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ABSTRACT 

In this paper, the relationship between uncertainty and 
sets of alternatives in engineering design is 
investigated.  In sequential decision making, each 
decision alternative actually consists of a set of design 
alternatives.  Consequently, the decision-maker can 
express his or her preferences only imprecisely as a 
range of expected utilities for each decision alternative.  
In addition, the performance of each design alternative 
can be characterized only imprecisely due to 
uncertainty from limited data, modeling assumptions, 
and numerical methods.  The approach presented in 
this paper recognizes the presence of both imprecision 
and sets in the design process by focusing on 
incrementally eliminating decision alternatives until a 
small set of solutions remains.  This is a fundamental 
shift from the current paradigm where the focus is on 
selecting a single decision alternative in each design 
decision.  To make this approach economically 
feasible, one needs efficient methods for eliminating 
alternatives—that is, methods that eliminate as many 
alternatives as possible given the available imprecise 
information.  Efficient elimination requires that one 
account for dependencies between uncertain 
quantities, such as shared uncertain variables.  In this 
paper, criteria for elimination with and without shared 
uncertainty are presented and compared.  The set-
based nature of design and the presence of 
imprecision are introduced, elimination criteria are 
discussed, and the overall set-based approach and 
elimination criteria are demonstrated with the design of 
a gearbox as an example problem. 

INTRODUCTION 

Design is a process of converting information about 
customer interests and requirements into a 
specification of a product.  This process is complex 
because it involves searching through a very large, 
unstructured space of solutions (Tong and Sriram 
1992) based on vague and uncertain knowledge about 
possible solution alternatives (Gupta and Xu 2002), 
their physical behavior (Aughenbaugh and Paredis 
2004), their cost (Garvey 1999), and the decision-
maker’s preferences (Kirkwood and Sarin 1985; Otto 
and Antonsson 1992; Carnahan, Thurston et al. 1994; 
Seidenfeld, Schervish et al. 1995).  The complexity of 
the design problem, including the presence of 
uncertainty, makes it impossible to arrive at a final 
design in one step.   

Consider the following simple design problem with two 
design variables: vehicle type and engine type.  There 
are two options for vehicle type: car or bike.  There are 
three options for engine type: gasoline engine, diesel 
engine, or electric motor.  If the designer, or decision-
maker (hereafter abbreviated as DM), chooses the 
complete design in one step, he or she would choose 
from the set of six design alternatives shown in Figure 
1.  In the context of this example, each of these design 
alternatives is a fully detailed design of a final product.  
In order to choose the best design, the DM would need 
to evaluate and compare all six alternatives in detail.  
While easy in this simple example, the complexity of 
real engineering problems and the prohibitive cost of 
considering large numbers of alternatives require a 
sequential decision process. 



 

 2

SEQUENTIAL DECISION MAKING 

It is impractical to enumerate and evaluate all design 
alternatives by considering all possible combinations of 
all solution principles for all the subsystems of a 
complex product.  Consequently, the design process is 
broken down into a sequence of decisions to allow for 
efficient exploration of the design space.  For example, 
in the previous vehicle design example, a DM can 
follow a sequential approach in which he or she first 
chooses the vehicle type, and then the engine type, as 
shown in Figure 2.   

Note that it is important here to distinguish clearly 
between decision alternatives and design alternatives.  
A design alternative is one of the possible complete 
product design specifications, while each decision 
alternative corresponds to a set of design alternatives.  
For example, when choosing the vehicle type, the DM 
has two decision alternatives: car or bike.  Each of 
these decision alternatives actually corresponds to a 
set of design alternatives, as shown in Figure 3.  The 
decision alternative of vehicle type car includes the 
design alternatives gas car, diesel car, and electric car, 
because the vehicle type decision will be followed by 
the engine type decision.  Once a decision is made to 
pursue, for example, a car design rather than a bike, 
the DM does not need to consider explicitly the design 
alternatives gas bike, electric bike, and diesel bike; 
these design alternatives are eliminated from 
consideration with the elimination of the decision 
alternative that contains them. 

One limitation of a sequential decision process is that 
decisions are almost always coupled.  In general, a 
DM really needs to know the selections made in future 
decisions in order to select the most preferred decision 
alternative for the current decision.  For example, a 
fully designed gas car will have a certain maximum 
horsepower, but the set of car designs in Figure 3 has 
multiple horsepower maxima, each corresponding to a 
sub-design (gas car, electric car, and diesel car).  The 
realized horsepower depends on the future design 
decision of engine type.  Thus, when selecting type car 
rather than bike, a DM is not selecting a precisely 
characterized horsepower, but rather an imprecise 
horsepower, such as a set of values.  Future decisions 
are one source of imprecision, a topic that is discussed 
in detail later in the paper.  To lead eventually to the 
most preferred design, a design method must 
acknowledge the roles of both imprecision and sets of 
alternatives in design decisions. 

ROBUST DESIGN 

Researchers have recognized the limitations of 
sequential design processes and have proposed 
modifications in which the uncertainty about future 

design decisions is considered.  For instance, Chen, 
Allen, and coauthors (1996) have introduced an 
approach based on robust design that seeks decision 
alternatives that are robust to future decisions.  The 
idea is that since DMs lack knowledge about the 
outcomes of future design decisions, they should make 
their current decision in a way that yields a satisficing 
solution (Simon 1982)—a solution that is in some 
sense good enough regardless of future design 
decisions. 

Robust design methods trade off optimal performance 
for consistent performance.  This is a reasonable 
approach if the price one pays for robustness is 
relatively small—that is, if little performance is 
sacrificed for robustness.  Unfortunately, robust design 
methods currently do not provide any indication of how 
large that price is.  In this paper, we demonstrate an 
approach that helps the DM move toward the most 
preferred solution by actively managing the design 
space, rather than compromising high performance for 
robustness.  This approach is inspired by set-based 
concurrent engineering.  

SET-BASED CONCURRENT ENGINEERING 

The perspective taken in this paper is that ideally the 
goal of the design process is to systematically 
eliminate inferior design alternatives from the set under 
consideration until only the most preferred alternative 
(or set of equally preferred alternatives) remains.  This 
approach is derived from the paradigm of Set-Based 
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Figure 1: One stage decision 
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Concurrent Engineering (SBCE) (Sobek, Ward et al. 
1999),  a management approach used at Toyota.  The 
guiding principle of SBCE is to begin the design 
process by selecting a broad set of solutions and 
gradually narrowing the set by eliminating weaker 
solutions as more information becomes available until 
converging on a final solution.   

In traditional design practice, the emphasis is on 
selecting a single good design; engineers quickly 
converge on a single design and then iteratively modify 
that solution until it meets the design requirements.  In 
SBCE, Toyota encourages its engineers to pursue 
multiple feasible design alternatives simultaneously.  
The consideration of multiple designs incurs more 
costs early in the design process than selecting a 
single robust design.  However, these increased costs 
can be offset by two factors.  First, the resulting design 
in SBCE is often much closer to optimal (has a much 
better performance) than the final designs in traditional 
methods.  Second, SBCE avoids costly design 
tweaking and redesigns late in the development cycle.  
In some combination, these effects have enabled 
Toyota to use SBCE quite successfully (Parunak, 
Ward et al. 1997; Sobek 2004).   

As implemented at Toyota, SBCE places a large 
responsibility on chief engineers to guide the process 
effectively, relying heavily on their implicit knowledge 
and expertise.  Sobek, Ward, and Liker (1999) provide 
three broad principles for managing SBCE.  One of 
these principles involves narrowing sets gradually 
while increasing detail, and a formal method has been 
introduced that uses predicate logic to eliminate 
infeasible designs (Finch 1997).  However, little 
attention has been given to methods that guide 
elimination based on preferences—that is, methods 
that eliminate less-desirable, yet feasible, designs from 
the set under consideration.  If the benefits seen at 
Toyota are to be generalized to other applications, a 
formal method of set-based design must be 
developed. 

For a set-based approach to be efficient, the DM must 
be efficient at eliminating inferior solutions from the set 
under consideration; a DM should eliminate a solution 
as soon as he or she is confident that it cannot be the 
most preferred.  If the DM does not eliminate such 
solutions, then he or she will continue to develop them 
in more detail, thereby incurring unnecessary costs.  
Since these elimination decisions must be made 
without complete knowledge about the solutions, 
traditional comparisons are inappropriate; different 
methods are needed.  The remainder of this paper 
introduces the concept of imprecision, discusses 
elimination decision policies, and demonstrates an 
elimination-oriented, set-based design approach using 
the design of a gearbox as an example. 

IMPRECISION IN DESIGN 

Traditionally, the mathematical formalisms for design 
have been derived from the theory of decision analysis 
(Pratt, Raiffa et al. 1995), and decision-based design 
has recognized decisions as important milestones in 
the design process (Mistree, Smith et al. 1990; 
Hazelrigg 1998). In this paper, we focus on decision 
making while specifically considering the inherent 
uncertainty that exists in design, but unlike most 
previous research in decision-based design, we make 
a clear distinction between two different types of 
uncertainty:  inherent variability and imprecision (Parry 
1996; Nikolaidis 2005). 

TYPES OF UNCERTAINTY 

Variability, also called aleatory uncertainty (from the 
Latin aleator = dice thrower), is a description of 
naturally random behavior in a physical process or 
property (Oberkampf, DeLand et al. 2002).  It is also 
known as objective uncertainty (Ferson and Ginzburg 
1996) and irreducible uncertainty (Der Kiureghian 
1989).  Examples include manufacturing error, errors 
in communications systems, and radioactive decay.  
Inherent variability is best represented in stochastic 
terms, e.g., by a probability density function. 

Imprecision, on the other hand, is due to a lack of 
knowledge or information (Parry 1996) and sometimes 
is called epistemic uncertainty (from the Greek 
episteme = knowledge), reducible uncertainty (Der 
Kiureghian 1989) or subjective uncertainty (Ferson and 
Ginzburg 1996).  Imprecision often results from 
ignorance or from deliberate modeling decisions, such 
as including abstractions to reduce the computational 
complexity of a model.  Imprecision is generally best 
represented in terms of intervals (Kreinovich, Ferson et 
al. 1999; Muhanna and Mullen 2004).  While some 
authors doubt the philosophical distinction between 
variability and imprecision, such distinctions are useful 
in practice (Ferson and Ginzburg 1996; Hofer 1996; 
Winkler 1996; Aughenbaugh and Paredis 2005). 

Almost every aspect of each design decision 
introduces imprecision.  More specifically: 
• The lack of knowledge about future design 

decisions introduce imprecision because each 
decision alternative defines a set of design 
alternatives. 

• Behavioral simulations are imprecise abstractions 
of reality. 

• Environmental factors are imprecise estimates 
based on limited measurements. 

• Preferences are not fully elicited and therefore 
imprecise. 

• Numerical solving of these models introduces 
additional imprecision. 
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Earlier, we introduced the importance of imprecision 
from future decisions with a simple horsepower 
characterization example.  In a more complex problem, 
even once the horsepower is defined precisely, one is 
still referring to the entire set of engines with that 
specific horsepower.  Other performance 
characteristics of that set of engines (e.g., mass or 
cost) will be inherently imprecise because they are 
different for each specific instance in the set.   

Future design decisions can vary substantially, 
depending on which current decision alternative is 
selected.  This impact is not just in the optimal solution 
of the problem, but also in the very nature of the 
design problems to be solved.  For example, a choice 
between an electric motor and a diesel engine at one 
point in the process affects the future decisions, such 
as energy delivery.  If an electric motor is chosen, the 
choice of volumetric fuel injection rate is meaningless.   

Though important and often significant, future 
decisions are only one source of imprecision in 
engineering design.  Behavioral models predict the 
performance of design alternatives imprecisely 
because these models, like all models, are only an 
abstraction of reality.  For instance, an internal 
combustion engine is often modeled as an algebraic 
relationship between engine speed and torque, 
abstracting away the detailed physical phenomena, 
including airflow, gas-mixture combustion, friction and 
inertia.  There is often also significant imprecision in 
the parameter values or inputs to these models.  In 
addition, preference models, such as utility functions, 
may also be known only imprecise (Kirkwood and 
Sarin 1985; Otto and Antonsson 1992; Carnahan, 
Thurston et al. 1994; Seidenfeld, Schervish et al. 
1995), and numerical methods have limited precision.  
All of these sources of imprecision should be 
recognized and incorporated into the design approach. 

REPRESENTATIONS OF IMPRECISION 

Although models and their parameters are usually only 
imprecisely known, there is often also variability due to 
inherent randomness.  For example, an air resistance 
model may include as a parameter the air density, 
which fluctuates with the weather.  To capture both 
inherent variability and imprecision, the theory of 
imprecise probabilities, as introduced by Peter Walley 
(1991), allows for intervals of probabilities and is a 
direct extension of traditional probability theory.   

Imprecise probabilities can be interpreted as subjective 
probabilities—an expression of a DM’s beliefs in terms 
of the DM’s willingness to bet.  The use of lower and 
upper probabilities (rather than just a single precise 
probability as in traditional probability theory) also 

reflects a DM’s confidence in his or her beliefs—the 
larger the confidence, the smaller the difference 
between the lower and upper probabilities, i.e., the 
smaller the imprecision.  Walley has axiomatically 
defined imprecise probabilities and has shown that 
they are rational in terms of avoiding a sure loss.   

Unfortunately, imprecise probabilities as defined by 
Walley pose significant computational challenges that 
remain to be resolved.  For engineering applications, it 
is crucial to adopt a mathematical formalism that is 
convenient and inexpensive for computation and 
decision making.  Ferson and Donald (1998) have 
developed such a formalism, called probability bounds 
analysis (PBA) by imposing some additional 
restrictions on imprecise probabilities.  Although PBA 
is not quite as expressive as imprecise probabilities, it 
can still represent both variability and imprecision and 
has been shown to be useful in engineering design 
(Aughenbaugh, Ling et al. 2005; Aughenbaugh and 
Paredis 2005).  The major advantage is that probability 
bounds analysis is relatively computationally efficient, 
and commercial software exists to support it (Ferson 
2002).   

PBA expresses uncertainty in a structure called a 
probability-box, or p-box.  Essentially, a p-box is an 
imprecise cumulative distribution function (CDF).  
Upper and lower CDF curves represent the bounds 
between which all possible probability distributions 
might lie.  We believe that the p-box is an intuitive and 
convenient representation of imprecise probabilities.  
For example, a DM may have strong theoretical 
evidence that a random variable X  is normally 
distributed but not know the parameters of the 
distribution precisely.  If the DM believes that the mean 
is in the interval [5,10]µ =  and the variance is in the 
interval 2 [1,4]σ = , one can extend the notation of 
probability 2~ ( , )X N µ σ  and write: 

 ~ ([5, 10], [1, 4] )X N  (1) 

INDETERMINACY IN DECISION MAKING 

In this section, we focus on one important 
consequence of imprecision, namely, that it results in 
indeterminacy: based on the available information, one 
cannot determine which decision alternative is most 
preferred.  Instead, one can develop rational 
arguments that support multiple alternatives as being 
the most preferred.   

In general, there are three possible scenarios of 
preference between alternatives A and B.  Either A is 
preferred to B, B is preferred to A, or the DM is 
indifferent between A and B.  When utilities are used to 
reflect preference, these relationships can be 
determined by the inequality or equality of the 
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expected utilities (von Neumann and Morgenstern 
1944).  However, when imprecision exists, the 
expected utilities become intervals (since the 
probabilities are not uniquely determined, neither is the 
mathematical expectation), and such comparisons 
become more complicated. 

For example, consider the intervals of expected utility 
for two alternatives (A and B) shown in Figure 4(a).  In 
this example, the intervals overlap.  Since the true 
expected utility of B can lie anywhere in the given 
interval, the point labeled 1b  is possible.  Similarly, 
both 1a  and 2a  are possible true values for the 
expected utility of A.  Notice that 1a  is greater than 1b , 
but 2a  is less than 1b .  Consequently, the available 
evidence is indeterminate; the DM cannot determine 
which alternative is the most preferred, nor can the DM 
determine that he or she is definitely indifferent.  In 
order to make elimination decisions in the presence of 
imprecision, different methods are needed. 

ELIMINATION DECISIONS WITH IMPRECISE 
INFORMATION 

As demonstrated at the close of the previous section, 
standard numerical comparisons are insufficient for 
elimination under imprecision.  Instead, a DM must 
turn to interval methods such as interval dominance, 
maximality, or E-admissibility.  

INTERVAL DOMINANCE 

An example of overlapping intervals was shown in 
Figure 4(a).  Obviously, two intervals will not always 
overlap.  In this case, shown in Figure 4(b), it does not 
matter where in the given interval the true expected 
utility of A falls—it will always be greater than any 
value in the interval for expected utility of B.  This 
illustrates a situation referred to as interval dominance, 
(For a brief synopsis, see Zaffalon, Wesnes et al. 
2003).  

Interval dominance is obvious when there are only two 
alternatives, but it is more subtle when there are more 
alternatives, such as shown in Figure 5.  At first 
glance, it may appear that no elimination is possible 
because there is significant overlap between intervals.  
However, comparing all pairs of alternatives, we 
discover that alternative D is dominated by alternative 
A, and hence can be eliminated.  By using as a 
reference for comparison the alternative with the 
maximum lower-bound and then comparing this to the 
upper-bounds of all other alternatives, the complexity 
of the calculation is reduced from 2( )O n  to ( )O n  for a 
problem with n  alternatives.  The result of applying 
this criterion is a set of alternatives whose intervals of 
expected utility all share some region of overlap.  

Elimination using interval dominance supports the set-
based approach, is consistent with imprecise 
information, and is relatively easy to compute; 
however, it may result in a large set of design 
alternatives.  Although this is to be expected, 
especially during the early phases of design, it is 
important for the success of this approach that as 
many designs as possible and justifiable are 
eliminated as supported by the available knowledge 
and information; inefficiencies should be avoided.  In 
the next section, we examine the criteria of maximality 
(Walley 1991) and E-Admissibility (Levi 1974), 
approaches that account for uncertainty shared across 
alternatives. 

ACCOUNTING FOR SHARED UNCERTAINTY 

In design, there are often uncertain conditions that 
influence the performance of all decision alternatives in 
a similar fashion, factors that we define as shared 
uncertainty.  When uncertainty is shared among 
possible actions, it means that a particular future 
condition or event is independent of the current action 
taken by the DM.  For example, ambient temperature 
is independent of the alternatives chosen—all potential 
final designs will have to operate over the same, but 
unknown, range of temperatures.  Hence, the 
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uncertainty is said to be shared.  As an example of 
uncertainty that is not shared, consider the sequential 
decisions of designing first the engine and then the 
drive shaft.  When designing the engine, the exact 
design of the drive shaft is unknown.  However, this 
uncertainty is not shared by all engine alternatives, 
because the final design of the drive shaft will depend 
on the chosen engine design; the drive shaft must 
meet difference performances requirements depending 
on the power of the engine, for example. 

Since temperature is a shared uncertainty, the 
performance of alternatives should be compared 
assuming they are operating at the same temperature.  
A similar argument favors paired statistical testing over 
pooled statistical testing to remove shared systematic 
errors (Devore 1995).  The motivation is illustrated in 
the following example. 

Consider two cars A and B, whose performance 
depends strongly on the uncertain ambient 
temperature T , such as shown in the top left of Figure 
6.  Note that for all values of the uncertain parameter, 
the utility of A is greater than the utility of B.  Clearly 
then A is the superior alternative.  However, if only the 
intervals of performance were compared without 
regard to shared uncertainty, such as shown in the top 
right of Figure 6, this superiority would not be detected. 

The concept of shared uncertainty is similar to 
common random numbers (CRNs) in discrete-event 
simulations (Law and Kelton 2000).  The goal of a 
simulation is usually to compare two scenarios or 
alternative designs by examining the difference in 
output for different combinations of control parameters.  

If different random numbers are used in the 
simulations for the different alternatives, additional 
noise is introduced into the model.  CRNs are used to 
induce correlation between scenarios, thereby 
reducing the variances of the results.  

In engineering design, shared uncertainty is an 
inherent characteristic of the problem.  Therefore, a 
DM does not have to add the commonality; he or she 
merely needs to recognize it and to take advantage of 
that additional property when it exists.  One approach 
that considers shared uncertainty is maximality. 

Maximality criterion 

Since the intervals in the top right quadrant of Figure 6 
overlap significantly, neither A nor B is eliminated 
according to interval dominance, even though it is 
clear from the curves in the top left quadrant that B 
should be eliminated.  If the difference in performance 
across the uncertain parameter is considered, the 
elimination can be made, as shown in the lower left 
quadrant of Figure 6.  Note that for any value of the 
shared uncertain variable, the difference between 
alternative A and alternative B is positive.  In other 
words, A is always better than B, and B can be 
eliminated.  

This type of comparison is formalized as the 
maximality (Walley 1991) criterion for elimination.  
First, we define a set of decision alternatives that are 
available for consideration, denoted D .  We also 
distinguish between elements of shared uncertainty, 
s sz Z∈ , and uncertainty that is specific to each 

alternative, i iz Z∈  for alternative iA D∈ .  Recalling 
that the DM seeks to maximize expected utility, we can 
write the elimination rule of maximality as follows: 

A decision alternative jA D∈  is 
dominated according to maximality, and 
hence the corresponding set of design 
alternatives can be eliminated, if for some 
iA D∈ , and i j≠ : 

 
(max[ ( , , ) ( , , )]) 0

s s
i i
j j

j j s i i sz Z
z Z
z Z

EU A z z EU A z z
∈
∈
∈

− <  

Maximality is a stricter criterion than interval 
dominance, meaning that in general it leads to the 
elimination of more alternatives.  Maximality eliminates 
alternatives that are dominated at all values of the 
uncertain parameter by any individual other alternative.  
In general, this requires the maximality condition to be 
checked for all pairs of decision alternatives.  For 
example, consider the five decision alternatives whose 
expected utility is expressed as a function of a single 
shared imprecise parameter (fox example, ambient air 
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temperature: T ) in Figure 7.  If one were to use only A 
as a reference design (meaning comparing the other 
design to A), then only B could be eliminated because 
curves C, D, and E are higher than A for some values 
of sz , but B is always lower.  However, if C is used as 
the reference design, then D can be eliminated.  
Clearly to complete the elimination, both A and C must 
be used as reference designs in this case.  In general, 
a DM must compare all combinations. 

The difference in expected utility is often monotonic 
with respect to the uncertain variables.  In this case, 
the maximum difference occurs at the boundary of the 
uncertainty region, making it easy to compute for a 
given pair of alternatives iA  and jA  .  If the difference 
between the two alternatives is not monotonic then a 
complete optimization is necessary.  However, 
commonly the uncertainty region is expressed in terms 
of intervals, in which case interval arithmetic can be 
used to determine the maximum efficiently (Moore 
1979; Kearfott and Kreinovich 1996; Hansen and 
Walster 2004). 

E-admissibility criterion. 

A stricter criterion than maximality is E-admissibility 
(Levi 1974).  According to E-admissibility, a solution is 
eliminated if at every value of the uncertain parameter 
there is at least one alternative with a higher expected 
utility.  This is more easily understood by considering 
the converse—E-admissibility only accepts alternatives 
that for at least one value of the uncertain parameter 
have the greatest expected utility of all of the 
alternatives.  Applying E-admissibility in general 
requires solving a mathematical programming 
problem, or at least proving that a feasible solution 
exists (Kyburg and Pittarelli 1996), making it at least as 
expensive as applying maximality. 

For an example of applying E-admissibility, consider 
the alternatives in Figure 7 again.  Alternatives 
eliminated using maximality are necessarily eliminated 

using E-admissibility since if at all temperatures there 
is a single alternative with higher expected utility, then 
the dominated alternative can never have the highest 
expected utility.  Consequently, alternatives B and D 
are eliminated.   

Notice that alternative A performs best in low 
temperatures, C performs best in high temperatures, 
while E performs consistently throughout the entire 
temperature range.  Nevertheless, E will be eliminated 
based on the E-admissibility criterion because E is 
dominated by the set { ,  }A C , since either A or C (or 
both) is greater than E at every temperature; car A 
dominates E at low temperatures while C dominates E 
at high temperatures.  The potential implications of 
eliminating the robust solution E are described in the 
following section. 

RESOLVING REMAINING IMPRECISION 

Although a DM can maintain a set of designs in the 
early stages of design, he or she must eventually 
select a particular alternative to finalize the design.  
Nevertheless, after applying elimination criteria, 
multiple alternatives usually will remain due to 
imprecision.  In order to make a decision, a DM has 
two choices—the DM can collect additional 
information, thereby reducing imprecision, until only 
one alternative remains in the non-dominated set, or 
the DM can select one alternative arbitrarily.  
Traditional design approaches would require arbitrary 
elimination of non-dominated alternatives, while a set-
based design approach allows a DM to delay 
elimination of alternatives until additional information is 
available. 

When delaying decisions, the DM should carefully 
consider the tradeoff between the value of obtaining 
more information and the cost of doing so by applying 
information economics (Aughenbaugh, Ling et al. 
2005).  Although the cost of additional investigation is 
often worth the improved ability to make a more 
informed decision, the DM will reach a point at which 
the cost of gathering additional information outweighs 
the expected benefits.  At that point, the DM should 
resort to the other option: arbitrary choice. 

If a DM is unable to resolve the imprecision before 
needing to choose a single alternative from the set, he 
or she may need to make an arbitrary choice—a 
choice that is not uniquely determined by the DM’s 
preferences, beliefs, and values (Walley 1991).   
Recall that the presence of indeterminacy implies that 
the available information does not uniquely identify a 
most preferred alternative.  Consequently, any 
arbitrary choice from among indeterminate alternatives 
can be defended as rational.   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

A

B

C

D

E

Ex
pe

ct
ed

 U
til

ity

Uncertain Parameter Z (e.g. temperature)
 

Figure 7: Performance of 5 alternatives influenced 
by a single uncertain parameter (e.g. temperature). 
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Arbitrary in this sense does not necessarily imply 
without guidance or random.  Several policies are 
possible to guide arbitrary choice, including Γ -
maximin (Berger 1985) and the Hurwicz-criterion 
(Arrow and Hurwicz 1972).  A Γ -maximin policy says 
that given indeterminacy in a maximization problem, a 
DM should select the alternative with the highest 
lower-bound.  This is a conservative policy in that it 
seeks to mitigate the worst-case.  Robust design 
strategies that choose solutions that are insensitive to 
imprecision are also applicable at this stage.  If the 
remaining uncertainty is extreme, it may be valuable to 
consider an alternative approach such as information 
gap theory (Ben-Haim 2001).   

Returning to the vehicle design example in Figure 7, 
assume that the DM is unable to resolve the imprecise 
ambient temperature, yet has to choose between the 
alternatives (A and C) that remain after applying the E-
admissibility criterion.  The Γ -maximin policy would 
choose alternative A, because it has the highest lower-
bound over the range of the uncertain parameter.  
However, notice that while A performs well in low 
temperatures, it performs quite badly at high 
temperatures.  Notice also that alternative E performs 
moderately well at all temperatures—that is, alternative 
E is robust to temperature.  However, using the E-
admissibility criterion, this alternative was eliminated. 

The elimination of alternative E is not a problem if the 
DM is able to resolve the imprecision before needing 
to choose a final design.  Once the imprecision is 
eliminated, the DM knows at which temperature the 
cars are required to perform and can select the car 
that is most preferred at that temperature—which will 
always be either car A or C, the two alternatives that 
remain after applying the E-admissibility criterion.  
Therefore, if a DM knows that imprecision can be 
eliminated before making the final decision [an 
example of such imprecision is that from future 
decisions], then E-admissibility is an appropriate 
criterion.   

However, information economic considerations will 
usually lead a DM to stop collecting information before 
removing all imprecision.  In other cases, such 
elimination of imprecision is impossible.  For example, 
there is in general no one temperature at which a care 
must operate, but rather a produced car could be 
subject to the entire range of temperatures during 
operation.  The practical unlikelihood of removing all 
imprecision leads us to recommend the maximality 
elimination criterion for most design applications. 

THE DESIGN PROBLEM 

In this section, we study a gearbox design problem in 
order to demonstrate the different elimination criteria in 

the context of a realistic design problem.  The gearbox 
is intended for use in the drivetrain of an SAE Mini-
Baja competition off-road vehicle.  The basic 
configuration of the gearbox is shown in Figure 8.  The 
objective of the design problem is to determine the 
geometries of the three gears such that the expected 
utility of the design is maximized.   

A summary of our problem formulation is presented in 
Figure 9.  Utility is formulated as the dollar earnings 
from constructing and using the gearbox in Georgia 
Tech’s Mini-Baja vehicle for a long-distance race.  
There are five design variables and ten shared 
uncertain parameters, with uncertainty modeled as p-
boxes, intervals, and precise probability distributions.  

REPRESENTING AND COMPUTING WITH 
IMPRECISION 

As noted earlier, probability bounds analysis (PBA) is 
an abstraction of imprecise probabilities in which 
uncertain information is represented as a p-box.  While 
less expressive than imprecise probabilities, the p-box 
representation simplifies computation.  In particular, 
PBA approaches allow for the computation of rigorous, 
“best-possible” bounds on functionally determined 
distributions (Williamson and Downs 1990; Berleant 
and Goodman-Strauss 1998).  Unfortunately, these 
approaches are often inappropriate for realistic 
engineering problems.  For example, they cannot be 
applied directly towards a black box analysis model. 

An alternative to these methods is to use an entirely 
stochastic approach.  For precise probabilistic 
problems, Monte Carlo sampling can be used to 
approximate the uncertainty in the output.  For 
imprecise probabilistic problems, second-order (2D), 
also known as two-dimensional or double-loop, Monte 
Carlo sampling can be used to approximate the 
imprecise uncertainty in the output (Hoffman and 
Hammonds 1994).  However, for the high dimensional 
problems typical in engineering design, computational 
expense could still be prohibitive. 

For the gearbox example problem, we use an 
alternative approach in which we replace the outer 
loop of a 2D Monte Carlo simulation with an 
optimization algorithm.  The inner loop remains a 

Input

Output

Idler

 
Figure 8: Gearbox configuration schematic 
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Monte Carlo sampling from parameterized 
distributions, but instead of determining the 
parameters of these distributions by an outer loop of 
Monte Carlo sampling, we use optimization to find the 
set of distribution parameters that will give us the 
largest (and the smallest) expected values.  The 
results of these calculations are then used to make the 
comparisons in the elimination criteria.  

Our approach, while computationally more efficient, 
assumes independence between uncertain variables.  

While not ideal, we believe that this assumption is 
reasonable for large classes of engineering models.  
Another limitation of this approach is the presence of 
local minima in typical engineering problems.  For the 
gearbox example problem, we were able to overcome 
this difficulty by using several starting points for the 
optimization.  A more detailed explanation of the 
approach is available in (Bruns 2006).   

DEMONSTRATION OF ELIMINATION CRITERIA 

The first part of the example demonstrates the 
reduction of the design space for the first design 
variable—the gear ratio.  This design problem is 
slightly different from the examples mentioned earlier 
because it deals with a continuous variable.  For a 
continuous design variable, it is ranges of values that 
are eliminated, rather than discrete alternatives.  The 
initial problem statement specifies the design space of 
gear ratios in the interval [0.5, 5.0].  In the first step of 
the sequential decision process, the DM seeks to 
reduce this interval as much as possible while 
retaining in the range the most preferred—though 
currently unidentifiable—solution.   

We first consider the application of interval dominance 
by the DM.  Figure 10 contains a plot of expected utility 
versus gear ratio.  The two curves represent the upper 
and lower bounds on expected utility at a given gear 
ratio.  In the plot, the highest point on the lower-bound, 
or the Γ -maximin solution, occurs at a ratio of about 
1.5.  The DM draws a horizontal line at the lower 
expected utility at this gear ratio.  By the condition of 
interval dominance, any gear ratio with an upper-
bound on expected utility that is below this line should 
be eliminated.  For example, two expected utility 
intervals are indicated in Figure 10.  The leftmost 
interval is located at the Γ -maximin solution.  The DM 
compares all other decision alternatives to this interval.  
The Γ -maximin solution clearly dominates any of the 
expected utility intervals in the shaded regions.  
Therefore, the DM can eliminate gear ratios in both 
shaded regions from the design space. 

By taking into account that the uncertain parameters 
described in Figure 9 are shared between different 
design possibilities, we can make further eliminations 
in the design space using the maximality criterion.  In 
theory, the DM would need to make pairwise 
comparisons between all alternatives to eliminate all 
that are dominated under maximality.  Of course, this 
is impossible for design problems with continuous 
design variables.  In practice, a DM should therefore 
perform comparisons between a well-chosen discrete 
set of design alternatives across the entire design 
space.  

Maximize 
Expected Utility: 

 [ ]* {complete} [ ]t CEU E U P E U= −   

where  

• 16 4

1(Prize Money)* 1
1t tU
e −

⎛ ⎞= −⎜ ⎟+⎝ ⎠
, with the 

relationship determined by fitting a sigmoid 
function to past race finish times t . 

• {complete}P  is the probability that the gearbox 
completes the race, i.e. the reliability 

• CU =the cost of constructing the gearbox 

Select 
   Gear Ratio [ ]0.5, 5gN =  (torque ratio) 

   Input Gear Diameter [ ]1.5, 15ind cm=  

   Idler Gear Diameter [ ]1.5, 15idd cm=  

   Gear Width [ ]1.00, 8.75w cm=  

   Gear Module [ ]1.27, 8.75 /M mm tooth=  

Where 
Performance depends on 10 uncertain system 
parameters shared across all alternatives: 

   Total Mass (kg), M ~ Normal([200,215],[18,20]) 

   External Drag Coefficient (N/(m/s)2),  

         ,D eC  = [0.27,0.28] 

   Internal Drag Coefficient (N/rpm), ,D iC  = [0,0.0075] 

   Course Roughness Coefficient, cK ~ Normal(3,0.5)  

   Bending Strength Factor, J = [0.38,0.4] 

   Gear Quality, vQ ~ Normal([8.25,8.75],1) 

   Cost Error ($), errCost = [-5,5] 

   Uncorrected Bending Strength (N/m2),  

         ' fbS ~ Normal([197,203]x106, [30,35]x106 ) 

   Uncorrected Contact Strength (N/m2), 

          ' fcS ~ Normal([197,203]x106,[30,35]x106) 

   Application Factor, aK  = [1.68,1.70] 

Figure 9: Formulation of Mini-Baja Gearbox Problem. 
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In this example, the DM computes the bounds on the 
expected difference in utility between each gear ratio 
and the Γ -maximin gear ratio of 1.5.  Recall that the 
maximality elimination criterion specifies that the DM 
should eliminate any alternative (in this case, gear 
ratio) with an upper bound on expected difference less 
than zero.  Figure 11 contains a demonstration of 
maximality elimination over a continuous variable.  The 
DM draws a horizontal line at an expected difference in 
utility of zero.  The shaded regions correspond to gear 
ratios that are always dominated by designs with the 
reference gear ratio of 1.5.  Therefore, the DM can 
eliminate all decision alternatives that fall in the 
shaded regions in Figure 11.  The two curves 
represent upper and lower expected differences in 
utility.   

The calculation of a difference in expected utility 
requires two alternatives—the one being tested, and a 
reference.  In order to increase the efficiency of 
elimination, we choose a detailed reference design 
(Rekuc 2005).  The idea is to develop one promising 
alternative to a greater level of detail than the others, 
thereby reducing the imprecision from future decisions 
for that alternative.  The narrower intervals of utility for 
this design will often enable more elimination.  In this 
paper, the Γ -maximin solution is used as the 
reference design.  Specifically, comparisons are made 
to the reference design of 2.1gN = , 1.5ind cm= , 

1.5idd cm= , 1.25w cm= , and 6.35M mm= .  The 
mechanics of the resulting elimination decisions are 
the same as those described earlier in this paper, with 
all comparisons made to this reference design. 

SEQUENTIAL REDUCTION OF THE DESIGN SPACE 

We conclude our examination of the example problem 
with a sequential decision making process, sketched in 
Figure 12, to reduce the set of feasible designs.  A 
single step in this process was described in the last 
section, in which we reduced the design interval for the 
gear ratio.  Now we proceed to reduce the set of non-

dominated design alternatives sequentially through 
each of the remaining four design variables.   

The advantage of sequential elimination is that with 
each reduction in the uncertainty associated with a 
single design variable, the uncertainty in expected 
utility is reduced.  This, in turn, allows the DM to 
identify more dominated decision alternatives in the 
subsequent decisions, and so on.   

In step 1, the DM reduces the interval for the gear ratio 
based upon the initial design uncertainty for the other 
four design variables.  In step 2, the DM reduces the 
uncertainty for input gear diameter based upon the 
reduced uncertainty for the gear ratio and the initial 
uncertainty for the other three design variables.  The 
DM repeats this process sequentially until the design 
spaces for all design variables have been reduced via 
elimination.  The process could then be repeated for 
further reductions.  The right column contains the 
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Figure 11: Eliminating using maximality 

Initial Intervals for Design Variables:

Ng,i = [0.5,5], din,i = [1.5,15] cm, did,i = [1.5,15] cm, 

wi = [1,8.75] cm, Mi = [1.27,6.35] mm

Inputs to Maximality

Simulation: Reduced Design Space:

Step 1: din,i did,i wi Mi Ng,r = [1.05,2.55]

Step 2: Ng,r did, i wi Mi din,r = [1.5,7] cm

Step 3: Ng,r din,r wi Mi did,r = [1.5,12] cm

Step 4: Ng,r din,r did,r Mi wr = [1,8.75] cm

Step 5: Ng,r din,r did,r wr Mr = [1.27,5.67] mm

Initial Intervals for Design Variables:

Ng,i = [0.5,5], din,i = [1.5,15] cm, did,i = [1.5,15] cm, 

wi = [1,8.75] cm, Mi = [1.27,6.35] mm

Inputs to Maximality

Simulation: Reduced Design Space:

Step 1: din,i did,i wi Mi Ng,r = [1.05,2.55]

Step 2: Ng,r did, i wi Mi din,r = [1.5,7] cm

Step 3: Ng,r din,r wi Mi did,r = [1.5,12] cm

Step 4: Ng,r din,r did,r Mi wr = [1,8.75] cm

Step 5: Ng,r din,r did,r wr Mr = [1.27,5.67] mm

Figure 12: Sequential reduction process. 
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intervals representative of the reduced design space 
for one iteration.  We address additional aspects of this 
process in the discussion and future work section. 

SUMMARY OF EXAMPLE 

This section has demonstrated the process of making 
eliminating design alternatives in the context of 
gearbox design for an SAE Mini-Baja competition off-
road vehicle.  The problem is relatively rich in that it 
contains five decision variables and ten uncertain 
parameters that illustrate a range of possible 
uncertainty characterizations.  The goal of the example 
was to introduce the rationale of the methods and 
illustrate how such decisions can be made in a 
practical example.  In the next section, we discuss the 
results and present directions for future work.  

DISCUSSION AND FUTURE WORK 

This paper has motivated and demonstrated a 
sequential, set-based design approach in which the 
decision maker (DM) explicitly considers imprecision.  
The DM incurs costs in additional computation time as 
well as the expenditure of additional resources for 
developing and evaluating sets of design alternative in 
exchange for the benefit of converging on the most 
preferred design alternative and avoiding costly 
redesign.  Before adopting these methods, a DM 
should answer whether these benefits outweigh the 
costs.  This question requires further research, and the 
answer to the question will likely depend on the 
development of efficient means for managing and 
organizing the sequence of decisions.   

Specifically, it would be valuable to develop a formal 
set-based design model that goes beyond the general 
management principles of SBCE (Sobek, Ward et al. 
1999), feasibility-based elimination (Finch 1997), and 
the elimination methods presented in this paper.  Such 
a model would define the partitioning of the design 
problem into sets, the sequence of decisions, and 
definitive rules for elimination and arbitrary selection.  
For example, the order in which the design variables 
are explored in Figure 12 can significantly affect the 
results. 

It was noted earlier that one factor in choosing 
between the maximality and E-admissibility criteria 
was whether or not imprecision can be eliminated 
before a final decision is made.  In practice, it costs 
resources to eliminate imprecision, and resources are 
always limited.  At some point, the cost of additional 
information collection will exceed the expected benefit 
in increased performance of the design solution.  A DM 
must choose when to stop expending resources to 
eliminate imprecision and to select a final design 
solution arbitrarily, taking guidance from information 

economics in engineering design (Aughenbaugh, Ling 
et al. 2005).  However, the issue remains as to how to 
make this final arbitrary decision in a manner that 
works effectively in different classes of engineering 
problems. 

There is also substantial room for improvement in the 
computational method for propagating imprecise 
probabilities through our model.  The current method 
models all uncertain variables as independent.  This 
may be sufficient for certain problems, but how would 
the computations change for dependent uncertain 
variables?  In addition, with the current method, it is 
uncertain how close our computed upper and lower 
expected utilities are to the actual expected utilities or 
to the so-called rigorous, “best-possible” bounds for 
unknown dependence between the uncertain inputs.  
Finally, more efficient computational methods would be 
necessary for uncertainty propagation in complex, 
computationally expensive models.  In order to solve 
all of these problems, it seems likely that a 
fundamentally different computational approach will 
need to be developed.  

SUMMARY 

In this paper, we discussed how the presence of 
sequential decision making necessitates a set-based 
approach to engineering design.  Due to imprecision 
introduced from behavioral models, uncertain 
parameters, preferences, and future design decisions, 
a decision maker’s emphasis should be on eliminating 
undesirable design alternatives, rather than directly 
selecting the most preferred alternative.  We 
introduced and discussed several decision criteria, 
including recommending one for use in engineering 
design.  As an example, we have presented a gearbox 
design problem involving multiple design variables and 
sources of uncertainty.  Using this method, we have 
demonstrated how interval methods can guide the 
elimination of alternatives in set-based design.  Finally, 
we have identified the priorities for future work.  
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