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Abstract
Birds, �sh, and many other animals travel as a ock,
school, or herd. Animals in these groups must remain
in close proximity while avoiding collisions with neigh-
bors and with obstacles. We would like to reproduce
this behavior for groups of arti�cial creatures with sig-
ni�cant dynamics. In this paper we describe an algo-
rithm for creatures that move as a group and evaluate
the performance of the algorithm with three simulated
systems: legged robots, human-like bicycle riders, and
point-mass systems. Both the legged robots and the
bicyclists are dynamic simulations that must control
balance, facing direction, and forward speed as well
as movement with the group. The point-mass systems
have minimal dynamics and are included to facilitate
our understanding of the e�ects of the dynamics on
the performance of the algorithms.

Introduction

To run as a group, animals must remain in close prox-
imity while changing direction and velocity and avoid-
ing collisions with other group members and obstacles
in the environment. We would like to create multi-
agent systems that replicate the complexity and vari-
ability of natural groups by using simple communica-
tion, cooperation, and coordination strategies. In this
paper, we explore the performance of an algorithm
for group behaviors. The groups are made up of dy-
namically simulated legged robots, bicycle riders, and
point-masses with minimal dynamics. An image of
six simulated bicyclists riding as a group is shown in
�gure 1.

The algorithm for group behaviors computes a de-
sired position for each individual based on the location
and velocity of visible neighbors, visible obstacles, and
a desired group velocity. The desired position is known
only to each individual creature and the navigational
intent of each creature is communicated to the others
only by their observation of its actions. We compare
the performance of this algorithm on the three systems
for a test suite of three problems: steady-state motion,
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Figure 1: Image of a group of six simulated bicycle riders.

turning, and avoiding obstacles. The point-mass sys-
tem demonstrates the most robust performance in all
tests because the dynamics of the system do not inter-
fere signi�cantly with the control exerted by the group
behaviors. When the inherent delay in the control of
velocity in the one-legged robots is taken into account,
their performance is also good. The bicyclists are the
least robust of the three systems because the underly-
ing control system for steering and balance is unable
to execute some of the changes in velocity and direc-
tion requested by the higher-level algorithms for group
behaviors.

In contrast to most previous implementations of al-
gorithms for group behaviors, we use this algorithm
to control a group in which the members have signif-
icant dynamics. The problem of controlling these in-
dividuals more closely resembles that faced by quickly
moving mobile robots and by biological systems be-
cause each individual is dynamically simulated and
has limited acceleration, velocity, and turning radius.
Furthermore, the control algorithms are inexact, re-
sulting in both transient and steady-state errors in the
control of velocity. In the case of the legged robots,
required changes in velocity are delayed by almost a
full running cycle because the control system can in-
uence velocity only during the stance phase of the
running cycle.

Algorithms for high-level behaviors are needed for
the construction of cooperating robots with robust
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and agile movements. When a robot moves quickly
enough to have signi�cant dynamics, the algorithms
that control the high-level behaviors must include
models of the underlying dynamics and the limitations
of the low-level control. Algorithms for high-level
behaviors of dynamic simulations are also needed for
the construction of virtual actors with robust and
realistic motion that can respond interactively to
changes in the environment. A dynamic simulation
in concert with a control system will provide natural-
lookingmotion for such low-level behaviors as walking,
running, bicycling, and climbing. Such higher-level
behaviors as obstacle avoidance, grouping, and rough
terrain locomotion would allow the actor to interact
with the user and with a complex and unpredictable
environment.

Background

Herding, ocking, and schooling behaviors of animals
have been studied extensively over the past century,
and this research has stimulated the creation of robots
and simulated creatures with similar skills. Groupings
exemplify an attraction that modulates the desire of
each member to join the group with the desire to main-
tain a su�cient distance from nearby creatures[12].
As an example of this attraction, Cullen, Shaw, and
Baldwin[4] report that the density of �sh is approxi-
mately equal in all planes of the school, as if each �sh
had a sphere around its head with which it wished
to contact the sphere of another �sh. Herding ben-
e�ts group members by limiting the average num-
ber of encounters with predators (data summarized
in Veherencamp[17]). Group behaviors also allow an-
imals to hunt more powerful animals than those they
could overpower as individuals. The success of be-
haviors such as these in biological systems makes it
reasonable to assume that it would be advantageous
to reproduce them in robotic systems.

Early work in the simulation of group behaviors
was performed by Reynolds[10]. Actors in his system
are bird-like objects similar to point-masses except
that each bird also has an orientation. The birds
maintain position and orientation within the ock
by balancing three desires: avoiding collisions with
neighbors, matching the velocity of nearby neighbors,
and moving towards the center of the ock. Reynolds's
work demonstrated that realistic-looking animations
of group formations can be created by applying simple
rules to determine the behaviors of the individuals in
the ock.

Yeung and Bekey[16] proposed a decentralized ap-
proach to the navigation problem for multiple agents.
Their system �rst constructs a global plan without
taking into account moving obstacles. When a colli-
sion is imminent, the system locally replans using in-
terrobot communication to resolve the conict. This
solution reduces the communication overhead associ-
ated with group behaviors. Sugihara and Suzuki[13]
demonstrated that robots can form stable formations
without a priori knowledge about the total number
of robots when each robot executes an identical algo-
rithm for determining position within the group.

Wang[15] investigated the asymptotic stability of
multiple robots in formation. Each robot in the model
is simulated as a point mass and perceives other robots
in a cone-shaped region in the direction of travel.
Formations are represented as a set of o�sets from a
prede�ned reference robot. In this way, a formation
can be directly de�ned as a set of positions for each
robot relative to the leader, the closest neighbor, or
set of closest neighbors.

Takeuchi, Unuma, and Amakawa[14] implemented
path planning in simulated multiagent systems where
the attraction between agents is dependent on prop-
erties of the agents. The simulated agents are point-
masses where forces are applied to the agents based
on the vector sum of attractions to observable agents.
This method was used to formulate a path for a but-
tery among owers, to describe the paths of schooling
�sh when approached by a predator, and to generate
the paths of humans avoiding a car.

Arkin explored the question of communication in a
group of interacting mobile robots using schema-based
reactive control ([1] and [2]). Example schemas are
move-to-goal, move-ahead, and avoid-static-obstacle.
Each behavior computes a velocity vector that is com-
bined with the vectors from other behaviors. Arkin
demonstrated that for some tasks robots can interact
with no communication other than observations of the
environment or with very limited explicit communica-
tion.

Mataric investigated emergent behavior and group
dynamics with wheeled vehicles. These robots, like
Arkin's, do not explicitly communicate state or goals
and the system has no leaders. This work demon-
strated that combinations of such simple behaviors as
attraction and repulsion can produce complex rela-
tionships such as dispersion and ocking in physical
robots in the laboratory([7] and [8]).

Group Behaviors

The algorithms for group behaviors described in this
paper were evaluated on three simulated systems: a
one-legged robot, a rigid body model of a human rid-
ing a bicycle, and a point-mass system with minimal
dynamics. For the point-mass system and the legged
robots each group included 105 individuals; the group
of bicyclists included 6 individuals.

The algorithm for group behaviors consists of two
parts: a perception model to determine the creatures
visible to each individual in the group and a placement
algorithm to determine a desired position for each
individual given the locations and velocities of the
creatures that are visible to it. The output of the
algorithm for group behaviors is a desired position for
each individual in the group. The low-level control
algorithms for each creature use the desired position
to compute a desired velocity and then attempt to
achieve that velocity.

Each individual in a group can perceive the relative
locations and velocities of the n nearest creatures
within a circle of radius r (�gure 2). In most of the
trials reported in this paper, n was 30 and r was 24 m;
for most con�gurations, the circle was large enough to
include all members of the group.
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Figure 2: One creature is visible to another if it is within a cer-
tain radius, r, and is one of the n closest visible creatures. In
the left �gure, the black circles represent visible creatures and
the white those that cannot be seen by the individual under
consideration. The �gure on the right illustrates how the lo-
cations of the visible creatures are used to compute a global
desired position for the individual under consideration.

n=6 D=2.5 n=30 D=2.5 n=105 D=3.5

Figure 3: The �rst graph shows the initial con�guration for
three experiments. The other three show the con�guration of
the group of robots after 80 s of simulation with each graph
representing a di�erent choice for the number of perceptible
robots (n) and the desired separation distance (D). When the
robots were able to perceive a greater number of robots (n),
the actual separation distance to the closest neighbors (d) was
reduced even though the desired separation distance (D) to all
visible robots increased.

The list of visible creatures provided by the percep-
tion model is used to compute a desired position for
each individual in the group by computing a desired
position relative to each visible creature and combin-
ing these desired positions with a weighted average.
The desired position of an individual relative to each
of the visible creatures is a constant desired separa-
tion distance D away from the visible creature on the
line between the two (�gure 2). In these trials D was
2:5m. This set of desired positions (one for each vis-
ible creature) is averaged with a weighting of 1=d2 to
compute a global desired position where d is the dis-
tance between the two creatures. Figure 3 illustrates
the e�ect of the number of visible creatures and the
separation distance.

In addition to avoiding collisions with other individ-
uals in the group, the creatures avoid collisions with
obstacles. If a creature is on a path that will cause
it to collide with an obstacle, its desired position in-
cludes a weighted term for a desired position to the
left or right of the obstacle.

Although the algorithms for group behaviors are
identical for the three systems up to this point,
the three systems use the information about desired
position in di�erent ways. The one-legged robots and
the bicyclists adjust speed and facing direction in an
attempt to eliminate the error in position. In contrast,
the error in position for the point-masses is reduced by
applying a force to the point-mass. These di�erences
are described in detail in the following sections.

z
y

x

hip
 (x, y, z rotation)

y rotation
of hip

leg length

Figure 4: The reference angles for the degrees of freedom of
the one-legged robot. The controlled degrees of freedom are the
three degrees of freedom at the hip and the length of the leg.

Simulating Groups

A simulation of a group of creatures consists of the
equations of motion and a state vector for each, control
algorithms for running or bicycling, a graphical image
for viewing the motion of the group, and an interface
that allows the user to control the parameters of the
simulation. For the group of robots, each simulation
includes the equations of motion for a rigid body
model of a one-legged robot and control algorithms
that allow the robot to run at a variety of speeds
and ight durations. For the group of bicyclists, each
simulation includes the equations of motion for a rigid
body model of the bicycle and human rider and the
control algorithms for steering and propelling the bike
forward.

The equations of motion for the robot and the bi-
cyclist were formulated using a commercially available
package[11]. The equations of motion for the individ-
uals in the group do not take into account the physical
e�ects of collisions between two members of the group,
although collisions are detected and a count of colli-
sions is recorded for use in analyzing the data. The
details of the robot, the bicycle rider, and the point-
mass models are described below.

One-legged Robot

The locomotion algorithms for the one-legged robot
control ight duration, body attitude, and forward
and sideways velocity. Flight duration is controlled by
extending the leg during stance to make up for losses
in the system. Body attitude (pitch, roll, and yaw)
is controlled by exerting a torque between the body
and the leg during stance. The velocity is controlled
by the position of the foot with respect to the center
of mass of the body at touchdown. For a constant
velocity, the foot is positioned in the center of the
distance that the body is expected to travel while the
foot is on the ground. To increase the speed, the
foot is positioned closer to the hip. To decrease the
speed, the foot is positioned further from the hip. The
details of the locomotion control algorithms are given
in Raibert[9]. The reference angles of the model are
shown in �gure 4.

The desired position computed by the algorithms
for group behaviors is used to compute a desired
velocity. The desired position is instantaneous in that
the individual would be in the right position if it were
at that position at this moment in time. Running
creatures, however, cannot change velocity during
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Figure 5: The response of the simulated one-legged robot to a
step change in desired velocity. The solid line shows the actual
velocity, and the dotted line shows the desired velocity. When
the desired velocity changes at the end of the ight phase, the
actual velocity does not change until the next stance phase.

ight and the control uses a model of this delay to
improve the performance of the algorithms. A change
in velocity is e�ected by repositioning the leg during
ight in preparation for the next touchdown. During
the subsequent stance phase, the velocity changes
to the new desired velocity, which remains constant
during the following ight phase. The response to a
step change in desired velocity is illustrated in �gure 5.
To compensate for the delay in the control of the
velocity, the error at the end of the next locomotion
step is predicted and used to compute the desired
velocity. The predicted position at the end of the next
step is

xp = x+ _x(ts + tf ) (1)

where x is the current position, _x is the velocity, ts is
duration of the stance phase and tf is the duration of
the ight phase. The desired position at the end of
the next step is predicted in a similar fashion:

xdp = xd + _xa(ts + tf ) (2)

where xd is the desired x position computed by the
algorithm for group behaviors and _xa is the average
velocity of the members of the group that are visible
to this individual. The average velocity of the visible
group members is used to approximate the desired
position of the individual on the next step because
the future positions of the neighbors will inuence the
new desired position. The predicted error in position
at the end of the next step is

e = xdp � xp: (3)

We model a change in velocity as a linear ramp from
the current velocity to the new velocity during stance
and a constant velocity during the subsequent ight
phase. The control system attempts to eliminate the
error in position prior to the end of the next ight
phase by computing an appropriate change in velocity.
The error in desired position must cause a change in
velocity that will make the position of the robot at the
end of the next ight phase match the desired position:

_x(ts + tf ) + e =
_x+ _xd

2
ts + _xdtf : (4)

Solving for _xd:

_xd = _x+
e

ts
2
+ tf

: (5)
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Figure 6: The controlled degrees of freedom of the human and
bicycle models. The human model has fourteen joints, and the
diagram shows the number of degrees of freedom at each joint.
The four degrees of freedom of the bicycle model are shown
in the �gure. The human rider is attached to the bicycle by
a pivot joint between the seat and the pelvis. The polygonal
models were purchased from Viewpoint Datalabs.

We calculate the new desired velocity to be the sum
of the current velocity and the average of the error
in global desired velocity and the velocity due to the
position error:

_xd = _x+
1

2

�
_xgl � _x+

e
ts
2
+ tf

�
(6)

where _xgl is the global desired velocity for the group.
A similar model would be required for any creature
with a ballistic ight phase during which speed and
facing direction cannot not be altered.

Bicyclist Simulation

The human bicycle rider is modeled by a 15-segment
rigid-body model connected by rotary joints with 22
controlled degrees of freedom. Some joints, like the
knee, are modeled as a single-axis pin joint; others, like
the wrist and shoulder, are modeled by two- and three-
axis gimbal joints. The volume, mass, center of mass,
moments of inertia, and distance between the joints
are calculated from a polygonal representation of the
human body (�gure 6). The algorithm used to calcu-
late the properties of the polygonal model integrates
over the set of tetrahedra formed by the triangular
faces of the model and the origin[6]. Density data
obtained from the anatomical literature were used in
calculating the dynamic properties of the body seg-
ments. The degrees of freedom of the bicycle model
are shown in �gure 6.

The simulated human rider controls the facing
direction and speed of the bicycle by applying forces
to the handlebars and the pedals. Spring and damper
systems connect the hands to the handlebars, the feet
to the pedals, and the crank to the rear wheel. The
connecting springs are two-sided, and the bicyclist is
able to pull up on the pedals as if the bicycle were
equipped with toe-clips and a �xed gear.
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The control system adjusts the velocity of the
bicycle by moving the bicyclist's legs to produce a
torque at the crank. The desired torque at the crank
is

�crank = k(v � vd) (7)

where k is a gain, v is the magnitude of the velocity,
and vd is the desired velocity. The force that can
be applied by each leg is dependent on the angle of
the crank because we assume that the legs are most
e�ective when pushing downwards. When the crank is
horizontal, the front leg can generate a positive torque
and the rear leg can generate a negative torque. To
compensate for the crank position, the desired forces
for the legs are scaled by a weighting function between
zero and one that depends on the crank position,
�crank:

w =
sin(�crank) + 1

2
: (8)

If �crank > 0, the force on the pedal that the left leg
should produce is

fl =
w�crank

l
(9)

where l is the length of the crank arms. The desired
pedal force for the right leg is

fr =
(1�w)�crank

l
(10)

If �crank is less than zero, the equations for the left
and right leg are switched. A kinematic model of the
legs is used to compute hip and knee torques that will
produce the desired pedal forces.

To steer the bicycle, the control system computes
a desired angle for the fork based on the errors in roll
and yaw:

�fork = �k�(�� �d)� k _� _�+ k�(� � �d) + k _�
_� (11)

where �, �d, and _� are the roll angle, desired roll,

and roll velocity, respectively, and �, �d, and _� are
the yaw angle, desired yaw, and yaw velocity. k�, k _�,
k�, and k _� are gains. Inverse kinematics is used to

compute the shoulder and elbow angles that position
the hands on the handlebars with a fork angle of �fork;
proportional-derivative servos move the shoulder and
elbow joints towards those angles.

These control laws leave the motion of several
joints of the bicyclist unspeci�ed. The wrists and the
waist are held at a constant angle with proportional-
derivative controllers. The ankle joints are controlled
to match data recorded from humans[3].

The desired position for the bicycle that is com-
puted by the algorithm for group behaviors is used to
compute a desired velocity for the bicycle:

_xd = kpe+ kv( _xgl � _x) (12)

where _xd is the desired velocity in the plane, e is the
error between the current position of the creature and

the desired position, kp is the proportional gain on
position, kv is the proportional gain on velocity, and
_xgl is the group's global desired velocity. The control
system for the bicycle does not include a model of the
delay in the control of velocity.

Point-mass Simulation

The point-masses have a mass equal to that of the
one-legged robots. The desired position computed by
the algorithm for group behaviors is used to compute
a force that is applied to the point-mass:

f = kpe+ kv( _xgl � _x)

where kp and kv are gains, _x is the velocity of the
point-mass and _xgl is the group's global desired veloc-
ity. There are no limits on the velocity. The point-
mass system di�ers from the robots and bicyclists in
that only the inertia of the mass prevents a given
point-mass from reaching its new desired location.

Results

We tested the algorithms on three maneuvers: steady-
state movement, turning, and avoiding obstacles. For
steady-state movement, the initial con�guration and
velocity for the robots and point-masses were the
same. The group of bicyclists had fewer members
and the initial velocity was higher. Both the robots
and the point-mass system contracted to form nearly
circular shapes. Due to the minimal dynamics present
in the point-mass system, the group of point-masses
reached steady-state in under 7 seconds while the one-
legged robots required nearly 21 seconds to reach an
equally stable formation (�gure 7). The group of
bicyclists formed a pentagon with one bicyclist in the
center. These shapes reect the e�ects of the group
behavior: each individual desires to be a speci�ed
distance from all visible neighbors. When this simple
behavior is aggregated over all members of a group, a
regular group formation results.

The second test involved turning. Beginning with a
steady-state run the groups were commanded to turn
�rst to the left and then to the right (�gure 8). The
bicyclists could not turn as sharply as the robots and
point-masses. Both the bicycles and the point-mass
systems completed the path without collisions, but the
legged robots had collisions when the direction of the
global desired velocity changed.

The �nal test involved obstacle avoidance (�gure 8).
The group of point-masses was able to avoid the
obstacle and quickly rejoined to form a single group on
the far side of the obstacle. The robots were also able
to avoid the obstacle but were slower to rejoin on the
far side of the obstacle. The bicycles were less able to
adjust lateral velocity due to kinematic and dynamic
constraints and had a larger global desired velocity.
Although the bicycles came closer to the obstacle, they
behaved in a manner similar to that of the robots and
the point-masses.

The algorithms for group behaviors used for these
trials were similar and most di�erences in performance
can be attributed to di�erences between the underly-
ing dynamics and control for each simulated system.
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One-legged Robots

Point-mass Systems

Bicyclists

Figure 7: The top two rows of graphs show the group of
robots and the point-mass systems at a start state and every
7 s thereafter as the two groups are commanded to travel at
2:0 m=s. The bottom row of graphs shows the bicyclists at a
start state and every 10s thereafter while they are riding at
4:8m=s. Each graph represents the x and y position of each
individual in the group.

The group of point-masses moved more tightly under
changes in magnitude and direction of velocity because
of the more exact control of velocity. The robot group
had more variability and motion within the group, and
tests more often resulted in collisions between mem-
bers of the group. The collisions could have been pre-
vented by increasing the desired separation distance
between the creatures.

In more di�cult tests than those reported here,
an individual in the group of robots or the group
of bicyclists sometimes lost its balance and fell. A
maximum acceleration was enforced for the bicycles
and the robots to prevent limitations in the low-
level control from causing many of these failures.
The point-mass systems had no notion of balance or
maximum speed and could not fail in this way.

Communication as a means of coordination is im-
plicit in the group's global knowledge of a global de-
sired velocity, _xgl. In the turning test, for example, a
synchronous change in direction is caused by changing
this global desired velocity. However, reactions on a
local scale require knowledge of the neighbors' inten-
tions as opposed to those of the group. This knowl-
edge is obtained by observing the positions and ve-
locities of the n nearest neighbors. Larger values of
n dampen the e�ects of local uctuations because the
quick movement of some neighbors is averaged with
the stable behaviors of other neighbors. Alternatively,
low values of n result in erratic and unstable behavior
as local disturbances transfer undamped through the
group.

There are many limitations to the algorithm for
group behaviors we implemented. In some situations,
the averaging of desired positions moved two individ-
uals closer to collision, and there is no reexive reac-
tion to an impending collision. With this algorithm,
a breakaway group of su�cient size will not rejoin the
main group unless a member of the main group is visi-
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Figure 8: The left column illustrates the trajectories of the
individuals in the groups of robots, bicyclists and point-masses
as the creatures avoid an obstacle. The groups were moving left
to right. In each case, the front edge of the group was positioned
8 meters from the obstacle before the obstacle was perceived.
The radius of the obstacle was 2:0 m. In the right column
the con�gurations of the groups are drawn to illustrate each
simulation's performance as the desired velocity is changed to
cause the group to turn. The robots and point-masses started in
a steady-state at 2:0 m=s before they were asked to turn 45 deg
to the left. After 20 s theywere asked to turn 90 deg to the right.
The bicyclists could not follow this path and requiredmore time
to complete smaller turns. In this experiment the bicyclists
started in a steady-state at 5:5 m=s before they were asked to
turn 22:5 deg to the left. After 20 seconds they were asked to
turn 45 deg to the right. Snapshots of the group formations
were taken every 10 s and the path of one individual in the
group is traced through the whole turn.

ble to a member of the breakaway group. Presumably
both problems could be solved by additional behaviors
that cause individuals to react strongly to collisions
and to look further a�eld for another group to join.

Our perceptual model assumes more complete and
accurate information than that produced by sensors
on physical robots. We experimented with other per-
ceptual models by adding occlusion and reducing the
visibility of creatures behind as opposed to in front
of the individual in question. When the list of visible
creatures changes because of the addition of a previ-
ously occluded individual, the desired position and ve-
locity may change signi�cantly causing a ripple e�ect
throughout the group, thus increasing the probability
that an individual will lose its balance in the robot
and bicycle simulations.

Although the robots and the bicyclists are dynamic
simulations, many factors are missing in the simula-
tion that would be present in a physical system. The
simulated motors do not have a maximum torque or
limited bandwidth, the joint and perceptual sensors do
not have noise or delay, and the environment used for

6



testing the algorithms for group behaviors does not
contain uneven or slippery terrain. The parameters
for the one-legged robot are similar to those of robots
that have been built[9], but the parameters for the bi-
cyclist match those for a human and are superior to
the materials available for robot construction.

We have not explored the question of how the
algorithms will perform on a heterogeneous popula-
tion. Currently all the robots and all the bicyclists
have identical mass and inertia properties and iden-
tical control systems. We plan, however, to vary the
parameters of the system and to introduce noise to
study how the performance of the algorithms is af-
fected. Heterogeneous groups that mix the types of
simulated creatures could be studied by experiment-
ing with low-speed, legged robots and higher-speed
bicyclists on the same terrain. When tests such as
obstacle avoidance and the turning are performed on
homogeneous groups, the reaction of each individual
is matched by those of other members of the group
because each individual has the same limitations in
low-level control. For example, one-legged robots can-
not react while they are in the ight and must predict
their motion and the motion of other creatures. Un-
like the robots, the bicyclists are able to make small
changes in direction at any time, but there is a delay
while they adjust their lean and the angle of the front
wheel to achieve large changes in direction. To work
well, a group involving both these creatures must dis-
tribute this low-level knowledge to properly anticipate
and react to the dynamic situations depending on the
individuals involved.
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