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SUMMARY 

 
 
 
Combined atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) 

is a powerful emerging technology capable of providing simultaneous topographical and 

electrochemical imaging at the sample surface. Specifically, AFM-SECM based on tip-

integrated electrodes that are recessed from the apex of the AFM tip provides 

miniaturized electrodes that can be positioned at a constant distance to the sample 

surface. Surface modification of the tip-integrated electrode area (e.g., with biosensors) 

further enhances the versatility of such bifunctional probes. The integration of 

amperometric biosensors into AFM-SECM probes facilitates obtaining enhanced 

information during measurements of relevant molecular processes at live biological 

specimen. Of particular interest to this work was the detection of adenosine triphosphate 

(ATP) at a cellular level, as ATP is involved in many biologically relevant processes. 

However, there are several challenges concerning the integration of biosensors into 

bifunctional AFM-SECM probes. This thesis focuses on addressing and advancing 

several of these limitations. 

The first part of the thesis describes novel thin film insulation materials for combined 

AFM-SECM probes. Insulation materials for microelectrochemical experiments are of 

crucial importance, since they need to be temporally stable, pinhole free, and sufficiently 

thin. The latter aspect is of particular importance for AFM-SECM based applications to 

decrease possible interactions of the probes during scanning of sample surfaces with the 

sample topology along with improved SECM performance. Plasma-polymerization is 

introduced as an attractive alternative to current state-of-the-art insulation techniques. 
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Insulation layers with a thickness of < 300 nm were found to exhibit excellent insulating 

properties and satisfying temporal stability for successful application in AFM-SECM 

approach/imaging experiments.  

The second focus of this work was the implementation of novel approaches for increasing 

the AFM tip-integrated electrode area. Particularly in conjunction with biosensing 

experiments, the electrode areas in conventionally focused ion beam (FIB) fabricated 

AFM-SECM probes are too small for generating a detectable current response during 

scanning experiments. However, while increasing the tip-integrated electrode area, 

sufficient electrochemical resolution during the SECM experiment should be maintained. 

Ion beam induced deposition (IBID) was used to generate platinum carbon (PtC) 

composite materials at AFM-SECM probes, thereby successfully increasing the tip-

integrated electrode area, as determined by cyclic voltammetry. Moreover, PtC materials 

fabricated via IBID were thoroughly characterized in terms of their physical and 

electrochemical properties. Studies at PtC-based ultramicroelectrodes (UMEs) revealed 

that the carbon fraction in the composite was inhibiting the charge transfer kinetics at the 

electrode surface for certain analytes. Therefore, several pre-treatment strategies were 

investigated including annealing, UV/ozone treatment, and post-deposition FIB milling. 

It was found that annealing lead to the desired electrode properties, as obtained from PtC 

UMEs, however, was of limited applicability to AFM cantilevers. FIB milling proved to 

be the most promising alternative treatment procedure improving charge transfer 

properties at the electrode along with fabrication compatibility at AFM-SECM probes. 

The third part of this thesis aimed at providing fundamental studies on AFM-SECM 

application at live epithelial cell monolayers. Due to the soft and dynamic nature of the 
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samples along with the variability of the cell surface, thorough characterization of the cell 

surface was mandatory prior to AFM-SECM experiments. Therefore, AFM was used in 

different imaging modes to characterize the surface structures of epithelial cells. It was 

found that epithelial cell monolayers are amenable to extended AFM imaging; however, 

the force applied to the sample surfaces has to be carefully optimized, which was 

accentuated by results obtained during AFM-SECM based feedback mode experiments. 

Prior to the incorporation of ATP biosensors into batch-fabricated AFM-SECM probes, 

SECM-based experiments were performed, and have confirmed the presence of ATP at 

the surface of live epithelial cell monolayers. Moreover, imaging experiments conducted 

by AFM-SECM have enabled laterally resolved detection of ATP at live epithelial cell 

monolayers for the first time. Additionally, PtC composite materials introduced in the 

second part of this thesis were evaluated for applicability as transducer platforms for 

enzymatic biosensors. It was shown that pristine PtC did not exhibit adequate charge 

transfer characteristics for the electrooxidation of H2O2, whereas post-treated composites 

revealed strongly increased oxidation currents approaching the behavior of pure platinum 

electrodes. Glucose biosensors were deposited at PtC-based UMEs, and satisfying 

sensitivities and saturation currents were observed. The response time at this point was 

insufficient for imaging applications consequently further improvement of the biosensor 

immobilization procedure at PtC materials is required. It is anticipated that combination 

of all advancements obtained throughout this thesis along with an enhanced 

immobilization procedure will lead to optimized and miniaturized tip-integrated ATP 

biosensors for the localized detection of ATP at the surface of live epithelial cell 

monolayers.  
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1 INTRODUCTION 

 
 
 
1.1 Thesis objective 

The aim of this thesis was the advancement of combined atomic force microscopy-

scanning electrochemical microscopy (AFM-SECM) probes toward biosensing platforms 

for life science applications. Besides improvement of current fabrication procedures, a 

novel insulation material for tip-integrated electrodes was implemented. Based on the 

requirements of the targeted application, a novel electrode material was integrated into 

AFM-SECM probes next to a thorough physical and electrochemical characterization. 

Finally, characterization of live epithelial cell monolayers with atomic force microscopy 

and application of miniaturized adenosine triphosphate (ATP) biosensors was performed. 

1.2 Original contributions of this thesis 

• Application of plasma-polymerized membranes as insulation layers for AFM-SECM 

probes and ultramicroelectrodes (UMEs), and their characterization (Chapter 3). 

 

• Characterization of ion beam induced deposition (IBID) of platinum carbon (PtC) 

composites as electrode materials, and evaluation of strategies to improve electron 

transfer characteristics (Chapter 4). 

 

• AFM investigations of live epithelial cell monolayers and detection of ATP release by 

SECM and AFM-SECM based ATP biosensors (Chapter 5).  
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1.3 Motivation 

Cellular systems are highly complex biological entities consisting of well known 

individual components. Biological processes require interaction of these components 

within single cells, and cell communication with the extracellular environment. 

Intercellular communication mostly leads to the secretion of chemical agents into the 

extracellular environment that can influence both secreting and surrounding cells (Figure 

1.1). Diseases often alter these chemical communication events, and consequently induce 

changes of cell signaling pathways. Distinguishing diseased from healthy conditions 

requires a thorough understanding of these processes. 

 
 
 

 

Figure 1.1. Schematic of cellular communication pathways.  
 
 
 
Molecular processes at the cellular level are frequently investigated by analytical 

techniques providing bulk information during sequential data acquisition. Current state-

of-the-art techniques for analyzing biological systems include invasive methods such as 

liquid chromatography, gel electrophoresis, X-ray crystallography, mass spectrometry or 

spectrophotometry, and non/semi-invasive methods such as different types of microscopy 

(optical, fluorescence, confocal or scanning probe microscopy) or patch clamp 

recordings1. Miniaturized sensors were identified as promising devices for real-time 
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monitoring of biological signals related to therapy of cardiovascular, pulmonary and 

hematologic diseases2, along with direct measurements of neurotransmitter release3. 

Thus, a general goal in bioanalytics is to establish techniques for monitoring 

(investigating) biological systems at the cellular level that may provide localized real 

time sensing of analytes at the surface of live biological specimen, while simultaneously 

imaging the sample to correlate signaling events with e.g., topographical 

features/changes. There are several challenges involved with this approach. Miniaturized 

sensors have to be positioned accurately at the surface of the specimen. Usually, secreted 

chemicals are present at low concentrations in complex and frequently changing matrices 

implying that high selectivity and sensitivity of the analytical method is mandatory. 

Ideally, the dynamics of complex biological entities should be accounted for by temporal 

and spatial correlation of multiple parameters. 

The presented contribution to this challenging field is based on the combination of AFM-

SECM technology with integrated amperometric biosensors. Combining atomic force 

microscopy (AFM) and scanning electrochemical microscopy (SECM) is facilitated by 

integration of electrodes into AFM probes, and has been an emerging field for almost a 

decade4, 5. Specifically, AFM-SECM probe designs that enable modification of the 

electrode surface comprise electrodes recessed from the apex of the AFM tip5. Using the 

AFM tip as a spacer for the recessed electrode, they can be positioned at a constant 

distance from the sample surface; due to the close distance and given their geometric 

dimensions, improved resolution of the electrochemical measurement can be achieved. 

Furthermore, complementary topographical and electrochemical information is obtained 

enabling localization of analytes. Many biological relevant analytes such as cholesterol, 
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glutamate, ATP, glucose etc., cannot be directly detected as electrochemical products 

might foul the electrode or their oxidation potentials are unfavorably high. However, 

electrochemical biosensors enable specific detection of an analyte using a biological 

recognition element in combination with an electrochemical transducer6. Miniaturized 

biosensors have attracted considerable attention within recent years and immobilization 

schemes for miniaturized sensors can be adapted to be integrated in AFM-SECM probes. 

Among biological relevant analytes, ATP (Figure 1.2) plays a fundamental role. 

 
 
 

 

Figure 1.2. Structure of adenosine triphosphate.  
 
 
 
Localized determination of ATP at a cellular level is of significant importance: ATP is an 

energy source for countless metabolic and enzymatic reactions within biological systems. 

Besides acting as the main intracellular energy source, ATP can be released from cells in 

response to specific stimuli, after which ATP acts as a transmitter or messenger molecule. 

Extracellular ATP alters cellular activity by interacting with ATP receptor molecules in 

the surface membrane of target cells. The receptors for ATP (a purine derivative) are 

called type 2 purinergic or P2 receptors to distinguish them from the type 1 receptors that 

recognize adenosine. P2 receptors fall into two major categories: P2X and P2Y 

receptors7. The 7 members of the P2X receptor family are ATP-gated ion channels, 
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signaling by changing the membrane potential of cells8. The 14 members of the P2Y 

receptor family are metabotropic receptors that signal by altering enzymatic activity 

within cells, usually by changing intracellular concentrations of cyclic adenosine 

monophosphate (cAMP) or inositol phospholipids9. P2 receptors are found ubiquitously 

in tissues, and the role of ATP as a signaling molecule is well characterized in sensory 

transduction in the nervous system10-12, as a mediator in the immune system13, and in 

regulating contractility in the gut14. ATP has also been suggested as a regulator of 

excitatory responses from the carotid body15, 16 and as a regulator of lung fluid balance17.  

ATP is synthesized inside of cells mainly as the end product of the Krebs cycle in 

mitochondria. Steady-state cytosolic ATP concentrations are typically in the range of 3 -

 10 mM, whereas steady-state concentrations in the extracellular environment are approx. 

10 nM under basal conditions18. Thus there is a considerable concentration gradient for 

ATP secretion enabling diffusion into the extracellular environment through activated 

cellular release pathways.  

ATP acts as a signaling molecule upon secretion into the extracellular environment by 

interaction with P2 receptors on cells adjacent to the site of release. Since the 

concentration of ATP necessary to activate P2 receptors is typically 1 to 10 µM, very 

little ATP needs to be released from cells to activate the receptors; thus ATP-based 

signaling does not interfere with intracellular metabolic/enzymatic reactions18. 

Extracellular ATP is rapidly degraded by ecto-enzymes, which may be secreted from 

cells or bound to cellular membranes, such as ecto-apyrases or ecto-ATPases18. Thus, 

similar to other transmitter substances, a steady-state balance between the rate of ATP 

release/receptor binding and the rate of ATP degradation is maintained. ATP is generally 



6 

classified as a local mediator. If ATP release slows, extracellular ATP can be rapidly 

degraded thus returning the cell to quiescent, unstimulated state. 

ATP has been implicated in the molecular mechanisms of cystic fibrosis (CF). CF is one 

of the most common genetic diseases in the Caucasian population affecting 

approximately 1 in 3300 births19. CF results in an altered Cl- transport through cellular 

membranes of epithelial cells lining secretory epithelia including the interior surface of 

the lungs. CF is caused by mutation of a gene, which encodes a membrane protein, the 

cystic fibrosis transmembrane regulator (CFTR)20. Lung epithelia are covered with a thin 

layer of liquid at a thickness of 7 µm, which is the approximate length of respiratory 

cilia21. Among other species such as Na+, Cl- and water, ATP is present in this liquid 

layer, due to a constant ATP release from the epithelium resulting from breathing-

induced physical forces such as mechanical deformation or liquid shear stress22-25. Under 

steady breathing the amount of released ATP is constant, thus ATP concentration 

depends on the volume of the adjacent liquid layer. A specific ATP receptor subtype, the 

P2Y2 receptor, has been identified as a crucial receptor in respiratory epithelium26. ATP 

binding to the P2Y2 receptor inhibits Na+ transporting channels. Since Na+ transport is 

coupled to CFTR-mediated Cl- transport and salt transport determines water transport, 

ATP-mediated inhibition is a mechanism to regulate the liquid level on the surface of the 

lung27. When CFTR activity is eliminated in CF, ATP release is reduced allowing Na+ 

activity to increase. Hyperabsorption of Na+ decreases the surface liquid volume, which 

interferes with ciliary movement and mucus removal28. So far the connection between 

altered Cl- transport induced through the genetic defect and reduced ATP levels is not 

well understood. Dynamic studies providing localization and time-dependent 
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determination of ATP concentration changes could provide insight into the molecular 

processes of CF and represent the main motivation for the studies within this thesis.  

Due to this physiological relevance, detection and quantification of ATP has been a field 

of significant biomedical research. Several analytical approaches have been reported for 

the measurement of ATP achieving quantification of physiologically relevant ATP 

concentrations, including bioluminescence29, 30, chemiluminescence31, 32, fluorescence33, 

34, or liquid chromatography35, 36. However, in many cases these techniques are either 

invasive or destructive and are often bulk measurement techniques.  

Amperometric ATP biosensors are an interesting alternative to these concepts. Our 

research group has previously demonstrated ATP biosensors based on the immobilization 

of a competitive dual enzyme assay in electrodeposition paint (EDP) matrices37; these 

sensors have been applied for imaging ATP transport through artificial membranes, and 

stimulated extracellular ATP release from rat carotid bodies38, 39. Based on this concept, 

further miniaturization and incorporation of such ATP biosensors into combined AFM-

SECM probes is anticipated. 

However, further miniaturization of amperometric ATP biosensors is challenging, since 

current levels recorded are in the low pA range already for UMEs with a diameter of 

25 µm39. Hence implementing the ATP sensing scheme at AFM tip-integrated electrodes, 

and measurements at live biological systems are challenging. New strategies have to be 

pursued to ensure reliable routine ATP measurements at live cell samples. 

The present thesis focuses on addressing fundamental changes of AFM-SECM probes as 

transducers for imaging biosensor platforms, and other key considerations required for 

improved AFM-SECM performance. One important aspect is the insulation layer of the 
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AFM-SECM probe; besides being uniform, pinhole-free, and long-term stable, a reduced 

thickness of the insulation layer plays an important role for example to avoid interaction 

with the sample surface during AFM imaging. Hence, an important aim of this work was 

the development and evaluation of alternative insulation strategies for combined AFM-

SECM probes. A second crucial parameter is the dimension of the electroactive area. 

Although small electrode dimensions are generally desired for high electrochemical 

resolution, in the context of tip-integrated amperometric biosensors increased electrode 

areas are required, since more enzymes can be immobilized. Ideally, an increase in 

electroactive area should be obtained, while maximizing the electrochemical resolution 

during imaging. Hence, the second aim of this work revolved around increasing the tip-

integrated electrode area. Finally, with the overall goal of measuring localized ATP levels 

in an imaging mode at live epithelial cell samples, AFM imaging for biostructural 

analysis has to be optimized.  

1.4 Structure of this thesis 

Based on the requirements for improved AFM-SECM performance at biological systems, 

the present thesis is structured as follows: 

 

Chapter 2 describes the background of the electrochemical concepts relevant to this 

work. Additionally, it introduces scanning probe microcopy, and - more specifically - 

atomic force microscopy and scanning electrochemical microscopy along with the 

combination of these techniques. 
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Chapter 3 discusses plasma-polymerized membranes as novel insulation layers for 

combined AFM-SECM probes and UMEs. 

 

Chapter 4 introduces ion beam induced deposition of PtC composite materials, and their 

characterization with respect to their physical and electrochemical properties. 

Furthermore, electron transfer rates are determined, and concepts are discussed that 

improve the charge transfer at these novel electrode materials. 

 

Chapter 5 describes topographical AFM studies at live epithelial cell monolayers. 

Furthermore, ATP biosensing at live epithelial cells is demonstrated for the first time 

based on non-invasive SECM experiments, and combined AFM-SECM experiments 

providing localization of ATP at the cell surface. Finally, the applicability of PtC 

composites (Chapter 4) as transducer for enzymatic biosensors is evaluated. 

 

Chapter 6 provides concluding remarks, and an outlook for future work. 
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2 BACKGROUND 

 
 
 
This chapter introduces the electrochemical concepts relevant to this work including 

cyclic voltammetry, ultramicroelectrodes, and amperometric biosensors. Atomic force 

microscopy, scanning electrochemical microscopy, and combined atomic force 

microscopy-scanning electrochemical microscopy are also discussed.  

 

2.1 Electrochemical concepts 

2.1.1 Cyclic voltammetry (CV) 

Cyclic voltammetry is a very versatile electroanalytical technique that has been applied to 

a variety of investigations including evaluation of electron transfer kinetics and 

elucidation of transfer mechanisms1, characterization of materials (e.g. catalyst surfaces2, 

conducting polymers3), and biomedical research (in-vivo monitoring of dopamine release 

in the brain4). During a CV experiment, the potential applied to the working electrode is 

varied with a linear potential sweep starting from an initial potential value (Ei) to a 

switching potential (Eλ), where the sweep direction is reversed and returned to the initial 

value (Figure 2.1A). The scan rate v of the potential sweep is an important parameter, 

since it determines the time scale of the experiment1. The resulting current is plotted 

against the applied potential. Figure 2.1B shows a CV for a one-electron transfer reaction 

defined by the following reaction 
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        kf 
 O + e-  R, (2.1) 
        kb 

 

where O is the oxidized form of the involved redox species, R is the reduced form, and kf 

and kb are the forward and the backward rate constants, respectively. 

 
 
 

 

Figure 2.1. (A) Shape of the potential waveform applied during a CV scan. (B) Simulated CV for a 
reversible reaction at a macroscopic electrode. DigiElch simulation software was used5.  
 
 
 
The shape of the CV is determined by two processes, heterogeneous charge transfer at the 

interface, and diffusional mass transport. The heterogeneous charge transfer at the 

interface is described by Equation (2.2)1 
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where n is the number of electrons transferred in the electrode reaction, F is the Faraday 

constant, A is the electrode area, CO/R(0,t) are the surface concentrations of O or R at time 
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t, k0 is the standard heterogeneous rate constant, α is the transfer coefficient, E is the 

applied potential, E0 is the standard potential, R is the gas constant, and T is the absolute 

temperature. 

Generally, mass transport may proceed as a result of three effects: convection, migration, 

and diffusion. However, only diffusional mass transport effects are considered in typical 

CV theory, since convection may be avoided in unstirred solutions, and migration may be 

suppressed by addition of an excess of supporting electrolyte. Electrode surface 

concentrations of the reactive species are dependent upon the applied potential and differ 

from the bulk concentrations during the electrochemical experiment. Diffusion controlled 

mass transport occurs via the concentration gradient. Fick’s second law of diffusion 

describes the time-dependent change of the diffusion field, and as a result, the time-

dependent current observed at the electrode can be derived as follows6 
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where DO is the diffusion coefficient of O, 
( )
x
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∂
∂ ,

 is the concentration gradient in 

distance x at time t, and other parameters are as defined previously. Note that this 

relationship is only defined for planar diffusion. Solving Equation (2.3) leads to the 

Cottrell equation7 
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where CO
* is the bulk concentration of O, while other parameters are defined as before. 

From Equations (2.2) and (2.3) it is evident that there are two components contributing to 

the current measured at the electrode, the heterogeneous charge transfer at the interface, 

and diffusion. However, depending on the rate of the heterogeneous charge transfer one 

of the two components can prevail. In case the charge transfer proceeds fast (k0 > 10-

1 cm s-1, reversible case), the current measured is limited by mass transport (diffusion 

controlled process). For this case Equation (2.2) reduces to the Nernst equation, and the 

surface concentrations are dependent on the applied potential. The other boundary is 

represented by the irreversible case (k0 < 10-5 cm s-1), where the heterogeneous charge 

transfer is the rate limiting step determining the measured current. Quasi-reversible 

reactions are in between these two cases (approx. 10-1 cm s-1> k0 > 10-5 cm s-1), and are 

consequently controlled by both the mass transport and the heterogeneous charge 

transfer1. 

It should also be mentioned that the total current observed in the CV is a sum of the 

faradaic current resulting from the charge transfer at the interface, and the charging 

current resulting from the charging of the electrochemical double layer. The charging 

current will be described in more detail in the next section. 

2.1.2 Ultramicroelectrodes  

Ultramicroelectrodes are defined as electrodes that have at least one dimension smaller 

than 25 µm, also called the critical dimension6. The small dimensions of UMEs strongly 



18 

influence the mass transport characteristics resulting in a series of advantageous 

properties. 

As already indicated earlier, the Cottrell equation is only defined for planar diffusion 

observed at macroscopic electrodes. During planar diffusion, mass transport occurs 

perpendicularly to the electrode surface, and may be mathematically described as one-

dimensional diffusion (Figure 2.2A). Despite diffusion at electrode edges deviating from 

planarity, edge effects are negligible at large electrode surfaces. At small electrode 

surfaces (i.e. UMEs), contributions from mass transport parallel to the electrode surface 

(i.e. electrode edges) are not negligible anymore, and have to be considered.  

 
 
 

 

Figure 2.2. Schematic representation of planar (A) and hemispherical (B) diffusion.  
 
 
 
In this case, diffusion is referred to as hemispherical diffusion (for a disk electrode), and 

is mathematically described by two-dimensional diffusion processes (Figure 2.2B). 

Solving the diffusion equation leads to a modified Cottrell equation with a second term as 

follows8 
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where b is a prefactor that is influenced by the transition from the planar to the 

hemispherical diffusion field, and r is the radius of the electrode. Depending on the time 

scale of the experiment, either the first or the second term of the equation dominates. The 

first term is equivalent to the unmodified Cottrell equation dominating at short time 

scales. At longer time scales, the second term dominates and a steady-state current may 

be observed. Due to hemispherical diffusion towards the electrode surface, smaller 

electrodes need a shorter time to reach the steady-state. Zoski et al. calculated the time 

required to reach steady-state currents at disk electrodes with different electrode radii9. 

The authors concluded that at the assumed diffusion coefficient (10-9 m2 s-1) disks with 

radii of 5 µm and 0.5 µm required 1.3 s and 0.01 s, respectively, to reach steady-state. At 

macroelectrodes, this time is in the range of hours8. Given the small surface area, high 

current densities are observed during hemispherical diffusion.  

As indicated earlier, the shape of a CV depends on the diffusional mass transport. 

Hemispherical diffusion leads to a sigmoidal shape of the CV. The time scale of the 

experiment can be directly influenced by the scan rate. Hence, at fast scan rates planar 

diffusion is observed, whereas at slow scan rates hemispherical diffusion dominates. This 

effect is visualized in Figure 2.3A. Similarly, decreasing the electrode radius at a constant 

scan rate increases the contribution of hemispherical diffusion (Figure 2.3B). 
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Figure 2.3. Simulated CVs demonstrating the influence of scan rate (A) and electrode radius (B) on the 
obtained CV. DigiElch simulation software was used5. For CVs shown in (A) the electrode radius was 
kept constant at 5 µm, and in (B) the scan rate was maintained at 0.1 V s-1. 
 
 
 
Steady-state currents can be calculated for different UME shapes8, and may be applied to 

determine electrode radii, analyte concentrations or diffusion coefficients. The steady-

state currents for the two shapes relevant to this work, the disk UME (Equation (2.6))10 

and the ring UME (Equation (2.7))11, 12, are  
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where a is the inner ring radius, and b is the outer ring radius. Other parameters were 

defined earlier. 

Besides the fast onset of steady-state currents, another advantageous property of UMEs is 

the reduced charging current resulting from the charging of the electrical double layer. It 

is generally desired to minimize charging contributions, since they convolute with the 

faradaic current and may even mask faradaic currents. For a potential step experiment, 

the charging current exponentially decays with a time scale that depends on the size of 

the electrode. During CV, the constantly changing potential leads to two contributions for 

the charging current ic
8  
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where Ru is the uncompensated solution resistance, and Cd is the double layer 

capacitance. The second (steady-state) term dominates at small radii over the first 

(transient) term simplifying the equation to  

 

 dc vCi = . (2.11) 

 

Thus, the charging current is directly proportional to Cd, which in turn is proportional to 

the surface area. However, since the faradaic current under steady-state conditions is 

proportional to the radius, a decreasing electrode radius improves the ratio of faradaic 
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current to charging current accordingly13. This implies that low analyte concentrations 

may be used and detected with reduced masking effects. 

Also the ohmic drop in solution is reduced while using UMEs. Since the solution in an 

electrochemical experiment displays a finite resistance, current flow through the solution 

leads to a potential drop according to Ohm’s law. As a result, the effective potential (Eeff) 

at the electrode is reduced by iRu (ohmic drop) with respect to the applied potential (E) 

 

 ueff iREE −= . (2.12) 

 

The uncompensated solution resistance Ru depends on several factors including the 

electrode radius r and the specific resistivity ρ of the solution for a disk microelectrode13 
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Since charging currents are proportional to the electrode area, the induced ohmic drop 

decreases with decreasing electrode radius, which also holds for faradaic currents under 

planar diffusion. In the case of hemispherical diffusion, ohmic drop resulting from the 

faradaic current contribution becomes independent of the electrode radius. These small 

ohmic drops observed at UMEs enable measurements in highly resistive media13.  

The product of uncompensated solution resistance and double layer capacitance, RuCd, is 

defined as the cell time constant6. For disk-shaped UMEs, the cell time constant is 

directly proportional to the UME radius. Small cell time constants at UMEs were first 
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demonstrated by McCreery and co-workers14, and allow applied potential to be adjusted 

at a very short time scale enabling fast scan CV, and thus, observations of labile species.  

2.1.3 Amperometric biosensors 

Since Clark and Lyons proposed the first biosensor in 1962 based on a thin layer of 

glucose oxidase (GOx) entrapped at an oxygen electrode via a semipermeable 

membrane15, the biosensing field has significantly grown in both scientific and 

commercial interest16, 17. Although several types of biosensors have been 

commercialized17, glucose detection accounts for the majority of the biosensing market16, 

18. Biosensors are commonly referred to as a specialized subgroup of chemical sensors19, 

which are defined as devices that convert chemical information, e.g. the concentration of 

a specific analyte, into an analytically useful signal20. Chemical sensors consist of at least 

two functional subunits, a recognition element and a transducer. If the recognition 

element utilizes a biological specimen (such as an enzyme), the device is termed a 

biosensor19. An advantage of biological recognition elements lies in their high molecular 

selectivity. Different types of transduction principles have been used in conjunction with 

biosensors including optical, thermal, piezoelectric, and electrochemical transduction17; 

however, due to the focus of this work this section will only cover amperometric 

biosensors and selected applications thereof. 

As already indicated, glucose biosensors are a major field of interest. The main drive for 

these investigations is the need for diagnosis of blood glucose levels in the context of 

diabetes mellitus18. Amperometric glucose biosensors are mainly based on glucose 

oxidase, an enzyme which catalyzes the oxidation of glucose to gluconolactone. Glucose 

dehydrogenase (GDH) is also capable of oxidizing glucose, and has been proposed as an 



24 

alternative to GOx, but has found limited application in biosensors due to a limited 

stability18. Glucose biosensing has been of interest to the scientific community for several 

decades18, 21, 22. Hence, particularly GOx is a well characterized and useful model system, 

which may be applied to complex biosensing schemes involving multi-enzyme systems.  

On the cellular level, ATP is an extremely important signaling molecule, as already 

discussed in Chapter 1. Direct electrochemical oxidation of adenosine is feasible at high 

positive potentials (1.3 V)23, however it has been shown that oxidation products foul the 

electrode surface of most common electrode materials24. ATP biosensors have been 

previously applied to measure the release of ATP from spinal cord, brainstem, pigment 

epithelium, and carotid body preparations25-29. Amperometric detection of ATP cannot be 

achieved with a single enzyme, therefore ATP biosensing is commonly based on the 

immobilization of multiple enzymes25, 30-36. ATP biosensors based on triple enzyme 

systems, such as glucose-6-phosphate dehydrogenase, pyruvate kinase and hexokinase30, 

or glucose-6-phosphate dehydrogenase, hexokinase and salicylate hydroxylase31 have 

been reported. Alternatively, dual-enzyme systems have been implemented e.g. based on 

immobilization of glycerol kinase and glycerol-3-phosphate oxidase in a sol gel matrix25, 

32.  

The biosensor used in this thesis is also based on a dual enzyme system, glucose oxidase 

and hexokinase (HEX)33-36. In this approach, GOx and HEX compete for the substrate 

glucose. During the competitive reaction H2O2 is formed as an enzymatic by-product and 

oxidized at the electrode. Reactions included in this detection scheme are the following 
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 GOx: glucose + O2  gluconolactone + H2O2 (2.14) 

 HEX: glucose + ATP  glucose-6-phosphate + ADP (2.15) 

 UME: H2O2  2H+ + 2e- + O2 (2.16) 

 

2.2 Scanning probe microscopy (SPM) 

With the invention of the scanning tunneling microscope (STM) in 1982, a new era 

started in the field of surface analytical techniques37, 38. Through this discovery, Binnig 

and Rohrer not only received the Nobel Prize in physics in 1986, but they also laid out 

the fundamentals for a family of techniques now grouped as scanning probe 

microscopies. All SPM techniques have in common that a probe is scanned in close 

proximity to a sample surface and a specific probe-sample interaction is monitored, 

which originates from physical/chemical interaction between probe and sample surface. 

Depending on the exact physical interaction monitored, SPM techniques may be 

categorized in different sub-groups. The two techniques applied in this work, and 

combinations thereof, will be described in the following sections. 

2.2.1 Atomic force microscopy  

Binnig also contributed to the invention of atomic force microscopy in 1986 shortly after 

the STM was introduced39. In atomic force microscopy, a sharp tip located on a soft 

cantilever arm is scanned across a sample surface in nm-sized increments utilizing 

piezoelectric positioning elements. Due to force interactions with the sample, the 

cantilever arm is deflected. If the cantilever deflection is kept at a constant value 

(constant force mode), information about the topography may be obtained. Different 
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attractive and repulsive forces contribute to the deflection of the cantilever (e.g. van der 

Waals forces, electrostatic forces, capillary forces, magnetic forces and interatomic 

forces), and - depending on the exact measuring conditions - certain forces dominate. The 

cantilever deflection is mainly monitored with an optical readout system40. A laser beam 

is reflected from the backside of the cantilever arm onto a photodiode, which is usually 

split into four segments. Consequently, cantilever deflection results in a corresponding 

movement of the laser spot on the split photodiode. A feedback mechanism then actuates 

the piezoelectric positioning elements to maintain the cantilever at a constant 

deflection/force. 

There are a variety of different measuring modes in AFM including contact mode, non-

contact mode, dynamic mode (frequency/amplitude-modulation), lateral force mode or 

magnetic force mode; only the modes relevant to this thesis will be introduced. During 

contact mode (CM) AFM, the tip is scanned while being in continuous contact with the 

sample surface39, 41 (Figure 2.4A). In this mode, the main source of cantilever deflection 

arises from short-range repulsion forces resulting from overlapping orbitals of tip and 

sample atoms. In addition, other forces contribute to the cantilever deflection increasing 

the force in the contact area. Contact mode is often considered less suitable for 

investigating soft samples that may be damaged by continuous contact with the tip. 

Dynamic mode AFM techniques such as amplitude modulation (AM) AFM42 reduce 

frictional forces at the sample surface due to the intermittent contact of the tip43, 44. 

Essentially, the cantilever is oscillated at a certain resonant frequency and amplitude 

damping as a result of repulsive tip-sample interaction is monitored (Figure 2.4B). 
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Figure 2.4. Schematic illustration of contact mode AFM (A) and dynamic mode AFM (B). Schematic of 
an idealized deflection-distance curve (C). 
 
 
 
Force interactions between the tip and the sample, and other sample properties such as 

sample elasticity, may be monitored by recording deflection-distance curves. In this case, 

the deflection of the cantilever is monitored while the AFM probe is approached and 

retracted from the sample surface. Figure 2.4C shows a scheme of an idealized 

deflection-distance curve. No deflection is observed if the cantilever is far away from the 

surface (non-contact region), and correspondingly the cantilever deflects in the contact 

region. The slope of the curve in the contact region may provide valuable information 

about elastic properties of the sample. Besides, the area at the contact point between tip 

and sample (marked with red circle in Figure 2.4C) reveals important information about 

tip-sample forces while approaching and retracting the cantilever. In case AFM tips are 

chemically modified, specific molecular interaction forces may be monitored by force 

spectroscopy. Gaub and co-workers45, as well as Colton and co-workers46 pioneered this 

area by reporting single bond rupture events and deriving unbinding forces. Particularly 

from a bioscientific perspective, single molecule force spectroscopy has been extensively 
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applied47-50. Imaging with modified AFM probes enabling simultaneous detection of 

topography and biologically relevant rupture events was first accomplished by 

Hinterdorfer and co-workers51, 52. 

AFM imaging with unmodified probes has also been applied to study biological systems, 

since AFM displays the capability of imaging surface topography in physiological 

solutions. Researchers have extensively explored imaging capabilities of AFM in life 

sciences. For example, single proteins have been imaged and resolved with exceptional 

resolution revealing structures in the sub-nm range53, in addition to investigations 

revolving around DNA condensation and DNA mapping54-56. High-speed AFM is an 

exciting technique used to visualize dynamic biomolecular processes57. Additionally, 

topography or topographical changes of fixed/life cells, viruses and microbes have been 

investigated by AFM58-62.  

2.2.2 Scanning electrochemical microscopy  

The groups of Engstrom and Bard independently reported SECM for the first time in the 

late 1980’s63-65. SECM takes advantage of several unique characteristics that are observed 

at UMEs such as reduced double-layer charging effects, reduced ohmic drop, and well-

defined steady-state currents enabling the use of UMEs as scanning probes. In SECM, a 

biased UME is scanned in close proximity to a sample surface yielding information about 

electroactive processes and features of species/sample. The faradaic current measured at 

the UME is dependant on several factors including properties of the sample surface, 

UME-to-sample distance, and the critical dimension of the UME. Thus, signal generation 

in SECM is based on surface-induced changes of the faradaic current measured at the 

UME resulting from the diffusion of the electroactive species to the electrode surface 
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during scanning66. This enables in-situ investigations of (electro)chemical surface and 

interface properties. Different geometries such as disk, conical or ring-shaped UMEs67-72 

may be used in SECM experiments, however, typically disk-shaped geometries are 

preferred due to their well-defined electrochemical properties and quantitative 

mathematical description of the involved diffusion processes. Oftentimes UMEs used as 

scanning probes in SECM are called “tips” independent of the specific UME shape. 

The two most important modes for SECM based imaging are the feedback mode73, and 

the generation-collection (GC) mode74. During feedback mode SECM, one redox form of 

a quasi-reversible redox couple (R in Figure 2.5) is added to the solution and 

subsequently electrochemically converted at the biased electrode resulting in a faradaic 

current. The steady-state current, ∞Ti , recorded at a disk shaped UME in bulk solution is 

equal to the current obtained from Equation (2.6). 

If the UME is approached to the sample surface, the steady-state current changes in close 

proximity of the surface (within a few UME radii) depending on the surface properties. 

For conducting surfaces, an increase in current response is observed due to a recycling of 

the redox mediator at the sample surface leading to locally increased redox mediator 

concentrations within the UME-sample gap (positive feedback). A decrease in current 

(negative feedback) is obtained if the UME approaches an insulating surface due to 

localized depletion of redox mediator as diffusion from the solution bulk is partially 

blocked. Figure 2.5 shows representative current-distance relationships (approach 

curves). These approach curves are typically used to position amperometric UMEs at a 

close distance to the sample surface based on comparison of experimentally obtained 

approach curves with theoretically derived curves75. Besides surface properties and 
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electrode dimensions, the RG value defined by Equation (2.17) is crucial to the faradaic 

current measured at close distance to the sample surface and SECM performance 

 

 
r
r

RG g= , (2.17) 

 

where rg is the radius of the insulating sheath, and r the radius of the active electrode 

surface. RG values in a range of 5 - 20 are mostly regarded as suitable76, however, it has 

also been demonstrated that for RG values approaching unity steady-state currents 

observed at the UME are enhanced via diffusion of redox mediator from behind the 

plane72. 

 
 
 

 

Figure 2.5. SECM approach curves for positive and negative feedback. The distance is normalized to the 
electrode radius and the steady-state current to the current recorded in bulk. 
 
 
 
There are two basic possibilities for the GC mode: sample generation/tip collection 

(SG/TC) and tip generation/sample collection (TG/SC). Either the sample (SG/TC) or the 
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tip (TG/SC) is used to generate an electroactive species, which is subsequently collected 

(detected) at the tip (SG/TC) or the sample (TG/SC), respectively (Figure 2.6). An 

excellent example for the SG/TC mode was reported by Engstrom et al.63. The authors 

used a UME to detect concentration profiles induced by a macroscopic substrate 

electrode. The TG/SC mode was also demonstrated soon after the introduction of 

SECM74 showing images of substrate electrodes acquired via both the tip current and the 

substrate current. 

 
 
 

 

Figure 2.6. Schematic of SG/TC (A) and TG/SC (B) mode. 
 
 
 
During conventional SECM imaging, the UME is usually scanned in the (x, y) plane at a 

constant height above the sample surface. There are several difficulties associated with 

constant height imaging. As indicated earlier, prior to scanning amperometric UMEs are 

usually positioned with approach curves. However, this approach is not practical if non-

amperometric tips, such as potentiometric sensors or modified UMEs are utilized. 

Additionally, convolution of topography and electrochemistry may occur during 

scanning. Faradaic currents are highly dependent on tip-to-sample distance; therefore, 

rough surfaces will influence the faradaic current observed during the measurement. 

Finally, sample tilt may lead to tip crashes if large areas are scanned, in particular when 
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UMEs with smaller dimensions are used for imaging, since those UMEs are positioned 

particularly close to the sample surfaces. Small UME dimensions are necessary for high 

electrochemical image resolution. These considerations particularly highlight that 

improving high-resolution imaging requires not only electrodes of reduced dimensions, 

but also alternative positioning mechanisms.  

Several alternative tip positioning approaches focusing on separation of the current and 

the topographical information have been reported77-84. Ludwig et al.79 described a concept 

adapted from distance control in near field scanning optical microscopy (NSOM)85 that is 

based on laterally vibrating a fiber-shaped UME during simultaneous SECM operation. 

The amplitude of the vibration is damped by hydrodynamic forces in the vicinity of the 

sample, and detected with an optical read-out system. A feedback loop controls the 

damped amplitude enabling scanning of the UME at a constant distance to the sample 

surface independent of the faradaic current. In addition to optical shear force detection of 

the vibration amplitude, tuning fork based detection has been achieved80-82, likewise 

adapted from NSOM applications86, and detection based on piezoelectric elements83. 

Wipf and co-workers have also reported impedance-based distance control84.  

Shear force-based SECM imaging was demonstrated with nanoelectrodes87, 

potentiometric tips88, and microbiosensors89. Biological applications moreover included 

imaging of diaphorase activity, as shown by Matsue and co-workers82. Schuhmann and 

co-workers successfully demonstrated constant distance SECM positioning of UMEs at 

living cells, and detection of neurotransmitter release from cells90, 91, along with detection 

of nitric oxide with electrochemical sensors92. SECM-based probing of cell surfaces has 

also been performed in constant height SECM, and has been discussed in several review 
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articles93-96. However, due to the previously described limitations this approach becomes 

impractical particularly with decreasing UME size or while scanning surfaces with 

significant height variations. 

2.2.3 AFM-SECM 

Both discussed SPM techniques provide useful information about a sample surface. 

However, there are also several limitations. Although AFM offers the possibility for high 

resolution topographical imaging, one of the main drawbacks is that chemical 

information about sample surfaces is not accessible with unmodified tips. In contrast, 

SECM yields electrochemical information, but with decreased spatial resolution, in 

addition to the limitations discussed for constant height imaging. Combination of these 

complementary techniques can overcome the limitations of each individual technique, 

and is a field of substantial interest recently resulting in the commercialization of an 

AFM-SECM instrument by Windsor Scientific97. Also, Nanonics Imaging provides 

SECM probes with force sensing capabilities98. 

The primary requirement for combining AFM and SECM technologies is the fabrication 

of combined probes. So far, two basic approaches for combined probe design have been 

described in literature. The electrode integrated into the AFM probe can be located either 

at the very apex of the AFM tip, or at a defined distance recessed from the apex of the tip. 

The first approach was pioneered by Macpherson and Unwin based on bending of an 

etched micro-wire and subsequent insulation99. The electrode was exposed at the apex of 

the etched micro-wire by recessing of the insulation layer during a thermal curing 

process. Similarly, Demaille and co-workers demonstrated that sub-µm sized electrodes 

were formed at AFM-SECM tip apices by application of high potential pulses100. 
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Macpherson and co-workers also used single wall carbon nanotubes attached to an AFM 

tip as templates for combined AFM-SECM probes101. After attachment of the carbon 

nanotubes to the AFM tips, the assemblies are electrically coated, insulated, and modified 

by focused ion beam (FIB) milling to expose a nanoelectrode at the apex of the tip. 

Additionally, several batch fabrication processes have been developed102-106. All these 

approaches have in common that at certain conditions such as electrically conducting 

samples, topographical and electrochemical information cannot be simultaneously 

obtained. This typically requires that the sample is scanned twice in lift mode107, posing a 

limitation on the real-time combination of topographical and electrochemical information 

that may be required for example during investigations of dynamic biological systems. 

Additionally, this approach prevents further chemical modification of the electrode 

surface with e.g. a biosensing layer. However, these techniques are usually characterized 

by an excellent electrochemical resolution. 

The second approach was pioneered by Kranz et al. utilizing AFM tip-integrated 

electrodes that are recessed from the apex of the AFM tip108. The original AFM tip is 

reshaped via focused ion beam milling, and acts as a spacer between the electrode and the 

sample surface. Consequently, the electrode is scanned at a constant distance to the 

sample surface allowing deconvolution of the electrochemical and the topographical 

information, if moderate topologies are scanned. The length of the AFM tip can be 

deliberately adjusted, and is usually linked to the size of the tip-integrated electrode. This 

combination enables simultaneous AFM-SECM imaging independent of sample 

properties for in-situ correlation of structural information and surface activity; in 

addition, electrode surface modification is not limited, and tip-integrated sensors may be 
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applied for simultaneous imaging. The detailed fabrication process is described in Section 

3.2.1, as recessed AFM-SECM probes were used throughout this thesis. Davoodi et al. 

have described recessed AFM-SECM probes also based on FIB milling109. Additionally, 

a batch fabrication approach has been reported by our research group (Shin et al.110, 111) 

integrating platinum ring electrodes at silicon wafer level. In general, AFM-SECM 

experiments have been demonstrated in contact and dynamic mode AFM, as well as 

feedback and GC mode SECM. 

One major advantage of SECM is that quantitative theoretical descriptions and 

correlation with experimental data is feasible. Mass transport characteristics in SECM 

have been described for a variety of different UME geometries and conditions67, 112. This 

advantage has also been exploited for bifunctional AFM-SECM techniques. Sklyar et al. 

performed numerical simulations based on the boundary element method to characterize 

AFM-SECM probes with recessed electrodes in collaboration with our research group113. 

Experimentally acquired AFM-SECM images were compared with theoretically obtained 

data, and showed excellent quantitative agreement. Kottke and Fedorov have additionally 

described advective and transient effects at the same tip-integrated frame electrodes114. 

Similarly, Davoodi et al. performed simulations investigating influences of scan velocity 

on SECM performance115. Finally, Unwin and co-workers published theoretical 

descriptions of electrically-coated non-insulated AFM probes116. 

Since combined AFM-SECM is a fairly novel development, applications thereof mainly 

focus on investigations of model substrates. Examples of these substrates include 

conducting lines105, 108, 117, conducting rings118, microelectrodes101, 106, 107, 111, highly 

oriented pyrolytic graphite (HOPG)119, and transport of redox active species through 
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pores of track etched membranes99, 120. Similar membranes were used as model substrates 

for AFM tip-integrated glucose biosensors121. Additionally, electrochemically-induced 

crystal dissolution was monitored99, 122. Other investigations included studies of 

enzymatic activity at immobilized enzymes such as glucose oxidase105, 123 and 

horseradish peroxidase124, or localized corrosion studies109, 125-127. 
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3 PLASMA-DEPOSITED FLUOROCARBON FILMS AS 

INSULATION MATERIAL FOR AFM-SECM PROBES 

AND UMES 

 
 
 
In this chapter plasma-deposited fluorocarbon films are presented as alternative insulation 

materials for AFM-SECM probes and UMEs. Electrochemical characterization of the 

insulation layer quality is performed. Additionally, combined AFM-SECM approach and 

imaging studies are described.  

 

3.1 Motivation 

One of the key requirements for successful AFM-SECM experiments is sufficient quality 

of the electrical insulation of combined AFM-SECM probes. It is crucial that this 

insulation layer is pinhole-free, uniform, well-adherent, and stable, and that all parts 

immersed in solution including the chip are well-insulated. Additionally, the thickness of 

the layer is particularly important for imaging a wide range of samples including high-

aspect ratio topographical features. The electrode-to-insulation ratio, defined as RG value 

and described by Equation (2.17), plays an important role in the diffusion behavior 

towards the electrode surface1. RG values approaching unity are desirable for 

electrochemical scanning probe experiments, since the flux to the electrode can be 

considerably enhanced via diffusion from behind the electrode plane. Moreover, a thin 

insulation layer leads to a lower interference probability by the probe to the sample 
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surface during AFM imaging, as demonstrated in Figure 3.1 for a sample surface with 

significant topographical feature changes such as cells. 

 
 
 

 

Figure 3.1. Scheme of potential interference between AFM-SECM probes with thick insulation and a 
cell layer with changing topographical features in the low µm range. 
 
 
 
Typical insulation materials applied for the insulation of recessed AFM-SECM probes 

are silicon nitride, silicon nitride-silicon oxide sandwich layers, and Parylene C2-5. Probes 

insulated with these materials exhibit adequate imaging characteristic, however, the 

thickness of the insulation layer is usually in the range of 0.7 – 1 µm. Depending on the 

surface topography of the sample investigated, a thickness of the insulation layer up to 

1 µm may not be applicable. Therefore, alternative insulation strategies leading to 

improved insulating properties with thinner coatings (< 0.7 µm) are necessary. In this 

thesis, plasma-polymerized fluorocarbon layers are evaluated as a novel approach for the 

insulation of UMEs, and of combined AFM-SECM probes. 

3.1.1 General insulation techniques 

Quantitative analysis of analytes during electroanalytical experiments at the micro- and 

nanoscale requires pinhole-free and uniform electrical insulation. Commonly, UMEs are 

insulated by encapsulation in glass. Detailed reviews on this procedure can be found in 
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literature6-9. Although encapsulation in glass is useful for sealing microwires, this 

approach is not applicable for specialized UMEs such as AFM-SECM tip-integrated 

electrodes or for specialized applications such as in-vivo experiments. 

Alternative techniques for the insulation of microwires or etched nanoelectrodes have 

been reported in literature10-25. Early approaches include dipping of a microwire into 

varnish26, 27 or molten apiezon wax10, 28, as well as translating a microwire through molten 

paraffin20. The most popular approach among electrodeposited insulation layers for sub-

µm sized electrodes involves the use of electrodeposition paints (EDPs)17, 18, 21, 23, 29-35. 

Typically, an EDP layer is formed by an electrochemically-induced pH shift, which leads 

to a solubility change of the polymer and its precipitation at the electrode surface. 

Subsequently, the deposited film is cross-linked in a curing step to achieve electrically 

insulating properties. Other electropolymerization techniques involving 

polyphenyleneoxide12, 24 or photoresist25 have been applied towards insulating carbon 

fiber electrodes. Carbon fibers have also been insulated with polytetrafluoroethylene 

(PTFE) by pulling and melting a PTFE capillary around the fiber13. Vacuum-based 

deposition techniques such as chemical vapor deposition (CVD) of silica36 or 

polyimide37, and plasma-enhanced CVD (PECVD) of perfluoro-octane38 have been 

applied. The group of vacuum-based techniques also includes chemical vapor 

polymerization of Parylene C, which is commercially used for the insulation of UMEs11, 

39, 40. 

Common for all different types of AFM-SECM probes, which have been applied in 

imaging experiments as discussed in Section 2.2.3, is the necessity of a superior 

insulation layer. Silicon nitride, silicon oxide or Parylene C are usually employed in 
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AFM-SECM probes fabricated by standard microfabrication processes; nanoelectrodes 

bent into the shape of an AFM cantilever have been insulated with anodic and cathodic 

EDPs, as described above31, 33. Conical nanoelectrodes were obtained due to recessing of 

the paint from the apex of the wire during the curing process in the case of anodic paint 

insulation33. Cathodic paints were deposited at cantilever-shaped spherical gold 

electrodes by scanning the potential between 0 V and 5 V31. After thermal curing, the 

insulation layer at the apex of the tip was locally removed by application of a high 

voltage pulse in the 1.5 -6 kV range leading to the exposure of the spherical electrode 

geometry. However, microfabrication processes generally lead to more reproducible 

insulation layers. 

3.1.2 Plasma polymerization 

Plasma polymerization has been frequently employed for the fabrication of thin polymer 

films from a variety of organic precursors41-44. The organic precursor is excited in an 

electrical discharge, which leads to the deposition of a highly cross-linked film at the 

exposed substrate surface. Since plasma-deposited films have many desirable properties 

including mechanical and thermal stability, chemical inertness, and insolubility, they 

have been used in a variety of applications45. Furthermore, the composition and chemical 

structure of these films can be readily modified by variation of process conditions, 

including substrate temperature, frequency of the discharge, radio frequency (RF) power 

level, reactor pressure, selection of monomer(s), and flow rate(s)46. By tuning these 

parameters, plasma-polymerized layers may be optimized for different properties. 
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Figure 3.2. Schematic of plasma polymerization process and involved pentafluoroethane precursor 
fragments.  
 
 
 
Plasma-polymerized insulation layers presented in this thesis were deposited in a parallel 

plate radio frequency plasma reactor using pentafluoroethane (PFE, CF3CHF2) as a 

precursor gas47. A schematic of the polymerization process and the involved precursor 

fragments is depicted in Figure 3.2. Thermal stability and electrical properties of 

fluorocarbon layers prepared from PFE vapor along with plasma chemistry involved in 

their deposition have been previously studied48-50. Fluorocarbon layers are an attractive 

choice for thin film insulation strategies, since they are highly resistive, chemically inert, 

biocompatible, and provide in addition the advantage of conformal step coverage with 

thin and uniform layers51. Besides the improved SECM and AFM imaging quality due to 

reduced insulation thicknesses, fast PFE milling rates also imply decreased focused ion 

beam milling time resulting in a reduced overall processing time, and hence, reduced 

costs. Moreover, the described insulation process can be performed at a batch-level, 

which ensures uniform and reproducible coatings. 
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3.2 Experimental 

3.2.1 AFM-SECM probe fabrication 

AFM-SECM probes were prepared in a multi-step procedure involving several coating 

and microstructuring techniques2. Commercially available gold-coated triangular silicon 

nitride AFM probes (Veeco, Woodbury, NY) were used as basis for the combined probes. 

Prior to the coating procedure, the reflecting gold and underlying adhesive chromium 

layer were removed with gold (GE-8110, Transene, Danvers, MA) and chromium etchant 

solutions (CR7-S, Cyantek, Fremont, CA). Subsequently, a titanium adhesion layer 

(approx. 10 nm), and a gold electrode layer (100 – 150 nm) were sputtered onto the AFM 

probes using a mask defining a conductive line-shaped pattern onto the glass chip. For 

both metallizations, a DC sputterer (CVC, Rochester, NY) equipped with an 8’’ titanium 

target and a 3’’ gold target was utilized. Power settings were at 2500 W and 350 W, 

respectively. 

Besides deposition of PFE insulation layers described in Section 3.2.2, standard AFM-

SECM probe modification involving commonly used insulation materials will be 

discussed here. Silicon nitride-silicon oxide sandwich insulation layers were deposited in 

a PECVD system (Unaxis, CH). Typical parameters used for the deposition were a 

bottom electrode temperature of 150 ºC, a pressure of 1100 mTorr (silicon nitride) or 

900 mTorr (silicon oxide), a power of 50 W (silicon nitride) or 25 W (silicon oxide), and 

gas flow rates extracted from Table 3.1. Typically three alternating layers (nitride-oxide-

nitride) were deposited at cantilevers to ensure pinhole-free insulation. Cantilevers were 

placed perpendicular to the deposition plasma during the deposition to reduce stress. 
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Deposition times were adjusted depending on the deposited thickness from respective 

calibrations. After deposition of the insulation layer, the quality of the electrical 

insulation was tested by recording cyclic voltammograms. 

 
 
 
Table 3.1. Summary of flow rates used in the PECVD deposition process of silicon nitride and silicon 
oxide insulation layers.  
 

Material Gas Flow rate [sccm] 
SixNy SiH4 4 

  NH3 5 
  N2 1100 

SiO2 SiH4 400 
  N2O 900 

 
 
 
After coating the cantilevers, focused ion beam milling was used to expose the tip-

integrated electroactive area, and to reshape the AFM tip. Two different FIB instruments 

were utilized during this work for milling and scanning electron microscopy (SEM) 

imaging purposes (QuantaTM 200 3D and NovaTM 200 NanoLab DualBeamTM systems, 

FEI Company, Hillsboro, OR). Figure 3.3 shows the involved milling steps, and the 

corresponding SEM images. A bitmap with a user-defined shape may be uploaded into 

the instrumental software, and may be used as a digital mask for the milling procedure. 

FIB milling is performed in two steps: in the first cut, the modified probe is mounted 

such that the front view of the cantilever is exposed to the ion beam (Figure 3.3A), 

whereas for the second cut the cantilever is rotated by 90º in respect to the first cut 

(Figure 3.3B). Following each milling step, a cross-sectional FIB cleaning step is applied 

to remove possibly re-deposited material from the electrode surface. Figure 3.3C shows a 
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final view of the FIB-milled AFM-SECM probe. For some applications, AFM-SECM 

probes without reshaped AFM tips were fabricated. In this case, the FIB processing time 

is considerably shorter, as only one milling step is performed. 

 
 
 

 

Figure 3.3. Schemes and SEM images of FIB milling steps involved in the fabrication of AFM-SECM 
probes. Bitmap masks used to mill the probes are shaded red. (A) Front view used for the first FIB cut, 
(B) side view (rotation by 90º) used for the second FIB cut and (C) final view showing an AFM-SECM 
probe after FIB processing. 
 
 
 

3.2.2 Plasma depositions of PFE films 

Plasma depositions of PFE films were performed in collaboration with Dr. Dennis W. 

Hess at the School of Chemical and Biomolecular Engineering (Georgia Institute of 

Technology). 
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3.2.2.1 Samples 

AFM-SECM probes were cleaned after titanium and gold metallization in an UV/ozone 

chamber (BioForce Nanosciences, Ames, IA) for 20 min prior to the PFE insulation 

procedure. Other preparation conditions including the FIB milling steps after the 

insulation were the same as already described in Section 3.2.1. 

Gold microwires with a diameter of 25 µm (Goodfellow, U.K.) were used to further 

evaluate the applicability of PFE insulation layers in microelectrochemistry. Similarly to 

modified AFM probes, gold microwires were cleaned for 20 min in an UV/ozone 

chamber prior to PFE deposition. Additionally, PFE-coated gold UMEs were prepared by 

sealing microwires into glass capillaries. Microwires were sealed in the glass with a small 

section protruding from the end of the capillary, which was subsequently insulated with a 

PFE layer. To expose the electroactive cross-section of the microwire, FIB milling was 

performed. 

For each AFM-SECM probe and gold microwire deposition run, blank silicon wafer 

chips were used as control samples for monitoring of the layer thicknesses with a planar 

reference sample. 

3.2.2.2 Plasma reactor reagents 

Pentafluoroethane monomer gas (N4 grade, 99.99 %) was donated by Dupont 

(Wilmington, DE). Argon carrier gas (Ultra High Purity, 99.99 %) was obtained from Air 

Products and Chemicals Inc. (Allentown, PA), whereas nitrogen (Ultra High Purity, 

99.999 %) and oxygen (Ultra Pure Carrier, 99.996 %) were purchased from Airgas Inc. 

(Radnor, PA).  
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3.2.2.3 Experimental setup and deposition conditions 

PFE films were deposited in a six-inch parallel plate radio frequency plasma reactor 

previously described47. Figure 3.4 shows a schematic of the experimental setup. 

Omegalux CIR 2015 cartridge heaters (Omega Engineering Inc., Stamford, CT) were 

used to heat the grounded bottom electrode of the reactor to a temperature of 112 °C. The 

heating process was monitored with a type K thermocouple controlled by a Syskon RKC 

temperature controller (RKC Instrument Inc., Southbend, IN). A RF power supply (HF-

300, 13.56 MHz, 120 W; ENI Power Systems, Rochester, NY) was used to power the top 

electrode. This electrode and the power supply were connected with a matching network 

(Heathkit SA-2060A, Heath Company, Benton Harbor, MI) to minimize reflected power 

in the plasma system. The pressure in the reactor was controlled with a pressure gauge 

(Varian Inc., Lexington, MA), and an Alcatel 2063 C rotary vacuum pump (Alcatel, 

Annecy, France). 

 
 
 

 

Figure 3.4. Schematic of parallel plate plasma reactor (adapted from47). 
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After placing the sample within the chamber, the plasma reactor was evacuated to a 

pressure of approx. 20 mTorr. Then oxygen gas was introduced into the chamber (flow 

rate: 75 standard cm3 min-1), and the pressure was stabilized to approx. 1 Torr. In order to 

clean the reactor and sample surface, the oxygen plasma was ignited for 1 min. Following 

this cleaning procedure, the reactor was re-evacuated to a base pressure of approx. 

20 mTorr. For the film deposition, PFE monomer and argon gas were introduced into the 

reactor (flow rates: 20 and 75 standard cm3 min-1). The RF generator was activated after 

the chamber reached a stable pressure of approx. 1 Torr. 

3.2.3 Combined AFM-SECM 

All atomic force microscopy experiments presented in this thesis were performed with a 

model 5500 AFM from Agilent Technologies (Chandler, AZ). The 5500 AFM operates in 

a “top-down” configuration with the AFM probe mounted on the piezo-scanner for 

imaging of the sample surface. The AFM was placed in a vibration isolation chamber 

(Agilent Technologies, Chandler, AZ), and additionally in a Faraday cage (home-built) in 

order to reduce environmental vibration and electromagnetic noise. AFM images were 

post-processed with the PicoScan 5.3.3 software (Agilent Technologies, Chandler, AZ) 

for tilt correction or flattening of the image background.  

 



58 

 

Figure 3.5. Schematic of the combined AFM-SECM set-up based on the 5500 AFM.  
 
 
 
Combined AFM-SECM measurements were performed in a liquid cell equipped with a 

three electrode system. The AFM tip-integrated electrode was serving as the working 

electrode (WE), a platinum wire was used as a counter electrode (CE), and a freshly 

chloridized silver wire (Goodfellow, U.K.) served as a reference electrode (RE) (silver 

quasi-reference electrode, AgQRE). The AgQRE was fabricated by oxidation of the 

silver wire in 1 M HCl (Aldrich, St. Louis, MO), thereby forming a layer of AgCl. A 

CHI832A bipotentiostat (CH Instruments Inc., Austin, TX) was utilized for 

electrochemical measurements. The output signal of the potentiostat was directed into an 

AD channel of the AFM controller, thereby enabling real-time correlation of the 

electrochemical data and the topographical image. Figure 3.5 shows a schematic of the 

AFM-SECM setup, and Figure 3.6 a photograph of the system.  
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Figure 3.6. Photograph of the AFM-SECM system. 
 
 
 
AFM-SECM probes were mounted into modified nose cone assemblies (Agilent 

Technologies, Chandler, AZ) by either placing or gluing the AFM chip onto the nose 

cones removing the mounting spring as source for additional electromagnetic 

interferences. Throughout this thesis, a new approach for contacting AFM-SECM probes 

in the nose cone was implemented. Figure 3.7 shows an AFM-SECM probe in a nose 

cone mounted with the previous approach, and the new approach. It was found that the 

new approach replacing the spring contacts with direct contacts to the cable and shielded 

cables (New England Wire Technologies, Lisbon, NH) with SMA connectors 

(Pasternack, Irvine, CA) yielded a substantial improvement of the experiments. An 

electrical connection was established between the conducting lines on the AFM-SECM 

probes and the respective contacts by using two component silver conductive epoxy 

(H20E Epo-Tek, Tedpella, Redding, CA). Subsequently, the probes and contacts were 

insulated with insulation varnish (Electrolube, UK). 
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Figure 3.7. Nose cone assemblies showing previous (A) and new approach (B) for mounting AFM-
SECM probes. 
 
 
 
Alternating conducting/insulating patterned features generated by bitmap-assisted FIB 

milling served as model samples during AFM-SECM imaging with PFE-coated AFM-

SECM probes. Gold-coated (approx. 100 nm) glass slides (VWR, West Chester, PA) with 

a titanium adhesion layer of approx. 10 nm were used as substrates. Figure 3.8 shows an 

exemplary SEM image of FIB-milled patterns representing the Georgia Institute of 

Technology (GT) logo. After uploading a bitmap of the logo to the FEI software, the gold 

layer was selectively milled to expose the insulating glass surface (letters of the logo). 

 
 
 

 

Figure 3.8. SEM image of model substrate generated by bitmap-assisted FIB milling. 
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3.2.4 Electrochemical characterization 

(Bi)potentiostats used throughout this thesis included models CHI660A, CHI842B and 

CHI832A from CH instruments (Austin, TX). Models CHI660A and CHI842B were both 

equipped with a Faraday cage and a preamplifier (CH instruments, Austin, TX). 

PFE-insulated AFM-SECM probes and gold UMEs were characterized by means of 

cyclic voltammetry. CVs were recorded in aqueous solutions containing 10 mM 

potassium ferrocyanide(II) trihydrate (Fe(CN)6
3-/4-, Sigma-Aldrich, St. Louis, MO), and 

0.5 M potassium chloride (KCl, Sigma-Aldrich, St. Louis, MO) as a supporting 

electrolyte. The diffusion coefficient for Fe(CN)6
3-/4- in 0.5 M KCl was calculated from 

limiting steady-state currents obtained from CVs at platinum UMEs (5 µm diameter; 

Goodfellow, UK). A value of 6.3 × 10-6 ± 0.1 × 10-6 cm2 s-1 was retrieved (n = 3). PFE 

film stability at AFM-SECM probes was evaluated in long-term studies by measuring 

CVs in 2 mM ferrocenemethanol (FeOC11H12, Sigma-Aldrich, St. Louis, MO) and 0.5 M 

KCl in increments of 1 - 1.5 hrs for a total time period of 6 hrs. Ethanol (5 % v/v) was 

added to aqueous FeOC11H12 solutions to enhance dissolution. The reference electrode 

used for general electrochemical studies was a saturated calomel electrode (SCE); 

potentials are reported vs. this reference electrode.  

Simultaneously recorded cantilever deflection and electrochemical approach curves were 

performed in aqueous 10 mM Fe(CN)6
3-/4- and 0.5 M KCl solutions. The same solutions 

were used during AFM-SECM imaging experiments recorded in AFM contact mode. The 

cantilever sensitivity was determined from deflection-distance curves at gold surfaces 

prior to recording approach curves. All solutions were prepared using deionized water 
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with a resistance of 18.2 MΩ cm at 25 °C, as provided by a water purification system 

(Millipore, Billerica, MA).  

3.3 Results and discussion 

3.3.1 Scanning electron microscopy 

Figure 3.9 shows SEM images of PFE-coated AFM-SECM probes and gold microwires 

after FIB milling. The AFM-SECM probe depicted in Figure 3.9A has a PFE layer 

thickness of approx. 300 nm. Figure 3.9B shows the cross-section of a PFE-coated gold 

microwire. As can be seen from the inset, a smooth microwire cross-section is obtained 

by FIB milling without affecting the surrounding PFE film. Interestingly, the high 

resolution SEM image also reveals single crystallites in the polycrystalline gold matrix.  

 
 
 

 

Figure 3.9. SEM images of PFE-coated AFM-SECM probe (A) and gold microwire (B) after exposure of 
the electroactive area via FIB milling.  
 
 
 
The PFE layer thickness at the wire is approx. 400 nm, which is slightly higher than the 

thickness obtained at the AFM-SECM probes, as the plasma polymerization process is 

sensitive to minor changes in the process parameters. One of the crucial parameters is the 
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temperature of the sample during the deposition. Since there is a temperature gradient in 

the chamber due to the sample distance from the heated electrode, different relative 

sample positions in the chamber lead to different sample temperatures. Additionally, the 

curvature of the substrate and orientation of the surface with respect to the ion 

bombardment direction induce concentration gradients of the neutral species in diffusion-

controlled plasma processes. These factors indicate that samples of different shapes and 

materials have dissimilar exposure to the plasma polymerization, which leads to the 

observed variations in PFE layer thickness at different samples coated in the same 

deposition run. 

3.3.2 Electrochemical characterization 

Cyclic voltammetry was used for electrochemical characterization of PFE-coated AFM-

SECM probes and UMEs, since the dimensions of the electroactive area may be retrieved 

from the magnitude of the limiting steady-state current. Additionally, the shape of the CV 

and magnitude of the charging current contribution may reveal information about the 

quality of the insulation layer.  
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Figure 3.10. CVs obtained at PFE-coated AFM-SECM probe before and after FIB milling in 10 mM 
Fe(CN)6

3-/4- solution containing 0.5 M KCl (scan rates 0.05 and 0.1 V s-1). The frame edge length was 
approx. 1.28 µm. 
 
 
 
Figure 3.10 shows CVs obtained at a PFE-coated AFM-SECM probe before and after the 

exposure of the tip-integrated electrode by FIB milling. No faradaic contributions in the 

CV prior to the FIB modification are measured, and only minor charging currents 

(approx. 8 pA) are observed indicating excellent insulating properties of the PFE layer. 

Although the steady-state current response at frame electrodes was previously described 

with numerical simulations52, no simple equations are available for predicting the 

response unlike for other conventional electrode designs. Faradaic currents at AFM tip-

integrated frame electrodes have been previously approximated utilizing analytical 

expressions derived for ring electrodes2, which are described in Section 2.1.2. Using 

Equations (2.7) - (2.9), and the electrode dimensions obtained from SEM images (frame 

edge length approx. 1.28 µm, frame thickness approx. 0.15 µm) a theoretical current 

value of 1.4 nA was obtained, which is close to the experimentally obtained value of 

2.3 nA. The discrepancy observed may be attributed to the fact that the assumed ring 

geometry does not consider high current density effects, which may originate from sharp 

corners at frame electrodes.  
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Figure 3.11. CVs obtained before and after the time study in 2 mM FeOC11H12 solution containing 0.5 M 
KCl as supporting electrolyte (scan rate 0.02 V s-1). The length of the electrode frame was approx. 
1.4 µm. 
 
 
 
Cyclic voltammetry over extended exposure periods was utilized to evaluate the long-

term stability of PFE insulation layers in solution, since it is known from electrochemical 

STM probes that insulation materials other than glass frequently do not exhibit ideal 

temporal stability. PFE-insulated AFM-SECM probes were soaked in FeOC11H12 

solution, and CVs were recorded in increments of 1-1.5 hrs over a total time period of 

6 hrs. Exemplary CVs obtained before starting the study and after this time period are 

shown in Figure 3.11. Although there is a minor increase in steady-state current of 

approx. 20 %, the overall shape of the CV remains essentially unaltered. Given that 

standard AFM-SECM imaging experiments usually last approx. 2 - 3 hrs, the long-term 

stability of the probes is sufficient for such experiments. Hence, PFE layers present an 

attractive approach to thin film insulation membranes for AFM tip-integrated electrodes. 
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Figure 3.12. CV of a PFE-insulated gold UME after exposure of the electroactive area by FIB milling 
recorded in 10 mM Fe(CN)6

3-/4- solution containing 0.5 M KCl (scan rate 0.02 V s-1). 
 
 
 
Additionally, it could be demonstrated that plasma-polymerized PFE layers are a versatile 

insulation method since they can be applied to gold microwires and gold UMEs. This is 

of potential interest, as UMEs with thin and flexible insulation layers are relevant to 

physiological applications. As demonstrated in Figure 3.9B, the electroactive cross-

section of the microwires was exposed using FIB milling. Figure 3.12 shows a CV 

obtained at such a PFE-coated UME. The observed steady-state current (36.0 nA) 

matches in magnitude with the predicted value of 32.2 nA corresponding to an electrode 

diameter of 25 µm.  

3.3.3 Approach curves 

Deflection and current approach curves were simultaneously recorded with PFE-insulated 

AFM-SECM probes at conducting (gold) and insulating (glass) surface features. Figure 

3.13 shows representative results obtained during these experiments. The current is 

plotted as normalized current corresponding to the steady-state current recorded at the 

electrode while approaching to the substrate surface normalized by the current measured 
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in bulk solution. Since the AFM operates in a “top-down” configuration, the AFM 

sample stage has to be approached to the tip in discrete steps (step-size: 400 nm) to 

engage the AFM probe at the surface prior to imaging. In order to probe the distance to 

the surface, the piezo-scanner is moved in z-direction after every step. If there is a 

cantilever deflection detected, the AFM feedback mechanism is activated; otherwise, the 

stage is further approached. Due to the short periodicity of these steps, the tip-sample 

distance plotted in Figure 3.13 is an approximation derived from a time-signal curve, and 

the total traveled distance. To convert the cantilever deflection signal from volts into nm, 

the cantilever sensitivity was determined by recording deflection-distance curves at the 

gold surface directly prior to the measurement of the approach curves. The slope of the 

deflection-distance curve in the contact region was used for calibration of the cantilever 

sensitivity. 

 
 
 

 

Figure 3.13. Simultaneously recorded approach-cantilever deflection curves measured with a PFE-
coated AFM-SECM probe. Positive feedback (A) is observed at a gold surface and negative feedback (B) 
at a glass surface. Curve sections close to the sample surface are magnified in the insets shown in (A) 
and (B). The tip-integrated electrode was biased at 0.6 V (vs. AgQRE) in 10 mM Fe(CN)6

3-/4- and 0.5 M 
KCl. The tip-integrated frame electrode had an edge length of approx. 1.6 µm and the tip height was 
approx. 0.54 µm. 
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The AFM tip-integrated electrode was biased at 0.6 V for oxidation of the redox 

mediator. The normalized current recorded while approaching conducting and insulating 

surfaces shows the behavior expected from SECM theory. Conducting surface features 

lead to a recycling of the redox mediator, as it is locally reduced at the gold surface, 

which is detectable as a current increase (positive feedback, Figure 3.13A). Accordingly, 

a decreased current (negative feedback) is observed in the vicinity of the insulating 

features due to hindered diffusion of the mediator to the tip-integrated electrode, and a 

lack of this recycling effect (Figure 3.13B). Additionally, rapid cantilever deflection is 

observed for both cases at the surface coinciding with the detected current changes. 

3.3.4 AFM-SECM imaging 

Simultaneous AFM-SECM images were obtained with PFE-coated AFM-SECM probes 

at a FIB-patterned substrate. The sample was patterned from a gold-coated glass slide 

such that insulating (glass) and conducting (gold) features were exposed (see Section 

3.2.3). 

Similar to results obtained during combined approach-deflection curves (Figure 3.13), 

the AFM tip-integrated electrode was biased at 0.6 V, and scanned across the surface of 

the FIB-milled pattern. The topography was recorded in AFM contact mode, while 

monitoring the anodic steady-state current at the electrode in SECM feedback mode. 

Figure 3.14 shows an exemplary set of images obtained during such an experiment. 

Positive feedback was observed at the elevated conducting gold features of the surface 

resulting in a current increase, whereas negative feedback was detected at the milled 

sections exposing the insulating glass as a decreased current. Again, the SECM feedback 

experiment revealed the expected behavior. Moreover, conducting and insulating current 
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features coincide well with the simultaneously recorded topography. Figure 3.14C shows 

a cross-sectional view of the line scan marked with an asterisk in Figure 3.14A and B. 

The topographical cross-section reveals a thin strip of gold (approx. 400 nm wide) 

between the letters “G” and “T”, which is clearly evident in the corresponding current 

image as an elevated current feature. This observation demonstrates excellent 

electrochemical resolution obtained with such AFM-SECM probes. 

 
 
 

 

Figure 3.14. Simultaneous AFM-SECM imaging at FIB-patterned substrate showing topography (A), 
and current (B) images. The lines in (A) and (B) mark the line scan presented in the cross-sectional 
views (C). The bifunctional AFM-SECM probe was scanned in contact mode at a rate of 0.36 lines s-1 
(original scan size: 25 × 25 µm2), and biased at 0.6 V (vs. AgQRE) to oxidize Fe(CN)6

3-/4- (10 mM in 
0.5 M KCl). The tip-integrated frame electrode had an edge length of approx. 1.6 µm and the tip height 
was approx. 0.54 µm. 
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One of the strengths of combined AFM-SECM imaging with tip-integrated electrodes, 

which are recessed from the apex of the tip, is the deconvolution of the electrochemical 

and the topographical signal due to the constant tip-sample distance. In conventional 

constant-height SECM, the distance between the electrode and the surface may be altered 

due to morphological features leading to current changes, which cannot be exclusively 

attributed to a change in electrochemical activity53. This behavior may also be observed 

in the conducted experiment. It can be noted in Figure 3.14A that patterning of the GT 

logo resulted in a slight rectangular recess around the two letters due to milling of the 

gold surface. Consequently, a step is observed in the cross-sectional view of the height 

profile (marked with a blue arrow in Figure 3.14C). Deconvolution of current and 

topography is confirmed, since the corresponding cross-section of the current image does 

not show any evident current change.  

3.4 Final remarks 

Plasma-polymerized PFE layers were evaluated for applicability as novel thin film 

insulation membranes at bifunctional AFM-SECM probes and UMEs. Electrochemical 

characterization of bifunctional AFM-SECM probes revealed excellent insulating 

properties of the PFE membrane. After exposure of tip-integrated electrodes, well-

defined CVs and appropriate steady-state current levels were obtained. Although the 

long-term performance study revealed an increase of 20 % in steady-state current after a 

time period of 6 hrs, the PFE layer time stability proves sufficient due to a 2 – 3 hrs time 

period required for conventional AFM-SECM imaging experiments. Plasma-polymerized 

insulation layers are also applicable for the insulation of microwires leading to flexible 
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gold UMEs. Simultaneously recorded SECM approach-cantilever deflection curves were 

obtained demonstrating positive/negative feedback effects depending on surface sample 

properties. Additionally, successful AFM-SECM imaging was performed at a FIB-

patterned substrate leading to current variations expected from SECM feedback theory 

while revealing excellent electrochemical resolution. 

By using the strategy proposed in this chapter, insulating films with a thickness of 

< 300 nm could be achieved. When compared to silicon nitride/silicon oxide or Parylene 

C insulation layers, this corresponds to a 2 – 3 x decrease in thickness of the insulation 

layer. Future work to enhance the long-term stability of the PFE-insulated probes should 

focus on an improvement of PFE layer adhesion by optimization of the oxygen plasma 

cleaning step prior to the deposition. Since the charging current revealed an increase after 

the time study indicating enhanced partitioning of the electrolyte into the insulation layer, 

further optimization should also focus on increasing the cross-linking density of the layer. 
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4 ION BEAM INDUCED DEPOSITION OF PLATINUM 

CARBON COMPOSITE MATERIALS FOR LOCALIZED 

PATTERNING OF UMES 

 
 
 
Platinum carbon composite materials obtained by ion beam induced deposition for the 

localized patterning of electrodes at UMEs and AFM-SECM probes are introduced in this 

chapter. Physical and electrochemical properties of pristine composites are evaluated. In 

addition, treatment procedures are described focusing on the decrease of the carbon 

content within the deposits.  

 

4.1 Motivation 

The geometric dimension of the integrated electrode in AFM-SECM technology is a 

critical requirement, as it predominantly determines the resolution in electrochemical 

imaging. From that perspective, small electrode dimensions are an attractive feature. 

However, measurements with small electrodes in the nm dimension typically result in 

signals in the low pA to fA region, which are frequently accompanied by undesirable 

signal-to-noise ratios. In addition, if these small electrodes are employed as transducer for 

the design of tip-integrated biosensors, only a small amount of biomolecules may be 

immobilized. From a biosensing perspective, electrodes with larger surface area are thus 

preferable requiring a balance between the electrochemical resolution and the electrode 

dimensions. 
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In case of recessed electrodes integrated in AFM-SECM probes based on commercial 

AFM probes, the thickness of sputtered gold electrodes is limited due to resulting 

bending of the cantilevers at metal thicknesses exceeding 150 - 200 nm. Hence, other 

strategies have to be pursued in order to increase the electroactive area for integrated 

biosensors. One approach, which was initially pursued, involved electroplating gold onto 

AFM-SECM probes (Figure 4.1). However, electroplating of gold led to thick electrode 

layers that would interfere with the sample surface during AFM imaging. Furthermore, 

the resulting electrode geometry and dimensions were irreproducible between individual 

depositions. 

 
 
 

 

Figure 4.1. (A) SEM image of Au layer electroplated on AFM-SECM probe. (B) Schematic 3D growth 
process showing cross-section of AFM-SECM probe.  
 
 
 
Another possibility is ion beam induced deposition, which offers the capability to pattern 

thin conducting layers with high spatial resolution, and with a user-defined shape. One 

focus of this thesis was to evaluate IBID as a possibility for increasing the tip-integrated 

electrode area by localized patterning of electrode materials without significantly 

decreasing the localization power of the SECM measurement.  
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4.1.1 Ion beam induced deposition 

IBID of materials is a mask-less micro-fabrication technique that can be used for a 

variety of applications in micro- and nanoengineering including nanowire growth1-3, 

fabrication of miniature electrical contacts4-7, formation of three-dimensional structures8-

10, and repair of X-ray masks and microelectronic circuits8, 11. During the deposition 

process, a precursor is vaporized into a high vacuum environment in the vicinity of a 

substrate. Precursor molecules adsorbed to the sample surface are dissociated into smaller 

chemical structures and individual elemental constituents by exposing the surface to a 

focused ion beam. The IBID process can be understood as a localized chemical vapor 

deposition process, whereby the interaction of incident ions, sputtered material, and 

secondary electrons with the precursor causes fragmentation and formation of volatile 

and non-volatile species (Figure 4.2). The volatile fragments leave the surface, and are 

eventually removed by the vacuum, whereas non-volatile fragments form three-

dimensional structures at the sample surface with a geometry controlled by the selected 

pattern. Besides fabrication of conducting materials, materials with electrically insulating 

properties may be deposited leading to a wide range of applications12, 13. 
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Figure 4.2. Schematic of the IBID process. 
 
 
 
Alternatively, electron beam induced deposition (EBID), where an electron beam 

fragments the precursor, has been used to generate microstructures similar to those 

attained with IBID14-16. The main advantages of EBID over IBID are that no damage is 

imparted to the sample induced by heavy ions incident at the surface, and that no material 

incorporation occurs, as evident with the ion beam. However, IBID generally yields 

higher metal content due to a larger dissociation cross-section, higher ionic mass, 

sputtering yield of light atoms, shorter penetration depths, and beam-induced self-heating 

effects17. 

Since the initial studies by Tao et al., the most frequently used organometallic precursor 

for the deposition of platinum composites has been methylcyclopentadienyl [trimethyl] 

platinum (C9H16Pt)11, 18. The material formed during the decomposition process includes 

a substantial amount of carbon impurities due to the organometallic nature of the 

precursor. Additionally, gallium ions are implanted in the matrix as a second 

contaminant, since a focused gallium ion beam is used during IBID. Platinum fractions 

varying from 15 atomic% (at%) to 50 at% are reported in literature depending upon the 

deposition conditions7, 19, 20. Generally, gallium is present at lower concentration (5 at% 
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to 18 at%), and considered to improve the conductivity of the deposit7, 20. Applications 

requiring high electrical conductivity have focused on removal of the incorporated carbon 

to improve the electrical properties of the composite material. Several strategies for 

carbon removal in metal composites have been described in literature for both IBID and 

EBID techniques. These include in-situ annealing21, 22, post-deposition annealing23, 

depositions in reactive environments14, 24, and the utilization of carbon-free precursor 

species25, 26. Alternatively, post-treatment steps have been reported, where a change of the 

microstructure leads to a reduction of the resistivity27. 

4.2 Experimental 

4.2.1 Ion beam induced deposition 

Ion beam induced structured depositions of platinum carbon composites, and SEM 

analyses were performed with a FEI QuantaTM 200 3D DualBeamTM (FIB/SEM) system 

(FEI Company, Hillsboro, OR). The organic precursor (methylcyclopentadienyl 

[trimethyl] platinum, C9H16Pt) used for depositions was heated to 39 °C, and evaporated 

into the vacuum chamber through a gas injection system. Ion beam parameters applied 

for depositions were a dwell time of 200 ns and a relative interaction diameter of 150 % 

(beam overlap of 0 %). Deposits used to calibrate the growth rate by AFM analysis were 

prepared on silicon wafers (CZ, <100>, pp+, epitaxial wafers; Siltronic, Germany) at 

varying deposition times and beam currents with the targeted pattern size for the 

respective samples. 

The targeted dimension for all patterns analyzed by energy dispersive X-ray spectroscopy 

(EDX) was a square-shaped cuboid with a height of 1.1 µm and a base of 8 µm2 
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(2.83 × 2.83 µm2) deposited on silicon wafers. PtC deposits for initial EDX studies were 

deposited at varying ion beam currents (from 10 - 500 pA), or at a fixed ion beam current 

(100 pA) for EDX studies at different pattern thicknesses, respectively. An ion beam 

current of 100 pA was also used for fabrication of IBID patterns used in EDX annealing 

studies. The same samples were additionally characterized in high-resolution dynamic 

mode AFM imaging. 

Two types of PtC patterns were analyzed by Raman spectroscopy. One set of samples 

involved the ion beam current variation studies (from 10 - 500 pA), and had a targeted 

dimension of 5.66 × 5.66 µm2 with a thickness of 100 nm consisting of four square 

shaped sub-patterns of approx. 8 µm2 each. Samples used for annealing studies were 

prepared at identical conditions as the samples used during EDX studies (square-shaped 

cuboid: targeted height 1.1 µm, base 8 µm2; ion beam current: 100 pA).  

Four-point probe (FPP) measurements were performed at PtC deposits with rectangular 

cuboid shapes (targeted height 200 nm, base 8 × 1 µm2) deposited at varying ion beam 

currents (from 10 - 500 pA). Patterned PtC lines were used to connect these deposits to 

micro-fabricated platinum contacts, which were sputtered at a thickness of approx. 

400 nm on a silicon oxide passivated silicon wafer (approx. 1.2 µm silicon oxide, and a 

sputtered chromium adhesion layer of approx. 30 nm prior to platinum deposition). 

All AFM-SECM probes used throughout this chapter were fabricated by FIB milling as 

described in Section 3.2.1. PtC electrodes deposited at AFM-SECM probes were frame-

shaped (total target area of 8 µm2; consisting of two sub-patterns with 1 × 1 µm2 and two 

sub-patterns with 3 × 1 µm2, respectively) with a target thickness of 100 nm (ion beam 

current: 30 pA). For electrochemical characterization and annealing studies, circular PtC 
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layers were deposited at 5 µm platinum UMEs with a targeted diameter of 8 µm and a 

targeted thickness of 100 nm (ion beam current: 100 pA). A larger diameter of PtC 

deposits was used in order to ensure full coverage of the platinum wire cross-section. 

4.2.2 PtC treatment procedures 

Three different types of post-treatments for PtC patterns were evaluated for purification 

of the composite material, since it was found that an increased amount of platinum in the 

layer is desired for improved electrochemical behavior of the electrode. Annealing of the 

samples was performed in a home build aluminum furnace (Figure 4.3). The furnace 

consists of two cartridge heaters (model CIR-20207, Chromalox, Pittsburgh, PA) 

connected to a variable transformer (Staco Energy Products Co., Dayton, OH). The 

temperature inside the furnace was monitored with a type k thermocouple before and 

after each annealing step, and typically showed constant values with a variation of 

± 2 °C. The furnace was heated to the required temperatures in the range of 100 to 550 ºC 

depending on the respective experiment and each annealing step was performed for 

11 min. The first minute involved placement and equilibration of the samples, and the 

following 10 min was the annealing time adapted from Botman et al.23. 
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Figure 4.3. Photograph of the home-built aluminum furnace.  
 
 
 

UV/ozone treatments were performed in the same UV/ozone chamber described in 

Section 3.2.2. Different types of UV/ozone treatments were used including repetitive 

30 min treatment intervals for total treatment times of 3 – 4 hrs, and 3 hrs uninterrupted 

exposure times. For post-deposition FIB milling, the PtC deposits and surrounding areas 

were exposed to the ion beam (10 pA) at a magnification of approx. 8,800 x. The 

exposure time was varied for initial studies from 4 to 20 min, and then kept constant at 

16 min and 20 min for PtC deposited at UMEs, and tip-integrated electrodes, 

respectively.  

4.2.3 Physical characterization 

EDX measurements were performed with an INCAx-sight detector (Oxford Instruments, 

U.K.) mounted on a Zeiss SEM Ultra60 (Thornwood, NY). The acceleration voltage of 

the primary electron beam was fixed at 6 keV in order to minimize contributions from the 

underlying silicon substrate. A 120 µm aperture was selected at high current mode, and a 
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100 s life time for data acquisition. Peak positions and peak intensities have to be 

optimized prior to EDX measurements. This is performed by using an element with an X-

ray emission line in the spectrum range of interest as a reference point; for the present 

experiments silicon was used. EDX measurements were performed on three separate PtC 

patterns deposited at identical conditions.  

Raman spectroscopy was performed in collaboration with Dr. Karl S. Booksh at the 

University of Delaware (Newark, DE). Raman spectra were acquired with a Bruker 

Senterra (Billerica, MA) Raman microscope operating with a frequency-doubled 

Nd:YAG (λ = 532 nm) laser as the excitation source, and equipped with a 50 x 

microscope objective yielding a probed spot size of approx. 2 µm in diameter. The 

incident laser power was maintained below 2 mW to avoid thermal damage of the 

sample. Variance in spectral values presented in this study corresponds to spectra 

acquired at three individual PtC patterns deposited at identical conditions. Spectral fitting 

was performed with the software package accompanying the instrument (OPUS, Bruker 

Optics, Billerica, MA). The 2050 - 750 cm-1 range of the spectrum was initially adjusted 

by fitting a straight baseline; then, the sp2-hybridized carbon band was deconvoluted into 

two Gaussian shaped curves. 

FPP measurements were performed using an Agilent DC power supply (Agilent 6612C; 

Santa Clara, CA), and two Hewlett Packard multimeters (HP 34401A; Palo Alto, CA) to 

measure current and voltage. 

The same AFM instrument and configuration described in Section 3.2.3 was used to 

acquire topographical images of PtC deposits before and after the annealing steps. 

Furthermore, pattern heights used to calibrate growth rates of IBID and pattern 



86 

dimensions used for FPP studies were determined by AFM. Triangular silicon nitride 

probes from Veeco (Woodbury, NY) were used for growth rate studies performed in 

contact mode, and silicon probes (Nanosensors, Switzerland) for dynamic mode AFM 

measurements. Topographical images presented were flattened with a second order 

function by the instrumental AFM software package (PicoScan 5.3.3; Agilent 

Technologies, Chandler, AZ). Simultaneous AFM-SECM imaging was performed in the 

arrangement introduced in Section 3.2.3. 

4.2.4 Electrochemical characterization 

The same potentiostats described in Section 3.2.4 were used for all performed 

electrochemical analyses. Initial gold electroplating was performed via 

chronopotentiometry using Orotemp gold plating solution (Technic, Cranston, RI). The 

current was fixed at 1 nA for 3 min. Platinum UMEs were fabricated by sealing 5 µm 

diameter platinum microwires (Goodfellow, U.K.) into soda-lime glass capillaries 

(Hilgenberg, Germany), and subsequent grinding/polishing. Grinding was performed 

with diamond lapping films (9, 6, 1, and 0.5 µm) and water, and polishing using 

polishing cloths with colloidal alumina suspension (0.03 µm); all materials were obtained 

from Allied High Tech Products Inc. (Rancho Dominguez, CA). Electrical contacts were 

established using copper magnet wires (Belden, Richmond, IN), and a high temperature 

silver paste (Pyro-Duct 597-A, Aremco, Valley Cottage, NY). Prior to contacting, the 

insulation on the copper wires was stripped with a flame treatment and a piranha solution 

dip (H2SO4 from Fisher Scientific, Pittsburgh, PA; H2O2 from JT Baker, Phillipsburg, NJ; 

ratio 7:3) (Warning: Piranha solution is hazardous and highly reactive; extreme care and 

precaution must be taken at all times). Subsequently, the wires were sputtered with a 
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10 nm layer of titanium followed by a 190 nm layer of platinum to minimize effects from 

copper oxidation at the contact point during the annealing process. PtC UMEs were 

recycled after each experiment by polishing with 0.03 µm alumina suspension, 15 min 

exposure to Piranha solution, cleaning in 0.5 M H2SO4 with a sequence of different steps 

(one CV from -0.81 V to 2 V, at least twenty CVs from -0.61 V to 1 V, polarization for 

2 min at 0.21 V; vs. saturated Hg/HgSO4), and characterization by CV prior to deposition 

of a fresh PtC layer. Potentials are reported versus a saturated calomel electrode (SCE) 

for cyclic voltammetry using redox mediators and all studies to determine the charging 

currents, whereas a saturated Hg/HgSO4 reference electrode was used to determine the 

working potential windows in 0.5 M H2SO4. In all experiments, a platinum wire was used 

as a counter electrode. CVs were acquired in aqueous solutions containing 5 mM 

hexaammineruthenium(III) trichloride (Ru(NH3)6
3+/2+, Sigma-Aldrich, St. Louis, MO) or 

5 mM/10 mM Fe(CN)6
3-/4-, and 0.5 M KCl as a supporting electrolyte. Solutions 

containing only 0.5 M KCl were used to evaluate charging currents. For comparative 

purposes, the determinations of the potential windows in H2SO4 were normalized to an 

average electrode area obtained from limiting steady-state currents at CVs in 

Ru(NH3)6
3+/2+ before and after treatments, respectively (n = 3 - 5). Deionized water 

obtained from a water purification system was used as described earlier. All solutions 

were sparged with argon (Airgas, Marietta, GA) for at least 15 min prior to 

electrochemical analysis. 

Digital simulations to determine kinetic parameters of the heterogeneous electron transfer 

behavior (standard heterogeneous rate constant, k0, and transfer coefficient, α) at PtC 

electrodes were performed using the DigiElch simulation software package28. Two-
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dimensional semi-infinite diffusion at a disk electrode was selected as the best 

approximation for the used geometry. Electrode radii used in simulations were obtained 

from the limiting steady-state current of each CV under the assumption of a disk 

electrode geometry. For cases where the limiting steady-state current was not readily 

available (e.g. CVs recorded at pristine or ozone-treated PtC UMEs in Fe(CN)6
3-/4-), 

average radii determined from the corresponding Ru(NH3)6
3+/2+ studies were used (n = 3 -

 5, r = 4.5 - 4.7 µm). Diffusion coefficients were measured at platinum UMEs, and 

calculated from limiting steady-state currents. Values of 6.3 × 10-6 ± 0.1 × 10-6 cm2 s-1 and 

7.5 × 10-6 ± 0.2 × 10-6 cm2 s-1 were obtained for Fe(CN)6
3-/4- and Ru(NH3)6

3+/2+ in 0.5 M 

KCl, respectively (n = 3). Other parameters used for simulations were 

E0 (Ru(NH3)6
3+/2+) = -0.2013 V, and E0 (Fe(CN)6

3-/4-) = 0.2133 V (vs. SCE) at scan rates 

as applied in the conducted experiments. 

4.3 Results and discussion 

4.3.1 PtC deposited on AFM-SECM probes via IBID 

Focused ion beam milling was used to expose frame electrodes at AFM-SECM probes 

according to the previously described procedure. Protruding PtC frames were deposited at 

AFM tip-integrated Au frame electrodes via IBID. Figure 4.4A shows representative CVs 

recorded in Ru(NH3)6
3+/2+ solution before and after the deposition of the PtC frame; the 

corresponding SEM images are shown in Figure 4.4B. The limiting steady-state current 

observed increases approx. 4-fold after the deposition of the PtC composite material. 

Considering the well-defined sigmoidal shape of the CV, which indicates fast electron 
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transfer at the heterogeneous interface this is very encouraging meaning that IBID has the 

capability to enable increasing the tip-integrated electrode area. 

 
 
 

 

Figure 4.4. (A) CVs recorded at tip-integrated AFM-SECM probe before and after the deposition of PtC 
layer via IBID in 5 mM Ru(NH3)6

3+/2+ containing 0.5 M KCl supporting electrolyte (scan rate 0.1 V s-1). 
(B) Corresponding top-view SEM images showing the PtC frame. 
 
 
 
Combined AFM-SECM imaging was performed to evaluate the capability of tip-

integrated PtC electrodes for simultaneously recording topographical and electrochemical 

surface properties. Figure 4.5 shows topography and current images at two different 

electrode biases. The electrode was biased at -0.45 V vs. AgQRE (A and B) for the 

reduction of Ru(NH3)6
3+/2+. It should be noted that the elevated platinum grid leads to a 

positive feedback effect resulting in a localized current increase. As expected, the 

insulating silicon nitride substrate results in a negative feedback effect as evident by the 

decreased current. As a control experiment, the tip was biased at 0 V, where no 

considerable reduction of Ru(NH3)6
3+/2+ occurs. Correspondingly, the current image (D) 

shows no differences in current level depending on the electrical properties of the surface, 
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although the AFM tip was still scanned across the step of the grid (step height approx. 

300 nm) as shown in the topography (C). This result demonstrates that AFM-SECM 

imaging is possible with AFM tip-integrated PtC electrodes, while maintaining sufficient 

electrochemical spatial resolution to clearly resolve the step matching the topography 

(Figure 4.6). Starting and end points of the grid step are marked and overlap for both the 

current and the topography. 

 
 
 

 

Figure 4.5. Simultaneous AFM-SECM imaging of elevated platinum features on a silicon nitride 
substrate. Topography (A and C), and current (B and D) images are shown. The tip-integrated PtC 
electrode was biased at -0.45 V (A and B) and 0 V (C and D) vs. AgQRE, respectively, in a 5 mM 
Ru(NH3)6

3+/2+ solution containing 0.5 M KCl. The tip was scanned in contact mode AFM with a scan 
rate of 0.72 lines s-1 (original scan size: 45 × 45 µm2). The edge length of the PtC frame electrode was 
3.3 µm, the width of the frame was 1.1 µm and the tip length 1.2 µm. Horizontal lines marked in (A) and 
(B) correspond to cross-sections shown in Figure 4.6. 
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Figure 4.6. Cross-section of topography (black) and current (red) image shown in Figure 4.5 (A) and (B) 
at the location marked with the white horizontal line. 
 
 
 
To further evaluate the electrochemical behavior of PtC electrode material in the anodic 

potential range, Fe(CN)6
3-/4- was selected as a redox active species. Additionally, the 

Fe(CN)6
3-/4- couple has been frequently used as a benchmark redox system to evaluate 

condition and reactivity of electrode surfaces, particularly in the case of carbonaceous 

materials29. In contrast to CVs obtained in Ru(NH3)6
3+/2+ (see Figure 4.4), CVs at AFM-

SECM tip-integrated PtC electrodes in Fe(CN)6
3-/4- (Figure 4.7) lack the typical 

sigmoidal response indicating a slow electron transfer reaction at the electrode interface. 

 
 
 

 

Figure 4.7. CV recorded at tip-integrated AFM-SECM probe modified with a PtC layer in 10 mM 
Fe(CN)6

3-/4- containing 0.5 M KCl supporting electrolyte (scan rate 0.1 V s-1). 
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Despite the very encouraging initial results in Ru(NH3)6
3+/2+ solutions, the second set of 

studies performed in Fe(CN)6
3-/4- demonstrates that a thorough characterization of PtC 

composites deposited via IBID is necessary, in order to understand the observed behavior 

and for applying these novel materials as transducers for tip-integrated biosensors. 

4.3.2 Physical and electrochemical characterization of pristine PtC 

deposits 

4.3.2.1 Calibration of IBID growth rate via AFM 

AFM measurements were performed to determine the thickness of the IBID patterns, and 

to calibrate the growth rate. The thickness of the deposits linearly increases with 

deposition time, and the growth rate increases with increasing ion beam currents (Figure 

4.8A). It was found that for the selected pattern size and conditions the highest usable ion 

beam current was 500 pA. The IBID process can be viewed as equilibrium between 

material ablation and deposition; ion beam currents higher than 500 pA shift this 

equilibrium towards material ablation (Figure 4.8B), resulting in milling of the substrate 

instead of PtC deposition. 
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Figure 4.8. (A) Thickness of PtC patterns deposited at varying deposition times and ion beam currents 
(10 - 500 pA; n = 3). (B) CM AFM topography image of PtC deposits at 500 pA and 1000 pA 
demonstrating the shift of equilibrium from deposition to milling. Besides the ion beam current, all 
deposition parameters were kept the same. 
 
 
 

4.3.2.2 EDX analysis 

Literature reports for IBID of PtC deposits show a large difference in material 

composition with platinum concentrations ranging from 15 at% to 50 at% for pristine 

layers19, 20. At first glance, this appears to result from the use of different FIB systems and 

deposition parameters; however, it is difficult to establish a direct correlation between 

deposition parameters and composition, since frequently not all required information is 

provided to reproduce the reported results.  

The composition of the material deposited within this study was evaluated via EDX, 

which provides a measurement of bulk concentrations, as incident primary electrons from 

the electron beam excite X-rays from a large excitation volume with a penetration depth 

dependent on parameters such as material composition, density and primary electron 

energy. Deposits used for EDX analysis were fabricated at varying ion beam currents at a 

thickness of approx. 1.1 µm in an effort to minimize contributions from the substrate 

during measurements. Figure 4.9A shows a typical EDX spectrum indicating mainly 
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contributions from carbon, platinum, and gallium. Contributions from the silicon 

substrate were typically < 0.5 at%, and also minor contributions from oxygen were 

observed (< 1.5 at%). 

 
 
 

 

Figure 4.9. (A) Typical EDX spectrum observed at PtC deposits. (B) Atomic composition of PtC deposits 
after varying the ion beam current during IBID. Error bars correspond to the standard deviation 
retrieved from measurements at three different deposits fabricated at the same conditions. 
 
 
 
As shown in Figure 4.9B, the concentration of carbon decreases with increasing ion beam 

current from 65.2 ± 1.7 at% to 52.5 ± 0.4 at%, whereas both platinum and gallium 

concentrations increase (from 22.1 ± 1.0 at% to 27.3 ± 0.3 at%, and 11.1 ± 0.5 at% to 

18.1 ± 0.3 at%, respectively). The increase in gallium concentration can be attributed to 

the higher gallium ion density present during the deposition when comparing a 10 pA and 

500 pA ion beam current in proportion to the beam diameter (Figure 4.10). Additionally, 

the higher ion density at the surface presumably also leads to preferential sputtering of 

lighter elements (carbon versus gallium and platinum), which has been suggested as one 

of the reasons for the higher metal content observed in IBID versus EBID17. However, 

the obtained results suggest that even at the highest beam current used in this study, the 
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platinum concentration did not exceed approx. 27 at%. Compared to platinum values 

reported in literature, these results tend towards the lower range7, 19. Telari et al. observed 

similar trends for the individual elements while varying the flux of incident ions19. 

 
 
 

 

Figure 4.10. Correlation between ion beam current and current density, which was obtained by dividing 
the current by the beam diameter. 
 
 
 
Since there is only a minor contribution from the Si substrate in the EDX spectra 

recorded at PtC patterns at a thickness of approx. 1.1 µm, thinner PtC layers were 

additionally evaluated in order to investigate, whether there is a correlation between 

material composition and thickness of the deposits. This aspect is of relevance, as thinner 

layers are used for increasing the electroactive area at AFM-SECM probes. Figure 4.11 

shows the composition of IBID PtC layers as a function of pattern thickness. Reducing 

the pattern thickness from approx. 1.1 µm to approx. 0.2 µm does not considerably 

change the composition besides a minor increase in silicon (from 0.2 ± 0.1 at% to 

1.2 ± 0.1 at%), whereas the change for all other components is negligible. However, at a 

thickness of approx. 0.1 µm there is a much stronger contribution from the silicon 

substrate (12.2 ± 0.6 at%), thereby decreasing the relative amount of carbon, platinum, 
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and gallium detected by 10 – 20 at% compared to the 1.1 µm thick deposits. At this layer 

thickness, the substrate significantly interferes with the deposited sample, and it is 

difficult to reliably quantify the material composition; although it is likely that the true 

material composition is not considerably altered at thicknesses of approx. 0.1 µm, since 

only a small shift is detected. This hypothesis is supported by Iliadis et al., where Auger 

electron spectroscopic depth profiles recorded at similar patterns did not show 

considerable changes in the composition depending on the depth30. Therefore, it may 

safely be assumed that material compositions obtained from thick layers can be 

extrapolated to thin layers, which are proposed and used in this thesis.  

 
 
 

 

Figure 4.11. Atomic composition of PtC deposits with varying deposit thickness. 
 
 
 

4.3.2.3 Raman spectroscopic studies 

Visible Raman spectra of samples containing amorphous carbon are frequently 

characterized by two peaks (both pertaining to sp2-hybridized carbon) convoluted into 

one broad band. The two features are labeled as the G- and the D-band, and are 
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associated with the E2g stretching mode for all sp2-carbon forms (chains and rings), and 

the A1g ring breathing mode of graphitic carbon rings, respectively31. Figure 4.12 shows 

an exemplary Raman spectrum recorded at a PtC sample locating these two bands after 

deconvolution from the fitted spectrum.  

Trends in the G-band position, the full width at half maximum (FWHM), and the 

intensity ratio of the D- and G-band (ID/IG) are indicative of the molecular ordering 

within the sp2 carbon phase, and under certain circumstances even provide access to 

indirect quantification of sp3-hybridized carbon content32. The recorded Raman spectra of 

the deposits indicate the presence of graphitic rings in the matrix, and reveal a 

carbonaceous phase, which is overall amorphous in nature. 

 
 
 

 

Figure 4.12. Raman spectrum recorded at pristine PtC deposit showing the spectral fitting and resulting 
deconvolution into D- and G-band. 
 
 
 
PtC patterns deposited at different ion beam currents were investigated, and do not show 

any deviation in peak shape or peak position for the G-band, as summarized in Table 4.1. 

However, it can be clearly seen that depositions obtained at lower beam currents exhibit 

peaks with a stronger scattering intensity compared to samples obtained at higher beam 
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currents. This suggests that although the ordering in the carbonaceous phase is not 

influenced by the current density during the deposition, lower ion beam currents facilitate 

carbon incorporation, as expected. Although the Raman spectra collected with a visible 

excitation source reveal only the sp2-hybridized carbon fraction, the observations are in 

excellent agreement with the trends evident in the EDX analysis (Figure 4.9). 

 
 
 
Table 4.1. Summary of peak fitting data obtained after deconvolution of Raman spectra deposited at 
different ion beam currents. PtC deposits used in these studies were approx. 100 nm thick and consisted 
of four sub-patterns each with an area of 8 µm2. 
 

  G-Band   
Ion beam current [pA] ID/IG Position [cm-1] FWHM [cm-1] Intensity [a.u.] 

10 0.82 ± 0.01 1534.6 ± 1.1 158.2 ± 0.9 57.1 ± 4.6 
30 0.85 ± 0.01 1536.0 ± 2.0 157.2 ± 1.7 48.0 ± 3.8 
50 0.87 ± 0.04 1535.3 ± 0.8 157.1 ± 1.2 46.0 ± 8.4 

100 0.86 ± 0.02 1533.7 ± 1.4 159.0 ± 0.3 42.6 ± 0.3 
300 0.83 ± 0.04 1534.3 ± 1.4 156.8 ± 1.7 29.8 ± 1.4 
500 0.87 ± 0.02 1534.5 ± 2.4 157.9 ± 1.1 29.7 ± 2.7 

 
 
 

4.3.2.4 Four-point probe measurements 

Electrical resistivity of PtC deposits was evaluated in a four-point probe arrangement. 

Four micro-fabricated platinum contacts were connected to PtC deposits with PtC lines 

(Figure 4.13A); current was applied at the two outer contacts, and the voltage drop was 

measured between the two inner contacts. The electrical resistivity of a sample is derived 

from current-voltage characteristics while compensating for geometrical effects related to 

the dimensions and shape of a sample. The resistivity ρ of a material is defined by 
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 R
l
A
×=ρ , (4.1) 

 

where A is the cross-sectional area of the sample, l is the length of the sample, and R is 

the resistance. Figure 4.13B shows an exemplary current-voltage curve of four different 

PtC deposits (generated at identical conditions) showing a linear relationship between 

current and voltage. Based on Ohm’s law, the resistance is obtained from the slope of the 

curve. PtC deposit dimensions were retrieved from AFM measurements. Although 

deposits fabricated at different ion beam currents were evaluated, no particular trend in 

resistivity could be observed. The electrical resistivity obtained averaging over all ion 

beam currents was 1.8 ± 0.3 × 10-3 Ω cm, which is within the range of values reported in 

literature7, 20. 

 
 
 

 

Figure 4.13. (A) SEM image showing the FPP configuration used for measurements of electrical 
resistivity. (B) Current-voltage curves measured at four different samples deposited at the same ion beam 
current (30 pA). 
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4.3.2.5 Electrochemical characterization of PtC deposits 

In order to evaluate the electrochemical behavior of PtC layers fabricated by IBID in 

more depth, conventional platinum disk UMEs were used as substrates. As UMEs can be 

re-polished after each experiment and re-used for deposition of new and pristine PtC 

layers, this is a substantially more cost and time efficient approach compared to using 

AFM-SECM probes. Again, IBID was used to cover the surface of the platinum 

microwire with a PtC deposit. Similar to the initial experiments conducted at AFM-

SECM probes, two redox systems, Ru(NH3)6
3+/2+ and Fe(CN)6

3-/4-, were used for the 

electrochemical studies. Figure 4.14 shows CVs obtained in Ru(NH3)6
3+/2+ and Fe(CN)6

3-

/4- before and after the deposition of PtC, along with a SEM image showing the top view 

of a PtC UME (inset Figure 4.14A).  

 
 
 

 

Figure 4.14. CVs obtained at UMEs before and after deposition of PtC layers in 5 mM Ru(NH3)6
3+/2+ (A), 

and 5 mM Fe(CN)6
3-/4- (B) solution containing 0.5 M KCl (scan rate 0.02 V s-1). The inset in (A) shows a 

SEM image of a PtC deposit (top view).  
 
 
 
The CV measured in Ru(NH3)6

3+/2+ (Figure 4.14A) shows an increase in limiting steady-

state current after the deposition of PtC, which can be attributed to the increased 
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electroactive area. The protruded PtC layer disk UME was approximated with a flat disk 

UME in order to obtain an estimated electroactive area. The limiting steady-state current 

measured at a disk UME can be correlated to the electrode radius r via Equation (2.6). 

The radius obtained before the deposition of PtC equals 3.4 ± 0.2 µm (n = 5). Handling of 

microwires with such small radii (nominal: 2.5 µm) is challenging, and a minute tilt of 

the wire in the sealed glass capillary may lead to slightly larger exposed UME cross-

sections, and thus, larger true electrode radii observed. After the deposition, the radius 

corresponds to 4.7 ± 0.2 µm (n = 5). The difference to the nominal electrode radius of 

4 µm is due to the protrusion of the electrode, and the fact that patterns fabricated by 

IBID are typically slightly larger than targeted. Excluding the increase in limiting steady-

state current, the recorded CVs after the deposition of PtC are similar to CVs recorded at 

conventional platinum UMEs. There is no increase in charging current contribution or 

change in the CV shape, thereby indicating similar charge transfer characteristics. 

Moreover, they match the initial studies performed at AFM-SECM probes. 

Similar to the experimental results at AFM-SECM probes and in contrast to the fast 

electron transfer behavior observed in Ru(NH3)6
3+/2+, CVs obtained in Fe(CN)6

3-/4- show a 

significantly slower electron transfer rate (Figure 4.14B). Considering these results and 

the high amount of carbon present in the deposits as determined by EDX analysis, the 

characteristics of carbon electrodes have to be discussed. Carbon based electrodes have 

several distinct advantages including low-cost, wide potential window, as well as a rich 

surface chemistry advantageous for chemical derivatization33. However, reproducible 

preparation and characterization of carbon surfaces is frequently considered challenging, 

since carbon materials exhibit a considerably large variety in surficial moieties and bulk 
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structures along with an innate tendency of adsorbing adventitious impurities. Careful 

surface preparation in addition to electrode surface activation steps is frequently 

necessary, in order to observe satisfying heterogeneous electron transfer rates for certain 

redox active species. The heterogeneous electron transfer process between the 

Ru(NH3)6
3+/2+ couple and the carbon electrode surface proceeds via a conventional outer-

sphere mechanism that does not require direct interaction of the mediator with the sample 

surface, and therefore is not a surface sensitive process29. In contrast, the electron transfer 

mechanism for Fe(CN)6
3-/4- at carbon electrodes is quite complex34. Depending on the 

carbon material used and influenced by surface history drastically differing k0 values 

have been observed33; for example, k0 values vary from > 0.1 cm s-1 on glassy carbon 

fractured in solution to 1 × 10-6 cm s-1 at the basal plane of highly ordered pyrolytic 

graphite33. Although it seems that the electron transfer for Fe(CN)6
3-/4- at carbon 

electrodes does not depend on surface oxidation, it is clearly surface sensitive, since it has 

been shown that a monolayer of covalently bonded nitrophenyl groups causes a 

significant decrease in the electron transfer rate35. In order to quantify the electron 

transfer behavior at the PtC electrode interface digital simulations were performed, which 

will be discussed in Section 4.3.3.4. 

As discussed above, the high carbon content seems to be an obstacle for certain 

electrochemical reactions, which is a particularly important consideration in the context 

of amperometric biosensor design. Since the original contribution by Guilbault and 

Lubrano in 1973, oxidase-based biosensors are often based on the oxidation of H2O2 as 

by-product of the enzymatic reaction to generate a current signal proportional to the 

analyte concentration36. Platinum has been frequently used as transducer for the anodic 
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determination of H2O2 since it exhibits catalytic properties favored by platinum oxides at 

the electrode surface37, 38. Therefore, techniques to improve the electron transfer rate at 

the PtC transducer material were investigated focusing on the removal or reduction of 

carbon in the composite, consequently shifting the material composition toward a higher 

relative amount of surficial platinum. Studies on H2O2 oxidation experiments were also 

performed at pristine PtC electrodes, and revealed slow electron transfer behavior; those 

results will be discussed in Chapter 5 within the context of biosensing experiments. 

4.3.3 Annealing of PtC deposits for improvement of the electron 

transfer rate 

4.3.3.1 EDX analysis of annealed PtC deposits 

Botman et al. showed that annealing of PtC patterns produced via EBID in reactive (O2) 

environments leads to partial removal of carbon23. The authors compared samples 

annealed at different temperatures in N2 (with 1 ppm O2), air and pure O2 environment. 

PtC composites annealed at elevated O2 levels (air and pure O2) showed similar results 

leading to a substantial decrease in carbon concentration from approx. 85 at% to approx. 

30 at%. The authors concluded that carbon is removed via a thermally activated oxidation 

process, presumably releasing carbon in form of CO and/or CO2. Adapting the procedure 

of Botman et al., PtC deposits were annealed at different temperatures in air. Figure 4.15 

shows that the carbon concentration starts decreasing at elevated temperatures and 

stabilizes at 400 °C to approx. 5 at%. Another evident trend is that the oxygen 

concentration in the sample substantially increases, presumably resulting from the 

oxidation of gallium and platinum in the composite material.  
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Figure 4.15. Atomic composition of PtC deposits after annealing for 11 min at varying temperatures. 
EDX measurements were performed at three different deposits fabricated at same conditions. Lines 
connecting the data points are included only to help visualizing the trend.  
 
 
 

4.3.3.2 Raman analysis of annealed PtC deposits 

Raman spectroscopic studies were performed at annealed PtC patterns, since G-band 

position, FWHM, and ID/IG are indicative of ordering of the sp2-hybridized carbon, which 

is presumably influenced by the temperature treatment. The foremost evident spectral 

feature recognizable in Figure 4.16 is the steadily decreasing Raman scattering intensity 

with increasing annealing temperature. Ultimately, at temperatures above 400 °C the 

intensity of the sp2-hybridized carbon band drops below the detectable limit. Similar to 

the ion beam current variation studies discussed in Section 4.3.2.3, the decrease in Raman 

scattering intensity is complemented by the trend observed during EDX analysis. Further 

evaluation of the Raman spectrum acquired at 200 °C indicates that the sp2-hybridized 

carbon phase undergoes a crystalline re-arrangement, which is indicated by the increased 

scattering intensity of the D-band along with the minor blue-shift of the G-band 

maximum. At 300 °C, these spectral changes become even more pronounced resulting in 

a G-band shift from 1539 ± 1 cm-1 to 1563 ± 5 cm-1 in addition to the narrower FWHM 



105 

(from 152 ± 3 cm-1 to 120 ± 4 cm-1). Additionally, ID/IG increases from 0.83 ± 0.01 to 

1.36 ± 0.13. At 350 °C, the sp2-carbon content becomes too low to be reliably quantified. 

The combined observed spectral trends suggest that annealing induces considerable re-

arrangement of the initially amorphous carbon phase into a more structured state 

composed of six-membered carbon rings (graphite-like). Similar trends have been 

reported for other annealed amorphous carbon materials deposited via conventional 

physical and chemical vapor deposition techniques both in the presence39 and absence40, 

41 of platinum. 

 
 
 

 

Figure 4.16. Raman spectra recorded at pristine and annealed PtC deposits. Spectra are offset for 
clarity. Red arrows mark the G-band shift and D-band intensity increase at 300 ºC. 
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4.3.3.3 High resolution atomic force microscopy 

Dynamic mode atomic force microscopy imaging at pristine and annealed PtC deposits 

was performed to evaluate morphological changes as a function of the annealing 

temperature. IBID PtC materials were previously investigated by transmission electron 

microscopy (TEM) analysis; the material is described as composition of crystalline 

platinum grains dispersed in a matrix of gallium doped amorphous carbon6, 42 with grain 

diameters in the range of 3 - 8 nm20, 42. Figure 4.17 shows dynamic mode AFM images of 

the sample topography obtained at pristine (A), and annealed samples (B) (400 °C). It can 

be clearly seen that the microstructure of the sample changes: pristine PtC deposits have 

larger surface feature sizes, and the roughness of the samples increases during the 

annealing process (rms height increases from 2 to 11.5 nm). 

 
 
 

 

Figure 4.17. Dynamic mode AFM topography images obtained at pristine (A), and annealed (B) (400 ºC) 
PtC deposits. 
 
 
 

4.3.3.4 Electrochemical characterization of annealed PtC deposits 

In order to minimize excessive oxidation of the PtC layers while still removing carbon, 

annealing of the electrodes was performed at approx. 400 °C. SEM was performed after 
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selected electrochemical experiments proofing appropriate coverage of the electrode, and 

excluding contributions from the underlying platinum UME after the temperature 

treatment. Figure 4.18 shows CVs obtained at pristine and annealed UMEs in 

Ru(NH3)6
3+/2+ (A) and Fe(CN)6

3-/4- (B). The CV in Ru(NH3)6
3+/2+ shows only a minor 

increase in limiting steady-state current by approx. 10 % while maintaining the typical 

curve shape, as opposed to the CV obtained in Fe(CN)6
3-/4-, which changes drastically 

yielding a sigmoidal response after the annealing step. The first observation is attributed 

to an increase in surface roughness (rannealed = 5.2 ± 0.1 µm, n = 5), and the latter to the 

removal of carbon impurities from the electrode improving the electron transfer rate for 

Fe(CN)6
3-/4-. Although the electron transfer for the Fe(CN)6

3-/4- couple at platinum 

electrodes is also dependent on electrode cleaning procedures, the k0 values are generally 

in the range of 1 × 10-2 cm s-1 to 2.3 × 10-1 cm s-1 43. 

 
 
 

 

Figure 4.18. CVs obtained at pristine and annealed PtC UMEs in 5 mM Ru(NH3)6
3+/2+ (A), and 5 mM 

Fe(CN)6
3-/4- (B) solution containing 0.5 M KCl as supporting electrolyte (scan rate 0.02 V s-1). 
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For further investigations of the improvement of the heterogeneous electron transfer 

behavior, simulations were performed based on the measured CVs to obtain kinetic 

parameters, which are summarized in Table 4.2. As expected from the initial inspection 

of the results, the standard heterogeneous rate constant k0 for the reduction of 

Ru(NH3)6
3+/2+ does not substantially change aside from a minor improvement of 7.1 × 10-

2 cm s-1 to 1.3 × 10-1 cm s-1. In contrast, k0 values extracted from CVs for the oxidation of 

Fe(CN)6
3-/4- drastically change from 3.3 × 10-4 cm s-1 to 1.5 × 10-1 cm s-1 corresponding to 

an improvement of almost three orders of magnitude. After the thermal annealing 

procedure, both mediators investigated exhibit a reversible electron transfer behavior. 

 
 
 
Table 4.2. Kinetic parameters determined from simulations at pristine and annealed PtC UMEs (n = 5). 
 

 Ru(NH3)6
3+/2+  Fe(CN)6

3-/4-  
 k0 [cm s-1] α k0 [cm s-1] α 

pristine 7.1×10-2 ± 1.1×10-2 0.46 ± 0.04 3.3×10-4 ± 1.0×10-4 0.69 ± 0.01 
annealed 1.3×10-1 ± 5.9×10-2 0.31 ± 0.03 1.5×10-1 ± 5.8×10-2 0.70 ± 0.01 

 
 
 
Charging currents measured in the supporting electrolyte used during kinetic studies were 

investigated by recording CVs at varying scan rates at pristine and annealed PtC UMEs 

(Figure 4.19A). As depicted in Figure 4.19B, charging currents show a linear dependency 

on the scan rate, which is in agreement with theory44. The apparent electrode capacitance 

was calculated from this dependency utilizing Equation (2.11), and resulted in an 

increase from approx. 60 µF cm-2 to approx. 830 µF cm-2 after annealing. Typical 

capacitance values recorded at electrodes in aqueous solutions are in the range of 

20 µF cm-2 45. The capacitance recorded at the pristine PtC layer shows a reasonable 

range, however, after annealing there is a considerable increase observed. It seems likely 
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that this increase in capacitance originates from the increase in surface roughness 

documented by AFM studies at annealed layers, as charging currents are - in contrast to 

faradaic currents - more sensitive to microscopic surface roughness changes33.  

 
 
 

 

Figure 4.19. (A) CVs measured at pristine PtC UME at different scan rates (0.02 V s-1 to 0.2 V s-1) in 
0.5 M KCl. (B) Scan rate dependency of charging currents recorded at pristine and annealed PtC UMEs 
in 0.5 M KCl (n = 4).  
 
 
 
An important aspect of new electrode materials is the useful working potential range. 

Working potential windows of PtC-based UMEs in H2SO4 were evaluated before and 

after the thermal treatment. Figure 4.20 compares the working potential window, and 

shows a decrease of approx. 0.24 V at the anodic end of the potential range as a result of 

the annealing step suggesting that O2 formation is favored after the annealing.  
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Figure 4.20. Working potential windows at pristine and annealed PtC UMEs recorded in 0.5 M H2SO4 
(scan rate 0.1 V s-1).  
 
 
 
Working potential windows of carbon-based electrodes vary substantially depending on 

the actual carbon structure. Values of approx. 3.5 - 3.7 V were reported for high quality 

boron-doped diamond and nitrogen-doped diamond-like carbon electrodes, whereas 

approx. 2 - 2.1 V were reported for more graphitic electrodes, such as glassy carbon or 

highly-oriented pyrolytic graphite46-48. It has been suggested that an increase in sp2-

carbon content at the electrode surface is correlated with a decrease of the working 

potential window range, since it facilitates adsorption of dissolved species to the surface 

compared to the more inert hydrocarbon-like surface, such as boron-doped diamond29, 46, 

49. In general, carbon-based electrodes show significantly slower kinetics for surface 

oxidation and hydrogen evolution compared to metal electrodes29. Typically, CVs 

recorded at platinum electrodes in aqueous acidic media show evolution of hydrogen 

below 0 V (vs. SHE), whereas oxygen evolution occurs above approx. 1.5 V (vs. SHE). 

Hence, the decrease of the potential range observed after the temperature treatment is 

correlated to the increased amount of platinum present at the electrode surface due to the 

partial removal of carbon.  
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Additionally features in the CV after the annealing step show a very characteristic shape 

for platinum surfaces including the voltammetric signatures for the adsorption of 

hydrogen (Figure 4.20). The charge resulting from the adsorption of H+ was used to 

estimate the electrochemically active platinum surface area. This approximate charge can 

be extracted from CVs recorded in acidic aqueous media by integration of the cathodic 

current in the potential range of -0.63 V to -0.26 V (vs. Hg/HgSO4) after correcting for 

charging current contributions. For this approximation, a surface interaction of 1:1 (H:Pt) 

was assumed, and a hydrogen adsorption charge of 210 µC cm-2 per monolayer50. Using 

these approximations, an adsorption charge of 6.9 × 10-5 µC was calculated, which 

corresponds to a platinum surface area of approx. 33 µm2. Assuming a flat disk-shaped 

electrode and utilizing the electrode radius of 5.2 µm obtained from the limiting steady-

state current, the total area of the electrode is 84.6 µm2. However, since the diffusion-

controlled current is typically proportional to the projected area and is not affected by the 

microscopic surface roughness to the extent adsorption or capacitive effects are 

influenced, the true total surface area may differ from this value. Consequently, this may 

contribute to the observed discrepancy between the relative amount of platinum obtained 

by EDX analysis (28.8 ± 1.0 at%), compared to the approx. 39.1 % of platinum fraction 

calculated from the hydrogen adsorption data. Additionally, as EDX is a bulk technique, 

possible enrichment of platinum at the surface due to annealing is not resolvable, whereas 

the electrochemical adsorption data is highly surface sensitive.  

Concluding, it could be shown that annealing is efficient in removing the carbon from the 

composite material, and leads to the desired improvement of electrode characteristic.  
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4.3.3.5 Annealing of AFM-SECM probes 

AFM-SECM probes were annealed at the same conditions (11 min, 400 ºC) used for PtC 

layers on UMEs in order to evaluate transfer of the developed process to the cantilevers. 

Figure 4.21 shows optical micrographs of an AFM-SECM probe before and after the 

annealing. As marked with the red circle in Figure 4.21B, the AFM cantilever bends after 

the annealing procedure. This bending is sufficient to disturb the deflection of the laser 

spot from the cantilever such that the optical readout of the deflection in the experimental 

setup is not possible. The bending results from different temperature expansion 

coefficients of the layered gold and silicon nitride material. Hence, the thermal annealing 

process successfully applied at UMEs may not be transferred to AFM-SECM probes, and 

a more “gentle” approach has to be developed. 

 
 
 

 

Figure 4.21. Optical micrographs of AFM-SECM probes before (A) and after (B) annealing (400 ºC, 
11 min). The red circle marks the cantilever bending evident by the tip moving out of focus. 
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4.3.4 Alternative approaches to improve the electron transfer behavior  

4.3.4.1 UV/ozone treatment 

An alternative approach to treat PtC layers for improvement of electron transfer kinetics 

is based on a UV/ozone exposure derived from a study published by Wipf and co-

workers51. The authors observed an improvement of electron transfer kinetics for 

catechols and ascorbic acid at glassy carbon electrodes after a UV/ozone treatment step. 

They concluded that a carbon overlayer, produced during polishing with alumina paste, 

was removed by oxidation of the carbon to CO2 by this treatment. Additionally, a 

cleaning effect was observed removing other contaminants from the surface, and 

therefore restoring the electrode activity. 

Based on the obtained results from PtC layers on UMEs in respect to the sensitivity of 

Fe(CN)6
3-/4- to the condition and reactivity of the PtC surface, Fe(CN)6

3-/4- was selected as 

a “probe” to determine the effectiveness of alternative treatment procedures. Similar to 

Sections 4.3.2.5 and 4.3.3.4, PtC-covered UMEs were used for evaluation of the 

treatment procedures. CVs in Fe(CN)6
3-/4- were performed at PtC UMEs after 30 min 

UV/ozone treatment intervals as shown in Figure 4.22 to evaluate the time required for 

sufficient carbon removal from the surface. Similar to thermal annealing, this treatment 

appears to improve the electron transfer at the PtC UME, and the response to the 

oxidation of Fe(CN)6
3-/4- is stabilized after approx. 3 hrs. Kinetic parameters derived from 

simulations are summarized in Table 4.3 for the pristine and UV/ozone-treated (after 

3 hrs treatment) PtC-modified UME. The standard heterogeneous rate constant improved 

by almost two orders of magnitude. 
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Figure 4.22. CVs in 5 mM Fe(CN)6
3-/4- containing 0.5 M KCl were performed at PtC UMEs in between 

30 min UV/ozone treatment steps (scan rate 0.02 V s-1). 
 
 
 
Table 4.3. Kinetic parameters determined from digital simulations at pristine and 3 hrs ozone-treated 
PtC UME.  
 

 Fe(CN)6
3-/4-  

 k0 [cm s-1] α 
pristine 5.2×10-4 0.66

ozone-treated 1.6×10-2 0.61
 
 
 
After initial studies determining the time needed to obtain improved electron transfer 

kinetics, the UV/ozone treatment was applied continuously for a period of 3 hrs. CVs 

were recorded at PtC UMEs before and after exposure to the UV/ozone atmosphere in 

Ru(NH3)6
3+/2+ (Figure 4.23A), and Fe(CN)6

3-/4- (Figure 4.23B), respectively. In contrast 

to the values reported in Table 4.3 where the treatment was obtained during six 

UV/ozone treatment steps, the standard heterogeneous rate constant for the oxidation of 

Fe(CN)6
3-/4- improved only slightly from 4.9 × 10-4 cm s-1 to 2.0 × 10-3 cm s-1 (Table 4.4). 

The CV in Ru(NH3)6
3+/2+ remained essentially unaltered with only a minor increase of the 

standard heterogeneous rate constant from 8.1 × 10-2 cm s-1 to 1.3 × 10-1 cm s-1 (Table 

4.4), as previously observed for thermal annealing. 
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Figure 4.23. CVs obtained at pristine and ozone-treated PtC UMEs in 5 mM Ru(NH3)6
3+/2+ (A), and 

5 mM Fe(CN)6
3-/4- (B) solution containing 0.5 M KCl (scan rate 0.02 V s-1). 

 
 
 
Table 4.4. Kinetic parameters determined from simulations at pristine and 3 hrs ozone-treated PtC 
UMEs (n = 3; continuous treatment). 
 

 Ru(NH3)6
3+/2+  Fe(CN)6

3-/4-  
 k0 [cm s-1] α k0 [cm s-1] α 

pristine 8.1×10-2 ± 3.3×10-2 0.48 ± 0.07 4.9×10-4 ± 2.1×10-4 0.69 ± 0.01 
ozone-treated 1.3×10-1 ± 6.0×10-4 0.37 ± 0.01 2.0×10-3 ± 7.8×10-4 0.65 ± 0.02 

 
 
 
Additional studies were conducted to evaluate this behavior. In a first step, the UV/ozone 

chamber was vented to remove possibly enriched contaminants in the atmosphere of the 

chamber, and a dipping/flushing step with H2O was introduced to wash off possibly 

adhering contaminants from the electrode surface in between the treatment steps. None of 

these sets of studies led to the same extent of improvement in electrode kinetics, as 

initially observed in Figure 4.22, where a potential ramp in form of cyclic voltammetry 

was applied between the treatment steps. Hence, the initial experiments were repeated, 

with the only difference that PtC electrodes were biased in KCl solutions every 30 min 

throughout the 3 hrs UV/ozone treatment steps by cycling the potential between 0 – 0.5 V 

(vs. SCE) in order to investigate the influence of an applied potential. Only before and 
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after the treatment one CV was recorded in Fe(CN)6
3-/4-. In this experiment, a similar 

trend was obtained, as in the first set of experiments. This indicates that the solution 

exposure and potential sweeping in combination with the UV/ozone treatment has an 

additional cleaning effect on the PtC UMEs. Given the fabrication time and cost for 

AFM-SECM probes, any additional handling steps and electrochemical experiments are 

usually minimized before the targeted application to avoid possible damage of the 

combined probes. Thus, a pre-treatment procedure based on prolonged electrochemical 

biasing is not an ideal approach, and hence, was not further considered relevant for these 

studies. Additionally, the presented approach of potential cycling of the PtC layers in 

between UV/ozone treatment steps is highly labor intensive, since every single electrode 

needs to be individually treated for an extended period of time. Therefore, the precise 

evaluation of mechanisms involved during UV/ozone treatment is the scope of future 

studies. 

4.3.4.2 Post-deposition FIB milling 

The third approach for reducing the carbon content is based on preferential sputtering of 

carbon with the focused ion beam. During preferential sputtering, the ejection of lighter 

elements is favored resulting in a surficial enrichment of heavier elements52. 

Similarly to Section 4.3.4.1, Fe(CN)6
3-/4- was again selected as a “probe” to determine the 

effectiveness of the preferential sputtering process. Initial studies were conducted at PtC 

UMEs exposed to the FIB for varying periods of time at a beam current of 10 pA 

immediately after the IBID process. Figure 4.24 shows selected CVs recorded in 

Fe(CN)6
3-/4- after post-deposition FIB milling. It is apparent from those CVs that the 
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electron transfer rate drastically improves with an increase of milling time, and remains 

essentially unaltered after approx. 16 min.  

 
 
 

 

Figure 4.24. CVs recorded at PtC UMEs after FIB milling for varying periods of time in 5 mM 
Fe(CN)6

3-/4- solution containing 0.5 M KCl (scan rate 0.02 V s-1). 
 
 
 
After determination of the optimum FIB milling time, CVs at PtC UMEs were again 

recorded in Fe(CN)6
3-/4- and Ru(NH3)6

3+/2+. Standard heterogeneous rate constants were 

determined from the CVs, as previously described, and are summarized in Table 4.5. The 

electron transfer rate is enhanced after the FIB milling procedure for Fe(CN)6
3-/4- in 

comparison to pristine PtC UMEs, and the obtained rates are similar to the results 

obtained at thermally annealed PtC UMEs. In contrast, the reduction of Ru(NH3)6
3+/2+ 

proceeds at similar rates as at pristine layers. 
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Table 4.5. Kinetic parameters determined from simulations at pristine and FIB-milled PtC UMEs 
(n = 3). Values for pristine layers are reproduced from Table 4.2 for comparative purposes. 
 

 Ru(NH3)6
3+/2+  Fe(CN)6

3-/4-  
 k0 [cm s-1] α k0 [cm s-1] α 

pristine 7.1×10-2 ± 1.1×10-2 0.46 ± 0.04 3.3×10-4 ± 1.0×10-4 0.69 ± 0.01 
FIB-milled 5.1×10-2 ± 7.2×10-3 0.47 ± 0.03 2.1×10-1 ± 3.8×10-2 0.84 ± 0.02 

 
 
 
Again, working potential windows in H2SO4 at PtC UMEs after FIB milling for 16 min 

were analyzed. Figure 4.25 shows the working potential window in comparison to the 

working potential window at a pristine PtC UME. In comparison to the pristine PtC layer, 

there is a minor decrease by approx. 0.13 V at the anodic potential end. Although the 

change is not as pronounced as for the thermally-annealed PtC UMEs (Section 4.3.3.4), 

the same trend is obtained, and may be again attributed to the localized increase of 

surficial platinum content. In contrast to the annealing data presented earlier, the 

signature for the adsorption of hydrogen to platinum is not pronounced enough to allow 

reliable quantification however, it is still qualitatively visible.  

 
 
 

 

Figure 4.25. Working potential windows at pristine and PtC UMEs FIB-milled for 16 min recorded in 
0.5M H2SO4 (scan rate 0.1 V s-1). 
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Finally, PtC frame electrodes were deposited on AFM-SECM probes, and subsequently 

exposed to a post-deposition FIB milling step. The post-deposition FIB milling time had 

to be increased by 4 min to 20 min for AFM-SECM probes in order to achieve stable 

unaltered CVs. This difference to UME treatment is most likely due to the different 

deposition parameters (targeted electrode area 8 µm2 and ion beam current 30 pA) used, 

which presumably have an influence on the PtC composition. Figure 4.26 shows CVs in 

Fe(CN)6
3-/4- at such AFM-SECM probes before and after the deposition of PtC followed 

by consecutive FIB milling. It is crucial that the insulation layer after the milling step is 

not damaged, which can be derived from SEM imaging and the CV showing the 

conventional sigmoidal shape characteristic for such small electrodes. This approach 

seems promising for the design of IBID-increased electrodes, and will be further 

evaluated for studies using H2O2 as target analyte in biosensing applications (Chapter 5).  

 
 
 

 

Figure 4.26. CVs recorded at tip-integrated AFM-SECM probe before and after the deposition of PtC 
layer via IBID in 5 mM Fe(CN)6

3-/4- containing 0.5 M KCl supporting electrolyte (scan rate 0.1 V s-1). 
The PtC layer was treated by immediate post-deposition FIB milling for 20 min. 
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4.4 Final remarks 

The properties of pristine and treated PtC deposits fabricated by IBID were investigated 

as novel patternable electrode materials. Initial results performed at PtC tip-integrated 

AFM probes are promising; EDX, Raman analysis, FPP, and AFM along with cyclic 

voltammetric studies were performed to investigate in detail the properties of this 

composite material. A high content of carbon in the composite materials was defined as 

an obstacle for applications in tip-integrated biosensor design. 

Consequently, several electrode pre-treatment procedures were evaluated focusing on the 

removal of carbon to increase the relative amount of the surficial platinum content. 

Annealing PtC deposits at varying temperatures revealed a trend, which includes a 

pronounced decrease in carbon content stabilizing at approx. 5 at% carbon above 400 ºC, 

as determined by EDX analysis. These results are complemented by Raman spectroscopic 

and electrochemical studies. Annealing PtC deposits appears to be an excellent approach 

to gain the electrode characteristics of interest, however, this procedure induces 

unacceptable bending of AFM cantilevers when applied to AFM-SECM probes. 

UV/ozone treatment and post-deposition FIB milling were evaluated as alternative 

procedures to improve the electron transfer rate particularly at AFM-SECM probes. 

Experimental results obtained during UV/ozone treatments indicate complex surface 

reaction mechanisms; a close inspection of these processes is beyond the scope of this 

thesis. FIB milling of PtC deposits directly after IBID leads to promising results 

indicating preferential sputtering of carbon when compared to platinum and gallium. 

Additionally, this procedure is compatible with AFM-SECM probes, and hence, will be 
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further evaluated in the following chapter utilizing IBID transducers with post-deposition 

treatment for advanced biosensor design. 

This chapter demonstrated that PtC composite electrodes fabricated by IBID are an 

attractive approach for patterning individual and highly-confined electroactive features at 

a precise position. Future work to improve the understanding of IBID PtC materials 

should focus on a detailed study of the UV/ozone treatment process, and its influence on 

the electrochemical response. Additionally, as any generic PtC pattern may be deposited, 

this aspect should be further evaluated by fabricating e.g. fine grid structures, which 

could lead to a more significant increase of the observable steady-state current. 
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5 TOWARDS THE APPLICATION OF AFM-SECM FOR 

IMAGING OF LIVE BIOLOGICAL SPECIMEN 

 
 
 
In this chapter, the groundwork towards the imaging and detection of localized activity 

using scanning probe microscopy techniques in general and AFM-SECM in particular is 

described. Live epithelial cell monolayers are characterized by AFM. Additionally, ATP 

detection at epithelial cell monolayers is achieved with amperometric biosensors 

combined with non-invasive SECM, and laterally-resolved AFM-SECM. PtC deposits 

introduced in Chapter 4 are further evaluated as electrode material for H2O2 detection, 

and as transducer platforms for glucose biosensors. 

 

5.1 Motivation 

Bifunctional AFM-SECM probes are exciting platforms for the incorporation of 

miniaturized biosensors. AFM tip-integrated amperometric glucose biosensors have been 

developed, and were used to image model surfaces enabling simultaneous topographical 

and electrochemical imaging of glucose membrane transport. However, depending on the 

targeted analyte and investigated sample surface, there are several challenges associated 

with using these devices; among those are the low signal (current) levels, and the 

dynamics and softness of complex biological samples, which render the experimental 

conditions challenging. Particularly for detection and localization of biologically-relevant 
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molecules at live cell surfaces more development is needed for reliable measurements in 

a routine regime. 

Cellular surfaces are soft and dynamic biological entities, and prone to changes 

depending on their environment. Hence, biological samples require a thorough 

characterization within the targeted imaging environment prior to performing more 

complex chemical sample analysis. Reliable performance of miniaturized biosensors 

needs to be verified at a µm-sized level prior to implementation and further 

miniaturization for tip-integrated electrodes. Therefore, this section focuses on 

characterization and imaging of epithelial cells by AFM, and the development of suitable 

transducers and experimental conditions towards the detection of ATP at the surface of 

these cells. 

5.1.1 Amperometric biosensors and scanning probe microscopy 

The development of SECMs in the late 1980’s1-3 opened new doors for applications of 

biosensors. Horrocks et al. described the application of a H2O2 biosensor as a SECM 

probe4. Scanning miniaturized biosensors across sample surfaces enables imaging of 

biologically relevant processes. However, their use in conventional SECM is limited. 

Biosensing layers typically require electrode surface modification, which prevents 

conventional SECM positioning methods utilizing faradaic currents measured at UMEs, 

while approaching the sample surface. Hence, alternative positioning strategies have to 

be used, which will be discussed in the following. In the aforementioned example, 

Horrocks et al. positioned a H2O2 biosensor by measuring the solution resistance between 

tip and auxiliary electrode via application of a high-frequency alternating potential to the 

tip. Changes of the resistance in the vicinity of the sample surface may then be correlated 



129 

to the tip-to-sample distance. Alternatively, dual-UME assemblies have been introduced, 

where one UME is modified with a biosensing layer, while the second unmodified UME 

is used to position the sensing assembly at the sample surface via conventional feedback 

mode SECM5. As an example, a dual assembly was applied to locally detect ATP, and for 

laterally-resolved imaging of ATP transport through an artificial membrane5. However, 

this approach involved scanning the sample in constant height mode, which leads to 

convolution of topography and electrochemical activity in cases where the samples show 

significant topographical changes for example like single cells and cell assemblies. 

As already described in Section 2.2.2, positioning of UMEs using shear force is an 

interesting approach to position and scan an UME in constant distance above a sample 

surface. This technique has been applied to electrochemical imaging with 

microbiosensors by Schuhmann and co-workers6. In their contribution, fiber-shaped glass 

capillaries were filled with either GOx or GDH entrapped in a hydrogel matrix. 

Subsequently, those probes were scanned across bare platinum (for GOx) or 

poly(methylene blue)-modified (for GDH) UMEs.  

As discussed in earlier sections of this thesis, another possibility to achieve constant 

distance between electrodes and surfaces is the integration of AFM and SECM 

technology. Figure 5.1 shows a schematic of such an AFM tip-integrated biosensor 

illustrating the signal generation. Tip-integrated glucose biosensors have been used to 

monitor glucose diffusion through a track-etched model membrane7. Glucose diffusion 

could also be quantified by application of a single pore model, and prior calibration of the 

tip-integrated glucose sensor. In addition, a tip-integrated H2O2 biosensor based on 

horseradish peroxidase immobilized at the electrode was applied for localized detection 
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of H2O2
7, 8. Both approaches have exclusively been applied to electrochemical imaging of 

model substrates so far. Summarizing, extensive studies using SECM with biosensors 

have not been performed to date. 

 
 
 

 

Figure 5.1. Schematic of AFM tip-integrated biosensor.  
 
 
 
Consequently, AFM tip-integrated ATP biosensors for the detection of ATP at live 

epithelial cell monolayers were fabricated. Figure 5.2 shows representative initial 

measurements. The AFM-SECM probe used was a FIB-fabricated probe with an 

electrode edge length of 1.5 µm (width: 0.1 µm). Experimental details for the fabrication 

of the biosensor are described in detail in Section 5.2.2. As described in Section 2.1.3, the 

biosensor is based on the competitive enzyme reaction of GOx and HEX, and due to the 

involved reactions (Equations (2.14) - (2.16)) the presence of ATP leads to a current 

decrease. However, as revealed in the current image (Figure 5.2B), no detectable current 

response from the biosensor was obtained.  
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Figure 5.2. Representative AFM-SECM experiment obtained with AFM tip-integrated ATP biosensor 
during initial studies at live epithelial cell monolayer showing topography (A), and current (B). 
Electrode was biased at 0.65 V vs. AgQRE, and imaging was performed in PBS solution (pH 7.4) 
containing 3 mM glucose and 5 mM MgCl2. A FIB-fabricated probe was utilized with a tip length of 
1.1 µm and a frame edge length of 1.5 µm, and the scan rate was 0.501 lines s-1 at an original scan size 
of 25 × 25 µm2.  
 
 
 
This result demonstrates that the size of an unmodified tip-integrated electrode is 

insufficient for immobilizing sufficient quantities of biomolecules close to the electrode 

surface, thus not providing a resolvable current signal from the biosensor. Extrapolating 

the saturation current obtained at UME-based ATP biosensors (diameter: 25 µm; 

isat ~ 30 - 40 pA)9 indicates that current levels expected at unmodified tip-integrated ATP 

biosensors are in the low pA to sub-pA range. This once more emphasizes the necessity 

for increasing the tip-integrated electrode area in order to obtain detectable current levels.  

5.2 Experimental 

5.2.1 Cell cultures 

Cell samples were cultured at Emory University at the Department of Physiology (in 

collaboration with Dr. Douglas C. Eaton). Highly transporting 2F3 epithelial cells, which 

are a clone of the A6 epithelial cell line derived from the distal nephron of Xenopus 

laevis, were used as model cell system throughout this thesis.  
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Cell cultures were prepared as described elsewhere10. Briefly, cell culture media 

consisted of a 50 % (v/v) mix of DMEM and Ham’s F-12 medium adjusted to amphibian 

tonicity additionally adding 0.6 % penicillin, 1.0 % streptomycin, 5 % (v/v) fetal bovine 

serum, 1.5 µM aldosterone (Fisher Scientific, Pittsburgh, PA), 1 mM glutamine, and 

25 mM NaHCO3 (Fisher Scientific). Confluent cells were detached from T-75 flasks 

(Corning, Lowell, MA) with 0.05 % Trypsin-EDTA enzymatic dissociation solution. In 

the following, the cells were rinsed, centrifuged, repeatedly resuspended, and plated onto 

tissue culture inserts (part# 161395, Nunc, Rochester, NY) for all further experiments. 

Cells were incubated at 26 ºC and 4 % CO2, and nurtured every other day with fresh 

medium. All chemicals and solutions used during culturing were obtained from 

Invitrogen (Carlsbad, CA), unless otherwise noted.  

On the 7th day after plating, the cells were transported to the Georgia Institute of 

Technology, and kept at the same incubating conditions until experiments were 

performed. A new cell passage was obtained every week at approx. 100 % confluency, 

and cell passage numbers of 96 to 105 were used. 

5.2.2 Electrochemical techniques 

UMEs used for PtC experiments were prepared as described in Section 4.2. PtC layers 

were either left pristine or pretreated after the deposition, and then immediately used for 

H2O2 sensing experiments or for glucose biosensor preparations. Dual-barreled UMEs as 

transducers for ATP biosensing experiments were prepared by sealing platinum 

microwires (diameter 25 µm, Goodfellow, U.K.) into theta borosilicate glass capillaries 

(Hilgenberg, Germany). After encapsulation, the electrode surfaces were 

ground/polished, as described in Section 4.2.4. Electrical connection to platinum 
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microwires was established with copper magnet wires, and two-component silver 

conductive epoxy (same as in Section 3.2.3). CVs were performed to confirm electrical 

separation of the two UMEs in the assembly. Prior to enzymatic modifications, dual-

UMEs were briefly re-polished, sonicated, and cleaned in 0.5 M H2SO4 (same cleaning 

sequence as described in Section 4.2.4). Platinum counter electrodes and Ag/AgCl or 

SCE reference electrodes were used throughout all experiments, unless otherwise stated. 

For enzyme immobilization, two different types of electrodeposition paints were used, 

namely Glassophor ZQ 8-43225 Canguard (BASF, Germany) and Resydrol 

AY498w/35WA (Cytec, Smyrna, GA). EDP-enzyme solutions were prepared using a 

final pre-polymerization solution concentration of 70 µL (EDP) mL-1 (HPLC grade 

water), and 600 U (enzyme) mL-1 (HPLC grade water). Glucose oxidase from aspergillus 

niger (Type X-S), and hexokinase from yeast overproducer were obtained from Sigma 

(St. Louis, MO) and Roche Applied Science (Indianapolis, IN), respectively, and HPLC 

grade water was obtained from J. T. Baker (Phillipsburg, NJ). All solutions were 

prepared separately and mixed to the resulting final concentrations noted above before 

polymerization. For glucose biosensors, EDP-water solutions and GOx-water solutions 

were prepared, and mixed together before storage in ice for 30 min before the 

polymerization. In the case of ATP biosensors, HEX-EDP-water solutions were 

additionally mixed after cooling the EDP-water solution for 25 min. Similar to the 

glucose sensor, after a period of 30 min the polymerization was performed after mixing 

the GOx-EDP-water and the HEX-EDP-water suspensions in a 1:1 ratio. Pulsed potential 

profiles applied for the precipitation depended on the used EDP, and were 2.2 V for 0.2 s, 

0.8 V for 1 s, and 0 V for 5 s or 1.9 V for 0.2s, and -0.3 V for 5 s in the case of Canguard 
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or Resydrol, respectively. The number of deposition cycles was varied from 1 - 5 

depending on the biosensor. After polymerization, the biosensors were dipped in cold 

phosphate buffered saline (PBS, pH 7.4; Invitrogen, Carlsbad, CA) for removal of un-

precipitated EDP-enzyme residues, and stored in PBS at 4 ºC for at least 1 h prior to use.  

PtC UME-based calibrations for H2O2 (Sigma-Aldrich, St. Louis, MO) and glucose 

(Fluka, St. Louis, MO) biosensors were obtained by constant potential amperometry at 

0.65 V vs. SCE, and addition of H2O2 or glucose, respectively. After each addition, the 

solution was gently mixed generating some noise observed in the presented current plots. 

PtC UMEs were recycled after each experiment, as mentioned in Section 4.2.4.  

5.2.3 Scanning probe techniques 

The same AFM and AFM-SECM setup described in Section 3.2.3 was used for all 

studies. For AFM imaging of epithelial cell surfaces, an approx. 2 – 3 cm2 sized cell 

sample was obtained from the tissue culture insert by gently breaking the cell substrate 

with ethanol-cleaned tweezers. Cells were washed with PBS and mounted in the AFM 

liquid cell. AFM cell imaging was performed in PBS solution with silicon nitride tips 

(Veeco, Woodbury, NY) for both contact and dynamic mode measurements. Typically, 

the resonant frequency of the utilized silicon nitride cantilevers in liquid is the range of 

43 kHz. 

AFM-SECM probes were either fabricated as described in Section 3.2.1, or obtained by a 

batch-fabrication process developed in our research group11, 12. Prior to experiments, the 

AFM-SECM probe quality was tested recording CVs in a reversible redox mediator 

solution and the probes were then mounted in the AFM nose cone assemblies. The cells 

were placed on the AFM stage, as previously described. AFM-SECM feedback imaging 
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was performed in 5 mM Fe(CN)6
3-/4- and PBS solution. During low-force contact mode 

imaging, the AFM probe was retracted from the sample surface until force impact was 

minimized. AFM tip-integrated ATP biosensors were prepared with one deposition cycle 

following the procedure described in Section 5.2.2. ATP biosensing experiments at live 

epithelial cells were performed in PBS solution containing 5 mM MgCl2 (Fluka, St. 

Louis, MO) and 3 mM glucose. For control experiments, the PBS/MgCl2/glucose solution 

in the AFM flow cell was exchanged with a HEX solution at a concentration of 5 U mL-1 

in PBS/MgCl2/glucose. 

Typically, AFM images were post-processed via flattening of the background. In some 

cases, for electrochemical images, Fourier filtering was performed to remove the line 

frequency at 60 Hz, or the data was smoothed. 

SECM measurements were conducted utilizing a home-build setup located in a Faraday 

cage (Warner Instruments, Hamden, CT). The SECM consists of a micropositioning 

system (SPI Scientific Precision Instruments, Oppenheim, Germany) combined with a 

sample stage, and potentiostats from CH instruments (Section 3.2.4). The SECM is 

controlled via an AD/DA board (DAS1602-16, Plug-In-Electronic, Eichenau, Germany) 

with a personal computer. The software that controls the positioning system, and enables 

data acquisition was developed by Dr. Gunther Wittstock (University of Oldenburg, 

Germany). 

All SECM and AFM-SECM measurements were performed in a three-electrode setup. A 

platinum counter electrode was used, and all potentials are reported against AgQRE. The 

dual-UME acted as the working electrode; for positioning the bare platinum wire (WE 2) 



136 

was biased at -0.52 V, and for ATP biosensing the biosensor (WE 1) at 0.65 V. The 

solution used during all experiments was PBS with 5 mM MgCl2 and 5 mM glucose. 

WE 1 was modified with a biosensing layer, as described in Section 5.2.2 applying three 

deposition cycles. Prior to SECM experiments, the ATP biosensors were calibrated by 

constant potential amperometry via addition of ATP (Aldrich, St. Louis, MO) to the 

solution. For SECM experiments, epithelial cells were mounted in a custom-build cell, 

and partially covered by a 50 µm thick plastic film. The dual-UME device was mounted 

in the SECM setup, and approached to the plastic film (velocity 1.6 µm s-1) by biasing 

WE 2 at -0.52 V vs. AgQRE for the reduction of oxygen. After detection of a negative 

feedback signal, the z-approach was stopped at approx. 90 % of the current measured in 

bulk. For ATP biosensing above epithelial cells, a line scan was recorded (velocity 

1.6 µm s-1) while biasing WE 1 at 0.65 V vs. AgQRE for the oxidation of H2O2. After 

control experiments were performed by adding free HEX to solution (two times 5 µL) 

resulting in a final concentration of approx. 70 U mL-1, the same volume of 

PBS/MgCl2/glucose was added to the liquid cell to investigate any cross interferences. 

5.3 Results and discussion 

5.3.1 AFM imaging of epithelial cell monolayers 

Atomic force microscopy is a versatile tool for high-resolution imaging of live cell 

surfaces in physiological solutions. However, optimization of AFM imaging conditions is 

required for each individual type of live samples prior to extended investigations for 

characterizing these soft and dynamic biological entities at their particular culturing 

conditions.  
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AFM imaging of epithelial cells was performed in contact mode and dynamic mode 

operation. Figure 5.3 shows typical topographical images acquired in contact mode 

AFM. The images are flattened with a 4th order flattening function. In general, the z-scale 

of flattened images does not represent true height variations of the surface. True height 

variations of epithelial cell monolayers are typically in the range of 0.5 - 4 µm depending 

on the scanned image size. Polygonal cell shapes of individual cells within the monolayer 

are observed. Cell borders between neighboring cells clearly form resolvable tight 

junctions similar to results obtained at A6 epithelial cell layers published in literature13. 

Mechanical impact of the AFM probe on the soft cell sample surface was evaluated by 

continuous scanning at the same sample spot. It could be observed that the structures at 

the cells remain essentially unaltered despite continuous scanning over a time period of 

1.5 hrs; representative images after a period of 26 min are shown in Figure 5.3B. 

However, the middle sections of the single cells are indented during imaging in respect to 

the surrounding cell borders. 

 
 
 

 

Figure 5.3. Topographical AFM images of live epithelial cells in PBS solution acquired in contact mode 
operation. Continuous imaging was performed and images at the beginning (A) and after 26 min (B) are 
shown (scan rate: 0.815 lines s-1). Images are flattened with a 4th order flattening function. 
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Imaging of soft sample surfaces is frequently performed in dynamic mode AFM, since 

the reduced tip-sample contact time results in minimization of force impact14-16. Figure 

5.4 shows representative images obtained in dynamic mode AFM at live cell surfaces, 

while varying the amplitude setpoint. It can be clearly demonstrated that an amplitude 

ratio (Asurface/Afree) of 0.77 (Figure 5.4A) reduces the force impact: the middle section of 

single cells is not indented, however, less features are resolved. Increasing the force 

during dynamic mode imaging (amplitude ratio of 0.67) of the same sample spot results 

in more pronounced feature representation (Figure 5.4B), yet, the cell membranes appear 

indented in comparison to the cell borders, as similarly observed during contact mode 

imaging (Figure 5.3). Hence, there is an optimized balance between achieving sufficient 

resolution of cell features, and minimizing indenting cell surfaces during imaging.  

 
 
 

 

Figure 5.4. Topographical AFM images of live epithelial cells acquired during dynamic mode operation 
in PBS solution. The amplitude ratio (Asurface/Afree) was varied from 0.77 (A) to 0.67 (B). The resonant 
frequency was approx. 43 kHz, and the scan rate was 0.798 lines s-1. The images are flattened with a 4th 
order flattening function. 
 
 
 
However, dynamic mode imaging with AFM tip-integrated biosensors at cell surfaces 

appears less favorable, as vibration of the cantilever at its resonance frequency may affect 

tip-integrated biosensors due to limited mechanical stability of the biosensing layer 
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adsorbed at the transducer surface. This effect is presumably less pronounced for non-

resonating AFM probes. Thus, at the present development stage CM AFM was used for 

biosensing studies at live epithelial cells until the mechanical stability of the sensing 

architectures at the electrode surface is further advanced. 

Structural changes at cell surfaces occurring over a certain time period after plating were 

monitored in an effort to determine the optimum time frame for AFM imaging. Figure 

5.5 shows representative contact mode images acquired at different days at cells from the 

same cell passage. The large area AFM scans do not show any apparent differences 

between the 7th and 11th day after plating. However, it should be noted that larger 

accumulations of dead cells were detected on top of the cell monolayer at longer periods 

of time after plating. Cell imaging was therefore typically performed between the 8th and 

the 10th day after plating. 

 
 
 

 

Figure 5.5. Topographical AFM images of live epithelial cells in PBS solution acquired in contact mode. 
Images obtained on the 7th (A) and the 11th (B) day after plating are depicted. The scan rate was 
0.501 lines s-1 (A), and 0.553 lines s-1 (B). Raw images are shown. 
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5.3.2 AFM-SECM feedback imaging 

As already discussed in earlier sections of this work, combined AFM-SECM has the 

strength of deconvoluting the electrochemical signal from topographical influences. 

However, signal deconvolution is still presumably influenced by sample properties such 

as stiffness, roughness, and the dimension of surface features. 

AFM topographical studies reveal that height variations of epithelial cell monolayers 

have typical dimensions in the 0.5 - 4 µm range. Since cell surfaces are soft structures, it 

is advisable to perform AFM-SECM imaging at live cell monolayers in SECM feedback 

mode to evaluate the possibility of current contributions from topographical features. 

Fe(CN)6
3-/4- was used during these studies, since lipid cell membranes are impermeable 

for hydrophilic redox mediators17. Consequently, negative feedback is observed with 

hydrophilic mediators, as the diffusion to the UME is blocked in the vicinity of the cell 

membrane. This was confirmed while approaching the AFM-SECM probes to the cell 

surface. Figure 5.6 shows representative topography (A, C), and current (B, D) images 

obtained during these experiments. The tip-integrated electrode was biased at 0.6 V (A, 

B) or 0 V vs. AgQRE (C, D). Again, the z-scale in the topographical images is not 

representative of the real height variations, since a 4th order flattening function was used 

for enhanced graphic representation of the image. 
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Figure 5.6. Simultaneously recorded topography (A, C), and current images (B, D) at live epithelial cells 
in AFM contact mode, and SECM feedback mode. The tip-integrated electrode was biased at 0.6 V (A, 
B) and 0 V (C, D) vs. AgQRE, and scanned in 5 mM Fe(CN)6

3-/4- and PBS solution (scan rate: 
0.501 lines s-1). AFM tip length of the FIB-milled probe was 0.78 µm, and the frame electrode edge 
length was 2.04 µm. Topographical images were flattened with a 4th order flattening function.  
 
 
 
It is evident that the current image (Figure 5.6B) shows features matching the 

morphology of the cells (Figure 5.6A). This implies that the topography recorded in 

conventional contact mode AFM is convoluted with the SECM feedback current response 

in those experiments. As mentioned before, flattened topographical images as shown in 

Figure 5.6 do not represent the real height variation across the sample surface. Raw data 

images of the topography reveal a similar height of the topographical features (approx. 

0.5 - 1 µm), which are comparable to the length of the FIB-milled AFM tip (0.78 µm). 

Hence, CM imaging at higher forces requires a tip length significantly larger than the 
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feature size. No SECM feedback image is obtained during control experiments recorded 

at 0 V, since there is no considerable oxidation of Fe(CN)6
3-/4- at this applied potential. 

Additional to dynamic mode AFM, low-force contact mode AFM has been described as 

an alternative operational mode particularly useful for studies at soft biological materials, 

since it may significantly reduce the force impact on the sample surface18, 19. Figure 5.7 

shows AFM-SECM topography and current images recorded while reducing the force 

applied to the sample. Again, the images were flattened, thus the z-scale is not 

representative of the true height variation (which was on the order of 0.5 - 1 µm). The 

force was reduced during image acquisition at the location, which is marked by the 

asterisk. The tip-integrated electrode was biased at 0.6 V vs. AgQRE, and Fe(CN)6
3-/4- 

was used as redox mediator. It can be seen that smaller topographical current effects are 

observed after minimizing the force impact. However, the topography of the image is 

also deteriorated at this point. Although further optimization of topographical imaging is 

required, this observation is nevertheless encouraging illustrating the potential of this 

alternative low-force impact AFM mode. Although dynamic mode AFM-SECM has been 

successfully demonstrated without impairing the tip current or image quality at model 

samples20, it is not practical for initial studies toward the integration of tip-integrated 

biosensors, as described earlier. However, once the biosensor architecture is improved, 

this imaging mode should be revisited. 
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Figure 5.7. Topography (A) and current (B) images of live epithelial cells obtained in AFM contact 
mode and SECM feedback mode. The tip-integrated electrode was biased at 0.6 V vs. AgQRE, and 
scanned in 5 mM Fe(CN)6

3-/4- and PBS solution (scan rate: 0.501 lines s-1). The asterisk marks when the 
force was reduced, and the arrow indicates the scan direction. The FIB-milled AFM probe had a tip 
length of 0.78 µm, and a frame electrode with an edge length of 2.04 µm. The topographical image was 
flattened with 4th order flattening function. 
 
 
 

5.3.3 SECM-based detection of ATP at epithelial cells 

As already mentioned in Section 5.1.1, positioning and distance control of UME-based 

sensors at sample surfaces is challenging, as the change in faradaic current when 

approaching the surface is of limited accessibility with modified electrodes. One 

approach reported during conventional SECM experiments is the application of dual-

UME assemblies36, 37. In this configuration, one UME is modified with the sensing layer, 

whereas the second UME is left unmodified for positioning. In our research group, 

Kueng et al. have developed a dual-UME based ATP biosensor, and have imaged ATP 

transport through a porous membrane in SECM operation5. ATP detection is based on a 

competitive enzymatic reaction of GOx and HEX for the substrate glucose21-23. Both 

enzymes are co-immobilized in an EDP layer at the electrode surface deposited via 

electrochemically-induced pH-shift9, 24, 25. Anodic EDPs used within this work contain 

negatively charged groups such as carboxylic side chains, which are protonated due to a 

localized generation of H+ at the electrode surface. This pH change induces a drastic 
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change in solubility, and consequently results in polymer precipitation along with 

inclusion of the enzymes present in the polymerization solution.  

Based on the detection scheme discussed in Equations (2.14) - (2.16), addition of glucose 

results in a current increase due to the GOx-catalyzed formation of H2O2. 

Correspondingly, at a constant concentration of glucose, ATP addition leads to a 

proportional current decrease, since there is less glucose available. Units of GOx and 

HEX are kept at a ratio of 1:1. Mg2+ is added as MgCl2, which is a co-factor for the HEX-

catalyzed reaction. Oxygen is a co-substrate during the GOx-catalyzed reaction. 

Interestingly, it could be shown that depleted (approx. 1 ppm) oxygen concentrations did 

not influence the current response of the biosensor when compared to oxygen levels 

resulting from equilibration at air (approx. 6 ppm)9, implying that experiments are 

independent of oxygen level variations in that range.  
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Figure 5.8. (A) Schematic SECM setup illustrating a dual-UME line scan across an edge between plastic 
film and cell monolayer. The optical micrograph shows the top view of a representative dual-UME with 
EDP layer (WE 1), and unmodified UME (WE 2). (B) Expected current response after scanning across 
the edge.  
 
 
 
It is known that cells may react to mechanical stress, and it is hypothesized that for 

epithelial cells mechanical stimulation may contribute to the localized release of ATP. 

Thus, it is of interest to further investigate possibilities of non-invasive ATP detection. 

Therefore, dual-UME based ATP biosensors5 were used to confirm ATP release at live 

epithelial cell monolayers during non-invasive SECM operation. Dual-UMEs were 

scanned across an edge between a plastic film and a cell monolayer in constant height 

SECM (Figure 5.8). The step was designed such that the distance between the UME and 

the sample increases once the UME is located above the cell monolayer. Because of this 

design, a current decrease after scanning across the edge can solely be attributed to the 

presence of ATP. In case there is no ATP released, a current increase is expected since 

glucose diffusion is enhanced due to an increased electrode-sample distance. The 

magnified section in Figure 5.8A shows a representative optical micrograph of the dual-
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UME assembly revealing the EDP layer with entrapped enzymes (WE 1, ATP biosensor), 

and the unmodified UME used for approaching to the surface (WE 2). 

 
 
 

 

Figure 5.9. (A) ATP calibration curve obtained from amperometric response curve at an ATP biosensor 
during addition of ATP (WE 1, biased at 0.65 V). (B) Approach curve used to position dual-UME above 
the plastic film; WE 2 was biased at -0.52 V for the reduction of oxygen. Note that the scale is negative. 
(C) Line scan recorded with ATP biosensor (WE 1; E = 0.65 V) while scanning the dual-UME across the 
edge between the plastic film and the cell monolayer. (D) Control experiment illustrating the 
amperometric current recorded at the ATP biosensor (WE 1; E = 0.65 V) positioned above the epithelial 
cell layer while adding HEX and buffer. All measurements were performed in PBS solution at pH 7.4 
containing 5 mM glucose and 5 mM MgCl2 and all potentials are reported against AgQRE.  
 
 
 
Figure 5.9A shows a representative calibration curve obtained at a dual-UME based ATP 

biosensor (WE 1). After calibration, the dual-UME was approached to the surface of the 

plastic film while biasing the unmodified UME (WE 2) at -0.52 V monitoring the 

reduction of oxygen. As expected, a negative feedback effect can be observed in close 
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proximity to the plastic film in the amperometric approach curve (Figure 5.9B). After 

positioning, the dual-UME was scanned in constant height across the edge (film thickness 

of 50 µm) towards the surface of the epithelial cells. The current signal recorded while 

biasing the biosensor at 0.65 V (WE 1) is plotted in Figure 5.9C. The expected decrease 

in current after passing the edge between the film and the cells was recorded indicating 

the presence of ATP. ATP detection was further confirmed in a control experiment while 

the sensor was positioned at the cell surface by adding an excess of HEX to the solution 

(Figure 5.9D). After the addition of free-diffusing HEX, a corresponding current increase 

was observed since free-diffusing HEX depletes ATP present in solution faster than the 

immobilized HEX in the EDP. Due to the decrease in ATP concentration, more glucose 

was available for the GOx-catalyzed conversion of glucose, and hence, an increased 

amount of H2O2 induced a current increase. As expected, addition of buffer did not result 

in any change of current level. This study clearly shows that ATP release from the 

epithelial cell monolayer may be detected with the proposed ATP biosensor. However, it 

is also evident that due to the limited resolution of the UME no variations in ATP level 

could be observed. Thus, further miniaturization has to be performed to investigate 

whether there are localized differences in ATP release patterns. 

5.3.4 AFM-SECM tip-integrated ATP biosensors 

Further miniaturization of the ATP biosensors was performed by deposition of the 

enzyme containing EDP layer onto batch-fabricated AFM-SECM probes11, 12. Batch-

fabricated AFM-SECM probes have tip-integrated ring electrodes with typical inner 

diameters of 2.7 µm and ring widths of 0.7 - 2.6 µm11, which is a significantly increased 

electrode area compared to FIB-based AFM-SECM probes. Figure 5.10 shows an SEM 
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image of such a combined AFM-SECM probe. By using these batch-fabricated probes 

laterally-resolved imaging of ATP release at the surface of live epithelial cells was 

performed for the first time. 

 
 
 

 

Figure 5.10. SEM image of batch-fabricated AFM-SECM probe showing electrode and tip shape. 
 
 
 
Figure 5.11 shows representative topographical and electrochemical images obtained 

with a tip-integrated ATP biosensor at the model cell system. The tip-integrated electrode 

was biased at 0.65 V (vs. AgQRE) to oxidize enzymatically produced H2O2. Reactions 

catalyzed by the enzymes are the same, as presented in Section 2.1.3 (Equations (2.14) - 

(2.16)). The electrochemical image in Figure 5.11B reveals areas of localized current 

decrease (selected areas are marked with red ellipses), which may correspond to elevated 

levels of ATP. Moreover, similar cell shapes reported during conventional AFM imaging 

of epithelial cells are resolvable with the AFM tip-integrated biosensor. 
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Figure 5.11. Simultaneously recorded topography (A) and current (B) at the surface of live epithelial 
cells while biasing AFM tip-integrated ATP biosensor at 0.65 V (vs. AgQRE). Red ellipses mark areas of 
localized current decrease. Imaging was performed in PBS solution (pH 7.4) containing 3 mM glucose 
and 5 mM MgCl2 (scan rate: 0.501 lines s-1, original scan size: 25 × 25 µm2). The batch-fabricated AFM 
tip had a length of 1.58 µm and an inner/outer electrode radius of 2.43/5.68 µm. Topographical image 
flattened with a 4th order flattening function. 
 
 
 
A control experiment similar to the one described in Section 5.3.3 was performed. An 

excess of free-diffusing HEX was added to the AFM liquid flow cell, while scanning the 

sensor across the epithelial cell monolayer surface. Figure 5.12 shows the amperometric 

response curve recorded at the biosensor during addition of HEX and corresponding 

electrochemical images before and after the addition of the free-diffusing enzyme. 

Similar to the SECM cell experiments, an addition of excess HEX confirmed the 

presence of ATP inducing a current increase due to the fact that more glucose (and 

consequently more H2O2) was present because of the consumption of ATP in solution. 

Moreover, the electrochemical image shows only random noise after the addition of HEX 

but a uniform current level, indicating no localized variation of the ATP levels. The 

detection of cellularly-secreted ATP at a bi-enzymatic tip-integrated biosensor is complex 

in nature, as the current levels detected are in the pA range, and since the biosensors have 

to be calibrated prior to experiments. Furthermore, the signal generation is based on a 

mixed generation-collection/feedback mode experiment. Hence, appropriate control 
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experiments are needed accounting for all variable experimental parameters including the 

force impact during AFM imaging, while maximizing the sensor response and 

minimizing the noise during the measurements.  

 
 
 

 

Figure 5.12. Control experiment showing the amperometric response curve recorded at a tip-integrated 
ATP biosensor at an electrode bias of 0.65 V (vs. AgQRE), when the sensor is positioned above the 
epithelial cells. Additionally simultaneously recorded electrochemical images are shown before and after 
adding of the free-diffusing HEX. Experiments were performed in PBS solution (pH 7.4) containing 
3 mM glucose and 5 mM MgCl2. The same AFM probe as in Figure 5.11 was used. The scan rate was 
0.501 lines s-1 (original scan size: 25 × 25 µm2). 
 
 
 

5.3.5 Batch-fabricated vs. FIB-fabricated AFM-SECM probes 

Initial proof of concept studies show localized detection of ATP at the surface of live 

epithelial cell monolayers with batch-fabricated AFM-SECM probes exhibiting an 

electroactive area in the µm range. However, there are several limitations associated with 

the use of batch-fabricated AFM-SECM probes. The tip length (sensitivity) and the outer 

electrode diameter (resolution) are typically in the range of 2.5 µm to 6 µm (Figure 
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5.13A), respectively. Also, the cantilever arm is comparatively wide (approx. 30 µm, 

Figure 5.13B), and due to the close position to the sample (tip length approx. 2.5 µm) 

leads to additional diffusion hindrance potentially interfering with the diffusion of 

glucose from the bulk solution. Additionally, batch-fabricated AFM-SECM probes are 

made from silicon as a bulk material. Due to the semiconducting nature of silicon, 

caution has to be taken not to harm the insulation layer between silicon and electrode 

material since this induces interferences with the recorded current signal. 

On the other hand, FIB-fabricated AFM-SECM probes with integrated PtC electrodes 

offer several advantages in the tip dimensions due to the customized FIB process (Figure 

5.13C). The tip length for individual probes is variable allowing the adaptation of tip 

length; the electrode can be positioned in an optimized distance to the sample surface, 

improving the sensitivity of the electrochemical measurement. Additionally, the critical 

electrode dimension (edge length of the frame electrode) is reduced compared to batch-

fabricated probes leading to improved electrochemical resolution. Despite the smaller 

electrode dimension steady-state currents observed at tip-integrated PtC electrodes are in 

the same range as current values recorded at batch-fabricated probes. This can be 

attributed to the fact that batch-fabricated electrodes are typically slightly recessed, 

whereas PtC electrodes are protruding, thereby enhancing the current. Therefore, FIB-

fabricated AFM-SECM probes with tip-integrated PtC electrodes are promising 

alternatives for ATP detection at live epithelial cell monolayers. 
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Figure 5.13. SEM images comparing critical dimensions of batch-fabricated (A and B) and FIB-
fabricated (C) AFM-SECM probes. Asterisks indicate that dimensions are tilt-corrected. 
 
 
 

5.3.6 PtC composite electrodes as transducer for H2O2 oxidation 

As H2O2 is the target analyte in the proposed biosensor design, PtC composite electrodes 

were evaluated towards their functionality in respect to electron transfer rates and 

stability as transducer for the oxidation of H2O2. Similar to the majority of 

electrochemical studies presented in Chapter 4, platinum disk UMEs modified with PtC 

layers were used for this optimization and for studies presented in Section 5.3.7. Again, 

time and cost efficiency are the relevant driving force. 

The current response to the oxidation of H2O2 at 0.65 V (vs. SCE) was evaluated for 

pristine and post-treated PtC UMEs. Figure 5.14 shows a typical amperometric response 

curve obtained after addition of H2O2 to PBS solution at a biased post-deposition FIB-

milled PtC UME. As expected, every addition of H2O2 results in a corresponding current 

increase proportional to the concentration. As a control, the last addition was PBS 

(marked with a black arrow) showing no oxidative current response.  
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Figure 5.14. Amperometric response curve obtained at a FIB-milled PtC UME (biased at 0.65 V vs. 
SCE) by adding H2O2 to PBS solution. H2O2 additions are marked with green arrows and PBS addition 
with black arrow. Numbers above the arrows correspond to the final concentration in [mM] after each 
addition of H2O2. 
 
 
 
Calibration curves for pristine, FIB-milled and annealed PtC layers are shown in 

comparison to platinum UMEs as reference material in Figure 5.15. For comparative 

purposes, each current response was normalized to average electrode areas obtained from 

CVs in Ru(NH3)6
3+/2+ for the respective type of electrodes. Pristine PtC layers show a 

sluggish oxidation behavior for H2O2, and hence, are not suitable as transducers. As 

discussed in the previous chapter, the high carbon content of these layers presumably 

inhibits fast electron transfer. Pretreatment techniques such as annealing or post-

deposition milling lead to an improved response for H2O2 oxidation. As previously 

discussed, a decrease of carbon content within the layer is leading to an enhanced amount 

of surficial platinum, and platinum is electro-catalytically active towards the oxidation of 

H2O2
26, 27. Comparing the response of pretreated PtC layers to pure platinum shows that 

annealing at approx. 400 ºC leads to a response of 119.9 ± 33.8 pA µm-2 at 5.35 mM 

H2O2 (pure platinum 156.6 ± 2.8 pA µm-2). FIB-milled PtC layers lead to a current 

response of 100.1 ± 12.1 pA µm-2 at the same H2O2 concentration. Summarizing this 
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observation indicates that the presence of carbon in the bulk does not impair the electrode 

quality, however, the composition and platinum content of the surficial layer appears to 

be the crucial factor. Compared to the pristine PtC UMEs (8.3 ± 1.1 pA µm-2), the current 

response improves approx. 12 - 15 fold after the treatment. The loss in linearity observed 

at treated PtC and bare platinum UMEs, which is evident at H2O2 concentrations 

exceeding approx. 1 mM, has been previously attributed to a saturation of the platinum 

surface by the adsorption of H2O2 and O2
28.  

 
 
 

 

Figure 5.15. Calibration curves for annealed (A) and FIB-milled (B) PtC UMEs in comparison to 
pristine PtC and bare Pt. Annealing was performed at 400 ºC. Calibration curves were obtained from 
amperometric response curves during addition of H2O2 to PBS at a UME bias of 0.65 V vs. SCE (n = 3).  
 
 
 
Annealed PtC layers are the preferred transducers from the perspective of their kinetic 

behavior, however the annealing procedure cannot be applied to AFM-SECM probes due 

to cantilever bending induced by the thermal treatment. Also, the post-deposition FIB 

milling step seems to result in a more reproducible response as can be derived from the 

statistical evaluation. Calibration curves shown in Figure 5.15 are average current 

responses obtained from three different FIB-milled PtC UMEs. Repetitive measurements 

at one FIB-milled PtC UME lead to an almost identical result (100.0 ± 9.9 pA µm-2 at 
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5.35 mM H2O2, n = 3). Results obtained in these experiments show that milled PtC layer 

electrodes are suitable for oxidation of H2O2 and will be evaluated in the following as 

biosensor transducers. 

5.3.7 Glucose biosensors based on post-deposition FIB-milled PtC 

UMEs 

Similar to results presented in Sections 5.3.3 and 5.3.4, biosensors were prepared by 

entrapment of enzymes in an EDP film precipitated by a locally-induced pH shift. Given 

the limited availability of Canguard, alternative EDPs have to be investigated for future 

applications. Thus, Resydrol was used as an EDP in the following section which has not 

yet been characterized as thoroughly as Canguard. Pulse polymerization procedures have 

been optimized with respect to pulse cycles, applied potentials and pulse duration. 

Although electron transfer kinetics of H2O2 at FIB-milled PtC UMEs were characterized 

in the previous section, evaluation of the polymerization procedure at milled PtC layers is 

required since e.g. the difference in electrode shape might lead to altered polymer 

precipitation or mechanical stability of the deposited layer. GOx-based biosensors were 

prepared as a model for the more complex dual enzymatic system required for ATP 

detection. 

EDP layers were deposited with similar pulse polymerization protocols as previously 

developed in our research group29, while focusing on variation of the number of pulse 

cycles to optimize polymer film thickness. Figure 5.16A depicts an amperometric 

response curve for the addition of glucose obtained at a glucose biosensor biased at 

0.65 V. Figure 5.16B shows a representative calibration curve averaged from response 

curves at three different glucose biosensors prepared with five deposition cycles. The 
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biosensors saturate at a current response of approx. 12 pA corresponding to a glucose 

concentration of 15 mM. The sensitivity is approx. 1 pA mM-1 in a linear range of 0 –

 9 mM. Normalization of this sensitivity to an average electrode surface area retrieved 

from CVs in Ru(NH3)6
3+/2+ results in a value of 1.38 mA M-1 cm-2, which lies in the 

reported range for GOx-based biosensors30-32. 

 
 
 

 

Figure 5.16. (A) Amperometric response curve obtained at a FIB-milled PtC UME based glucose 
biosensor (biased at 0.65 V vs. SCE). Glucose additions to PBS solution are marked with green arrows; 
PBS addition is marked with black arrow. Numbers above the arrows correspond to the final 
concentration in [mM] after each spike of glucose. (B) Average calibration curve obtained from 
amperometric current response during addition of glucose at FIB-milled PtC UMEs based GOx 
biosensor (n = 3, E = 0.65 V vs. SCE). 
 
 
 
Figure 5.16A reveals that the steady-state response time, which is the time required to 

reach 90 % of the steady-state response after analyte addition33, is on the order of 300 s. 

This value represents an average derived from individual response times after single 

glucose additions for one particular run. A summary of response times for experiments 

recorded at glucose biosensors prepared with different cycle numbers is shown in Figure 

5.17. This data indicates that generally a larger saturation current results in a slower 

biosensor response. Ideally, a saturation current in the range of 18 pA is expected from 
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extrapolation of data reported at platinum disk electrodes with a diameter of 25 µm29. For 

saturation currents in this range, the response time is on the order of 300 - 400 s, which is 

not acceptable for targeted imaging experiments with these biosensors and additionally is 

20 – 40 x increased compared with previously observed response times at platinum 

electrode-based glucose biosensors29. Nevertheless, observed saturation currents and 

sensitivities are in a similar range as expected from other studies, which is very 

encouraging. 

 
 
 

 

Figure 5.17. Average response time as a function of saturation current obtained at glucose biosensors 
deposited with different numbers of cycles.  
 
 
 
Although H2O2 additions also resulted in minor sporadic baseline drift, response times 

until a stable signal/drift was reached were typically on the order of 15 s. Therefore, it 

can be concluded that the slow response time observed at glucose biosensors is not 

related to poor electron transfer kinetics. Figure 5.18 shows a representative optical 

microscopy image of an EDP layer deposited at a FIB-milled PtC UME. It is noticed that 

the polymer film seems to extend over the edges of the PtC UME in a ring shape as 

previously observed at regular Pt UME. However, compared to conventional polished 
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platinum UMEs PtC surfaces exhibit a rougher surface morphology next to having a 

different composition. It may be hypothesized that these differences result in a thicker 

EDP layer which may contribute to an increase in biosensor response time due to an 

increased diffusion path of H2O2.  

 
 
 

 

Figure 5.18. Optical micrograph of EDP layer containing glucose oxidase deposited at FIB-milled PtC 
UME using 5 deposition cycles.  
 
 
 
These studies indicate that EDP layers are promising immobilization matrices at FIB-

milled PtC electrodes since satisfying saturation current levels and sensitivities are 

observed. However, further adaptation of previously reported polymerization protocols is 

required to optimize the biosensor response time. Application of shorter or lower 

potential pulses is suggested as an improvement, which generally leads to a higher 

permeability of the polymer layer. Additionally, such a change of parameters is also 

advantageous for enzyme stability as it implies a lower potential-induced stress and 

smaller pH variation. 

5.4 Final remarks 

Live epithelial cell monolayers were characterized thoroughly by means of contact mode 

and dynamic mode AFM. Epithelial cells were found to be stable towards imaging for a 
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longer amount of time. Additionally, dynamic mode studies showed that soft cell surfaces 

are very sensitive to the applied force resulting either in loss of resolved features (low 

force) or indentation of surfaces (high force). Imaging of epithelial cell monolayers at 

different times after plating did not result in substantial differences of cell morphology or 

shapes. AFM-SECM feedback experiments revealed that feedback currents are sensitive 

for topographical surface features due to surface roughness of the cells. Forces applied to 

the cell surfaces have to be controlled and optimized carefully, since height variations of 

the cells are in the range of the tip lengths (for FIB-fabricated AFM-SECM probes). 

However, application of low force contact mode AFM results in substantial improvement 

of current convolution. 

SECM-based detection of ATP was achieved at live epithelial cell surfaces. A dual-UME 

based device was used to position ATP biosensors in close proximity to cell monolayers. 

Dual-UMEs were scanned across the edge between an insulating surface and an epithelial 

cell monolayer. Non-invasive release of ATP was observed and confirmed in control 

experiments by adding excess of free-diffusing HEX. The ATP biosensors were further 

miniaturized and integrated into batch-fabricated AFM-SECM probes. Laterally resolved 

detection of ATP was achieved in these proof of concept studies. 

Since there are several drawbacks of batch-fabricated AFM-SECM probes for targeted 

life cell imaging, PtC-based electrodes were evaluated as H2O2 transducers. It was found 

that pristine PtC layers are not suitable due to the high amount of carbon present at the 

composite material surface. Pretreatment of PtC UMEs via annealing or post-deposition 

FIB milling leads to a significant improvement of H2O2 electrooxidation, similar to the 

behavior of pure platinum. FIB-milled PtC UMEs were further tested as transducer 
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platforms for glucose biosensors. It was found that although sensitivity and saturation 

currents observed are satisfying and in agreement with results reported in literature, the 

response time of the biosensors at this point is not acceptable. Biosensors were also 

fabricated at AFM-SECM tip-integrated PtC electrodes, however, not yet applied during 

quantitative studies.  

Combining all experimental improvements obtained throughout these studies with further 

optimization of the polymerization procedure, a successful miniaturized tip-integrated 

ATP biosensor providing localized measurements of ATP concentration levels at live 

epithelial cells is anticipated. As a last improvement, variation of potentials and pulse 

time is suggested to improve the permeability and porosity of the EDP layer. 

Additionally, shorter enzyme storage times prior to the polymerization may lead to an 

enhanced enzymatic response behavior.  
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6 CONCLUSIONS AND OUTLOOK 

 
 
 
The main goal of this thesis was to improve AFM-SECM based sensing platforms for 

biological applications in several aspects including implementation of thin insulation 

layers, and increasing of the tip-integrated electrode size. PFE-insulated AFM-SECM 

probes with thin insulation layers were successfully developed, and applied for combined 

AFM-SECM measurements. Moreover, IBID-based PtC composites were applied as 

electrode materials for the first time including a detailed physical and electrochemical 

characterization, and successful integration into bifunctional AFM-SECM probes. Live 

epithelial cell monolayers were studied with AFM and for the first time ATP was 

detected with amperometric biosensors during non-invasive SECM, and laterally-

resolved AFM-SECM studies. 

Plasma-polymerized PFE membranes were applied as novel insulation layers for AFM-

SECM probes and UMEs. It was shown that a decrease of layer thickness of 2 - 3 x 

compared to state-of-the-art insulation materials such as Parylene C or silicon 

nitride/silicon oxide was achieved without impairing the insulation quality. Specifically, 

layer thicknesses of < 300 nm were reported with excellent insulating properties. Long-

term studies revealed an approximate 20 % increase with time in the observed faradaic 

current; however, this was confirmed as minor obstacle in relation to the time scale of 

typical AFM-SECM experiments. Combined approach and cantilever deflection curves 

were recorded along with AFM-SECM imaging revealing excellent lateral resolution. 

Future improvements of plasma-polymerized PFE layers should focus on improving the 

cross-linking density of the polymer film to further enhance the long-term stability. 
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Moreover, optimization of the oxygen plasma cleaning step implemented prior to PFE 

layer deposition should be performed, which should lead to advanced adhesion of the 

layer. Both improvements are expected to result in a better temporal stability of the PFE 

insulation layer. Furthermore, PFE-insulated AFM-SECM probes should be tested at live 

epithelial cell monolayers for imaging studies and AFM-SECM based biosensor 

performance. One major expected advantage of the thin polymeric insulation material is 

the rather minor alteration of the cantilevers force constant, thereby improving the 

potential for future dynamic mode AFM-SECM applications. 

Ion beam induced deposition was used to fabricate PtC composites at precisely located 

positions. The materials were thoroughly characterized in respect of physical and 

electrochemical properties including EDX studies, Raman analysis, FPP, and AFM along 

with CV. PtC electrodes deposited at AFM-SECM cantilevers lead to an increase in 

electrode area, as derived from CV studies, thus fulfilling the purpose of increasing tip-

integrated electrodes without substantially limiting the electrochemical resolution of 

combined AFM-SECM experiments. However, it was found that the pristine material 

contained a high fraction of carbon, which impaired the electrode behavior in respect to 

certain applications, such as oxidation of surface sensitive mediators (e.g. Fe(CN)6
3-/4-). 

Therefore, different pre-treatment strategies were evaluated focusing on the removal of 

carbon in the electroactive deposits. EDX analysis revealed that thermal annealing of PtC 

composites above 400 ºC decreased the carbon fraction to approx. 5 at%. Graphitization 

of carbon prior to removal was observed during Raman spectroscopic studies. 

Summarizing, annealing of PtC electrodes lead to a substantial improvement of the 

electrochemical behavior, as confirmed by simulations, by almost three orders of 
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magnitude for the standard heterogeneous rate constant for the oxidation of Fe(CN)6
3-/4-. 

However, thermal annealing also induced unacceptable bending of AFM cantilevers. 

Alternatively, UV/ozone treatment and post-deposition FIB milling were evaluated for 

improvement of the charge transfer characteristics at the electrode. UV/ozone treatment 

indicated complex mechanisms of the occurring surface chemistry, which are beyond the 

scope of this work; however, post-deposition FIB milling proved a successful 

improvement of the observed charge transfer characteristics along with the advantage of 

applicability at AFM-SECM cantilevers. Continuing efforts to enhance fundamental 

understanding on PtC materials should concentrate on a thorough evaluation of the 

mechanisms involved during UV/ozone treatment. In addition, in-depth physical 

characterization of these materials and post-deposition milled PtC features should be 

performed to quantify the electrochemically observed improvements in terms of physical 

material parameters. Since IBID-based fabrication offers the advantage of selecting 

pattern shapes and dimensions, different pattern geometries should be evaluated for tip-

integrated electrodes such as fine grid structures expecting to increase the currently 

observed steady-state currents.  

Finally, thorough AFM investigations at live epithelial cell layers were performed. It was 

found that epithelial cell layers were readily amenable to extended AFM imaging, 

although the transferred force from the tip to the sample has to be optimized carefully. 

AFM imaging at different times after plating did not reveal any substantial differences of 

the cell morphological features. AFM-SECM based feedback mode imaging was 

performed revealing that the faradaic current was sensitive to the elevated surface 

features of the cells. During low-force contact mode AFM, current features were 
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substantially improved highlighting the need for particularly careful force optimization 

during AFM-SECM based measurements, since the surface features observed are in the 

range of the AFM tip length for to date FIB-fabricated AFM-SECM probes. ATP 

biosensors were used to detect ATP release at live epithelial cell monolayers by two 

different approaches: non-invasive SECM-based experiments were performed, along with 

further miniaturization of the sensing device by integration into batch-fabricated AFM-

SECM probes. AFM-SECM studies have for the first time demonstrated the potential for 

locally-resolved measurements of ATP at the surface of live biological specimen. In both 

experimental studies the presence of ATP was confirmed by appropriate control 

experiments. PtC-based materials introduced in this thesis were further investigated as 

transducer platforms for oxidase-based biosensors. It was discovered that the transducer 

response toward electrooxidation of H2O2 was substantially improved for annealed and 

FIB-milled PtC UMEs in comparison to pristine materials almost showing the behavior 

of pure platinum. Glucose biosensors based on FIB-milled PtC-based UMEs were 

furthermore tested, and it was found that sensitivity and saturation currents observed 

were satisfying, although currently lacking the response time needed for imaging 

experiments. It is suggested that future applications focus on the optimization of the 

biosensor fabrication procedure in order to obtain an improved permeability and porosity 

of the EDP layer. Additionally, continuing research should evaluate alternative shapes of 

PtC-patterned electrodes at combined AFM-SECM probes. For example the 

implementation of grid structures is also expected to advance the mechanical stability of 

EDP-based biosensors due to improving adhesion effects via a controlled surface 

roughness. It is anticipated that combining the improvements described throughout this 
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thesis will result in improved miniaturized AFM tip-integrated ATP biosensors for 

routine localized detection of ATP at the surface of live biological specimen. 
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