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SUMMARY 

 

 Many electrophysiological experiments require the recording, stimulating, or both in the 

peripheral nervous system. There are many electrodes currently on the market, but they are either 

not designed for implantation or are not robust enough to be used multiple times in situ. The cost 

of buying these electrodes from a manufacturer can be prohibitive and many labs prefer to make 

their own. This introduces variability between studies, as different techniques and configurations 

in the design and fabrication of electrodes can create variance in electrical impedance, spatial 

arrangement, or other factors. This paper presents a detailed methodology for the construction of 

electrodes that are robust, have uniform impedance values of Z = 2.38 ± 0.906 kΩ. at 1 kHz 

alternating current (AC), and can be used in multiple in vitro or in situ experiments, or for 

chronic implantation in vivo. This method will reduce the amount of time and material needed to 

construct electrodes for experimental studies in animals. 
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CHAPTER 1 

INTRODUCTION 

 

 This paper will detail a method of fabrication for nerve cuff electrodes to interface with 

the peripheral nervous system (PNS) for purposes of physiological experimentation. To conduct 

PNS experiments over periods of time greater than one day, it is necessary to have biocompatible 

electrodes that can remain chronically implanted for weeks or months without degrading in 

electrical characteristic. For such technology to be used in humans, electrodes will have to be 

implanted for years. It is reasonable to expect that electrodes must have similar electrical 

characteristics between individual electrodes in order to reduce variance in signal, and that they 

must not physically fail at any point during or after implantation so the experiment can continue 

to completion, meaning they must be fabricated to be both precise and robust. 

 A detailed methods paper on fabrication of electrodes was very much needed. There are 

many techniques for spot welding—some of which are discussed in section 4.3—but only 

resistance welding techniques are addressed in this paper; laser welding and additive welding 

were not examined in this paper. Trade journals and technical books and manuals on welding do 

not offer much insight, as they are meant for working in larger scales which do not translate well 

to micro scales where too much current can vaporize the small amount of metal available to form 

the weld. The sentence, “The pad was welded to the wire,” which is often the only description 

provided on the method of adhering a pad to a wire, therefore encompasses a process that could 

take months to understand without training. This means each lab that wishes to begin PNS 

stimulation would have to work out a means to interface with the nerve on their own, rather than 

having a set method.  
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 The methods within this document provide detailed instruction on the fabrication of nerve 

cuff electrodes using spot welding techniques to adhere platinum – 10% iridium (Pt-Ir) pads to 

stainless steel wire. This provides an in-house method to create customizable, robust, reliable 

electrodes that can be used repeatedly for in situ animal testing, or implanted in vivo for long 

term studies. The electrodes are characterized by testing impedance (Z) with a 1 kHz sinusoidal 

AC signal at 1.75 Vpp. The mean impedance calculated for the sample (n = 16) of electrodes 

created through these methods was then compared by two-sample T-test with unequal variance 

of mean Z to a sample (n = 18) of electrodes created with a previous method used in the lab 

which involved adhering Pt-Ir pads to wire with silver conductive epoxy. The hypothesis is that 

electrodes fabricated by the method within this paper will have both a lower mean impedance 

value and lower variance between electrodes than those fabricated using conductive epoxy when 

tested with a 1 kHz sinusoidal AC signal at 1.75 Vpp. Stated formally: 

H0:  of sample 1 =  of sample 2 

H1:  of sample 1 >  of sample 2 

Where sample 1 are electrodes created with silver conductive epoxy and sample 2 are electrodes 

created via the methods in this paper. 

 The confirmation of the alternate hypothesis would indicate that the methods herein are 

robust and repeatable. This would enable electrophysiologists to create electrodes in-house that 

are customized to their purpose and via the same methods across labs, which would eliminating a 

potential source of error  and aid in repeatability and verification of experiments. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 The PNS is sub divided into the autonomic and somatic nervous systems. The autonomic 

nervous system regulates unconscious activities, such as breathing, heartrate, hormone 

regulation, etc. The somatic nervous system is responsible for the translation of the physical 

environment into neural signals through sensory input—afferent signals—and translation of 

motor signals from the brain into activity of the muscles—efferent signals. Much of the work 

exploring the function of these systems was completed decades ago and has since passed into 

classical knowledge. There is a resurgence of interest in this area in the last two decades, 

however, as more labs are exploring techniques to stimulate and record from the PNS for 

purposes of neuromodulation with a wide range of clinical uses, including enabling those with 

incontinence to control their bladder function, regulating hormone levels through the autonomic 

nervous system, and controlling and receiving sensation through prosthetic limbs utilizing the 

somatic nervous system. This section will explore some of these uses and the means by which 

researchers are utilizing nerve cuff electrodes to interface directly with the PNS. 

 As early as 1926 it was shown that receptors throughout the body are responsible for 

encoding that occurs in the peripheral nervous system (PNS) before information is transmitted to 

the central nervous system (CNS) [1]. More recently, in [2] they found that the frequency of 

vibration experienced in skin scanning across surfaces with different spatiotemporal 

characteristics—i.e. variations in roughness—produced different firing patterns of action 

potential that encoded unique information about the nature of the surfaces. This same sort of 

encoding takes place in the autonomic nervous system as baroreceptors on the aortic arch, for 
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example, can send information about pressure [3], or through vision as different wavelengths of 

light excite different receptors in the retina of the eye, and in auditory stimulation as different 

wavelengths of sound reach different regions of the cochlea. Individual axons attached to these 

receptors are eventually mapped to different areas of the brain, which enables spatiotemporal 

encoding to occur without the need for conscious thought.  

 The mechanoreceptors in the skin encode information which must then be sent through 

the PNS before it is decoded and interpreted centrally. In [4] two amputees using neuroprosthetic 

limbs that utilized nerve cuff electrodes to directly stimulate the PNS were able to feel sensation 

and by using different stimulation patterns researchers were able to evoke multiple sensations 

that enabled the users to perform fine motor tasks. It was found that modulating the amplitude of 

the stimulation signal in a sinusoidal waveform evoked a response that subjects reported as a 

solid touch rather than a tingling sensation. By implanting on the radial, ulnar, and median 

nerves, researchers were able to evoke sensation in several different spatial regions and place 

sensors on the prosthetic limb accordingly.   

 In this lab, it has been shown that kilohertz frequency alternating current (KHFAC) can 

be used to selectively block the fast or slow components of the compound action potential (CAP) 

in the frog model [5] and have unpublished data that shows success in the rat model as well. The 

use of such neural modulation has many potential uses, though further research is necessary to 

determine the mechanism of KHFAC conduction block. Future clinical could include modulation 

of  pain while still allowing motor and sensory signals to be passed for those who experience 

chronic PNS pain or untreatable pain such as those suffering from fibromyalgia, blocking motor 

signals without blocking sensory and vice versa, and in the autonomic system, modulating 
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afferent and efferent signals from visceral organs independently to evoke different physiological 

responses.  

 In order to study neuromodulation through the PNS a nerve interface is required, 

prompting the need for nerve electrodes. There are several models of nerve cuff electrodes being 

tested by various labs. The spiral cuff electrode uses different layers of polymers to create a 

naturally curling spiral shape that does not require sutures to remain closed and in contact with 

the nerve. It is also flexible and enables the nerve to swell and contract while still maintaining 

contact [6]. The longitudinally implanted intrafascicular electrode (LIFE) is, as its name implies, 

implanted longitudinally between the fascicles of the nerve [7,8]. The flat interface nerve 

electrode (FINE) capitalizes on the oblong shape of most nerves to press the nerve flat along the 

long axis of its cross section in order to have more pads in contact with more individual fascicles 

[9]. Currently, the FINE is implanted in two human subjects for chronic trials that have already 

extended beyond two years and has been shown to enable stimulation to the PNS to modulate the 

somatosensory cortex and enable the sensation of touch that subjects report feels true-to-life [10]. 

The purpose of these last two examples is to create better spatial resolution in an attempt to tune 

which axons are being recorded or stimulated since, as discussed previously, individual axons 

map different areas of the body to different neurons in the brain.  

 Nerve cuff electrodes are used for whole nerve recording and stimulation and are limited 

in this respect since they are not capable of stimulating or recording selectively. They record 

CAPs and stimulation evokes a response in every fiber in the nerve that is exposed to the 

stimulus. However, much can still be learned from experiments involving whole nerve recording 

and stimulation since the different fiber types, classified as A, B, and C in 1941 by [11], have 

different propagation speeds. This allows different components of the CAP to be analyzed.   
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CHAPTER 3 

MATERIALS 

 

List of Materials 

DESIGNATOR ITEM DESIGNATOR ITEM 

100 mL Glass 

beaker 

Fisherbrand FB-102-

100 Beaker 
Microscope 

Nikon SMZ645 Light 

microscope 

Aluminum Stock 
6061 Aluminum 2” 

wide, 0.04” thick 
Needle #3 Crewel sewing needle 

Bolt 
#5-40  3/8” 8.8 

Stainless steel bolt 
Parafilm 

American National Can 

Parafilm “M” laboratory film 

Calipers 
Mitutoyo Absolute 

Digimatic CD-8” CS 
PDMS 

Sylgara 184 Silicone 

elastomer 

(polydimethylsiloxane) 

Clamp 
Fabricated aluminum 

cuff clamp 
Pt-Ir stock 

ESPI Metals Knd2877 

Platinum 10% Iridium foil 

1”x1” 

Connector 
PlasticsOne 8MS363 

Pedestal 2298 6 pin 
Putty knife Hyde 01440 Putty knife 

Crimp pins 
PlasticsOne E363-0 

Socket contact skewed 

Rat Ringer’s 

solution 

135 mM NaCl, 5.4 mM KCl 

5.4, 1 mM MgCl2·6H2O, 1.8 

mM CaCl2·2H2O, HEPES 5 

mM, and NaOH to adjust to 

7.2 pH 

Cut pads 
Pads cut from Pt-Ir 

stock 
Razorblade Stanley 11-921 Razorblade 

Dental cement 

Henry Schein Natural 

Elegance 101-9306 A1 

Flowable composite 

Scissors 
Value

TM
 stainless 458-612 

Scissors 

Double-sided tape 
3M 410M Double-

sided tape 1 ½” 

Silicone tubing 

(cuff) 

A-M Systems silicone tubing 

Rat sciatic: 808200 0.062” x 

0.125” x 0.315”  

Rat vagus or mouse sciatic: 

807600 0.058” x 0.077” x 

0.0095” 

Cat sciatic: 809400 0.125” x 

0.250” x 0.625”  

Electrode 
Tungsten Sparkle pulse 

welder electrode 

Silicone tubing 

(lead) 

A-M Systems silicone tubing 

806400 0.020” x 0.037” x 

0.0085” 

Fine felt pin Sharpie
®
 Fine 12E 23 Small plastic VWR 12577-005 Small 
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weigh boat weighing dish  

Forceps 
FST by Dumont 5/45 

Forceps 
Straight-edge Stainless steel L600-12 ruler 

Grounding pliers 
Xuro Grip 475 with 

ground attached 
Tap #5-40 Tap 

Impedance tester 

FHC Inc. ICM 

Neurocraft impedance 

tester 

Tray 
Perforated circuit board (perf 

board) 

Insulated wire 

A-M Systems 793500 

Stainless steel 7 strand 

0.002” bare 0.0090” 

coated wire 

UV PPE UV protective safety glasses 

Insulin needle 
Terumo ½ cc 28 G x 

½” 
UV wand LY-A180 Light curing unit 

Lab tape VWR ½” Lab tape Welder 200 W Sparkle pulse welder 

Male crimp pins 

TE Connectivity 

205089-1 20 G Crimp 

pin 

Wires welded to 

pads 

Fabricated wire leads with Pt-

Ir pads 

Micro-scissors 
FST 15008-08 25° 

Micro-scissors 
  

 

Table 3.1: List of Materials. This table lists all materials used in the methods section of this 

paper as well as the short version used to describe them throughout the paper. These methods are 

meant to be adaptable for use with the tools available to the fabricator. Those listed within this 

chapter are those used in the making of the electrodes used as examples. In all cases, materials 

that fulfill the same function can be substituted. 
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Figure 4.0.1: Two views of the same finished electrode. This is an example of an electrode 

with two bipolar cuffs and a bipolar EMG electrode in one package with a 6-pin PlasticsOne 

connector. It is ready for electrical characterization followed by gas sterilization in preparation 

for implantation on the sciatic nerve in the rat model.   

 

CHAPTER 4 

METHODS 

 

 

 

 The electrode shown in figure 4.0.1 is an example of just one type of electrode that can 

be fabricated through these methods. Areas of customization include the number of pins in the 

connector, the number of electrode leads, the number of pads in each electrode, the type of 

electrodes used, the length of the electrode leads, etc. Figure 4.0.2 shows how this electrode 

would be implanted in an animal using the right rear sciatic nerve of the rat model. Figure 4.0.3 

provides a schematic of the different components of the electrode. 
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Figure 4.0.2 (right): Diagram of 

an electrode implanted in the rat 

model. Cuff electrodes are red, 

EMG is blue. The cuff electrodes are 

implanted on the sciatic nerve. 

Figure 4.0.3: Schematic of electrode with labels. Each component of the electrode is 

represented and labeled. The methods section will use these terms to describe the components 

listed. Note: The term wire leads merely refers to any wire not enclosed in silicone tubing. 
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4.1 Fabrication of Clamps 

 

 In order to fabricate nerve cuff electrodes using the methods detailed within this paper, 

clamps must first be fabricated to help secure the cuff of the electrode in an open, flat position. 

Exploded view and top orthographic diagrams of the custom clamps, along with detailed 

instructions on manufacturing them are displayed on the following page (Fig. 4.1.1). These 

instructions can, and should be, modified to fit individual cuff sizes as customized for different 

purposes. To determine the necessary dimensions the inner circumference of the tubing used for 

the cuff will need to be calculated, as well as the overall width. The clamp designed in this 

chapter is for a rat sciatic electrode using silicone tubing with an inner diameter of 1.42 mm, 

which yields a circumference of 4.46 mm. 

 

Materials required: 2” x 0.040” 6061 Aluminum, 4 x Bolts, Drill press, 2-Axis CNC, 1/8” end 

mill, Tap appropriate for bolt size, Double-sided tape, Putty knife [Table 3.1] 

 

 The top and bottom plates were cut from 2” wide by 0.040” thick stock 6061 

multipurpose aluminum. The two plates were sandwiched together and clamped before drilling 

four holes, one in each corner, for the bolts. The bolt size used is arbitrary, though a thread count 

greater than or equal to 20/inch is recommended as the material to be tapped is very thin. 

Double-sided tape was used to adhere the bottom plate to a larger piece of stock aluminum of at 

least 1” thickness, which was then clamped into the 2-axis CNC machine. The reason for this 
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step is the 0.040” thickness of the aluminum is too thin to clamp in the vice without bending and 

would vibrate while attempting to mill the pocket. A 1/8” end mill was used to cut a center 

pocket of 5 x 8 mm. This will leave rounded corners with a 1/8” radius, which needs to be 

considered when deciding the dimensions of the pocket, as too tight a pocket will leave rounded 

corners, which can interfere with the work area. A putty knife was used to detach the plate from 

the aluminum block after the pocket was milled. Mineral spirits were used to remove any residue 

left from the double-sided tape. The holes drilled in the bottom plate earlier were then tapped. In 

this case, #5-40 bolts were used. The holes in the top plate were then bored out with a larger drill 

bit so that the bolts were able to slide freely through them without catching. The top plate was 

then cut into two pieces, 2.5 mm from the centerline, in order to mate with the edges of the hole 

milled in the bottom plate. The four bolts were then used to secure the two top plates to the 

Figure 4.1.1: Diagram of custom clamp for fabrication of nerve cuff electrodes. Shown 

are the exploded view (left) and top orthographic view (right). The bottom plate and two top 

plates are made of 6061 aluminum alloy with ANSI 1/2” #5-40 bolts. Dimensions are 

adjustable as needed. This image was made with a bottom plate of 2” x 2” x 0.04” and a 

square pocket cut in the center at 4 mm x 8 mm.  
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bottom plate. Repeat this process to make as many clamps as needed. Instructions on using the 

clamp to secure a cuff can be found in section 4.5. 

 Note: For cuff electrodes that do not require pads and instead use naked wires, the 

pocket does not need to be milled in the center of the bottom plate. Otherwise, the procedure for 

making a clamp is identical. 
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4.2 Cutting Electrode Pads 

 

 Electrode pads are needed for two reasons: 1) To increase the surface area in contact with 

the nerve and 2) to use a material that is more conducive to contact with the nerve. It would be 

cost prohibitive to use wire made entirely of gold, or platinum 10% iridium (Pt-Ir), for example. 

The reason for using these metals is to tune signal to noise ratio and biocompatibility. In [12] it 

was shown that the best metals to use are gold, platinum, iridium, and tungsten. Pt-Ir was chosen 

for use in these methods. 

 The best method for cutting electrode pads is to use a CNC laser cutter (or engraver) as 

this will give the most accurate, precise results. However, most laser cutters can be damaged 

when cutting metal as the beam reflects off the surface and machines capable of cutting metal 

can cost hundreds of thousands of dollars. The technique discussed in this paper, however, can 

be performed with a pair of scissors and yield results with a tolerance better than +/- 0.01 mm 

when cutting pads 0.5 mm wide by 3.3 mm long. For detailed instructions see Appendix I: 4.2 

Cutting Electrode Pads. 

 

Materials required: Microscope, Scissors, 25° Micro-scissors, Lab tape, Fine felt pen, Straight-

edge, Calipers, Forceps [Table 3.1] 
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4.3 Spot Welding Techniques 

 

 Methods for spot welding appropriate for welding pads to wire at these scales include 

laser welding and resistance welding. The cost of a laser welding machine is prohibitive, 

however, as they start at several thousand dollars and increase to hundreds of thousands for 

industrial grade machines. Capacitive discharge resistance welders can be made for roughly one 

hundred dollars in parts, or purchased for a few hundred up to several thousand dollars. Those in 

the three to five thousand dollar range typically include a built in scope and have actuators that 

control the duration and force exerted by the cathode electrode. For the purpose of this paper, 

techniques will be discussed using a 200 W Pulse Sparkle Welder. It includes a welding pencil 

electrode made of tungsten, a stand, a foot-pedal, a pair of grounding pliers, and a pair of 

welding glasses. This same model can be purchased for half the price through suppliers in China.  

 In resistance welding the weld is formed by heat created by inducing a large charge that 

passes between the two metals to be bonded according to the formula:       

Q = I
2
Rt 

Where Q = heat generated; I = current; R = total resistance;  

t = total duration of heat.   

 There are three main types of resistance welds (Fig. 4.3.1) [13]. Opposed, or direct, 

welding involves having the two pieces of material between the anode and cathode so the current 

makes a straight, direct path between them. Step, or indirect, welding is used when both sides of 

the pieces cannot be accessed, typically when a smaller piece is being welded to a larger piece 

[13]. The cathode is placed atop the smaller piece and the anode atop the larger piece so they are 

offset at different elevations. In series welding, two welds are formed at the same time; however, 
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since there are multiple paths for the current to take through the materials, it is less predictable 

[13,14]. Also, when welding two different materials, if the material furthest from the cathode has 

a higher resistance than the material in contact with the electrodes, it is likely that no current will 

pass between them and no weld will form [13]. 

 This paper will focus on opposed, or direct welding. Rather than use a pencil-type 

electrode for the anode, the pads are placed on the side of a pair of grounding pliers with the wire 

atop them and the cathode pressed into the top of the wire. The electrode geometry used in this 

paper is conical with an approximately 20° angle of incidence and a flat point. Note: It is 

important when filing the welding electrode to do so parallel to the shaft so the current will 

follow the grooves rather than in rings. The cross sectional tip is then filed flat to ensure a 

perpendicular surface. The cone helps direct the current to a point, while the flat allows it to 

disperse over the contact area. 

 

Figure 4.3.1: Types of resistance 

welds. (A) Opposed (direct) weld, (B) 

step (offset) weld, and (C) series weld.  
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4.4 Spot Welding Pads to Wires 

 

 The following modifications were made to the 200 W Sparkle Pulse Welder: The 

tungsten cathode electrode was removed from its stand by removing the screw that holds it in 

place, and pulling the wire out through the guide. The tungsten electrode was then covered in 

modeling clay to a thickness of approximately 3 mm to create an insulating barrier so the 

electrode could be held in the hand like a pencil. Note: It is very important to ensure the 

electrode is completely covered at all times to avoid electrical shock. This shock is not harmful, 

though it can cause pain. For detailed instructions see Appendix I: 4.4 Spot Welding Pads to 

Wires. 

 

Materials required: 200 W Sparkle Pulse Welder, 2 x Micro forceps, 25° Micro-scissors, Lab 

tape, Microscope, Insulated wire, Cut pads, Tungsten pencil electrode, Grounding pliers [Table 

3.1] 
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4.5 Preparing the Cuff 

 

 Many commercial cuff electrodes, or fabrication methods, create a cuff by molding or 

laminating polymeric materials such as PDMS into the desired shape. The method discussed in 

this paper requires the use of silicone tubing and can easily be customized to fit any size nerve 

simply by changing the inner radius and thickness of the tube. For most applications, the thinnest 

possible tube for the particular inner radius is desired as nerves are pliable and likewise need 

pliable cuffs to avoid mechanical damage. For the electrodes with pads, the rat sciatic nerve will 

be the basis for the explanation. For detailed instructions see Appendix I: 4.5 Preparing the Cuff. 

 

Materials required: Calipers, Needle, Microscope, Scissors, 25° Micro-scissors, Clamp, 

Silicone tubing (cuff) [Table 3.1] 
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4.6 Fixing the Wires and Pads in the Cuff 

 

 Here the process splits into two parts, electrodes with and without pads. For certain 

applications, such as the rat vagus nerve, electrodes that use bare wire with no pad are desired 

because the cuff is too small to allow the use of pads. The method for making bipolar electrodes 

without pads will be discussed in the next section. While this section discusses bipolar electrode 

fabrication, the same methods are used to make tri-polar electrodes by adding another lead. For 

detailed instructions see Appendix I: 4.6 Fixing the Wires and Pads in the Cuff. 

 

Materials required: Cuff previously prepared (Sec. 4.5), Calipers, Sewing needle, Microscope, 

Scissors, 25° Micro-scissors, Clamp, Wires welded to pads, 28 G insulin needle, Small plastic 

weigh boat, PDMS [Table 3.1] 
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4.7 Bare Wire Electrodes 

 

 There are two forms of bare wire electrodes that this paper will discuss. The first is for 

one use electrodes to use for in vivo experiments. These can be used for short experiments or 

when an electrode is needed in just a few minutes, such as if an electrode were to fail during an 

experiment. The second type of electrode is reusable and can even be used in chronic 

implantations, typically those that involve very small nerves such as the vagus. 

 

Materials required: (One-use electrodes): Wire, Parafilm, Scissors, Micro-scissors, Insulin 

needle, 2 x Forceps, Calipers (Additional for reusable/chronic electrodes): PDMS, Silicone 

tubing (cuffs) [Table 3.1] 

 

 One-use electrode fabrication is a simple process that can be explained without images. 

Cut two pieces of parafilm to a width of 2 cm and a length of 3 cm. Lay one down beneath the 

scope so the paper is down and the paraffin wax side is up. For bipolar electrodes cut two piece 

of wire to a length of 10 – 20 cm depending on personal preference. Strip the insulation from a 

0.5 – 1 cm segment approximately 1 cm from the end of each wire using the method illustrated 

in figure 4.4.3. Lay the wires parallel along the long axis of the parafilm so they are each 0.5 mm 

from the center on opposite sides. One end of the wires should be between 0.5 and 1 mm from 

the short end of the parafilm . Use the calipers to measure 1 mm between the wires in several 

places along their length to ensure equal spacing and the wires are parallel. Tape the wires down 

near where they meet the parafilm. Cut a window of the desired length and width in the center of 

the second piece of parafilm using the sharp edge of an insulin needle like a scalpel. For a 
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bipolar electrode a width of 2 mm is sufficient to expose both wires without removing too much 

insulation. The circumference of the nerve will dictate the height of the electrode, and should be 

less than the circumference to ensure that when the wire wraps around the nerve it will not short. 

For a rat sciatic nerve, 3.5 mm, and a rat vagus nerve, 2 mm. However, for the vagus, this is 

much larger than the circumference and care should be taken when positioning the electrodes to 

ensure no shorting of the wires with themselves. Next, lay the second piece of parafilm over the 

first so the exposed part of the wires is within the window and the parafilm faces are touching. 

Press the two pieces of parafilm together. Remove the tape holding the wires in place. When the 

electrode is ready for use, remove the paper on the side that has the window cut in it. First, 

however, connectors will need to be soldered to the leads, which is covered in section 4.9. 

 Reusable electrodes are a bit more involved and follow much the same process as 

electrodes with pads for the steps proceeding this one. The main difference is in the fabrication 

of the cuffs, which is detailed in Appendix I: 4.7 Bare Wire Electrodes. 
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4.8 Insulating the Wires 

 

 Insulating the wires is important because the insulation on the small wires that will be 

used is extremely thin. If that insulation be compromised in any way it can lead to shorts, or 

introduce noise from electrical activity of nearby muscles. Bundling all of the lead wires within a 

single silicone tube also makes them easier to handle during implantation, and provides a single 

surface for fibrous encapsulation once implanted. The methods in this section are the same for 

every type of reusable or chronic cuff. For detailed instructions see Appendix I: Insulating the 

Wires. 

 

Materials required: Leads secured in cuff, Silicone tubing (leads), PDMS, Insulin needle, 

Forceps, Micro-scissors, Lab tape, Tray [Table 3.1] 
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4.9 Connectors 

 

 In order to use the electrode it must have a connector on the wire lead. For in situ work 

with the parafilm or reusable cuff electrodes, simply insert the wire into the cup of a male crimp 

pins and solder it in place, then use heat shrink tubing to go around each pin and wire, then a 

larger piece around both pins and wires. It is recommended that different colors of heat shrink 

tubing are used in order to differentiate which electrode was used in what experiment. For 

chronic implantable electrodes, there are typically more than one electrode being implanted and 

they all require a single connector. For the purpose of this paper the connector discussed will be 

the MS3D3 6-channel pedestal connector from Plastics One. For detailed instructions see 

Appendix I: 4.9 Connectors. 

 

Materials required: Connector, 6 x Crimp pins, Scissors, Lab tape, Crimpers, Dental cement, 

UV wand, Microscope [Table 3.1] 
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4.10 Finalizing Electrodes 

 

 The final stage of the process involves ensuring all leads are insulated with silicone 

tubing and PDMS and trimming the cuffs.  

 

Materials required: Cuff electrode with leads attached to the connector with dental cement, 

Silicone tubing, PDMS, Micro-scissors, Razorblade, Insulin needle, Calipers [Table 3.1] 

 

 Cut a piece of silicone tubing of sufficient inner diameter to surround the bundle of 

exposed wire at the base of the pedestal connector, and of sufficient length to cover all of the 

wire from the pedestal to the beginning of the silicone tubing of the leads. It may be necessary to 

trim some of the lead tubing so they are all the same length. Slit the piece of tubing lengthwise 

and wrap it around the bundle of wires. Use an insulin needle to drip PDMS within the slit, at 

both ends of the tube, and to cover the outside of the tube to seal the slit and connect the pedestal 

and the lead tubing at each end. Cure at 120°C for 20 minutes. Multiple applications of PDMS 

may be required to attach the tubing and cover exposed wires. Finally, use a razorblade to cut the 

cuff tubing to the length desired, ensuring a minimum of 1.25 mm from the edge of the electrode 

contacts. For a bipolar rat sciatic nerve with 0.5 mm contact pads, this is a 4.5 mm. Cut by 

placing the cuff on a hard surface and, leaving the cuff curled, measure by looking through the 

cuff (the pad should be visible) and press the center of the razorblade through the cuff keeping it 

perpendicular to the surface, and the outer edge of the cuff.  
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4.11 Characterizing Electrodes 

  

 Test each pad/wire of each lead for continuity with a standard multimeter to ensure there 

are no shorts and each pin is properly mapped to the desired pad/wire. To test the electrode for 

quality, this paper tests impedance with a 1 kHz sinusoidal AC signal at 1.75 Vpp using an ICM 

neurocraft impedance conditioning module by FHC Inc. Impedance values were recorded four 

times at thirty second intervals for each electrode to account for drift. The mean and standard 

deviation of these values were calculated over all of the electrodes fabricated by this method to 

test for variance. This data was then compared with a one-tailed, two-sample with unequal 

variance t-test of the means and direct comparison of variance to data recorded from an earlier 

method of fabrication within the lab that used conductive epoxy to adhere pads to wires for cuff 

electrodes. Signal to noise ratio (SNR) was also calculated for each sample. The hypothesis is 

that electrodes fabricated by the method within this paper will have both a lower mean 

impedance value and lower variance between electrodes than those fabricated using conductive 

epoxy when tested with a 1 kHz sinusoidal AC signal at 1.75 Vpp. 

 

Materials required: 100 mL glass beaker, 50 – 80 mL rat Ringer’s solution, Impedance tester 

[Table 3.1] 
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4.12 Sterilization 

 

 Before electrodes may be implanted, they must be sterilized to ensure biocompatibility 

with the animal. This method of fabrication uses ethylene oxide (EtO) gas sterilization. After the 

sterilization process, the electrodes are encased in gas sterilization pouches that can be stored 

safely until used. However, it is recommended that the gas sterilization takes place as close to the 

experiment as possible to ensure no contamination in the interim. Sterilization should be 

complete a minimum of 72 hours before the implantation procedure to allow any excess EtO to 

dissipate.  

 Survival surgeries for implantation should take place within a sterile field following 

standard surgical practice as well as any additional measures enacted by particular institutions. 
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Epoxy Z 

(kΩ) 

Weld Z 

(kΩ) 

  6.74 1.73 

 

26.42 2.50 

 

8.02 1.93 

 

65.60 2.00 

 

3.70 1.70 

 

13.18 1.23 

 

4.83 1.80 

 

4.98 3.20 

 

1.88 3.95 

 

45.10 1.50 

 

35.46 4.35 

 

38.12 2.70 

 

13.06 1.80 

 

8.95 2.90 

 

30.00 1.70 

 

7.78 3.03 

 

2.38   

 

2.20   

Mean 17.69 2.38 

STD 18.29 0.91 

Variance 334.41 0.82 
 

Table 5.1 (left): Electrode Impedance 

Values (kΩ). The mean of four tests for 

impedance of each lead fabricated are shown 

for electrodes created with silver conductive 

epoxy (Epoxy Z) and spot welding 

techniques contained within this paper (Weld 

Z). The mean, standard deviation (STD) and 

variance for each sample are also shown. 

Values are rounded to the second decimal 

because the impedance tester used was 

accurate to that place. 

CHAPTER 5 

RESULTS 

 

 Two methods of fabrication were tested against each other using a two-sample t-test with 

unequal variance. The first method used silver conductive epoxy to adhere Pt-Ir contact pads to 

the wire. The second used direct welding resistance spot welding techniques to adhere Pt-Ir 

contact pads to the wire. All electrode leads used in Table 5.1 were tri-polar. The SNR of each 

sample is 0.98 and 2.62, respectively.  
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Figure 5.1 (left): Results of one-

tailed t-test with unequal variance 

comparing  of samples 1 and 2. 

Sample 1 is electrodes fabricated with 

silver conductive epoxy  = 17.69 +/- 

18.29 kΩ, sample 2 is electrodes 

fabricated through the methods in this 

paper  = 2.38 +/- 0.91 kΩ, with a p-

value = 1.24×10
-3

. 

5.1 Statistical Analysis 

 

 A one-tailed, two-sample with unequal variance t-test was performed between sample 1, 

electrodes fabricated with silver conductive epoxy, and sample 2, electrodes fabricated with spot 

welding techniques discussed in this paper. 

H0:  of sample 1 =  of sample 2 

H1:  of sample 1 >  of sample 2 

 It was found that electrodes created with silver conductive epoxy have a  = 17.69 +/- 

18.29 kΩ and a  = 334.4, while the electrodes created using these methods have a  = 2.375 

+/- 0.9058 kΩ and a  = 0.8205, yielding a p-value of 1.23×10
-3

, which is less than α = 0.01 

(Figure 5.1). This allows rejection of the null hypothesis and confirms the alternate hypothesis. A 

direct comparison of variance also shows  = 334.4 >  = 0.8205, meaning the methods used 

in this paper are more repeatable. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE IMPLICATIONS 

 

 A method paper on the fabrication of nerve cuff electrodes was very much needed. Most 

devices used are proprietary and are either not customizable, or customizing can be cost 

prohibitive, meaning experiments must be designed around the electrode rather than the other 

way around. For those who wished to fabricate their own electrodes, there was no definitive 

guide on doing so, meaning the method would have to be worked out by reading journal articles 

or by trial and error. Most method sections of articles do not go into detail and simply state, “the 

pad was welded to the wire.”  

 The electrodes fabricated for this study were originally meant for use in a study to 

determine the selective block ability of KHFAC stimulation on sensory and motor fibers in 

awake, freely moving rats. The length of time to create a viable electrode was longer than 

anticipated as the first method with silver conductive epoxy failed. Also, different connectors 

were used that were not secured to the skull and the animals were able to pull them out and chew 

through the leads before data could be collected. The study was also limited in that 

undergraduates at the Georgia Institute of Technology are not allowed unsupervised access to 

animals, meaning surgeries and experiments could only be performed when a graduate student 

had time to assist. This slowed the study considerably, so it was unable to be completed before 

the end of the Petit Scholar program.  

 The experiment has since been redesigned to use the new connectors detailed in section 

4.9 and secure them to the skull with dental cement, as well as use a real-time x-ray video 

capture device to monitor gait before and after block stimulation is applied, which should yield 
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more quantitative and conclusive results than the previous method used, the Plantar Test, which 

involved the application of an infrared heat stimulus to the paw and timing the rate of 

withdrawal. That test was rather subjective, as the reason for withdrawal could not definitively 

be attributed to feeling the heat sensation with 100% certainty, and methods of judging pain 

response are subjective. 

 The methods herein create a unified source of information for multiple means to fabricate 

electrodes and will enable future students in this lab, as well as others, to learn the fabrication 

process with much less effort and expense in both time and materials. For many 

electrophysiology experiments the interface is one of, if not the, most important factor in 

acquiring quality, representative data. The electrodes created by these methods have been shown 

to have electrical characteristics that are both within viable range for impedance and show a 

small variance between electrodes which will help reduce signal to noise ratio and variability 

between data sets taken with different electrodes. This will increase the quality of experiments, 

as well as produce verifiable results which can be tested by independent sources, which is an 

important step in the scientific process. 



 
 

30 

APPENDIX I: METHODS 

 

4.2 Cutting Electrode Pads 

 

 

Note: The metal used in the images is stainless steel for demonstration 

purposes, not Pt-Ir. Set the calipers to 1.00 mm. Using the small jaws of 

the caliper, set first one end, then the other of the straight edge (left 

4.2.1). Mark a line with the felt pen (right 4.2.2). 

 

 

Use the large paper scissors to cut the strip of metal. This should be done 

under the scope. Note: Always use the highest magnification setting 

possible to keep tolerances tight. The goal is to cut along the edge of the 

line that was against the ruler (left 4.2.3). The strip will begin to curl 

(right 4.2.4). 
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Once the strip is cut the curl can be removed manually and then pressed 

flat with a sheet of metal or other hard, flat item (left 4.2.5). Set the 

calipers at the desired length of the pad (3.30 mm). Measure by pressing 

the strip down atop one of the large jaws of the calipers and butting it 

into the other, ensuring it is perpendicular to the edge (right 4.2.6).  
 

 

While cutting (left 4.2.7) it is important to keep the scissors perpendicular to the strip. It can also be 

difficult to cut precisely on the edge of the jaw because the strip must be raised slightly which creates 

parallax. It is best to offset the strip the width of the scissors so the strip overlaps the far jaw, enabling 

both the strip and the scissors to remain on the same plane. This avoids parallax. 

 

This results in pads that are the same size with a tolerance of +/- 0.01 

mm (left 4.2.8). Next, the pads need to be cut to half the width to get 

0.50 mm. Adhere them to a piece of lab tape, fold it, and adhere it to the 

work surface beneath the scope as shown (right 4.2.9). Ensure there is a 

gap underneath. 
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Using the 25° micro scissors at 5x magnification, cut the pad in half (left 

4.2.10, right 4.2.11). This will have to be estimated as it is too small to 

measure accurately; however, it should yield pads within the range of 

0.49-0.51 mm, well within tolerance. Repeat this process as many times 

as needed. 
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4.4 Spot Welding Pads to Wires 

 

Tips on Spot Welding: Ensure all surfaces are clean with 70% ethanol and the electrode tip is filed to a cone with a flat tip. If a weld 

fails or the tip sticks to the weld, file down any carbon or metal deposits. Ensure the ground surface is clean, flat, and making full 

contact with the pad. The 200 W Sparkle Pulse Welder is not very precise with its settings. Some experimentation should be done to 

properly tune the current. For this paper the dials were both set to 3. The dials seem to be additive rather than “course” and “fine” as 

indicated. The foot pedal should be placed somewhere easily found without looking, but where it will not be triggered accidentally. 

 

Tape each side of a pad (as cut in 4.3) to the top of the grounding pliers 

in the field of the scope at maximum magnification. Roughly 0.2 mm of 

each side of the pad should be covered (left 4.4.1). Next, lay the 

insulated wire over the center of the pad so one end overhangs by ~2 cm. 

Tape it ~1 mm back from the edge of the tape on the pad (right 4.4.2). 
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To strip the insulation from the wire, grasp one side of the wire with one pair of forceps, with the 

second pair closed, place the tip against the insulation of the wire and move it rapidly back and forth 

along the wire 1-2 mm in each direction (left 4.4.3). This will cause the insulation to stretch, bunch up, 

and eventually split down the middle. Pull the split insulation perpendicular to the wire until it breaks. 

Then grasp the broken insulation near the stationary forceps and break it off at each end of the pad. 

With the wire stripped for the length of the pad it is ready to weld. First weld in the center of the pad. 

Hold the electrode as near perpendicular as possible in the center of the pad with light pressure (right 

4.4.4). The pressure should be firm enough that there is no air gap between the grounding pliers, the 

pad, or the wire. Increased resistance from air or insulation will cause the spark to arc, vaporizing the 

metals in a flash of light. Note: Tinted goggles should be worn, or the eyes closed, when welding. 
 

 

Next move the welding electrode to the edge, near the tape, and press firmly as the wire needs to bend 

to close the gap created by the tape. Using the correct pressure will take practice. After each end is 

welded, weld toward the center from both sides until 10-12 welds have been completed along the entire 

length of the wire (left 4.4.5). Note: When welding, it is best to use one pair of forceps to hold the wire 

steady ~2 mm from the point of the weld to avoid the wire rolling from beneath the electrode.  
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Remove the tape from the short side of the wire (right 4.4.6). Note: The layer between the wire and the 

pad should be pulled horizontally outward to avoid bending the wire or breaking the welds. Once the 

tape is removed, hold the wire and pad down with the forceps and weld the wire to the end of the pad. 

Place a piece of tape over the wire and pad near the center of the pad and remove the tape on the left to 

repeat the process on the far side. 
 

 

With welding complete on the lead side, place the back of the closed 

forceps atop the wire just past the end of the pad (left 4.4.7). Bend the 

long side of the wire (lead) until it remains at an ~90° angle. Do the same 

at the short end (tail). This should make a square “U” shape from the 

wire (right 4.4.8). Repeat this process to create all the leads needed. 
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4.5 Preparing the Cuff 

 

 

 

The goal is to center the cuff over the hole of the clamp and secure it in 

place in a flat, open position (left 4.5.1). First, cut the cuff to the desired 

length. For a rat sciatic cuff, ~1.5 – 2 cm. Slit the cuff along its axis with 

the micro-scissors. Position it as shown (right 4.5.2 top) and tighten the 

screws. Then flatten it on the other side and clamp (right bottom). 
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4.6 Fixing the Wires and Pads in the Cuff 

 

 

Push a standard sewing needle through the top of cuff until only the eye 

remains, then thread the needle with the long end of the wire so 2 – 3 mm 

are through the needle (left 4.6.1). Pull the wire through until the short 

end of the lead is touching the top of the cuff (right 4.6.2).  

Note: The top of the cuff is what would be the inner surface if curled. 
 

 

Use the small jaws of the calipers to measure the distance between the wires and push the needle all the 

way through the cuff (left 4.6.3). It is best to go slightly over. For example, for the 3.3 mm pad, a 

distance of 3.4 mm is measured. This is because the wire curls past the end of the pad and if it were too 

narrow it might cause the pad to bend upward creating separation between the pad and cuff.  

Note: Ensure the distance you are measuring is parallel to the edge of the cuff.  
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Use forceps to guide the short end of the lead into the hole made by the 

needle. Then pick up the clamp and use a finger to apply gentle, even 

pressure downward on the pad until it rests on the surface of the cuff (left 

4.6.4, right 4.6.5). The back of closed forceps can be used to ensure it is 

flat and make minor adjustments. 
 

Measure 1.5 mm from the center of the pad then push the needle through and thread it as in figure 

4.6.1. Repeat the steps up to this point to place a second pad, ensuring there is a 1 mm gap between the 

pads. Next, prepare 2 – 3 g of PDMS in a small weigh boat. Use an insulin needle to scoop a drop of 

PDMS and apply it to the surface of the cuff on each side of the pads and in between them (right 4.6.6). 

Note: Do not attempt to draw PDMS into the syringe, just use the needle to scoop drops one at a time.  
 

When a thin layer of PDMS has been lain around all of the pads and spread evenly, place the clamp assembly on a portable, heat 

resistant tray and tape the wires down. A 15 cm x 15 cm blank circuit board makes a good tray. Place this in an oven and cure at 

120°C for 20 minutes. When it is done, use the back of the forceps to scrape off any PDMS that may have covered the pads. Finally, 

remove the clamp. 
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4.7 Bare Wire Electrodes 

 

First, cut the desired silicone tubing the length of a cuff (~1 – 1.5 cm). 

Pierce the cuff with a sewing needle as shown (left 4.7.1). Push the 

needle through until only the eye remains, and then thread a wire 3 mm 

through (right 4.7.2). Finally, pull the wire through until the bent portion 

emerges from the far side of the tube. 
 

 

Use the calipers to measure 1 mm from the first wire (left 4.7.3), then 

repeat the process to thread a second wire through. Pull the wires back so 

the bent portion is lain over the back of the tube (right 4.7.4). Note: The 

back is the bottom of the cuff in figure 4.7.1. 

 

Next, slit the tube lengthwise with the micro scissors in the center of the segment that is above the needle in figure 4.7.1. This will 

give the wires maximum exposure to the nerve. Note: Be careful not to cut the wires. Insert the cuff and wires into the clamp as in 

section 4.5. Lay down a thin layer of PDMS and cure it in the oven, as described in figure 4.6.6. Finally, expose the wires and 

remove the insulation using the technique in figure 4.4.3. From section 4.8 Insulating the Wires onward, the process is the same. 
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4.8 Insulating the Wires 

Hold the cuff with one hand, pull the wire leads taut, and cut them to the same length with the scissors. Cut a length of silicone 

tubing (leads) that will extend from the cuff to 2 – 3 cm before the end of the lead. Run the wires through the tubing. It is typical for 

the wires to start to bend after 5 – 10 cm. When this happens, pinch the tubing to the wire at the end of the tubing with one hand. 

With the other, pull the tubing taut, then pinch the tubing to the wire 5 – 8 cm from the first hand. Release the tube with the first 

hand. This will cause the tube to elastically return to its original shape. Repeat this process, incrementally moving the tube down the 

wire until it is exposed. Essentially, use the fact that the tube stretches and returns to its original shape to pull the wire through the 

tube once it is no longer possible to push the wire into the tube. If the tube begins to bunch up further down the wire, maintain the 

pinch at the far end of the tube and drag two fingers down the length of the tube to smooth it out. 

 

Once the tube is in place so one end is tight to the back of the cuff and the other has ~2 cm of wire 

coming out the end, tape the tube slit-side down to the tray with a piece of tape on each side of the cuff 

holding it in place, and another over the lead tube. Use the micro-scissors to cut off the tails of the 

leads that are bent over the tube, leaving 2 -3 mm so it looks like the figure to the (left 4.8.1).  
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Next, apply PDMS liberally to the entire back of the cuff. Allow PDMS to drip between the wires and 

the tubing. It will seep into the tube for 1 – 3 cm, which is desirable. Apply PDMS to the back of the 

tube as well. The dotted red line shows the area to which PDMS should be applied (right 4.8.2). Cure 

the electrode in the oven at 120°C for 20 minutes.  

 

Use the insulin needle like a scalpel to cut the layer of PDMS directly 

beneath the wire tails (left 4.8.3). Use the tips of the closed forceps to 

push the wire down into the slit made in the PDMS so the end is not 

exposed, as the exposed end needs to be covered (right 4.8.4). Finally, 

seal the slit with PDMS and cure at 120°C for 15 minutes.  
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4.9 Connectors 

 

Press a crimp pin into the adhesive side of a piece of lab tape so just the 

portion to be crimped is covered by the tape. In this example, ~2 mm. 

Strip the insulation from the end of the wire lead and insert into the pin 

then press it into the adhesive (left 4.9.1). Grasp the tape and pin at the 

edge of the tape with a flat part of the crimpers and squeeze (right 4.9.2). 
 

 

This should yield a flat crimp with little to no bare wire exposed (left 4.9.3). The edge of the tape acts 

as a great guide for where to place the crimpers, use it advantageously. When crimping, squeeze as 

hard as possible. It is best to get a flat crimp in the first attempt as further attempts are likely to open 

some portion of the crimp. 
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Insert the pins into the back of the 6-channel pedestal. To the (right 4.9.4) a pin-out schematic is as 

follows. 1 and 2: first bipolar electrode. 3 and 4: second bipolar electrode. 5 and 6: bipolar EMG 

electrode. Note: An EMG electrode is just a wire lead encased in silicone tubing (leads) with ~2 – 3 cm 

of insulated wire exposed at the far end. Use PDMS to seal the end of the tube to avoid fluids wicking 

inside. Before surgery, expose a length of bare wire sufficient for contact with the desired muscle. 
 

With all of the pins in place, use UV curing dental cement to fill between the backs of the pins and cover them to just past the 

junction with the wire. Cure with the proper wavelength UV light as per the specifications of the dental cement chosen. This will 

create a solid, resin, insulating back. Note: Before curing the dental cement, ensure all the wires are tightly bundled so they may be 

covered by a single tube and cured in PDMS. 
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