 89], but these were still

insufficient.

4.3 Results

In Figs. 17 and 18 we show the results of our characterization of an improved source of

heralded single photons. Panel (a) of Fig. 17 shows the measured intensity cross-correlation

function gsi ≡ [p2|1 + p3|1]/[p2 + p3] as a function of p1. Large values of gsi under conditions

of weak excitation - i.e., small p1 - indicate strong pairwise correlations between signal

and idler photons. The efficiency of the signal photon generation and detection is given by

ηs → gsip1, in the limit sinh2 χ� 1. We have measured ηs ≈ 0.08, which includes the effects
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of passive propagation and detection losses εs. It is important to distinguish the measured

efficiency from the intrinsic efficiency which is sometimes employed. The intrinsic efficiency

of having a signal photon in a single spatial mode at the input of the single-mode optical

fiber η0
s ≡ (ηs/εs) ≈ 0.24. We measure εs ≡ εfs ε

t
sε

d
s ≈ 0.3 independently using coherent laser

light, where the fiber coupling efficiency εfs ≈ 0.7, optical elements transmission εts ≈ 0.85,

and the detection efficiency εds ≈ 0.55. The measured efficiency of the idler photon detection

is ηi → gsi(p2 + p3) ≈ 0.075. Here p2 and p3 are defined by expressions analogous to Eq.

(17). Similarly, the intrinsic efficiency for the idler field η0
i ≡ (ηi/εi) ≈ 0.34, where we

measure εi ≡ εfi ε
t
iε

d
i ≈ 0.22, with εfi ≈ 0.75, εti ≈ 0.59, and εdi ≈ 0.55. The reported values of

ηs ≈ 0.08 and ηi ≈ 0.075 represent slight improvements on the previous highest measured

efficiencies in atomic ensemble experiments of 0.04 − 0.07 [48, 49] (see also Chapters 2 and

3).

The quality of the heralded single photons produced by our source is assessed using the

procedure of Grangier et al., which involves a beamsplitter followed by two single photon

counters, as shown in Fig. 16 [65]. An ideal single-photon input to the beamsplitter results

in photoelectric detection at either D2 or D3, but not both. An imperfect single photon

input will result in strong anticorrelation of the coincidence counts. Quantitatively, this is

determined by the anticorrelation parameter α given by the ratio of various photoelectric

detection probabilities measured by the set of detectors D1,D2 and D3: α = p23|1/(p2|1p3|1).

Classical fields must satisfy a criterion α ≥ 1 based on the Cauchy-Schwarz inequality [65].

For an ideally prepared single photon state α→ 0. Panel (b) shows the measured values of

α as a function of p1, with min{α} = 0.012± 0.007 representing a ten-fold improvement on

the lowest previously reported value in atomic ensembles [48].

In order to evaluate the atomic memory coherence time τc, we measure gsi as a function

of the storage time τ , Fig. 18. To maximize τc, the quadrupole coils of the MOT are

switched off, with the ambient magnetic field compensated by three pairs of Helmholtz coils

[47]. The measured value of τc ≈ 31.5 µs, a three-fold improvement over the previously

reported value, is limited by dephasing of different Zeeman components in the residual

magnetic field [48, 49].
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Figure 17: Correlation functions gsi (panel (a)) and α (panel (b)) as a function of p1, taken
at τ = 80 ns. The solid lines are based on Eqs.(18,19), with addition of a nearly-negligible
background contribution.

The long coherence time enables us to implement a conditional quantum evolution

protocol. In order to generate a single photon at a predetermined time tp, we initiate the

first of a series of trials at a time tp −∆t, where ∆t is on the order of the atomic coherence

time τc. Each trial begins with a write pulse. If D1 registers a signal photoelectric event,

the protocol is halted. The atomic memory is now armed with an excitation and is left

undisturbed until the time tp when a read pulse converts it into the idler field. If D1 does

not register an event, the atomic memory is reset to its initial state with a cleaning pulse,

and the trial is repeated. The duration of a single trial t0 = 300 ns. Even if D1 does not

register a photoelectric event after repeated trials, the protocol is halted 1.5 µs prior to tp,

and the idler is detected.

This experimental sequence effectively amplifies the single photon component at the

expense of the vacuum. Armed with Eqs. (18) and (19), we can calculate the unconditioned

detection and coincidence probabilities for the complete protocol. The probability that the

atomic excitation is produced on the kth trial is p1 (1 − p1)
k−1. This excitation is stored for

a time (N − k)t0 before it is retrieved and detected, N = δt/t0 is the maximum number of

trials that can be performed in the protocol (we ignore the 1.5 µs halting period before the

read-out).

One can express the probability of a photoelectric event at Di (i = 2, 3), Pi, and the
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Figure 18: Normalized signal-idler intensity correlation function gsi as a function of the
storage time τ . The full curve is a fit of the form 1 +B exp(−τ2/τ2

c ) with B = 16 and the
collapse time τc = 31.5 µs as adjustable parameters.

coincidence probabilities P23 in terms of the conditional probabilities of Eqs. (18) and (19),

Pi = p1

N
∑

k=1

(1 − p1)
k−1 pi|1 (tp − kt0) , (21)

P23 = p1

N
∑

k=1

(1 − p1)
k−1 p23|1 (tp − kt0) . (22)

In the limit of infinite atomic coherence time and N → ∞, Pi → pi|1, and P23 → p23|1.

Hence, if the memory time is sufficiently long for an adequate number of trials, the protocol

ideally results in deterministic preparation of a single atomic excitation, which can be

converted into a single photon at a desired time. Consistent with Fig.18 we assume a

combined retrieval-detection efficiency that decays as a Gaussian function of storage time,

ηi (τ) = ηi(0)e
−(τ/τc)2 , where τc is the atomic spin-wave coherence time. We emphasize

that in the absence of information about the signal field the reduced density operator of

the idler is thermal [75]. In contrast, the evolution of the idler conditioned by the recorded

measurement history of the signal field in our protocol, ideally results in a single photon

state.

In Fig. 19 we present the measured degree of 2nd order coherence for zero time delay

g
(2)
D (0) ≡ P23/(P2P3) [90] and the measured efficiency ηD ≡ P2 + P3 as a function of N

(panels (a) and (b)), and as a function of p1 (panels (c) and (d)). The solid curves are
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Figure 19: g
(2)
D (0) as a function of maximum number of trials N (panel (a)) and p1 (panel

(c)); measured efficiency to generate and detect a single photon ηD as a function of N (panel
(b)) and p1 (panel (d)). For panels (a) and (b) p1 = 0.003, whereas for for panels (c) and
(d) N = 150. The full curves are based on Eqs. (21) and (22) with the values of efficiencies
and coherence times given in the text, with however ηD multiplied by an empirical factor
of 2/3. We believe this reduced efficiency is due to imperfect switching of the read light
in the feedback-based protocol (we note that there are no other adjustable parameters in
the simple theory presented). Evident deviations from the theory in panels (c) and (d),
beyond the statistical uncertainties associated with photoelectric counting events, could be
explained either by inadequacies of the theory, or slow systematic drifts in the residual
magnetic field and the read light leakage.
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based on Eqs.(21) and Eqs.(22) above. The dashed lines in panels (a) and (c) show the

expected value of g
(2)
D (0) = 1 for a weak coherent state (as we have confirmed in separate

measurements). The particular value of ∆t is chosen to optimize g
(2)
D (0) and ηD. The

minimum value of g
(2)
D (0) = 0.41 ± 0.04 indicates substantial suppression of two-photon

events and under the same conditions ηD = 0.012. The corresponding value of the measured

Mandel parameter QD ≡ −ηD(1− g
(2)
D (0)) is ≈ −0.007 ± 10% and is largely determined by

ηD [90]. Note that in the limit of infinite atomic memory and N → ∞, g
(2)
D (0) → min{α} ≈

0.012 ± 0.007 and ηD → ηi ≈ 0.075. We note that this light source is stationary, with the

sub-Poissonian character of photoelectric events unaffected by probabilistic atom loading,

a randomness inherent to a cavity QED source [20, 21].

Moreover, the measured efficiency ηD can be further increased by employing atomic

sample with larger optical thickness and by optimizing the spatial focusing patterns of the

signal and idler fields. (In separate sets of measurements, we have observed ηs ≈ 0.2, for the

intrinsic signal efficiency η0
s ≈ 0.6). In principle, the spatial signal-idler correlations from

an atomic ensemble (and, therefore η0
i ) can also be improved by use of an optical cavity.

However, in the absence of special precautions the use of a cavity will itself introduce

additional losses associated, e.g., with the mirror coatings or the cavity locking optics [20,

21, 83, 55]. The measured efficiency ηD would involve a trade-off between improved spatial

correlations due to the cavity and the concomitant losses that it introduces.

43



CHAPTER V

QUANTUM STATE TRANSFER BETWEEN MATTER

AND LIGHT

This chapter is based on Ref. [46].

5.1 Theory

The ability to coherently transfer quantum information between photonic- and material-

based quantum systems is a prerequisite for all practical distributed quantum computation

and scalable quantum communication protocols [1].

Here we report on the experimental realization of coherent quantum state transfer from

a matter qubit onto a photonic qubit, utilizing an optically thick cold atomic cloud. Our

experiment involves three steps:

1. An entangled state between a single photon (signal) and a single collective excita-

tion distributed over many atoms in two distinct optically thick atomic samples is

generated.

2. Measurement of the signal photon projects the atomic ensembles into a desired state,

conditioned on the choice of the basis and the outcome of the measurement. Ideally

this atomic state is a nearly maximally entangled state between two distinct atomic

ensembles.

3. This state is converted into a single photon (idler) emitted into a well-defined mode,

without using a high-finesse cavity. These three ingredients constitute a complete set

of tools required to build an arbitrary large-scale quantum network [11].

As illustrated in Fig.20A, the classical laser pulses used in the generation and verification

procedures define the two distinct pencil-shape components of the atomic ensemble that
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form our memory qubit, L and R. Fig.20B indicates schematically the structure of the four

atomic levels involved, |a〉, |b〉, |c〉 and |d〉. The experimental sequence starts with all of the

atoms prepared in state |a〉. A write pulse tuned to the |a〉 → |c〉 transition is split into

two beams by a polarizing beam splitter (PBS1) and passed through the atomic sample.

The light induces spontaneous Raman scattering on the |c〉 → |b〉 transition. The classical

write pulse is so weak that less than one photon is scattered in this manner into the forward

direction mode for each pulse in either L or R. The forward scattered mode is dominantly

correlated with a distinct collective atomic state [11]. In the first order of perturbation

theory in the atom-light coupling χ, the atom-light state is

|Ψ〉 ∼ |a〉1 . . . |a〉NL+NR
|0p〉L|0p〉R + χ(|La〉|1p〉L|0p〉R + |Ra〉|0p〉L|1p〉R). (23)

We have defined two effective states of the atomic ensembles:

|La〉 =
NL
∑

i=1

gi|a〉1 . . . |b〉i . . . |a〉NL
. . . |a〉NL+NR

|Ra〉 =
NL+NR
∑

j=NL+1

gj |a〉1 . . . |a〉NL
. . . |b〉j . . . |a〉NL+NR

, (24)

with the weights gi, gj determined by the write field intensity distribution,
∑NL

i=1 |gi|2 = 1,

∑NL+NR

j=NL+1 |gj |2 = 1 [91, 63]. |La〉 and |Ra〉 have properties of a two-level system (qubit):

〈La|La〉 = 1, 〈Ra|Ra〉 = 1, 〈La|Ra〉 = 0. Although the interaction of the light with the

atoms is non-symmetric with respect to permutation of atoms, the second term in Eq.23

in fact describes a strongly entangled atom-photon state in the sense of [63]. Using PBS4

and a half wave plate inserted into one of the channels, we map the two spatial modes

associated with the two ensembles into a single spatial mode with polarization encoding

of the light’s origin: |1p〉L → |H〉s; |1p〉R → |V 〉s, where H and V indicate horizontal and

vertical polarization, respectively, and s denotes signal. Next, the light is passed through

an arbitrary polarization state transformer Rs(θs, φs) and a polarizer PBS5, so that the

state at the output of PBS5 is

|H ′〉 = cos(θs)e
iφs |H〉s + sin(θs)|V 〉s,

and is directed onto a single-photon detector D1. When D1 detects a photon, the joint
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state in Eq.23 is projected into the desired atomic state

|Ψa〉 = cos(θs)e
−iφs |La〉 + sin(θs)e

iηs |Ra〉, (25)

which is an entangled state of the two atomic samples L and R. Phase ηs is determined by

the difference in length of the two paths L and R. After a variable delay time ∆t we convert

the atomic excitation into a single photon by illuminating the atomic ensemble with a pulse

of light near resonant with the |b〉 → |d〉 transition. For an optically thick atomic sample,

the photon will be emitted with high probability into the spatial mode determined by the

write pulse [11, 91] achieving memory read-out:

|Ψa〉 = cos(θs)e
−iφs |La〉 + sin(θs)e

iηs |Ra〉 → |Ψ〉i = cos(θs)e
−iφs |H〉i + sin(θs)e

i(ηi+ηs)|V 〉i.

(26)

That is, the polarization state of the idler photon i is uniquely determined by the observed

state of the signal photon. Alternatively, one could store the signal in a fiber until after

the read-out. In that case, the two-photon signal-idler state would ideally be an entangled

state:

|ΨM 〉 = |vac〉 + χ
1√
2
(|H〉s|H〉i + ei(ηs+ηi)|V 〉s|V 〉i). (27)

5.2 Experiment

A magneto-optical trap (MOT) of 85Rb is used to provide an optically thick atomic cloud

for our experiment (See Fig. 20). The ground states {|a〉; |b〉} correspond to the 5S1/2, F =

{3, 2} levels of 85Rb, while the excited states {|c〉; |d〉} represent the {5P3/2, F = 3; 5P1/2, F =

2} levels of the {D2,D1} lines at {780; 795} nm, respectively. The experimental sequence

starts with all of the atoms prepared in state |a〉 via optical pumping, after shutting off the

trapping and cooling light.

A 140 ns long write pulse tuned to the |a〉 → |c〉 transition is split into two beams by a

polarizing beamsplitter PBS1 and focused into two regions of the MOT about 1 mm apart

with Gaussian waists of about 50 µm. PBS2 and PBS3 separate the horizontally polarized

component of the forward scattered light from the vertically polarized classical pulse. After

being mixed by PBS4, the light goes through the quarter- and the half-wave plates that
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Figure 20: (A) Schematic of experimental setup. PBS1-6, polarizing beam splitters, λ/2,
half waveplate, polarization state transformers, Rs(θs, φs) and Ri(θi, φi), (D1,D2,D3), single
photon detectors, DM, dichroic mirror. The inset illustrates the timing of the write and
read pulses. (B) The relevant atomic level structure.

47



provide the state transformation Rs(θs, φs). The light continues to another polarizer PBS5,

and is directed to a single photon detector D1. Detection of one photon by D1 prepares

the atomic ensemble in any desired state in the basis of |La〉, |Ra〉 determined by Rs(θs, φs)

and thereby concludes the preparation of the quantum memory qubit.

Following memory state preparation, the read-out stage is performed. After a user-

programmable delay ∆t, a 115 ns long read pulse tuned to the |b〉 → |d〉 transition illumi-

nates the two atomic ensembles. This accomplishes a transfer of the memory state onto

the single photon (idler) emitted by the |d〉 → |a〉 transition. After passing through the

state transformer Ri(θi, φi) and PBS6, the two polarization components are directed onto

single-photon detectors (D2, D3) thus accomplishing measurement of the idler photon, and

hence the memory qubit, in a controllable arbitrary basis.

As in any real experiment, various imperfections prevent the read-out of the quantum

memory (idler photon) from being identical to the state that we intended to write into the

memory. To quantify the degree to which we faithfully prepare and read-out the quantum

memory, we measure the polarization correlations between the signal and idler photons.

The observed correlations allow us to characterize the extent to which our procedures are

working. To investigate the storage capabilities of our memory qubit quantitatively, we use

time-resolved detection of the signal and idler photons for two values of delay ∆t between

the application of the write and read pulses, 100 ns and 200 ns. The electronic pulses from

the detectors are gated with 250 ns and 140 ns windows centered on the time determined by

the write and read light pulses, respectively. Afterwards, the electronic pulses are fed into a

time-interval analyzer (with δ = 2 ns time resolution). In order to measure the correlation

between the photons produced by the write and read pulses, the output of D1 is fed into

the “Start” input of a time-interval analyzer, and the outputs of D2 and D3 are fed into

two “Stop” inputs. A coincidence window imposed by the data acquisition software selects

a time interval between the arrival of the idler and signal of (0, 80) ns for ∆t = 100 ns and

(25, 145) ns for ∆t = 200 ns.

We first measure the conditional probabilities of detecting a certain state of the idler

(hence, of the quantum memory state) in the basis of |H〉i and |V 〉i, given the observed
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Table 1: Conditional probabilities P (I|S) to detect the idler photon in state I given detec-
tion of the signal photon in state S, at the point of maximum correlation for ∆t = 100 ns
delay between read and write pulses; all the errors are statistical.

Basis P (Hi|Hs) P (Vi|Hs) P (Vi|Vs) P (Hi|Vs)

0 0.92 ± 0.02 0.08 ± 0.02 0.88 ± 0.03 0.12 ± 0.03
45 0.75 ± 0.02 0.25 ± 0.02 0.81 ± 0.02 0.19 ± 0.02

state of the signal photon. Varying the angle θs produces the correlation patterns shown

in Fig.21A for ∆t = 100 ns. Conditional probabilities at the point of maximum correlation

are shown in Fig.21B and the first line of Table 1. To verify faithful memory preparation

and read-out, we repeat the correlation measurement in a different basis, of states (|H〉i ±

|V 〉i)/
√

2, by choosing the θi = 45 degrees, φi = 0 degrees, and φs = −(ηs + ηi) in the state

transformers Rs and Ri. We vary θs, with the measured interference fringes displayed in

Fig. 22A. Table 1 (second line) and Fig. 22B show the conditional probabilities at the point

of maximum correlations. These probabilities are different from 1/2 only when the phase

coherence between the two states of the atomic qubit is preserved in the matter-to-light

quantum state mapping.

From these measured correlations, we determine the fidelity of the reconstruction of our

intended quantum memory state |ΨI〉 in the idler, |〈ΨI |Ψi〉|2. The fidelity is given by the

value of the corresponding conditional probability at the point of maximum correlation,

presented in Table 1 (we choose the lower of the two values as the lower bound). For states

in the θi = 0 degree basis, we find F0 = 0.88±0.03, clearly exceeding the classical boundary

of 2/3 [92]. For the θi = 45 degree basis, we found F45 = 0.75 ± 0.02, again significantly

violating the classical limit. These fidelities give a lower bound for both the fidelities of the

memory preparation and the read-out steps, which we do not measure separately.

Another way to quantify the performance of our quantum state transfer is to calculate

the fidelity of entanglement between the signal and idler photons Fsi. The lower bound on

Fsi is given by the overlap of the measured density matrix with the maximally entangled

state we seek to achieve |ΨM 〉 given by Eq.27: Fsi = 〈ΨM |ρsi|ΨM 〉 [93]. We calculated
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Figure 21: (A) Measured conditional probabilities P (Hi|Hs) and P (Vi|Hs) as the function
of the polarization rotation θs of the signal photon. The full curves are fits with the visibility
as the only adjustable parameter. (B) Measured conditional probabilities at the points of
highest correlation.
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Figure 22: (A) Measured conditional probabilities after θi = π/4 polarization rotation of
the idler photon as the function of θs. (B) Measured conditional probabilities at the points
of highest correlation.
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Figure 23: Time-dependent entanglement fidelity of the signal and the idler Fsi; circles for
∆t = 100 ns, diamonds for ∆t = 200 ns.

Fsi = 0.67 ± 0.02, substantially greater that the classical limit of 1/2 [16, 93].

At a longer delay of 200 ns the fidelities in the θi = 0 degrees and θi = 45 degrees bases

are F0 = 0.79±0.04 and F45 = 0.74±0.04, while fidelity of entanglement is Fsi = 0.63±0.03.

For both values of ∆t, we analyze the fidelity of entanglement as a function of the delay

between the detections of the signal and the idler. We split the full coincidence window into

four equal intervals, and calculated entanglement of formation for each one (Fig.23). From

these results, we conclude that our quantum memory has a useful operational time of about

150 ns. The lifetime of coherence between the levels |a〉 and |b〉 determines the lifetime of

the quantum memory and is limited by the magnetic field of the trapping quadrupole field

of the MOT [43].

Non-zero coincidence counts in the minima of Fig. 21A are due to transmission losses

and non-ideal spatial correlations between the signal and idler photons. The residual in-

terferometric drifts in ηs + ηi further reduce the visibility of Fig. 22A compared to Fig.

21A, resulting in a degradation of the fidelities. Losses also reduce the rate of entanglement

generation. The rate of signal photon detections (and hence, atomic qubit preparation) is

given by Rs = αnsR ' 300s−1, where α = 0.05 is the measured transmission efficiency for
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the write beam (which includes 0.60 detection efficiency), and R = 4.7×105s−1 is the repe-

tition rate of the experiment. Therefore, the inferred average photon number in the forward

scattered mode per pulse is ns ' 1.4 × 10−2. The coincident signal-idler detection rate is

Rsi = ζRs = ζαnsR ' 0.4s−1, where ζ ≡ βξ ' 1.1 × 10−3. The measured transmission

and detection efficiency for the read beam is β ' 0.04, so we infer the efficiency of quantum

state transfer from the atoms onto the photon ξ ' 0.03.

We have realized a quantum node by combining the entanglement of an atomic and

photonic qubits with the atom-photon quantum state transfer. By implementing the second

node at a different location, and performing a joint detection of the signal photons from the

two nodes, the quantum repeater protocol [11], as well as distant teleportation of an atomic

qubit may be realized. Based on this work, we estimate the rate for these protocols to be

R2 ' (βξαns)
2R ' 3 × 10−7s−1. However, improvements in ξ that are based on increasing

the optical thickness of atomic samples [91], as well as elimination of transmission losses

could provide several orders of magnitude increase in R2. Our results also demonstrate the

possibility of realizing quantum nodes consisting of multiple atomic qubits by using multiple

beams of light. This approach shows promise for implementation of distributed quantum

computation [94, 95].

53



CHAPTER VI

ENTANGLEMENT OF A PHOTON AND A

COLLECTIVE ATOMIC EXCITATION

This chapter is based on Ref. [47].

6.1 Motivation

In this Chapter we report probabilistic entanglement of a collective atomic excitation and

a photon (signal), achieved using the off-axis, counter-propagating geometry of Braje et al.

[53]. We propose and experimentally implement here a qubit consisting of two distinct mixed

states of collective ground-state hyperfine coherence which contain one spin excitation.

The entanglement of the signal photon and the collective spin excitation is inferred by

performing quantum state transfer of the atomic qubit onto a photonic qubit (idler) [47],

with one of the atomic states being converted into a right-hand polarized photon and the

other into a left-hand polarized one. Polarization correlations of the signal and the idler

photons are subsequently recorded and found to be in violation of the Bell inequality. The

atom-photon entanglement is probabilistic, with the fundamental quantum state consisting

mostly of vacuum. The entangled component of the state is postselected by coincidence

counting. This type of entanglement is similar to two-photon entanglement in spontaneous

parametric down-conversion (see [96, 97, 30] and references therein), and to the ion-photon

entanglement of Blinov et al. [16, 17].

6.2 Theory

As illustrated in Fig.24(a), the right circularly polarized write pulse generates a cone of

forward Raman scattering. We collect a Gaussian mode centered around the momentum ~ks

that forms a 2◦ angle with the write beam. Fig.24(b) indicates schematically the structure

of the three atomic levels involved, |a〉, |b〉 and |c〉. The experimental sequence starts with
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Figure 24: (a) Schematic of experimental setup. P1 and P2, polarizers; D1 and D2, detec-
tors; λ/4, quarter-waveplate. (b) The structure of atomic transitions leading to generation
of atom-photon entanglement and of the subsequent read-out of atomic qubit.
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all of the atoms prepared in the unpolarized level |a〉. A write pulse tuned to the |a〉 → |c〉

transition is directed into a sample of cold 85Rb atoms. The classical write pulse is so weak

that less than one photon is scattered in this manner on the |c〉 → |b〉 transition into the

collected mode for each pulse.

Perturbation theory shows that the ensemble-photon density operator may be written

as |vac〉〈vac|⊗ρa +ε ρ where ρ has unit trace, and ε << 1. Here |vac〉 is the photon vacuum

state and ρa the atomic ensemble vacuum state density operator, corresponding to N atoms

each populating the Zeeman states |a,m〉 of level |a〉 with equal probability 1/(2Fa + 1).

It is important to realize that the vacuum component in state |vac〉〈vac| ⊗ ρa + ε ρ has

no influence on the fidelity of DLCZ’s quantum communication protocols due to built-in

purification, even though ε� 1 [11]. Writing |r〉 and |l〉 as the normalized states of right and

left circular polarization of the signal photon propagating towards the detector in direction

~ks, we have that, in the ideal case

ρ = cos2 η|r〉〈r|ŝ†−1ρaŝ−1 + sin2 η|l〉〈l|ŝ†1ρaŝ1

+ cos η sin η
(

|r〉〈l|ŝ†−1ρaŝ1 + |l〉〈r|ŝ†1ρaŝ−1

)

(28)

where

cos2 η =
∑

m

X2
m(−1)/[

∑

m

∑

α=±1

X2
m(α)], (29)

with m summed over {−Fa, ...Fa}, and Xm(α) = CFa,1,Fc

m,1,m+1C
Fc,1,Fb
m+1,α,m+α+1 is the product

of the relevant Clebsch-Gordan coefficients for the transition. The collective atomic spin

excitation operators are given by

ŝ†α =
∑

m

(

Xm(α)
√

∑

mX2
m(α)

)

ŝ†α(m) (30)

and

ŝ†α(m) =

√

2Fa + 1

N

N
∑

µ=1

e−i ~∆ks·~rµ |b,m+ 1 + α〉µ〈a,m|, (31)

where ~∆ks = ~ks − ~kw, is the difference in the signal and write beam wave vectors and

~rµ is the position of atom µ. For weak states of excitation the collective spin operators

satisfy bosonic commutation relations correct to O(1/N): [ŝα(m), ŝ†α′(m′)] = δα,α′δm,m′ and
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[ŝα, ŝ
†
α′ ] = δα,α′ . Evaluating the coefficient cos2η for the experimental conditions Fa = Fc =

3, Fb = 2, we find η = 0.81 × π/4.

Detection of a photon by D1 produced by the |c〉 → |b〉 transition results in the sample

of atoms containing, in the ideal case, exactly one excitation in the related collective atomic

mode. After a variable delay time ∆t (bounded by the lifetime of the ground-state atomic

coherences) we convert the atomic excitation into a single photon by illuminating the atomic

ensemble with a pulse of light near-resonant with the |b〉 → |c〉 transition and counter-

propagating with respect to the write beam (Fig.24). For an optically thick atomic sample,

the idler photon will be emitted with high probability into the mode determined by the

phase-matching condition ~ki = ~kw + ~kr − ~ks, with the atomic qubit state mapped onto

a photonic one. Under the condition of collective enhancement the atomic excitations

generated by ŝ†±1 map to orthogonal idler photon states up to a phase. Assuming equal

mapping efficiency, the number of correlated signal-idler counts registered by the detectors

can be predicted on the basis of Eq. (28). We find, by carefully analyzing the measurement

procedure,

C (θs, θi) ∝ [(cos η + sin η) cos (θs − θi) +

(cos η − sin η) cos (θs + θi) ]2, (32)

where θs and θi are the orientations of polarizers P1 and P2. Following Clauser-Horne-

Shimony-Holt (CHSH) [98, 75], we calculate the correlation function E (θs, θi), given by

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

− C
(

θ⊥s , θi

)

− C
(

θs, θ
⊥
i

)

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

+ C (θ⊥s , θi) + C
(

θs, θ⊥i
) , (33)

where θ⊥ = θ + π/2. The CHSH version of the Bell inequality is then |S| ≤ 2 where

S = E (θs, θi) + E
(

θs
′, θi

)

+ E
(

θs, θ
′
i

)

− E
(

θ′s, θ
′
i

)

. (34)

The maximum violation of the Bell inequality is achieved for a maximally entangled state

with the canonical set of angles θs = −22.5◦, θi = 0◦, θ′s = 22.5◦ and θ′i = −45◦: S = 2
√

2 =

2.83. Based on the value η = 0.81×π/4 we find, ideally, S = 2.77 which significantly violates

the Bell inequality.
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Table 2: Measured correlation function E(θs, θi) and S for ∆t = 200 ns delay between write
and read pulses; all the errors are based on the statistics of the photon counting events.

θs θi E(θs, θi)

-22.5 0 0.641 ± 0.024
-22.5 -45 0.471 ± 0.029
22.5 0 0.587 ± 0.027
22.5 -45 −0.595 ± 0.027

S = 2.29 ± 0.05

6.3 Experiment

A magneto-optical trap (MOT) of 85Rb is used to provide an optically thick atomic cloud for

our experiment (Fig.24). The ground levels {|a〉; |b〉} correspond to the 5S1/2, Fa,b = {3, 2}

levels, while the excited level |c〉 represents the {5P1/2, Fc = 3} level of the D1 line at 795

nm. The experimental sequence starts with all of the atoms prepared in level |a〉. The

“dark” period lasts 640 ns, with the whole cycle taking 1.5 µs. All the light responsible

for trapping and cooling is shut off during the dark period, with the trapping light shut

off about 200 ns before the repumping light to empty the F = 2 hyperfine level. The

quadrupole magnetic field of the MOT is switched off for the duration of the measurement

sequence. The ambient magnetic field is compensated by three pairs of Helmholtz coils.

A 130 ns long write pulse tuned to the |a〉 → |c〉 transition is focused into the MOT with

a Gaussian waist of about 400 µm. The light induces spontaneous Raman scattering via

the |c〉 → |b〉 transition. The scattered light goes through the quarter-wave plate to map

circular polarizations into linear ones, then passes through polarizer P1 (set at angle θs)

and impinges onto a single photon detector D1.

After a user-programmable delay ∆t, a 120 ns long read pulse, with circular polarization

opposite to that of the write pulse, tuned to the |b〉 → |c〉 transition illuminates the atomic

ensemble. This accomplishes a transfer of the memory state onto the single photon (idler)

emitted by the |c〉 → |a〉 transition. After passing through the quarter-wave plate and

polarizer P2 set at angle θi, the idler photon is directed onto a single-photon detector D2.

Both write/read and signal/idler pairs of fields are counter-propagating. The waist of
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Figure 25: Measured coincidence fringe for θi = 67.5◦. The curve is a fit based on Eq.(5),
augmented by a background contribution, with η = 0.81×π/4, with visibility and amplitude
being adjustable parameters. The visibility of the fit is 90%. Uncertainties are based on
the statistics of the photon counting events.

the signal-idler mode in the MOT is about 150 µm. The four-wave mixing signal is used to

align the single mode fibers collecting signal and idler photons, and to optimize the overlap

between the pump and probe modes [53]. The value of delay ∆t between the application of

the write and read pulses is 200 ns. The electronic pulses from the detectors are gated with

140 ns and 130 ns windows centered on the time determined by the write and read light

pulses, respectively. Afterwards, the electronic pulses are fed into a time-interval analyzer

(with 2 ns time resolution). In order to measure the correlation between the photons

produced by the write and read pulses, the output of D1 is fed into the “Start” input of a

time-interval analyzer, and the output of D2 is fed into the “Stop” input.

A typical interference fringe in the signal-idler coincidence detection is displayed in

Fig.25. In order to infer probabilistic atom-photon entanglement, we calculate the degree of

Bell inequality violation |S| ≤ 2 [98, 75]. Table 2 presents measured values for the correlation

function E (θs, θi) using the canonical set of angles θs, θi. We find S = 2.29 ± 0.05 6≤ 2 -

a clear violation of the Bell inequality. The value of S is smaller than the ideal value

of 2.77 due to experimental imperfections, particularly non-zero counts in the minima of
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Figure 26: Normalized signal-idler intensity correlation function gsi as a function of storage
time. Uncertainties are based on the statistics of the photon counting events. The full curve
is the best exponential fit with time constant τ = 3.7µs.

interference curves that arise as the result of the finite value of the normalized signal-idler

intensity correlation function gsi [30, 43, 99] shown in Fig.26. To our knowledge, this is the

first observed violation of the Bell inequality involving a collective excitation.

The effective detection efficiencies as determined by the ratios of the coincidence signal-

idler count rate Rsi to singles count rates Rs and Ri are αs,i = Rsi/Ri,s ' 0.02. In all cold

atomic ensemble experiments within the DLCZ program reported to date, the quadrupole

magnetic field of the MOT has been the main source of the atomic memory decoherence

(limiting storage times on the order of 100 ns [43, 99, 100, 49]). In this work, we have

switched off the quadrupole field for the duration of our protocol, and the coherence time

has increased to several µs, as is evident from the measured normalized intensity correlation

function gsi displayed in Fig.26 (the length of the dark period was increased up to 7 µs for

this measurement at the expense of lower count rate).
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CHAPTER VII

ENTANGLEMENT OF REMOTE ATOMIC QUBITS

Part of this chapter is based on Ref. [101].

7.1 Introduction

Realization of massive qubits, and their entanglement, is central to practical quantum

information systems [2, 11, 3]. Remote entanglement of photons can now be achieved in

a robust manner using the well-developed technology of spontaneous parametric down-

conversion [6, 7, 102], with propagation to remote locations by means of optical fibers.

Photons, however, are difficult to store for any appreciable period of time, whereas qubits

based on ground-state atoms have long lifetimes. Local entanglement of massive qubits has

been observed between adjacent trapped ions [103] and between pairs of Rydberg atoms in

a collimated beam [15]. In order to entangle qubits at remote locations the use of photons

as an intermediary seems essential [104, 105, 106, 107]. Photons also offer some flexibility

as information carriers as they can propagate in optical fiber with low losses. The creation,

transport, storage, and retrieval of single photons between remote atomic ensembles located

in two different laboratories was reported in Chapter 3, (see also [48]). The first step in

creating remote entanglement between massive qubits is to entangle one such qubit with

the mediating light field, which is then directed towards the second qubit via an optical

fiber. There have recently been important advances towards this goal by demonstrating

entanglement of a photon with a trapped ion [16], with a collective atomic qubit [46, 47],

and with a single trapped atom [19].

A promising route towards the creation and application of long-lived qubit entanglement

in scalable quantum networks was proposed by Duan, Lukin, Cirac, and Zoller [11, 107].

These atomic qubits rely on collective atomic states containing exactly one spin excita-

tion. For useful quantum information processing two orthogonal spin wave excitation states
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ŝ†+|0〉a, ŝ†−|0〉a are needed for the logical states of a qubit [11], where |0〉a represents the col-

lective atomic ground state. In the experiment of Ref.[48] each of the two remote ensembles

only contained one logical state, since the atomic ground state component does not serve

this purpose. Entanglement of continuous atomic variables in two separate atomic ensem-

bles has been reported [39], as appropriate for continuous-variable quantum information

processing, but not for qubit entanglement.

In two experiments edscribed in Chapters 5 and 6, collective atomic qubits were gen-

erated using cold atomic ensembles [46, 47]. In the first of these the logical states were

single spin wave excitations (ideally, ŝ†+|0〉a, ŝ†−|0〉a), in either one of two distinct atomic

ensembles inside a high vacuum chamber. In the second experiment, two orthogonal spin

waves of a single cold ensemble represented the logical qubit states [47]. The experiments

[46, 47] realized a single atomic qubit system, but did not address the issue of entanglement

of atomic qubits.

While remote entanglement of atomic qubits has not been previously demonstrated,

Chapters 5 and 6 describe the realisation of two basic primitives of a quantum network:

(a) entanglement of photonic and atomic qubits, and (b) quantum state transfer from an

atomic to a photonic qubit. The crucial additional ingredient is the reverse operation, the

conversion of a photonic qubit into an atomic qubit. This enables the transfer of atom-

photon entanglement into remote atomic qubit entanglement.

7.2 Experiment

Here we report remote atomic qubit entanglement using cold atomic clouds of 85Rb confined

at Sites A and B, as shown in Fig. 27. These sites are situated in separate laboratories and

linked by an optical fiber. A notable distinction between the two nodes is that the qubit

generated at Site A is written on an unpolarized atomic ensemble, as in Ref. [47], whereas

at Site B the atomic ensemble is prepared, ideally, in the (m = 0) Zeeman state of the

F = 2 ground level by optical pumping. All the light fields responsible for trapping and

cooling of the atoms, as well as the quadrupole magnetic fields at both sites, are shut off

during the period of the protocol. The ambient magnetic field at each site is compensated

62



by three pairs of Helmholtz coils, and a bias field of 0.2G is added at Site B for the purpose

of optical pumping.

Our protocol starts with the generation of an entangled state of a signal photon and

a collective atomic qubit at Site A, achieved through Raman scattering of a classical laser

write pulse. The state can be represented schematically as

|Ψ〉 = |0〉a|0〉f + χ(cos η|+〉a|+〉f + sin η|−〉a|−〉f )

≡ |0〉a|0〉f + χ|ψ〉, (35)

where |+〉f ≡ â†+|0〉f and |−〉f ≡ â†−|0〉f are the normalized states of positive and negative

helicity of the signal photon, |0〉f is the field vacuum state, |±〉a ≡ ŝ†±|0〉a describes the two

logical qubit states, corresponding to non-symmetric collective atomic modes [63], and χ <<

1. The asymmetry angle η = 0.81π/4 [47]. Eq.(35) represents probabilistic entanglement

generation, where ideally for each signal photon emission event, an entangled atomic qubit is

created in the atomic ensemble [16, 11]. Since we deal with an unpolarized atomic ensemble,

the state of the system is more rigourously described by a density operator as discussed in

Ref.[47].

The orthogonal polarization modes of the signal field produced at Site A are directed

along the optical fiber to Site B. As the signal field propagates from Site A to Site B, it passes

through two quarter wave plates, causing the transformation of the signal field operators

â± → ±â∓. The signal field propagation in the atomic medium at Site B is controlled

by an additional laser field (control) through the process of electromagnetically-induced

transparency (EIT) [40, 64, 41, 42, 26, 27].

We implement the storage phase at Site B, by adiabatically reducing the control field

amplitude to zero, while the signal pulse lies within the cloud. The orthogonal atomic spin

wave excitations thereby created in the spin-polarized gas constitute the logical states of the

atomic qubit. In order to convert the signal field qubit into a collective atomic qubit, it is

necessary that the optically thick atomic sample supports EIT for both field helicities [42].

To this end, we optically pump the atomic cloud at Site B using a linearly polarized field

resonant to the F = 2 ↔ F ′ = 2 transition of the D1-line, and an additional repumping
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Figure 27: A schematic diagram of our experimental setup. Two cold atomic ensembles of
85Rb, an unpolarized sample at Site A, and a spin-polarized sample at Site B, separated
by 5.5 m, are connected by a single-mode fiber. The insets show the structure and the
initial populations of the atomic levels for the two ensembles. An entangled state of a
collective atomic qubit and a signal field is generated at Site A by Raman scattering of the
write laser field. The orthogonal helicity states of the generated signal field are transmitted
via optical fiber from Site A to Site B, where they are converted to orthogonal collective
atomic excitations, stored for a duration Ts, and subsequently converted into an idler field
by adiabatic variation of the control field amplitude. The atomic qubit at Site A is similarly
converted into an idler field by a read laser pulse, counterpropagating with respect to the
write pulse. For polarization analysis, each idler field propagates through a quarter-wave
plate (not shown), a half-wave plate (λ/2) and a polarizing beamsplitter (PBS). Polarization
correlations of the idler fields are recorded by photoelectric detection using the single photon
detectors D1-D4.
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field resonant to the F = 3 ↔ F ′ = 3 transition of the D2-line. We measured the optical

thickness d ' 8 for both circular components of the signal field.

By switching off the control field over a period of about 20 ns, the photonic qubit is

converted into an atomic qubit. At this stage remote atomic qubits should have been created

at Sites A and B. Atoms at Site B should, ideally, be prepared in a single Zeeman m = 0

state of the F = 2 hyperfine ground level (lower inset in Fig. 27). In practice the pumping is

not perfect, possibly due to radiation trapping in the optically thick atomic medium [108].

We measure lower storage and retrieval efficiency for the negative helicity signal component

compared with that of the positive helicity component (3% vs 8%). Numerical simulations

indicate that the discrepancy between the efficiencies is consistent with a residual population

in the |F = 2,m = −2〉 atomic state at the 10% level [59]. This results in undesirable

absorption of the signal field with negative helicity.

The signal photon of helicity α = ±1 is stored in the ensemble at Site B with efficiency

εα. After a storage time Ts, the non-vacuum component of the state of the two ensembles

is given by the following density operator: ρ̂ = (1 − ε)ρ̂A + ερ̂AB, where the component ρ̂A

describes the state of single excitation at Site A, and is expressed by

ρ̂A =
1 − ε−
1 − ε

cos2 ηŝ†A+ρ̂vacŝA+ +
1 − ε+
1 − ε

sin2 ηŝ†A−ρ̂vacŝA−, (36)

where ρ̂vac is the product of the ground state atomic density operators for the ensembles at

Sites A and B. The density operator ρ̂AB = Ψ̂†
AB(Ts)ρ̂vacΨ̂AB(Ts) in the two-qubit sub-space

represents an entangled atomic state where

Ψ̂†
AB(Ts) = eiφ(Ts) cos η′ŝ†A+ŝ

†
B− − sin η′ŝ†A−ŝ

†
B+ (37)

with cos η′ =
√

ε−/ε cos η, and ε = ε− cos2 η + ε+ sin2 η is the average efficiency of photon

storage at Site B. The phase φ(t) = −2(gµB/h̄)B0t is induced by the applied magnetic field

B0 = 0.2G oriented along the propagation axis at Site B, where g is the Landé g-factor for

hyperfine level with F = 3.

Ideally, entanglement should have been created between the collective atomic qubits at

Sites A and B. After a storage time Ts, the remote collective atomic excitations are converted
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by quantum state transfer into idler fields emanating from Sites A and B, using a read laser

pulse at Site A and by reactivating the control field at Site B [46, 47]. The resulting

idler-idler photoelectric correlations may be calculated using the effective two-photon state

|Ψ2〉 = cos ηf |HV 〉 + eiφf sin ηf |V H〉 (38)

where |HV 〉 = â†A,H â
†
B,V |0〉f and |V H〉 = â†A,V â

†
B,H |0〉f , and the subscripts A and B

indicate the idler mode at the respective site. We omit higher-order terms in photon number

[48].

The phase φf , which includes the contributions due to the Larmor precession φ(Ts), the

light phase shifts in the atomic media, and various optical elements, is introduced as an

adjustable parameter. The mixing angle ηf is determined by the relative efficiencies with

which the two qubit states are transferred from the atomic ensembles to the idler fields.

If we assume equal transfer efficiencies at Site A, we find cos ηf =
√

εB−/εB cos η, where

εB = εB− cos2 η + εB+ sin2 η and εB± is the combined storage and retrieval efficiency for

a photon of helicity ± at Site B. Measurements of these efficiencies give εB+ = 0.08, and

εB− = 0.03. With η = 0.81π/4 fixed by the atom-photon entanglement process at Site A

[47] we get ηf = 1.12π/4. Our experimental data, including those displayed in Fig. 29, are

consistent with this value of ηf and φf � 1.

The above arguments are clearly conditional on the generation of the signal qubit.

According to Eq.(35), the corresponding probability scales as χ2, and this determines the

efficiency of the probabilistic entanglement generation. However, as Duan et al. point out

[11], quantum network protocols eliminate the vacuum component of Eq.(35) and only the

entanglement characteristics of |ψ〉 are relevant [109, 110]. In our experiment, atomic qubits

were stored for a time 500 ns at Site A and 200 ns at Site B. It should be possible to extend

the qubit storage times to longer than 10 µs, as the single-quanta storage results suggest

[48].

The measurement of the atomic qubits is performed by quantum state transfer onto

the idler fields at both sites, using the read laser pulse at Site A and the control laser

pulse at Site B. The polarization state of either idler field is measured using a polarizing
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Figure 28: Measured coincidence fringes Cn3(θA, θB) as a function of θA, for θB = 135◦,
n = 1, diamonds, n = 2, squares. The curves are sinusoidal fits to the data. Each point is
acquired for 15 minutes. The effective repetition rate is 108 kHz, each trial takes 1.1 µs.

beamsplitter and two single photon detectors, D1, D2 for Site A and D3, D4 for Site B

(additional technical details are given in Refs.[46, 47, 48]). Polarization correlations between

the idler fields produced at the remote sites are recorded and analyzed for the presence of

entanglement. The contributions of the vacuum and single photon idler excitations are

excluded in the observed photoelectric coincidences between the remote sites [109, 110].

Since quantum state transfer is a local process, it cannot generate entanglement. Hence,

observation of idler field entanglement confirms probabilistic entanglement of the two remote

atomic qubits. We denote the number of such coincidences between detector Dn, n = 1, 2

at Site A and detector Dm, m = 3, 4 at Site B by Cnm (θA, θB). Here θA and θB are the

angles by which polarization is rotated by the half-waveplates at these Sites.

The two-particle interference produces a high-visibility sinusoidal fringe pattern for the

coincidence rates Cnm (θA, θB), which is characteristic of entangled particles. Fig. 28 shows

measured coincidence fringes for some representative angles. We calculate the coincidence

rates Cnm (θA, θB) to be

C13(θA, θB) ∝ ε1ε3|(cos ηf + eiφf sin ηf ) sin(θB + θA)
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Figure 29: Measured correlation function E(θA, θB) as a function of θA. (a), θB = 0◦,
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+ (cos ηf − eiφf sin ηf ) sin(θB − θA)|2, (39)

where εm is the overall efficiency (including propagation losses) for detector Dm, and similar

expressions for the other three rates [59].

7.3 Bell inequality violation

Observation of Bell inequality violation is one method to confirm two-particle entanglement,

by way of measurement of discrete values of Cnm (θA, θB) at polarization settings which lie on

the slopes of the fringe pattern. Explicitly, following Clauser-Horne-Shimony-Holt (CHSH)

[98], we calculate the correlation function E (θA, θB), given by

C13 (θA, θB) + C24 (θA, θB) − C14 (θA, θB) − C23 (θA, θB)

C13 (θA, θB) + C24 (θA, θB) + C14 (θA, θB) + C23 (θA, θB)
. (40)

In Fig. 22 we display E (θA, θB) as a function of θA, for four values of θB . By fitting the

correlation functions in Fig. 22 with sinusoids, we determine a set of four pairs of angles

θA = 78.5◦, θB = 45◦, θ′A = 33.5◦ and θ′B = 0◦ that should maximize the Bell inequality

violation. We acquire data for two hours at each of these four points (Table 3). In order

to account for unequal efficiencies of the detectors D1,D2 and D3,D4, each correlation

measurement consisted of four runs, flipping polarization of either one of the idler fields

by 90 degrees between the runs. As a result, the products εmεn are effectively replaced by
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Table 3: Measured values of the correlation function E(θA, θB) at particular polarization
settings and the Bell parameter S.

θA θB E(θA, θB)

78.5 45 0.447 ± 0.017
33.5 45 0.640 ± 0.014
78.5 0 0.572 ± 0.015
33.5 0 −0.504 ± 0.016

S = 2.16 ± 0.03

the symmetric factor 1
4(ε1 + ε2)(ε3 + ε4) in Eq. (39). In this case the correlation function

E (θA, θB) becomes independent of these efficiencies:

E(θA, θB) = −1

2
[cos(2(θA − θB))(1 − cosφf sin 2ηf )

+ cos(2(θA + θB))(1 + cosφf sin 2ηf )]. (41)

The CHSH version of the Bell inequality is then |S| ≤ 2, where

S = E (θA, θB) + E
(

θ′A, θB
)

+ E
(

θA, θ
′
B

)

− E
(

θ′A, θ
′
B

)

. (42)

We find S = 2.16 ± 0.03 6≤ 2, in clear violation of the Bell inequality. No corrections for

background or dark counts were made to any of the experimental counting rates, and these

are chiefly responsible for the reduction in the observed value of S from the ideal value of

2.60 predicted by our theoretical model [59].

7.4 Fidelity of entanglement

An alternative method to characterize entanglement of the ensemble of detected idler-idler

photoelectric correlations is to determine the fidelity with respect to the maximally entan-

gled state [111, 103, 16, 109, 110]

|Ψ〉M = (|VA,HB〉 + |HA, VB〉)/
√

2 (43)

and this is given by

F = 〈Ψ|M ρ|Ψ〉M

=
1

2
(ρV H,V H + ρHV,HV + ρHV,V H + ρV H,HV ). (44)
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Table 4: Inferred density matrix elements ρij . Error bars represent ± one standard devia-
tion and are based on the statistics of the photoelectric counting events.

θA θB HH HV VH VV

11 0 0.086 ± 0.007 0.315 ± 0.012 0.565 ± 0.013 0.034 ± 0.005
56 45 0.275 ± 0.012 0.055 ± 0.006 0.060 ± 0.006 0.610 ± 0.013

We can write a lower bound on F in terms of the diagonal matrix elements of the

two-photon component of the density matrix in the original and rotated basis as follows

[16],

F ≥ 1

2
(ρHV,HV + ρV H,V H − 2

√
ρHH,HHρV V,V V

+ ρ̄HH,HH + ρ̄V V,V V − ρ̄HV,HV − ρ̄V H,V H).

The diagonal density matrix elements are proportional to the joint two-photon photoelectric

detection probabilities, and can be expressed in terms of the coincidence counts in the

original Cij(11
◦, 0◦), and rotated, Cij(56

◦, 45◦), bases as follows

ρij,ij =
Cij (11◦, 0◦)

C13 (11◦, 0◦) + C23 (11◦, 0◦) + C14 (11◦, 0◦) + C24 (11◦, 0◦)

ρ̄ij,ij =
Cij(56

◦, 45◦)

C13(56◦, 45◦) + C23(56◦, 45◦) + C14(56◦, 45◦) + C24(56◦, 45◦)
.

As usual, normalization by the total number of coincidences here accounts for finite mea-

surement efficiency due to field propagation and detection losses.

Having measured each data point for one hour (Table 4), we found F = 0.77 ± 0.01,

whereas the classical limit corresponds to F = 0.5.

In conclusion, we have demonstrated entanglement of two remote atomic qubits, based

on collective atomic states. By photoelectric detection of polarization correlations of the

idler fields we have also confirmed the mapping of atomic qubit entanglement onto pho-

tonic qubits. Long-lived entanglement of remote massive qubits and entanglement transfer

between matter and light are important prerequisites for realization of a scalable quantum

information network.
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CHAPTER VIII

QUANTUM TELECOMMUNICATION BASED ON

ATOMIC CASCADE TRANSITIONS

This chapter is based on Ref. [50].

8.1 Motivation

A quantum network would use the resources of distributed quantum mechanical entangle-

ment, thus far largely untapped, for the communication and processing of information via

qubits [2, 11]. Significant advances in the generation, distribution, and storage of qubit

entanglement have been made using laser manipulation of atomic ensembles, including

atom-photon entanglement and matter-light qubit conversion [46], Bell inequality violation

between a collective atomic qubit and a photon [47], and light-matter qubit conversion

and entanglement of remote atomic qubits [101]. In each of these works photonic qubits

were generated in the near-infrared spectral region. In related developments, entangle-

ment of an ultraviolet photon with a trapped ion [16] and of a near-infrared photon with

a single trapped atom [19, 18] have been demonstrated. Heterogeneous quantum network

schemes that combine single-atom and collective atomic qubits are being actively pursued

[112, 113]. However, photons in the ultraviolet to the near-infrared range are not suited for

long-distance transmission over optical fibers due to high losses.

In this Chapter, we propose a telecommunications wavelength quantum repeater based

on cascade atomic transitions in either (1) a single atom or (2) an atomic ensemble. We

will first discuss the latter case, with particular reference to alkali metals. Such ensembles,

with long lived ground level coherences can be prepared in either solid [114] or gas [47]

phase. For concreteness, we consider a cold atomic vapor confined in high-vacuum. The

cascade transitions may be chosen so that the photon (signal) emitted on the upper arm has

telecommunication range wavelength, while the second photon (idler), emitted to the atomic
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ground state, is naturally suited for mapping into atomic memory. Experimentally, we

demonstrate phase-matched cascade emission in an ensemble of cold rubidium atoms using

two different cascades: (a) at the signal wavelength λs = 776 nm, via the 5s1/2 → 5d5/2 two-

photon excitation, (b) at λs = 1.53 µm, via the 5s1/2 → 4d5/2 two-photon excitation. We

observe polarization entanglement of the emitted photon pairs and superradiant temporal

profiles of the idler field in both cases.

8.2 Proposal

We now describe our approach in detail and at the end we will summarize an alternative

protocol for single atoms.

Step (A) - As illustrated in Fig. 30(a), the atomic sample is prepared in level |a〉, e.g., by

means of optical pumping. It is important to note that, in the case of an atomic ensemble

qubit, an incoherent mixture of Zeeman states is sufficient for our realization. The upper

level |d〉, which may be of either s- or d-type, can be excited either by one- or two-photon

transitions, the latter through an intermediate level |c〉. The advantage of two photon

excitation is that it allows for non-collinear phase matching of signal and idler photons;

single photon excitation is forbidden in electric dipole approximation and phase-matched

emission is restricted to a collinear geometry (this argument implicitly assumes that the

refractive index of the vapor is approximately unity). Ideally the excitation is two-photon

detuned from the upper level |d〉, creating a virtual excitation.

Step (B) - Scattering via the upper level |d〉 to ground level |a〉 through the intermediate

level |e〉 (where |e〉 may coincide with |c〉) results in the cascaded emission of signal and

idler fields. The signal field, which is emitted on the upper arm, has a temporal profile

identical to that of the laser excitation as a consequence of the large two photon detuning.

As noted earlier, the wavelength of this field lies in the 1.1-1.6 µm range, depending on the

alkali metal transition used. The signal field can be coupled to an optical fiber (which may

have losses as low as 0.2 dB/km) and transmitted to a remote location.

The temporal profile of the idler field can be much shorter than the single-atom spon-

taneous decay time ts of the intermediate level. Under the conditions of a large Fresnel
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Figure 30: (a) The atomic structure for the proposed cascade emission scheme involving
excitation by pumps I and II. Pump II and the signal photons lie in the telecommunication
wavelength range when a suitable level of orbital angular momentum L = 0 or L = 2 is
used as level |d〉. For atomic rubidium, the signal wavelength is 1.32 µm (6s1/2 → 5p1/2

transition), 1.37 µm (6s1/2 → 5p3/2 transition), 1.48 µm (4d3/2(5/2) → 5p1/2 transition),
1.53 µm (4d3/2(5/2) → 5p3/2 transition). For atomic cesium, the signal wavelength is 1.36
µm (7s1/2 → 6p1/2 transition), 1.47 µm (7s1/2 → 6p3/2 transition). For Na and K the
corresponding wavelengths are in the 1.1-1.4 µm range. (b) Schematic of experimental
setup based on ultra-cold 85Rb atomic gas. For λs = 776 nm, phase matching results in the
angles ε′ ≈ ε ≈ 1◦, while for λs = 1.53 µm, ε′ ≈ 2ε ≈ 2◦. P1 and P2 are polarizers; D1 and
D2 are detectors.

number of the exciting laser fields, the decay time is of order ts/dth, characteristic of su-

perradiance [115, 116, 30]. Here dth ≈ 3nλ2l/(8π) is the optical thickness, where λ is the

wavelength, n is the number density and l is the length of the sample.

The direction of the idler field is determined by the phase matching condition ~k1 +~k2 =

~ks +~ki, where ~k1 and ~k2 are the wavevectors of the laser fields I and II, respectively. Under

conditions of phase matching, collective enhancement causes emission of the the idler photon

correlated with a return of the atom into the Zeeman state from which it originated [47].

The fact that the atom begins and ends the absorption-emission cycle in the same state is

essential for strong signal-idler polarization correlations. The reduced density operator for

the field, taking into account collective enhancement, was derived in Ref. [59]:

ρ̂(t) ≈
(

1 +
√
εÂ†

2(t)
)

ρ̂vac

(

1 +
√
εÂ2(t)

)

, (45)

73



where ρ̂vac is the vacuum state of the field, Â†
2(t) is a time dependent two photon creation

operator for the signal and idler fields, and ε� 1. For linearly polarized pumps with parallel

(vertical) polarizations, we find

Â†
2(t) = cosχ â†H b̂

†
H + sinχâ†V b̂

†
V (46)

where χ is determined by Clebsch-Gordan coupling coefficients [59], â†H(V ) and b̂†H(V ) are

creation operators for a horizontally (vertically) polarized signal and idler photon, respec-

tively. For the hyperfine level configuration Fa = 3 → Fc = 4 = Fe → Fd = 5, and for an

unpolarized atomic sample, we find sinχ = 2cosχ = 2/
√

5.

Step (C) - The photonic qubit is encoded in the idler field polarization. Photonic to

atomic qubit conversion was achieved in Ref.[101]. Such conversion can be performed either

within the same ensemble or in a suitably prepared adjacent ensemble/pair of ensembles. In

either case, a strong laser control beam is required to couple the other ground hyperfine level

|b〉 to the intermediate level |e〉. Collective excitations involving two orthogonal hyperfine

coherences serve as the logical states of the atomic qubit [46, 47, 101].

8.3 Experiment

We observe phase-matched cascade emission of entangled photon pairs, using samples of cold

85Rb atoms, for two different atomic cascades: (a) at λs = 776 nm, via the 5s1/2 → 5d5/2

two-photon excitation, (b) at λs = 1.53 µm, via the 5s1/2 → 4d5/2 two-photon excitation.

The investigations are carried out in two different laboratories using similar setups, Fig.

30(b). A magneto-optical trap (MOT) of 85Rb provides an optically thick cold atomic cloud.

The atoms are prepared in an incoherent mixture of the level |a〉, which corresponds to the

5s1/2, Fa = 3 ground level, by means of optical pumping. The intermediate level |c〉 = |e〉

corresponds to the 5p3/2, Fc = 4 level of the D2 line at 780 nm, and the excited level |d〉

represents (a) the 5d5/2 level with λs = 776 nm, or (b) the 4d5/2 level with λs = 1.53

µm. Atomic level |b〉 corresponds to 5s1/2, Fb = 2, and could be used to implement the

light-to-matter qubit conversion [101].

The trapping and cooling light as well as the quadrupole magnetic field of the MOT

are switched off for the 2 ms duration of the measurement. The ambient magnetic field is
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compensated by three pairs of Helmholtz coils. Counterpropagating pumps I (at 780 nm)

and II (at 776 nm or 1.53 µm), tuned to two-photon resonance for the |a〉 → |d〉 transition

are focused into the MOT using the off-axis, counter-propagating geometry of Harris and

coworkers [54]. This two-photon excitation induces phase-matched signal and idler emission.

With quasi-cw pump fields, we perform photoelectric coincidence detection of the signal

and idler fields. The latter are directed onto single photon detectors D1 and D2. For

λs = 1.53 µm, the signal field is coupled into 100 m of single-mode fiber, and detector D1

(cooled InGaAs photon counting module) is gated using the output pulse of silicon detector

D2. The electronic pulses from the detectors are fed into a time-interval analyzer with 1 ns

time resolution.

We measure the stationary signal-idler intensity correlation function Gsi(τ) = 〈T :

Îs(t)Îi(t + τ) :〉, where the notation T :: denotes time and normal ordering of operators,

and Îs and Îi are the signal and idler intensity operators, respectively [30]. Results for (a)

λs = 776 nm and (b) λs = 1.53 µm are presented in Fig. 31 and Fig. 32, respectively. In

particular, the measured correlation functions are shown in Fig. 31(a,b) and Fig. 32(a). The

correlation function shown in Fig. 31(a) exhibits quantum beats due to the two different

hyperfine components of the the 5p3/2 level [117]. The correlation times are consistent with

superradiant scaling ∼ ts/dth, Fig. 31(c), where ts ≈ 27 ns for the 5p3/2 level [115, 116].

In order to investigate polarization correlations of the signal and idler fields, they are

passed through polarizers P1 (set at angle θs) and P2 (set at angle θi), respectively, as shown

in Fig. 30(b). We integrate the time-resolved counting rate over a window ∆T centered at

the maximum of the signal-idler intensity correlation function Gsi(τ), with (a) ∆T = 6 ns

for λs = 776 nm, and (b) ∆T = 1 ns for λs = 1.53 µm. The resulting signal-idler coincidence

rate C (θs, θi) exhibits sinusoidal variation as a function of the polarizers’ orientations, as

shown in Figs. 31(d) and 32(b). In order to verify the predicted polarization entanglement,

we check for violation of Bell’s inequality S ≤ 2 [98, 30, 75]. We first calculate the correlation

function E (θs, θi), given by

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

− C
(

θ⊥s , θi

)

− C
(

θs, θ
⊥
i

)

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

+ C (θ⊥s , θi) + C
(

θs, θ⊥i
) ,
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Figure 31: (a) Count rate proportional to the signal-idler intensity correlation function Gsi

as a function of signal-idler delay τ , |d〉 = |5d5/2, F = 4〉. The quantum beats are associated
with 120 MHz hyperfine splitting, F = 3 and 4, of the 5p3/2 level. The solid curve is a fit
of the form β + A exp(−t/α) sin2(πΩt), where β = 63, A = 2972, α = 11 ns and Ω = 117
MHz are adjustable parameters. (b) Same as (a), but for |d〉 = |5d5/2, F = 5〉. Since this
state can only decay though the F = 4 component of the 5p3/2 level, there are no quantum
beats. The solid curve is an exponential fit with decay time of 3.2 ns. (c) The measured
decay time vs the inverse measured optical thickness. (d) Measured coincidence fringes for
θs = 45◦ (red diamonds) and θs = 135◦ (blue circles). The solid curves are fits based on
Eqs.(45,46), with cosχ = 1/

√
5.
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Figure 32: (a) Same as Fig. 31(a,b), but for |d〉 = |4d5/2, F = 5〉. The solid curve is an
exponential fit with decay time of 6.7 ns. (b) Measured coincidence fringes for θi = 45◦

(red diamonds) and θi = 135◦ (blue circles). The solid curves are fits based on Eqs.(45,46),
with cosχ = 1/

√
5.

Table 5: Measured correlation function E(θs, θi) and S for λs = 776 nm and λs = 1.53 µm.

λs θs θi E(θs, θi)

0◦ −67.5◦ −0.670 ± 0.011
45◦ −22.5◦ −0.503 ± 0.013

776 nm 0◦ −22.5◦ 0.577 ± 0.012
45◦ −67.5◦ −0.434 ± 0.014

S = 2.185 ± 0.025

22.5◦ 45◦ −0.554 ± 0.027
67.5◦ 0◦ −0.682 ± 0.027

1.53 µm 22.5◦ 0◦ 0.473 ± 0.024
67.5◦ 45◦ −0.423 ± 0.029

S = 2.132 ± 0.036

where θ⊥ = θ + π/2, and S = |E (θs, θi) +E
(

θs
′, θi

)

| + |E (θs, θ
′
i) − E (θ′s, θ

′
i) |.

Measured values of E (θs, θi), using the set of angles θs, θi, chosen to maximize the

violation of Bell’s inequality, are presented in Table 5. We find (a) S = 2.185 ± 0.025 for

λs = 776 nm, and (b) S = 2.132 ± 0.036 for λs = 1.53 µm, consistent with polarization

entanglement of signal and idler fields in both cases. The entangled two-photon state

of Eqs.(45,46), for sinχ = 2/
√

5, has a substantial degree of asymmetry. If oppositely,

circularly, polarized pumps I and II were used, the corresponding two-photon state would

be symmetric with sinχ = cosχ = 1/
√

2 [59].
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Figure 33: Efficiency of storage and subsequent retrieval of a coherent idler field with
decay time of 6 ns in an auxiliary atomic ensemble, obtained by numerical integration of
the Maxwell-Bloch equations. The atomic coherence time is assumed to be much longer
than the storage time.

The quantum repeater protocol involves sequential entanglement swapping via Hong-Ou-

Mandel (HOM) interference followed by coincidence detection [30, 11]. High-visibility HOM

interference requires that the signal and idler photon wave-packets have no entanglement in

the time or frequency domains [118, 119, 120]. This may be achieved with excitation pulses

that are far detuned from two-photon resonance and with pulse lengths much shorter than

the superradiant emission time ts/dth of level |e〉.

The idler field qubit is naturally suited for conversion into an atomic qubit encoded into

the collective hyperfine coherence of levels |a〉 = |5s1/2, F = 3〉 and |b〉 = |5s1/2, F = 2〉.

To perform such conversion, either the same or another similar ensemble/pair of ensembles

could be employed [101], (see also Chapter 4). A time-dependent control laser field resonant

on the |b〉 = |5s1/2, F = 2〉 ↔ |e〉 = |5p3/2, F = 3〉 transition could selectively convert one

of the two frequency components of the idler field, shown in Fig. 31(a), into a collective

atomic qubit. Pulsed excitation should be used in order to enable the synchronization of

the idler qubit and the control laser. Numerical simulations show that qubit conversion

and subsequent retrieval can be done with good efficiency for moderate optical thicknesses

(Fig. 33), even though the idler field temporal profile is shorter than those employed in Ref.
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[101] (compare with Fig. 6).

The basic protocols we have outlined can also be applied to single alkali atom emitters.

Similar cascade decays in single atoms were used in early experiments demonstrating vio-

lation of local realism [121] and single photon generation [65]. For alkali metal atoms, it is

necessary to optically pump the atom into a single Zeeman state, e.g., m = 0, of level |a〉.

A virtual excitation of a single Zeeman state of level |d〉 is created with short laser pulses.

Coherent Raman scattering to level |e〉 results in atom-photon polarization entanglement.

In order to prevent spontaneous decay of the level |e〉, a control field π-pulse is applied im-

mediately after the application of the two-photon excitation, transferring the atomic qubit

into the ground state where it could live for a long time. It is important that the π-pulse

duration is shorter than the spontaneous lifetime of level |e〉. Two-photon interference and

photoelectric detection of signal photons produced by two remote single atom nodes would

result in entanglement of these remote atomic qubits [104]. Qubit detection for single atoms

can be achieved with nearly unit efficiency and in a time as short as 50 µs [16, 17]. Such

high efficiency and speed lead to the possibility of a loophole-free test of Bell’s inequality,

for atoms separated by about 30 kilometers. Cascaded entanglement swapping between

successive pairs of remote entangled atomic qubits may be achieved via local coupling of

one of the atoms from the first pair and its neighboring partner from the the following pair

[12].

We also point out that the cascade level scheme employed here can be used to convert

a telecommunications photon into a near-infrared photon using four-wave mixing. This

could potentially be useful because single-photon detectors for the visible and near-infrared

currently have much higher quantum efficiency, and much lower dark count probability,

than practically viable (e.g., InGaAs) detectors used at telecommunication wavelengths.
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CHAPTER IX

CONCLUSION

Quantum information processing using atomic ensembles is a fast growing field. In the past

few years significant progress has been made to turn this paradigm into a practically viable

quantum network systems.

The generation of photon pairs using atomic ensembles has been observed in ensembles

of cold atoms both in free space [43, 45] and in a cavity [55], as well as using a hot atomic

vapor [44]. The quantum state transfer between atomic ensembles and a single photon

and atom-photon entanglement have been demonstrated [46]. This breakthrough laid the

groundwork for further advances, such as the demonstration of Bell inequality violation

between a collective atomic qubit and a photon [47], storage and retrieval of single photons

[48], collapses and revivals of quantum memory [60, 49], light-matter qubit conversion, and

entanglement of remote atomic qubits [101]. A practical scheme to achieve long-distance

quantum communication over optical fibers, involving cascade atomic transitions was pro-

posed, and its critical elements are verified experimentally [50].

To illustrate the extent of the progress, one could note that the signal-idler correlation

function gsi − 2 = 0.46 reported in the first experiment [43] has been since improved by

three orders of magnitude in Refs. [101, 48]. As another example, Fig. 34 shows the

coherence time of atomic memory based on atomic ensemble as a function of experiment

date [46, 47, 48, 76].

However these advances are still not sufficient for the realization of the long distance

quantum repeater. For example in order to build a repeater that operates over 1000 kilome-

ters one needs coherence times in excess of 100 ms. It is three orders of magnitude higher

than the best result achieved so far [76].

The main problem here is that the atomic spin wave that stores quantum information

in atomic ensemble is very sensitive to the external magnetic field. Most experiments were
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Figure 34: Coherence time as a function of experiment date

performed using magneto-optical traps, where stray magnetic field is difficult to avoid.

Another source of decoherence is the motion of the atoms within the sample. It eventually

washes out the spin wave and limits the coherence time to 70 - 700 µs depending on the

beam geometry.

A possible solution is to use an atomic ensemble confined in an optical dipole trap.

As the dipole trap does not involve any magnetic field, it can be better isolated from the

ambient influence. Moreover, motion of atoms in the optical dipole trap can be reduced by

using an optical lattice geometry. In order to reduce sensitivity to the stray magnetic field

one may also employ a magnetically insensitive transition m = 0 → m′ = 0.

Of course, a lot of work remains to be done in order to integrate all of the demonstrated

components into a single practical system. Nevertheless, the results reported in this thesis

suggest that the goal of building the quantum repeater for the long distance communication

is within the reach of current technology.
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