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SUMMARY 

Knee injuries and chronic disorders, such as arthritis, affect millions of Americans. 

Currently, diagnosis of these conditions relies on expensive, time-consuming imaging 

studies and physical examination by a health care professional. After diagnosis, there are 

few quantitative technologies available to provide feedback to patients regarding their 

rehabilitation or efficacy of their prescribed treatments. Most assessments are qualitative, 

relying on patient-reported symptoms, functional performance, or physical examinations.  

To address that gap in the management of musculoskeletal (MSK) conditions in 

this work, I describe my progress in developing a joint health sensing technology focused 

on measuring the sounds – or acoustic emissions (AEs) - produced during a joint’s 

movement. The goal of this research is to provide an easily interpretable, quantitative 

metric of joint health status that could be measured using affordable hardware.  To develop 

such a metric, I had to first build a system for accurately and repeatably recording AEs, 

better understand the nature of AEs using a cadaver model, build a database of AEs from 

different clinical cohorts, and define a technique for the accurate analysis of AEs that would 

yield clinically meaningful results.  All these steps led to my proposed AE analysis 

algorithm, which takes low-level AE signal and feature data and fuses it using machine 

learning to present a joint health score or index. This score is shown to closely track with 

the clinical condition the patient groups studied as well as the injuries in the cadaver model.  

 During the development of this metric, my work on a cadaveric model of joint 

sounds helped us better understand the underlying physiology and anatomy that contributes 

to the production of AEs. Building off of the cadaver AE work, I translated AE analysis 
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into the clinic and performed cross-sectional and longitudinal recordings in a pediatric 

patient population with juvenile idiopathic arthritis (JIA). In JIA, AEs of the knee and 

temporomandibular joint (TMJ) are explored – with an emphasis placed on longitudinally 

monitoring patients’ responses to treatment.  I envision that one day, AE monitoring could 

serve as a much-needed objective marker of joint health status. It could be a valuable tool 

for quantifying clinical studies, personalizing rehabilitation efforts after injury, tracking 

therapeutic efficacy, and ultimately reducing the burden of musculoskeletal injury and 

disease for both the patients and the health care system. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Musculoskeletal injuries and chronic conditions affecting the joints are prevalent [1], 

and the knee is one of the most frequently injured body parts with nearly 18 million patient 

visits occurring per year in the United States [2]. Often, these injuries occur due to the 

repetitive stress and high loads experienced during movement [3], [4]. The knee is also one 

of the most commonly affected joints by chronic degenerative joint diseases, such as 

arthritis. Nearly 23% of the U.S. population is diagnosed with some form of arthritis. The 

high number of patients with chronic joint conditions and acute injuries imposes a severe 

burden on patients and the healthcare systems [1]. 

The gold standard for diagnosing and managing knee health is a combination of 

physical exams and medical imaging. Physical exams rely on health care worker expertise, 

and imaging is not always feasible due to its high cost, restriction to a clinical setting, and 

contraindications [5], [6]. After diagnosis and initial intervention, patients enter a period 

of recuperation and rehabilitation. Ideally, during this period medical recommendations 

could be individualized to each patient’s own rate of recovery. However, imaging studies 

provide limited information during rehabilitation, and repeat imaging is often prohibitively 

expensive. Instead, rehabilitation decisions are based on subjective analysis, patient-

reported symptoms, and assessment of functional activity levels [7].There is a need for a 

more sensitive and objective system for monitoring joint conditions that could complement 

these existing approaches. 
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One promising avenue for addressing this lack of objective, actionable data during 

the rehabilitation period is by using wearable sensors. Many researchers have developed 

technologies for assessing knee health using wearable sensors. Most often, inertial sensors 

have been used to measure gait and knee kinematics [8]–[12]. These measures have had 

limited success because gait and joint kinematics do not reflect underlying 

pathophysiologic changes until damage to the joints has sufficiently progressed [10], 

[13].These sensor-based approaches provide a step toward longitudinal monitoring; 

however, they do not precisely capture the subtle changes in physiology or structure that 

would be most useful for quantifying MSK rehabilitation. There is a need for additional, 

and more sensitive, markers of joint health for augmenting the inertial sensor-based 

approaches to long term monitoring. 

AEs could potentially provide information regarding the structural integrity of joints 

and health of their internal surfaces before their kinematic outcomes are apparent. These 

sounds produced during joint articulation have long been of interest to physicians, though 

little is known about their nature.  Most existing research in joint AEs has focused on 

developing diagnostic techniques to differentiate “healthy” vs. “unhealthy” knee joints 

[14], [15]. In one study, osteoarthritic knees were found to produce more frequent, louder, 

and longer duration AEs when compared against healthy knees [16].  This work was limited 

by the technology available at the time of publication. Until recently, longitudinal 

assessment using AEs in healthcare was not feasible due to a lack of technologies for 

recording AEs outside of a laboratory or clinical setting. In 2016, for the first time, our lab 

used miniature microphones for wearable AE measurements outside of those settings with 

high reliability and repeatability [17].  
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With the feasibility of measuring AEs using miniature microphones proven, research 

to understand what type of physiologic information AEs contain is necessary. Before 

clinical adoption of AEs is possible, we must better understand the nature of AEs. This 

understanding will involve studying the origin and confounding factors of AE production 

and propagation. It will also need to be demonstrated that there is a direct and preserved 

relationship between internal structural disruptions of the knee (e.g. ligament tear, cartilage 

breakdown) and changes in AE patterns. With this understanding, AEs may one day be 

able to serve as a much-needed quantitative biomarker of joint health.  

1.2 Major Contributions of this Work 

 AE analysis has broad applications in the realms of MSK diagnosis, screening, and 

monitoring. There has been scientific and clinical interest in using AEs to diagnose and 

track joint health status since at least 1902 [18]. Unfortunately, the technology has not 

made much progress in terms of clinical adoption. For the past three years, I have been 

recording the AEs of patients in clinic and working closely with their treating physicians 

and medical team. During this period, I have perceived three major impediments to 

adoption of AE screening technology in clinic. The first is the lack of scientific research 

explaining the nature of AEs which makes interpreting them difficult, and thus limits 

healthcare providers’ (HCP) trust in the findings. The second is the perceived difficulty in 

recording and analyzing these signals. The third is a lack of understanding of the value that 

AEs will provide to a clinical workup outside of the current gold-standards of diagnosis 

and treatment. My thesis work seeks to address these impediments. As such, below I 

present the three major contributions of this work.  
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The major contributions of this work are: 

1. Quantified, for the first time, the specific characteristics of AE features that change 

following acute knee injury in a cadaver model. 

2. Demonstrated that AE characteristics are significantly different in patients with 

juvenile idiopathic arthritis compared to healthy matched controls, and that these 

differences diminish following successful treatment. 

3. Developed and validated a head-worn sensor package for enabling high quality 

acoustic emission recordings from the TMJ in clinical settings. 

1.3 Thesis Organization 

 CHAPTER 2 describes the specific aims of my research. Before detailing the 

findings of my research, In CHAPTER 3 I provide at a cursory introduction into the 

anatomy, physiology, and pathologies that will be heavily referenced throughout this work. 

The technologies, sensors and analytical frameworks I employed in recording and 

understanding AEs are detailed in CHAPTER 4.  

 The rest of this work is intentionally organized to create a cohesive narrative rather 

than strictly a chronology of my work. As such, I first present in CHAPTER 5, insights 

gained from our cadaveric model of knee AEs. This model informed much of our later 

analytical frameworks from the two clinical studies: JIA diagnosis and tracking 

(CHAPTER 6) and TMJ diagnosis (CHAPTER 7). Finally, I conclude and discuss potential 

future directions for those that begin this work where I finished in CHAPTER 8.  
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CHAPTER 2. SPECIFIC AIMS 

 The goal of this project is to understand what role AEs can served in describing 

joint health. Our lab has designed a recording setup using uniaxial accelerometers for 

recording joint AEs that is discussed in 4.1. In our previously published work, this setup 

was used to quantify knee recovery following acute injury in a small cohort of athletes [3]. 

These findings led to our hypothesis that AEs contain clinically relevant information 

pertaining to the underlying health of MSK joints.  This central hypothesis is tested with 

the following aims: 

1. Improve the fundamental understanding of joint sound origins by using a cadaver model 

 Researchers have used a wide range of instruments and analysis techniques to 

detect and interpret the sounds produced during movement of the knee [19]–[21]. However, 

the ability to interpret these AEs has had limited success due to a lack of mechanistic 

understanding of how these sounds are produced. We hypothesize that the exploration of 

AEs using human cadaver knees will reveal crucial information about the source, 

propagation and confounders of these sounds. A cadaver model will allow for a high level 

of control and manipulation of AEs. The effects of joint damage on the recorded AEs will 

be investigated using the lab’s custom AE recording setup, inertial measurement units 

(IMUs), biplanar motion capture x-ray imaging, and computed tomography (CT) scans. 

Recordings will be performed at baseline, after a sham surgery, and after injury to the joint. 

These AEs will then be compared against AEs recorded from patients with similar injuries 

to understand if the changes noted in a cadaver model could translate to the clinic. This 

aim will help deduce the mechanism of joint sound production, validate a cadaver model 
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of AEs, and support the claim that changes to the internal joint architecture are measurable 

at the surface of the skin.  

2. To determine the potential of AEs for diagnosis and longitudinal monitoring of joint 

health status. 

Clinical assessment and treatment of joint injury and disease relies heavily on 

qualitative physical exams, patient reported symptoms, and hospital-based imaging studies. 

An initial step necessary for the integration of joint AE assessment into an MSK work-up 

is to determine their diagnostic potential. This will be studied in a group of children with 

JIA compared against matched control populations. If we find that the AEs from this group 

contain consistent features that are unique between the pathologic and healthy groups, it 

supports their inclusion in the respective diagnostic workups.   In addition to diagnosis, 

longitudinal monitoring is an essential part of these patients’ clinical management due to 

the chronic nature of the disease and the long recovery time of injury, but it is difficult to 

longitudinally monitor progress without repeat clinic visits [22], [23]. Our lab’s 

preliminary research has shown consistency in subjects’ AEs overtime [24]. Therefore, we 

hypothesize that changes in knee AEs overtime may be used to longitudinally monitor knee 

health status. To test this hypothesis, I will record the AEs of patients with JIA at critical 

timepoints in their treatment (e.g. at diagnosis and 3-6 months post-intervention). This aim 

will quantify the ability of AEs to classify the severity of arthritis, discover if AEs can track 

therapy efficacy, and provide support for using AEs to longitudinally monitor MSK 

conditions. 

3. To expand the scope of AE analysis beyond the knee by exploring its use in the TMJ 
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Another commonly affected joint in JIA with severe outcomes if not monitored and 

treated is the TMJ. The TMJ is difficult to examine, and diagnosis relies mainly on imaging 

[25], [26]. We hypothesize that in JIA, AEs from the TMJ may indicate joint involvement 

and serve as a measurable biomarker for inclusion in a clinical workup. A custom headset 

with embedded AE sensors will be built and used to record patients as well as age- and 

sex-matched controls. This aim will provide proof of concept of AEs applicability in other 

joints and elucidate the diagnostic/screening potential of this sensing modality for TMJ 

involvement in JIA. 
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CHAPTER 3. BACKGROUND  

3.1 Contextual Anatomy and Physiology 

3.1.1 The Knee 

The knee is a hinge joint that contains the distal femur, the proximal tibia and fibula, 

the patella, and the joints between those bony structures. It is the largest joint in the body 

[27]. There are three articulating surfaces in the knee: two between the femur and the tibia 

and one between the femur and the patella. The two rounded condyles of the femur rest on 

the flat tibial plateau. The two tibiofemoral joints are formed by the curves of the medial 

and lateral condyles of the femur as they articulate with the condyles of the tibia. The third 

articular surface in the knee is the patellofemoral joint. The patella slides along the groove 

of the anterior aspect of the distal femur called the trochlear groove [27]. The knee joint 

relies on four ligaments for stability. There is little fat or muscle covering the knee which 

makes it highly vulnerable to injury [28].  

The menisci and two pairs of ligaments (the collaterals and the cruciate) are crucial 

for the stability of the knee [29]. The medial and lateral menisci cushion the femur on the 

tibia. They are crescent-shaped fibrocartilaginous discs that create a cup like surface for 

the articulating femoral condyles. Notably, the medial meniscus connects to the medial 

collateral ligament (MCL) – a broad, flat ligament connecting the medial femoral 

epicondyle to the medial condyle of the tibia. This connection makes the medial meniscus 

more prone to traumatic injury than the relatively free lateral meniscus [30]. The lateral 

collateral ligament (LCL) connects the lateral femoral epicondyle to the lateral condyle of 
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the tibia. Together, the LCL and MCL provide medial and lateral stability to the knee. The 

anterior cruciate ligament (ACL) crosses from the anterior medial tibia to the lateral 

femoral condyle. It prevents the tibia from sliding anteriorly on the femur. The posterior 

cruciate ligament (PCL) crosses with the ACL inside the knee joint. It connects the 

posterior tibia and lateral meniscus to the medial femoral condyle. It prevents the tibia from 

slipping posteriorly in relation to the femur. The ACL and PCL are crucial to the 

anteroposterior stability of the knee. These anatomical structures can be seen in Figure 1. 

 The knee is a synovial joint. The synovial cavity of the knee occupies the two 

concavities at each side of the patella (i.e. the “negative infrapatellar spaces”) and the space 

above it - the suprapatellar pouch. This joint cavity covers the anterior, medial, lateral, and 

parts of the posterior aspect of the knee [29]. The synovial membrane is a type of 

specialized connective tissue that lines the inner surface of the joint capsules of synovial 

joints. This membrane creates a tight barrier that keeps synovial fluid inside the joint. This 

non-Newtonian fluid minimizes friction during movement.  In addition to reducing friction, 

the synovium and synovial fluid prove a plane of separation, so that movement can occur. 

The synovium is not normally detectable but can become swollen and tender when the knee 

is inflamed or injured (as is seen in JIA) [31]. A diagram of the synovium is in Figure 2.  
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Figure 1. Knee Anatomy. Note the tibial tuberosity. That is the landmark used for 

determining placement of the contact accelerometers.  Image courtesy of [29]. 

 

Figure 2. Synovial Joint. The synovial membrane is not normally detectable on physical 

exam but serves an important role in maintaining the synovial fluid balance which 

reduces friction in the joint. Image in public domain. 
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3.1.2 The Temporomandibular Joint (TMJ) 

 The TMJ is the most active joint in the body, opening and closing up to 2,000 times 

a day [5]. It connects the skull to the jaw. Particularly, the TMJ is formed by the fossa and 

articular tubercle of the temporal bone and the condyle of the mandible [27]. Like the knee, 

it is a condylar, synovial joint. There is also a meniscus (a fibrocartilaginous disc) in the 

TMJ. The TMJ’s meniscus serves a similar function to the meniscus in the knee. It cushions 

the action of the mandibular condyle against the synovial membrane and capsule of the 

temporal bone. This meniscus divides the joint cavity into two small synovial cavities: the 

superior and inferior compartments. Retrusion and protrusion of the mandible occur in the 

superior compartment. Hinge movements of the mandible occur in the inferior 

compartment. The joint is reinforced by multiple ligaments connecting the mandible to the 

sphenoid and temporal bones and supported by the muscles of mastication. The size, depth, 

and coverage of the TMJ by surrounding tissue makes the TMJ particularly difficult to 

examine [32]. 
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Figure 3. Temporomandibular Joint Anatomy. Image courtesy of [29] 

3.2 Contextual Pathology and Injury 

3.2.1 Juvenile Idiopathic Arthritis 

  Arthritis describes swelling within a joint, or limitation in the range of joint 

movement with joint pain or tenderness, which persists for at least six weeks, is observed 

by a physician, and is not due to primarily mechanical disorders or to other identifiable 

causes [33]. JIA encompasses all forms of arthritis that begin before a patient is 16 years 

old and are of an unknown origin. It is an autoimmune disorder characterized by persistent 

joint swelling caused by an accumulation of synovial fluid and thickening of the synovial 

lining (Figure 4)  [34]. It is a leading cause of disability and the most common childhood 

chronic rheumatic disease with a prevalence of 150 cases per 100,000 [35].  
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Figure 4. Depiction of healthy knee vs a knee with JIA. (A) A healthy knee articulates 

smoothly due to is smooth cartilage and appropriate amount/constituency of synovial 

fluid. In JIA, you may see cartilage loss, bone erosions, and a thickened/inflamed 

synovium with excessive joint effusions. 

 

3.2.1.1 JIA Subtypes 

 JIA is highly variable with its presentation, symptomatology and course thought to 

be influenced by both genetic and environmental factors [34], [36].  The different forms of 

arthritis encompassed within JIA have been grouped based on clinical and laboratory 

features. These groups are systemic arthritis, oligoarthritis, polyarthritis, psoriatic arthritis, 

enthesitis related arthritis, and undifferentiated arthritis [33]. Systemic JIA is characterized 

by systemic features, such as fever, rash and serositis with arthritis in one or more 

joints[37]. Oligoarthritis affects one to 4 joints during the first 6 months of the disease. 

Polyarthritis affects 5 or more joints during the first 6 months of disease and is subdivided 

based on positive or negative rheumatoid factor (RF) tests. Psoriatic arthritis has features 
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of arthritis and psoriasis (dactylitis, nail pitting, onycholysis, or psoriasis in a first-degree 

relative). Enthesitis-related arthritis may have sacroiliac joint tenderness, inflammatory 

pain in the lumbosacral region, acute anterior uveitis, or a history of ankylosing spondylitis, 

sacroiliitis with inflammatory bowel disease, or Reiter’s syndrome. Finally, 

undifferentiated arthritis contains all cases of all juvenile arthritis not covered by one of 

the other categories [33].  

3.2.1.2 Diagnosis 

 No conclusive laboratory tests are available for the diagnosis of JIA [38]. Diagnosis 

is ultimately a diagnosis of exclusion, decided through a thorough history and physical 

exam. Taking a history involves asking questions about systemic manifestations (e.g. fever 

and rash), joint stiffness in the mornings, joint pain or swelling, and any history of auto-

immune conditions in family members. The physical exam allows for assessment of pain, 

tenderness, swelling, limited movement, decreased strength, muscle atrophy and bony 

deformities. The physical exam also involves looking for lymphadenopathy, organ 

enlargement, rashes, nail abnormalities, or enthesitis [38]. The clinical features all depend 

on the subtype of JIA and differ based on the age of onset, number and location of joints 

involved, disease course and presence of antinuclear antibodies (ANA), RF, and uveitis 

[39], [40]. 

 Finally, to fully subtype suspected JIA laboratory tests are needed. These include a 

full blood exam, inflammatory markers (erythrocyte sedimentation rate, C reactive 

protein), and autoimmune markers (RF, HLA B27, ANA). Imaging studies are also 

commonly used. Radiography can show narrowed joint-spaces or erosions as well as 
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growth abnormalities. Magnetic resonance imaging (MRI) can show the inflamed 

synovium and increased joint fluid [26], [39], [40].  

3.2.1.3 Management and Treatment of JIA 

 Inactive disease followed by clinical remission with the goal of allowing the child 

to resume normal childhood activities and normal growth and development are the 

treatment goals for treating children with JIA [38]. Managing JIA requires a combination 

of pharmacological interventions, physical and occupational therapy, and psychosocial 

support. The three main goals of treatment are to: 1) lessen the pain and swelling during 

symptom “flares”, 2) reduce the number of symptom flare-ups and put the disease into 

remission, and 3) prevent long-term joint damage [41].  

 Initial pharmacological treatment will depend on the severity of the presentation, 

but typically involves non-steroidal anti-inflammatory drugs (NSAIDS) and corticosteroid 

injections into the inflamed joint [42].  If those first line treatments are inadequate, 

treatment will move on to disease-modifying anti-rheumatic drugs (DMARDs). DMARDs 

can be divided into biologics and non-biologics. The most common non-biologic used to 

treat JIA is methotrexate. Low-dose methotrexate in combination with NSAIDs and 

corticosteroids is rapidly becoming the standard of care. Biologic DMARDs are antibodies 

that prevent the activation of various aspects of the inflammatory cascade or immune 

response – which results in less severe and less frequent flares. Anti-TNF drugs (e.g. 

abatacept) and anti-interleukin 1 and 6 antibodies are commonly used when symptoms are 

not controlled with more conservative measures [26], [42], [43].  

3.2.1.4 Future Work in JIA 
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 Clearly, the diagnosis and management of JIA is no small task. A foreseeable next 

step in the field will be to devise a method for combining the ongoing 

genetic/immunological mechanistic studies of the disease with observed clinical outcomes. 

In order to better subgroup patients, identify risk profiles, and predict an individual’s 

response to treatment new technologies and modalities of objectively diagnosing and 

profiling JIA must be developed. One promising objective measure of disease activity is 

through joint AE assessment. With further research and development, AE sensing can 

hopefully lead to improved, personalized care, and help objectively quantify the results of 

the next generation of JIA  clinical trials. 

3.2.2 Acute Knee Injuries 

3.2.2.1 Knee Injuries Addressed in This Work 

The studies presented in this work focus most on acute ligament and meniscal tears. 

In CHAPTER 5, these types of injuries are analysed in an ex-vivo human cadaver model. 

An understanding of the current clinical standards of diagnosis and management is helpful 

to better understand the benefit that AE analysis may have in this clinical realm. 

3.2.2.2 Diagnosis 

3.2.2.2.1 Cruciate Tears 

As discussed in 3.1.1, the ACL and PCL are the two cruciate ligaments that cross 

within the knee joint. The ACL provides 85% of the stability to the anterior translation of 

the tibia relative to the femur and restrains tibial rotation [3].  ACL tears are most 

commonly caused by non-contact pivoting injuries [44]. 54% of cases are associated with 
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acute lateral meniscus tears [44]. If left untreated ACL tears may lead to chondral injuries, 

unrepairable meniscus tears, and possibly arthritis [23].  

Diagnosis of ACL tears begins with patient reported symptoms. This type of tear is 

four and a half times more common in females [45]. A patient commonly feels a large 

“pop”, has pain deep in the knee, and immediate swelling. On physical exam, the physician 

may notice effusion or a quadricep avoidance gait (i.e. reduced active extension of knee). 

The Lachman’s test is the most sensitive exam test, but the pivot shift, and KT-1000 tests 

can also aid in diagnosis [3]. Finally, MRI imaging is commonly used as the final step in 

diagnosis.  

The PCL is the primary restraint to posterior tibial translation [3]. PCL tears make 

up 5-20% of all knee ligamentous injuries and are generally caused by a direct blow to the 

proximal tibia while the knee is flexed [46]. Isolated and combined PCL injuries are 

frequently underdiagnosed [47].  Patients with this injury may report instability and 

posterior knee pain[48]. The posterior drawer test is the most accurate physical exam 

maneuver for diagnosing PCL injury[46].  A confirmatory MRI is often ordered to finalize 

the diagnosis. 

3.2.2.2.2 Meniscus Tears 

Meniscus injuries are the most common indication for knee surgery, and patients 

with ACL deficiency are much more likely to suffer a meniscus injury. Medial tears of the 

meniscus are more common than lateral tears. However, in older patients a degenerative 

tear of the posterior horn of the medial meniscus is most common. In patients with acute 

ACL tears, a lateral tear is much more common. There are seven common patterns of 
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meniscus tears: longitudinal, bucket handle, oblique, radial, horizontal, complex and root 

tears. In our studies on the AEs related to meniscus tears we focused on radial and oblique 

tears. These two patterns are most closely associated with mechanical locking symptoms 

[30].  

Diagnosis of meniscus injuries begins with patient reported symptoms. These may 

include pain localized to the medial or lateral joint line of the knee, mechanical symptoms 

such as locking or clicking, and swelling. Joint line tenderness is the most sensitive 

physical exam finding for meniscus tears. The examining physician may also notice 

effusions, and can perform three provocative tests: Apley compression, the Thessaly test, 

and the McMurray test [49]. During these provocation tests a palpable pop or click is a sign 

of a positive test. This finding clearly ties into AE analysis of the knee. The final stage of 

diagnosis is MRI imaging which is the most sensitive diagnostic test, but also has a high 

false positive rate [50]. 

3.2.2.3 Treatment and Management 

Treatment of acute knee injuries can be either non-operative or operative. Non-

operative approaches rely on rest, NSAIDs, and rehabilitation. Non-operative treatments 

are the first line of treatment for degenerative tears. Physical therapy and lifestyle 

modifications are commonly the first step in low-demand patients.  

3.2.2.3.1 ACL 

Nearly 400,000 ACL reconstructions are performed each year in the U.S.A [3]. To 

correct an ACL tear, either an auto- or allograft is threaded through the knee to replace the 
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torn ligament. An autograft, using the patient’s own tissue, is considered the “gold 

standard” [51], [52]. Following surgery, patients are advised to use aggressive cryotherapy, 

immediate weight bearing, and full passive extension. Rehabilitation during the first 6 

weeks after surgery focuses on exercises that do not place excess stress on the graft. The 

timing of when patients can return to play following surgery is largely dependent on 

psychological, demographic, and functional outcomes [53], [54].   

3.2.2.3.2 PCL 

 The decision to operate on a PCL depends on the grade of the tear. If it’s a grade 1 

(partial) or 2 (isolated), protected weight-bearing and rehabilitation may be sufficient [55]. 

If the tear is more severe, operations may be performed with a grafted PCL in tandem with 

bony avulsion fracture correction or a high tibial osteotomy [56]–[59]. After the operation, 

the leg is immobilized in extension and protected from gravity. Rehabilitation is focused 

on strengthening the quadriceps [55]. 

3.2.2.3.3 Meniscus 

In the meniscus, there are three main operative approaches: meniscal repair, partial 

meniscectomy, and meniscal transplantation [60]. A meniscal repair has 70-95% success, 

and is most successful when the tear is in the peripheral zone, has a vertical or longitudinal 

pattern, is 1-4mm in length, or is a root tear [61]. During a repair, vertical mattress sutures 

are used to seal the injury.  A partial meniscectomy removes the torn portion of the 

meniscus and is performed when the pattern of tear is not amenable to repair (e.g. complex, 

degenerative or radial tears) [62]. Meniscal transplantations are performed in young 
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patients with near-total meniscectomies. The size of the allografted meniscus is essential 

for proper healing and is usually based on radiographs of the knee [63]. 

3.2.2.4 Opportunities for Advancement 

The prevention, diagnosis, treatment, and rehabilitation of acute knee injuries are all 

areas of active research. The diagnostic capabilities of AEs could be included as part of the 

initial work-up prior to MRI imaging. In planning surgical approaches/techniques having 

a full visualization of the injury is still an essential piece of the treatment plan. Therefore, 

AE assessment is unlikely to completely subvert the use of MRI. AEs could however be 

used as a screening step prior to imaging which would greatly help reduce the time and 

resources spent unnecessarily imaging non-surgical cases. AEs may also be of particular 

use is in the prevention and rehabilitation realms of MSK injury. The small form-factor, 

and affordable hardware, makes AE assessment feasible outside of the clinic. This type of 

assessment could easily be performed by a physical therapist, sports trainer, or a patient at 

home or in the field. After injury, the AE feedback could help personalize the rehabilitative 

efforts to optimize recovery time. It may even one day be possible to predict if an injury is 

likely to occur – perhaps from overuse – if AEs are regularly monitored during intense 

physical activity. With further research and development, these technologies can hopefully 

lead to improved, personalized care that helps reduce the tremendous burden of MSK 

injury on patients and the healthcare system [64]. 
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CHAPTER 4. SENSORS AND ANALYTICAL FRAMEWORKS 

4.1 AE Sensing Technology 

 In 2016, our lab published an extensive comparison of the different techniques for 

recording MSK AEs in the knees [17]. In this work, Teague et al. compared two classes of 

airborne microphones (electret and MEMS) and a piezo film contact microphones. They 

found that joint sound measurements from air microphones were repeatable in subjects and 

across the two joints. Most of their contact microphone recordings were corrupted due to 

noise from the interface technique, but several benefits of contact microphones were still 

discovered in this preliminary work. One main benefit of using contact microphones was 

that they did not record background noise. The main drawback was that the sensor-skin 

interface could be lost in a wearable setting. However, for my work, adapting the recording 

setup for a wearable setup was a secondary concern. The data presented in this thesis was 

recorded in a variety of clinics and laboratories with different levels and types of 

background noise. The contact microphones presented a clear advantage given the many 

recording locations. Additionally for TMJ AEs, it had previously been shown that contact 

accelerometers provide the highest mean amplitude in the time domain waveform [65]. 

Many of the features that appeared to differentiate clinical groups based on our proof-of-

concept AE recordings were related to the amplitude of the spikes in the time domain 

waveform (e.g. RMS power, energy, b-value). Ultimately, either approach to recording 

AEs would have been suitable depending on the application. In the work presented in this 

thesis, I exclusively used surface mounted accelerometers to record AEs because they were 
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easy to place on the joints, able to capture high amplitude spikes in the time domain, and 

were resistant to background noise. 

The AEs in all studies were recorded using Dytran uniaxial, miniature accelerometers 

(Model 3225F7, Dytran Inc, California, USA 91311) with a diameter of 6.35 mm. They 

are highly sensitive to changes in acceleration (sensitivity is 10.2 mV/m/s2) and the 

frequency response curve is flat from 2 Hz to 10 kHz.  The accelerometers were connected 

to a data acquisition device that enables the simultaneous and synchronous capture of up 

to four accelerometers at a rate of 100 kHz. The sensors and the data acquisition device 

(DAQ) are plugged into a laptop that powers the devices and is running a custom data-

capture program written in MATLAB (Figure 5A). This program controls the length of the 

recording and converts the voltage readouts from the sensors to units of acceleration (using 

the manufacturer-provided calibrated sensitivities of the specific microphones). The 

program also performs preliminary steps to ensure that the data are successfully recorded 

including bandpass filtering (between 250 Hz – 20 kHz) and plotting the recordings.  

With the recording hardware built and the software acquisition program written, the 

two main design decisions remaining were how to surface mount the accelerometers, and 

where to place them around the joint. A strong skin-to-sensor interface is essential for 

capturing AEs using contact accelerometers. In the cadaver model, we used sutures and 

superglue to adhere the accelerometers to the skin. With this “gold-standard” adhesion 

technique, we could better appreciate the joint sounds without adding interface noise. Upon 

listening to the AEs, we found that double sided sticky pads were a suitable means of 

attachment during our human subject studies. Particularly, Rycote brand sticky pads 

introduced very little “rubbing” noises into the recordings. They also provided a strong 
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interface with the skin, were quick to place, and did not irritate our pediatric patients. The 

location of the microphones in this work was selected based on the underlying anatomy 

with the guidance of the clinical mentors on the team. We opted to place one accelerometer 

approximately 3 cm medial and lateral to the distal patellar tendon (Figure 5B). This 

location had minimal anatomical structures impeding the path from the articulating surface 

of the knee joint (where we hypothesized was the source of the sounds) to the surface of 

the skin. 

With the recording apparatus built, and the method for placing and recording AEs in 

place, it was then time to begin recording AEs in our populations of interest. The next 

section details the techniques we developed for analyzing these signals. 
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Figure 5. Recording Setup and Microphone Location. (A) Up to 4 accelerometers 

could be simultaneously recorded using the DAQ and custom Matlab recording script. 

(B) The ideal recording location in the knee was selected based on the minimum 

impedance between the surface location and joint line (B). Image courtesy of Complete 

Anatomy.  
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4.2 Analytical Frameworks 

All analysis is done using Matlab (MathWorks, Natick, MA). 

4.2.1 Signal Pre-Processing 

 The raw recorded signals in each experiment are first processed using a digital finite 

impulse response (FIR) band-pass filter with 100Hz - 10kHz bandwidth to maintain 

emissions in the audible range while removing motion artifacts. This frequency range was 

previously shown to contain the majority of knee AEs information [17]. Once filtered, the 

signals are compared against the simultaneously recorded IMU motion data and the 

beginning and ends of the AE signal are trimmed to remove the excess periods of noise 

before and after the flexion/extension movements began. This trimmed noise is used as a 

basis for a noise suppression algorithm using spectral subtraction from the AE recordings 

in several of our studies [66].  

4.2.2 b-Value analysis of Acoustical Data 

 The first approach we pioneered for interpreting AEs for the work presented here 

was by calculating and comparing the b-value. The b-value metric is computed for AEs to 

differentiate the sounds based on their amplitude distributions. The b-value was first 

proposed by Gutenberg and Richter in earthquake seismology to quantify a logarithmic 

relationship between the magnitude and frequency recorded in a seismic trace, using the 

empirical formula expressed in Equation 1 [67]. 
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 log(N) = a − bML (1) 

 

Equation 1. Logarithmic Relationship between Magnitude and Frequency 

Where ML is the Richter magnitude of events, N is the number of events with magnitudes 

greater than ML, and a and b are the constants. Based on this relationship, the b-value is 

the negative gradient of the log-linear AEs frequency/magnitude plot and thus represents 

the slope of the amplitude distributions. Our previously published work successfully used 

the computed b-value of joint sounds to differentiate knee injury status in athletes [68]. An 

example calculation of the b-value is shown in Figure 6.  

 

Figure 6. b-Value Calculation. (i) Each microphone’s recorded acoustic signal is 

bandpass filtered. (ii) The peaks are detected above a threshold (RMS Power + noise 
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maximum). (iii) The peaks are ordered based on amplitude, and (iv) the log of the 

ordered peaks is taken. The slope of the line in (iv) is the b-Value. 

4.2.3 Logistic Regression 

The b-value analysis was useful for several of the studies in this work; however, when 

the changes in AEs were more subtle, b-value analysis was found to not be robust enough 

to fully characterize the AE characteristics. To make the analysis more robust, we 

calculated up to 49 features for each cycle of joint articulation for each microphone, and 

organized them into a feature matrix. A machine learning approach known as logistic 

regression was used to classify the input signals based on that feature matrix. Logistic 

regression is a common machine learning technique borrowed from statistics for binary 

classification problems. At the core of this algorithm is the logistic function, which was 

originally developed by ecologists to describe population growth – it is a sigmoidal curve 

that rises quickly and levels off at a given environment’s carrying capacity [69], [70]. The 

algorithm uses this function to map any real number input to a value between 0 and 1.  

 1
(1 + 𝑒−𝑣𝑎𝑙𝑢𝑒)⁄  

 

(2) 

Equation 2. Logistic Function 

 In logistic regression, the input values (x) are combined linearly to predict an output 

value (y) using weighted coefficients (bn) that are calculated during training. These 

coefficients describe the n-dimensional hyperplane that best separates the two classes [71]. 

Unlike linear regression, in logistic regression the output values being predicted are binary 



 28 

(0 or 1, or in our case healthy or diseased/injured). The logistic regression equation thus 

takes on the following format: 

 𝐲 = 𝐞𝐛𝟎+𝐛𝟏𝐱𝟏+⋯+𝐛𝐧𝐱𝐧

𝟏 +  𝐞(𝐛𝟎+𝐛𝟏𝐱𝟏+⋯+𝐛𝐧𝐱𝐧)⁄  
(3) 

Equation 3. Logistic Regression Mapping Function 

Where y is the predicted output, b0 is the intercept, b1-bn are the coefficients for the input 

feature values (x1-xn). x corresponds to one feature from one cycle of movement within the 

larger feature matrix. The individual features used are described in 4.2.5. Each of the 

features in the input feature matrix are given a coefficient learned through training (b1-bn). 

The vector of b1-bn are stored in the coefficient vector (β).  β is found using a maximum-

likelihood estimation, specifically the quasi-Newton method, that minimizes the error of 

the predicted probabilities [71]–[73].  

 The predicted output (y) is the probability that a given feature input belongs to the 

selected default class. A classification label for each feature is assigned using a probability 

threshold. In this work, the threshold is described in Equation 4. This threshold was chosen 

heuristically, but theoretically could be adjusted to increase the sensitivity or specificity 

depending on the application of the algorithm in the future. Once each of the feature 

classifications has been determined, the cycle that those features describe is labeled based 

on the majority of individual feature labels. Similarly, a subject-level classification label is 

determined by the predicted class of the majority of that subject’s component cycles. 

 𝑚𝑒𝑎𝑛(𝑝(𝑥)) ≤  0.5, 𝑦 =  Healthy (4) 
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mean(p(x))  >  0.5, 𝑦 =  Injured or Diseased 

Equation 4. Threshold for AE Classification. p(x) is the output probability of feature 

‘x’ belonging to the selected class. y is the label assigned to that feature. 

4.2.4 Decision Trees and Bagged Trees 

At times when both the b-value analysis and logistic regression provided sub-optimal 

separation of the groups being studied, we moved to another common machine learning 

algorithm: the decision tree. The decision tree algorithm like logistic regression is a type 

of supervised learning, but it can classify more than two classes in a single model. In this 

algorithm, a tree representation is generated to solve a classification problem. Each leaf 

(node) of the tree corresponds to a class label, and attributes of the splits are represented 

on the internal nodes of the tree. See the diagram in Figure 7. 

 

Figure 7. Classification Tree Diagram 

There are several benefits of using a decision tree in classifying data. They are very 

easy to interpret. They handle missing data and outliers well which requires less data pre-
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processing. They can handle nominal and ordinal variables, and they can model non-linear 

relationships. However, as the complexity of the branching increases, the model becomes 

increasingly difficult to interpret and may overfit the training data – resulting in poor 

generalizability [74]. 

In this work, rather than relying on a single decision tree, we performed bootstrap 

aggregation or bagging, to make the classifier more robust [75]. Bagging improves 

performance by combining multiple trained decision trees and taking a consensus vote 

before determining a classification. Each component decision tree is trained on a training 

set sampled uniformly and with replacement from the original dataset. Bagging helps 

reduce overfitting, reduces variance, and improves stability and the generalizability of a 

model. Figure 8 demonstrates the classification process in an ensemble bagged tree 

decision model. 
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Figure 8. Bagged Tree Diagram. A) During bootstrap sampling a percentage of the 

source data is sampled with replacement and arranged into n subsamples. B) A decision 

tree is constructed on each of the subsamples based on a random set of m features. C) 

Results from the constructed trees are averaged to make a final prediction. 

 When the bagged tree model is used, information gain at each decision split is used to 

quantify the importance of that feature. Information gain is calculated as the decrease in 

entropy after a dataset is split on a feature. In an ensemble method, where many trees are 

simultaneously developed, the average entropy decrease across all trees is used. This 

average information gain describes the impact that each feature had had on the model’s 

performance and is thus a useful proxy of feature importance [74]. 
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4.2.5 Audio Feature Dictionary 

The following features are calculated for each accelerometer during each cycle of 

flexion/extension for use in the classification algorithms. These features thoroughly 

describe both the time-domain and frequency characteristics of the recorded AEs. 

Table 1. Features used in machine learning model. Each feature had there mean, 

median, and standard deviation used in the feature matrix as appropriate. Descriptions 

found at [76], [77]. 

 

# Feature Name Description 

1 Mean Frequency Center of the power distribution across all frequencies of a signal. 

2 RMS Amplitude Root mean square (RMS) of the signal amplitudes. 

3 Zero Crossing Rate The rate of sign-changes of the signal. 

4 Energy Square of the time-domain signal amplitudes, corresponds to loudness of signal. 

5 
Fundamental 
Frequency 

Pitch of a signal - for a harmonic signal it’s the frequency such that its integer multiple best explains the content 
of the signal spectrum. 

6 Spectral Centroid The barycenter, or "center of gravity", of the frequency spectrum 

7 Spectral Spread Standard deviation around the spectral centroid. 

8 Spectral Crest Ratio of the maximum of the spectrum to the arithmetic mean of the spectrum , indicates peakiness of spectrum. 

9 Spectral Decrease Represents the amount of decrease of the spectral amplitude – related to perceptual studies. 

10 Spectral Entropy Measures the disorder and peakiness of the spectrum 

11 Spectral Flatness Measures the noisiness to sinusoidality of a spectrum. 

12 Spectral Flux Measures the variability of the spectrum over time 

13 Spectral Kurtosis Measures the flatness, or non-Gaussianity, of the spectrum around its centroid. 

14 
Spectral Rolloff 
Point Measures the frequency so that 95% of the signal energy is contained below that frequency 

15 Spectral Skewness Measures of the asymmetry of the frequencies around the centroid 

16 Spectral Slope Measures the amount of decrease of the spectral amplitude. 

17 Harmonic Ratio Measures the amount of energy in the tonal part of the signal compared to the total energy. 
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4.2.6 Leave-One-Subject-Out Cross Validation 

 Cross validation is a model evaluation method that gives an indication of how well 

a trained model will do when it is asked to make new predictions for data it has not already 

seen. This is achieved by not using the entire data set when training a learner. Specifically, 

in leave-one-subject-out cross validation (LOSO-CV), all rows in the feature matrix 

corresponding to a specific subject are left out of the training phase. Then, after training is 

done, that subject’s data is used to test the performance of the trained classifier [78]. This 

process is repeated for each subject in the dataset and the accuracy of the model is the 

average of the predicted-label accuracies during each fold of testing.   

 

Figure 9. Leave-one-subject-out Cross Validation. In LOSO-CV, the feature matrix is 

split into a training and testing set. This splitting is iteratively performed to assess the 

accuracy of the model with each subject left out.  
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CHAPTER 5. AE ANALYSIS IN A CADAVER KNEE MODEL 

5.1 Overview 

 The assessment of joint health is a long-standing issue in the management of 

musculoskeletal injuries. AEs could serve as a biomarker for joint health assessment, but 

their use has been limited by a lack of understanding of the mechanism of their production 

and propagation. In this work, we investigate AEs using an injury model in human lower 

limb cadavers and relate AEs to joint kinematics. This relationship helps us better 

understand the nature of these AEs. Using our custom joint sound recording system 

(described in 4.1), first, we recorded the AEs from 9 cadaver legs in four stages: at 

baseline, after a sham surgery, after a medial meniscus tear, and post-meniscectomy.  

We compare the resulting AEs using their b-values as described in 4.2.2. We also 

explore the relationship of swelling on AE production. Finally, we compare joint 

anatomy and kinematics to the AEs using the X-ray Reconstruction of Moving 

Morphology (XROMM) technique. XROMM analysis showed a close correlation between 

the minimal inter-joint distances and a large increase in the AEs. In our next cadaver study, 

we analyze the change in AEs from a lateral meniscus tear and determine if AEs can 

determine the severity of a meniscal tear. This work provides key insight into the nature of 

joint AEs and details a novel technique and analysis for recording and interpreting these 

biosignals. 

5.2 Introduction 
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The knee is one of the most frequently injured body parts, with 18 million knee related 

patient visits occurring per year in the United States [2]. However, the number of acute 

knee injuries pales in comparison to the number of people suffering from chronic joint 

diseases such as osteo- and rheumatoid arthritis. It is predicted that by 2040 26% of the 

overall population will be diagnosed with some form of arthritis in the United States [79]. 

This prevalence coupled with the severe reduction in quality of life presents a significant 

burden on patients and healthcare systems [1]. Currently, clinical assessment and treatment 

relies on qualitative mobility assessments, patient reported symptoms, and imaging studies. 

A suitable marker of knee joint health that is quantitative, and measured with affordable 

hardware, could reduce this burden on healthcare systems and greatly improve patient 

outcomes and quality of life. 

One such possible marker of knee joint health is the AE signature produced by knees during 

movement. These joint sounds have been explored as a means of assessing the joint’s 

structural health since at least 1902 when Blodgett reported on auscultating the knee [18]. 

Since then, researchers have employed a wide range of instruments and analysis techniques 

to detect and interpret the sounds produced during movement of the knee. These findings 

have often led to attempts to diagnose joint conditions [20], [80]. However, the ability to 

interpret AEs from the knee for clinical decisions has had limited success. One of the main 

reasons for this is a lack of understanding of how these joint sounds are produced and what 

factors influence them. 

In this work we investigate joint AEs using a human lower-limb cadaver model to address 

this knowledge gap in the field. This model allows for highly controlled analysis of the 

joint sounds from the knee in a reproducible and anatomically relevant manner. To record 
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the AEs, the limb is passively flexed/extended through its range of motion with contact 

microphones attached (as described in 4.1). The AEs produced during this movement are 

recorded.  

To better understand the source of these AEs, we explore the relationship between internal 

contact of the articulating structures within the knee and AE production. This is done using 

a system of IMUs, biplanar motion capture x-ray imaging, and computed tomography (CT) 

scans. The output from that system is synced with the AE data. We created a medial 

meniscus injury to understand how alterations of the underlying anatomy can correlate with 

the AEs recorded on the surface of the knee. Combining literature on internal joint pressure, 

our findings of minimum articulating surface distances, and joint sounds at each stage of 

injury led to our proposed model of joint sound production (Figure 10). To provide more 

physiologic context to the model, we next emulated the biomechanical alterations 

associated with swelling following an acute injury by serially injecting saline into the joint 

capsule. The b-value of the AEs was calculated at each stage of testing as described in 4.2.2 

[68]. During our next phase of cadaver testing, we arthroscopically performed serial cuts 

to the lateral meniscus. The impact of surgical approach and ability to quantify severity of 

cut is explored. 

This chapter presents the first time that an analysis of knee AEs has been performed on a 

controlled, cadaver model with associated incorporation of anatomical complexity, 

confounding physiological factors that occur in an injured state (i.e. swelling), and specific 

structural changes in the knee. Our findings allowed us to propose a model of knee AE that 

better localized the source of these sounds while remaining consistent with the prior 

literature’s findings that these sounds can be useful in classifying the health status of a knee 
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[68], [81]. If characteristic alterations of these AEs can be linked with knee health status, 

joint sounds may offer a biomarker for early detection and assessment of musculoskeletal 

injury. 
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Figure 10. Concept model of knee acoustic wave creation before and after a 

meniscus tear with representative acoustic wave forms. A. Diagram of the knee during 

flexion and extension. B. Medial femoral condyle compressing the medial meniscus from 

flexion to extension. C. Representative acoustic waveform produced by the knee’s 

movement. D. Compression of the radially torn, medial meniscus from flexion to 

extension. E.  Representative acoustic waveform produced by the knee. 
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5.3 Effect of Medial Meniscus Tear, Swelling, and Joint Distance on AEs 

5.3.1 Materials and Methods 

5.3.1.1 Cadaver Specimen Procurement and Preparation 

Experiments were conducted on 9 fresh, frozen human cadaver lower-limbs. The 

specimens were procured from MedCure, Inc (Orlando, FL, with permission for use in a 

research experiment), had an average age of 63.6 ± 9.5 years of age, stored at -20°C, and 

thawed to room temperature in a water bath for 8 h prior to testing. The age of these cadaver 

specimens may not be fully representative of the overall population, but the exclusion 

criteria helped limit the impact of confounding comorbidities. The joints were selected 

from donors with no known arthritis, injuries or past surgeries of the knee, and that were 

mobile at time of death. Prior to use, the legs were clamped to the laboratory benchtop and 

preconditioned with manual flexion/extension movements for five minutes.  

5.3.1.2 Knee AE Setup and Acquisition 

Two uniaxial analog accelerometers (3225F7, Dytran Instruments Inc. Chatsworth, CA) 

were sutured (4-0 Nylon Kit, Your Design Medical, Brooklyn, NY) 2 cm medial and lateral 

to the patellar tendon. These accelerometers and anatomical location are described in 4.1.  

To record the knee AEs, the cadaver legs were suspended on the side of a lab bench and 

passively flexed and extended through their full range of motion (~90° to 180°). This 

suspension ensured the cadaver limb did not contact the surface of the lab bench at any 

stage of the motion. To pre-condition the leg prior to AE recording, it was flexed/extended 

through its full range of motion for 5 minutes at a rate of 1 cycle every 4 seconds. After 
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pre-conditioning the AE recording began. The legs were extended for two seconds, and 

then flexed through the same range for two seconds.  The recordings contained a total of 

ten flexion/extension cycles with 5 seconds of background, environment noise recorded 

before and after the exercise for a total recording time of 50 s. An IMU (MPU6050, TDK 

InvenSense, San Jose, CA) was attached 5 cm proximal to the ankle and used to validate 

the joint angle and rotational velocity during these exercises. The signals from the 

accelerometer were sampled at 100 kHz and recorded using the DAQ described in 4.1. The 

recording setup is depicted in Figure 11. 
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Figure 11. Testing setup for the generation, acquisition, and analysis of knee AEs on 

a cadaver model. The cadaver knee is outfitted with two accelerometers and a high-

precision IMU. The accelerometers are sutured medial and lateral to the patellar tendon 

and record the surface vibrations (AEs) created by the manual flexion/extension of the 

leg. The IMU captures and syncs the 3D motion data to the joint sounds providing 

anatomical relevance to the recorded signals. A DAQ captures the audio waveform data 

and a microcontroller captures the IMU data. All data is transmitted to a laptop computer 

with custom acquisition and analysis software written in MATLAB. 
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5.3.1.3 Tear Protocol 

Each of the knees (n=9) were serially, surgically altered in four stages to isolate the effects 

that a medial meniscus tear has on the joint’s AEs. The four stages of testing were baseline, 

sham surgery, meniscus tear, and the meniscectomy. After thawing and pre-conditioning, 

the joint sounds were first recorded at their baseline status. Next, a sham surgery was 

performed on the leg. The sham surgery was performed with the knee at 90° of flexion with 

a 5-cm oblique incision made just posterior to the superficial MCL at the level of the vastus 

medialis curving over the medial epicondyle onto the anteromedial aspect of the tibia. This 

cut exposed the interval between the posteromedial joint capsule, semimembranosus, and 

medial head of the gastrocnemius [82]. Next, the posteromedial joint capsule was cut 2 cm 

to expose the medial meniscus. Without damaging the meniscus, the incisions were closed 

with simple continuous, running sutures [83]. The sounds were recorded at this sham 

surgery status. Next, the meniscus tear was introduced. The sutures were cut to re-expose 

the meniscus and a 10mm transverse (radial) incision on the posterior (zone A) portion of 

the meniscus was performed. The surgical entry path was again sealed with a simple 

continuous running suture and the sounds were recorded. Finally, a meniscectomy was 

performed on the injured meniscus. The sutures were cut to re-expose the meniscus and a 

5mm margin anterior and posterior to the transverse/radial meniscus cut was surgically 

removed. The incisions were resealed and sounds re-recorded.  

5.3.1.4 Saline Injection Protocol 
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To emulate the altered mechanical environment within the knee resulting from swelling 

following acute injury [48], [84], varying levels of saline were injected into the knees prior 

to meniscus surgery (n=5). A superolateral approach into the suprapatellar pouch was used 

due to its reliability as a route of entry into the knee joint and the obstruction of the attached 

microphones impeding other approaches [85]. The leg was fully extended and a 1.5 inch 

25-gauge needle was inserted underneath the superolateral surface of the patella and 

directed posteriorly and inferomedially into the knee joint. 5 mL aliquots of saline were 

serially injected from 0 to 50 mL. After each injection, the joint sounds were recorded 

using the above AE acquisition protocol.  

5.3.1.5 Acoustic Data Pre-Processing 

Noise was trimmed from the beginning and ends of the recordings and a bandpass filter 

was applied as described in 4.2.1. 

5.3.1.6 b-value Analysis of Acoustic Data 

The b-value metric was computed for the AEs to differentiate the sounds based on their 

amplitude distribution of the AEs. This calculation is described in 4.2.2.  

5.3.1.7 Acoustic Data Statistical Methods 

The mean and standard deviation of the b-values were calculated for each dataset. The data 

were assessed for normality using a Lilliefors test. It was found that the groups were non-

normal, so the Scheirer-Ray-Hare extension of the Kruskal Wallis test was performed. This 

test is often used as a non-parametric equivalent to the two-way analysis of variance 

(ANOVA) test. Finally, multiple Wilcoxon signed rank tests were performed to compare 
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between the data groups. A Bonferroni correction was applied to correct for the multiple 

comparisons. The same series of tests were performed on the saline injection data.  

5.3.1.8 Joint Distance Imaging 

The geometry of the tibial plateau is complex and asymmetric. In order to calculate the 

distance between the femur and tibia during articulation we used a two-part imaging 

protocol relying on a high-speed, biplanar x-ray video (100 fps, 79° between beam angle) 

and a computed tomography (CT) scan of the patella, tibia, and femur. Three 1mm 

diameter, radiopaque, tantalum markers (X-Medics, Frederiksberg, Denmark) were 

implanted into each bone on the posterior-medial, posterior-lateral, and anterior aspects of 

the bone. These three markers appeared in both the CT scan and x-ray videos. The CT scan 

allowed for a 3D model of the bones to be constructed. These markers were tracked in the 

x-ray videos using XMALab (Brown University, Providence, RI) and aligned with the 

markers on the CT-derived 3D model using Maya (Autodesk, San Rafael, CA) in order to 

track the complex interaction between the bones. This motion tracking technique is known 

as XROMM [86], [87]. With the articulation of the bones fully visualized, the distances 

between each of the 7076 vertices of the triangles making up the 3D mesh of the tibial 

plateau and its nearest femoral counterpart were calculated using custom Python scripts. 

5.3.2 Results 

 In this study, the effects of a meniscus tear on the AEs produced by manually 

articulating a human cadaver knee are explored. The results from these tests are presented 

below. The b-value is the principle metric for comparison. It is a unitless metric that 

describes the slope of the amplitude distribution of an acoustic signal. 
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5.3.2.1 Sham surgery on a cadaver model of joint AEs does not significantly alter the 

AEs from a baseline state. 

A sham surgery was performed to expose the medial meniscus of the cadaver. All the 

successive layers from the skin to the joint capsule were surgically resected (Figure 12A/E 

to Figure 12B/F), and the AEs were recorded. Qualitatively, the time domain sound 

signature at this stage of testing appears very similar to the baseline state (Figure 12I, J). 

The b-value statistic of the joint sounds at baseline was 1.99±0.54. After the sham surgery, 

the b-value dropped to 1.87±0.40. This shift was not statistically significant (p=0.25). This 

lack of statistical significance indicated that the sham surgery, with its alteration to the 

tissue external to the joint cavity and exposure of the joint capsule to the air and laboratory 

atmosphere, had minimal influence on the AEs of the knee.  

5.3.2.2 Introducing a meniscus tear significantly alters the AEs from the sham state. 

A full width, radial tear was performed on the posterior, medial meniscus (Figure 12 B/F 

to Figure 12 C/G). After closing the resection, the AEs were again recorded and analyzed. 

At this stage, the AEs appear much more chaotic, with several large spikes in the amplitude 

of the sounds. This increase in amplitude was reflected in the b-value after the meniscus 

tear (b-value = 1.33±0.15). This drop in the b-value was significant when compared to the 

baseline and sham stages (p=0.0039), indicating that the meniscus tear was responsible for 

the change seen in the AEs. It also indicates that knee AEs can describe the internal 

environment of the knee. 

5.3.2.3 Further removal of the meniscus via meniscectomy does not significantly alter 

the AEs. 
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 After the meniscus cut was completed, the cadaver was reopened and a larger portion (with 

clean margins) of the torn meniscus was removed resembling a meniscectomy (Figure 12 

C/G to Figure 12 D/H). Qualitatively, the acoustic signal appeared to diminish at this stage 

from the meniscus tear state (Figure 12 L). When analyzed, there was a marginal increase 

in the b-value (1.34±0.29) toward the baseline/sham values. However, this increase was 

statistically insignificant when compared to the meniscus tear group (p=0.91). This 

indicates that the size of the meniscal defect or border tear patterns may not significantly 

alter the AEs of the knee. 
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Figure 12. Acoustic data and b-values from four stages of meniscus intervention: 

baseline, sham, meniscus tear, and meniscectomy. Surgical stages are presented as 

photos (A-D) and transverse plane view of tibial plateau diagrams (E-H). Each leg’s AEs 

were recorded at baseline (A,E), after a sham surgery (B,F), after a posteromedial radial 

cut (C,G), and post-meniscectomy (D,H). Representative time-domain sound data from 

one flexion/extension cycle at each stage are presented in I-L. Note the increase in spikes 

and amplitude from baseline to meniscus tear (I-J) and slight decrease from tear to 
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meniscectomy (K-L). Statistically significant changes in the b-value are indicated with *, 

n=9 and p<0.05). (error bars= 1 standard deviation from mean) 

5.3.2.4 Saline injected within the knee capsule as a surrogate for effusions does not 

significantly impact AEs. 

After a meniscus tear occurs in vivo, a series of physiologic events begin in response to 

the injury. Principal among these regarding the effect on mechanical articulation is 

localized swelling. To better understand the extent to which this swelling affects joint 

AEs we serially injected 5 mL aliquots of 0.9% saline solution into the knee capsule. 

(Figure 13A). After each injection, the AEs were recorded and b-value calculated. The b-

values ranged from a minimum of 1.6±0.3 to 2.1±.6. The data were highly variable with 

no clear trends or statistical significance (p>.05 for n=5) (Figure 13 B). Therefore, the 

injection of saline into the knee capsule does not directly influence the production or 

propagation of AEs.  
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Figure 13. Acoustic Data and b-values from serial saline injections.  Saline was 

serially injected from 0 to 50 mL into the joint cavity. (A) Demonstration of the 

superolateral approach used for injection of the saline. The corresponding b-values at 

each amount of injection are presented in (B). There were no significant differences from 

0-50 mL of injected saline indicating that there was not a statistically significant change 

in the AEs of the knee from this intervention. (n=5, error bars= 1 standard deviation from 

mean of the b-value from the 5 legs tested.) 
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5.3.2.5 The distance between the femoral condyles and tibial plateau is minimized when 

the knee is between 140° and 150°: 

The tibio-femoral distance was measured on one of the cadaver legs using the XROMM 

imaging analysis technique on one of the cadaver legs [86], [87]. Distances from the tibial 

plateau to the nearest point on the femur were computed for 7076 vertices that made up the 

tibial plateau of the CT-derived 3D model. We found that the distance between the two 

articulating structures was minimized between 140° and 150° during both flexion and 

extension. The point distances at three demonstrative angles during extension (120°, 150°, 

and 180°) are presented as a heat map (Figure 14 A). Of note, the minimum distances 

(darker red) trend to the anterior as the leg articulates. This agrees with reported 

tibiofemoral distances in the literature [88]–[91].For reference, the posteromedial meniscus 

tear was located on the bottom-left portion of the tibial plateau as presented in Figure 14A. 

Of note, the minimum dimensions did not significantly change between any stages of the 

experimental protocol (Figure 14 D,E). This indicates that the interventions did not cause 

significant changes in the biomechanics and articulation pattern of the cadaver leg. 

 The RMS power of the acoustic waveform and the rate of change of the minimum 

tibiofemoral distances differed during the extension and flexion phases of movement. The 

minimum tibiofemoral distance during extension is 0.251±0.082 cm and during flexion is 

0.265±.003 cm both occurring at 145° (Figure 14 B,C). The tibiofemoral distance sharply 

increased from the minimum at 145° to 180° (full extension) during both the flexion and 

extension phases of movement.  During extension, there is a large increase in the RMS 

power from when 145° to full extension. This increase in RMS power mirrors the increase 

seen in the extension-phase tibiofemoral distance plot (Figure 14 B,D). The relationship 
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between RMS power of the acoustic signal and distance is slightly different during the 

flexion phase of movement. During flexion, the peak in RMS power of 0.34±0.02 occurs 

at 150° flexion nearly coinciding with the minimum tibiofemoral distance at 145° flexion. 

During flexion we again note an increase in the rate of growth of the RMS power from 

160° to 150° - closely resembling the rate of change in the tibiofemoral distance plot. The 

difference in the relationship between RMS power and tibiofemoral distance during the 

flexion and extension phases along with the slight delay in the RMS power of the signal 

following maximum compression indicates that there is a more complex interaction 

occurring to create these joint AEs than rigid-body bone-on-bone compression alone.   
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Figure 14. Comparison of tibiofemoral distances to sound recordings during a 

flexion-extension cycle. (A) Heatmap of distances from femoral condyles to tibial 

plateau at select distances (i.e. 120°, 150°, 180°). These heatmaps appeared nearly 

identical during flexion and extension. Minimum tibiofemoral distances at each degree of 

movement during (B) extension and (C) flexion (Error bars indicate one standard 

deviation from the mean of three trials at each data point). In B and C, the 1000 nearest 

vertices of the 7076 total vertices creating the 3D mesh are averaged with their standard 

deviations displayed. RMS Power of the joint AEs at each degree of movement during 

(D) extension and (E) flexion (Error bars indicate one standard deviation from the mean 

of the AEs of all n=9 cadaver legs tested). 
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5.3.3 Discussion 

Meniscal tears are the most common knee injury, and partial meniscectomies are one of 

the most common orthopedic surgical procedures. These injuries are seen in all age groups 

and have a variety of causes as described in 3.2.2 [92]. The primary functions of the 

menisci are load distribution and stability during ambulation. Upon injury, the menisci 

have an impaired ability to distribute loads and resist tibial translation – destabilizing the 

joint. During extension, the medial and lateral menisci transmit 50% and 70%, respectively, 

of their compartmental loads. During flexion those increase to 85% and 90% respectively 

[30]. It has previously been shown that after medial meniscectomy, contact stresses can 

increase by 100% [18]. The type of tear has been shown to have a significant effect on 

contact pressures within the knee. In particular, complete radial tears significantly increase 

mean contact pressure and decrease contact area compared with the intact state [92]. 

Significant research has been performed on tear morphologies [93], [94], compartment 

pressures [84], [95], and outcomes of different corrective surgical approaches [92].  

Diagnosis of meniscal injury is described in 3.2.2.2. This diagnostic workup is extensive, 

but not without its shortcomings. The patient’s history and their pain ratings are highly 

subjective. The physical exam is dependent on the practitioner’s expertise. The MRI is by 

far the most powerful and objective tool for evaluating the meniscus; however, it is time-

consuming, costly, and often uncomfortable for the patient. Post-surgical monitoring and 

rehabilitation efforts rely on the same assessment techniques, typically with even fewer 

imaging studies. We believe that the AEs produced by the knee during flexion/extension 

could serve as a suitable marker of knee joint health that is quantitative, affordable, and 

easily incorporated into a clinical assessment.  
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The AEs explored in this section were produced by the articulation of the tibiofemoral 

joint. This joint is a hinge synovial joint as described in 3.1.1. The friction during this 

articulation creates a complex series of vibrations [96]. These vibrations travel to the skin 

where they encounter a large impedance mismatch between the tissue and air and manifest 

as vibration signals on the skin [24]. In this work, we proposed a cadaver injury model to 

better understand the impact that factors such as injury and swelling have on these acoustic 

vibrations. In addition, the tibiofemoral distances during movement were measured and 

correlated to the AEs. This was the first time that human knee AEs have been studied in 

such a controlled setting.  

Our exploration of knee AEs began with a four-stage surgical intervention. We had 

previously shown that injuries to the knee resulted in significant alterations to the AEs as 

measurable by the b-value metric [68]. On 9 fresh-frozen cadaver legs, the sounds were 

first recorded at baseline after the legs were pre-conditioned and thawed in a water bath. A 

sham surgery was performed to expose but not damage the medial meniscus. The lack of 

significant changes between the acoustic signals from baseline to sham indicated that the 

exposure of the meniscus with the cutting of the various skin and fascial layers was not 

responsible for the bulk of the change in AEs. Next, we re-entered and performed a 10mm 

radial incision on the meniscus. With the meniscus torn, the AEs significantly increased, 

and this meniscus-torn state was classified using the b-value metric. In the final stage, we 

removed a 5 mm margin around the meniscus tear. This removal resembles a surgical 

meniscectomy – a commonly performed reparative surgery for this type of injury. After 

meniscectomy, the b-value of the AEs returned toward baseline but was still not 

significantly different from the meniscus cut stage. This lack of significant change in the 
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b-value following meniscectomy indicates two possible outcomes: 1) The cadaver model 

was not a suitable substitute for a reparative treatment given the lack of blood flow/synovial 

fluid, or 2) this sensing modality may not be suitable for monitoring post-surgical repairs. 

In earlier work, the knee AEs were recorded from athletes at the start of their season and 

after suffering injuries such as torn anterior cruciate ligaments, torn menisci, and sprained 

medial collateral ligaments. In that study we found that the b-value and this sensing 

modality was able to track their recovery post-surgical intervention [68], [81]. Thus, the 

lack of return toward baseline is most likely due to differences in the physiology/anatomy 

of the cadaver model and young, collegiate athletes.  

To examine this discrepancy in findings between athletes and cadaver model, we explored 

a possible confounding factor – swelling.  Intra-articular knee joint effusions accompany 

nearly all knee injuries [97]. The serial injections of 5 mL aliquots of 0.9% saline solution 

did not significantly alter the knee AEs. This was counter to our expectations. We had 

expected an increase in intra-joint fluid volume to lead to an increase in the tibiofemoral 

distance and less interactions between the articulating components in the knee thereby 

decreasing AEs. This lack of significance was promising for the sensing technology to be 

used clinically since the level of swelling will not need to be controlled for when 

interpreting joint AEs; however, it did present data counter to our prevailing notion of how 

these sounds were produced. This finding led to our interest in exploring the relationship 

between tibiofemoral distance and AEs. 

To explore the relationship between anatomical distances and joint AEs a series of biplanar, 

video x-rays and CT scans were performed on a cadaver specimen. Following the XROMM 

protocol, tibial and femoral movements were tracked and segmented 3D models were 
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animated using the x-ray videos as reference. The distance between the tibia and femur 

were calculated continuously through the leg’s range of movement [86], [87].  The RMS 

power of the joint AEs was calculated along each legs range of movement for comparison. 

The RMS power metric of AEs was calculated rather than the b-value since the b-value 

relies on a longer signal with many peaks occurring. In Figure 5, the RMS power of the 

signal was calculated for every 2.5° of movement which amounted to a signal time of 

55.4±0.2 ms. Often, there were no large amplitude spikes in that small-time interval and 

the b-value would tend toward infinity by virtue of its derivation. There was a slight delay 

in the increase in the RMS power after the minimum joint distance was reached. We believe 

that this delay in sound production may indicate that the sounds are a result of the 

viscoelastic expansion of the menisci. The mechanical properties of the meniscus have 

been extensively characterized [97]. Principle among these analyses are the 

characterization of the complex viscoelasticity and anisotropy of the meniscus. We propose 

that knee AEs are heavily influenced by the compression of the menisci and the consequent 

release of compression during movement. The viscoelasticity of the meniscus may be 

responsible for the slight delay between the AE RMS spiking and the minimum 

tibiofemoral distance occurring. 

 In the future, the possibility of the viscoelastic properties of the meniscus 

contributing to the AEs of the knee should be further explored. If this theory is correct, its 

result may be far reaching regarding diagnosing meniscal health from joint sounds. There 

may also be merit in correlating the AEs not only with experimentally measured 

tibiofemoral distances but also simultaneous, joint pressure mappings. In this work, we 

relied on previously published research to classify the pressure profile within the knee. 
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Using experimental pressure data with our setup may provide a better correlation between 

the anatomical orientations and sounds produced. For this novel sensing modality to 

become clinically valuable, we need to discover the full extent of its capabilities both for 

longitudinal monitoring as well as diagnostics. The next steps in that development will 

involve expanding the scope of joint AE studies to different injuries and pathophysiological 

conditions (e.g., anterior cruciate ligament tears, arthritis, etc.). Future work should also 

focus on developing more sophisticated signal processing techniques for reducing noise, 

optimizing signal quality, and potentially isolating the sources of these sounds within the 

knee, so that the nature of these sounds can be better understood. Aside from clinical merit, 

there is also substantial intellectual merit to be gained by further researching the influence 

of confounding variables such as the ideal protocol for generating AEs, physiological 

variables such as pain, effusions, and degree of tear, and the ability to localize injuries 

based on an array of microphones. In the future, we intend to explore more fundamental 

AE analysis techniques to accurately and effectively characterize the differences between 

these responses. 

 This work presents the first time that knee AEs have been characterized in a 

controlled setting with a cadaver model of knee injury. The insights gained on the 

application of AEs for identifying meniscus tears are promising and warrant future work 

in the field. Additionally, the correlation of tibiofemoral distance to AE patterns provided 

the first of its kind attempt to correlate AEs with anatomical positions. The relation between 

joint anatomy, the associated interactions upon articulation, and the resulting AEs should 

be further explored to help understand the full utility of this novel sensing modality. With 
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more research, joint AEs could soon serve as a readily measurable, non-invasive biomarker 

of joint health. 

5.4 Lateral Meniscus Tear, Grading Severity, and Surgical Approach 

  As a follow-up to our earlier work in analyzing the AEs recorded in the cadaver 

model, we next recorded the AEs of a lateral meniscus tear in a new cohort of cadaver 

limbs.  In this study, the b-value metric was not able to statistically separate the different 

experimental groups. Ultimately, a bagged tree algorithm was applied, as described in 

4.2.4. This approach enables a more thorough and methodical analysis of these sounds to 

determine if characteristic changes in AEs could be used to screen for and grade lateral 

meniscus tears. 

5.4.1 Materials and Methods 

 Ten fresh-frozen cadaver knee specimens with no history of arthritis or significant 

injury were obtained for this study (5 male, 5 female, average age: 64 ± 3.5 years, average 

body mass index: 22.3 ±2.5 kg/m2). Two accelerometers were sutured 1 cm medial and 

lateral to the distal patellar tendon. AEs were recorded using the same custom developed 

hardware and software used in our previous cadaver work [98]. This setup captures the 

skin-surface vibrations up to 10 kHz simultaneously from both accelerometers 

simultaneously. Joint position was synchronously recorded using an IMU attached on the 

distal shank of the leg. With the sensors in place, each leg underwent serial, arthroscopic 

surgeries in three stages: a sham surgery (scopes were placed to visualize the untouched 

menisci), a partial tear (half of the posterior lateral meniscus was radially torn), and a full 

tear (the previous tear was worsened to a full thickness tear) (Figure 15 A-C). After each 
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stage of surgical intervention, the AEs were recorded while the knee was moved through 

its full range of motion 10 times at a rate of 1 cycle every 4 seconds in triplicate. The IMU 

data were used to window the data into individual cycles. To quantify the recorded AEs, 

first, the b-value was calculated for each stage as described in 4.2.2. The b-value results 

were inadequate, so a more thorough analysis was performed using a bagged tree 

classification algorithm. First 49 audio features were calculated for each cycle of 

movement for both microphones during each of the three AE recording trials for all ten 

legs (features are described in Table 1). This amounted to 300 cycles of movement captured 

during each of the 4 stages of intervention for each microphone.  

These features were stored in a matrix, Fstage, with stages being baseline, sham, 

partial tear, and full tear. In order to remove outliers from this feature set, the interquartile 

ranges of each feature for each surgical stage was calculated. An interquartile range (IQR) 

is a measure of statistical dispersion, and is particularly useful when data is not normally 

distributed [99].  Any cycle that had more than half of its features outside of 1.5 

interquartile ranges was labelled an outlier and removed. This resulted in 11% of the cycles 

being removed. With outliers removed, since we sought to compare four surgical stages,  

F was fit to a bagged tree classification algorithm. This type of ensemble algorithm is 

described in 4.2.4. This model used LOSO-CV, with 30 learners, and a learning rate of 0.1.  

The algorithm classified each cycle as baseline (1), sham (2), partial tear (3), or 

complete tear (4). The average of all the cycle labels for a given leg was calculated. This 

average classification score per leg is proposed as a joint health score and presented in 

Figure 17.  The joint health scores were not normally distributed, so a Wilcoxon rank sum 
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test with a Bonferroni correction for multiple comparison was used to test for statistical 

significance.   

Finally, the relative importance of each of the input features was calculated as 

described in 4.2.4. Importance was determined by calculating the information gained from 

each stage of the tree splitting as quantified by the decrease in entropy of the dataset after 

the split. These features are presented in Figure 18. 

5.4.2 Results 

5.4.2.1 Qualitative Differences in the AEs at Different Stages 

The recorded AEs had noticeable, qualitative differences in their time domain 

signals at each stage of surgical intervention (Figure 15 D-G). As the tear was made more 

severe there were more frequent and larger “clicks” observed in the signal.  

 

Figure 15. Stages of Lateral Meniscus Cadaver Injury with Associated AEs Profile.  

(A-C) Arthroscopic images of the lateral meniscus. (D-G) Time Domain waveforms of 

the AEs at each stage. 
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5.4.2.2 b-Value based AE analysis was unable to stratify the surgical stages 

The b-value was the primary quantitative metric we had previously applied to our work in 

the cadaver model of AEs. However, as seen in Figure 16, the b-value was not able to 

statistically separate the four stages of interventions. A different surgical approach was 

used in this work (arthroscopy), but similar to our earlier work the b-value did not find any 

differences in the AEs from baseline to sham. However, since the b-value found no 

statistical differences in any of the stages a more thorough analysis was warranted. 

 

Figure 16. b-Value Classification of Lateral Meniscus Tears 

5.4.2.3 Surgical Approach Impact – Baseline to Sham 

The surgical approach used in this work differed from our earlier work. In this 

project, an orthopaedic surgeon performed the interventions to induce injury 

arthroscopically. The approach resembled what is normally performed to repair a meniscal 

tear, as described in 3.2.2.3. This approach involves filling the knee with saline fluid to 
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open the joint space. The joint health score was calculated for each surgical stage using the 

bagged tree algorithm. In Figure 17, there is a small increase in the joint health score from 

1.89±0.79 to 2.20±0.55, but this increase was not statistically significant. 

5.4.2.4 Introduce a meniscal tear alters the AE profile 

The joint health score increased from 2.20±0.55 to 2.72±0.50 between the sham stage to 

the partial tear stage. This 23.6% increase in the joint health score was statistically 

significant (p<0.0001).  After re-entering the knee and increasing the severity of the tear to 

a full thickness tear, the average joint health score continued to increase to 3.08±0.64 – a 

13.2% increase. Again, this was a significant change from the sham stage (p<0.0001). 

5.4.2.5 AEs can be used to grade the severity of a lateral meniscus tear 

The potential for AEs to grade a meniscal tear has never before been studied. In our model, 

the knee goes from a relatively minor (~50%) posterior tear to the lateral meniscus to a 

complete thickness tear. With the increased severity of injury, there was a similar increase 

in the joint health score from 2.72±0.50 to 3.08±0.64. This increase was also statistically 

significant, but with a higher p-value than in our other comparisons (p<0.005).  
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Figure 17. Average Joint Health Score of Each Lateral Meniscus Injury Stage. 

(n=10) 

5.4.2.6 Feature Importance Ranking 

49 features were used as predictors in the bagged tree model. These features are described 

in Table 1. Figure 18 presents the top 13 features used in classifying between the four 

stages of surgical intervention. The importance of each feature was divided by the leading 

feature – the median of the spectral centroid. With this normalization, the relative 

importance of the features ranged from the lowest-ranked feature (median energy) at 0.18 

to the median spectral centroid at 1.0.  
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Figure 18. Relative Feature Importance of Top 12 Features for Classifying Four 

Stages of Lateral Meniscus Injury. 

 

5.4.3 Discussion 

 The bagged tree classification algorithm successfully labeled the knee status at a healthy 

baseline, and after partial and full thickness lateral meniscus tears using only the AEs from 

the controlled cadaver injury model.  This study shows for the first time that AE analysis 

can diagnose and grade lateral meniscus tears in a human cadaver model. The knee is one 

of the most frequently injured body parts, and this technique could one day serve a 

screening tool for triaging possible knee injuries prior to imaging studies. This non-

invasive sensing modality holds promise for future clinical applications, but the study was 
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not without limitations. Principal among these is that the cadaver knees acquired were of 

an advanced age. They did not have any reported arthritis, but age-related degeneration 

may still alter the AE profile. Further research is needed to determine the effects of 

physiologic degeneration and aging on AE production. 

In the studies presented in this chapter, the surgical approach to reveal the meniscus did 

not significantly alter the AE profile. The significant changes in the AEs occurred 

following a tear to the meniscus. These controlled cadaver studies support our central 

hypothesis that alterations to the internal environment of the knee are reflected in the 

surface AE recordings, and that AEs contain clinically relevant information.  
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CHAPTER 6. DIAGNOSIS AND MONITORING OF JIA 

6.1 Overview 

In this work, we quantify the AEs from the knees of children with JIA and support 

their use as a novel biomarker of the disease. JIA is the most common rheumatic disease 

of childhood; it has a highly variable presentation and few reliable biomarkers, which 

makes diagnosis and personalization of care difficult. The knee is the most commonly 

affected joint with hallmark synovitis and inflammation that can extend to damage the 

underlying cartilage and bone [100], [101]. We hypothesize that AEs from the knee contain 

clinically relevant information about the joint, and that this information could be used to 

aid in the diagnosis, personalization of treatment and longitudinal monitoring of JIA. In 

this study, we compare the AEs from 25 patients with JIA -- 10 of whom were recorded a 

second time 2-3 months later -- alongside 18 healthy age- and sex-matched controls. We 

compute 49 features from each flexion/extension cycle of each subject. Those features are 

used to train a logistic regression model, which can classify individual cycles of 

flexion/extension as having JIA or being healthy with 84.4% accuracy using leave-one-

subject-out cross-validation (LOSO-CV). When analyzing the complete AE recording of a 

subject, which contained at least 8 cycles of flexion/extension, a majority vote of the cycle 

labels accurately classified the subjects as having JIA or being healthy 100% of the time. 

To better understand the longitudinal monitoring capabilities of AEs, we use the output 

probability of a JIA classification as a basis for a joint health score. We compute this score 

for the patients with JIA at their first and follow-up visits. In all 10 of our follow-up 
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recordings, the trend in joint health score accurately tracked with successful treatment of 

the condition.  Our proposed AE-based classification model of JIA presents a compelling 

case for incorporating this novel joint health assessment technique into the clinical work-

up and monitoring of JIA. 

6.2 Introduction 

JIA describes a heterogenous group of arthritides that present in children. It is a 

leading cause of disability and the most common chronic rheumatic disease of childhood 

with a prevalence of 150 cases per 100,000 [35]. It is an autoimmune disorder with a 

complex etiology thought to be related to a combination of pre-disposing genetic factors 

and environmental influence [34], [36]. JIA is discussed in depth in 3.2.1. 

6.2.1 Diagnosis and Subtyping 

 The heterogeneity of JIA’s presentation makes diagnosing JIA difficult. This 

difficulty is exacerbated by the lack of conclusive, diagnostic laboratory tests. Diagnosis 

currently relies on taking a thorough history, physical exam, and several laboratory and 

imaging studies [38]. Once diagnosed, in order to select the most suitable treatment for JIA 

the disease should be classified into its subtype. JIA is divided into seven subtypes based 

on laboratory and clinically observed features  [39], [40]. Determining the most appropriate 

subtype, and thus the most effective therapy, requires extensive workup that is both time 

and resource heavy. For a child with swollen and painful joints, receiving a proper 

diagnosis can be exceedingly difficult, but it is only the beginning of management.  

6.2.2 Treatment 
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 After diagnosis, the goal of treatment is to achieve clinical remission [38]. Current 

treatment protocols are discussed in 3.2.1.3. In summary, treating JIA is difficult due to the 

variability of the condition, large number of treatment options, and inability to predict 

patient response. The treatment protocol is largely reactive with decisions made based on 

subjective and qualitative measures of response to therapy. 

6.2.3 AE Opportunity Space 

 Early diagnosis with effective treatment is necessary for preventing the long-term 

sequela of JIA [38]. Pediatric rheumatologists are the most well-suited physicians for 

diagnosing and treating JIA; however, there is currently a severe shortage of pediatric 

rheumatologists. As of 2019, there are fewer than 400 board-certified and practicing 

pediatric rheumatologists in the United States. This shortage contributes to only 1 in 4 

children with JIA being able to regularly see a pediatric rheumatologist [102], [103]. To 

address the difficulty of diagnosis, subjectivity of treatment, and severe lack of access to 

pediatric rheumatologists, more research must be performed in to develop objective 

biomarkers of JIA.  A suitable biomarker could help more effectively diagnose patients, 

identify risk profiles, and predict/track an individual’s response to treatment. Additionally, 

the development of such a biomarker could allow for more effective translation of the many 

genetic and immunological mechanistic studies of the disease to further improve clinical 

outcomes. Ideally, this biomarker would also be readily measurable with affordable 

technologies, so that JIA could be easily diagnosed and monitored by non-specialist 

healthcare workers.  
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 The use of AE analysis could provide a basis for developing such a biomarker 

[104]. In the case of a chronic condition – such as JIA – AEs could serve as a means of not 

only diagnosing but also longitudinally monitoring the conditioning. If AEs show a 

correlation with disease status in JIA, they could regularly be measured to help personalize 

the management of JIA. Until recently, longitudinal assessment using AEs in healthcare was 

not feasible due to a lack of technologies for recording AEs outside of a laboratory or clinical 

setting. However, the development and application of piezoelectric accelerometers to AE 

assessment has substantially advanced the field. This type of sensor is sensitive to physical 

vibrations (such as those seen on the skin during joint articulation), but does not 

substantially record external noises [105]. AE joint assessment technologies if properly 

applied to JIA, could lead to earlier diagnosis, improved, personalized care, and could serve 

as an objective measure in the next generation of clinical trials. 

6.2.4 The Goal 

 In this chapter, we explore the potential of using AE analysis to diagnose and 

longitudinally track JIA.  AEs are recorded from the knees - one of the most commonly 

affected joints in JIA [64], [106]. In CHAPTER 5, we found that by damaging the meniscus 

in a cadaver model of the knee, the resulting AEs were substantially altered (published in 

[98]). In JIA, affected joints are characterized by persistent joint swelling caused by an 

accumulation of synovial fluid and thickening of the synovial lining [34] (Figure 19A). We 

hypothesize that these pathologic changes in the knee will similarly alter the AE profile of 

the knee. If that hypothesis is supported, the AEs of the knee could then be correlated with 

disease status.  
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6.3 Knee AEs as a Biomarker of JIA Status 

6.3.1 Experimental Design Overview 

 In order to test this hypothesis, we use our custom hardware and software setup to 

record AEs during 10 cycles of flexion/extension (Figure 19B-D). We place two 

piezoelectric accelerometers medial and lateral to the distal patellar tendon, and an IMU 

around the ankle. The AEs from the knees of two groups of children are recorded: one 

group had active JIA and the other was an age- and sex-matched healthy control group. To 

assess the effectiveness of AEs for tracking therapeutic efficacy and changes in disease 

status, we also recorded the AEs from the children with JIA 2-3 months after successful 

treatment. Our proposed algorithm, powered by logistic regression, analyses 49 signal 

features of each individual cycle of flexion/extension and outputs the probability that a 

cycle of movement came from a patient with JIA. This output probability forms the basis 

for our proposed JIA digital biomarker.  Finally, we assess the importance of each signal 

feature in the algorithm as well as the accuracy and generalizability of the model using 

leave-one-subject-out cross-validation (LOSO-CV). An overview of this experimental 

design and analysis is presented in Figure 19. 
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Figure 19. Joint AE Overview. (A) A healthy knee articulates smoothly due to its 

smooth cartilage and appropriate amount/constituency of synovial fluid. This smooth 

articulation creates a noise-like AE (blue). In JIA, you may see cartilage loss, bone 

erosions, and a thickened/inflamed synovium with excessive joint effusions. These 

changes are hypothesized to create an AE with several large spikes (red). (B) To record 

the knee AEs, two contact accelerometers were placed on each child’s knees. They 

viewed and replicated the movements in an instructional cartoon during AE recording 



 72 

such that their movement speed and range of motion was controlled. (C) The resulting 

AEs were split into their approximately ten component cycles. 49 features were 

calculated to describe these cycles. (D) Using logistic regression and LOSO-CV, the 

probability of each cycle belonging to JIA were calculated. The average of those cycle 

probabilities is used as a “joint health score” to indicate the severity of JIA. If the 

majority of cycles for a given subject had a probability of JIA greater than or equal to 0.5, 

that subject was classified as having JIA. 

 

6.3.2 Materials and Methods 

6.3.2.1 Human Subject Protocol and Subject Demographics 

The study was conducted under a protocol approved by the Georgia Institute of 

Technology and Emory University Institutional Review Boards. 43 subjects participated in 

this study. 25 of the subjects were diagnosed with JIA by a pediatric rheumatologist and 

18 of the subjects were healthy controls with no history of JIA or acute knee injuries. The 

group with JIA consisted of 20 females and five males (12.2 ± 3.1 years old, BMI 20.1 ± 

4.1 kg/m2). The healthy control group consisted of 15 females and three males (12.9 ± 2.7 

years old, BMI 22.3 ± 2.8 kg/m2) with no history of joint disease, surgery or significant 

joint injury. In order to capture longitudinal changes in the knee AEs during the course of 

treatment, data were acquired from ten of the subjects (1 male, 9 female, 12.5 ± 3.3 years 

old, BMI 20.8 ± 3.5 kg/m2) with JIA a second time, 3-6 months after initial measurements 

(follow-up group). Note, that JIA is more prevalent in females with estimates ranging from 

65-78% of all cases occurring in females [107], [108].  

The data acquisition setup for each subject is shown in Figure 19B. To record the 

sounds produced by the joints, two uniaxial analog accelerometers (3225F7, Dytran 

Instruments Inc. Chatsworth, CA) were attached to each knee using double-sided adhesive 
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pads (Rycote Microphone Windshields Ltd, Stroud, Gloucestershire, GL5 1RN, United 

Kingdom). These professional-grade pads tightly coupled the accelerometer to the 

subject’s knee. This accelerometer placement location was the same used in CHAPTER 5 

that allowed for the capture of high-fidelity signals capable of differentiating meniscus 

injuries in a cadaver model.  

To record the knee AEs, each subject performed ten unloaded knee 

flexion/extension exercises, while seated on a height-adjustable stool to prevent foot 

contact with the ground. The subjects repeated the movement as seen on an instructional 

cartoon that encouraged a cycle to be completed every four seconds through their full range 

of motion (RoM). The signals from the accelerometer were sampled at 100 kHz and 

recorded using a DAQ (USB-4432, National Instruments Corporation, Austin, TX). An 

IMU attached around the ankle of the subject recorded synchronous positional data during 

AE recording at 50 Hz to allow for analysis on a cycle-by-cycle basis, as well as to ensure 

the subject maintained an appropriate speed and RoM. The ideal speed and angles to move 

through have previously been explored using a cadaver model of joint AEs [98]. The 

exercise and recording protocol were repeated for both knees for all subjects. The recorded 

signals were analyzed using Matlab (MathWorks, Natick, MA). 

6.3.2.2 Knee Movement Tracking 

The goal of this project was to compare the AEs of the knees between subjects with JIA 

and healthy controls. We hypothesized that these sounds were originating from the 

articulation of the joint. In order to properly compare the AEs, we needed to control the 

movement as feasibly as possible. However, knowing that there would be a certain amount 
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of inter- and intrasubject variability in the performance of the flexion/extension cycles, we 

also chose to quantify key characteristics describing this movement. We calculated the 

range of motion (RoM), angular speed, cycle duration and angular speed variability of each 

movement cycle for every subject in the three groups. These features were calculated from 

the synchronously recorded IMU data as described in 4.1. The range of motion was taken 

to be the difference between the maximum and minimum angles of each cycle. The cycle 

duration was calculated as the time spent from the minimum of flexion to the next 

minimum of flexion. The angular speed is the angular distance (number of degrees the 

sensor moved through in one cycle) divided by the cycle duration. Finally, the angular 

speed variability is the rate of change of the angular speed during one cycle. This parameter 

was used as a means of describing the fatigue of a subject’s movement. If the subject got 

fatigued during the recording it would be expected that the speed would decrease, and the 

angular speed variability would reflect that change.  

The movement features were found to be normal, so an unmatched, two-tailed student’s t-

test was applied to the JIA data against the healthy control data, and the healthy data against 

the follow-up data. A matched, two-tailed t-test was applied between the JIA data and the 

follow-up data. Significance was set to an alpha = 0.05, and with a Bonferroni correction 

for multiple comparisons, that meant a significant result would need a p-value less than 

0.167. 

6.3.2.3 Signal processing and feature extraction 

The joint AEs were analyzed in the time and frequency domains. Figure 20 shows a 

representative plot of the time domain signal after bandpass filtering from one subject with 
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JIA, that subject’s AEs at 6-weeks follow-up, and a healthy, matched control’s AE 

recording. The AEs from these subjects have high bandwidth frequency content as 

expected from earlier work [81], [109], [110]. Figure 19C graphically depicts the signal 

analysis workflow for knee acoustical emissions. The signals are pre-processed using a 

digital finite impulse response (FIR) band-pass filter with 250Hz - 10kHz bandwidth. In 

order to segment the AE data into individual flexion / extension cycles, a FIR low-pass 

filter (5 Hz) is applied to the raw AE signals to visualize the movement of the knee through 

its RoM. This motion data is compared against the synchronized IMU data and the proper 

indices for the beginning and end of each flexion / extension cycle are selected. These 

individual cycles are separated and subdivided into 400ms long frames. 49 signal features 

are extracted from each frame for each microphone. The ten frames corresponding to one 

cycle are averaged to give 49 descriptors of each cycle of flexion / extension. This process 

was repeated for all four microphones – two on each knee. These feature sets were stored 

in the matrix, X.  The rows of X each represent a single cycle of movement as recorded 

from each microphone, and the columns represent each of the 49 features extracted. The 

matrix X was standardized to zero mean and unit variance by subtracting the mean of each 

column and dividing by its standard deviation (see Feature Matrix in Figure 19C). 

The features extracted can be categorized into two groups: either time domain or 

spectral features. The time domain features include the zero-crossing rate (ZCR), energy, 

root-mean-square (RMS) power, and entropy.  The frequency characteristics of the joint 

sounds are described by the spectral features including the spectral centroid, spectral flux, 

spectral density, spectral roll-off, spectral spread, and spectral entropy (A full list of the 

features is available in Table 1). The mean, standard deviation, and median are calculated 
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for each feature for the set of 400ms windows on each cycle to better classify these features. 

This approach using these particular features to classify joint AEs is based on the 

appearance and sound of the signals. Their selection was supported by previous pilot work 

on this topic as well our cadaver model work, and is described in detail in 4.2 [76], [104]. 

6.3.2.4 Knee audio score classification using logistic regression 

 With the data appropriately organized, we trained a logistic regression 

classification model. Logistic regression is a common machine learning technique 

borrowed from statistics for binary classification problems (e.g. healthy vs JIA). Logistic 

regression is discussed in 4.2.3. It takes the input (x) which correspond to each of the forty-

nine features in one row of the feature matrix X, and outputs the classification label y for 

that input. This classification is decided based on a threshold of the probability that a given 

feature in x belongs to the JIA class. If the majority of the forty-nine features have a 

classification probability of JIA greater than the threshold, that row (or cycle) is classified 

as JIA. This threshold is described in Equation 5. A subject is classified as healthy or having 

JIA based on which class the majority of their component cycles are predicted to belong to 

using that same threshold. 

 𝑚𝑒𝑎𝑛(𝑝(𝑥)) ≤  0.5, 𝑦 =  Healthy 

mean(p(x))  >  0.5, 𝑦 =  Injured or Diseased 

(5) 

Equation 5. Threshold for Healthy Control vs JIA Classification 
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In order to assess the accuracy of this model, LOSO-CV is applied to the logistic 

regression model as described in 4.2.6. All rows for one subject can be removed from X to 

leave behind X’ and Xsubject. Each row in these matrices corresponded to one 

accelerometer’s output from one cycle of flexion/extension of the subject’s leg. Each 

subject had two accelerometers on each leg and was asked to perform ten cycles of 

movement. However, clipping often occurred at the beginning or ending of a recording, so 

the average number of rows in these submatrices was 36 ± 3 rows, with the average number 

of rows per accelerometer being 8±1 rows. The mode of the labels in any given Xsubject is 

taken to be the subject classification. For example, If the majority of the rows are predicted 

to be 1’s, the subject is labeled as having JIA. Similarly, if the majority of rows are 

predicted as 0’s, the subject is labeled as healthy.  To quantify the accuracy of the logistic 

regression classification, each Xsubject was serially tested using LOSO-CV. 

In each fold of LOSO-CV, the logistic regression classifier is trained using the data in 

X’ with one subject omitted - Xsubject. The trained model predicts the classification of the 

AE signal of the excluded subject’s knee AEs. During LOSO-CV, the matrix X’ was 

standardized after the removal of Xsubject. The mean and standard deviation of X’ were then 

subtracted and divided, respectively, from the columns in Xsubject. By doing this, the 

calculated features for Xsubject were not prematurely included in the standardization of X. 

The model estimates the probability of JIA for each row (cycle) in Xsubject. These 

probabilities are stored in the vector, ppredicted. The overall subject’s audio scores are 

calculated by averaging the contents of ppredicted  (Figure 19D).The 0.5 threshold is applied 

to this average probability to assign the predicted label of healthy (0) or JIA (1). The 

cross-validation is completed by calculating knee audio scores for all forty-three subjects, 
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excluding one subject per fold. The generalizability of the model is assessed by calculating 

the accuracy of our algorithm in labelling each cycle, as well as in labeling each subject 

and comparing those labels to the clinical diagnosis of the patient.  

The average probabilities of each cycle are used not only for predicting labels, but 

also as an indicator of joint health status, or a proposed “knee health score”. In this 

way, as the average probability of a subject trends toward 0, the signal more resembles 

a healthy knee. As those probabilities trend toward 1, the signal resembles a more 

actively inflamed knee having JIA. For subjects with JIA that have follow-up recordings, 

this process is repeated to calculate the change in the probability of JIA between the first 

recording and second. Importantly, the follow-up recordings are never used as part of the 

training set, since at the time of recording those subjects the ground-truth of their disease 

status is unknown.  

6.3.2.5 Feature importance ranking 

 The relative weighting of each of the features in the model needs to be explored to 

understand which features most relate to differentiating JIA AEs from healthy AEs. In 

order to quantify the importance of each feature, the standardized data from every subject 

with JIA (excluding the follow-up data due to it lacking a ground truth classification) is 

used to train the classifier. The resulting model is used to generate relative feature 

importance scores. In this case, no testing set is required to quantify feature importance 

since we are not assessing the generalizability of the model. In the case of logistic 

regression, the model computes a coefficient for each input feature that describes the k-

dimensional hyperplane that best separates the two input classes. When the input matrix X 
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is standardized to zero mean and unit variance, the absolute value of each of the coefficients 

output from the model can be directly compared to assess relative importance to the model. 

In this way, a coefficient with a large absolute value has a larger effect on the model than 

one with a smaller value. All forty-nine features are ranked in order from most to least 

important, and the top 20 features  as provided in Figure 23A.  

6.3.2.6 Effect of number of features and cycles of movement on model performance 

After ranking the forty-nine features, we further assessed the impact on the 

accuracy of the model’s predictive capabilities by training the model on one to forty-nine 

features in order of their relative importance. We first trained a model on only the most 

important feature, and assessed the accuracy of the model as detailed above using LOSO-

CV. Next, we iteratively added each new feature in order of descending relative importance 

to observe how that accuracy improved with the addition of each new feature. We 

simultaneously assessed the importance of the number of flexion/extension cycles by 

testing each iteration of the model on a subset of all the cycles. For example, we first trained 

the model on the most important feature, and tested the model using one cycle from the 

subject left out, next two cycles, then three cycles, all the way up to the full number of 

recorded cycles. In doing so, we calculated how the model responded for each feature input 

and for each additional cycle of movement input. Of note, when choosing the subsets of 

cycles to test we iteratively tested up to 1,000 unique permutations on any given sized 

subset of cycles and the average of those cycles was reported. A heatmap of these results 

was generated and can be seen in Figure 23B.   

6.3.3 Results 
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6.3.3.1 Qualitative Comparison of Knee AEs. 

The AEs were recorded from the knees of two groups of children. One group had 

actively inflamed knees with either newly diagnosed or poorly controlled JIA, the other 

group was composed of age- and sex-matched healthy controls with no JIA or significant 

injuries to the knee.  There are several notable differences in the time-domain patterns of 

the AEs between these groups.  The 18 healthy controls had no noticeable peaks in their 

audio signals and upon listening the recorded AEs resembled white noise (Figure 20A). 

The 25 subjects with JIA consistently show periodic, high-energy clicks in each flexion-

extension cycle. These “clicks” have a spike-like appearance in the time domain (Figure 

20B). Ten of these JIA patients had a second recording after 6 weeks to 3 months of 

treatment as prescribed by their treating pediatric rheumatologist. The AEs of this follow-

up group showed a large reduction in the amplitude and frequency of the clicks noted 

during their actively inflamed stage (Figure 20C). The post-treatment AEs more closely 

resembled the healthy controls both in the plot of the time domain of the AEs and in 

listening to the recordings. Representative subject AE recordings from each of these groups 

is presented in Figure 20. 
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Figure 20. Representative time-domain plots of AEs from a healthy control (A), a 

subject with active JIA (B), and that same subject after 6-weeks of successful 

treatment (C). Each recording is twenty seconds and presents the AEs from five 

flexion/extension cycles. 

 

6.3.3.2 Knee Movement Classification 

The movement patterns of patients in the three groups had several significant differences, 

but these differences do not align with the change seen in the AEs. Only the cycle duration 

was statistically different between the JIA and healthy control groups. The RoM, angular 

speed and cycle duration were statistically different for the healthy and follow-up groups. 

The RoM and angular speed were significantly different between the JIA subjects and their 

matched follow-up recordings. The results of the knee movement features are shown in 

Figure 21.  
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Figure 21. Knee Movement Classification. * indicates statistical significance <0.05 or 

0.0167 (with correction for multiple comparisons). FU=Follow-up 

6.3.3.3 Knee Audio Score Classification 

 The knee audio score for each subject was defined as the probability of a cycle 

belonging to a subject with JIA. In this manner, a knee score of 0 indicates 0 probability of 

having JIA, and a score of 1 indicates an actively inflamed joint with JIA. A threshold was 

set at a score of 0.5 to delineate the classification of the two groups. A threshold cutoff of 

0.5 was chosen heuristically but could theoretically be changed to place an emphasis on 

sensitivity vs specificity as desired. A subject’s joint health score was calculated by 

averaging all of the computed cycle probabilities of that individual subject’s 

flexion/extension cycles. The subject-level joint scores are presented as a histogram in 

Figure 22A. Notice the heavy overlap between the healthy (blue) and post-treatment, 

follow-up subjects (purple). This was expected based on the success of the treatment as 
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reported by the treating pediatric rheumatologist. The JIA distribution is centered around a 

score of 0.82 with clean separation from the other two distributions. The overall cycle-

based logistic regression analysis had an accuracy of 82.7% for classifying individual 

cycles. The ROC curve and confusion matrix are presented in Figure 22 B,C. The ROC 

curve had an AUC of 0.899. The cycle classification had a specificity of 80.4%, a 

sensitivity of 84.5%, an error rate of 20.1%, a positive predictive value (PPV) of 84.7%, 

and a negative predictive value (NPV) of 90.2%.  
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Figure 22. Assessing the performance of the logistic regression classifier on subjects 

(A) and cycles (B-C). (A) There was little overlap in the computed joint health score of 

the healthy control group and the group with JIA. A sub-group from the JIA group after 

effective treatment had JIA scores heavily overlapping with the healthy control group at 

follow-up. (B-C) The logistic regression model overall classified the individual cycles 

accurately 82.7% of the time. The model achieved adequately high sensitivity (84.5%) 

and specificity (80.4%). 
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6.3.3.4 Feature importance ranking and model performance. 

 Logistic regression is a binary classification algorithm that finds the best 

hyperplane in the feature space which separates the 2 classes: in this case, healthy and 

JIA[71].  The absolute values of the individual feature weights describing that hyperplane 

are used to quantify the impact that each feature has on the model and thus its importance. 

Figure 23A shows the relative importance of the top 21 features used in computing the 

knee health score. The majority of these features for classifying the two classes are in the 

spectral domain which agrees with the results from our earlier pilot work on the topic [104].  

To assess model performance, the number of features and cycles were varied in 

training the model to quantify the change in accuracy that the inclusion of each 

consecutively less important feature and each recorded cycle had on the classification 

accuracy of each subject. The output of this testing is visualized as an accuracy heatmap 

in Figure 23B where the color represents the average accuracy from testing on each 

subject in the dataset using LOSO-CV using the depicted number of features and cycles 

of movement. At the bottom left of this plot is the accuracy of the model when only 

trained on the most important feature – the mean spectral spread - and tested on just one 

randomly selected cycle of flexion/extension from the subject. All permutations of 

possible cycle selection were performed and averaged to yield the accuracy under these 

conditions. In the case of just one cycle and one feature, the average cycle classification 

accuracy was only 11.1%. Ascending along the y-axis, one feature is consecutively added 

based on its relative importance, such that at the top left corner of the heatmap the model 
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has been trained on the top 20 most important features. Still, when tested with only one 

cycle from a subject, the accuracy remains low at 25.0%. From left to right, the algorithm 

is tested on an increasing number of cycles recorded from a subject. The model has an 

accuracy of 42.8% in the bottom right corner, where it was trained on just the mean 

spectral spread and tested using all recorded cycles of a subject from all 4 microphones. 

The algorithm had the highest accuracy of 80.6% when trained on the top 20 most 

important features and tested using all recorded cycles. This is slightly less than the 

82.7% observed in Figure 22. This discrepancy is because the model in Figure 22 had the 

added benefit to the classification of all forty-nine features, not only the top twenty most 

important (Figure 23). 
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Figure 23. Feature Importance and Model Performance Based on Number of 

Features and Cycles. (A) Features are ranked based on their weighted coefficients as 

output by the trained logistic regression model. The most important feature was the mean 

spectral spread. (B) The model was trained on a feature set containing just one and up to 

twenty of the top features and the accuracy was assessed based on including those 

features and number of cycles recorded from a subject. The colors represent the average 

accuracy across all subjects for all permutations of cycle selection for a given set of 

testing parameters. The maximum accuracy of 80.6% is seen in the top right corner when 

trained on the twenty most important features and tested on all cycles of a given subject. 
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6.3.3.5 Knee audio score’s longitudinal health tracking capability. 

 The knee audio scores were calculated for ten of the subjects with JIA before and 

after 6 weeks of treatment. At first visit, these subjects were either newly diagnosed with 

JIA, or having a resurgent flare of the condition. Their treatments were prescribed 

according to the current clinical standards by their treating pediatric rheumatologist and 

were recorded but not controlled for in this study. Every subject at follow-up reported a 

reduction in symptoms and the treating physician reported an overall improvement in their 

symptoms and disease status. In Figure 24, the calculated joint health scores are shown 

before and after treatment for this cohort. The average joint health score at initial visit was 

0.84 ± .08. At follow-up, the scores dropped to an average of 0.19 ± .09.  This drop in joint 

health scores is statistically significant with a p-value <0.001, when tested with a one-tailed 

t-test. The individual subjects scores are represented with dashed lines in Figure 24 and in 

all cases mirror the clinical assessment of their improvement. 
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Figure 24. Longitudinal Joint Health Score Tracking. The average joint health score, 

which describes the probability of having JIA, dropped from 0.84 ± .08 to 0.19 ± .09 after 

successful treatment of the condition in ten subjects. The individual subject scores are 

denoted by the black squares and dashed lines. The mean and standard deviation of the 

actively inflamed subjects with JIA is shown in red, and the purple marker indicates the 

mean and standard deviation at follow-up. This drop in joint health score was statistically 

significant (p<0.001) 

  



 90 

 

6.3.4 Discussion 

 There is a compelling need for the development of a non-invasively measurable 

biomarker that can both diagnose and track the status of affected joints in JIA. Assuming 

a child is properly diagnosed, determining which treatment regimen will work best for them 

is largely reactive. This means that a certain course of treatment is prescribed and adjusted 

based on patient-reported feedback and infrequent clinical assessments. In this work, we 

explore the impact that joint AE monitoring could have on the diagnosis and treatment of 

JIA. If AEs were found to contain clinically relevant information, they could potentially be 

used as an initial screening tool by primary care medical professionals -- reducing the 

burden on the healthcare system of unnecessary referrals to specialists. Furthermore, this 

could help diagnose patients earlier, which may prevent the long-term sequelae of JIA 

[106]. After diagnosis, if joint sounds were found to closely track with treatment efficacy 

and joint health longitudinally, they could be used as an objective biomarker to decide or 

even predict the most effective course of treatment. This would reduce the burden of 

frequent JIA flare-ups on patients and allow for a tightening of the treatment feedback loop 

leading to overall better management of the condition. 

In this study, the effects of JIA on the AEs produced by articulation of the knee were 

explored.  The study population was made up of 43 subjects, 25 of whom had JIA, and ten 

of whom had repeat recordings six weeks after the initial visit. The AEs from a pediatric 

population with JIA of this size have never before been compiled and analyzed. These AEs 

were first compared qualitatively to better visualize the differences in the recordings as 
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seen in 6.3.3.1. It was noted that there are characteristic high-frequency clicks in the AEs 

of subjects with JIA that fade away with successful treatment and are not present in 

matched healthy controls’ AEs. More work is needed to determine the origin of these 

clicks, but we hypothesized that they occur due to increased internal friction in the joint 

caused by the characteristic inflammation of the synovial membrane, breakdown of 

cartilage, and reduced joint space in JIA[34], [111]. Of note, similar clicks are apparent in 

the case of acute injury as was recently discovered by our work in a cadaver model of knee 

injury[98] and a similar study in an injured athlete model[68]. Rather than relying strictly 

on one or even a few characteristics of these AEs as was done in previous work, in this 

study we attempt to more thoroughly quantify the differences between the recorded AEs. 

We do this by splitting the joint sound recordings from each subject into their component 

flexion/extension cycles. On each cycle, forty-nine features (from the spectral and time-

domain) were calculated to describe the observed AEs. These features and cycles were 

organized into a feature matrix which was used to train a machine learning, classification 

model using logistic regression. This technique should provide a more exhaustive analysis 

of the features of the AEs, and overall be more generalizable than past efforts to interpret 

AEs. The results of this model are described below.  

6.3.4.1 Knee audio score classification. 

 Logistic Regression is a binary classification algorithm that attempts to find the 

best hyperplane in k-dimensional space for separating the two classes (e.g. healthy and 

JIA) while minimizing logistic loss [71].  Logistic regression outputs the probability that a 

given test cycle belongs to the healthy or JIA class. In this case, if the probability of JIA is 

≥0.5, that input cycle was labeled as JIA, if <0.5 it was labeled healthy. This threshold 
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could be adjusted in the future to favor an increase in the sensitivity or specificity 

depending on the use case. This concession may lead to more false positives in the 

classification, but since the outcome of a false positive test result are relatively minor 

compared to the potential damage from a missed diagnosis, this decision was appropriate 

in this case. We have also proposed that the estimated JIA probability could be used as a 

basis for quantifying knee joint health. In this paradigm, a probability of 0 indicates a 

healthy knee with no signs of JIA, whereas a score of 1 indicates a knee clearly inflicted 

with JIA. The classification accuracy of the model is presented in 6.3.3.3. First, the subject-

level classification histogram showed clear separation of the joint health scores when the 

0.5 classification threshold was applied to the output probabilities (Figure 22.A). This 

finding helps support the idea that knee AEs could be used as part of the screening and 

diagnosis of JIA. The accuracy of labeling each cycle is then quantified to better understand 

the performance of the logistic regression model (Figure 22.B,C). The overall accuracy of 

the cycle labeling was 82.7%, which corresponds to a sensitivity of 84.5% and a specificity 

of 80.4%. As discussed, JIA is difficult to diagnose not only due to the highly variable 

nature of the condition and presentation, but also because of the shortage of pediatric 

rheumatologists who are specially trained to identify the disease. One potential use of AE-

based assessment in JIA is to allow for better screening of the condition by healthcare 

providers that are less trained to identify it. AE based assessment is entirely non-invasive 

and achievable with affordable hardware. The high sensitivity of this technique means that 

few false negative test results will occur. In the future, AEs could at least be used as a 

preliminary screening tool that gates whether a patient should pursue a specialist consult 

for further diagnostic workup. 
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6.3.4.2 Feature importance ranking and model performance 

 In order to understand the effects of feature selection and length of recording on 

JIA AE assessment, we presented our findings on which signal features are most important 

for the algorithm, and how it performs with less cycles to classify using a subset of features. 

In our model, there were 49 features describing each cycle of movement from each subject. 

A feature weights vector of length 49 was output from the model describing the hyperplane 

that best separates the JIA from healthy labeled cycles. The absolute values of the 

individual feature weights were used to quantify the importance of a given feature for the 

model. The relative importance of the top twenty features in the algorithm are presented 

Figure 23.A. These results were highly-consistent with our team’s earlier pilot study on a 

much smaller sample of patients with JIA [104]. Each subject had two microphones on 

each of their knees recording the AEs during ten cycles of flexion/extension at a rate of 1 

cycle every four seconds. These four audio files were subdivided into the individual cycles 

of movement based on the simultaneously recorded motion data captured by the inertial 

measurement unit (IMU) attached to the subjects’ ankles.  The resulting data structure thus 

had approximately 40 segments of data describing one subject’s movement. Figure 23b 

graphically depicts the results of varying the number of those segments included in the 

testing dataset. Each square in Figure 23b describes the average accuracy when each 

subject was tested with the described parameters as a part of LOSO-CV on the trained 

model. Along the y-axis, Features were sequentially added in order of descending 

importance, such that at the bottom of the plot, only the most important feature – the mean 

spectral spread – was used to classify the cycles. As the y-axis is ascended, each of the 20 

features as described in Figure 23A are consecutively included in training the logistic 
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regression model. This figure thus depicts the impact that feature selection has on the 

accuracy of the classification. There is a clear benefit on the accuracy of the model by 

including more features, and this should help with the generalization of the model to novel 

data. In the past, attempts have been made to describe knee AEs using only one or a few 

different signal features [15], [110], [112]. These attempts generally have success on a 

small data set, but when applied to a data set of this size were suboptimal when compared 

to the accuracy of the model proposed in this work.  

The impact of the length of the AE recording is also demonstrated in Figure 23B 

from left to right. Each step to the right includes an additional, and randomly selected, 

flexion-extension cycle, and the color of the square indicates the accuracy of classifying a 

subject with that many cycles. On the left, we test the model with only one cycle recorded 

from one microphone on each subject. On the far right, every cycle recorded for every 

microphone is used to test any given subject. The impact is similar to increasing the number 

of features in the trained model – as the number of cycles increases the classification 

accuracy similarly increases. It should be noted that there is some possible redundancy in 

having two microphones recording the AEs from each knee. Overall, this analysis 

demonstrates the impact that the feature selection and length of AE recording has on the 

accuracy of the model. In our case, the accuracy was at its lowest with one feature and one 

cycle at 11.1% and achieved a high of 80.6% with the top twenty most important features 

and every recorded cycle from a subject. It can also be seen that the performance plateaus 

after the addition of around half of the cycles. This lack of change in the accuracy with 

additional recordings indicates that the model is relatively robust to varying lengths of AE 

recordings as long as a minimum number of cycles are met. This analysis also demonstrates 
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why past approaches have had only limited success in generalizing their findings. If only a 

subset of these features were used to describe AEs, the accuracy would significantly 

diminish. Many features are needed to fully describe the nature of these sounds and 

separate the differences between populations. Later work comparing a different clinical 

scenario, or a larger dataset may find that a different feature is more important for 

delineating two study groups, but the approach applied in this paper should hopefully 

provide guiding influence on future assessments of AEs. 

6.3.4.3 Longitudinal joint health tracking 

In order to discover if knee AEs had the potential for quantifying joint health 

longitudinally, ten subjects with JIA had their AEs recorded during an active flare-up of 

the condition and 6 weeks later at their follow-up visit. In this particular cohort, every 

subject showed clinical improvement and reported a lessening of symptoms. To calculate 

these subjects’ knee scores, the logistic regression model was trained on all subjects not in 

this cohort. The recordings before and after treatment were tested on the trained model and 

the knee audio scores computed as described in 6.3.2.4. The hypothesis was that as a child’s 

knees healed from effective treatment, their knee scores would decrease from the JIA range 

(0.5-1.0) toward the healthy range (0.0-0.5). In all subjects, this hypothesis was shown to 

be valid. There was a statistically significant drop in the average scores of 0.65, or a 77.4% 

improvement in the joint health score. This closely tracked with the reported clinical 

workup of the subjects indicating that joint health scores based on AEs may be clinically 

applicable for not only diagnosing JIA (as discussed in 6.3.4.1), but also monitoring the 

condition over time.  
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 In this study, these ten patients represent a subset of the overall JIA population and 

before claiming how consistently joint sounds track with knee health status in an individual 

the sample size of those studied should be further increased. However, these findings 

represent the first time that a population large enough to adequately power a study of 

children with JIA has been studied longitudinally. The close correlation between the 

change in joint sounds and the observed clinical status will hopefully support further 

research into this relationship. Overall, this study represents an early, but important step 

toward understanding the nature of joint AEs. The strong separation of the classes 

alongside the close tracking of disease activity make it clear that joint AEs contain 

clinically relevant information. This information if properly leveraged could one day 

enable better more personalized treatment of JIA. 

6.3.4.4 Motion Data Comparison 

In the comparison of JIA to healthy controls, there was a statistical significant 

reduction in the joint health score. The same occurred from the JIA case to those patients 

at follow-up. It appears then that AEs can be used to both longitudinally track and diagnose 

JIA involvement in the knee. However, it could be possible that a change in the technique 

of flexing and extending the leg could be confounding the results. In order to test this, we 

look at four features that describe the movement of each subject: the RoM, angular speed, 

cycle duration, and angular speed variability.  

 Each child is asked to watch and copy the movements of an instructional, cartoon 

video showing a flexion/extension cycle at a rate of 1 cycle every 4 seconds. This is a 

relatively slow pace, but one found heuristically in the cadaver experiments to produce the 
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best AEs. The only significant difference in the movements between the JIA group and the 

healthy control group was in the cycle duration. The angular speed, range of motion, and 

angular speed variability were not significantly different. The cycle duration however can 

not completely explain the gap in the joint health scores of the healthy subjects and those 

with JIA because the cycle duration was not significantly different between the JIA group 

and their follow-ups (where a similar drop in joint health score was observed). 

Of the groups assessed, the children with JIA are expected to have the smallest 

range of motion – given the pain and symptoms in the knees recorded. With clinical 

improvement, their RoM would be expected to increase at follow-up. We however 

measured a drop in the RoM at follow-up. Interestingly, the follow-up subjects’ angular 

speed also significantly dropped. These significant changes in their movement could be the 

cause of the change in joint health index calculated. However, we also observed a similar 

change in the mean RoM and angular speed between the healthy controls and the follow-

up group, and there were not significant differences in the joint health score between these 

two groups. 

Thus, rather than the changes in movement features being related to JIA status (our 

variable of interest), it appears they are more closely related to a learned effect. The follow-

up group had already watched the video that showed them how to control their 

flexion/extensions.  At follow-up, the patients were not as nervous and more confidently 

reproduced the slow movements seen on the instructional video.  Since they are moving 

slower (lower angular speed), but there cycle duration has not significantly changed, the 

follow-up subjects are going to move through a smaller range of motion. The ideal angular 

speed is 45° per second, which equal one cycle of 90° every 4 seconds as is shown in the 
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video. The FU group’s average angular speed was closest to that at 51°±9°. Together, this 

evidence indicates that the changes seen in the IMU data were more related to a learned 

effect rather than a limitation due to the JIA status. Additionally, there were no shared 

statistically significant motion features that could explain the shared drop in the joint health 

index based on AEs seen in the follow-up and healthy cases. In the future, to fully test this 

hypothesis, a cohort of healthy patients will have their joint sounds recorded a second time 

and their motion data re-recorded. If these healthy follow-ups have a similar change in the 

motion as the JIA follow-ups, we can conclude that it is a learned effect rather than an 

unknown confounding factor in AE analysis. 

6.3.4.5 Limitations of results and steps to clinical adoption. 

JIA is a chronic condition that affects multiple joints in the body. The knee is one of 

the most commonly affected joints and made for a viable target for this attempt at analyzing 

AEs.  To better understand the clinical utility of this sensing modality, AEs should be 

studied in other commonly affected joints in JIA. Additionally, the sensitivity of this 

method should be compared against the performance of the current clinical standard 

procedure for diagnosing and staging the condition. Treatment of JIA seeks to reduce the 

frequency of acute, symptomatic flare-ups, and to ultimately achieve clinical remission. In 

this study, the treatments our subjects underwent were not controlled for due to the small 

sample size. In the future, the effectiveness of therapy should be quantified using a 

prospective study design. Additionally, in this cohort all subjects improved with treatment 

and we saw a corresponding drop in the joint health score. Since no patients got worse at 

follow-up, we were unable to discover if AE assessment could track worsening of the 

condition. The sensitivity of joint sounds for detecting not only different severities of the 



 99 

condition but also the course of the condition should also be assessed. AEs would present 

significant clinical significance if they were able to determine the difference between an 

acutely inflamed joint and a more chronic, undiagnosed state. Determining that duration of 

disease activity would help with selecting the ideal treatment for a patient. Classifying 

subjects into the different subtypes of JIA and delineating joint sounds caused by JIA 

versus all other causes would also offer clinical merit. Finally, though this study was 

performed on the largest sample size of subjects to date, increasing the enrollment would 

better support the generalizability of the discussed results. Joint AEs are a novel technique 

for analyzing the health of a joint. The findings in this paper present significant clinical 

merit to this type of analysis, but there is still much to be discovered. 
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CHAPTER 7. SCREENING IN THE TMJ 

7.1 Introduction 

7.1.1 AE Opportunity Space 

Assessment of the temporomandibular joint (TMJ) can be difficult; clinical signs 

and symptoms are non-specific[25], examination is challenging and imaging is often 

necessary [26]. TMJ disease in children can cause pain and growth disturbances leading to 

malocclusion and/or skeletal deformities [6],[64]. The presentation, difficulty in diagnosis, 

and severity of sequelae of untreated disease present a compelling need for the 

development of a biomarker for TMJ health [6]. Ideally, this biomarker would be objective, 

noninvasive, and readily measurable with affordable hardware. AEs (AEs) from the TMJ 

could serve as such a biomarker. They contain information related to the structural integrity 

of the joint and the health of internal articulating surfaces [24],[98]. Changes to AEs could 

serve as an objective diagnostic indicator of TMJ pathology. 

7.1.2 Previous Work on TMJ AE Analysis 

AEs from joints were first reported in 1902 by Blodgett [18]. In the 1930s, Steindler 

correlated joint malfunctions and sounds using several types of sound detecting equipment 

[113]. In 1961, Brackin filed the first patent detailing an apparatus for recording and 

analyzing joint disorders with unique acoustic patterns recorded from different pathologies 

[114]. These attempts to facilitate diagnostic procedures by microphonic detection of 
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emissions did not gain widespread use because of discrepancy in the nature of the sounds 

and the recording technique. In 1984, Molan found that the use of a piezoelectric 

accelerometer detector in direct contact with the skin gave a robust signal and allowed for 

detection in the subsonic frequency range [115]. Five years later, Gay filed a patent for a 

diagnostic procedure and apparatus that quantitatively correlated joint-induced sound 

patterns relative to the joint position in time, and noted that it could be particularly useful 

in diagnosing TMJ disorders [116]. Gay’s technique was the first to move away from 

qualitative descriptors of the joint sounds to quantitatively comparing the sound profiles.  

 Prior to the 1990’s, joint AE analysis was limited by the computational power and 

by the physical size of the sensors, so research focused on larger, more accessible joints 

(e.g. the knee). As a result of those limitations, comparisons were often qualitative and 

inconsistent between researchers. The advent of miniaturized sensors and the increasing 

computational power of the 1990’s presented the opportunity for more powerful (and 

quantitative) AE analysis of smaller joints (e.g. the TMJ). Since then, two main approaches 

for recording TMJ AEs have gained prevalence in the field: binaural miniature 

microphones placed at the intra-auditory meatus and contact accelerometers placed on 

bony prominences around the joint [117]. Microphones at the intra-auditory meatus 

provide a broad signal-to-noise bandwidth, while contact accelerometers provide the 

highest mean amplitude in the time domain waveform [65]. Either approach is suitable 

depending on the application and nature of the underlying signal being recorded. In our 

project, we used surface mounted accelerometers because they are easy to place on TMJs 

and are able to capture high amplitude spikes in the AEs, as discussed in 4.1. 
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 Significant steps have been made in the quantitative classification of these audio 

signals. Prinz showed that the time domain is where most of the characteristic differences 

of the various TMJ AEs are found, and that the frequency domain was much less distinct 

than the time domain [96]. To study key signal features in the time domain, several 

computationally rigorous approaches have been applied such as the reduced interference-

distribution (RID) of the time-frequency energy distributions and neural networks. The 

RID technique was shown to have a more detailed classification of TMJ AEs than by 

auscultation [118]–[120]. Neural networks were used to classify TMJ sounds based on their 

narrow-band, wide-band, and time-varying frequency components [121]. Previous 

research on TMJ AEs resulted in several patents for devices which capture TMJ AEs. 

However, this type of analysis has not gained widespread clinical usage perhaps because a 

standard protocol for best capturing and analyzing AEs does not exist.  

7.1.3 The Goal 

 AEs of TMJs must be better understood, characterized and a standardized technique 

for recording and interpretation needs to be developed. The purposes of this project were 

to: (1) present our custom, wearable headset with embedded contact accelerometers and 

(2) assess the repeatability and reliability of our headset in children. We hypothesize that 

this headset will allow for the convenient recording of AEs, which will ultimately facilitate 

their inclusion as a biomarker in a clinical workup of the TMJ. The work presented here is 

an early, but crucial step toward the design of a system for augmenting the current diagnosis 

and monitoring of TMJ disease in children. 

7.2 Assessing the Feasibility and Repeatability in Children 
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7.2.1 Subject Recruitment 

 IRB approval was obtained (#00081670), and all subjects were recruited in 

accordance with the Helsinki Declaration guidelines. Inclusion criteria consisted of 

children age 6-18 years of age who presented to Oral and Maxillofacial Surgery (OMS) 

clinic for a non-TMJ related reason. The presence or absence of TMJ sounds was verified 

via a clinical examination by a board-certified OMS. Exclusion criteria were: (1) systemic 

disease which has potential to affect the TMJ (e.g. juvenile idiopathic arthritis, [JIA]), (2) 

history of craniofacial syndromes with potential for TMJ involvement (e.g. hemifacial 

microsomia), (3) history of TMJ/facial trauma, (4) ongoing orthodontics, and/or (5) 

complaints of temporomandibular joint dysfunction (TMD).  

7.2.2 Device/Headset Setup 

 When a subject opens and closes his / her jaw, TMJ articulation creates vibrations 

that are detectable on the surface of the skin.  We built a headset adjustable to fit 95% of 

users younger than 18 years old based on anthropometric head circumference data[122]. 

The headset is positioned on the subjects’ heads with skin contact accelerometers against 

the articular eminences of TMJs (Figure 25) [123], [124].  This location and skin contact 

previously demonstrated detection of TMJ sounds with the highest quality time domain 

waveforms [65]. This method provided sufficient contact force without hindering 

portability of the device or causing discomfort [117].    

 The AEs are recorded using the setup described in 4.1 fit inside the headset as 

described above. After each recording, the software preliminarily filters (between 250 Hz 

– 10 kHz) and plots the recordings, so that the researcher can ensure everything was 
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functioning properly.  This filtering range isolates the frequencies containing the majority 

of TMJ AE signals, and removes artifacts associated with large-scale movement of the jaw, 

low frequency muscle sounds, and environmental noise [96], [104], [117]. With the setup 

in place and the software running, the subjects perform 10 repetitions of opening/closing 

their mouth at a rate of 1 repetition every 4 seconds (Figure 25).The raw and filtered data 

were recorded and locally stored for further processing. 
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Figure 25. Recording Setup Used for Capturing TMJ AEs. (A) Each subject wore the 

headset and performed 10 repetitions of opening and closing their mouths, at a rate of 1 

cycle per 4 seconds while watching an animation to help maintain consistent speed and 

movement. (B) AEs were recorded from both TMJs simultaneously while performing the 

exercises using uniaxial accelerometers embedded into a headset form-factor for 

convenient placement superficial to the TMJ. (C) The signals captured by the 

accelerometers in the headset were acquired using an data acquisition unit, and analyzed 

via a connected laptop computer running Matlab. 
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7.2.3 Feasibility and Repeatability Testing Protocol 

 To assess the feasibility of using our TMJ AE recording headset, AEs from one 

healthy control (i.e. no TMJ sounds) and one patient with clinically noticeable TMJ sounds 

were recorded. These recordings were qualitatively compared to ensure that there were 

differences in the sounds and that the headset was recording AEs properly. To assess the 

repeatability of the recording device, 9 subjects performed three trials of open/close 

movements while their AEs were recorded. Between each trial, the headset was removed 

and repositioned on the subject’s head to test for repeatability of the placement of the 

device.  

7.2.4 Analysis Technique 

 To analyze repeatability of measurements from the AEs of TMJs, we calculated 

three features that describe the signals in the time domain: the root mean square (RMS) 

power, the signal energy, and the zero-crossing rate (ZCR). The RMS power is a measure 

of the absolute value of the magnitude of the signal, so signals with larger spikes would be 

expected to have a larger RMS power. The energy feature is computed as the integral of 

the squared signal magnitude. This feature describes how “loud” the audio signal is. The 

ZCR describes how often the signal crosses zero, which estimates how quickly its values 

change. We are using the ZCR to quantify how often the signal is moving from negative to 

positive and back indicating a change in direction as the skin vibrates. If the skin was 

vibrating back-and-forth faster, then the ZCR would increase. All together, these three 

features comprehensively describe the qualitative differences that we observed.  
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 Repeatability of measurements on each subject was calculated using the intra-class 

correlation coefficient (ICC). The ICC indicates how strongly the different sessions of TMJ 

recordings resemble each other. The ICC varies from 0 to 1 (1 indicates completely the 

same, 0 indicates no overlap) with values above 0.9 typically representing excellent 

repeatability [125]. We calculated the ICC for each of the features we selected to describe 

the signal (i.e. the RMS power, energy and ZCR) for all trials.  Each TMJ (left and right) 

of a patient was a separate group. We did this because we were not trying to compare the 

features of different joints, but rather ensure that the device was recording a repeatable 

signal from each specific TMJ. There is inherent inter-subject and intra-subject variability 

in the AEs of each TMJ since each individual TMJ has unique anatomy and kinematics 

(Figure 3). 

7.2.5 Results of Feasibility and Repeatability Testing 

 To test the headset’s recording capabilities, recordings were obtained to ensure the 

device was working properly. We recorded sounds from TMJs of a healthy subject with 

TMJ sounds and sounds from TMJs of a healthy subject without TMJ sounds. There are 

several qualitative differences between the two subjects’ recordings (Figure 26). The 

patient with sounds had large spikes (with amplitudes of ~0.1 mm/s2) that occurred 

approximately every four seconds (Figure 26B), These spikes sounded like loud clicks or 

pops when listening to the recordings. These sounds were occurring at the same point in 

the articulation of the jaw during each cycle of opening and closing. In addition, the TMJ 

sounds were more heterogenous and variable than the ones from the child without TMJ 

sounds. The child without TMJ sounds had numerous smaller spikes in the sound (with 
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magnitudes of ~0.5 mm/s2). When listening to these smaller spikes, they resembled a 

grinding sound.  

 

Figure 26. TMJ AE Feasibility Recording. (A) Time domain recording from a subject 

without TMJ sounds. (B)  Time domain recording from a subject with TMJ sounds. Each 

spike in the acoustic signal represents a large click or pop. 

 

Next, nine healthy children (6 females, 3 males) with mean age of 10.8 ± 3.2 years 

(range, 7 to 16 years) had their AEs recorded in order to assess the repeatability of TMJ 
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AE recordings. The three signal features discussed above (RMS power, energy, and ZCR) 

were calculated for each of the three recordings from each TMJ on all the subjects. The 

goal of this analysis was to quantify how similar the signals from each recording sessions 

were for each subject. A representative example of the three recording trials for one subject 

can be seen in Figure 27A. The distribution of feature values across all the recording 

sessions and subjects can be seen in Figure 27B-D. Of note, though the individual feature 

values vary from subject to subject, the three sessions’ features were tightly clustered for 

each individual TMJ for all subjects. This tight clustering of feature values indicated that 

the signals were repeatable. To further quantify this repeatability, the ICC values are 

presented in Figure 27E.  The ICC values were 0.96 for the RMS feature, 0.91 for the 

energy feature, and 0.995 for the ZCR feature. As discussed above, an ICC score >0.9 is 

considered to represent excellent similarity of the signals being assessed. Here, it indicated 

that the AE recordings are highly consistent across multiple recording sessions and 

placements of the headset. 
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Figure 27. Repeatability of TMJ AEs. (A) Example time domain recordings from the three 

sessions of one subject. (B-D) The RMS power, energy, and ZCR for the three recording 

sessions of each subject show that there was very little change from one recording to the next. 

The recordings from the left TMJ are on the left in each subject number division, and likewise 

the right TMJ data are on the right. (E) The ICC values of each feature presented in B-D; each 

ICC value is >0.9, so signals have excellent repeatability between recording sessions. 
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7.2.6 Discussion of Feasibility and Repeatability Results 

 TMJ health is evaluated by a combination of physical exams and imaging studies. 

Physical exams rely on health care worker expertise. Imaging is not always feasible due to 

its high cost, need for occasional sedation in children, length of time, need for specialized 

equipment (e.g. magnets), and potential contraindications[5], [6]. A TMJ AE headset has 

the potential to serve as a screening tool prior to obtaining imaging. The purposes of this 

manuscript were to (1) present our custom, wearable headset used to record AEs of TMJs, 

and (2) assess the repeatability and reliability of this headset in children. 

 The technique for measuring TMJ AEs has evolved since it was first proposed in 

1902 [18]. The field has progressed from manual auscultation, digital stethoscopes, 

condenser microphones, electret microphones, and now favors miniaturized contact 

accelerometers [14], [15], [65], [114]–[117]. Our headset is based on findings of earlier 

work in selecting an ideal accelerometer with high sensitivity, and a bandpass filter to 

remove confounding low frequency muscle sounds and environmental noise[126]. It was 

designed to obtain the highest amplitude signal in the time domain – which contains the 

majority of the characteristic differences in TMJ AEs[96]. Our device places the 

accelerometers superficial to the TMJ[117] and was designed specifically for children who 

are likely to be uncomfortable with an intra-aural device. This sensor location and 

comfortable form-factor minimized the time required to place the sensors accurately and 

firmly on the TMJs. The acquisition software was written to minimize computational time. 

Together, the form-factor, hardware, and recording scripts allowed for reproducible 

recordings of TMJ AEs with minimal time required for setup and acquisition (< 2 minutes). 
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Minimizing the time needed to assess the joint is of critical importance for a busy clinical 

setting. 

 Before exploring the diagnostic capabilities of our headset, we needed to confirm 

that its recordings were repeatable and consistent. In order to quantify this repeatability, 

we calculated three time-domain signal features: the RMS power, zero-crossing rate, and 

energy. It was previously shown that time-domain features contained nearly all of the 

characteristic differences of TMJ AEs [96]. In particular, the energy of the signal has been 

used extensively to describe characteristics of TMJ AEs [119], [121]. In our study, the ICC 

values were all >0.9, which indicated high consistency from one recording session to the 

next; thus, excellent repeatability (Fig. 3). These findings support the claim that this 

wearable headset can consistently record AEs from the TMJ of children. 

 When listening carefully to these sounds, we noticed that sounds occurred at the 

same point in the articulation of the jaw during each cycle of opening and closing. We 

hypothesized that the cyclical occurrence of these loud sounds may indicate that there is 

an anatomical variation producing them. The TMJ sounds produced by the patient without 

clinically-evident sounds may simply indicate friction of the TMJ during articulation. 

 This study has a few limitations. Although the headset was removed multiple times, 

AEs were recorded during the same visit. This study shows that TMJ AEs can be 

successfully and repeatedly captured by a wearable headset. However, it does not address 

the variability in sounds overtime as disease progresses. Additionally, all the subjects 

recorded in this study were healthy with no history of TMJ dysfunction. This resulted in 

relatively small AEs, since the TMJs of healthy children are not expected to produce much 
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sound. In the future, to better understand the feasibility of this technology for clinical 

diagnosis, it will be applied to children with systemic disease known to affect TMJ such as 

JIA and may be compared to MRI findings. This is the subject of an ongoing investigation 

in our center. 

 In conclusion, this project provides the foundation for the eventual clinical use of a 

TMJ AE device. In the next section, we use this technology on a cohort of patients with 

JIA and age/sex matched healthy controls to evaluate the effect of arthritis on the AEs of 

TMJs. In a chronic condition such as JIA, AE assessment may extend beyond just 

screening/diagnostics and instead be used as a longitudinal biomarker of disease activity 

within the joint. Overall, these exciting preliminary results should inspire further research 

into the acquisition, analysis, and classification of TMJ AEs. 

7.3 TMJ AEs as a Screening Tool for JIA 

With the feasibility of recording TMJ AEs from a pediatric population using our custom 

headset proven, we now move on to understand if AEs could detect inflammation caused 

by JIA in the joint. The TMJ is one of the most commonly affected joints in juvenile 

idiopathic arthritis (JIA) (up to 45% of cases) [25]. There is a discrepancy between clinical 

signs and presence of arthritis of the TMJ, which makes recognizing involvement and 

effective intervention difficult [32]. In order to diagnose JIA in the TMJ, combined imaging 

studies are necessary, but they are time consuming, expensive, and may not show 

involvement until the disease has sufficiently progressed [5], [6]. Crepitus is a common 

complaint in the TMJ, but it is still poorly understood [32]. In this work, we build off of 

our earlier understanding of AE analysis, and attempt to determine if AEs could be used as 
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a biomarker of JIA in the TMJ. This is done by recording the TMJ AEs from 4 groups of 

patients: two healthy control groups without JIA – one with and one without observable 

TMJ sounds, and two groups of children with JIA one with and one without observable 

TMJ sounds. The AEs from each of the groups will be compared. There are two main goals 

behind this comparison: 1) determine if AEs can separate healthy patients from JIA 

patients, and thus be used as a screening tool for the disease, and 2) determine if AEs can 

differentiate “healthy” TMJ sounds from pathologic TMJ sounds. 

7.3.1 Subject Recruitment 

This project was covered under our previously acquired IRB approval (#00081670). 

Inclusion criteria consisted of children age 6-18 years of age who presented to the OMS 

clinic. The presence or absence of TMJ sounds was verified via a clinical examination by 

a board-certified OMS. Exclusion criteria were: (1) history of craniofacial syndromes with 

potential for TMJ involvement (e.g. hemifacial microsomia), (2) history of TMJ/facial 

trauma, and (3) ongoing orthodontics. Unlike our previous work, in this study subjects with 

JIA were included as one of the groups.  A summary of the current enrollment statistics is 

seen in Table 2. 
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Table 2. TMJ JIA Study Enrollment Statistics 

 
# Enrolled: Age: STD: # Male # Female 

HC no Sounds: 20 11.89 3.18 5 15 

HC w Sounds: 8 15.13 2.36 4 4 

JIA w Sounds: 9 13.00 2.06 0 9 

JIA no Sounds: 14 12.50 2.77 5 9 

Total: 51 13.13 1.40 7 37 

 

7.3.2 Setup and Testing Protocol 

The AE recording setup was the same as described in 7.2.2 and seen in Figure 25. With the 

setup in place and the software running, the subjects perform 10 repetitions of 

opening/closing their mouth at a rate of 1 repetition every 4 seconds. In order to 

synchronize their movements, the subjects watched an instructional cartoon while 

performing the exercises as seen in Figure 28.  
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Figure 28 TMJ recording setup synchronized with instructional cartoon. A) 

Example graphic of a subject wearing the TMJ recording headset while performing 

open/close exercises. B) Animation video used to synchronize and standardize exercises 

for comparison across subjects. The animation performs the movement at the selected 

rate (1 cycle / 4 sec), so that children of all ages can easily reproduce the exercises. 

7.3.3 Analysis Technique 

Qualitatively, the differences in the AEs of the TMJ are more subtle than those seen 

in the knees. To analyze the AEs of TMJs, for each cycle of opening and closing of the 

jaw, the features described in Table 1 were calculated and stored in a feature matrix labeled 

FTMJ. Next, outlier cycles were removed from the data set. To determine if a cycle was an 

outlier, first FTMJ was separated into 4 submatrices based on if that cycle belonged to a 

subject with or without JIA, and with or without clinically observed TMJ sounds. The 

median absolute deviation (MAD) was calculated for each feature in each of the 4 

submatrices. The MAD is a robust measure of the variability of quantitative data and is 

calculated as described in Equation 6. Any cycle where the majority of the features were 
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more than three scaled MAD away from their respective feature median were labeled as 

outliers and removed from FTMJ .  

 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒),

𝑓𝑜𝑟 𝑖 = 1,2, … 𝑛𝑢𝑚𝑏𝑒𝑟𝑐𝑦𝑐𝑙𝑒𝑠 
(6) 

Equation 6. Median Absolute Deviation.  

 With the outliers removed, the FTMJ matrix was tested using logistic regression as 

described in 4.2.3. In this study, we were interested in two distinct binary classifications: 

1) if the subject had JIA or not, and 2) if the subject had TMJ sounds or not. The 

classification accuracy for each of those labels was determined by testing FTMJ twice using 

LOSO-CV. In the algorithm, JIA status was the first response variable. The presence of 

sounds was the second test’s response variable. Logistic regression had sub-optimal 

separation of the classes, so three other common classification algorithms were tested on 

the feature set. The three other algorithms tested were: a cubic support vector machine, 

weighted k-nearest neighbors, and a bootstrap aggregated (bagged) decision tree. Each 

model’s accuracy was calculated using LOSO-CV (as described in 4.2.6). The accuracy of 

these tests is seen in Table 3. Ultimately, the bagged decision tree model was found to have 

the best accuracy and used for the rest of the testing. Bagged decision trees combine the 

results of many decision trees, which reduces the effects of overfitting and improves 

generalization. In our algorithm, a random subset of predictors is selected to use at each 

decision split – similar to the random forest algorithm [128].  To better understand which 

features were most important for differentiating between the healthy AEs and the AEs from 
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a TMJ with JIA, the 49 features used in training the model were ranked in order of relative 

importance. The bagged tree algorithm and feature ranking technique is described in 4.2.4.  

 The goal of this project was to design a TMJ screening algorithm that would 

provide value to the clinical workup of these hard to diagnose patients. In order to do so, a 

dual decision algorithm is proposed as seen in Figure 29. In this algorithm, a subject’s 

TMJ’s are first tested to determine if they should be categorized as having or not having 

JIA.  This step has the additional benefit of serving as a screening tool for JIA. Next, the 

AEs are assessed in the JIA group to determine if the subject has abnormal TMJ sounds or 

not. The flowchart in Figure 29B, could potentially replace the need of having an OMS 

perform a physical exam on the patient.  

 

Figure 29. Flowchart of TMJ AE Screening in JIA. A subject’s probability of having 

JIA is the average of the classification output for all cycles from that subject (A).  

7.3.4 Results of JIA vs Healthy Control TMJ AE Comparison 

7.3.4.1 Time Domain Qualitative Comparison 

There are several differences that can be seen in the signals when compared against the 

patient with JIA with TMJ involvement. In the time domain, with the same rate of 

opening/closing the mouth the JIA patient’s sound profile appears more chaotic, with 
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periodic large “clicks”. The difference in the patterns of the AEs of the other three groups 

are much more subtle. A comparison of a representative patient from each of the 4 

experimental groups is depicted in Figure 30.  

 

Figure 30 TMJ AEs from Four Subjects. Representative time domain signal of age and 

sex matched participants performing 3 open/close jaw movements. 

 

7.3.4.2 Machine Learning Classification Accuracy 

The goal of this work was to label the patients as having or not having JIA with or without 

TMJ involvement. As mentioned in 7.3.3 and seen in Figure 30, the differences in the AE 

patterns of the four groups were subtle. Four algorithms were tested to see which had the 

best classification accuracy. It was found that the bagged decision tree model, performed 
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best with an average accuracy of 68.6 ± 4.2%. The breakdown of the models’ performances 

is shown below in Table 3. 

Table 3. Accuracy of Algorithm Classification. The average classification accuracy 

was used to select the best performing algorithm. (Accuracy given in %) 

 
JIA v HC Sounds vs No Sounds Average 

Cubic SVM 71.4 63.9 67.6 ± 5.3 

Logistic Regression 71.3 54.9 63.1 ± 11.6 

Weighted kNN 44.3 56.0 50.155 ± 8.2 

Bagged Tree 71.6 66.6 68.6 ± 4.2 

 

7.3.4.3 TMJ AEs to Screen for JIA 

The features of all subjects with recorded TMJ AEs were used to train a bagged decision 

tree model, and the accuracy of classification was computed using LOSO-CV. This testing 

group including all subjects regardless of whether they had observed TMJ sounds in the 

clinic on physical exam. This model output the probability of a given cycle belonging to 

the positive class- ‘JIA’ in this case. These probabilities of all cycles belonging to each 

TMJ of each subject were averaged to give a “TMJ joint health score”. A score of 1 

indicates a TMJ with 100% probability of belonging to the JIA class. Likewise, a score of 

0 indicates 100% probability of being healthy. These scores are plotted along the x-axis of 

Figure 31. With a threshold of 0.5, the accuracy of labelling patients as healthy was 79.2%, 

the accuracy of labelling patients as having JIA was 70.8%. This threshold could be 

adjusted in the future to prioritize sensitivity or specificity depending on the use-case. With 

a 0.5 threshold, the ROC curve had an area-under-the-curve of 70.9%.  The scores and 
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classification of each subject are shown in Figure 31A. The computed ROC curve is shown 

in Figure 31B.  

 

Figure 31. TMJ AE JIA Screening Accuracy. (A) Individual subject predictions. (B) 

ROC curve of JIA classification. AUC = 70.9%. 

7.3.4.4 Difference in Healthy TMJ Sounds from JIA Sounds 

When a patient presents to clinic and is complaining of or has observed TMJ sounds, it is 

difficult to determine if those sounds are pathologic, or from perhaps a benign anatomical 

variation. To test if AE analysis could be used to differentiate between those two cases, a 

second bagged tree model was trained using patients that had observed TMJ sounds 

regardless of whether or not they had JIA. In this way, we can determine if AEs from 

patients with JIA differ from those from healthy patients. Again, the probability of JIA was 

used as a TMJ health score. It was found that the cycles from healthy controls had an 

average TMJ health score of 0.56±0.25 and the cycles from JIA subjects had an average of 
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0.73±0.27. When tested using a 2-tailed, unmatched t-test, these score distributions were 

significantly different (p<0.0001).  

 

Figure 32. TMJ AEs of JIA Patients with Jaw Sounds vs Healthy Patients with Jaw 

Sounds. 

7.3.4.5 Feature Ranking in JIA vs Healthy TMJ AEs 

The 49 features were ranked based on the average information gained at each split of the 

bagged tree as described in 4.2.4. The top 13 features are presented in Figure 33. The RMS 

power and Energy were the top ranked time-domain features. Spectral slope, spread and 

entropy, were the three highest spectral features. 
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Figure 33. Relative Feature Importance Ranking for Distinguishing JIA from 

Healthy AEs in the TMJ. 

7.3.5 Discussion of JIA TMJ AE Results 

This study sought to answer two key questions: 1) can AEs from the TMJ be used 

to screen for JIA, and 2) is there a difference in pathologic and non-pathologic TMJ sounds. 

To answer these questions the AEs from 51 subjects. 28 healthy controls (8 with observed 

TMJ sounds), and 23 subjects with JIA (14 had TMJ sounds) were first recorded using our 

custom setup described in 7.2.2. Each subject opened and closed their mouths 10 times 

while their AEs were recorded. These AEs were first qualitatively compared in Figure 30. 

It was seen that they had much less variability in the AE patterns than was previously seen 

in the knee AE recordings in a similar population with JIA. However, the patients with JIA 
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and TMJ sounds still appeared to have a pattern filled with more large vertical spikes or 

“clicks”.  

To more quantitatively compare the AE patterns, 49 features (described in Table 1) 

were computed for each cycle of movement. These features were used to train a machine 

learning classification algorithm, specifically a bagged decision tree. First, this model was 

trained on the subjects regardless of whether they had observed TMJ sounds. Using LOSO-

CV, it was shown that AEs can reasonably predict JIA in a subject Figure 31. These results 

were less compelling than the near 100% accuracy we previously found when recording 

the AEs from the knees of patients with JIA (see Figure 22). However, since JIA is a 

systemic disease, perhaps AE assessment of both the knees and the TMJ could be used in 

tandem to further improve the sensitivity of this test. The 70.8% accuracy may not be high 

enough for being used as the sole basis for a JIA diagnosis. However, in the future, AE 

assessment may be used in addition to a thorough physical exam and patient history. The 

combined accuracy of these three techniques should help an OMS decide whether further 

testing/imaging is necessary to diagnose a patient. In this way, AE assessment may serve 

as an indicator of the need for further workup. 

Assuming a patient is being seen for a jaw complaint, and that they have noticeable 

jaw sounds on physical exam, the question then becomes are these sounds pathologic and 

harmful or the result of a benign anatomical variant. This question was addressed in this 

study by comparing the AEs of patients with and without JIA that did have TMJ sounds. 

To determine if the AEs from these two groups had characteristics that could be used to 

separate them, again a bagged decision tree model was trained using the recorded AEs from 

these two subgroups from our larger database of recorded AEs. This cohort had 17 subjects 
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(9 of whom had JIA). The output joint health index of the sounds was significantly different 

between the two groups. This indicates that AE assessment could be used to determine if a 

patient’s TMJ sounds are pathologic or not.  

The work presented in this section shows that TMJ AE assessment is a promising 

if nascent technique. Before clinical adoption is possible, more patients should be recruited 

to assess the generalizability of the results seen in our work. Other potential causes of TMJ 

sounds should also be recorded and assessed to determine the full diagnostic capabilities 

of this technique. In order to classify the patients in this study as having JIA or not, and 

having TMJ sounds or not, we relied on the physical exam and history results acquired by 

the treating physician. In the future, we may have better classification accuracy using AEs 

if the groups are better stratified using gold-standards of diagnosis such as MRI imaging. 

Finally, the hardware used to record the AEs should ideally be made more portable and 

user-friendly as well. Currently, it is all powered by a laptop and able to be moved from 

one room to another, but the software is mostly command-line and prompt based. This 

primitive user interface is functional but requires a significant amount of training before it 

could easily be used by a non-expert.  
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusion 

Musculoskeletal injuries and rheumatic conditions are prevalent with nearly 18 

million injury-related patient visits occurring each year in the United States. In addition, 1 

in 4 people experience some form of arthritis. Few objective biomarkers exist to quantify 

the health of the joints. AE assessment of the joints would potentially allow for improved 

detection, management, and tracking of these conditions. 

In this thesis, we developed techniques for recording and analyzing AEs from two 

joints: the knee and the TMJ. We first developed a cadaver model of acute knee injury and 

quantified the specific characteristics of AEs that change following injury. Those changes 

were described using a collection of signal features. The feature set from this study formed 

the basis for our proposed machine-learning classification algorithms that output easily 

interpretable joint health scores. We then translated this technology into the clinic and 

recorded pediatric populations with JIA.  

In the JIA studies, the joint health score in both the knees and the TMJ were able to 

differentiate between the AEs of healthy patients and those with the condition. 

Longitudinal monitoring of the knees’ AEs was also capable of quantifying successful 

treatment.   This study demonstrated that AE analysis is a convenient technique for non-

invasively quantifying joint health status that could be performed both in and outside the 

clinic. In summary, the work presented in this thesis presents a significant step forward in 
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the understanding of the nature and potential applications of joint AE sensing. With further 

research, this modality could potentially improve the lives of the children suffering from 

JIA, and all those recuperating from MSK injury. 

8.2 Future Work 

Various future research directions could stem from this work. One of the most 

immediate paths is to determine if the alterations to the AEs seen in the cadaver model on 

acute knee injury is preserved in vivo. In fact, recruitment is ongoing in this avenue in our 

lab. The current number of subjects in that study is insufficient to make any significant 

claims, but preliminary findings look promising.  The recording setup developed in this 

work uses a combination of accelerometers and IMUs to capture joint AEs. In the future, 

the location and number of these sensors could be adjusted to optimize signal quality and 

localize MSK injuries. Additionally, AEs from other joints should be researched to see if 

they can similarly provide clinically relevant information. In this work, we saw that 

machine learning models can predict a subject’s disease status. However, these models 

only compared a healthy cohort to a cohort with the pathology of interest. Whether an 

arthritis-induce AE could be distinguished from an injury-induced AE is yet to be 

determined. As the dataset continues to grow a comprehensive joint health scoring 

algorithm could be developed – one that outputs the probability of a patient having arthritis 

or any number of MSK injuries and pathologies. This algorithm would form the basis of 

an ideal screening tool for when any patient with an MSK complaint is seen by a primary 

care healthcare worker. 
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On a broader scale, there are still several substantial research avenues to explore 

before AE analysis would be considered for clinical adoption. Using the cadaver model, 

more exploration should be done on the nature, origin, and possible confounding factors of 

AE production. Principle among these are the effects of kinematics (e.g. velocity and range 

of motion) on the AE profile. The effects of joint swelling on AEs was explored briefly, 

and it was shown that it had no impact on the AEs. However, this was on a small number 

of cadaver knees with a rather basic method of testing. A more thorough could reveal new 

information about swelling’s effects. It would seem as though with more swelling one 

would see less interaction of the articulating surface and thus fewer spikes in the AEs. This 

was not observed in the six legs tested which indicates one of three things: 1) the injected 

saline volume was inadequate at maintaining separation of the joint perhaps due to loss of 

tissue integrity, 2) swelling does in fact not impact AE production, or 3) there is an alternate 

mechanism of AE production occurring. With that final possibility, it raises the point that 

the mechanism of joint sound production should be further researched and explained. In 

particular, many of our patients with JIA were not expected to have progressed to the stage 

of having cartilage erosions and bone spurs.   They would however have synovial 

thickening. If this was the only change to the joint, increased bone-on-bone contact would 

not occur and be creating the sounds as hypothesized in Chapter 5. The mechanism of AE 

production in JIA needs to be further researched so that the full capabilities of AEs for 

monitoring JIA could be assessed.  

Another hurdle to clinical adoption that must be addressed is the ease of use of the 

AE recording software and hardware. Currently, the recording software is still largely 

command-line based and the sensors do not have any packaging. In future 
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implementations, the code should be written in a way to maximize user-friendliness – 

perhaps with a graphical user interface. This would allow for faster training on the 

software. On the hardware, thought should be placed on providing a guide for appropriately 

adhering the accelerometers on the ideal locations of the joint being recorded. The design 

of the packaging, installation technique, and methods for increasing ease of use remain 

important areas for improvement. 

The work presented in this thesis is a substantial step in the understanding of AEs, 

but there are several limitations that should be addressed in the future. Principle among 

these is the size of the datasets. The next feasible step in this work is to considerably 

increase study recruitment, perhaps by disseminating the technology or partnering with 

other institutions and hospital systems. We will not understand the full diagnostic 

capabilities of AEs until recordings from a wide range of MSK conditions are available. 

To begin collecting such a dataset, we should leverage one of the key benefits of AE 

analysis – its portability. Hardware form-factors should be developed that will allow for 

more frequent recordings outside of the clinic. With that data, we could better understand 

the potential for AEs to be used as a longitudinal biomarker of rehabilitation and treatment 

efficacy. While we do not envision AE assessment replacing imaging in the workup of 

MSK patients, it could potentially complement the clinical assessment and help provide a 

more complete understanding of a patient’s joints. 
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